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Abstract

Sampling plays a critical role in remote sensing and signal analysis. In conventional
sampling theory, the signal is sampled at a uniform rate at a minimum of twice the signal
bandwidth. Sampling with an aperture function requires a fixed aperture function,
which can be removed by deconvolution after signal reconstruction. However, in some
cases the signal samples are available only at irregular positions and different samples
use different aperture functions.

Here we explore the theory of finite-length signal reconstruction with irregular sam-
ples and variable apertures in one and two dimensions is considered. We concentrate
on discrete sampling and reconstruction.

In the one-dimensional case, a band-limited discrete signal can be exactly recon-
structed from a finite number of arbitrarily spaced samples with few restrictions on the
aperture functions, which can vary between samples.

Exact reconstruction in the two-dimensional case requires the sampling location
matrix be invertable, and is not always possible. Variable aperture functions, while
complicating the process, can enable reconstruction for a broader range of sample loca-
tions. Note that two-dimensional reconstruction from general cubic lattice samplings,
which include uniform sampling, are always fully invertable in the ideal aperture case.

We consider a number of practical issues and provide some numerical examples based
on simulated special sensor microwave imager (SSM/I) radiometer measurements which
have variable apertures. We note that variable aperture reconstruction has application
in a variety of remote sensing and other signal processing problems.

1 Introduction

In a typical remote sensing application, observations (measurements) are samples of an
aperture-filtered signal, typically a distributed geophysical quantity such as surface bright-
ness temperature. The aperture results from spatial filtering characteristics of the antenna,
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optics, and/or signal processing used in the signal sampling. Signal sampling may involve
a combination of platform movement, scanning, and pulsed operation, among others. The
signal and sampling are frequently two-dimensional. From the set of samples we desire to
reconstruct the original signal over the sampling area.

Reconstruction of a band-limited signal from uniformly spaced samples is a well-understood
problem treated in standard signal processing textbooks (e.g., [1]): given uniformly spaced
samples of the signal, the original band-limited signal can be exactly reconstructed from
the samples by sinc interpolation1 so long as the signal is sampled at twice the highest
frequency of the signal, i.e. as long as the sampling meets the Nyquist criterion. Uniform
spacing of the samples is also known as “regular sampling”. We note that this traditional
band-limited reconstruction relies on infinite samples, which cannot be practically collected.
We thus need to consider more general reconstruction techniques [2]. Approximate solutions
based on oversampling and filtering or interpolation are commonly used2 Alternately, we
can use the periodic extension method explored in the following.

When the signal is sampled with a fixed aperture function3, the original signal can be
recovered from the samples by deconvolution of the aperture function and an intermediate
signal resulting from reconstruction from the samples assuming no aperture function4. So
long as the spectrum of the aperture function has no nulls in the signal bandwidth, the
original signal can be completely recovered. Otherwise, there may some loss of information.

In some remote sensing applications, only a finite number of measurements are available
and the observations (samples) are not uniformly spaced due to the sensor measurement
geometry or platform motion, resulting in irregular (non-uniformly spaced) sampling. Fur-
thermore, the effective aperture may be different for each of the observations, a condition
termed “variable aperture” sampling. A number of techniques have been published for signal
reconstruction from irregular, arbitrarily spaced samples, e.g. [2, 5, 6, 7, 8, 9] and references
therein; however, the general solution to the problem of signal reconstruction from irregular
sampling with variable aperture functions has only been recently developed [10], and the
limitations of reconstructability for two dimensions have not been fully addressed.

To make this earlier work more accessible we use a tutorial approach to discuss the
problem of band-limited signal reconstruction from irregular samples for variable and fixed
apertures and present a general discrete signal solution in one and two dimensions. The
discrete signal method is chosen since in practice the signals of interest are defined only
over a bounded domain and only a limited number of samples are available. This report
includes new contributions such as a discussion of practical considerations, a presentation
of the sampling limitations in two-dimensional reconstruction from the irregular sampling,
an empirical analysis of the ratio of sample density and bandwidht, and a derivation of the
general matrix formulation for irregular sampling with variable apertures. To illustrate the
technique simulation results are presented for a realistic sensor.

1Sinc interpolation is equivalent to low-pass filtering of a zeroth-order hold signal.
2An example is interferometric SAR data analysis for which window-based interpolation schemes have

been developed [3, 4].
3An aperture function is also termed a point-spread function, a spatial response function, or an impulse

response function.
4This is equivalent to assuming an ideal delta function aperture function.
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This article is organized as follows: after background and discussion, using a matrix
approach we show that a band-limited one-dimensional signal can be reconstructed from
arbitrarily located samples. We then extend the derivation to the case of variable apertures.
We then consider two-dimensional signals, which requires some constraints on the locations
of the irregular samples to ensure full reconstruction. An illustrative example is provided
demonstrating the utility of the technique in remote sensing based on reconstruction of
brightness temperature images from spaceborne radiometer data.

1.1 Background

In this section we discuss classic reconstruction theory for continuous-time signals, the
connection between continuous-time and discrete-time signals, and the reconstruction of
discrete-time signals from ideal and aperture-filtered, uniformly-space samples.

Consider two fundamental ideas in signal analysis: (1) the periodicity assumption im-
plied by discrete sampling of a band-limited, finite-length signal and (2) discrete subsam-
pling. We note that all practical signals are bounded.

When teaching introductory signal processing it is common to assume infinite length,
continuous signals (e.g., f(t) = sin t). In analyzing ideal one-dimensional signal recon-
struction from samples, a continuous band-limited signal f(t) is uniformly sampled at an
interval of T with an infinite number of samples. The ideally sampled signal is written as
f [n] = f(nT ) where f [n] is a discrete-time signal with n an integer. Assuming that 1/T
is greater than the twice the highest frequency present in f(t) (often called the “Nyquist
sample rate”), the Shannon-Wittaker-Kotel’nikov sampling theorem (see [1]) assures us that
f(t) can be reconstructed from f [n] using

f(t) =
∞∑

n=−∞
f [n]sinc((t− nT )/T ) (1)

where sinc(x) = sin(πx)/πx.
In practice, however, we can only observe a signal over a finite domain with a finite

number of samples. Unless the form of the underlying signal is known analytically, an
arbitrary signal cannot generally be fully reconstructed from only a finite number of samples.
We recall that when sampling a signal there is an implicit assumption that the signal is band-
limited; otherwise, aliasing and loss of signal information occurs in representing the signal
from its samples [1].

Note that only periodic signals can be band-limited. A finite-length signal can be made
periodic by extension. If we assume that the signal being sampled is periodic, and that
the signal samples correspond to one or more periods of the periodic signal, we can, in
practice, consistently assume that the signal is band-limited. This enables the (periodic,
band-limited) signal to be exactly reconstructed from the signal. This suggests that even
if underlying signal is not believed to periodic, the act of sampling and reconstruction
implicitly requires that we treat the signal as periodic and band-limited in order for the
idea of accurate reconstruction from samples to make sense.

Recalling that a finite-length signal can be made periodic by extension, we note that
in order for a signal to be consistently represented by a finite number of samples and be
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simultaneously band-limited, we must assume the signal to be periodic. In effect, finite
sampling and reconstruction implicitly requires that we treat the signal as both periodic
and band-limited in order to consistently interpret sampling and reconstruction. We note
that a bounded, continuous, band-limited, periodic signal can always be exactly represented
by a discrete-time signal [1, 10].

With these preliminaries, we observe that the sampling of a band-limited, continuous
signal can be viewed as equivalent to subsampling a discrete-time signal corresponding to
the original signal. To explore this for a one-dimensional signal, denote the signal of interest
by f(t). Suppose there are R samples of f(t) available at the arbitrary sample points t = tj
for j = {1...R}. Real-world considerations suggest that the spacings of the sample points
have a rational relationship. Thus, tj can be written as

tj = njT + T0 (2)

where nj is an integer, T0 is a real constant, and T is some interval for which Eq. 2 holds for
all j. In general, there are an infinite number of possible T values.5 We prefer to choose the
largest T subject to 1/T > 2B, where B is the highest frequency present in the band-limited
f(t). This T is hereafter referred to as the high-rate sample interval (HSI).

Based on the earlier discussion, since the signal f(t) is band-limited, it can be exactly
represented by its discrete-time counterpart f [n] = f(nT ) where T is the HSI. Thus, for
practical signal reconstruction, we need only reconstruct f [n] from the samples f [nj ]. The
signal f(t) can be reconstructed from f [n] using Eq. 1 where the infinite sum in Eq. 1 is
computed modulo the period so that only one period of the values of f [n] are required.

Thus the sampling of the continuous signal f(t) is equivalent to the discrete sampling of
the discrete signal f [n]. The available samples extend over the finite domain defined by NT
where T is the HSI and NT is the (assumed) signal period. The period count N may be
larger than max(nj)−min(nj), but if smaller, the indices nj are mapped to n ∈ {0, ..., N−1}.
Without information about the signal structure, selection of N in practice can be arbitrary
and requires engineering judgment.

The discrete Fourier transform (DFT) F [k] of f [n] can be written as

F [k] =
N−1∑
j=0

f [j]W kj
N (3)

where W kj
N = e−i2πkj/N and i =

√
−1 [1]. Since f [n] is band-limited to B, F [k] = 0 for all

|k| > M where M ≤ NB/2T , and the discrete signal f [n] is termed M -band-limited. Note
that F (k) approximates the continuous Fourier transform F (ω) of the underlying continuous
f(t) for ω < πM/NT [1].

In the one-dimensional case, the M -band-limited discrete signal f [n] can be perfectly
reconstructed from the irregular samples f [nj ] for arbitrary nj , so long as the R ≥ 2M + 1
samples nj mod N are distinct [8]. Additional samples can reduce the effects of noise in

5This is readily seen by noting that if a particular value of T satisfies Eq. 2 for all j, the value d where
T = md for an arbitrary integer m > 0 also satisfies Eq. 2.
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noisy processes [6, 5]. Efficient numerical algorithms for irregular reconstruction have been
developed [6].

As discussed later, unlike one-dimensional reconstruction, two-dimensional reconstruc-
tion is not always possible for arbitrarily located samples. Accurate two-dimensional recon-
struction imposes restrictions on the sample locations.

The sampling discussed so far assumes an ideal aperture function where the observation
of the signal f [n] at nj is f [nj ]. Practical aperture functions result in observation values
that are locally averaged and weighted values of the signal. Local averages smaller than the
maximum sample spacing are treated by [11]; however, as discussed below, larger apertures
can be used. In general the observation values can be modeled as ideal samples of the
aperture-filtered signal. For example, in one dimension using the discrete signal model with
the aperture function v[n], the observation sample is g[nj ] where g is the aperture-filtered
signal given by g[n] = v[n]∗f [n] where ∗ denotes discrete convolution. For the fixed-aperture
case, the samples can be first used to reconstruct g[n] from the observations, then signal
deconvolution techniques can be used to compute f [n] from g[n]. So long as the aperture
spectrum does not have any nulls over the bandwidth of the signal spectrum, the signal
can be reconstructed perfectly. However, when different apertures are used for different
samples—a common case in remote sensing—the deconvolution approach cannot be used.
In the following we show how fixed or variable aperture functions can be incorporated into
the reconstruction process to directly estimate the original signal.

2 One-Dimensional Sampling and Reconstruction

This section considers one-dimensional reconstruction. To simplify the development, we
first consider uniform or regular sample reconstruction, then irregular sampling and recon-
struction without an aperture function. Finally, the general case of irregular sampling with
a variable aperture is considered.

2.1 Preliminaries

In discrete signal processing with periodic signals, the Dirichlet kernel plays an analogous
role with the sinc function in continuous signal processing. The discrete Dirichlet kernel
can be written as

DM,N (n) =
M∑

k=−M
W−knN (4)

=

 sin((2M + 1)πn/N)
sin(πn/N) , n 6= 0

2M + 1, else
(5)

which is periodic in n with period N > 0 and is M -band-limited. An illustrative plot of
DM,N (n) for a particular M and N is shown in Fig. 1.

Since

〈DM,N (n− ni), DM,N (n− nj)〉
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Figure 1: Examples of (left) one-dimensional (N = 55, M = 5) and (right) two-dimensional
(N1 = N2 = 55, M1 = M2 = 5) Dirichlet kernels. One period of each kernel is shown.

=
N−1∑
i=0

N−1∑
j=0

DM,N (n− ni)DM,N (n− nj)

= NDM,N (ni − nj), (6)

it follows that DM,N (n−ni) and DM,N (n−nj) are orthogonal if and only if (ni−nj)(2M +
1) = n′N for some integer n′ 6= 0. The set of vectors generated by DM,N (n − jd); j =
0, 1, ..., 2M for integer d = N/(2M + 1) forms an orthogonal basis for the space of all of
discrete band limited functions of period N .6 Thus, any discrete M -band-limited function
with period N can be expressed as

f [n] =
2M∑
j=0

ajDM,N (n− jd) (7)

with f [n+ kN ] = f [n] for all integer k. This is the discrete equivalent of Eq. 1 when aj =
d
N f [jd] and corresponds to interpolation by the Dirichlet kernel. Note that by construction
f [n] is M -band-limited and periodic with period N .

Equation 7 can be formulated as the matrix equation

f = Da (8)

where the N element signal vector f has elements (f)n = f [n], a has 2M + 1 elements aj ,
and the N × (2M + 1) matrix D has elements

(D)k,l = DM,N (k − ld). (9)

6Strictly speaking, d does not need to be an integer; however, when d is not an integer the aj in Eq. 8
correspond to Dirichlet-interpolated values of f [n] rather than to specific samples of f [n]. Nevertheless, the
reconstruction equations [Eqs. 8, 11, and 12 for regular sampling, Eqs. 14 and 16 for irregular sampling] can
be applied for non-integer d.
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so that
D =

[
DM,N (0) DM,N (d) · · · DM,N (2Md)

]
. (10)

Equation 8 is the matrix formulation of the regular reconstruction equation. As shown
later, this result can be generalized to deal with irregularly spaced sampling.

2.2 Reconstruction from Regular Samples

The regular, or uniform, discrete-time sampling and reconstruction problem can be formu-
lated as follows. Any periodic, M -band-limited discrete signal f with period N , can be
reconstructed exactly from R ≥ 2M + 1 samples fs[j] where fs[j] = f [jd] with d is the
integer sample spacing and jd mod N distinct. Ideally, R = N/d.

The regularly sampled signal fs[n] can be written as,

fs = D◦a (11)

where D◦ is the R × (2M + 1) matrix constructed from the R rows of D corresponding to
the values n = jd; j = 0, 1, ..., R− 1 with fs containing 2M + 1 elements (fs)k = f [kd].

Given fs, we want to compute a. In order to compute the 2M + 1 values in a necessary
to fully reconstruct the signal, it is sufficient to show that the inverse of D◦ exists. Then

a = D−1
◦ fs. (12)

a can then be used to reconstruct the signal using the reconstruction equation, Eq. 8.
For the regular sampling case with R = 2M + 1, the elements of the matrix D◦ = D

can be written explicitly as

(D◦)l,m = DM,N (ld−md) =
M∑

k=−M
W−kldN W kmd

N . (13)

As demonstrated in the appendix, the D◦ matrix is always invertable so that Eq. 12 can
be used to compute a, which can then be used to reconstruct the signal using the discrete
sampling equation f = Da. We note that for the regular sampling reconstruction case with
d(2M + 1) = N , D◦ (d integer) is, in fact, a scaled identity matrix so that a = d

N fs.
When the signal is oversampled, i.e. there are more than the minimum required 2M + 1

signal samples available, the matrix D◦ is rectangular but still has full column rank. In this
case, the Moore-Penrose pseudoinverse can be used in place of the conventional inverse in
Eq. 12, resulting in a unique estimate of a. If there is no noise in the problem, the solution
for a is precisely the same for all N ≥ R ≥ (2M + 1). A longer discussion on oversampling
is provided in the next section.

2.3 Reconstruction from Irregular Samples

The previous derivation can be extended to the case of sampling a signal at irregular inter-
vals. The R = 2M + 1 irregular samples fis can be represented in matrix form as

fis = D∆a (14)
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where D∆ is the R× (2M + 1) matrix constructed from the R rows of D corresponding to
the distinct sample points nl ∈ {0, ..., N − 1}; l = 1, 2, ..., R with fis having the R elements
(fis)l = f [nl]. The elements of the matrix D∆ can be written explicitly as

(D∆)l,m = DM,N (nl −md)

=
M∑

k=−M
W−knl
N W kmd

N . (15)

In order to compute the 2M + 1 values of a necessary to fully reconstruct the signal
[using Eq. 8], D−1

∆ must exist. This is shown in the appendix for arbitrary disjoint nj .
While it is possible to write D−1

∆ in closed form, the closed-form inverse is impractical
for numerical computation. Instead, well-known conventional numerical inverse methods
can be used to compute D−1

∆ or solve the corresponding linear system. We point out that
D∆ and D−1

∆ depend only on the sample locations and not the sample values. Thus, if the
sample locations remain the same, multiple reconstructions can be accomplished with only
one matrix inversion. Fast numerical methods for solving Eq. 14 are considered in [6].

Since D−1
∆ exists, it is possible (at least theoretically) to compute

a = D−1
∆ fis (16)

no matter what the precise values of the nj are, so long as they are distinct. Once a is
computed, it can then be used to reconstruct the signal using the discrete sampling equation,
Eq. 8. Reconstruction from irregular samples can thus be viewed as a two-step process: first
compute the frequency coefficients of the signal using Eq. 16, then reconstruct the full signal
using Eq. 8.

We point out that once a is computed from the locations of the irregular samples,
the reconstruction of f [n] is independent of the original sample locations. Further, when
there is no sampling noise, the a computed from either irregular or regular sampling is
identical. Some computation can be saved if the reconstructed signal is only needed at
particular locations. In this case a is first computed from the samples. Then the forward
reconstruction equation, Eq. 8, can be used with D containing only the rows corresponding
to the desired locations.

In the oversampled case where R > 2M + 1, D∆ is rectangular but remains full column
rank. It is overdetermined and therefore has a unique pseudoinverse. While the “extra”
samples could be discarded to make D∆ square, retaining all of the samples improves the
performance in the presence of sampling noise [6]. When R > 2M + 1, the pseudoinverse
is used in Eq. 16 to compute a. We note that in the noise-free case, the same a results no
matter the number (subject to R ≥ 2M + 1) or the locations of the samples so long as they
are distinct.

2.4 Variable Apertures

The previous section showed that a one-dimensional, discrete, periodic, M -band-limited
signal can be reconstructed from 2M+1 arbitrary irregular samples. There is no restriction
on where the sample points are located - only that they are distinct. This result has
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been derived previously [8]. However, the variable aperture case has not been previously
considered. In this section, we consider the variable aperture case.

As noted, in practice the observed signal is frequently filtered through an aperture or
point-spread function prior to sampling. Such may arise due to the response function of
an antenna, lens, or other signal processing. In general, the aperture may be different for
each observation. While the effects of a single, fixed aperture function can be removed by
deconvolution, handling variable apertures requires a more general approach.

Let vj [n] be the aperture corresponding to the jth observation. Effectively, vj is the
impulse response of the aperture. Typically, the aperture is window-like with a central peak
centered at the sample location and has a finite length. The aperture is generally much
shorter than the signal, and thus has a wider bandwidth of support. Define the jth aperture-
filtered signal as fj [n] = vj [n] ∗ f [n]. Note that fj [n] is band-limited to the minimum
bandlimit of the signal f [n] or aperture function vj [n].7 The jth sampled observation is
gj = fj [nj ].

Assuming vj [n] is reasonably well-behaved, we can write,

fj [n] = vj [n] ∗ f [n] =
N−1∑
k=0

f [k]vj [n− k] (17)

where vj is treated as periodic modulo N so that the observation samples gj = fj [nj ], are

gj =
(
vj [n] ∗ f [n]

)∣∣∣∣
n=nj

(18)

=
N−1∑
k=0

f [k]vj [nj − k]. (19)

Using Eq. 7 the sample gj can be written as

gj =
N−1∑
k=0

2M∑
l=0

alDM,N (k − ld)vj [nj − k] (20)

=
2M∑
l=0

alHj(nj ; l) (21)

where Hj(nj ; l) is defined as convolution of the Dirichlet kernel DM,N (n − ld) and the
aperture function vj [n] sampled at nj , i.e.,

Hj(nj ; l) =
[
vj [n] ∗DM,N (n− ld)

]∣∣∣∣
nj

. (22)

In matrix form, the variable aperture sampling equation is

g = Dva (23)
7Here we assume that none of the apertures have frequency nulls in the signal bandwidth.
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where (g)j = gj [nj ] and Dv is the R× (2M + 1) sampling matrix whose rows are Hj(nj ; l)
for l = 0, ..., 2M . Explicitly,

(Dv)j,l = Hj(nj ; l)

=
N−1∑
k=0

vj [nj − k]DM,N (k − ld) (24)

=
N−1∑
k=0

vj [nj − k]
M∑

m=−M
W
−m(k−ld)
N (25)

=
N−1∑
k=0

vj [nj − k]
M∑

m=−M
W−mkN Wmld

N . (26)

Given the sample values g, the vector a can be computed by inverting Eq. 23, if the sampling
matrix Dv is invertable.

The matrix Dv is invertable if only if the columns of Dv are linearly independent,
which depends on the relationship of the aperture functions as shifted to the sampling
location. In the ideal aperture case, vj [n] = δ[n − nj ], so that Dv = D∆. Fortunately
most practical apertures tend to be well-behaved. These include finite-length window-like
apertures centered at the (distinct) sample locations.8 In these cases the matrix Dv is
invertable. Notably, a fixed aperture (vj [n] = v[n−nj ]), where v[n] is well-behaved such as
a window function, ensures invertability.

If Dv is full-column rank, the value of a computed from the variable aperture samples
is unique and permits reconstruction of f [n] using Eq. 8 for any set of distinct sample
locations (subject to R ≥ 2M + 1) and apertures. When extra samples are available, the
pseudoinverse can be used. In the noise-free case the result is precisely the same values for
a as when the minimum number of distinct samples is used.

2.5 Computational Considerations

In the previous sections it is shown that regardless of where the signal is sampled, the
resulting D∆ matrix is invertable, enabling reconstruction of the periodic, band-limited
signal f [n] given any 2M + 1 samples within the period. The samples could, in fact, be
adjacent. However, the sample locations do affect the computation of the inverse of the
D∆ or Dv matrices as quantified by the condition number of the matrices. The condition
number κ is the ratio of the largest to smallest eigenvalues. A large condition number implies
the inverse is sensitive to numerical computation errors. Thus, poor condition numbers can
limit the practical implementation of the approach even though the matrix is known to be
invertable. We note that the condition number is a function only of the sample locations
and aperture function, and not of the signal values.

As we have seen, reconstruction of the sampled signal involves the solution of the linear
system given by Eq. 14 for the case of no aperture (which is equivalent to an ideal δ function

8An example of a poorly behaved aperture is vj [n] = 1 (i.e., a “rect” window spanning a signal period),
which results in a non-invertable Dv.
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aperture) or Eq. 23 for the aperture-filtered case. This can be computationally taxing,
particularly for large R. When using no aperture, the active weights conjugate gradient
Toeplitz method (ACT algorithm) [6] is a computationally efficient method for solving the
system for one-dimensional reconstruction from irregular samples. The ACT method can
be extended to a single, fixed aperture by first reconstructing the aperture-filtered signal
from the samples and then deconvolving the aperture function and signal. However, the
ACT algorithm does not support variable apertures.

For the variable aperture case, a numerical approach must be used. Fortunately, numer-
ical methods permit solutions of very large order even when the condition number is quite
large. Values of R in of hundreds or more are practical and large values can be used with
very high-precision computation. While there are so many variations that it is difficult to
generalize the effects of the variable aperture, we have found that most practical apertures
tend to regularize D∆, reducing the condition number relative to an ideal (δ function) aper-
ture. Occasionally for particularly poor sampling distributions, the apertures can degrade
the condition number compared to an ideal aperture. While poorly behaved apertures can
produce non-invertable Dv matrices, in the authors’ experience, poorly behaved apertures
are rarely encountered in practice.

Iterative approaches to matrix inversion or linear system solution can be very effective
for reconstruction, and iterative methods are commonly used to refine matrix inverses com-
puted using QR factorization or other methods. We note that iterative methods can also
be used to compute approximate reconstructions. These are particularly useful for very
large problems with thousands or millions of samples. Examples of iterative reconstruction
methods include algebraic reconstruction methods (e.g., [12]) and the scatterometer image
reconstruction (SIR) method [13]. Though SIR was not originally explicitly formulated as
a discrete reconstruction method, the linear form of SIR is an iterative approximation of
the reconstruction method described here. Other variations are possible, e.g., [14].

3 Two-Dimensional Sampling and Reconstruction

Extending the one-dimensional results to higher dimensions seems straight-forward. How-
ever unlike in the one-dimensional case where the only requirements on the sample locations
are that they be distinct, in the two-dimensional sampling case there are some sampling dis-
tributions that do not enable two-dimensional reconstruction. For example, if all the samples
are in a straight line, they are effectively single-dimensional and general two-dimensional
reconstruction is not possible.9 On the other hand, for two-dimensional signals band-limited
to rectangular spectrum of support, sampling using a generalized “cubic lattice” location
scheme (defined later) is always fully reconstructable, even if the lattice spacing is nonuni-
form. While general two-dimensional sample location requirements that enable full recon-
struction of band-limited signals are difficult to simply state, a given sampling configuration
can be tested by evaluating the rank of the two-dimensional reconstruction matrix described
later.

9Other examples of non-reconstructable sample distributions can be generated; see Fig. 2.
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Figure 2: Examples of 2-D sampling for (N1 = N2 = 45, M1 = M2 = 5): (ul) uniform cubic
lattice; (ur) irregular cubic lattice; (ll) general reconstructable; (lr) non-reconstructable.
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3.1 Preliminaries

Following the one-dimensional case, a discrete two-dimensional signal f [n1, n2] with two-
dimensional period [N1, N2] is considered that is [M1,M2]-band-limited, i.e. the signal has
a rectangular region of support in the frequency domain.10 Thus, its two-dimensional DFT
F [k1, k2] can be written as (compare Eq. 3)

F [k1, k2] =
N1−1∑
n1=0

N2−1∑
n2=0

f [n1, n2]W k1n1
N1

W k2n2
N2

. (27)

Since F [k1, k2] is [N1, N2]-periodic, we need only consider a single period in the following
discussion.

For convenience the two-dimensional signal is expressed as a row-major ordered vector,
though any consistent ordering could be used. Over a [N1, N2] period, f [n1, n2] is written
in row-major ordering as the N1N2 length vector f with elements (f)j = f [n1, n2] where
j = n2N1 + n1 with n1 ∈ {0, 1, . . . , N1} and n2 ∈ {0, 1, . . . , N2}. To illustrate the ordering,
the two-dimensional locations

(0, 0) (0, 1) · · · (0, N2 − 1)
(1, 0) (1, 1) · · · (1, N2 − 1)

...
...

. . .
...

(N1 − 1, 0) (N1 − 1, 1) · · · (N1 − 1, N2 − 1)


become the one-dimensional vector

(0, 0)
(1, 0)
(2, 0)

...
(N1 − 1, 0)

(0, 1)
(1, 1)

...
(N1 − 1, 1)

(0), 3
(1, 2)

...
(N1 − 1, N2 − 1)



.

Eq. 27 defines a rectangular region of support in the frequency domain where F [k1, k2] =
0 for |k1| > M1 or |k2| > M2. Note that there are only R, where R = R1R2 with R1 =

10Other definitions of 2-D bandlimit exist that couple the coordinates. These have different sampling
requirements [2, 15]. This report considers only a rectangular region of support to define the bandlimit.
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2M1 + 1 and R2 = 2M2 + 1, non-zero entries in F [k1, k2]. Thus, the minimum number of
samples required to fully reconstruct an arbitrary [M1,M2]-band-limited signal is R.

In conventional sampling theory, the samples are required to be located on a regular
(uniformly spaced) two-dimensional grid (known as a “uniform cubic lattice”), e.g., the
nthi,j sample is at [id1, jd2] where d1 = N1/(2M1 + 1) and d2 = N2/(2M2 + 1) (d1 and d2

integer.)11 Such a sampling is a specific example of the more general “generalized cubic
lattice” sampling scheme defined as the cross product of two one-dimensional samplings,
one along each dimension [15].

Consider R1 distinct sample indexes (n1)i ∈ {0, ..., N1 − 1} and R2 distinct indexes
(n2)j ∈ {0, ..., N2 − 1}. The sampling location sets {(n1)i} and {(n2)j} are termed the
“marginal samplings”. A gridded cubic lattice sampling consists of R = R1R2 samples
located at ni,j = [(n1)i, (n2)j ].

In contrast to generalized cubic sampling, general two-dimensional sampling has R dis-
tinct samples arbitrarily located within a spatial period, with no structure required. Figure 2
illustrates examples of these different two-dimensional sampling schemes.

3.2 Two-dimensional Reconstruction

In this section it is shown that cubic lattice sampling can be a sufficient condition for full
reconstruction; however, it is not a necessary condition for general [M1,M2]-band-limited
reconstruction—many other general sampling configurations are possible. A method for
evaluating these more general cases is derived. Unlike the one-dimensional case, merely
having R disjoint samples is not sufficient to ensure full reconstruction—the sampling must
be full-rank.

The condition expressed in Eq. 27 means that an arbitrary [M1,M2]-band-limited dis-
crete two-dimensional signal f [n,m] can be written as

f [n1, n2] =
2M1∑
p1=0

2M2∑
p2=0

ap1,p2DM1,N1(n1 − p1d1)

DM2,N2(n2 − p2d2), (28)

which is the two-dimensional equivalent of Eq. 7 where the two-dimensional Dirichlet kernel
is formed from product of two one-dimensional Dirichlet kernals, see Fig. 1.

In matrix-vector notation, the row-major ordered two-dimensional equivalent to Eq. 8
is

f = DDDa (29)

where a is an R = R1R2 vector with (a)l = a[p1, p2], p = p2R1 +p1 and DDD is an (N1N2)×R
element matrix of sampled Dirichlet kernels where

(DDD)k,l = DM1,N1(n1 − p1d1)DM2,N2(n2 − p2d2) (30)

11As in the one-dimensional case, non-integer d1 and d2 can be used; however, as in the one-dimensional
case, for simplicity here we assume integer values for d1 and d2. Thus, N1 and N2 are integer multiples
2M1 + 1 and 2M2 + 1, respectively.
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with k = n2N1 + n1 and l = p2R1 + p1. Thus, DDD has a block form that can be constructed
from two D matrices [Eq. 9] using the appropriate M and N values, e.g.,DDD can be expressed
as the Kronecker or direct product of the D matrices along each axis, i.e.,

DDD = D(1) ⊗D(2) (31)

where ⊗ is the Kronecker product12 and D(1) and D(2) are D matrices constructed using
M1, N1 and M2, N2, respectively. Recalling the one-dimensional development, we note that
a corresponds to an equivalent uniformly spaced regular cubic lattice sampling of f , i.e.,
for integer d1 and d2, a = d1d2

N1N2
fu where (fu)l = f [p1d1, p2d2].

Let {Sk} be the set of Rs ≥ R distinct sample locations where Sk = [(n1)k, (n2)k], with
0 ≤ (n1)k < N1 and 0 ≤ (n2)k < N2 arbitrary. The sampled signal vector fs has elements
(fs)k = f [Sk] = f [(n1)k, (n2)k] and can be written as

fs = DDD∆a (32)

where the Rs ×R matrix DDD∆ consists of the appropriate rows of DDD, i.e., the kth row of DDD∆

is the ith row of DDD where i = (n1)kN2 + (n2)k. Explicitly,

(DDD∆)k,l = (DDD)i,l = (33)
DM1,N1((n1)k − p1d1)DM2,N2((n2)k − p2d2)

with i = (n2)kN1 + (n1)k and l = p2R1 + p1.
From Eq. 32 if DDD∆ has full column rank (which at a minimum requires Rs ≥ R), a

can be uniquely computed from fs. We note that when Rs > R and DDD∆ is full column
rank, some rows of DDD∆ are linearly dependent on the other rows, which implies that excess
rows and their corresponding samples can be eliminated (though extra samples are useful
for noise suppression, see Sec. 3.4). We are often most interested in the case of critical
sampling with Rs = R, which has square DDD∆.

For cubic lattice sampling, it can be shown that

DDD∆ = D∆(1) ⊗D∆(2) (34)

where D∆(1) and D∆(2) are one-dimensional forward sampling matrices defined in Eq. 15
for the marginal sampling sets {(n1)i} and {(n2)j}. By using the well-known general matrix
identity

rank(A⊗B) = rank(A) rank(B), (35)

where A and B are arbitrary matrices and noting that D∆(1) and D∆(2) are full column
rank in Eq. 34, it follows that DDD∆ is full rank. Thus for this case the marginal sampling

12The Kronecker product of a m× n matrix A and a p× q matrix B is a mp× nq matrix,

A⊗B =

 a1.1B · · · a1,nB
...

. . .
...

am.1B · · · am,nB

 .
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sets enable full reconstruction of arbitrary two-dimensional [M1,M2]-band-limited signals.
This is true for either uniform or irregular marginal sampling schemes. For regular cubic
lattice sampling with integer d1 and d2, DDD∆ is a scaled identity matrix and a = d1d2

N1N2
fs.

While DDD∆ is always full-rank for generalized cubic lattice sampling for more general
sampling distributions, DDD∆ is not guaranteed to be full-rank, and in fact exceptions can
be found. Despite extensive effort on our part, we have been unable to come up with
simple description of the requirements for general sampling to ensure full-rankDDD∆; however,
numerical methods can be used to test the rank ofDDD∆ for any particular sampling to ensure
invertability. This is discussed further in Sec. 3.4. Note that the rank of DDD∆ is dependent
only on the sample locations and not on the sample values.

As in the one-dimensional case, reconstruction of the two-dimensional signal f from
irregular samples can be viewed as a two-step process. First, the equivalent regular sampling
representation a is computed from the irregular samples by solving Eq. 32, which is possible
if DDD∆ is full-rank. The reconstructed signal is then computed using Eq. 29. Note that if the
reconstructed signal is only needed at particular locations, a can be first computed. Then,
f can be computed at the desired locations using the appropriate rows of DDD in Eq. 29, see
Eq. 32.

3.3 Variable Apertures

As in the one-dimensional case, the effects of a single, constant aperture function for two
dimensional sampling can be removed by deconvolution; however, a more general approach
is required when different apertures are used with different samples.

Let vk[n1, n2] be the effective aperture corresponding to the kth observation. The sample
value gk is the two-dimensional convolution of the original signal and the aperture function,
evaluated at the sample location, i.e.,

gk =
(
vk[n1, n2] ∗ f [n1, n2]

)∣∣∣∣
Sk

(36)

=
∑
m1

∑
m2

f [m1,m2]vk[(n1)k −m1, (n2)k −m2],

(compare Eqs. 18 and 19) where vk is treated as periodic and the double sum is over the
nonzero region of support for vk and Sk = [(n1)k, (n2)k] is the location of the aperture
center. Let g be the Rs element vector of aperture-filtered samples. In matrix form, Eq. 36
is

g = Dgf = DDDgDDDa = DDDva (37)

where the rows of DDDg contain the values of vk to be convolved with the columns of DDD.
The resulting rows of the Rs ×R element matrix DDDv are aperture-filtered Dirichlet kernels.
Explicitly,

(DDDv)k,l =
∑
m1

∑
m2

vk[(n1)k −m1, (n2)k −m2]·

DM1,N1(m1 − p1d1)DM2,N2(m2 − p2d2), (38)
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=
∑
i

∑
j

vk[ns − i,ms − j] ·

M1∑
µ1=−M1

M2∑
µ2=−M2

W
−µ1(i−pd1)
N1

W
−µ2(j−qd2)
N2

(39)

=
∑
m1

∑
m2

vk[(n1)k −m1, (n2)k −m2]·

M1∑
µ1=−M1

M2∑
µ2=−M2

Wµ1m1

N1
W p1d1
N1

W−µ2m2

N2
W p2d2
N2

(40)

with l = p2R2 + p1.
By solving Eq. 37 with the sample values g, a can be computed if the variable aperture

sampling matrix DDDv is invertable. If DDDv is not invertable, then a cannot be precisely
computed and so the signal cannot be exactly reconstructed from the samples. In this case
approximate solution methods must be used, e.g., [9][13].

The matrix DDDv is invertable if only if it has full column rank, which depends on the
relationship of the apertures as shifted to the sampling location. Including the apertures
generally does not change the sampling rank. In numerical experiments described below
we have found that the apertures often improve the condition number compared to the
ideal-aperture matrix, i.e., they tend to regularize the sampling matrix. However, this is
not always the case: some aperture functions and samplings do not result in a full-rank DDDv.
At present we do not have a general analytic method for specifying such cases and must rely
on numerical tests. We hope to complete a more detailed exploration of the relationship
between the variable apertures and the sampling locations in a future paper.

As in the one-dimensional case, reconstruction of the two-dimensional signal f from
irregular variable aperture samples is a two-step process. Assuming DDDv is full-rank, the
equivalent regular sampling representation a is first computed from the irregular samples
by solving Eq. 37. The reconstructed signal is then computed using Eq. 29.

3.4 Two-dimensional Sampling Considerations

As previously noted, while cubic lattice sampling can ensure a full-sampling matrix in two-
dimensional sampling, there is no guarantee that an arbitrary two-dimensional sampling is
full-rank. To help provide insight into how often an arbitrary two-dimensional sampling
does not result in a full-rank sampling matrix, we conduct a Monte Carlo experiment.
For simplicity, we set M = M1 = M2 and N = N1 = N2. Two cases for the aperture
function were considered: an ideal aperture (a δ function) and a realistic fixed aperture.
The latter is a two-dimensional Hann window of extent M centered at the sample location.
The experiment also evaluates the effect of “excess” samples when the number of samples
Rs is greater than the minimum number R required for reconstruction.

While cases for small M and d can be reasonably exhaustively tested, this is not prac-
tical for larger values, so to generate this plot for each case and set of parameters, several
thousand different realizations of sets of Rs distinct sample locations were randomly gen-
erated. The sample locations were uniformly distributed over the possible locations. For
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Figure 3: Numerically computed percentage of random 2D samplings that produce full-
rank reconstruction matrices versus d1 = d2 = d for different values of M1 = M2 = M . Ri

indicates the number of additional samples above the minimum R required. In this figure,
the line/symbol color is associated with M while different symbols indicate different Ri

values. Lines and a small horizontal offset are added to the symbol locations to improve
clarity.
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each realization, the rank of the sampling matrix DDDv was numerically determined, and the
percentage of full rank matrices computed. The results are summarized in Fig. 3.

In all cases this plot shows that the percentage of full-rank two-dimensional samplings
for various values of M and d where N = d(2M + 1) increases with increasing M . The rate
of increase is a function of d, with larger d producing higher full-rank matrix percentages.
For d > 6 the percentage is almost always 100% for the M values considered. We observe
that including the realistic aperture function improves the condition number of the sampling
matrix, but did not affect the number of full-rank cases for the conditions considered.

When extra samples are available (i.e., Rs > R), in principle they are redundant and are
not required for reconstruction if the sampling matrix is already full-rank; however, since
most measurements have noise or intrinsic variability, the extra samples can be exploited to
reduce the effects of noise by including them in the linear system solution when computing
a. This is equivalent to using a pseudoinverse.

In the full-rank case, the extra samples do not affect the signal reconstruction but tend
to reduce the effects of sampling noise and improve the system condition number. However,
when the sampling matrix is not full rank when Rs = R, including including extra samples
(i.e., Rs > R) can result in a full-rank matrix. This is evident in Fig. 3 which compares
different values of Ri = Rs − R. Note that the percentage of full-rank cases increases with
increasing Ri.

3.5 Sampling Noise

We briefly consider the effects of noise. From a reconstruction point of view, noise within
the signal bandwidth included in the signal prior to sampling is treated as part of the signal.
For such band-limited noise, the reconstruction does not affect the signal-to-noise ratio.

Noise (termed “sampling noise”) added to the sample values as part of the sampling
process or after sampling can affect the signal-to-noise ratio of the reconstructed signal. An
example of sampling noise is the quantization error resulting from analog-to-digital conver-
sion of the signal being sampled. Such quantization error is often modeled as independent
additive noise with a white spectrum [16]. Another example of sampling noise arises in
microwave remote sensing where the signal is a spatially dependent variable such as the
surface brightness temperature or the normalized radar cross-section. When observed by
a satellite sensor, the measurements are contaminated by thermal noise from the receiver
[17] which has the effect of adding white noise to the measured value after spatial sampling
by the antenna pattern and scanning geometry. Microwave sensors often use square-law
detectors, which have the effect partially correlating the signal and noise and altering the
noise probability distribution. For example, radiometer measurements have gamma- or
chi-squared-like distributions [17].

For simplicity we consider only additive noise that is independent of the signal. The
measurement noise equation is (see Eqs. 14 and 23)

f ′s = fs + ηs = DDDva + ηs (41)

where f ′s is the vector of noisy observations of the signal samples fs and ηs is the vector of
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noise added to the signal samples. Typically, the elements of ηs are independent, identically-
distributed (i.i.d.), though this is not required in the analysis that follows.

Given the noisy observations, the estimated sample vector â is

â = DDD−1
∆ (f ′s + ηs) = a +DDD−1

∆ ηs = a + aη (42)

where aη = DDD−1
∆ ηs is the noise with the inverse sampling filter applied. The reconstructed

signal thus includes an additive term consisting of the noise filtered by the reconstruction
matrix, i.e.

f̂ = DDDa′ +DDDaη = f + ηD (43)

where ηD = DDDDDD∆
−1ηs. Due to the filtering, the noise has different spectral and correlation

properties in the reconstructed signal than it started with. The precise details depend on the
sample locations and the aperture functions, as well as the noise properties. Some insight
can be gained by examining the case of uniform sampling. For this case, theDDD reconstruction
matrix corresponds to an ideal low-pass filter and the added noise ηD term is the low-pass
filtered noise values, i.e. the reconstruction matrix DDD filters out frequency components of
DDD−1

∆ ηs that extend beyond the signal bandlimit. In the irregular sampling case, DDDDDD−1
∆ is

a more complicated filter that amplifies some components of the noise depending on the
precise sampling and aperture functions.

For a particular sampling and set of aperture functions the post-reconstruction noise
spectrum can be computed using standard spectral decomposition techniques via singular
value decomposition of DDD∆ [22]. Noise spectral components (eigenvectors) associated with
small singular values of DDD∆ are amplified, but any noise components outside of the signal
bandlimit defined byDDD are eliminated. As can be expected, we have found that oversampling
tends to reduce noise amplification by reducing the span of the singular values.

4 Application Example

We now illustrate the application of the irregular reconstruction theory for a particular
microwave sensor, considering both ideal and variable apertures. While the technique can be
used for a variety of sensors, for this example we consider the passive microwave radiometer
known as the Special Sensor Microwave/Imager (SSM/I) [18].

Capable of measuring up to seven different channels at different combinations of fre-
quencies and polarization, the SSM/I is designed to measure radiometric emissions from
the Earth [17]. Using a rotating antenna reflector and an integrate-and-dump filter, it
collects a series of measurements over a wide swath. At the surface, the 3 dB antenna
footprints range from about 15–70 km in the cross-scan direction and 13–43 km in the
along-scan direction, depending on the beam and channel. We consider only a single beam.
The measurement footprints have an elliptical shape whose size and aspect angle vary with
measurement location in the swath [19].

Ignoring the effects of the atmosphere, an SSM/I measurement can be modeled as the
integrated product of the surface brightness and the antenna pattern where the ith mea-
surement zi of the brightness temperatures is the time-average of the integral of the product
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of the surface brightness response Tb(x, y) and the spatial response function (the temporally
integrated antenna gain pattern) Gi(x, y) at the surface for the ith measurement [18]

zi =
1
Gi

∫∫
Tb(x, y)Gi(x, y)dxdy (44)

with
Gi =

∫∫
Gi(x, iy)dxdy. (45)

The spatial response function is thus the measurement aperture function.
Given the measurements zi we want to estimate the surface brightness temperature Tb.

To do this, following the discussion in Sec. I we assume Tb is band-limited, replace the inte-
grals with summations of the sampled signals and aperture functions, and use reconstruction
techniques to recover the band-limited Tb.

To illustrate the application of reconstruction theory, a simulation of the sampling and
response function for the 37 GHz H-polarization SSM/I channel is conducted. A HSI pixel
spacing13 of 6.25 km is selected with the fine processing grid size set at N1 = N2 = 100,
which corresponds to a 625 km × 625 km area. This is approximately one-half the nominal
swath width, choosen for convenience.

Since the average spacing of the samples is approximately 25 km, we cannot expect the
effective resolution of the reconstruction to provide much better resolution. Hence, we set
d1 = d2 = 4 so that M1 = M2 = 25, which corresponds to 25 km signal resolution. Note
that denser sampling (more samples over the same area) can support finer product image
resolution. This can be achieved by combining multiple satellite passes over the target area
[20].

The measurement response is modeled as an elliptical Gaussian function with one-half
power dimensions of 37.5 km by 25 km. These are the measurement apertures. The ellipse
aspect angle relative to the image grid is determined by the antenna scan angle, which
varies across the swath. Figure 4a illustrates the measurement locations. Note that the
measurements locations form an irregular sampling grid. Fig. 4b shows a few of the aperture
functions which vary over the swath, resulting in spatially varying spatial response functions.
The major axis of the aperture is aligned with the grid near the bottom, but is rotated by
60◦ near the top.

For the simulation a synthetic “truth” image is constructed at fine grid resolution as
shown in Fig. 4d, that contains various features, including “spots” of varying sizes and
image gradients. The span of Tb values is realistic for land imaging for the 37H SSM/I
channel [19]. The truth image is ideally lowpass filtered to bandlimit it to 25 km resolution
as shown in Fig. 4e. This image represents the best that can be recovered from the truth
image in a M1 ×M2 band-limited sense. The mottling and feature smoothing in the image
is the result of the ideal band limiting. The root-mean-square (RMS) difference between
the band-limited and non-band-limited truth images is 4.80 K.

The various sampling and reconstruction matrices are numerically computed. The true
a is computed using a two-dimensional fast Fourier transform (FFT). The DDD matrix is

13The pixel spacing is the same as the ‘posting resolution’ or spacing of the reconstructed signal.
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Figure 4: Illustrative results from an SSM/I measurement and reconstruction simulation.
(a) Measurement locations. Underlying pixel spacing is 6.25 km. (b) Examples of the
spatial measurement response function (aperture) at several locations. (c) Count of the
number of measurements in each 25 km grid element. (d) Synthetic “truth” image (not
band-limited). (e) Band-limited “truth” image. Bandlimit is at 25 km. (f) “Drop in the
bucket” image. (g) Reconstructed noise without aperture. (h) Reconstructed noise with
aperture. (i) “Drop in the bucket” noise example. Horizontal bands in lower portion of (c),
(f), and (i) are DIB grid pixels containing no measurements–see text
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Table 1: Summary of SSM/I simulation RMS difference statistics. The RMS difference
between the band-limited and non-band-limited truth images is 4.80 K.

Band-limited Non-band-limited Noise
Case Truth Truth Term
Antenna Aperture 0.00 4.80 51.8
Ideal Aperture 0.00 4.80 2.65
Drop-in-the-Bucket 6.60 8.00 0.95

independent of the measurement locations and depends only on M1, M2, N1, and N2. Using
the sampling locations in Fig. 4a, the DDD∆ matrix is computed. The DDDv matrix is computed
using the measurement-varying aperture function and and the measurement location. In
this case there are R = Rs = 625 measurements. The DDDv matrix is full-rank.

Simulated noise-free measurements with ideal apertures are created along with simulated
measurements for realistic spatially varying apertures using Eqs. 32 and 37, respectively.
Noisy measurements are simulated by adding unit variance i.i.d. Gaussian noise to the
simulated noise-free measurements.

BecauseDDD∆ andDDDv are full-rank, the reconstruction from the noise-free measurements is
exact to within numerical precision, i.e., both the ideal and realistic aperture reconstructions
are the same as the true band-limited image in Fig. 4e. In these numerical experiments the
condition numbers for the ideal and realistic aperture cases are 20 and 1982, which results
in linear systems that are readily solvable with standard software.

Per Eq. 43 the noisy measurements are the sum of a noise term and the reconstructed
signal. The noise terms for the same particular realization of the noise for the ideal and
realistic apertures are shown in Figs. 4g and 4h. We observe that the unit variance additive
noise has been significantly enhanced, particularly for the aperture case, where the recon-
struction filter applied to the noise has created a diagonal ripple. It is thus apparent that
for this particular problem, while the signal reconstruction is exact, the reconstruction of
noisy measurements is sensitive to the noise level.

In conventional SSM/I data processing, the measurements are often gridded onto a
25 km grid N ′1 = N ′2 = 25 using a “drop-in-the-bucket” (DIB) technique where for each
DIB grid element, all of the measurements whose centers fall within the grid element are
averaged into the value reported by that pixel. The DIB resolution is limited to the sum of
the grid size and the measurement response dimensions, in this case about 50 km or about
twice as coarse as the reconstruction grid. The number of measurements falling within
each DIB grid element is shown in Fig. 4c. Note that the number of measurements falling
within a DIB grid element varies over the area and that some grid elements contain no
measurements at all, resulting in gaps in the image, which are rows in this case. These gaps
can be eliminated by increasing the grid size, which further lowers the image resolution. The
DIB image estimate is shown in Fig. 4f. Note the reduced effective resolution of the DIB
image compared to the reconstructed image, as well as the coarser features. Grid elements
with no measurements are shown in dark blue. The DIB noise term is shown in Fig. 4i.
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A comparison of the RMS errors for each image formation case is given in Table 1.
Comparing the DIB, reconstructed images, and the RMS difference statistics, the improved
accuracy and resolution of the reconstruction is apparent. However, the DIB noise level
is also much smaller than the reconstructed case, so there is a tradeoff between resolution
and noise level. This tradeoff can be exploited more finely using partial reconstruction
techniques such as discussed in [13] and [20]. Whether a particular application can tolerate
the higher noise level in exchange for finer effective resolution is application specific.

5 Conclusions

We have discussed the theory of signal reconstruction from irregularly sampled data with
variable apertures where different measurements may have different aperture functions. This
situation is common in microwave sensors where the observations have irregular spacing and
different antenna gain patterns resulting in different measurement functions for different
measurements.

The reconstruction methods presented in this report can be used for both real and
complex signals. In either case the various D and D matrices are real.

We have focused on exact, band-limited reconstruction of a band-limited discrete signal.
For the one-dimensional case, so long as there are a sufficient number of distinct samples
and the aperture function is reasonably well-behaved, a band-limited periodic signal can
be exactly reconstructed. In the two-dimensional case, the situation is more complicated,
since not all sampling configurations can support full signal reconstruction. However, so
long as the variable aperture function sampling matrix (Dv or DDDv) is full column rank, a
band-limited periodic function can be exactly reconstructed, within the limits of numerical
precision, by inverting a linear system. When the samples have added noise, the sampling
noise is filtered by the reconstruction matrix, which can enhance the impact of the noise.
Example results are provided using a simulation based a realistic satellite sensor, the SSM/I
microwave radiometer.

A number of illustrative numerical examples that demonstrate one- and two-dimensional
irregular and variable aperture reconstruction are provided at www.mers.byu.edu/reconstruction.
Matlab source code is included to illustrate the various reconstruction algorithms discussed.

We note that alternative reconstruction methods have been developed for the case when
the signal is not band-limited or when only approximate or partially reconstructed results
are needed, e.g., [2][3][4][12][13][20][21]. These may be numerically more efficient than the
exact method considered here. Inexact methods that incorporate the noise statistics using
Wiener-Kolmogorov smoothing to minimize the total error are also available, e.g., [22].
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A Invertability of D◦

For the regular sampling case with R = 2M + 1, the matrix D◦ defined in Eq. 13 can be
written as the product of two matrices, D◦ = BC where

B =


W−Mn0
N · · · WMn0

N
...

. . .
...

W−Mn2M
N · · · WMn2M

N

 (46)

and

C =


1 WMd

N · · · WM2Md
N

...
...

. . .
...

1 W−Md
N · · · W−M2Md

N

 . (47)

Letting Wnj

N = bj ; j = 0, 1, ..., 2M , then W
nj l
N = blj and the matrix B can be written as

B =


b−M0 · · · b−1

0 1 b0 · · · bM0
...

...
...

...
...

...
b−M2M · · · b−1

2M 1 b2M · · · bM2M

 . (48)

We note that B is a Vandermonde matrix with complex entries bi where bi 6= bj∀i 6= j,
j = 0, 1, ..., 2M . It is well-known that the inverse of a Vandermode matrix exists;14 therefore
B−1 exists.

Similarly, letting W−(−M+k)d
N = ck; k = 0, 1, ..., 2M , then W−(−M+k)pd

N = cjk and matrix
C is

C =

 1 c0 c2
0 · · · c2M

0
...

...
...

...
1 c2M c2

2M · · · c2M
2M

 , (49)

which is also a Vandermonde matrix with ci 6= cj for i 6= j; therefore, C−1 always exists.
Since B−1 and C−1 exist, and recalling that D◦ = BC, it follows that D−1

◦ = C−1B−1

exists.

B Invertability of D∆

The matrix D∆ defined in Eq. 15 can be factored as the product of two matrices D∆ = BC
where

B =


W−Mn1
N · · · WMn1

N
...

. . .
...

W−MnR
N · · · WMnR

N

 (50)

14In fact, a closed-form analytic inverse of a general Vandermode matrix has been developed [23].
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and C is precisely the same matrix as in the regular case [Eq. 49]. Note that C is not
dependent on the nj values. Using bj = W

nj−1

N , B can be written as

B =


b−M0 · · · b−1

0 1 b0 · · · bM0
...

...
...

...
...

...
b−M2M · · · b−1

2M 1 b2M · · · bM2M

 . (51)

To see that B is invertable for any disjoint set of nj values, note that the matrix B can be
factored into the product of two matrices B = AV where

A =


W−Mn0
N 0 0

...
. . .

...
0 0 WMn0

N

 (52)

and

V =


1 Wn0

N · · · W 2Mn0
N

...
...

. . .
...

1 Wn2M
N · · · W 2Mn2M

N

 . (53)

A is a diagonal matrix with nonzero diagonal elements, therefore A−1 exists. Letting
vk = W

nk−1

N , V can be written as

V =

 1 v0 v2
0 · · · v2M

0
...

...
...

...
1 v2M v2

2M · · · v2M
2M

 , (54)

which is a Vandermonde matrix with vi 6= vj∀i 6= j; therefore, V−1 exists. Given that A−1,
V−1, and C−1 exist and D∆ = BC = AVC, it follows that D−1

∆ = C−1V−1A−1 exists for
any disjoint set of nj .
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