Extending the Phase Gradient Autofocus Algorithm for Low-Altitude Stripmap Mode SAR
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Abstract— The Phase Gradient Autofocus (PGA) algorithm has been widely used in Spotlight Synthetic Aperture Radar
(SAR) to remove motion-induced blurs in the images. The PGA algorithm has been proven to be a superior autofocus
method. This algorithm is extended for application to low-altitude stripmap mode SAR. PGA assumes a narrow beam,
which is valid for most SAR systems. However, lower altitude SARs have large range dependencies that cannot be ignored.
A new phase estimator for PGA is introduced and extended to allow range dependence. Three SAR images with different
characteristics are used in simulations comparing the new estimator to the widely used maximum likelihood approach and
in demonstrating the range-dependent PGA algorithm. The PGA algorithm is also extended to stripmap mode SAR data
through a new compression method.

INTRODUCTION AND BACKGROUND

Full focusing of SAR images requires some type of autofocus routine. The Phase Gradient Autofocus (PGA) algorithm has
proven to be a superior method for higher order autofocus because it does not assume a model for the phase error. The
standard PGA model assumes a small beamwidth in range, which results in a phase error constant in the range direction.
Most satellites and other high altitude systems fit this model. However, a low-altitude SAR like YSAR [1] will have range-
dependent phase errors. The PGA algorithm is well-developed only for spotlight mode SAR data. In this paper we extend
the algorithm by introducing range dependencies in the phase error and by applying the algorithm to stripmap mode data.

There are four main steps in the PGA algorithm. The four steps are center shifting, windowing, phase estimation and
iteration. These steps are described in detail in [2, 3, 4]. A few different methods have been proposed for the phase
estimation step, with different criteria for optimality. The original algorithm used linear unbiased minimum variance [2].
The same authors later proposed a method using a maximum likelihood (ML) estimator [3]. This paper proposes a new
phase estimation technique which allows extension to a range-dependent algorithm. The Phase Weighted Estimation PGA
(PWE-PGA) proposed here differs from earlier algorithms only in the phase estimation step. This phase estimator can be
used equally well in stripmap or spotlight mode data, and in range dependent or non-range dependent versions. The stripmap
mode algorithm proposed here differs from other versions in a few ways, primarily in a preprocessing step and in the circular
shifting step.

The following section describes the cause of the range dependencies in low-altitude SAR data. The next section describes
the proposed phase estimator and the extension to the range dependent version and presents results of some simulations
using this method on spotlight SAR data. The next section discusses the stripmap mode PGA algorithm. Conclusions and
future work are discussed in the final section.

RANGE-DEPENDENT PGA

The traditional PGA algorithm described above assumes that the phase error is constant with range and estimates the error as
a function of azimuth position. A low-altitude SAR system with highly varying incidence angles will exhibit range-dependent
effects in the phase errors. This section describes the cause of some of these range dependencies.

Assume the instrument platform is flying with constant velocity in the direction of increasing z, with the nominal trajectory
following x = y = 0, as shown in Fig. 1. Then the phase error due to the trajectory errors in the x and y directions can be
written as
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where 6 is the incidence angle. The data is stored by range bin instead of incidence angle, so we write the incidence angle
for the kth range bin as
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Figure 1: Transverse Motion Geometry

Here H represents the height of the instrument above the topography, Ry is the range to the zeroth sample, and R is

the range bin size. Now we have two parameters of phase error to estimate for each azimuth position, gﬁw = —‘%x(t) and

<$y = 4T"y(t). There is still a large amount of redundancy in the data, so one should be able to effectively estimate these
two parameters by adding some kind of range-dependent weighting in the PGA phase estimator. One possibility for the
range-dependent weighting is developed in the following section.

PHASE WEIGHTED ESTIMATION

To apply PGA, the gradient of the phase error must be found. The maximum likelihood method is known to be optimal
and robust; thus, a first approach would be to apply this method to the range-dependent problem. However, we are not
aware of a closed form for the phase estimate in this case. We thus introduce a new algorithm to estimate the phase gradient
which allows a simple closed form for a range-dependent version. The phase noise of a sample depends inversely on the
magnitude. Thus, our new method weights the phase measurements by the magnitude of the corresponding pixel. This
method is weighted least squares optimal.

Let gxn denote the image in the range-compressed domain, with k indicating the range bin and n the azimuth bin. Then
the estimated phase gradient, denoted ¢, is
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We now extend this algorithm to the range dependent form. Any algorithm using a weighting of the phase values in the
form of Eq. 3 can easily by extended to this form without changing the phase weighting. We simply add range weighting
and write a vector of equations indexed by range bin k as
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This equation is separated into vectors and matrices and written as
Adn = bin (5)

where A is the Mx2 matrix made up of the sine values in the first column and the cosine values in the second, J)n is the
2x1 vector of phase estimates, and ¢yn is the Mx1 vector of weighted image phase gradients. This equation is solved using
the pseudoinverse of A to obtain the range-dependent phase gradient estimate. This gradient is then integrated and applied
in the same way as in the original PGA algorithm. This algorithm can be derived using standard weighted least squares
methods and is optimum in that sense [5].

The new PWE-PGA algorithm was tested using synthetic phase errors on three different SAR images. The first is a desert
region with no significant scatterers. The second is a mountain region with some prominent scatterers. The third is an
urban region with many scatterers of all types. Range dependent and non-range dependent phase errors were applied to
each image, and the blurred images were corrected using the original ML-PGA algorithm and using the new Phase Weighted
Estimation PGA. For the non-range dependent tests, the ML-PGA results are compared with the PWE-PGA. In each case,
the PWE-PGA converges much more slowly than ML-PGA but has a smaller error after many iterations.

In all of these tests, the phase error is estimated and removed very accurately such that the restored image is nearly
indistinguishable from the original. For some range dependent tests, the individual parameters ¢, and ¢, have a relatively
large error, but the combined phase error estimate at any given range is accurate. This is because of the non-uniqueness of
the pseudoinverse. Different linear biases in ¢, and ¢, can also cause a range-dependent shift, distorting the image slightly.

Actual and estimated phase errors for the three images for non-range dependent errors are shown in Figs. 2, 3, 4. The
standard deviation is plotted as a function of iteration in Figs. 5, 6, 7 for the same tests. Results of the range dependent
tests for the urban image only are shown in Figs. 8-12. These figures show the phase error comparison in ¢, and ¢, and
total phase error at near, mid, and far ranges, respectively.
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Figure 2: Phase error comparison, PWE-PGA vs. ML-PGA for non-range dependent spotlight desert image.

STRIPMAP MODE PGA

The PGA algorithm as discussed above does not apply to stripmap mode SAR data. The stripmap mode SAR uses chirp
correlation instead of Fourier transformation to transform from range-compressed to fully-compressed data. Also, each pixel
in a spotlight image contains the phase history for all of the data, while the stripmap phase history is limited by the azimuth
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Figure 3: Phase error comparison, PWE-PGA vs. ML-PGA for non-range dependent spotlight mountain image.

Urban PWE NRD Spotlight Phase Comparison

15 T T T T
——  Original
- - - PWE Estimated P
10 ML Estiamted / N

Radians

-20 1 1 1 1
0 200 400 600 800 1000 1200
Phase Error

Figure 4: Phase error comparison, PWE-PGA vs. ML-PGA for non-range dependent spotlight urban image.

beamwidth. Stripmap to spotlight data formatters have been proposed [6, 7], but these algorithms make the narrow-beam
assumption and cannot easily be extended to the range-dependent case. We introduce an alternative compression algorithm
to be used for phase error estimation. This new method will be called Stripmap Spotlight Compression (SSC) because of
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Figure 5: The standard deviation as a function of iteration for PWE-PGA and ML-PGA, non-range dependent spotlight
desert image.

similarities with the standard spotlight azimuth compression. Note that this algorithm is used only for phase error estimation
and not for image formation.

Stripmap Spotlight Compression consists of four steps [5]. The first step is windowing the long stripmap data into smaller
sections. This avoids aliasing in later steps and takes advantage of the localized phase history in stripmap data. The second
step is multiplication by the conjugate of the azimuth chirp. This corresponds to the dechirping usually done in hardware on
spotlight mode systems. The third step is Fourier transformation, which corresponds to spotlight mode azimuth compression.
The final step is applying the stripmap PGA algorithm. This is similar to the spotlight version except that special care must
be taken in the circular shifting step. The mean phase gradient is also removed to insure a smooth integration across section
boundaries. Any PGA phase estimator may be used in this step, including range dependent or non-range dependent versions.

This method has been shown to work on simulated data. Range-compressed stripmap data is simulated from an actual
SAR image by convolving with an azimuth chirp. Then phase errors are applied and estimated using the SSC method.
Parameters similar to those for YSAR were used in these simulations. Results were comparable to spotlight mode PGA for
the same phase errors applied to the same images.

CONCLUSIONS AND FUTURE WORK

The PGA algorithm has been widely used in spotlight SAR images to remove motion-induced blur. PGA has been proven
to be a robust, computationally superior autofocus algorithm. The conventional PGA uses a narrow beam approximation
to avoid range dependencies. We have introduced a new phase estimator for use in PGA and have extended it to the range-
dependent case. We have also introduced a new algorithm for spotlight compression of stripmap mode SAR data for phase
estimation. Several tests have shown that these algorithms can be successful at removing range-dependent and non-range
dependent phase errors.

There is still much work to be done on this topic. It was noted that the PWE-PGA converged more slowly than ML-PGA.
We may be able to minimize or eliminate this effect through better choice of window size or other parameters. The SSC
method will be applied to real YSAR data. This algorithm will also be analyzed to determine the effects of the section
boundaries on the phase estimate.
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Figure 6: The standard deviation as a function of iteration for PWE-PGA and ML-PGA, non-range dependent spotlight
mountain image.
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Figure 7: The standard deviation as a function of iteration for PWE-PGA and ML-PGA, non-range dependent spotlight
urban image.
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Figure 8: Phase error estimate for ¢,, range dependent PWE spotlight urban image.
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Figure 9: Phase error estimate for ¢,, range dependent PWE spotlight urban image.
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Figure 10: Total phase error estimate for near range, range dependent PWE spotlight urban image. (Range Bin 1)
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Figure 11: Total phase error estimate for middle range, range dependent PWE spotlight urban image. (Range Bin 300)
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Figure 12: Total phase error estimate for far range,
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