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ABSTRACT

MULTISENSOR MICROWAVE REMOTE SENSING IN THE

CRYOSPHERE

Quinn P. Remund
Electrical and Computer Engineering

Doctor of Philosophy

Because the earth’s cryosphere influences global weather patterns and cli-
mate, the scientific community has had great interest in monitoring this important
region. Microwave remote sensing has proven to be a useful tool in estimating sea and
glacial ice surface characteristics with both scatterometers and radiometers exhibiting
high sensitivity to important ice properties. This dissertation presents an array of
studies focused on extracting key surface features from multisensor microwave data
sets. First, several enhanced resolution image reconstruction issues are addressed.
Among these are the optimization of the scatterometer image reconstruction (SIR)
algorithm for NASA scatterometer (NSCAT) data, an analysis of Ku-band azimuthal
modulation in Antarctica, and inter-sensor European Remote Sensing Satellite (ERS)
calibration. Next, various methods for the removal of atmospheric distortions in im-
age reconstruction of passive radiometer observations are considered. An automated
algorithm is proposed which determines the spatial extent of sea ice in the Arctic
and Antarctic regions from NSCAT data. A multisensor iterative sea ice statistical

classification method which adapts to the temporally varying signatures of ice types



is developed. The sea ice extent and classification algorithms are adopted for current
SeaWinds scatterometer data sets. Finally, the automated inversion of large-scale for-
ward electromagnetic scattering models is considered and used to study the temporal

evolution of the scattering properties of polar sea ice.
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Chapter 1

Introduction

In late 1914, Ernest Shackleton and his small crew of explorers, mariners,
and scientists entered the Antarctic ice pack aboard the British vessel “The En-

durance.”

Their objectives were simple. First and foremost, they sought to be the
first explorers to ever cross the Antarctic continent on foot. In addition, they hoped
to collect new and important scientific data to help the world better understand the
last unconquered continent on earth. They soon learned, however, that the enormous
Antarctic region is hostile and dangerous. Their ship was caught in the ice pack
before even reaching the continent. The immense forces of giant ice floes grinding
against one another crushed the Endurance leaving the men to fight for their lives
with very little shelter or provisions. After struggling for survival for one and a half
years, the men finally reached safety. Miraculously, all the men escaped the disaster
alive.

Today, the advances of modern technology allow researchers to monitor
the polar regions of the earth without enduring the trials of Shackleton and his crew.
While in situ measurements still play an important role, satellite remote sensing has
given scientists the ability to study these critical regimes on a very large scale with
high observation frequency.

Perhaps the most valuable spaceborne sensors in studying polar sea ice
are microwave radiometers and scatterometers. Among the earliest microwave ra-
diometers, the Nimbus-5 Electronically Scanning Microwave Radiometer (ESMR)
monitored the passive microwave emissions from sea ice and other surfaces. Later

the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) added to the



dataset of passive microwave observations of the earth. These instruments were later
complimented by the Special Sensor Microwave Imager (SSM/I) series of sensors
aboard Defense Meteorological Satellite Program (DMSP) platforms.

In contrast, active microwave scatterometers have not enjoyed such an
extended period of uninterrupted remote observation. In 1978, the Seasat-A Scat-
terometer (SASS) was the first wide swath scatterometer to be launched. Though
the instrument failed after only about three months in operation, it demonstrated the
value of microwave scatterometer measurements of ocean, land, and sea ice. Several
years later the Active Microwave Instrument (AMI) aboard the European Remote
Sensing Satellite (ERS-1) continued the time series of scatterometer observations.
ERS-1 was followed by the NASA scatterometer (NSCAT) aboard the ADEOS-I
platform, ERS-2, and SeaWinds on QuikSCAT. A second SeaWinds instrument will
be launched aboard ADEOS-IT in late 2001.

Microwave instruments have an added advantage over optical and infrared
sensors since the lower frequencies inherent to the microwave portion of the spectrum
are much less sensitive to atmospheric distortions such as cloud cover and precipitation
than optical or infrared instruments. This is a great benefit in regions with frequent
cloud cover such as the Arctic and Antarctic. In addition, microwave sensors do not
require solar illumination thus allowing them to operate effectively day or night. Since
the polar regions experience months of complete darkness each year, this is another
critical feature of polar remote sensing instruments.

For the past few decades, researchers have sought to extract critical infor-
mation from data collected by microwave instruments. While a significant amount of
effort has been expended in ocean and land surface studies, much less has occurred in
the field of cryosphere remote sensing. This dissertation presents the development and
analysis of several techniques and methodologies in inferring important geophysical

parameters from observed microwave signatures.



1.1 The Importance of the Cryosphere in Global Geophysical Processes

The earth’s cryosphere consists of the polar regions and ice-covered areas of
the globe. For decades, scientists have had a keen interest in monitoring the properties
of these areas due to their direct influence on short-term weather patterns, long-term
climate change, and other important global geophysical processes. Perhaps the most
critical factors in this system are the properties of sea and glacial ice. These two ice
regimes modulate geophysical processes in many ways. First, they affect the global
radiation budget. The typically high albedo of ice surfaces results in the reflection
of a large amount of incident solar radiation back out into space. Thus, the extent
and surface reflectivity of sea and glacial ice influence the amount of solar energy
absorbed by the planet. Next, sea ice acts as an insulator between the warmer ocean
and cooler atmosphere inhibiting heat transfer between the two. This process is an
important part of the global heat exchange cycle. Also, polar sea and glacial ice are
sources of fresh water which directly influence the population distributions and sizes
of polar biota. Finally, many scientists believe that polar ice is a sensitive indicator of
long term global climate change [1]. That is, if the earth is experiencing a long term
warming or cooling trend, the symptoms will first be observed in polar ice property
changes. For example, small increases in mean global temperature are observed in
the polar regions in the form of decreased annual sea ice extent and increased melting
in Greenland [2]. Hence the interest in monitoring the earth’s cryosphere.

The harsh environment and vast size characteristic of the polar regions
preclude the collection of in situ surface measurements with sufficient spatial and
temporal sampling. However, satellite remote sensing presents an ideal method for
surface property measurement in these regions. The instruments typically achieve
complete coverage of the polar regions in just a few days. While some sensors have
relatively lower resolution, all of them provide information that is otherwise unavail-
able.

Over the past few decades, the relatively young field of cryosphere remote
sensing has matured as more research is performed to relate remotely sensed signa-

tures to geophysical surface parameters. However, many questions still remain to



be answered. The research described in this dissertation will answer some of these
questions by providing new insight and developing new methods for understanding
and applying remotely sensed data to cryosphere studies. The resulting contributions

are an additional step in understanding these critical regions of the earth.

1.2 Description of the Problem

A number of sea ice properties are of interest to the scientific commu-
nity. Each provides essential information needed to understand global geophysical

processes. Among the important sea ice properties are
1. Spatial extent
2. Distribution and dynamics of ice type
3. Concentration (spatial coverage of ice vs. open water)
4. Thickness (important in heat transfer)
5. Salinity (due to brine content)
6. Age and melt rates
7. Surface flooding
8. Snow cover
9. Surface roughness (influences internal stresses)
10. Ice motion and dynamics.

An accurate knowledge of each of these parameters with sufficient spatial and tem-
poral sampling is critical to understanding the polar regions and how they affect the
rest of the planet. Methods for relating microwave signatures to these parameters are
the focus of the polar remote sensing field.

Microwave remote sensing provides an excellent means for monitoring polar

sea ice. Microwave sensors do not require solar illumination to collect measurements



of the surface. Both active and passive microwave signatures are much less sensi-
tive to atmospheric distortions than measurements collected at optical frequencies.
This is particularly true in the Arctic and Antarctic where extensive cloud cover is
common. Many research studies have shown that microwave signatures of sea ice are
sensitive to surface parameters [3, 4. However, for current sensors such as SSM/I,
ERS-1/2, NSCAT, and SeaWinds, these benefits come at the expense of spatial reso-
lution. Other microwave sensors such as synthetic aperture radars (SAR) offer higher
resolutions, but lower coverage.

In order to enhance the spatial resolution of these low resolution snesor
data, image reconstruction techniques are used. These methods use multiple passes
of a satellite instrument (in effect trading temporal for spatial resolution) to increase
surface sampling in an effort to raise the side lobes in the spatial frequency domain.
However, to effectively implement the reconstruction, several conditions must be met.
First, since microwave observations are commonly collected over a wide range of az-
imuth angles, their azimuthal dependence must be negligible. Azimuthal modulation
can result in ambiguous reconstructed estimates of surface backscatter or bright-
ness temperature. Second, validating the integrity of inter-sensor calibration ensures
that signature variations are surface parameter dependent and not sensor dependent.
For example, when the ERS-2 satellite replaced ERS-1, scatterometer measurement
biases were observed during the brief period of mission overlap. This lack of consis-
tency between the two instruments causes confusion in interpreting the observations.
Consequently, the development of methods for determining the source of these dis-
crepancies is critical. Further, reconstruction algorithms commonly have a number
of tuning parameters that affect their convergence characteristics. These parameters
must be optimized for each individual instrument to maximize image quality and
minimize computational requirements. Finally, atmospheric distortion for higher fre-
quency microwave instruments can cause ambiguous results which effectively mask
the true surface signatures. These effects must be minimized to prevent biases in the
reconstructed imagery. Each of these problems are addressed in this dissertation to

enhance the ability to extract geophysical parameters.



Through the process of inverse modeling, surface parameters are inferred
from remotely sensed signatures. Several techniques have been developed to achieve
this. Direct methods attempt to derive a mathematical relationship between observed
measurements and metrics of different surface features. Others draw on estimation
theory, multivariate analysis, and signal processing principles. The various methods
developed and analyzed in this dissertation use a combination of these to extract
crucial sea ice information such as sea ice extent, sea ice type, and other surface
parameters that influence instrument observations.

One of the complicating factors in surface parameter extraction is the tem-
poral variability of observed microwave signatures. For example, a given ice type
may exhibit a temporally varying backscatter due to variations in surface tempera-
ture, snow cover, and water content. As a result, an effective inversion technique must
have the ability to adaptively compensate for temporal changes in the observed signa-
tures. This often leads the algorithm development efforts into iterative methodologies

which allow perturbations in the preceding signatures to estimate present conditions.

1.3 Research Contributions

Several contributions are made by this research to better understand mi-
crowave signatures of the earth’s cryosphere. Valuable contributions are made in a
number of areas related to remote sensing such as polar sea ice image reconstruc-
tion, geophysical property extraction, data fusion for multisensor studies, and model
inversion.

The first set of contributions are in the area of polar backscatter image
reconstruction, including the optimization of the scatterometer image reconstruction
(SIR) algorithm for the NASA scatterometer. Similar optimization techniques can
be used to fine tune the algorithm for other sensors as well. The results allow for the
generation of enhanced resolution imagery with minimal computational requirements
and maximum image quality. In an observational study, the azimuthal modulation
of backscatter signatures of sea ice is shown to be negligible for Ku-band scatterom-

eter data. This is a critical factor requiring verification before the multiple pass



reconstruction method can be successfully applied. Also, techniques for determining
the source of inter-sensor observation variability are presented. These ensure that
variations in microwave signatures are a function of actual surface changes and not
calibration discrepancies between instruments. These studies have been published as
reports distributed by NASA [5, 6].

The next major element of this dissertation work is the development of
multiple methods to reduce the effects of atmospheric distortion in image reconstruc-
tion. Each method is derived and compared including the modified maximum average,
second-highest, and hybrid techniques. While the applicability of these methods is
limited in sea ice image generation due to ice motion, they work well for stationary
target scenes such as land and glacial ice as well as vegetated areas. The algorithms
find greatest value in the reconstruction of higher frequency microwave imagery that
exhibit increased sensitivity to cloud cover and precipitation. The result is improved
image quality and reduced ambiguity in image interpretation that can be caused by
atmospheric induced biases. This work was published in the IEEE Transactions on
Geoscience and Remote Sensing [7].

Another contribution of this dissertation to cryosphere remote sensing is in
large scale ice extent mapping. This research shows the utility of various parameters
derived from Ku-band scatterometer data in mapping the spatial distribution of sea
ice. The derived algorithm applies maximum likelihood techniques to segment sea ice
pixels from open ocean pixels in polar imagery. A primary value of this technique is
its ability to adaptively compensate for variations in the signatures of the two regimes
throughout the polar seasonal cycle. It is demonstrated that the resulting ice extent
maps correlate well with the commonly used NASA Team algorithm applied to ra-
diometer data to identify sea ice regions. Good agreement is also found with high
resolution SAR imagery of sea ice edges. The benefit of the Ku-band scatterometer
method over the NASA Team method is the increased resolution inherent to recon-
structed imagery from the Ku-band instruments used in this study. This technique is

currently used by the Jet Propulsion Laboratory in near real-time wind processing.



The ice edge products are also used by the National Ice Center to monitor the sea-
sonal evolution of polar sea ice edges. The NSCAT ice extent research was published
in the Journal of Geophysical Research [8]. A follow on study adapted a modified
version of the algorithm for Ku-band data from the SeaWinds scatterometer. A pa-
per detailing this has been submitted to the IEEE Transactions on Geoscience and
Remote Sensing and is currently in review.

While surface features such as sea ice extent can be determined from single
sensor data sets, more complex parameters such as sea ice type require multiple
instruments to obtain the information needed. Multisensor data fusion studies are
relatively few in the field of microwave cryosphere remote sensing. One of the primary
contributions of this research is the development of an algorithm that uses the synergy
of multiple sensor data sets to infer sea ice type. The method is derived using two
statistically based approaches: maximum likelihood and maximum a posteriori. Like
the ice extent algorithm, this technique is designed to adapt to temporal changes in
the signatures of each of the various sea ice classes. The study shows that the method
is effective, stable, and more accurate than standard clustering techniques which have
historically been used. This portion of the dissertation research has been accepted
for publication in the IEEE Transactions on Geoscience and Remote Sensing and is
currently in press [9].

The sea ice extent and ice type estimation studies described in the previous
two paragraphs require Ku-band NASA scatterometer (NSCAT) data. Unfortunately,
the NSCAT instrument is no longer operational precluding the use of these techniques
in current and future sea ice studies. However, the SeaWinds scatterometer aboard
the QuikSCAT satellite was launched in 1999 and is currently providing Ku-band ob-
servations of the polar regions. Since SeaWinds and NSCAT are significantly different
instruments, substantial algorithm modifications are required to ensure the quality of
the resulting estimates. These changes allow for continued analysis of polar sea ice
packs using data sets containing Ku-band observations. The sea ice extent portion of
this study has been submitted to the Journal of Geophysical Research and is currently

in review.



The final contribution is in large scale microwave backscatter modeling.
An in-depth study of a simple backscattering model is performed including the de-
velopment of a new technique for model inversion. The inverse model algorithm is
based on steepest descent optimization of an objective function which iteratively al-
ters model parameters to fit observed signatures. The novelty of the technique lies
in the combination of enhanced resolution imagery with the model for large scale
feature extraction. The inverse model is applied to reconstructed imagery allowing
for the estimation of important surface parameters on a large scale with a relatively
small temporal resolution of only a few days. The value of the inversion technique
is illustrated through its application in understanding backscatter anomalies in the
Antarctic and Arctic sea ice packs. This work is currently in review for the Journal
of Geophysical Research.

This dissertation research provides important contributions to the field
of microwave cryosphere remote sensing. Through a combination of concepts from
multivariate stochastic signal processing, detection and estimation theory, and elec-
tromagnetic theory, techniques and methodologies are developed and analyzed to
answer important remote sensing questions. The final results are being applied in

both on going scientific research and operational weather forecasting.

1.4 Dissertation Outline

The research documented in this dissertation covers a spectrum of studies
in cryosphere remote sensing. The various chapters address different but related
problems in the field through detailed analysis and the development of applicable
solutions. These studies range from the resolution of image reconstruction issues to
the inversion of microwave backscatter models for surface feature extraction. A brief
overview of each chapter is given in the following paragraphs.

Chapter 2 presents general background information for the studies to be
considered. An overview of the history of polar microwave remote sensing is given.
Important specifications of the various instruments used to collect microwave mea-

surements of the surface are reported. Also, the scatterometer image reconstruction



algorithm used to generate enhanced resolution imagery for each study is described
in more detail.

In Chapter 3 a number of critical issues in microwave sensor image recon-
struction are considered. The first portion of this chapter deals with the optimization
of the scatterometer image reconstruction algorithm for data collected by the NASA
scatterometer. Following this segment, a study of azimuthal modulation in Ku-band
backscatter over sea ice is presented. Last, a study of discrepancies between the
ERS-1 and ERS-2 AMI scatterometers illustrates the important issue of inter-sensor
calibration in the interpretation of reconstructed imagery.

Chapter 4 addresses another important aspect of image reconstruction -
biases induced by atmospheric distortion. While microwave measurements are much
less sensitive to atmospheric occurrences than optical or infrared sensors, this phe-
nomenon still occurs at higher microwave frequencies. In this chapter, various meth-
ods for the removal of distorted measurements are presented and compared. Results
are given illustrating the utility of the techniques. While originally developed for
passive radiometer data, the methods can also be applied to scatterometer data sets.

While the first few chapters deal with critical image reconstruction issues,
the remaining chapters focus on using reconstructed imagery to infer important geo-
physical parameters. The first of these, Chapter 5, discusses the theory, development,
and implementation of an algorithm which estimates the spatial distribution of sea
ice using only Ku-band scatterometer data. Several Ku-band measurement parame-
ters are sensitive to the presence of sea ice or open ocean are exploited to map sea
ice extent and features. The algorithm development is detailed showing its adaptive
properties. Results are obtained using a large set of NSCAT imagery. The method is
validated with high resolution SAR imagery and comparisons with results from the
NASA Team algorithm.

While Chapter 5 presents a method for surface feature extraction using a
single instrument, Chapter 6 takes the next step through the development of a multi-
sensor sea ice classification algorithm. General sea ice classes are described as well as

their role in geophysical processes. The classification data sets are presented along
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with the scattering and emission mechanisms that enable the ice type segmentation.
Maximum likelihood and maximum a posteriors classification algorithms designed to
adapt to temporally varying signatures are developed and implemented.

Chapter 7 describes the adaptation of the ice extent and ice classification
techniques to SeaWinds data sets. Due to differences in instrument designs and con-
figurations, significant modifications to the ice extent mapping method are required.
This chapter discusses those changes and the implementation of the algorithm with
current SeaWinds data sets. Multisensor sea ice classification using SeaWinds and
SSM/I data is also considered. A first step at a “fuzzy” classifier is also presented.

In Chapter 8, a simple forward scattering model is analyzed. The model
predicts backscatter based on three general sea ice parameters. These parameters are
estimated from observed backscatter signatures through the development of a model
inversion technique. The method is based on steepest descent objective function
optimization and the computational requirements are moderate enough to use on
large scales. The inversion technique is used to generate large scale maps of critical
surface features. The results are applied to interpret backscatter anomalies occurring
in the Antarctic and Arctic ice packs. Sensitivities for the forward and inverse models
are analyzed.

Finally, Chapter 9 contains a summary of the research as well as important
conclusions that are drawn. Contributions to the field are enumerated and several

lines of future research are presented.
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Chapter 2

Background

Remote sensing has proven a valuable tool in studying the earth’s cryosphere.
A number of past and current instruments have demonstrated the utility of microwave
instruments in monitoring these critical regimes. In this chapter, a brief background
is given of the history of low-resolution spaceborne microwave remote sensing in-
struments. The various instruments are described as well as some of the important
results derived from the corresponding data sets. Since microwave scatterometer
and radiometer data have inherently low spatial resolution, resolution enhancement
algorithms are employed. The primary image reconstruction method used in this

dissertation is also introduced.

2.1 Active Microwave Cryosphere Remote Sensing

Historically, spaceborne scatterometers have been employed in inferring
ocean surface wind vectors. Wind induced roughness on the water increases o°,
the normalized radar cross-section of the ocean’s surface. Through measurements
taken at several azimuth angles, estimates of the wind vectors are obtained. Rapid
repeat coverage makes such instruments valuable in these applications. The low
spatial resolution of these sensors is suitable for studying such large scale phenomena.
Spaceborne microwave scatterometers have also been used to study non-ocean surface

parameters [2, 4, 7, 10, 11].
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Microwave scatterometers are active radar instruments that observe backscat-
tered power from a transmitted microwave pulse. The transmitted and received pow-
ers are related through the radar equation [12],

242

- 735324100 2.1)
where P, is the received backscattered power, P; is the transmitted power, R is the
slant range to the surface, L represents system losses, G is the scatterometer antenna
gain, A is the wavelength of the transmitted pulse, A is the illuminated surface area,
and o° is the normalized radar cross section (NRCS) of the surface. The first seven
of these parameters are related to the sensor and its measurement collection config-
uration. However, ¢ is function of surface as well as system parameters. In general,
0° can be considered a function of several primary sensor parameters: incidence an-
gle A, azimuth angle ¢, polarization, and frequency. The ¢° responses versus these
parameters are often used to infer geophysical parameters from observed signatures.
Scatterometer backscatter is a strong function of the surface geometry (roughness)

and dielectric properties which dictate the observed scattering properties. For sea

ice, there are several important factors affecting the scattering mechanisms [12],
e Surface roughness,

e Multilayer structure (including thickness) and the effective permittivities of

those layers,
e Water content,
e Volume scatterer shape, distribution, size, and permittivity.

Scatterometer cryosphere remote sensing consists primarily of estimating such pa-
rameters from scatterometer data sets.
Over a limited incidence angle range of [20°, 55°], ¢° (in dB) is approxi-

mately a linear function of 6,

o°(0) = A+ B(0 — 40°) (2.2)

14



FULL OVERLAP
SWATHS SUBSATELLITE
TRACK

AN

ANTENNA 1

| - INNER SWATH
(NOT USED)

ANTENNA 3 ANTENNA 2

I
I
I
I
I
I
I
135° : 135°
I
I
I
I
I
I
I

|«—-500 km — [=—-500 kam — |
I

700 km 700 km
400 km | I

LEFT SIDE RIGHT SIDE
SWATH SWATH

Figure 2.1: SASS multiple fan beam geometry.

where A and B are functions of surface characteristics, azimuth angle, and polariza-
tion. A is the ¢° value at 40° incidence and B describes the dependence of ¢° on
f. A and B provide valuable information about surface parameters. 40 degrees is
chosen as a mid-swath value, but any interior swath angle can be used. A and B are
commonly used to define 0° measurements collected at multiple incidence angles.
Several microwave scatterometers have demonstrated the utility of these
instruments in monitoring sea and glacial ice. The following sections describe the

various scatterometer sensors which supply the datasets used in this dissertation.

2.1.1 The Seasat-A Scatterometer (SASS)

The first spaceborne scatterometer to monitor the cryosphere regions of
the earth was the Seasat-A scatterometer (SASS). SASS was a dual-polarization Ku-
band (14.6 GHz) scatterometer. The fan beam configuration allowed for the collection
of 0% measurements over a wide area from two side-looking swaths [13]. Figure 2.1

shows the SASS fan beam footprint geometry on the surface of the earth. The long
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fan beam footprints are further resolved through the use of Doppler filtering resulting
in a number of 25-50 km nominal resolution measurement cells for each beam.

Launched in 1978, this instrument was designed to estimate surface wind
speeds and directions from measured o° values over the ocean. However, researchers
soon found that SASS data exhibited important variations over land and sea ice that
can be used in monitoring critical surface features in the cryosphere. For example,
Long and Drinkwater used enhanced resolution SASS ¢° observations to monitor
glacial ice in Greenland [2]. The study used forward scattering techniques to de-
termine surface characteristics and resulted in the ability to map different ice facies
over all of Greenland. Since SASS was the first earth remote sensing scatterome-
ter, it has also been used in multidecadal change studies in the Antarctic and the
Arctic. One such study used SASS, ERS-1/2, and NSCAT reconstructed imagery to
detect long term changes in polar ice sheets [14]. In another paper, Drinkwater and
Carsey characterized the summer to fall transition in sea ice ¢° [15] illustrating the
effects of freezing on backscatter signatures. Later, Winebrenner et al. monitored the
progression of melt and freeze cycles of Arctic sea ice [16].

Unfortunately, the SASS mission was terminated early due to a system
failure. Although only about 100 days of data were collected, this pioneering mission

conclusively proved the value of scatterometers in ocean, land, and ice studies.

2.1.2 The European Remote Sensing Satellites (ERS-1 and ERS-2)

The loss of the Seasat satellite was followed by over two decades without an
active orbiting scatterometer. The gap was filled when the European Space Agency
launched the first European Remote Sensing Satellite (ERS-1) in 1991. Among other
instruments, ERS-1 carries a C-band (5.3 GHz) scatterometer called the active mi-
crowave instrument (AMI) [17]. The AMI measures vv-polarization (vv-pol) o° at
several azimuth and incidence angles. The instrument has a single side looking swath
with beams at various azimuth angles as shown in Figure 2.2. The fan beam reso-
lutions are broken into measurement cells using range gating with an effective cell

spatial resolution of approximately 50 km. The AMI scatterometer aboard ERS-1
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Figure 2.2: ERS AMI scatterometer multiple fan beam geometry.

was later followed by a similar satellite platform, ERS-2, in 1996 carrying an identi-
cal scatterometer.

The ERS scatterometer data sets have also shown great utility in cryosphere
studies. Gohin and Cavanie used ERS-1 data in an effort to identify sea ice types [18].
In [19], ERS-1 signatures of Antarctic sea ice were compared with passive signatures to
determine similarities and differences in sensor sensitivities to sea ice features. ERS-1
scatterometer enhanced resolution imaging of Antarctic sea ice packs is considered
in [20]. Lecomte et al. used ERS-1 ¢° measurements to identify sea ice zones [21].
Furthermore, Early and Long evaluated azimuthal modulation levels at C-band over
Antarctic ice. The study showed negligible modulation over sea ice but a significant
azimuthal dependence of ¢° in glacial ice regions. Finally, Ulander et al. examined
the effects of frost flowers on the surface of young ice. Such wind generated features

cause SAR ¢° signatures very similar to older deformed ice types [22].
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2.1.3 The NASA Scatterometer (NSCAT)

Another Ku-band instrument, the NASA scatterometer (NSCAT) was launched
in 1996 aboard the Advanced Earth Observation Satellite (ADEOS). Similar to SASS,
NSCAT is a dual-polarization, dual-swath, fan-beam scatterometer that collects mea-
surements at multiple azimuth and incidence angles [23]. However, the NSCAT in-
strument uses 6 fan beams rather than the SASS four-beam configuration as shown
in Figure 2.3. Operating in the Ku-Band (14 GHz), NSCAT has 6 vv-pol and 2
hh-pol beams as each middle beam collects dual-polarization measurements. Doppler
filtering is used to segment each fan-beam footprint into cells with resolution on the
order of 25 km. Figure 2.4 shows a sample NSCAT cell along with the beam width
and Doppler filtering responses.

NSCAT data sets have also demonstrated their usefulness in the estimation
of polar surface parameters. Long and Drinkwater considered a number of cryosphere
applications of this data set such as monitoring sea ice edges and examining the

correlation of NSCAT ¢° with local temperatures and precipitation events [4]. In
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another study, Yueh and Kwok used NSCAT observations to estimate Arctic sea
ice extent and melt onset [25]. Further, Drinkwater and Liu used a combination of
NSCAT reconstructed imagery and wavelet analysis to monitor sea ice motion in the
Antarctic and the Arctic [26].

The NSCAT mission lasted only about 10 months due to a catastrophic
solar panel failure. Consequently, comprehensive studies of the annual cycles of Ku-
band ¢° have not been possible. Still, the NSCAT data has proven its sensitivity to

critical surface parameters.

2.1.4 SeaWinds on QuikSCAT

With the failure of NSCAT, NASA initiated a “quick recovery” mission
designed to continue the Ku-band active observations. In 1999, the SeaWinds scat-
terometer aboard QuikSCAT was launched into a polar orbit. Since then, this in-

strument has provided a nearly continuous data set of observations of ocean, land,
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and sea ice. SeaWinds is a 13.4 GHz dual-polarization scanning pencil beam scat-
terometer with two spot beam scans shown in Figure 2.5 [27]. The outer scan (at
54° incidence) measures v-pol ¢ while the inner scan (46° incidence) measures h-pol
0°. The resulting swath is 1800 km wide with no nadir gap. Consequently, SeaWinds
covers approximately 90% of the earth’s surface and 100% of the polar regions each
day. In contrast, NSCAT required 2-3 days to obtain complete v-pol coverage. The
significant increase in temporal resolution is extremely valuable in observations of sea
ice since ice packs can move dozens of kilometers in a single day. Hence, SeaWinds
reconstructed imagery is much less subject to blurring caused by sea ice motion and
evolution.

SeaWinds has two spatial resolution “modes.” The SeaWinds measurement
cells (also called “eggs”) have a nominal resolution of 25-50 km and are collected at
various azimuth angles. These cells are further resolved through Doppler-filtering,
splitting each cell into several elongated “slices” approximately 6-8 km wide by 25

km long. Science data products can be made from either egg or slice measurements.
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2.2 Passive Microwave Cryosphere Remote Sensing

In contrast, microwave radiometers are passive instruments that observe
natural microwave emissions of the earth’s surface. The brightness temperature, T,
is measured by radiometers and is a function of the emissivity of the surface, e, and

surface temperature, 7%,

Tb == 6T3. (23)

This proportional relationship is derived from the Rayleigh-Jeans approximation to
Planck’s Law of Thermal Radiative Emission [28]. The Rayleigh-Jeans approximation
is valid in the microwave portion of the spectrum. The emissivity relates the amount
of radiation emitted compared to a black-body radiator for which 7, = 7. Like
0°, the emissivity is a function of a number of instrument and surface dependent
parameters [29]. For example, sensor frequency, polarization, incidence angle, and
beam width are important. Emissivity is also strongly dependent on a several critical
sea ice characteristics. For example, emissivity increases with water content. The
presence of brine also influences emissivity with higher salinity resulting in higher
emissivity. In addition, snow accumulation rates also affect e.

Similar to scatterometers, passive microwave radiometers have proven to
be extremely useful in monitoring the ice covered regions of the earth. Many different

radiometer instruments have flown as described below.

2.2.1 Early Radiometers

Among the earliest satellite microwave radiometers was the Electrically
Scanning Microwave Radiometer (ESMR). The 19.35 GHz h-pol instrument flew
aboard the Nimbus 5 platform from late 1972 to late 1982 [28]. With a swath width of
3,000 km, ESMR could achieve complete coverage of the polar regions in a single day
though frequent instrument down time often raised the requirement to three days.

ESMR data provided the first concrete results demonstrating the utility
of microwave radiometers in detecting sea ice concentration [30]. In sea ice classi-

fication efforts, little contrast was observed in the 19.35 GHz observations. A later
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version of ESMR aboard the Nimbus 6 satellite used a 37 GHz frequency which sig-
nificantly increased the contrast between younger and older ice types. However, the
electrical scanning configuration of the instrument increased noise levels such that
the radiometric resolution was limited.

The knowledge gained from the ESMR experiments was used to develop
second generation passive microwave radiometers. One such instrument was the Scan-
ning Multichannel Microwave Radiometer (SMMR). Launched in 1978 aboard the
ill-fated Seasat satellite, SMMR collected dual-polarization measurements at five dif-
ferent frequencies: 6.63, 10.69, 18, 21, and 37 GHz. The channel at 21 GHz was
chosen at region of the microwave spectrum which is sensitive to the presence of at-
mospheric water vapor. This channel was primarily used for atmospheric corrections.
Though designed to measure sea surface temperature and wind speed (but not direc-
tion) over the ocean, the multispectral nature of SMMR greatly enhanced its ability
in studies of sea ice types. Using the 18 and 37 GHz SMMR channels estimates of

ice concentration were improved [31, 32].

2.2.2 The Special Sensor Microwave Imager (SSM/I)

The Special Sensor Microwave Imager (SSM/I) aboard the Defense Mete-
orological Satellite Program series of satellites is another example of an imaging mi-
crowave radiometer. SSM/I is a total-power, seven channel, four frequency radiometer
[33]. It utilizes an integrate-and-dump filter as the antenna scans the ground track
[34]. The conical scan geometry is shown in Figure 2.6. The channels are h- and
v-pol at 19.35, 37.0, and 85.5 GHz and v-pol at 22.235 GHz. Brightness temperature
measurements are collected from each channel. The 3 dB antenna footprints range
from about 15-70 km in the along-track direction and 13-43 km in the cross-track
direction (see Table 2.1). The 3 dB antenna footprints, which are different for each
frequency, have an elliptical shape on the surface of the earth due to the elevation
angle of the radiometer [35]. SSM/I has flown on several DMSP satellites from 1987.

SSM/I data sets offer improvements over SMMR in estimates of sea ice

extent and concentration. Geolocation is also improved with the SSM/I instrument.
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Figure 2.6: SSM/I scanning measurement geometry [28].

The NASA Team algorithm uses SSM/I polarization and gradient ratios computed
from the 19 and 37 GHz channels for the estimation of total sea ice concentration in
both the Arctic and Antarctic regimes [31, 36]. The NASA Team products are widely
used in the cryosphere remote sensing field. Resolution enhancement of SSM/I data
is considered in [37] and [38]. Both offer significant improvements over the nominal

footprint resolutions through the use of multiple passes of the satellite.

2.3 Resolution Enhancement

While the inherent resolutions of the various instruments are sufficient for
the study of large scale phenomena such as surface winds or atmospheric parameters,
they are too low for use in some studies. In an effort to ameliorate this problem
and to place the data on compatible grids, the Scatterometer Image Reconstruction
(SIR) algorithm is used to enhance the spatial resolution [38, 39]. SIR is an iterative
block multiplicative algebraic reconstruction technique that increases the resolution
of reconstructed imagery through the use of data from multiple passes of the satel-

lite. SIR utilizes the increased sampling, though irregular, to raise the side lobes of
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Table 2.1: SSM/I channels.

SSM/I Channel 3 dB Footprint (km)
Frequency (GHz) | Pol. | Along-track | Cross-track
19.35 \Y% 69 43
19.35 H 69 43
22.235 A% 50 40
37.0 \% 37 28
37.0 H 37 29
85.5 \Y% 15 13
85.5 H 15 13

the antenna pattern in the spatial frequency domain and thus increase the spatial
resolution.

For scatterometers, SIR creates images of the A and B parameters dis-
cussed above. NSCAT images are reconstructed on a 4.45 x 4.45 km grid with an
effective resolution on the order of 8-10 km. NSCAT imagery is reconstructed with
the SIR with filtering (SIRF) algorithm [39] which includes a median filter. For ERS-
1/2, the median filter is not used. ERS-1/2 images are generated on a 8.9 x 8.9 km
grid with an effective resolution of 20-25 km. SeaWinds imagery is also constructed
though the incidence angle parameter B cannot be estimated from fixed-incidence
angle SeaWinds data. For the egg data sets, the 4.45 km resolution is used with a
resulting surface feature resolution of about 8-10 km. Slice imagery is produced on
2.225 km grids yielding the highest resolution (effectively 4-5 km) currently available
for spaceborne microwave scatterometers. SIRF reconstructed imagery compared
with SAR imagery has demonstrated the resolution enhancement abilities of SIRF
[40].

Figure 2.7 shows examples of NSCAT A, and B, images of the world.
While the images are not displayed at full resolution, they demonstrate the impor-
tant variations present in these parameters over land and ice surfaces. The regions

with lowest backscatter are generally in the desert regions such as the Sahara Desert
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in Northern Africa. Rain forest regions in the Amazon and Central Africa have signif-
icantly higher A, values. The highest backscatter is observed in the glacial ice areas
of Greenland and Antarctica. Though somewhat more noisy, the B, world image
also contains important information about land and ice surfaces. As with A,, desert
regions have very low B, indicating rapid ¢° fall-off with increasing incidence angle.
The rain forests and glacial ice regimes are characterized by high volume scattering
contributions. Consequently, the ¢° versus incidence angle is much more isotropic.
That is, 0 is a weak function of incidence angle.

A univariate version of SIR can be applied to radiometer data such as
SSM/I [38]. The lower side lobes of SSM/I make resolution enhancement more dif-
ficult. However, a clear improvement in resolution is observed in the reconstructed
imagery. That is, surface features are more clearly defined in SIR imagery than in
nonenhanced images on the same grid. SSM/I brightness temperature SIR images
are reconstructed on a 8.9 x 8.9 km grid for all channels except 85V and 85H which
have a pixel spacing of 4.45 x 4.45 km.

SIR enables comparison of sensors on compatible grids with similar resolu-
tion. While the SIR algorithm increases the resolution of the reconstructed imagery
of a particular instrument, ice motion during the imaging period is a concern. In a six
day period, sea ice can potentially move tens of kilometers. This represents several
pixels in the reconstructed imagery. As a result, the pixels in reconstructed imagery

represent the average surface responses during the imaging interval.
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Figure 2.7: Sample NSCAT A, (top) and B, (bottom) SIRF images of the world.
The original image have much greater spatial resolution than can be displayed here.
Ocean pixels have been masked out of the imagery.
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Chapter 3

Image Reconstruction Studies

While scatterometer and radiometer signatures show high sensitivity to
important sea ice characteristics, the low inherent resolutions of these data limit
their use in cryosphere studies. However, image reconstruction techniques such as
the Scatterometer Image Reconstruction (SIR) algorithm have been developed that
enhance the spatial resolution of the data through various deconvolution techniques.
The resulting imagery are much more useful in efforts to determine surface parame-
ters. This chapter discusses three important studies related to enhanced resolution
image reconstruction.

In Section 3.1, the SIR algorithm is optimized for NSCAT data. The SIR
and SIRF methods, as well as the parameters affecting algorithm convergence, are
described in more detail . The parameters are modified to ensure the fastest possible
convergence rate. The proposed techniques can be used for the tuning of SIRF for
other instruments as well such as SSM/I and SeaWinds.

Since image reconstruction methods like SIRF use multiple measurements
collected at various azimuth angles to generate pixel estimates, azimuthal modulation
of 0° is a key issue. Section 3.2 discusses the levels of azimuthal modulation present
in NSCAT ¢° measurements of sea and glacial ice. The results are used to determine
the error levels in SIR ¢ estimates caused by the modulation.

Another source of error in image reconstruction is inter-sensor variations
in ¢°. For example, the ERS-1 scatterometer was replaced by ERS-2 in 1996. For
a short period, both sensors were operational collecting 0° measurements at similar

times. Discrepancies in the calibration observations in the two instruments must be
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resolved to ensure the proper interpretation of ERS-1 and ERS-2 temporal image
sets. Section 3.3 addresses this important calibration issue.

Each of these research activities offer results and methods which improve
the quality and interpretation of reconstructed microwave imagery. The image prod-
ucts are used in following chapters in which surface parameters are extracted from

enhanced resolution imagery.

3.1 Optimization of SIRF for NSCAT

The Scatterometer Image Reconstruction with Filtering (SIRF) algorithm
was developed [39] to enhance scatterometer data resolution by combining data from
multiple passes of a satellite. This is done under the assumption that the observed
surface region has minimal ¢° temporal variability during the observation period.
This is generally the case for land and ice regions. From an initial estimate, SIRF
iteratively updates estimates of ¢o° until satisfactory convergence is reached. Since
SIRF was originally developed for SASS data, the algorithm needs to be “tuned” for
NSCAT.

Several SIRF algorithm parameters influence its effectiveness in resolution
enhancement. Initialization values, update weighting, iteration number, and data
incidence angle sampling all influence the functionality of the SIRF algorithm. This
section describes the procedure taken to optimize SIRF for NSCAT data. First, an
overview of the SIRF algorithm is given. Next, the generation of simulated data for
optimization tests is described. B value weighting and convergence in the algorithm
are then discussed. SIRF initialization is then examined. Nonhomogeneous simulated
SIRF images are created and statistical correlation and error analyses are performed.
Incidence angle sampling issues are addressed. Finally, the conclusions drawn from

this study are given.

3.1.1 SIRF Algorithm

The SIRF algorithm generates estimates for the A and B values for a given

pixel from NSCAT ¢° and incidence angle (f) measurements. Over a limited # range
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of [20°-60°], 0° (in dB) is a approximately a linear function of # as described in Eq.
(2.2). This equation parameterizes the ¢° vs. 6 response with two parameters, A and
B. A is the ¢° value at 40° incidence and B describes the dependence of ¢° on 6. A
and B provide valuable information about the surface.

In this section, the method for obtaining enhanced resolution radar images
of A and B in Eq. (2.2) from the low resolution scatterometer measurements is
described. The method is based on the spatial overlap of the o° measurements from
multiple scatterometer passes and on image reconstruction techniques. In order to
develop the technique we first describe the enhanced resolution measurement model.
We consider the effects of the scatterometer measurement noise and then describe
methods for resolution enhancement of A and B. A sample image outputs from SIRF
are shown in Figure 2.7.

An understanding of NSCAT swath and cell geometry is needed to im-
plement the SIRF algorithm using NSCAT data. Figures 2.3-2.4 show the NSCAT
antenna patterns and cell geometry. As the satellite travels forward, measurements
are taken from two swaths, one on each side of the subsatellite track. Both the right
and the left side swaths are 600 km wide with a gap of 350 km in between. Figure
3.1 shows the cell locations and geometries for 11 actual NSCAT measurements from
each antenna. The monitor cells at 10° incidence were not plotted since they are not
used in the imaging process. SIRF uses the overlap of these cells from multiple beams

and multiple orbital passes of the satellite to enhance the resolution.

Enhanced Resolution ¢° Measurement Model

Consider a rectilinear grid of resolution elements on the earth’s surface
with a resolution element size of S; x S,. The six-sided integrated resolution cells
of the scatterometer measurements are imposed on this small-scale grid of resolution
elements (refer to Fig. 3.2). Assuming a noise-free measurement, the value of 0° mea-
sured by the scatterometer (denoted by g where k is the measurement number) is

a weighted average of the 0”’s of the individual resolution elements covered by the
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Figure 3.1: Actual NSCAT cell locations and geometries for 11 antenna cycles.

measurement cell, i.e.,

Ry Ty
o= D, Y h(z,y;k)o°(x,y; k) (3.1)
c=Ly a=By

where Ly, Ry, Ty, and By, define a bounding rectangle for the k™ hexagonal 0° mea-
surement cell, h(x,y; k) is the weighting function for the (z,y)" resolution element
(0 < h(z,y; k) < 1), and 0°(x,y; k) is the o° value for the (z,y)" resolution element.
The incidence angle dependence of 0 and h is subsumed in the & index. (Over a given
scatterometer measurement cell the incidence angle 6 is approximately constant.) h
is a function of the cell location and shape.

The dependence of 0 on # can be expressed as [see Eq. (2.2) for definitions

of A and B

a°(6) = o, [6,(6)]" (3.2)

with
o, = 1010 (3.3)
ﬁo(g) — 10(40—0)/10. (34)
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Figure 3.2: An integrated NSCAT ¢° cell overlaying the high resolution grid. Only
the shaded square grid elements have nonzero h(z,y; k). The bounding rectangle is
also indicated.

Using this relationship Eq. (3.1) can be written as

Ry Tk

ok =Y. > h(z,y; k)af(w’y)[ﬁo(ﬁk)]B(w’y). (3.5)

c=Ly a=By,
The actual scatterometer measurements are noisy. Let z; denote the noisy
measurement of g, then

2k = Ok + Uk (3.6)
where v}, is a zero-mean Gaussian random variable with variance
Var[v] = agj, + Bor +7 (3.7)
where «, 3, and vy are from the £, equation
k, = ac® + Bo° + (3.8)

where «, (3, and ~ are known constants which depend on the measurement geometry
(via the radar equation and the SNR) as well as the instrument parameters and
calibration accuracy [23].

The resolution enhancement problem can then be posed as the following

reconstruction problem: Given noisy measurements zj, of gy for k£ € [1, N], determine
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A(z,y) and B(z,y) for each element of the enhanced resolution grid. The method for
solving this problem is described in the next section.

The key to successful resolution enhancement of A(z,y) and B(z,y) is
taking advantage of the overlap in multiple measurements of the same general re-
gion. As will be discussed further, the ultimate A and B image resolutions are
determined by this measurement overlap and the measurement location spacing [24].
While measurements from the fore- and aft-facing antennas in a single orbit provide
some measurement overlap, this overlap is generally insufficient to adequately apply
the technique (the measurements do not completely cover the surface); hence, data
from multiple orbits must be used.

In order to use data from multiple orbits we must assume the radar charac-
teristics of the target region remain constant for each pass. Additionally, we assume
that A and B have no azimuthal dependence. These and other requirements and
assumptions needed (for SASS, but also applicable to NSCAT) are explored more
fully in [10].

Reconstruction Approach

The Scatterometer Image Reconstruction algorithm (SIR) is based on mul-
tiplicative algebraic reconstruction techniques. In SIR, each measurement is com-
pared to a predicted (forward projection) value computed from the current image
estimate. A multiplicative correction factor is then applied each pixel covered by the
measurement causing the forward projection to equal the measurement. Subsequent
measurements further alter the pixel values. Over multiple iterations, the correction
factors ideally converge to a value of unity and all the forward projections match the
measurements. SIR has been optimized for noisy scatterometer measurements and to
estimate both A and B in multivariate image reconstruction [39].

Initial estimates of A and B, A;,;; and B;,; images, are made by setting
B;,is= the global average of B and A;,;= the global average of A. The initial values

affect the convergence of the algorithm to the final solution. In the k' iteration of
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the SIR algorithm, the previous B estimate image is used to normalize the ¢° mea-
surements from which an estimate of A is generated. Linear regression of the update
terms (expressed at the measurement incidence angle) is then used to update the
previous estimate of B. The new B estimate is determined as a weighted average of
the previous B estimate and the B estimate update. The multivariate SIR algorithm
is given below [39].

We express the measurements z; in dB so the forward projection f]’-“ is
computed in normal space (then converted to log space) while the A and B estimates

are in log space, i.e.,

1 N
fF =10logy, l— > hjn10“7’2/1°] (3.9)
q] n=1
where g; is defined as
M
g =>_ hj. (3.10)
=1
Define dfj as
k o w
di; = < 1 f; , (3.11)
J
where w = 1/2 is used in SIRF. The A estimate update term, ufj, is computed,
-1
1— dr. > 1
a= (i) ] o2
375 (1 = d) + akdl] dt < 1

with the A estimate, a¥, updated according to

aftt = Z hﬂum, (3.13)
Z J 1
where
N
pi= hu (3.14)
=1
To compute the B estimate, let
N
r, = Z hj,@? (315)
j=1
N
o= > hjb; (3.16)
j=1

w
w



and

=g + 0 (0; — 40°). (3.17)

Then, the linear regression of the A updates, u¥;, provides an update for B,

(ZH

1 N
o = (pz > hiibiCh — > hyi ’j) . (3.18)
j=1

B biry — t2

This update is only usable if the range of incidence angles (6;) used in Eq. (3.18)
is sufficiently wide. Since a wider incidence angle range implies greater confidence
in the B estimate update [39], the B estimate is updated using a weighted average
of ¢¥ and the previous B estimate. The weighting factor is a simple function of the

variance of 0, i.e., let

Z hjit; —1 (3.19)

1]1

then the B estimate image is updated according to
B = L (k). (3.20)
T, +1

This system of equations is iterated over k until convergence. Convergence
is discussed in following sections.

The subjective quality of the final images can be improved by applying
an edge-preserving 3 x 3 median filter to the A and B images. The image noise
can be significantly reduced, with only a small reduction in the image resolution, by
application of a hybrid median-linear filter to the image estimates at each stage of
the iteration. The SIR algorithm with the added filtering is termed SIRF.

In the hybrid filter, the image values within a moving 3 x 3 window are
ordered and the median determined. If the difference between the second highest and
second lowest values within the window is less than 0.25, the center pixel is replaced
with the average of the middle seven values of the ordered window pixels. Otherwise,
the center value is replaced with the median value. Effectively, this hybrid filter acts
like a linear filter when the algorithm is near convergence and the region is smooth but
operates as a median filter otherwise. The edge-preserving properties of the median

filter maintain resolution while providing noise suppression.
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SIRF was originally developed for use with Seasat scatterometer (SASS)
data [39]. The B updates were heavily damped in the original version of SIRF and
may not be appropriate for NSCAT data. For NSCAT B value convergence can be
accelerated by weighting these updates appropriately.

Equation (3.20) defines the iterative update for B based on a linear re-
gression of the A updates ¢& (Eq. (3.18)) and a weighting factor z; determined by
the variance of incidence angles (Eq. (3.19)). To facilitate convergence of the B
values, the updates are further weighted with an acceleration factor b,... Using this

approach, Eq. (3.19) becomes

Di N
T = byee t—2 > hit? —1 (3.21)

i j=1
where b, is the acceleration factor (bse. > 1). The selection of b, is described in a

later section.

AVE Algorithm

As described in [39], a very simple approach to simultaneous estimation
of A and B may be derived from the unweighted MART algorithm. For a constant
initial value, the first iteration of unweighted MART is

1N
a; = — > hjizj. (3.22)

bi ;=
Remembering that h;; is either one or zero, we see that a; is the average of the
measurements covering the ' pixel. This averaging approach (which will be referred
to as AVE) provides a smoothed initial image estimate which, in effect, is improved
by later iterations of SIRF [39]. In AVE the A and B estimates for a given pixel are
computed by linear regression of the 0® measurements (in dB) which cover the pixel.
We note that the AVE resolution is better than the measurement cell resolution and
is significantly better than conventional “binning” where the minimum resolution
element size is effectively limited to the maximum size of the measurement cells;

however, AVE resolution is not as good as SIR or SIRF.
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3.1.2 Generating Simulation Data

The values of b,.., the number of iterations of SIRF, A;,;:, and B;,; affect
the estimated image accuracy and quality. In this section, simulations are used to
select optimum parameter values. To examine the effects of these parameters, syn-
thetic A and B truth images are created. The images are created at higher resolution
(approximately 4.5 km per pixel) than the nominal resolution of the satellite (25 km)
with dimensions of approximately 8°x8°. Constant value images are used for both
parameters. Two simulations are performed. The first has truth values A=-10.0
B=-0.1 and the second uses A=-20.0 B=-0.2.

NSCAT L1.5 data records contain geolocation, azimuth angle, incidence
angle, 0, and noise information for each measurement cell. Simulated data is gener-
ated using 10 days of actual NSCAT data (1996 JD 301-310) taken from the Amazon
Basin (latitude range of 2.0°S to 10.0°S, longitude range of 62.0°W to 70.0°W) com-
bined with the truth images. The actual data provides geolocation and incidence
angle information and the truth images are used to create synthetic ¢ and variance
values. ¢° is computed from effective A and B values in the measurement footprint

(see Figure 3.2),

Ry, Ty,

Aesr= 3 D W,y k) Aprurn(z, y5 k) (3.23)
c=Ly a=Bjy,
Ry, Ty

Bess = D > W,y k) Byrum (@, y; k) (3.24)
c=Lj a=By

where L, Ry, Ty, and By, define a bounding rectangle for the k' hexagonal 0° mea-
surement cell, h(z,y; k) is the weighting function for the (z,y)™ resolution element
(h(x,y;k)=0 or 1 for NSCAT), Ayun(z,y; k) is the A value for the (x,y)" resolu-
tion element, and By (2, y; k) is the corresponding B value. The noiseless 0° then
becomes

O'ZZ = Aeff + Beff(H — 400). (325)

Realistic noise is added to o2, by using actual variance values of the data. The

variance of ¢° is a function of 0 , «, 3, and ~. The simulated ¢ is given by
0’ =op,(1+ kyv) (3.26)
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where

ky = aog; + Bog + 7 (3.27)

and v is a zero-mean Gaussian random variable with unity variance. This is performed
for all of the measurements cells in the study region during the time period 1996 JD

301-310.

3.1.3 B Weighting

The effects of B acceleration are studied by using the synthetic images
described above. The truth image is A=-10.0 and B=-0.1. SIRF is implemented
repeatedly with different B weighting values b,... Initialization values of A=-10.0,
-30.0 and B=-0.1, -0.3 are used to evaluate worst case convergence scenarios.

The first case considered is A;p;;=-30.0 and B;,;=-0.1 (the true B value).
Figure 3.3 displays the means and standard deviations of the A and B values for the
SIRF images at each iteration and B weighting. The A mean converges to its actual
value nearly identically regardless of the B weighting (b,..), achieving its true value
after approximately 25 iterations. Increasing the B weighting slightly increases the
A noise level as indicated by the A standard deviation. The mean for the B images
diverges slightly from the true value for all B weights although the worst error after
even 75 iterations is small (on the order of .0002 dB/deg). The B noise level also
increases with B weighting although the noise is small.

Another simulation is run with A;,;;=-10.0 (the true A value) and B,;=-
0.3 to observe the effects of B convergence alone. Figure 3.4 plots the results. The
mean A value first diverges from its true value for the first several iterations. It then
recovers and begins to converge back to the desired value at a rate determined by the
B acceleration value. Higher B weights result in quicker convergence. The A standard
deviation in the images initially increases for the first 5-15 iterations, then decreases
converging to the same final value as in the A;,;;=-30.0 B;,;;=-0.1 case. Convergence
is achieved more quickly for higher B acceleration values. From Figure 3.4 we see that
B weighting is required to achieve convergence in less than 75 iterations. Increased

B weighting speeds the convergence.
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Figure 3.3: Means (top) and standard deviations (bottom) of the SIRF simulation
A (left) and B (right) images with constant truth images A=-10.0 and B=-0.1. Ini-
tialization values are A;,;=-30.0 and B;,;;=-0.1. Different values of B update weight
are used.

These simulations indicate that increasing the B weighting yields quicker
convergence though excessive acceleration can increase the noise level of the image.
If 50 iterations are used, a B update weight of 30 is sufficient to reach convergence in

mean and standard deviation.

3.1.4 SIRF Initialization

SIRF requires initial values of A and B. The algorithm iteratively updates
the estimate by comparing the previous estimate with raw data values. The algorithm

continues for N iterations. If a poor initialization value is used, the A and B values
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Figure 3.4: Means (top) and standard deviations (bottom) of the SIRF simulation
A (left) and B (right) images with constant truth images A=-10.0 and B=-0.1. Ini-
tialization values are A;,;=-10.0 and B;,;=-0.3. Different values of B update weight
are used.

may not converge sufficiently accurately to the desired value within a given number
of iterations or may yield different solutions.

To study the effects of different initialization values, simulated measure-
ments are used to produce enhanced resolution SIRF images. SIRF is implemented
several times for each image using different initialization values. For A;,;;, values
from -30.0 to -1.0 are used while B;,;; is set to various values in the range -0.3 to 0.0.
B update weighting is set to b,..=30 to ensure proper convergence of the B values.
The mean and standard deviation of the resulting images are observed after each

iteration.
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Figure 3.5: Means and standard deviations of SIRF initialization simulation A (left)
and B (right) images with constant truth images A=-10.0 and B=-0.1. Different
A;ni’s are used and B, is held at the true B value. b,..=30 for all plots.

The first case observed uses truth images with A=-10.0 and B=-0.1. Figure
3.5 illustrates the convergence trends of the means and standard deviations of the A
and B images with iteration using different A;,;; values. The mean A converges to
the true value for all A;,;’s by the 30th iteration. In general, the further A;,; is
from the true value, the longer it takes to converge. However, when A;,;; is less than
the true value, the updates approach the desired value more quickly than if A;,;; is
greater. The noise level in the image behaves similarly for all A;,;; values increasing
with iteration number. Similar trends are noted for B.

Figure 3.6 shows the results of various Bj,;; for the same truth images.

Ajnit 18 set to the true value while B;,; ranges from -0.3 to 0.0. The mean A value
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Figure 3.6: Means and standard deviations of SIRF initialization simulation A (left)
and B (right) images with constant truth images A=-10.0 and B=-0.1. Different
B;,it’s are used and A;,; is held at the true A value. b,..=30 for all plots.

of the SIRF image initially diverges from the true value but returns to the true value
by the 50th iteration. The noise in the A image is significantly higher during the
initial iterations when B;,; is further away from the true B. However, the noise
levels converge for later iterations. Similarly, the mean B converges to the actual
value by about the 50th iteration. The B noise level converges to a common value
for all B;,;; values.

The same experiment is conducted for the case with true values of A=-20.0
and B=-0.2 and the same initialization values. Very similar results were obtained
to the A=-10.0 and B=-0.1 case.

Consequently, the corresponding plots are not

included.
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Several conclusions are drawn from this portion of the project. First, it
is desirable for the initialization values to be close to the true values since they will
converge more quickly. By setting A;,;; or B;,;; lower than the true value, convergence
can be achieved earlier in the process. However, this effect is small and insignificant.
Noise level is initially higher for these lower initialization values, but converges to
a common value for all initializations for later iterations. These simulations were
performed for constant A and B images. In a more realistic case the truth images
will be nonhomogeneous with a wide range of A and B values. In an effort to balance
the trade-off between convergence time and noise level, it was decided to use the
means of the observed A and B images as the initial values.

To determine the optimum A;,;; and B;,; for NSCAT SIRF images, ac-
celerated B SIRF images are created for all land regions of the earth using NSCAT
data during the period 1996 JD 276-281 to determine average A and B values. The
averages are approximately A=-8.4 B=-0.14 (excluding polar regions). These values

are chosen to be the A;,;; and B;,; constant initialization images for SIRF.

3.1.5 Statistical Analysis of Simulated Images

With SIRF initialization values, number of iterations, and b,.. selected,
the next step is to simulate SIRF using nonhomogeneous images and observe the
statistical error and correlation properties between the SIRF images and the true
images. Synthetic A and B truth images are created to emulate features that might
be observed in actual scatterometer observations of the earth. The A and B truth
images are shown in Figure 3.7 along with some simulation results discussed later.
The features of these images simulate features in actual NSCAT data. The darker area
simulates a river body of water with characteristically low A or B values. The large
feature in the top right quadrant of the A image represents an area with gradually
increasing ¢° to a common center point. The two dots represent small features that
SIRF will attempt to resolve. The rest of the image is assigned an average background
value. The B image features are mirrored with respect to the A image to observe the

effects of SIRF on A and B individually. The images are 192x192 pixels with a span
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Figure 3.7: Reconstructed simulation A (left) and B (right) images with noise added.
(a) Truth images, (b) Nonenhanced images, (c) AVE images, and (d) SIRF images
using optimum SIRF parameters.

in latitude and longitude of 8°x8°. The resolution of the images is approximately 4.5

km /pixel.

SIRF Statistics

NSCAT data is simulated by using 10 days of real NSCAT data records
over the Amazon Basin and replacing the ¢° values with synthetic ¢° values com-
puted from the A and B truth image according to Eq. (2.2). Noisy data sets are
generated. SIRF is run using the A and B initialization values determined previously
(Ainit=-8.4, Biny=-0.14). Several B weighting values are used and images are cre-
ated after each iteration. Every image is then statistically compared with the truth
image to determine error and correlation properties. The various metrics used in this
development are the mean error, standard deviation of the error, RMS error, and

correlation coefficient.
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Figure 3.8: Mean error, error standard deviation, RMS error, and correlation coeffi-
cient of the SIRF A images for the noiseless and noisy cases.

Figures 3.8-3.9 depict the statistical error and correlation values for the
SIRF A and B images as a function of iteration number and B update weighting. In all
scenarios, all of the statistical metrics converge toward a final value as the algorithm
iterates. The errors decrease and the correlation rises reaching their final values by the
50th iteration. The statistics for the A image behave similarly as iterations increase
despite the different accelerated B values. On the other hand, the B image statistics
are dependent on B update weighting. The mean error, error standard deviation,
RMS error, and correlation coefficient reach their final optimum values more quickly
for higher B acceleration. After 50 iterations, all of the error/correlation statistics

are virtually the same for all cases in which the B weighting greater than or equal to

30.

44



Mean Error

Error Std.

NSCAT SIRF-B Simulation - Statistical Comparisons with Truth Image NSCAT SIRF-B Simulation - Statistical Comparisons with Truth Image
0.01 T T T T T T 0.085 T T T T T T

0.075

RMS Error
o
°
<

0.065

-0.05 ace” — 0.06

~0.06 L L L L L L L 0.055 L L L L L L L
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Iterations Iterations

0.068 0.45

0.066

0.064

0.062

Correlation Coeff.
1)
N

o
e
@

0.058

0.056 I I I I I I I I I I I I T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Iterations Iterations

Figure 3.9: Mean error, error standard deviation, RMS error, and correlation coeffi-
cient of the SIRF B images for the noiseless and noisy cases.

The correlation coefficient for the A images approaches 0.95 while values
of only about 0.40 are reached for the B images indicating that SIRF has excellent
ability to estimate A but less accurate in determining B. B estimate error may be
the result of excessive 0 noise or an insufficient distribution of incidence angles of the
samples to accurately determine the ¢ incidence angle dependence. This problem is

addressed in the next section.

Comparison of SIRF with Other Reconstruction Methods

A and B images of the simulation region are created using other recon-
struction methods as well. Nonenhanced images are produced by gridding the NSCAT

footprint o values onto a 25 km grid and doing linear regression. AVE images [39] are
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created on the same high resolution grid that SIRF uses and is essentially equivalent
to the first iteration of SIRF [39].

Figure 3.7 illustrates the A value truth, nonenhanced, AVE, and SIRF
images. The SIRF image uses b,..=30, N=>50 iterations, A;,;;=-8.4, and Bj,;;=-0.14.
The nonenhanced image shows the general features, but does not define the smaller
features well. The AVE image reveals more high frequency information but the edges
still appear low-pass filtered. The SIRF image has sharper edges and more defined
features. Still the source of the distortion in the average and SIRF images is due to
the filtering of the surface truth data by the aperture of the scatterometer antenna
as well as by the inherent scatterometer noise. Note that the dots stand out above
the noise in the average and SIRF images.

The reconstructed B images are also shown in Figure 3.7. An interesting
ghost image phenomenon appears in all of the reconstructed images. That is, the
A truth image features appear in the reconstructed B images and vice versa. This
occurrence is most pronounced in the nonenhanced and AVE images but does not
effect the SIRF images. Since the AVE image is essentially the output of the SIRF
algorithm after one iteration, it is apparent that repeated iterations damp the distor-
tion effects of A value on B. The B images have lower correlation to the truth image
since the slope of ¢ vs. 0 is very sensitive to o noise.

Statistical error and correlation metrics for each of these images are com-
puted and given in Table 3.1. SIRF has lower errors and higher correlation coefficients
for virtually all of the metrics. In every case, SIRF has a higher correlation coefficient
and lower RMS error indicating that it was most successful in reconstructing the A

and B images.

3.1.6 Sampling

The accuracy of SIRF A and B estimates is highly dependent on the num-
ber of o° samples for a given pixel. B contains incidence angle dependence information
and cannot be properly estimated unless several measurements are obtained from a

variety of incidence angles. Thus, incidence angle distribution as well as the number
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Table 3.1: Error and correlation statistics of reconstructed noisy images as compared
to the true images. SIRF was implemented using A;,;;=-8.4, Binir=-0.14, b,..=30,

and 50 iterations.

‘ Image ‘ Mean Error ‘ Error Std. ‘ RMS Error ‘ Corr. Coeft. ‘
Nonenhanced A -0.09 1.09 1.10 0.86
AVE A -0.10 1.07 1.07 0.86
SIRF A -0.05 0.68 0.68 0.95
Nonenhanced B | -0.00004 0.093 0.093 0.233
AVE B 0.004 0.140 0.140 0.187
SIRF B 0.0004 0.057 0.057 0.40

of measurements affect of the SIRF algorithm to reconstruct microwave scatterometer
data.

The incidence angle dependence of ¢° is described by the B parameter.
SIRF uses several ¢° measurements of a pixel to estimate this value. To get a good
estimate of B SIRF requires a sufficient number of different incidence angle () mea-
surements as well as a good distribution of #. An experiment is conducted in which
SIRF is run for a a simulation region with constant A and B values. Simulated
0° measurements are generated from the true values. A=-10.0 and B=-0.1 are used
as the actual values. The 6 values for measurements over a small 3 x 3 pixel subregion
are set to have a uniform distribution in the range [20°-60°]. SIRF A and B estimates
are computed for various numbers of measurements. Figure 3.10 displays example
A and B mean values in the subregion that SIRF predicts as a function of number
of measurements. The plot demonstrates that for a low number of measurements,
the SIRF estimates are inaccurate. When SIRF has about 5 ¢° samples or more,
the estimates are close to the true value with error a function of the noise in the
measurements.

The incidence angle distribution of the measurements affect the accuracy
of SIRF estimates. The dependence of estimate error on this is examined by imple-

menting a similar simulation as described above but the incidence angles are modified
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NSCAT SIRF Simulation - Truth: A=-10.0, B=-0.1
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Figure 3.10: SIRF A and B estimates plotted vs. the number of measurements. The
true values are A=-10.0 and B=-0.1. The estimates may be poor unless there are at
least 5 samples.

to various distributions. Different realizations of random distributions of incidence
angles are used and the estimates observed. The true values are A=-10.0 and B=-0.1.
For each simulation, 8 measurements are used. SIRF computes A and B estimates for
several measurement sets with different # distributions. For each # distribution set,
SIRF is run 5 times (individual cases differing only in random ¢° noise) to exhibit the
general trends. Figure 3.11 shows a plot of A estimates vs. B estimates for different
distributions. Nearly every SIRF A estimate is within 0.1 dB of the actual value
regardless of the @ distribution. Similarly, all of the B estimates have an error of less
than 0.01 dB/deg. Hence, SIRF yields good estimates of A and B for NSCAT even if

the 6 distribution is narrow, at least for a surface where the linear o° model applies.
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Figure 3.11: Plot of estimates of A and B values with different measurement incidence
angle distributions. Eight measurements were used for each SIRF estimate. The true
values are A=-10.0 and B=-0.1.

3.1.7 SIRF Optimization Conclusions

The Scatterometer Image Reconstruction with Filter (SIRF) algorithm is
an effective method for high resolution image reconstruction. Several parameters of
this algorithm affect its ability to enhance intrinsically low resolution scatterometer
data to make it useful for non-oceanic studies. Through a non-linear procedure,
SIRF iteratively updates A and B estimates to describe o° normalized to 40° and
0° dependence on incidence angle.

Heavy damping of the B updates in the algorithm slow the convergence
of B to the true value. B update weighting is used to speed this process. Simula-
tions show that accelerating these updates reduces convergence time. Both A and
B noise levels diverge for several iterations and then decrease, converging to a final
value. This convergence occurs more quickly for higher B update weighting. After
approximately 50 iterations, there is little difference in the error and noise properties

of the reconstructed image as long as the B acceleration is 30 or higher.
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SIRF initialization values strongly influence the convergence trends of the
algorithm. When the initial values are close to the true values, convergence occurs
more rapidly. When A;,;; and B;,;; are set below the true values rather than above,
convergence is achieved slightly earlier in the iterations but noise level is increased.
However, if enough iterations are used, convergence is to a common value for all
initializations. This trade-off motivated the original choice of the mean A and B
values of nonhomogeneous regions for the initialization [39]. A;,;=-8.4 and Bj,;;=-
0.14 were found to be the mean global values for NSCAT land data (excluding polar
regions) and thus chosen as the optimum initialization values.

Nonhomogeneous synthetic images are used to study the error and cor-
relation properties between SIRF images and their ground truth counterparts. The
statistical metrics continuously improve with increased iterations until a convergent
value is reached after about 50 iterations.

In addition to these parameters, the measurement geometry can influence
SIRF’s effectiveness in estimating A and B. In particular, the incidence angle distri-
bution is critical to achieving good B values. Assuming a uniform distribution of ¢
in the effective range of [20°-60°], SIRF requires about 5 or more samples to produce
quality A and B estimates. SIRF produces good estimates for relatively narrow 6
distributions as well as wide distributions.

With each of the aforementioned parameters optimized, the SIRF algo-
rithm produces scatterometer imagery with minimum convergence time and maxi-
mum quality. An example is shown in Figure 3.12 which depicts an NSCAT SIRF
A, image of Antarctica for 1996 JD 258-263. Ice pixels have been excluded from the
image. Figure 3.12 illustrates the high levels of ¢° variability contained in cryosphere
regions. This information will be used in later chapters to extract critical geophysical

characteristics.

3.2 Azimuthal Modulation of Polar ¢° Measurements

Image reconstruction methodologies such as SIR require an ensemble of

measurements to generate an estimate of the A and B SIR parameters. An inherent
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Figure 3.12: A polar stereographic projection image of Antarctica. The image is
generated from 6 days of NSCAT data from JD 258 to JD 263 1996. An ice mask has
been applied to the image.
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assumption to the algorithm is that variations in observed ¢° measurements are only
due to incidence angle or surface features. However, 0° dependence on azimuth angle,
¢ can cause ambiguous estimates in the reconstruction. While azimuthal modulation
is not expected over land and vegetated regions, it is not clear that sea ice measure-
ments fit the azimuthal isotropy assumption. This section examines the azimuthal
modulation characteristics of Antarctic sea and glacial ice to determine the applicabil-
ity of this image reconstruction algorithm to the Southern Ocean region of the earth.
The methods in this study follow those of Early and Long in which C-band azimuthal
modulation was examined in the Antarctic [63]. The following section discusses char-
acteristics of ice types in the Antarctic and how these characteristics contribute to
the level of azimuthal modulation. The analysis process, which uses two methods to

detect azimuthal modulation, is then described. Conclusions are then given.

3.2.1 Azimuthal Modulation Related Characteristics of Antarctic Ice

The Antarctic is a region of diverse ice types and characteristics. The sea
ice pack fluctuates in an oscillating seasonal cycle. During the winter freeze up, the
ice pack thickens and grows outward. Antarctic summer causes the ice to recede
toward the continent. The ice pack itself is composed of several different ice types.
Nilas, first-year ice, multi-year ice, and icebergs are examples. Continental Antarctica
also consists of different ice types such as glacial ice and is much less dynamic in its
nature.

Azimuthal modulation of ¢° has been observed in Antarctic glacial ice
sheet. Remy et al. found a close relationship between azimuth modulated signatures
at katabatic winds over the continent [42]. The sustained winds cause azimuthally
oriented patterns in the snow surface that that yield higher ¢° at certain azimuth
angles. Long et al. produced enhanced resolution of imagery of first and second order
azimuth modulation parameters [43]. The first order terms were correlated well with
continental surface slope features with the highest o° observed when the scatterometer
measurement was oriented up slope. Second order estimation of azimuth modulation

over glacial ice was strongest in areas which typically experience katabatic winds.
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Figure 3.13: Photograph of pancake ice taken near the Antarctic ice pack edge. Note
the edges on the pancakes which are formed by wind and wave action forcing pancakes
together and piling up the edge. Courtesy of Dr. Mark Drinkwater, JPL.

Sea ice is significantly different than land ice in structure and composition.
Since sea ice floats on the ocean surface, large scale slopes do not exist like those found
over the continent eliminating one source of azimuthal modulation. Consequently,
the only potential azimuthal modulation inducing features lie in the deformation and
composition of sea ice media. These characteristics are a strong function of sea ice
age and dynamics.

In order to understand potential sources of azimuthal modulation, sea ice
make-up is first considered. Two basic sea ice regimes define the Antarctic ice pack.

The periphery of the Antarctic sea ice pack is called the marginal ice zone (MIZ).
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This region is characterized by newly formed ice floes surrounded by open water and
slush [44]. During fall and winter, sea ice forms rapidly in these areas as the ice pack
grows outward. Ice formation begins with grease and frazil ice which consist of slushy
mixtures of water and newly formed ice crystals. Grease and frazil ice combined with
ocean wave action and thermodynamic cooling begin to congeal into small floes called
pancakes. Pancakes are the predominant ice form in the MIZ in early winter [45, 46].
A photograph of pancake ice in the Antarctic is shown in Figure 3.13. As cooling
continues, the floes grow in size and begin to freeze into a solid ice pack. Though
MIZ ice floes damp small scale waves, large surface swells can propagate into the ice
pack [47]. Though transient, the swell-waves may cause limited levels of azimuthal
modulation.

The dominant form of ice further within the Antarctic sea ice pack is var-
ious forms of first year ice. Antarctic first year ice ranges in thickness from approx-
imately 30 cm to 2 m and is characterized by relatively high brine content. Surface
roughnesses in this region are primarily caused by ocean wave action, inner ice pack
sheering forces, and wind roughening of snow cover. Katabatic winds originating on
the Antarctic continent may also cause sastrugi-like roughening of snow-covered sea
ice. However, the dynamic nature of sea ice reduces the probability that these fea-
tures maintain a preferential azimuth orientation. The motion and sheering forces of

sea ice packs increasingly randomizes the constituent scattering elements.

3.2.2 Analysis

The study regions used in this project represent various types of sea and
glacial ice. A description of these regions is given in Table 3.2. A graphical represen-
tation is given in Figure 3.14. The regions are chosen in a manner to ensure that they
have little temporal variation and are spatially homogeneous. Twenty regions were
chosen in the sea ice areas of Antarctica while five were chosen from the land ice and
glacier areas. As described above, it is expected that little azimuthal modulation will

occur over sea ice and more will occur over the glacial ice.
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Table 3.2: Azimuthal modulation test regions with associated ¢ statistics.

| File Name || lon | lat | deglon | deg lat | Julian Days | Mean | Std Dev |

In 312° | -75° 8° 4° 320-330 -14.93 | 0.773
12 308° | -68° 10° 4° 320-330 -13.39 2.29
I3 0° | -70° 14° 3° 320-330 -16.97 2.32
14 200° | -76° 10° 2° 320-330 -15.87 1.41
I5 196° | -74° 8° 4° 320-330 -15.77 1.54
16 70° | -68° 8° 3° 320-330 -16.86 2.72
I7 192° | -73° 18° 9° 320-330 -15.70 1.61
I8 324° | -72° 10° 4° 320-330 -15.08 | 0.904
110 322° | -76° 8° 3° 320-330 -15.79 1.95
I11 318° | -76° 8° 3° 320-330 -14.32 1.91
112 314° | -76° 8° 3° 320-330 -13.93 1.91
113 310° | -76° 8° 3° 320-330 -14.70 | 1.704
114 306° | -76° 8° 3° 320-330 -15.31 1.01
I15 302° | -76° 8° 3° 320-330 -15.02 2.45
I16 322° | -73° 8° 3° 320-330 -14.72 0.79
117 318° | -73° 8° 3° 320-330 -14.77 0.84
118 314° | -73° 8° 3° 320-330 -15.25 0.88
119 310° | -73° 8° 3° 320-330 -15.53 0.92
120 306° | -73° 8° 3° 320-330 -15.90 1.16
121 302° | -73° 8° 3° 320-330 -16.70 1.11
G1 140° | -78° 10° 2° 320-330 -4.03 0.90
G2 120° | -72° 10° 2° 320-330 -13.66 2.25
G3 40° | -74° 10° 2° 320-330 -7.25 1.91
G4 40° | -78° 10° 2° 320-330 -7.37 0.76
G5 80° | -72° 10° 2° 320-330 -12.09 3.3
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Figure 3.14: Antarctic sea ice and glacial ice study regions. From [63].
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Removal of Incidence Angle Dependence

This study is performed to determine if azimuthal modulation is incidence
angle dependent. If there is no incidence angle dependency, then one incidence angle
range can be used for the rest of the study. If this dependency does exist, represen-
tative ranges of incidence angles need to be used in the study for the different swath
regions (near, mid, and far).

For this project, 5 degree wide incidence angle ranges are used. The fol-
lowing are the ranges: 20-25, 25-30, 35-40, 40-45, 45-50, 55-60. For each of the ranges
(for a given region), a histogram of record azimuth angles is produced to determine if
there is enough azimuth angle diversity in the sampled data. Also, a ¢° time history
is plotted to evaluate temporal dependencies. The mean and standard deviation of
this history are computed. Finally, a scatterplot of o versus azimuth angle is plotted
to visually detect any azimuthal modulation.

Figure 3.15a illustrates an example of these plots for sea region I1 for the
incidence angle range [40°-45°]. The histogram demonstrates that the measurements
for this region have good azimuth angle diversity. The time plot supports the argu-
ment that this region is relatively temporally invariant. Finally, the 0° versus azimuth
angle plot shows that there is little variation of ¢ with azimuth angle and thus little
azimuth modulation. In contrast, Figure 3.15b shows the same plots for region G2
- a glacial region. Again, there is good azimuth angle diversity. However, azimuth
modulation is observed since ¢ is clearly a function of azimuth angle. A difference of
5 dB in ¢? is observed at different angles. In the interest of space, only sample plots
are included in the analysis.

The number of records, mean, and standard deviations of all the regions
are plotted as a function of incidence angle in Figures 3.16-3.18. Invariably the
incidence angle range of 40-45 degrees has the most records and the most azimuth
angle diversity. This suggests that these incidence angle ranges are the best to use for
the study since we can get the most o° samples in the shortest amount of time. Of
course, the azimuthal modulation study of an exclusive range of incidence angles can

only be done if there is low incidence angle dependence in the azimuthal modulation.
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Figure 3.15: Plots illustrating the azimuth angle diversity, 0° temporal dependence,
and o° vs. azimuth angle for sea ice region I1 (a) and glacial ice region G2 (b). All
measurements have incidence angles in the range [40°-45°].
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Figure 3.16: Plots of the number of records, mean ¢° value, and ¢ standard deviation
values vs. incidence angle for sea ice regions 1-5 (a) and 6-11 (b).
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Plots of the number of records, mean ¢° value, and ¢° standard deviation

values vs. incidence angle for sea ice regions 12-16 (a) and 17-21 (b).
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Figure 3.18: Plots of the number of records, mean ¢° value, and ¢° standard deviation
values vs. incidence angle for glacial ice regions 1-5.
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The plots also show that the ¢° time history mean for each region is nearly
linearly dependent on incidence angle with higher incidence angles yielding lower o°.
For sea ice, the slope of the lines are nearly always the same for different regions - just
shifted up or down from one another. The glacial regions have less constant slope as
different regions are observed. Also, the slopes are flatter in general than the sea ice
regions.

The standard deviations of the data from each region and at each range of
incidence angles seem to be relatively flat. That is, as incidence angle is changed, the
standard deviation is essentially constant, normally within a .5 dB range (between
max std and min std). If the standard deviation is any indication of azimuthal
modulation, this result suggests that the azimuthal modulation is not incidence angle
dependent. However, this metric does not provide conclusive results about azimuthal
modulation dependence on incidence angle. Thus, a more in depth study is done by

manually interpretting the data for each region and at each incidence angle.

Ku-band 0° versus Azimuth Angle

The o versus azimuth angle scatterplots described above give a good visual
indication of azimuthal modulation. If the ¢° values are a function of the azimuth
angles, modulation exists to some degree. As a metric of this phenomenon, the mean
of every ¢ within 5 degree azimuth bins is computed and plotted over the top of the
scatterplot. The range (max - min) of this curve gives a rough indication of how much
0° changes through the possible range of azimuth angles. This range is computed for
each region and each incidence angle range and plotted for each of these ranges. Two
factors must be considered in the interpretation of the range plots. First, the overall
levels of the curves is an indication of the level of azimuthal modulation present. The
second factor is the amount of variability in the range as incidence angle changes.
This latter consideration reveals any incidence angle dependence of the azimuthal
modulation.

The range metric versus incidence angle plots for each region is given in

Figure 3.19. As shown in the plots, sea ice regions have relatively low ranges (from
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Figure 3.19: Plots of range of 0° values at different azimuth angles versus incidence
angle for sea ice regions 1-16 (a) and for sea ice regions 17-21 and glacial regions 1-5

(b).

about 1 to 5 dB) when compared with some of the glacial regions. The latter have
a range from around 1 to 15 dB. This leads to the conclusion that less azimuthal
modulation occurs for sea ice than for some glacial regions.

The mean ¢° range metric can be used to draw a second conclusion about
azimuthal modulation - azimuthal modulation has low dependence on incidence angle.
This is due to the fact that the range parameter changes only slightly with incidence
angle for all observed regions (about 1-2 dB). Most regions follow the general trend
of constant spread in the near and mid swath (20-45 deg) and gradual increase in the
far swath (45-60 deg) possibly suggesting slightly more azimuthal modulation at the

higher incidence angles.
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Fore-Aft Difference Analysis

I next investigate the fore-aft difference in 0 values. Since the fore and
aft beams are about 90 degrees offset in azimuth angle from one another, taking the
difference between fore beam cells and aft beam cells in the same surface region and
at the same incidence angle can yield and indication of azimuthal modulation. The
observed o° can be viewed as the sum of a signal random variable with a noise random
variable having a zero mean Gaussian distribution. The difference between the fore

and aft beam measurements may be modeled by:
D = (09, 4+ Ng) — (69 + Na) (3.28)

where Nr and N4 are independent Gaussian noise terms associated with the fore
and aft beam measurements, respectively. For an azimuthally isotropic medium,
0% — 0% = 0 since the incidence angles for each measurement are equal, and D

becomes the difference of the noise terms:
D= Np — Ny (3.29)

When the difference is taken over an area with no azimuthal modulation (identi-
cal 0° signal random variable values) the signal terms cancel one another and the
difference in noise terms remains. Since the difference of two Gaussian random vari-
ables is a Gaussian random variable, we conclude that in regions with no azimuthal
modulation the distribution of the fore-aft o° difference will be zero mean Gaussian.

Next, plots are considered which contain: 1) a histogram of the difference
measurement azimuth angles, 2) a histogram of fore-aft difference values, and 3) a
scatterplot of the fore-aft difference versus azimuth angle. For the fore-aft difference
histogram, a Gaussian distribution (dotted line) with the same mean and variance
was also plotted. Samples of these plots are shown in Figure 3.20 for regions 12 and
G2. 12 is a sea ice region while G2 is a glacial ice region.

Examination of the histograms for all the regions reveals that for the sea ice
regions, the distributions are almost invariably near zero mean Gaussian as predicted.
This indicates the absence of significant azimuth modulation in the backscatter signa-

tures of these regions. For each of these fore-aft histograms, the mean and standard
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Figure 3.20: Plots illustrating azimuth angle diversity, the distribution of the fore-aft
o difference, and the fore-aft ¢ difference versus azimuth angle for sea ice regions
I2 (a) and G2 (b). Note in (a) that the fore-aft ¢° difference is approximately zero-
mean Gaussian indicating the absence of azimuth modulation. In contrast, (b) is not
zero-mean (Gaussian indicating the presence of azimuth modulation.

deviation is given at the top of the plots. With only two exceptions, the means of
these distributions are below 0.6 dB. We conclude from this that less than 0.6 dB of
azimuthal modulation occurs in the sea ice regions of Antarctica. The non-zero mean
may result from two sources. First, it may be caused by a low level of azimuthal mod-
ulation. Second, it may be an artifact of the incomplete calibration of the NSCAT
data at the time of this study. Without proper beam balancing some bias will appear
in the fore-aft difference. It is expected that after the data is processed with the

correct calibration factors, the results will be more accurate.
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An observation of similar plots of the glacial ice regions reveals some in-
teresting features. Two of the five regions have distributions very similar to the
characteristic sea ice distribution. That is, nearly zero mean Gaussian indicating low
azimuthal modulation. The other regions have bimodal distributions leading to the
conclusion that in the difference the signal terms do not cancel one another and more
than just noise remains. We conclude from this that these areas have microwave

properties conducive to azimuthal modulation in the backscatter signatures.

3.2.3 Conclusion

From this study we conclude that little azimuthal modulation (less than 1
dB) occurs in the sea ice regions of Antarctica for NSCAT scatterometer data. Some
glacial regions exhibit a significant level of modulation in the data. These results
support those of Early’s ERS-1 C-Band study [63]. Two methods were used to assess
the level of azimuthal modulation for a given region. The first technique observed
variations in ¢° versus azimuth angle. Azimuthal modulation appears as changes in
0° levels at different azimuth angles. The second involved an analysis of the fore-
aft beam difference. The distribution of the difference reveals the level of azimuthal
modulation. The conlusion that can be drawn from this experiment is that azimuthal
modulation can be neglected for sea ice for NSCAT data. That is, modulation in
these regions will not significantly affect applications that require isotropic responses

such as resolution enhancement.

3.3 Inter-instrument Scatterometer Calibration

While the previous two sections have dealt with issues of image recon-
struction, this section considers an important topic in the proper interpretation of
reconstructed scatterometer imagery - inter-instrument calibration. Various remote
sensing programs have launched the same sensor design aboard different satellite
platforms. Examples are the SSM/I instruments which fly on the DMSP platforms
and the AMI scatterometers on ERS-1 and ERS-2. If identical instruments exhibit
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significant differences in measurements coregistered in space and time due to instru-
ment calibration, signature interpretation becomes difficult. This section considers
one such scenario in the ERS-1 to ERS-2 sensor transition.

The European Space Agency’s (ESA) ERS missions consist of two remote
sensing satellites, ERS-1 and ERS-2. The first was launched in July 1991 and collected
data until June 1996. The second was put into orbit in April 1995, but was not fully
commissioned until April 1996. ERS-2 is still in operation. Both of these satellites
carry the active microwave instrument (AMI) scatterometer described in Chapter 2.

A critical issue in the use of data from the ERS-1 and ERS-2 AMI scat-
terometers is proper calibration. This ensures a seamless transition from one instru-
ment to its successor and provides confidence that signatures obtained from each are
consistent. Several months of the ERS-2 mission were devoted to this task when
both ERS-1 and ERS-2 were simultaneously operating. However, analysis of the data
during the brief instrument overlap period indicates that a calibration problem may

exist. The following section describes and resolves the discrepancy.

3.3.1 ERS-1/ERS-2 Data Collection

The ERS-1 and ERS-2 AMI scatterometer data sets overlap during ap-
proximately 1996 JD 123-155. This is an opportune time to measure similarity in
the o° signatures measured by the two instruments. In a study of the transition
from ERS-1 to ERS-2, an inconsistency is observed in the overlapping data. Figure
3.21 illustrates the problem. This plot was generated by looking at enhanced reso-
lution average 0 values normalized to 40° incidence in a small region of the Ronne
Ice Shelf. The characteristic seasonal signature from early 1992 through mid-1996
is evident. During the cross-over period in which both ERS-1 and ERS-2 ¢° data
are available, there is only a slight discrepancy between the signatures observed by
the two instruments. However, immediately after ERS-1 was switched off, the ERS-2
trend decreases rather than increases as in previous seasons. A 0.2 dB upward shift

of the ERS-2 signature would make it more believable during this portion of the year.
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Figure 3.21: Plot of ERS-1 and ERS-2 average SIR-A (0° at 40° incidence) as a
function of time using the JPL defined region of the Ronne Ice Shelf. From A.
Bingham, JPL.

3.3.2 Possible Sources of the Discrepancies

Several possible explanations for the observed discrepancy may exist. These
include diurnal variations of ¢° signatures, azimuthal modulation, calibration prob-
lems, actual differences in the seasonal ¢° response of 1996 compared to previous
years, or a combination of these.

The first explanation is the possibility of diurnal variations in the study
region. If ERS-1 and ERS-2 observe this region during different times of the day,
and if there is a slight time of day dependence of ¢¢, it is expected that differences
in signatures would exist. For example, suppose ERS-1 collects measurements during
a portion of the day in which the surface has very little melt with characteristically
high ¢° values. Now suppose ERS-2 observes the same region during a time of the
day when water content is slightly higher and ¢° values are correspondingly lower.
The overlap period of occurs during Antarctic fall. In addition, the study region in

the Ronne Ice Shelf is quite far south. These two factors would seem to indicate that
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the temperature in this region should rarely rise to levels that would allow any water
content to accumulate during any portion of the day. However, for completeness, the
issue of diurnal variations was considered.

The next possibility is azimuthal modulation of ¢°. Azimuthal modulation
occurs when the ¢° signature of a distributed target is not only a function of incidence
angle, but also azimuth angle. The azimuth angle dependence is exploited in deter-
mining ocean wind vectors from ¢° measurements taken at multiple azimuth angles.
Due to the orbit geometry and beam configuration of the ERS-1/2 satellites, a region
on the earth typically is observed at several azimuth angles (or ranges of azimuth
angles) repeatedly over an extended period of time. While the satellites are in very
similar orbits, any slight differences would cause a particular region to be observed
at slightly different azimuth angles by the two scatterometers. If the study region
exhibits azimuthal modulation of ¢°, a discrepancy is o values would be observed.

Another source to be considered is a calibration problem between the two
instruments. This should appear as a bias in ERS-2 ¢° over ERS-1 ¢° regardless of
incidence or azimuth angle.

The final source of the discrepancy may be due to actual changes in the
surface ¢° trend of the Ronne Ice Shelf in 1996 from previous years. While not
likely, changes in ice shelf climate during this year may have produced the observed
differences. This is consistent with the observations of Bingham that the differences
of o° signatures for ERS-1 and ERS-2 were quite small during the overlap period (A.
Bingham, personal communication).

Each of these possibilities have the potential to cause the discrepancies
observed in ERS-1/2 o signatures. The next section examines raw data taken from
these two instruments in an effort to determine if one or a combination of these factors

are responsible for the problem.

3.3.3 Data Analysis

In an effort to duplicate the results of Bingham shown in Figure 3.21, a

small subregion of the Ronne Ice Shelf was defined. The region is bounded by -58.0°
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Figure 3.24: Plot of ERS-1 and ERS-2 raw data A values computed with a linear
regression on data in a 6 day sliding window as a function of time.

t0 -56.0° longitude and -77.0° to -76.5° latitude. ERS-1 and ERS-2 SIR A images were
examined in this region for all of 1995 and 1996. For each 6 day image, the average
A value was computed in this region and plotted as a function of time. The result is
shown in Figure 3.22. The corresponding B plot is shown in Figure 3.23. While it
includes only 1995-1996 data and is likely from a different subregion than was used
by Bingham, Figure 3.22 is similar to the results found in Figure 3.21. That is, the
ERS-2 trend seems to be 0.2-0.3 dB lower than ERS-1 exhibited during the previous
year. However, in Figure 3.22 the discrepancy exists during the overlap period as well.
Indeed a 0.2 to 0.3 dB upward shift of the ERS-2 data produces better agreement to
ERS-1 during both the cross-over time and afterwards.

The data for Figures 3.21 and 3.22 are taken from images reconstructed
using the scatterometer image reconstruction (SIR) technique. To guarantee that the
discrepancy in question is not an artifact of the reconstruction algorithm, A and B

values are estimated from the raw data in the study region during the overlap period.
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Figure 3.25: Plot of ERS-1 and ERS-2 raw data B values computed with a linear
regression on data in a 6 day sliding window as a function of time.

This is done by performing a simple linear regression on all of the data in a 6 day
sliding window. The results are shown in Figures 3.24 and 3.25. The plot of the A
values clearly shows that the discrepancy exists in the raw data as well as the SIR
reconstructed images.

The next step is to examine possible sources of the discrepancy as described
in the previous section. These are diurnal variations, azimuthal modulation, and
incorrect calibration. Since Figure 3.22 seems to rule out the hypothesis of actual
differences in surface response in 1996 over previous years, it is not explicitly addressed

in this section.

Diurnal Variation Hypothesis

The first hypothesis considered is that a combination of diurnal variations
in 0 responses and differences in typical observation times of ERS-1 and ERS-2 cause

the discrepancy. To evaluate this hypothesis, the time of day for each measurement is
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Figure 3.26: Histograms of measurement time for ERS-1 and ERS-2 during 1996 JD
135-140 (a) and 1996 JD 123-155 (b).

examined for each instrument. Figure 3.26a is a histogram of the hour of the day in
which measurements were taken of the study region during 1996 JD 135-140 for both
instruments. From this we see that both ERS-1 and ERS-2 collect measurements of
this region between 11 am and 10 pm. Several discrete times within this range are
typical observation times. Both instruments cover the time range and the discrete
times match well with some minor differences. ERS-1 has a bias towards the earlier
measurement times during JD 135-140 which may cause some bias in ¢° values if
diurnal variability is present. However, this was not typical of the entire overlap
period as shown in Figure 3.26b. The absence of any obvious difference in the typical
observation times of ERS-1 and ERS-2 seem to indicate that this is not a major factor

in the discrepancies detailed above.

73
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Figure 3.27: Scatter plot of 0° vs. incidence angle for each beam of ERS-1 and
ERS-2 during 1996 JD 135-140. The beams are color coded. The data from different
instruments can be differentiated by plot symbol.

Azimuthal Modulation Hypothesis

In addition to temporal dependence of ¢°, azimuth dependence may also
be a factor in discrepancies between the two instruments. It is conceivable that
if the orbits of ERS-1 and ERS-2 are not identical, the azimuth angles at which
0° measurements are collected will not be identical. Figure 3.27 is a scatter plot
of 0% vs. incidence angle for all beams of both scatterometers. The color denotes
beam number while the instruments are differentiated by the plot symbols. A similar

plot is shown in Figure 3.28 where all 0° values for a particular instrument and
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ERS-1/2 Comparison of Ronne Ice Shelf Subregion (1996 JD 135-140)
\ \ \ \ \

— ERS1
--- ERS2

Beam 1

Beam 2

Sigma-0

-15+— —

| | | | |
20 25 30 35 40 45 50
Incidence Angle

Figure 3.28: Plot of average ¢° (in 1° incidence angle bins) vs. incidence angle for
each beam of ERS-1 and ERS-2 during 1996 JD 135-140. The beams are color coded.
The data from different instruments can be differentiated by line styles.

beam have been averaged in 1° incidence angle bins. These plots indicate that either
the beams are not cross-calibrated well or azimuthal modulation is present in the
study region. The latter is now considered. In Figure 3.29 a contour plot of the
two dimensional histogram of measurement incidence vs. azimuth angles for ERS-1
and ERS-2 is shown. This figure indicates that while the azimuth angles are similar
in form, there are some subtle differences. In fact, the average azimuth angle of
observations from each individual beam is found to be two degrees higher for ERS-2

than ERS-1. Since the presence of azimuthal modulation in the study region has
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Figure 3.29: Contour plot of measurement incidence angle vs. azimuth angle for all
ERS-1 and ERS-2 data during the overlap period.

been established, these differences in azimuth angle are likely responsible for some
discrepancy in ¢° values. The level of discrepancy possible in this subregion due to
azimuthal modulation is estimated by plotting ¢° values vs. azimuth angle where
incidence angle and temporal dependence has been minimized. Such a plot is shown
in Figure 3.30. In generating this plot, the incidence angle dependence is reduced
by only plotting 0 values from one degree incidence angle ranges. The long-term
temporal dependence was minimized by using 6 days of data. A strong azimuth angle

dependence is observed in the ¢° data points. In the azimuth angle range of 150° to
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250° there is roughly a 3 dB drop in ¢° corresponding to a 0.03 dB/deg 0° dependence
on azimuth angle. The two degree bias in ERS-2 measurements would result in only

a 0.06 dB drop in 0 in this range of azimuth angles.
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Figure 3.30: Scatter plot of ¢° vs. azimuth angle for 1996 JD 135-140.

Calibration Hypothesis

The final possibility is a calibration problem between scatterometers. Fig-
ure 3.30 shows a scatter plot of o° at various azimuth angles for measurements taken

at several mid-range incidence angles for both instruments over the study region. This
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plot should provide the information needed in determining if calibration is an issue.
If calibration is a problem, a clear trend should be observed regardless of azimuth or
incidence angles. At a given azimuth angle, o° values are plotted without incidence
angle or temporal variability induced ambiguity. While differences are observed, there
is no clear trend in ERS-1 ¢° values compared to ERS-2 ¢° values. Hence, no obvious

calibration problem appears to be present in the study region.

3.3.4 ERS Instrument Calibration Conclusions

This study has defined discrepancies of ERS-1 ¢° with ERS-2 ¢° in a re-
gion of the Ronne Ice Shelf of Antarctica. Several possible sources of the observed
differences were proposed and explored including diurnal variations, azimuthal mod-
ulation, and calibration. The measurement times of the two instruments were found
to be very similar indicating that diurnal variability is likely not a major contributor
to the discrepancies. Azimuth modulation was found to exist in the study region.
In addition, slight differences in measurement azimuth angles were found. While it
appears likely that this is responsible for some portion of the drop in ERS-2 ¢°, it
does not appear to be enough to account for the full 0.2-0.3 dB discrepancy. Finally,
a clear trend that would be indicative of a calibration problem was not observed.

Since the discrepancy in question is so small, it is difficult to accurately
pin point its source in the presence of noise. However, it has been established that
there are distinct although slight differences in the time and azimuthal characteristics
of measurements of ERS-1 and ERS-2 ¢°. In the final analysis, both of these along
with the possibility of slight calibration problems likely combine to cause the observed

differences.

3.4 Image Reconstruction Conclusions

The research described in this chapter addresses a number of important is-
sues in image reconstruction from spaceborne scatterometer and radiometer measure-

ments. The first study detailed the optimization of the SIRF algorithm for NSCAT
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data ensuring proper convergence of the iterative technique with minimal computa-
tional requirements. In the next section, analysis was performed of azimuthal modu-
lation over Antarctic sea ice and glacial ice regions. Azimuthal modulation levels are
found to be negligible for sea ice indicating minimal effect on image reconstruction.
In contrast, significant levels of modulation are observed in some glacial ice areas due
to surface slope and wind induced sastrugi on the snow surface. Consequently, recon-
structed imagery of these regimes exhibit moderate estimate errors. Finally, a study of
inter-sensor calibration issues between the ERS-1 and ERS-2 sensors was considered.
The study concluded that slight beam miscalibrations and azimuthal measurement
characteristics are likely the source of the observed discrepancies. These differences
must be considered when interpreting combined ERS-1 and ERS-2 reconstructed im-

age sets.
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Chapter 4

Atmospheric Distortion Reduction in Image Reconstruction

4.1 Introduction

The previous chapter addressed several issues in image reconstruction. An-
other factor affecting reconstructed image quality is a sensor sensitivity to atmospheric
distortions. Due to shorter wavelengths, this phenomenon is a significant problem for
instruments with relatively high microwave frequencies such as those used by the
SSM/I. This chapter considers the effects of those distortions in SSM/I imagery and
methods for their removal. While the methods are applied to images of vegetated
regions, the same techniques can be used over polar glacial ice regions as well. This
study considers vegetated areas since the effects of atmospheric distortions are much
more pronounced there than in the cryosphere. The work presented in this chapter
was published in the IEEE Transactions on Geoscience and Remote Sensing [7].

Microwave radiometers such as SSM/I [33, 35] have wide application in
atmospheric remote sensing over the ocean and provide essential inputs to numerical
weather prediction models. SSM/I data has also been used for land and ice studies
including measurements of soil and plant moisture content [48, 49], land surface tem-
perature [50], atmospheric moisture over land [51], snow cover classification [52], and
mapping polar ice [53].

Because the surface brightness observed by the SSM/T may be adversely
affected by spatial variations in the atmospheric profile over the surface, algorithms for
cloud removal have been developed [51, 54]. In this chapter, several new algorithms

are compared which generate cloud-free composite images from multiple passes of
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the study region. Simulations to determine the effectiveness of these algorithms are
performed. Actual SSM/I data is analyzed by exploring the effects of compositing
algorithms on the pixel surface brightness temperature distributions.

This chapter is organized as follows: After a brief background discussion,
the production of no-cloud composite images is discussed. The next section intro-
duces the modified maximum average (MMA) and hybrid algorithms. A simulation
experiment to compare the cloud-removal algorithms is then presented. Analysis of

actual SSM/T data is performed. Finally, the conclusions are given.

4.2 SSM/I Remote Sensing

An in-depth background of the SSM/I instrument is given in Chapter 2.
SSM/I observes Ty at four different frequencies and both polarizations. Channels
with higher frequencies typically exhibit more sensitivity to atmospheric distortions
such as water vapor, cloud cover, and precipitation.

The brightness temperatures observed by the SSM/T are a function of the
effective brightness temperature of the Earth’s surface and the emission, scattering,
and attenuation of the atmosphere. Because of the spatial and temporal variabil-
ity of the surface brightness, which is a function of the properties of the soil and
overlaying vegetation and their physical temperatures, it is difficult to decompose the
observed brightness into its individual components. The most crucial factors affecting
a radiometric measurement, however, are the surface emissivity and temperature, the

vegetation canopy, and the atmospheric conditions [29].

4.3 Generation of Cloud-Free Images

One of the challenges in mapping the surface brightness from space-borne
radiometer data is atmospheric distortion. Cloud cover and precipitation are two
primary sources of this distortion. Although cloud and rain cause little microwave
attenuation for frequencies less than 10 GHz, the higher microwave frequencies of the
SSM/T (19.35, 22.235, 37.0, and 85.0 GHz) show substantial atmospheric loss due to

scattering from hydrometeors and water vapor. Over the ocean the atmospheric signal
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is used to deduce cloud water content from the change in brightness. For studies of
the land surface, however, these atmospheric effects may be unwanted [55].

Clouds and precipitation affect surface brightness measurements in two
ways. First, the cloud scattering non-uniformly lowers the measured brightness tem-
perature for all frequencies of the SSM/I with higher frequencies progressively more
sensitive. The reduction in brightness temperature can be confused with surface
features. Second, the clouds attenuate the polarization differences caused by the
geometric or chemical composition of different surface types. This prevents the sur-
face polarization difference from being used to discriminate between vegetation types
and/or standing water.

Figure 4.1 illustrates examples of atmospherically distorted brightness tem-
perature images in a region of the Amazon Basin for all vertical polarization SSM/I
channels. These images, like all in this chapter, were generated by assigning to each
pixel covered by the swath the value of the nearest measurement. Other single-pass
imaging techniques can also be used, e.g. [37, 39]. The distortions are evident in the
temporal variation of surface brightness temperature in different areas. Note that, as
expected, the distortions are more pronounced in the higher frequency channels. This
follows the trend of increased atmospheric scattering due to clouds and precipitation
with increasing frequency. The distortions of pixel values can be as high as 60 K for
the higher frequency channels. These distortions can greatly hinder the application
of SSM/I data to land studies.

While multi-channel and/or multi-sensor based algorithms for cloud re-
moval have been previously used (e.g., [52, 55, 56, 57]), a single channel algorithm
similar to [54] in this study. By using only single frequency information to generate
a “cloud-free” image of the surface, the introduction spurious correlation between
the channels is avoided. For example, since each frequency has a different footprint
size, using lower frequency data to remove atmospheric distortion effects in higher
frequencies may exclude undistorted values in the higher frequency channels [54].

The algorithm is based on the assumption that temporal surface brightness

variations over an area are caused by small-scale, atmospheric effects rather than
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Figure 4.1: Individual SSM/I swath examples of temporal atmospheric distortions.
These images were created by assigning the closest measurement value to each pixel.
Columns (from left to right) correspond to 1992 Julian Days 245, 248, 261, 264 of the
passes. Rows (from top to bottom) indicate SSM/I channels 19V, 22V, 37V, 85V.
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temporal changes in the surface brightness. A composite image is generated using
multiple passes which represents the effective surface brightness temperature over a
multi-day period. The composite image is generated from images created from each
descending pass, though ascending passes can also be used.

In the example data which follows, twenty days of descending pass SSM/I
data (Sept. 1992) over South America are used. During this period each pixel is
observed from 5 to 10 times. The value of the composite pixel is computed from this
ensemble. The study region is considered a worst-case example, with frequent rain
and distortion events occuring up to several times during the compositing interval.
For this region twenty days offers a good balance between the number of undistorted
measurements in the ensemble and temporal variations due to seasonal radiometric
surface response variations. This is somewhat less than the 30 days used by previous
investigators [54] but provides adequate results. Areas with less frequent distortion
events may be able to use shorter periods.

Choudhury and Tucker [54] removed temporal atmospheric distortion by
using the second-highest pixel value from the ensemble as the composite pixel value.
Since the atmospheric distortion generally lowers the brightness temperature mea-
surements over land, high pixel values have the least atmospheric influence. They
reason that since the highest value is often strongly influenced by noise or processing
artifacts they used the second-highest pixel value.

Choosing the second-highest value is an example of a rank order statistic
[58]. Another rank order technique is the median filter [59]. As an estimator, a rank
order statistic is noise-reducing but is sensitive to the underlying distribution of the
samples [60]. Thus, the second-highest value technique’s ability to reduce noise is
strongly influenced by the measurement distribution.

Unfortunately, the distribution function for the SSM/I data is not known
precisely and it is not possible to analytically determine the estimator variance. How-
ever, it is known that in the presence of atmospheric distortion over land, the dis-
tribution is skewed low, while the desired estimation parameter is the mode on the

high end of the distribution [56]. This strongly suggests that the rank order statistic
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needed for this application is a value closer to the highest value than to the median

value. Given this insight, the second-highest value method is a reasonable approach.

4.4 Modified Maximum Average Algorithm

In an effort to improve the performance of a cloud removal algorithm, a
modified maximum average (MMA) technique was developed. This algorithm at-
tempts to estimate the cloud-free surface brightness of a pixel by choosing a subset
of pixel values from the ensemble of measurements of that pixel and then averaging
the selected values together. By properly selecting the subset from the ensemble,
the cloud distortion is eliminated. Averaging of the subset reduces the noise and
attenuates any residual bias.

To select pixel values from the ensemble in the MMA technique, the sample
mean of the entire pixel ensemble is first computed. Measurements greater than the
sample mean yield a subset of the complete ensemble corresponding to its highest
values. The highest value of this subset is then eliminated. The remaining values
consist of those values which are above the ensemble mean but less than the maximum
value of the ensemble. This is the MMA subset. The estimated pixel value is then
determined as the mean of this subset.

Analyzing this technique statistically is challenging for two reasons: 1) the
distribution of pixel values when distortions are included is not clearly known and 2)
the algorithm combines both box averaging statistics and order statistics. To quali-
tatively justify this approach, consider a simple model for the pixel measurements. In
this model, the measurement is the sum of a Gaussian distributed surface brightness

temperature and a weighted binary random variable:

z = n(u,0) —psA (4.1)

where z is the measured brightness temperature, n is the Gaussian distribution with
mean y and standard deviation o, p, is a binary-valued random variable of the proba-
bility that a measurement contains cloud distortion (less than 30% based on a simple

examination of SSM/I in the study region described later), and A is a positive random
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variable representing the drop in brightness temperature due to a cloud (A depends
on the cloud thickness, water content, etc., the statistics of which are unknown). A
schematic example of the distribution of z is given in Figure 4.2a where A = 10 K and
pa = 30%. The right mode corresponds to the distribution of surface brightness while
the lower mode represents the distribution of cloudy pixels. The “X” marks below the
temperature axis illustrate an ensemble of seven random measurements for a given
pixel. Also illustrated are the results from applying the MMA and second-highest
value techniques.

Good metrics for comparing estimation algorithms include the mean es-
timate error (bias) and the estimate variance. Ideally, the estimate should have no
bias and minimum variance. To compare the variances of the MMA algorithm and
the second-highest value technique, consider Figure 4.2b. As in Fig. 4.2a the “X”’s
represent an ensemble of seven samples taken from the distribution. The variance of
the second-highest value technique is governed by the average temperature difference
between the highest and third highest value of the ensemble. The variance of the
MMA algorithm depends on the variances of the second, third, and fourth measure-
ment. Graphically, one may see that the averaging of these values lowers the estimate
variance more than just using the second-highest value.

Like the second-highest value estimate, the MMA estimate in this example
is biased high, and is whenever the ensemble includes more than one sample from the
lower mode of the mixture distribution. However, it is clear that the MMA bias is less
than the second-highest value estimate. Further, the estimator variance is smaller for
MMA.

While MMA produces a less biased estimate for pixels with high cloud
contamination than the second-highest value, it is still biased high for pixels with
little or no contamination. Figure 4.3 depicts a hypothetical distribution of brightness
temperatures for a non-cloud-affected pixel. In this case, the second-highest value
and MMA estimates are biased high. The desired value is the mean of the overall
distribution in the absence of clouds or precipitation. As previously noted, a simple

examination of SSM/I data reveals a probability of less than 30% that a measurement
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is distorted by clouds or rain. Thus, MMA may be unnecessarily biased somewhat
high for many of the measurements.

In an effort to ameliorate this problem, a hybrid of the mean and MMA
methods has been developed. Ideally, this hybrid implements MMA in the presence
of clouds and takes the mean in their absence. This reduces the overshoot of MMA
for low atmospheric distortions and provides a better estimate of the actual surface
brightness temperature.

To implement the hybrid algorithm, a metric is required for the decision
making process. The chosen metric is the temporal standard deviation of the val-
ues for a particular pixel. The presence of clouds skews the brightness temperature
distribution low for affected passes, thus increasing the standard deviation. Figure
4.4 shows a mean SSM/I composite image along with its corresponding temporal
standard deviation image for the 85 GHz vertically polarized channel. This visually
illustrates that the high standard deviation regions correlate well with low Tpg re-
gions indicative of atmospheric distortion. Areas that appear darkened in the mean
composite image exhibit relatively high values in the standard deviation image.

In the standard deviation image of Figure 4.4 the areas with low values
correspond to regions with little or no atmospheric distortion. A small 2°x2° spatially-
homogeneous subregion, which will be more explicitly defined in a later section, is
chosen as an example of an area with low temporal variation and thus low atmospheric
distortion. The temporal mean and standard deviation of all swath pixel values are
calculated for each vertically polarized SSM/I channel in this subregion and are shown
in Table 4.1. The standard deviations represent the temporal variance of surface
brightness temperature in the absence of atmospheric distortion. According to the
previous discussion, any kind of temporal variation, such as atmospheric distortion,
will cause the standard deviation to rise above these values. All channel standard
deviation values are similar with the 19V channel exhibiting the highest and 37V the
lowest. Ideally, optimum values should be used for each channel in implementing the
hybrid algorithm. However, since the temporal standard deviations are similar and

for the sake of simplicity, the highest of these values is chosen, 1.25 K, as the hybrid

90



Figure 4.4: Temporal mean and standard deviation images of the 8 GHz vertically
polarized SSM/T channel. These were generated using 44 descending single pass
images corresponding to days 245-264 of 1992. The left panel is the mean image
and the right panel is the standard deviation image. The boxes define two 2°x2°
subregions used later in the assessment of algorithm effectiveness. One is an example
of a cloudy region and the other is a region with little or no distortion. The band in the
lower-right area of the standard deviation image results from atmospheric distortions
affecting only some passes.

threshold metric for the results presented in this chapter. In the hybrid algorithm, the
standard deviation is computed for each pixel ensemble of brightness temperatures.
If it is above 1.25 K, the MMA algorithm is used to produce the composite value for
that particular pixel in order to select only nondistorted measurements. Otherwise,
the mean is used. This threshold has been chosen for use in the study region and
while it is adequate for most regions, the threshold can and should be tuned for other

regions.

4.5 Simulation

To further compare and contrast the mean, second-highest value, MMA,
and hybrid algorithms, a simple Monte Carlo analysis for a single pixel is presented.
This simulation assumes that the true pixel brightness for a geographical area is 280

K. An ensemble of seven pixel values is then created by adding a Gaussian random
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Table 4.1: Temporal means and standard deviations of pixel brightness temperatures
in a 2°x2° distortion-free subregion of the Amazon Basin.

Channel | Mean | Std.
19V 2872 | 1.25 K
22V 2849 | 1.23 K
37V 283.2 | 1.14 K
85V 284.6 | 1.20 K

variable of standard deviation 1 K to the “true” value. This represents the radiometric
“noise” AT inherent to the radiometer measurements. Seven pixels simulate the
average number of radiometric measurements in the twenty day study period. Two of
the ensemble measurements then have simulated atmospheric distortion added. The
first measurement is reduced by Ty;s and the second measurement by Ty;s/2. This
models a pixel which is contaminated by clouds at two different times with one cloud
twice as distorting as the other. The seven member ensemble is then processed by
each algorithm and the results are saved. The results of 1000 simulations are then
analyzed to give the results in Figure 4.5. For comparison, the ensemble mean is
plotted along with the windowed mean. The windowed mean is the mean of values
within one standard deviation of the ensemble mean.

For pixels with little or no atmospheric distortion, the mean or windowed
average is closer to the 280 “true” value than MMA or the second-highest value. For
ensembles which have greater (> 5 K) atmospheric distortion, the second-highest
value and MMA techniques are superior. The MMA technique has the smallest bias
of the two. Since it also has the smallest variance, the MMA algorithm is considered
superior to the second-highest value algorithm. The hybrid algorithm combines the
strengths of the mean method for low distortion temperatures and MMA for high
distortion temperatures. This is evident in Figure 4.5 by the closer estimates to 280
K for small 7T,,. Simulation results show that MMA is superior in the presence of
high distortion and that mean is best with low distortion. The hybrid algorithm

combines the two in a manner that uses the correct algorithm for each pixel.
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Figure 4.5: Simulation results of atmospheric distortion removal (the true value is
280 K).

4.6 SSM/I Data Analysis

To validate the algorithms with actual data, a region of the Amazon Basin
was chosen for SSM/I data analysis. The region lies primarily within Brazil and
is bounded by the coordinates: 48° to 63° W longitude and 1° to 16° S latitude.
Its characteristic high precipitation levels make it a good study region representing
a worst case scenario with frequent rain and distortion events. The mean, second-
highest value, MMA, and hybrid composite images of this region were created for all
vertically polarized SSM/I channels. Examples are presented in Figures 4.6-4.7. In
the interest of space, only the 37V and 85V images are shown here. Due to smaller 3dB
antenna footprints, the higher frequency images exhibit better effective resolution.

Two small nearly spatially-homogeneous regions were chosen from the
larger study region for brightness temperature distribution analysis. Each is 2° square

in latitude and longitude. The first region, with bounding coordinates of 54.5° to 56.5°
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Figure 4.6: SSM/I 37V Brazil region composite images. From top left to bottom
right: mean, second-highest value, MMA, and hybrid.
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Figure 4.7: SSM/I 85V Brazil region composite images. From top left to bottom
right: mean, second-highest value, MMA, and hybrid.
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W longitude and 11.5° to 13.5° S latitude, exhibits temporal variations consistent with
atmospheric distortion. The second was chosen for its apparent absence of cloud or
precipitation distortion with boundaries of 58.5° to 60.5° W longitude and 10.5° to
12.5° S latitude. Both subregions are shown in Figure 4.4.

The brightness temperature distribution of all of the SSM/I swath mea-
surement data over the small regions is presented in Figures 4.8-4.9. These help
validate the distortion model used previously. Figure 4.8 depicts distributions for
the cloudy region and Figure 4.9 shows the same for the clear region. Note that a
log vertical scale has been used to emphasize the distribution tails. These distribu-
tions demonstrate the difference between cloudy and clear regions. The cloudy region
distribution has a relatively wide peak at the high end with a long tail of lower tem-
peratures. The peak corresponds to non-distorted brightness temperatures while the
tail represents pixels that have experienced some level of atmospheric distortion. For
conciseness, only the 85 GHz channel are considered for the rest of the analysis.

The clear region has a clean single-modal distribution with a tight peak
and no trailing tail, indicating the absence of any distortion. Hence the effect of
atmospheric distortion on the surface brightness distribution is to widen the upper
modal peak and add a lower tail of brightness values. A good cloud-removal algorithm
would select only values within the mode that represent the undistorted brightness
temperatures.

Images for both subregions were created using the mean, second-highest
value, MMA, and hybrid algorithms. These images are shown in Figures 4.10-4.11.
Since no surface brightness temperature ground truth is available for validation of
the estimated surface brightness temperature, it is difficult to objectively assess the
effectiveness of each algorithm. However, a visual interpretation of these images yields
some important information.

Figure 4.10 illustrates each composite image for the cloudy region at 85 GHz
vertical polarization. Here, the presence of clouds and precipitation are evident. Cer-
tainly, it can be seen that the second-highest value, MMA, and hybrid algorithms all

perform superior to mean. The distortions are still evident in the mean composite
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Figure 4.10: SSM/I 85V cloudy region cloud removal composite images. From top
left to bottom right: mean, second-highest value, MMA, and hybrid.
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Figure 4.11: SSM/I 85V clear region cloud removal composite images. From top left
to bottom right: mean, second-highest value, MMA, and hybrid.



Table 4.2: Pixel value averages and standard deviations of each algorithm composite
image for the cloudy and clear regions.

Cloudy Region | Clear Region

Algorithm Ave. Std. Ave. | Std.
Mean 279.8 | 3.259 || 284.4 | 0.480
Second Highest | 286.2 | 1.033 | 285.6 | 0.551
MMA 284.7 | 0.973 || 285.1 | 0.509
Hybrid 284.7 | 0.982 || 284.8 | 0.523

image while the others appear to remove the distortions to some degree. The average
and standard deviation of pixel values were computed for each composite image. The
results are given in Table 4.2. Without a knowledge of the true surface brightness tem-
perature, it is not possible to determine the bias in each image. However, the mean
image has the highest standard deviation. This is expected since the atmospherically
distorted values were included in the mean. Second-highest value standard deviation
is governed by the variance of the second-highest value only. As a result, this statis-
tic is greatly improved over the mean image case. MMA yields the lowest standard
deviation. The averaging contained in the MMA algorithm provides some additional
noise reduction over the second-highest value. The hybrid image has the same mean
as MMA and a slightly higher standard deviation indicating that the two algorithms
performed similarly for the cloudy region. This shows that, as predicted, the hybrid
algorithm effectively chooses MMA in cloudy regions.

Figure 4.11 shows the 85V channel composite images for a clear or distortion-
free region. The average and standard deviation of all pixel values for each image
are shown in Table 4.2. Since this region has been chosen specifically because it ap-
parently has no distortion problems, the mean image is unbiased - unlike the other
algorithms’ composite images. Hence, its average can be treated as the ground truth
in this instance. With this in mind, the hybrid algorithm provides the best estimate to
the true brightness temperature and is the least biased according to its average value.

The second-highest value is the most biased with MMA falling in between. Thus, the
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hybrid provides the closest approximation to the “actual value” with MMA follow-
ing closely behind. A closer examination of the standard deviation image (Fig. 4.4)
reveals that some of the pixels in this area have values higher than the 1.25 K thresh-
old indicating that some subtle temporal variations exist due to minor atmospheric
distortions or small seasonal surface brightness temperature changes. Regardless, the
hybrid algorithm provides the estimate with the least bias. As in the cloudy region,
MMA has a lower standard deviation than the second-highest value. The hybrid noise
level is only slightly higher than MMA.

The spatial pixel brightness temperature distributions for the composite
images are plotted for both regions after each compositing algorithm is run. Figures
4.12-4.13 present the results. Each of the distributions is plotted over the full tem-
poral and spatial measurement distribution for that particular region. These help
validate the assumptions on which the algorithms were based and provide a measure
of algorithm performance.

Figure 4.12 illustrates the algorithm composite image brightness tempera-
ture distributions of the cloudy region for the 85 GHz channel. Clearly, the MMA and
the hybrid most closely match the upper mode of the raw data distribution. Their
similar performance indicates that hybrid primarily used the MMA algorithm in the
presence of atmospheric distortion.

Distributions for the clear region are given in Figure 4.13. The high bias
inherent to the second-highest value method is once again evident. In the clear region,
MMA also demonstrates some bias although not as large. This is because MMA
removes pixel values regardless of the actual presence of clouds or precipitation. On
the other hand, the hybrid distribution has less bias and most closely matches the

distribution of the raw data.

4.7 Conclusion

A comparison of several different methods (mean, second-highest value,
modified maximum average (MMA), and hybrid) for creating cloud-free temporal

composite surface brightness temperature images from SSM/I has been presented.
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Taking the mean is optimum in the absence of clouds and hydrometeors. The
second-highest value algorithm removes distorted pixel brightness temperature mea-
surements, but has an inherent high bias in its brightness temperature distribution.
The MMA algorithm more accurately estimates the desired value and has a lower
variance; however, it may have an undesirable bias for instances in which no distor-
tion is present. The hybrid algorithm combines the strengths of the mean and MMA
algorithms. It contains a decision making routine that switches between the mean
and MMA dependent upon the apparent presence of clouds or precipitation. Sim-
ulations indicate that the hybrid algorithm more accurately approximates a pixel’s
actual brightness temperature for different distortion temperatures. Analysis of the
composite image distributions also shows that the hybrid most closely approximates
the upper mode of the real data distributions for the study region considered.

In the presence of persistent atmospheric distortions, the distortion cannot
be removed. However, the effects of the more heavily distorted pixels can still be
reduced since MMA and the hybrid algorithms choose only the less distorted pixels
in the averaging. It should also be noted that the algorithms can be optimized for
specific study regions. Areas with different latitudes may be able to use shorter
collection periods to gather the same number of measurements per pixel due to the
satellite orbit geometry. The decision threshold for the hybrid can be tuned for specific
regions according to the expected number of local atmospheric distortion events.

This chapter considered the development and implementation of atmo-
spheric distortion reduction techniques applied to imagery of vegetated land regions
rather than over sea or glacial ice. Land regions are chosen for this study since the
effects of atmospheric distortion are significantly greater than in the cryosphere. The
method can be applied observations of stationary ice forms such as land ice, glaciers,
and ice shelves. Unfortunately, ice motion precludes the application of the algorithm
in sea ice areas using current sensors. Future sensors offering greater temporal and
spatial sampling may may have sufficient temporal resolution to facilitate the use of

these methods for sea ice.
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Chapter 5

Multivariate Ice Extent Mapping from Scatterometer Data

5.1 Introduction

Previous chapters have addressed various key issues in scatterometer and
radiometer image reconstruction. Reliability in ¢ or T’z estimates contained in en-
hanced resolution imagery is critical to ensuring accuracy in parameter extraction
studies. This chapter discusses one such application of reconstructed scatterometer
images - the estimation of polar sea ice extent. This work was published in the Journal
of Geophysical Research in 1999 [8].

Several factors motivate the interest in monitoring the extent of sea ice.
Sea-ice extent is a critical input to global climate and geophysical models. Polar ice
sheets act as insulating layers between the relatively warm ocean and cool atmosphere
and can radically change the albedo of the Earth’s surface. It also plays a vital role
in the planetary water exchange cycle. Moreover, sea-ice extent may be used as a
sensitive indicator of global climate change [1]. Hence, monitoring the extent of sea
ice is of great interest to the remote sensing community.

In addition to climatological reasons, sea-ice mapping is needed for retrieval
of ocean wind velocities from scatterometer measurements. The NASA scatterometer
(NSCAT) was designed to infer surface wind speed and direction over the ocean. If
measurements are included that are corrupted by non-ocean surfaces such as sea ice,
the wind estimates are degraded. Thus, an accurate knowledge of the location of
sea ice is required. In this chapter, an adaptive technique for mapping the sea-ice

extent using NSCAT data is developed and compared to Special Sensor Microwave
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Imager (SSM/I) derived ice maps. Using the methods discussed in this chapter, six
day average ice extent maps are processed every three days over the nine months of
NSCAT data. The ice maps are used in the final reprocessing of the NSCAT data.

As discussed in Chapter 2 the Scatterometer Image Reconstruction with
Filter (SIRF) algorithm was developed to enhance scatterometer image resolution by
combining data from multiple passes of the satellite [39]. Estimates are obtained for
the two primary parameters (A and B) characterizing the near-linear depedence of
0° (in dB) on incidence angle, 6 (see Eq. (2.2)). SIRF generates images of both A and
B from scatterometer ¢° measurements. These values provide valuable information
about surface parameters.

This chapter describes the development and implementation of an adaptive
sea-ice extent mapping method and its comparison to SSM/I derived maps. Section
5.2 describes the resolution enhanced parameters used in the multivariate analysis of
the data. Section 5.3 gives an overview of the sea-ice mapping technique and discusses
each of the steps in detail. The technique is applied to NSCAT polar data and the
results are given in section 5.4. The final section contains the conclusions drawn from

the analysis.

5.2 Polar NSCAT Data

As described in Chapter 2, the NASA Scatterometer (NSCAT) launched
in August of 1996 is a real aperture dual polarization Ku-band radar scatterometer
designed to measure the normalized radar backscatter coefficient (0°) of the Earth’s
surface. Using the SIRF algorithm, dual polarization A and B images with an effective
resolution of 8-10 km can be generated with six days of data. NSCAT v-pol images
can be produced with only three days of data since there are more v-pol antenna
beams than h-pol beams. However, six days are used to ensure that the h-pol data
provides enough coverage to create the reconstructed image. Since the v-pol images
are reconstructed with more measurements, the qualities of the A and B estimates are
subjectively superior to the h-pol images. Sea-ice dynamics may cause the ice edge

to change significantly during a six day interval. As a result, the ice maps generated
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by this technique must be regarded as average ice extents during the imaging period.
The method can be applied with data over shorter intervals (especially in the Arctic
region) with some loss of coverage and degradation of the h-pol image quality.

The dual polarization A and B values for each pixel provide four param-
eters that can be used to detect sea ice. In addition, ¢° error standard deviation is
also useful. These parameters are described in the remainder of this section. Their

utility in the discrimination between sea ice and open ocean is also discussed.

5.2.1 Copol Ratio

A useful parameter in the discrimination of sea ice and ocean is the copol
ratio, defined as the ratio of ¢, and 0§, [25]. This can be extended to a copol ratio
of the incidence angle normalized ¢° values. For the purposes of this chapter, the

copol ratio v is defined as the ratio of the A, and A, values:
v = Ay/Ap. (5.1)

In log space, this is equivalent to taking the difference between the V and H compo-
nents. Sample A, and A, images are shown in Figures 5.1a-b. The corresponding
image is shown in Figure 5.1e.

The copol ratio is sensitive to the surface scattering mechanisms. For
smooth, conductive surfaces such as calm sea water, the reflection coefficients for
vertically and horizontally polarized incident waves differ. In general, vertically po-
larized waves reflect more than their horizontal counterparts. Thus, the copol ratio in
dB is positive. For rough surface dielectric layers with randomly oriented scatterers
such as ice or snow, multiple reflections of the incident radiation tend to depolarize
it. As a result, vertical and horizontal waves are scattered similarly and the copol
ratio is closer to 0 dB. Further, the copol ratio is sensitive to the presence of ice or
water even in single (Bragg) scattering situations. In these scenarios, the polarization
ratio is determined by the relative permittivity of the material. Since sea ice has a
much lower permittivity than ocean water, v is also much lower. Because of these

differences in scattering mechanisms, v is useful in discriminating between different
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Figure 5.1: SIRF enhanced resolution NSCAT Antarctic images for the day range
1996 JD 337-342. The image panels contain (a) A,, (b) Ap, (¢) By, (d) By, (e) copol
ratio, and (f) o error standard deviation. Each image demonstrates that it contains
information about the presence of sea ice.
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ice and ocean surfaces. While the ocean generally has high 7 values and sea ice (with
low water content) generally has low values, in high wind conditions some ocean ar-
eas may exhibit low copol ratios. The winds induce roughness on the ocean surface
which depolarizes the scattering and drives v down. In order to overcome this, other

parameters are used to assist in the classification.

5.2.2 Incidence Angle Dependence

The incidence angle dependence of ¢°, represented by B, is also sensitive
to the presence of sea ice [18, 19, 61, 62]. Figures 5.1c-d give examples of B, and
Bj, enhanced resolution images, respectively. Due to the increased scattering isotropy
of sea ice [63] relative to the ocean, these regions tend to have less incidence angle
dependence. On the other hand, ocean ¢° measurements are strongly dependent
on incidence angle with the low incidence angles exhibiting higher ¢°. Thus, this
parameter can be used to limited degrees of accuracy in differentiating between the
ice and ocean. While it may be useful to use both B, and B, this study found a
strong correlation between B, and Bj. Noting that B, values are less noisy than By,
due to the greater number of vertical polarization measurements, only B, is used for

the discriminant analysis.

5.2.3 ¢° Estimate Error Standard Deviation

In addition to the copol ratio and incidence angle dependence, the standard
deviation of the error in the o° estimates also contains information about polar sur-
faces. This metric, denoted k, is a measure of the amount of surface response change
over the ensemble of 0° measurements due to temporal or azimuthal variability.

In order to understand x, the measurement collection process and its re-
lation to image reconstruction are examined. For NSCAT, each fan beam antenna
illumination pattern is resolved in the along beam direction through Doppler filtering
along isodoppler lines in the footprint [23]. The beam is resolved into 25 cells at
different incidence angles. The size of each cell depends upon its relative location in

the beam with near nadir cells covering a smaller area on the surface. The cells have
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a hexagonal shape determined by the Doppler filtering, motion of the satellite, and
azimuth beamwidth of the antenna [23].

Figure 5.2 shows an example NSCAT cell overlaid on a SIRF resolution
grid. SIRF produces A and B estimates for each resolution element. The forward

projection of the A and B values yields an estimate for 0° given by

=5 2 > )AL+ B.J)6 —40) (52

where N is the number of pixels in the cell, Ly, Ry, T}, and By define a bounding
rectangle for the k%" hexagonal o° measurement cell, Ay (i, 7) is the weighting function
for the (4, 7)™ resolution element (for NSCAT a simplified weighting can be used),

1 Pizel in k' cell

hali, ) = { (5.3)

0 otherwise

A(i, j) is the A estimate for the (i, 7)*" resolution element, and B(, j) is the B estimate
for that pixel (see Fig. 5.2). For each NSCAT o¢° measurement, the associated
forward projection 6°is computed. The difference between the measured and forward
projected 0°, (0°-6°) for each pixel is computed. The parameter k is defined as the
standard deviation of the measurements in the ensemble of this random variable for

each pixel:

k= [>(0f = 5p) (5.4)

!
where the o are the vertical polarization measurements touching the pixel. While

this study used the SIRF A and B estimates to compute k, estimates obtained from
linear regression and simple binning may also be used although the resulting x images
would have lower spatial resolution.

Figure 5.1f illustrates an example x image. Ideally, the standard deviation,
k, would be zero if SIRF perfectly reconstructed the measurements into the A and B
images. However, temporal change of the surface, noise in the 0° measurements, and
azimuthal anisotropy of ¢° may cause x to increase though, unfortunately, the time
and azimuth components are inseparable in this metric. The ocean response tends
to be very dynamic in both time and azimuth due to varying wind induced surface

roughness resulting in large x values. Although higher x values are expected in ocean
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Figure 5.2: An integrated NSCAT ¢° cell overlaying the high resolution grid. Only
the shaded square grid elements have nonzero h(x,y). The bounding rectangle is also
indicated.

regions than for sea ice, consistently calm ocean areas during the data collection
period may produce low k values. Sea-ice response, on the other hand, is less time
dependent, although ice melt/freeze events or ice motion may cause some variance.
Azimuthal anisotropy in sea-ice regions is generally less than 1 dB for C-band ERS-1
data [63]. Albeit in a different year and season, a similar study detailed in Chapter 3
was performed for NSCAT data and showed that the anisotropy was less than 0.6 dB
in the chosen study regions [6]. Though sea ice conditions may be different in these
study regions due to the different data time frames, it is expected that azimuthal

variability is much lower for sea ice than open ocean.

5.3 Sea-Ice Extent Mapping Technique

The parameters discussed above provide the information needed to map
sea-ice extent in the polar regions. Through proper processing, the presence or ab-
sence of sea ice can be inferred from the v, B,, and x images. This section discusses

a technique for generating polar ice extent maps from these parameters. First, an
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overall strategy is described by enumerating the individual steps. Next, a description

and analysis of each step is presented.

5.3.1 Technique Overview

Several steps are combined to define an ice extent mapping technique that

adaptively handles the time variant parameter distributions. The technique can be

summarized as follows:

1.

Produce the enhanced resolution v, B,, and x images.

. Generate vy vs. B, bivariate distribution of the images.

Perform linear discrimination (LD) to obtain a first estimate of the sea-ice

extent.

(a) Find the optimal linear discrimination boundary.

(b) Pixel by pixel classification.

Compute the means, variances, and covariances of the ice and ocean regions for

both parameters.
Perform the Mahalanobis distance (MD) discrimination.

(a) Find the Mahalanobis quadratic discrimination boundary.

(b) Pixel by pixel classification.

. Apply the k correction by thresholding  at 3.3 for all pixels for which the LD

and MD estimates differ.
Perform edge filtering to reduce noise.

(a) Region growing removes isolated noise patches.

(b) Erosion/dilation techniques low-pass filter the edge.

Ilustrative examples of the binary output images at different stages of the detection

technique are shown in Figure 5.3 for one quadrant of the Antarctic image. Figure 5.4

illustrates an A, image masked by the ice extent estimate generated by our method.
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Figure 5.3: Binary images at different stages of the ice/ocean discrimination process
for a single quadrant of the Antarctic 1996 JD 337-342 image. The images are (a)
linear discriminant estimate, (b) Mahalanobis distance estimate, (¢) k correction
applied, and (d) the result of the erosion, region growing, and dilation procedures.
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Figure 5.4: Antarctic ice masked image using the NSCAT technique for 1996 JD
337-342.
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Figure 5.5: Two-dimensional distribution of v vs. B, values and its corresponding
contour plot for NSCAT data from 1996 JD 337-342. The two modes represent ice
and ocean pixels. Each mode clearly has different mean and variance values. The
upper left mode is sea ice, the other represents ocean pixels.

5.3.2 Multi-Parameter Discrimination

The three parameters, v, B,, and k contain varying degrees of information
about the surface response which can be used to differentiate between sea-ice and
open ocean pixels in the images. Of the three parameters, v and B, are the most
sensitive to sea ice presence. This can be seen in the example images in Figure 5.1.
The x image has the most ambiguity in differentiating between the different surfaces.
Indeed, when a simple threshold discrimination is implemented with each parameter
individually, x has the weakest performance. For this reason, v and B, are used as
the primary discrimination parameters. However, the x images can be used to reduce
residual errors in localized regions when the other two are used. This will be shown
in a later section.

The two-dimensional distribution of non-land pixels for the two primary
parameters contains two distinct modes that separately correspond with sea-ice and

ocean pixels. An example is shown in Figure 5.5 with its corresponding contour plot.
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Through the proper choice of a discriminant boundary, the modes can be separated
to obtain an ice extent estimate. Due to the seasonal variations in ice extent and
scattering characteristics, the distribution is season dependent. Thus, the optimal
mode-separating boundary must adapt to the specific distribution for each six day
imaging period.

Two major steps are used in the sea-ice extent mapping technique: lin-
ear discrimination and Mahalanobis distance discrimination. The first uses a linear
boundary to separate the modes of the bivariate data while the second uses a quadratic

boundary.

Linear Discrimination

If the underlying ice and ocean component distributions of the joint dis-
tribution are Gaussian, the optimum linear discriminant boundary passes through
the saddle point of the distribution function and is perpendicular to the line passing
through the peaks of the two modes. This line can be found in an automated fashion.
First, the mode peaks are located by a 5x5 bin search of the bivariate distribution.
These are found by starting two separate searches in regions of the v-B, plane known
to be in the different modes of the distribution. The search procedure ascends to
each local peak. A 5x5 window is used to ensure that the search does not get hung
on any local maxima. The saddle point is then located along the line connecting
the two peaks of the distribution at the bin with the minimum value along the line.
The linear discriminant boundary is computed as the line passing through the saddle
point and perpendicular to the peak-to-peak line.

Using the linear boundary, each pixel is classified as ice or ocean by ob-
serving its associated parameter values. Pixels on one side of the line are considered
ice while the others are classified as ocean. Figure 5.6 shows the v vs. B, distribution
contour plots of images from four different NSCAT time frames. The linear discrim-
inant boundary is also plotted. Note that as the distribution characteristics change
with season, the technique adaptively assigns an optimum decision boundary. The

result of the linear discrimination is a binary image of ice and ocean locations.
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Figure 5.6: Contour plots of 4 v vs. B, distributions. The Mahalanobis and the
linear discriminant boundaries are also plotted. The decision boundaries are adapted
to be optimum for each individual distribution.
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Once an ice extent estimate image is produced, the means, variances, and
covariances are computed for the ice pixels and the ocean pixels. These are used as

statistical estimates for the Mahalanobis distance classification.

Mahalanobis Distance Discrimination

The Mahalanobis distance aids in separating the modes of a multimodal
distribution where each component distribution is Gaussian with different variances
[64]. Tt accounts for the variance differences through the use of a quadratic rather

than a linear boundary. The squared Mahalanobis distance is given by
r? = (7~ [)'S7N( - f) (5.5)

where ¥ is the vector of parameters for the test pixel, ji is the reference vector con-
taining the component distribution means, and ¥ is the covariance matrix.
Subjectively noting that the underlying component distributions of the
bivariate y-B, distribution appear nearly Gaussian, the Mahalanobis distance can be
applied in the discrimination of sea ice and ocean pixels. For each pixel of interest,
two Mahalanobis distances are computed: 7. and 7ocean. If Tice 1S less than rycean,
the pixel is flagged as ice, otherwise the pixel is considered ocean. Figure 5.6 shows
the distribution contours plotted with the Mahalanobis and the linear discriminant
boundaries. Clearly, the boundaries adapt for the particular characteristics of a given

imaging period distribution.

5.3.3 &k Correction

The linear discriminant (LD) and Mahalanobis distance (MD) binary ice
extent images both provide visually good estimates of the ice extent. In general, the
same ice edges are observed in the LD and MD estimates with the exception of rel-
atively small localized errors. Local errors in the LD estimates tend to overestimate
the ice edge. On the other hand, the MD edges usually do not show these overesti-
mation errors, but have some localized regions where the ice edge is underestimated.

As described previously, consistently high winds during the data collection period
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may drive v down resulting in false ice detection when the LD method is applied.
The same weather mechanism that causes this error also increases x since high winds
over the time frame of the data collection induce higher azimuthal anisotropy and
temporal variance of ¢°. The overestimation error regions of the LD images have
characteristically high x values. The correlation between LD errors and high x sug-
gests that  can be used as a secondary discrimination parameter to correct for errors
in the LD and MD images.

The k correction is applied to the set of all pixels for which the LD and
MD images disagree. Thus, k becomes the deciding factor when LD and MD yield
different discrimination outputs. The set consists of all LD overestimation pixels and
all MD underestimation pixels. An empirical analysis of the x data over this set of
pixels for several sample images showed that « is generally above 3.3 for the LD error
pixels. The correction is then applied by thresholding x over the error set using the

following discrimination rule:

ice Kij < 3.3

pizel; ; = 5.6
! {ocean Kij 2> 3.3 (5.6)

where &, ; is k for the i,jth pixel in the set of pixels for which LD and MD disagree.

5.3.4 Ice Map Filtering

The k correction results in a binary image illustrating the location of sea-
ice and ocean regions. However, some residual high wind induced noise over the ocean
can cause ocean pixels to be misclassified as ice for reasons previously addressed. This
noise is manifested in the binary image as patches of ocean that have been classified as
sea ice. Other physical mechanisms may also cause patches of ice to be misclassified
as ocean. The former is much more common than the latter. These anomalies often
occur in isolated regions disconnected from the actual edge but may also occur on
the edge itself. Each of these is handled separately in the filtering step.

Region growing techniques are used to eliminate the isolated misclassifica-
tion patches in the ocean and ice. The region growing method starts with a small

region known to be within the ice area (the land mass for the Antarctic region). It
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then expands this region within the ice area of the binary ice mask image. The region
continues to grow until it gets to the outer edge of the ice region and cannot expand
further. This eliminates all the isolated patches of pixels misclassified as ice in the
ocean. The region growing method is then inverted to grow from the outer edge of
the image inward until it reaches the binary threshold edge. This eliminates all the
patches of pixels misclassified as ocean in the ice.

Once the region growing is complete, some residual noise exists on the edge
itself as high spatial frequency edge characteristics and as small lobes attached by only
a few pixels to the main body of ice. To remove these, image erosion and dilation
techniques are used [65]. Two erosion iterations separate the smaller misclassified
lobes from the main body. Region growing is then performed again to eliminate these
separated lobes. To restore the edge (a low pass filtered version), two iterations of
image dilation are performed. It is noted, that small fingers of ice extending from the
main ice pack may be filtered out along with the edge noise. The result is a binary
image mask that can be applied to the original A or B images (see Figure 5.3).

The filtering operation is designed to map the sea-ice extent rather than
absolute sea-ice coverage. Consequently, open water regions within the ice pack are
filtered out by the inverse region growing step. The filtering can be modified to

preserve these regions by eliminating the inverse region growing step.

5.4 Results

The technique is implemented for all data during the NSCAT mission.
Each enhanced resolution image is constructed using six days of data with three days
of overlap in consecutive time frames. The result is a long time series of sea-ice extent
images that can be used in a variety of applications including the ice masking needed
in wind retrieval reprocessing of NSCAT data. In this section, the NSCAT and NASA
Team algorithm SSM /T derived ice maps are compared and the seasonal ice extent as

generated by both methods is observed.
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5.4.1 Comparison with NASA Team Algorithm SSM /I Derived Ice Maps

To provide one source of validation for our technique, the NSCAT ice
maps are compared with SSM/I-derived ice concentration images. This product is
derived from passive multi-frequency, dual-polarization Special Sensor Microwave Im-
ager (SSM/I) observations using the NASA Team algorithm [31, 36]. The NSCAT
images use a polar stereographic projection similar to the projection used for the
SSM/I images but are produced at a higher pixel resolution. Daily SSM/I ice concen-
tration images were obtained from NSIDC. For each NSCAT image, the corresponding
six SSM/I images were averaged together. For comparison with NSCAT results, the
SSM/I average ice concentration image for the same time period is thresholded at the
desired concentration level to create a binary ice map. This image is then interpolated
to the NSCAT pixel resolution by determining which NSCAT pixels correspond to
each SSM/I pixel and filling them with the associated SSM/I pixel value.

Four sample time periods were used for the validation. The images are
each spaced by approximately one month to illustrate the changes in sea-ice extent
throughout the yearly melt cycle. The resulting ice extent maps are compared with
various NASA Team algorithm ice concentration images thresholded at various levels
from 10% to 50%. To provide a quantitative measure of correlation between the two
ice maps, the disagreement percentage is used. While this is not an ideal metric, it is
easily defined as the ratio of the area of the pixels where the NSCAT and the NASA
Team methods disagree and the area of the pixels that are classified as ice by either
method. Figure 5.7 shows this metric as a function of NASA Team algorithm ice
concentration for the four sample images. In most cases, the minimum occurs at ap-
proximately 30%. Consequently, it is concluded that the NSCAT ice edge corresponds
most closely with a 30% ice concentration.

Figure 5.8 shows several sample SIRF A, images for a quadrant of Antarc-
tica with the associated NSCAT and NASA Team 30% ice edge estimates. These
images consist of the quadrant of Antarctica from 90° west longitude (lower edges of
the images) to 0° longitude (right edges of the images). Subjectively, there is a high
correlation between the edges. For the images with time periods 1996 JD 307-312,
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Figure 5.7: Percentage of the sea-ice area that the NSCAT and SSM/I ice extent
maps disagree as a function of SSM/I ice concentration. This metric is computed by
finding the ratio of the area for which the two methods disagree to the area classified
as ice for either method. Four sample NSCAT images were used. The minimum
generally occurs very close to 30%.

337-342, 1997 4-9, and 34-39, the disagreement percentages are 2.19%, 3.24%, 5.47%,
and 3.56%, respectively. Some of the disagreement is due to the differences in im-
age resolutions and pixel spacing since the enhanced resolution NSCAT images have
higher spatial resolution than the SSM/I images.

The disagreement percentage metric is also calculated for every image in
the NSCAT data set using the corresponding NASA Team 30% ice concentration
images and is shown in Figure 5.9. The set consists of 80 images spanning the
time period from 1996 JD 277-282 to 1997 JD 166-171. For the most part, the
disagreement percentage is between 2% and 5%. The mean value is 3.34% and the
standard deviation is 1.01%. The correlation between the NSCAT and NASA Team
(SSM/I-derived) ice mapping techniques is strong throughout the NSCAT mission
period.
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Figure 5.8: NSCAT SIRF resolution enhanced A, images of a portion of Antarctica.
The NSCAT ice edge is plotted in white. The NASA Team algorithm SSM/I derived
30% ice concentration edge is plotted in black.
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Figure 5.9: Plot of disagreement percentage metric computed by taking the ratio of
surface area where the two methods disagree and the area for which either method
classifies the surface as sea ice. The images each represent six days of data with three
days of overlap between consecutive images. The Julian days given on the horizontal
axis correspond to the first days of each imaging period.

The time period when the disagreement percentage is the greatest is during
the ice retreat phase. During this time, the NSCAT estimated ice extent is generally
greater than the SSM/I ice extent. The top right panel of Figure 5.8 illustrates this
effect. The NSCAT edge identifies a portion of the ice pack that the SSM/I does not.
In [66] a similar trend was observed in comparing NASA Team and Geosat radar

altimeter ice edges.

5.4.2 Comparison with Radarsat SAR Imagery

For further validation, Radarsat SAR imagery is used. The inherently
higher resolution of SAR data makes it optimal for validating the estimated sea ice
edge in regions for which the actual edge is well defined. Since Antarctic sea ice SAR

data is rare, only a single SAR image frame is used in the following comparison.
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Figure 5.10: Ice edge comparison with NSCAT edge (black) and NASA-Team 30%
ice edge (white) plotted over a RADARSAT SAR mosaic (uncalibrated) of a sea ice
region [Radarsat data (©) Canadian Space Agency, 1996]. A portion of Saunder’s
Coast is evident on the left of the image on 20 February 1997.

Figure 5.10 shows the NSCAT and NASA-Team ice edges plotted over a
C-band hh-pol RADARSAT SAR image. The NASA-Team edge was generated by
averaging six days of data to be consistent with the NSCAT imaging interval. While
the RADARSAT image is not calibrated and some obvious geolocation errors exist, a
clearly defined ice edge is observed. Although both edges are relatively good estimates
of sea ice extent, the NSCAT curve most closely follows the actual ice edge in this

particular case.

5.4.3 Seasonal Sea-Ice Extent

The seasonal area of the sea-ice extent as computed from the NSCAT and
NASA Team ice maps is now considered. The sea-ice extent area for a particular
image is computed by finding the area for each ice flagged pixel according to the

polar stereographic projection. These areas are summed to obtain the total extent.
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Figure 5.11: Seasonal Antarctic sea-ice extent in square kilometers using both the
NSCAT and NASA Team methods. The data set extends from 1996 JD 277-282 to
1997 JD 166-171. The first Julian day of each imaging period is represented on the
horizontal axis.

It should be noted that this is the total ice extent rather than the total ice area
since polynyas are not masked out in the images. Figure 5.11 shows the seasonal
ice extent computed for the complete NSCAT data set. The NSCAT and NASA
Team signatures are very similar. For both, the melt cycle along with a portion of
the freeze cycle is evident. These results are similar in form to those of [67] in which
the ice extent was computed using the Scanning Multichannel Microwave Radiometer
(SMMR) from 1978-1987 although the maximum and minimum of the cycle are more
extreme in 1996-1997.

During the ice retreat phase NSCAT often estimates a greater ice extent
than the NASA Team algorithm. This result is similar to the findings of [66] during
midsummer in which the Geosat altimeter measured a greater ice extent than the

NASA Team SSM/I derived product. During ice advance, the NASA Team method

126



-55 ]
_60 - —
g —657 R
2 i | / ; ]
:E [ \\»,/(\ 4Nr . 4 ( h ( ~ / 1/\//' ' x\fﬂ A
< i / ,/”M ) Lo ) Mf by X ’*J /‘;
= 70l /‘w’)‘“ g 1 JWJ,*-‘M N L
7:3' oo i/ Wj/lv’v’ \'\r ('p‘(.d“J 3]
A SV
A, 96 JD 307-312 1]
I L 96 JD 337-342 (]
LY ~— 97 JD 004-009 7 T
L —-—- 97 ID 034-039 "
-80L ‘ ‘ ‘ .
-180 -90 0 90 180
Longitude

Figure 5.12: Latitude of the sea-ice edge as a function of longitude for four sample
images illustrating yearly melt. The edges were generated using the NSCAT ice extent
mapping technique.

consistently predicts a larger sea ice extent than NSCAT. The differences occur pri-
marily in the Weddell and Amundsen Seas. The geographical correlation suggests
that a geophysical cause is responsible for the discrepancy. Both of these areas are
regions of rapid ice advance. The physical mechanisms behind these differences are
presently not understood, but may be related to differences in the detection of new ice
formation for active and passive sensors similar to the differences noted by Fetterer
during ice retreat. The evolution of the sea-ice extent is shown in Figure 5.12. The
latitude of the four sample ice edges is plotted as a function of longitude illustrating
the recession of the ice edge from October to February.

The ice extent mapping technique can also be applied to Arctic NSCAT
data. Figure 5.13 shows an example Arctic SIRF A, ice masked images for 1997 JD
4-9 with the associated NASA Team edge plotted over it. Again, the resulting ice
edge is similar to the NASA Team algorithm SSM /I-derived edge.

127



Figure 5.13: Arctic ice masked image using the NSCAT technique for 1997 JD 4-
9. The SSM/I derived ice edge is plotted in white over the top of this image for
comparison.
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5.5 Conclusions

NSCAT dual polarization Ku-band data in concert with the SIRF resolu-
tion enhancement algorithm can be used to effectively determine sea-ice extent in the
polar regions. The copol ratio and the incidence angle dependence of ¢° are used
as primary classification parameters since they appear to be the most sensitive to
the presence of sea ice. The k parameter on the other hand is useful for correcting
errors in the linear and quadratic ice extent estimates due to its sensitivity to clas-
sification error inducing high winds in ocean regions. The technique requires no a
priori information and adapts to the temporal variability of the underlying param-
eter distributions. When applied, the sea ice detection method closely matches the
NASA Team algorithm SSM/I-derived 30% ice concentration extent. In a compari-
son with a Radarsat SAR image, the NSCAT and SSM/I-derived methods both show
good correlation with the actual sea ice edge. However, the higher resolution of the
NSCAT edge results in a better match. While only scatterometer data has been used
to estimate the sea-ice extent, scatterometer data can be coupled with radiometer
data to improve the accuracy of ice maps and ice classifications.

Application of the described technique has resulted in a large data set
comprised of six day average ice extent images every three days of the polar regions
during the nine month NSCAT mission. This data set can be applied to a wide range
of studies, including global climate studies and wind processing. By excluding regions
with ice cover, the probability of error in extracting wind speed and direction from
the backscatter data goes down.

The loss of the ADEOS satellite prematurely terminated the flow of NSCAT
data. While the ice mapping technique was developed to be used with NSCAT data,
it can be adopted to work for other Ku-band scatterometers. One current and one
future scatterometer are of interest: SeaWinds on QuikSCAT was launched in 1999
and SeaWinds on ADEOS-II is scheduled to fly in 2001. These differ from NSCAT in
several ways. First, they are dual polarization scanning pencil beam scatterometers.
The inner scan is at 46° incidence and is horizontally polarized (A,(46)) while the

outer scan operates at 54° and is vertically polarized (A4,(54)) [27]. Hence, they do
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not contain the information needed to obtain an estimate of ¢° incidence angle depen-
dence. Also, since the vertical and horizontal 0° data are at different incidence angles
the copol ratio is undefined for QuikSCAT and SeaWinds. However, by using two
different primary classification parameters, A, and A,(54)/A;(46), the ice mapping
technique can still be applied. It was found that using simulated SeaWinds data, the
sea ice can still be mapped although the occurrence of error went up slightly. Chap-
ter 7 discusses the development of an adopted version of this algorithm for SeaWinds
data.

An advantage of the QuikSCAT and SeaWinds instruments over NSCAT is
the increased coverage of the earth’s surface. Both have a wider swath than NSCAT
and have no nadir gap allowing QuikSCAT and SeaWinds polar images to be produced
using only 1-2 days of data rather than the six days required for NSCAT. As a result,
the ice extent maps can be produced at 1-2 day intervals with quality and resolution
similar to the NSCAT six day ice extent estimates. In this case, sea ice dynamics
become less of a factor in discrimination errors near the edge. Alternatively, six days
of QuikSCAT or SeaWinds data can be used resulting in a higher confidence ice extent

map due to the increased quality of parameter estimates.
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Chapter 6

Multisensor Sea Ice Classification

6.1 Introduction

Chapter 5 presented an automated adaptive algorithm that estimate polar
sea ice extent using only NSCAT data. As previously discussed, the spatial distri-
bution of sea ice is an important parameter in understanding many geophysical pro-
cesses. This chapter takes the next step in determining a more detailed cryosphere
characteristic, the sea ice class. The work presented here has been accepted for publi-
cation in the IEEE Transactions on Geoscience and Remote Sensing and will appear
in the July, 2000 issue [9].

Through a knowledge of sea ice class or type in combination with sea ice
extent, scientists can gain a greater understanding of more processes. For example,
sea ice types is closely related to ice age, thickness, and density. These parameters
are important in heat transfer studies. Additionally, by identifying sea ice types
characterized by significant deformation the dynamic process of ice pack motion and
sheering can be better explained. Furthermore, ice type identification can also be
used to determine ice brine content or salinity. These factors are key in the fresh
water exchange that occurs in sea ice regimes.

Fundamental sea ice characteristics can be grouped into a number of gen-
eral sea ice classes or types. Various studies have been pursued to classify ice type
from observed microwave signatures. A single-band classifier using 33.6 GHz passive

high-resolution aerial measurements was used on Beaufort Sea data [68]. Kwok et al.
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developed a method for classifying high-resolution ERS-1 SAR imagery using ancil-
lary data from meteorological databases [69]. Rignot and Drinkwater also performed
a MAP classification on polarimetric airborne SAR data and compared results to high
resolution passive microwave data [70]. Hara et al. proposed an unsupervised polari-
metric SAR multi/first year ice classifier using a neural network followed by iterative
maximum likelihood classification [71]. The primary strengths of these approaches lie
in the high spatial resolution capability of the instruments. Consequently, image pix-
els are much less likely to contain a mixture of ice types. Lower resolution techniques
have also been proposed. Wensnahan et al. proposed a classification method using
passive radiometer data [72] to estimate the concentrations of first-year, multi-year,
and thin ice in the Arctic. In [73], a classifier was developed that uses single channel
5.3 GHz ERS scatterometer data. Finally, a neural network classifier for sea ice type
is given in [74]. These studies are representative of the different work that has been
done in microwave sea ice classification.

This chapter presents a multisensor sea ice classification approach which
uses multispectral, dual-polarization data collected from both active and passive
spaceborne instruments for the segmentation of Antarctic data. In section 6.2, impor-
tant background information is given describing the instruments from which data is
collected, the image reconstruction methodology, the ice extent mapping techniques,
and the basic ice type signatures. Section 6.3 introduces the multivariate analysis
techniques fundamental to the preprocessing stage of the algorithm including data
fusion and principal component analysis. The sea ice classification algorithm is de-
scribed in detail in section 6.4. A brief derivation of statistical measures as well as
convergence metrics are given. Results of the application of the algorithm to actual

data are presented in section 6.5. The final section contains the conclusions.

6.2 Microwave Remote Sensing of Sea Ice Types

The proposed ice classification scheme uses data from several different
spaceborne instruments. This section provides a brief background of each of the data

collecting instruments and the corresponding ice type signatures. In addition, the
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methodology for image reconstruction is described. Finally, an ice masking algorithm

that removes open ocean pixels is summarized.

6.2.1 Spaceborne Microwave Sensors

Data from three different sensors are used in the classification approach
which follows. The sensors are chosen for their temporal simultaneity of measurement
collection during the target time frame of September-October 1996. In addition, all
of the selected instruments have large-scale coverage capability. The first data set
comes from the dual-polarization, Ku-band NSCAT that flew from August 1996 to
June 1997. The second sensor is the C-band active microwave instrument (AMI)
aboard the European remote sensing satellite (ERS-2). One mode of operation of the
AMI is the wind scatterometer mode which measures the v-pol normalized radar cross
section (0°) at several azimuth and incidence angles. Finally, passive radiometer data
is used in concert with the active scatterometer data to produce a merged data set.
The SSM/T aboard the Defense Meteorological Satellite Program series of satellites
is a total-power, seven channel, four frequency radiometer. The channels are h- and
v-pol at 19.35, 37.0, and 85.5 GHz and v-pol at 22.235 GHz. Brightness temperature
(Tp) measurements are collected from each channel. For more information about
these instruments, see Chapter 2.

Each of the three instruments offer a wide spectrum of observations at
different frequencies and polarizations. While the inherent resolutions of the various
instruments are sufficient for the study of large-scale phenomena such as surface winds
or atmospheric parameters, they can be too low for use in some studies. In an effort to
ameliorate this problem and to place the data on compatible grids, the scatterometer
image reconstruction (SIR) algorithm is used to enhance the spatial resolution of both
scatterometer and radiometer data [38, 39] (see Chapters 2 and 3). Consequently, v-
and h-pol A and B images are obtained for NSCAT, v-pol A images are produced for
ERS-2, and SSM/I T images are produced for each of the seven channels.

All images are generated using six days of data with three days of overlap

in consecutive images. While NSCAT v-pol and SSM/I can achieve full coverage of
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the Antarctic ice pack in much less time, ERS-2 and NSCAT h-pol require the full
six days. For consistency in pixel spacing between the different images, the 8.9 km
images are interpolated to the 4.45 km grid. All parameter images are used in the
classification except for the ERS-2 B images which have relatively high noise levels
and are thus discarded. The final merged data set consists of 12-dimensions with
three A, two B, and seven Ty images. Sample images of all 12 types are shown in
Figure 6.1 for 1996 JD 261-266. Figure 6.2 shows two zoomed versions of these images
which illustrate the Weddell Sea quadrant of the NSCAT v-pol A and the SSM/T v-
pol 37 GHz images. The imagery shown has been masked with an ice extent mapping
algorithm discussed in the next section. A significant amount of detail is evident in
the sea ice regime of these images. This is exploited in the proposed classification
algorithm.

Each of the described images are ice masked using the methods presented
in Chapter 5. Open ocean pixels in the reconstructed imagery are masked out for
two reasons. First, the sea ice classification algorithm presented below uses statistical
preprocessing techniques which take advantage of the covariance structure of the data
to reduce the dimensionality of the data space. Since ocean pixels have typically high
covariance values in all of the active and passive signatures, undue weight would be
given to ocean pixels in the new data space effectively reducing the classification
potential. Second, a significant number of the image pixels are open ocean and the

removal of these pixels reduces the size of the classification data set.

6.2.2 Ice Type Signatures

Data collected by NSCAT, ERS-2, and SSM/I are used to segment the
data into six general ice types or classes. While the following discussion is based on
the general behavior of scattering and emission from sea ice, in situ measurement
averages for the various ice classes can be found in [73] for C-Band scatterometer
Antarctic data and [74] for Arctic SSM/I data.

The first ice type to be considered is smooth first-year (SFY) ice. This

class represents relatively young ice which has not been roughened by the differential
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Figure 6.1: Image set for 1996 JD 261-266.
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Figure 6.2: Sample Weddell Sea quadrant images of NSCAT A, (left) and SSM/I 37V
(right).

motion and deformation of the ice pack. Ranging in thickness from 10 cm to 1 m,
smooth first-year ice is highly saline with a high density of brine pockets caught within
the ice crystal lattice. The high salinity causes this ice type to be very lossy and thus
dominated by surface scattering and emission at virtually all frequencies used in the
study. The active signatures exhibit low A and B values due to the strong incidence
angle dependence of smooth surface scattering from level ice. T measurements are
expected to be relatively high.

Like smooth first-year ice, rough first-year (RFY) ice is very saline and
lossy. Surface scattering and emission dominate the signatures. Motion within the
ice pack causes extensive roughening of this ice type. In general, the rough surface
scattering cause A values to be higher than for smooth ice types and B values to rise
(ie, have less incidence angle dependence) [46, 73]. While passive signatures are less
sensitive to the difference in RFY and SFY ice classes, Tz values are radiometrically

cooler for RFY when compared to SFY ice.
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Perennial (PER) ice is another important Antarctic ice type. While multi-
year ice is common in the Arctic, less Antarctic sea ice survives more than one sum-
mer’s melt since the Antarctic continent limits the southern extent. Regardless, a
small amount of perennial ice can be found and is included in the classification. Over
time, brine drainage results in much lower salinity and hence lower electromagnetic
absorption in this ice type. This leads to greater penetration depths and volume
contribution to scattering and emission. A and B values are typically higher than
those for RFY ice while T measurements are lower.

Another sea ice type to be considered in the classification is the iceberg
class (IB) consisting of large floating plates of fresh water ice that have calved or
broken off from an ice shelf. In the absence of surface melt, this ice class has very low
loss resulting in a large contribution from volume scattering and emission especially
at lower microwave frequencies Furthermore, these targets may extend vertically out
of the water several tens of meters thereby acting as strong reflectors. As a result, A
and B are very high and Tz values are very low compared to other ice classes. The
volumetric scattering contribution also causes a depolarization resulting in similar
response for both v- and h-pol measurements.

Pancake ice is also included in the classification effort because of its unique
appearance over extremely large areas of the marginal ice zone during winter ice
growth. This ice regime is normally found in the outer portions of the ice pack where
wave action aggregates and deforms newly growing frazil ice into small floes called
pancakes. The high roughness of this type results in a signature that is very similar
to perennial ice in both active and passive signatures [63, 73].

The final ice type is the marginal ice zone (MIZ). This dynamic region of
the ice pack consists of mixtures of ice and open water. The open water contribution
drives Tp down. Wind roughening of the ocean surface in these regions causes A and
B values to often be confused with other ice types. While pancake ice is typically
found in the marginal ice zone, the two classes are considered separately in this study
in order to discriminate between regions of low ice concentration in the MIZ and high

concentration pancake regimes existing only under ice growth conditions.
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One of the complicating factors in sea ice classification is the seasonal de-
pendence of the ice type microwave signatures. The signatures are most distinct dur-
ing the Austral winter months when ice types exhibit negligible surface melt. Hence,
the differences due to subsurface contributions are strong. When temperatures rise
and water content increases (typically during the mid-November to March Austral
summer months), the scattering and emission from lower ice layers become increas-
ingly masked and surface scattering mechanisms begin to dominate. This causes ice
type clusters to drift in the 12-dimensional data space with some clusters merging
together. For this reason, an effective classification technique must have the ability

to adapt to changing signatures in order to maintain a maximal degree of accuracy.

6.3 Multivariate Data Analysis

As previously discussed, the classification data set consists of 12 parame-
ters from which sea ice type is to be extracted. Additional preprocessing is performed
on the data to maximize classification accuracy and minimize required computational
effort. Since the parameters are measured in very different units, data fusion tech-
niques are used to give equal weighting to all of the data. In an effort to reduce
the computational complexity and the noise levels, principal component analysis is

implemented.

6.3.1 Data Fusion

The 12-dimensional data space consists of three basic types of data with
differing units. The first data type, A, is measured in dB with a typical range of -30.0
to 0.0 dB. The incidence angle dependence of ¢°, given by B, contains dB/deg values
ranging from -0.4 to -0.1 dB/deg. The last data type is Tz measured in degrees Kelvin
with sea ice values from 150 K to 290 K depending on frequency and polarization.
Since each data type is quite different from the others, standardization is required
to ensure that each data type is given appropriate weight in the classification. The
standard approach is to shift and scale the data so that each of the 12 parameters have

zero mean and unit variance. However, this may remove some ice class information
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that exists between the mean responses of parameters that are within the same data
type. In an effort to preserve the ice class dependent biases that exist in each data
type, the following standardization technique is applied for a particular observation

T
T, = w (6.1)
Otype

where iy, and oy are the collective mean and standard deviation of all the pa-
rameters belonging to a particular data type (e.g., A, B, or Ty data) and z; is the
new standardized parameter value. Hence, the three general data types, A, B, and
Tg are transformed such that they have zero mean and unit variance though specific
parameters (e.g., Ay, A, etc.) may not have these characteristics. The resulting data
resides in a 12-dimensional unitless space in which each data type has similar range

and variance.

6.3.2 Principal Component Analysis

The high dimensionality of the classification data set equates with signif-
icant computational requirements. To reduce the number of required parameters,
principal component analysis (PCA) is implemented. PCA is a powerful data analy-
sis tool that effectively rotates the data space by projecting each observation onto a
new orthonormal basis [75]. The resulting basis vectors are chosen such that the first
spans the direction of maximum variance in the data. Successive vectors are chosen
to span the maximum variance not accounted for by previous vectors.

For the classification problem at hand, data vectors are composed of the

12 standardized values

G=1[yv2- .. yoa" (6.2)
where the y; represent the standardized versions of the NSCAT, ERS-2, and SSM/I
data values. PCA uses an eigenvalue/eigenvector decomposition of the data to con-
struct the necessary orthonormal basis vectors. The eigenvalue/eigenvector equation
is given by

KT =TA (6.3)
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where K is the 12 x 12 covariance matrix of the standardized data, I' is a matrix
with eigenvectors of K along the columns (which form a basis for the original 12-
dimensional space), and A is a diagonal matrix with the eigenvalues of K along the
diagonal (which represent the variances spanned by each eigenvector). Once these are
obtained, a 12 x 1 data vector ¢ containing standardized parameters is transformed

through projection onto the new basis
7=T7y. (6.4)

The elements of Z" are called the principal component scores [75].

The analysis technique is used on land/ice masked imagery to produce 12
principal component images composed of a combination of information contained in
the original parameters. The pixel values in individual PCA images represent coef-
ficients of the eigenvector associated with that principal component score. The size
of the corresponding eigenvalues determine the variance and informational content of
each of the images. For example, the PCA transformation was performed for the mi-
crowave data set during the imaging interval 1996 JD 261-266. Figure 6.3 illustrates
the resulting eigenvalue spectrum. Clearly, a majority of the data variance is con-
tained in the top few principal component images implying that lower PCA images
can be neglected with minimal effect on the final classification. Wensnahan et al.
suggest keeping only PCA parameters whose variance is much larger than measure-
ment uncertainty (converted into principal component space) [72]. Such a choice of
eigenvectors allows information to be separated from noise. Indeed, the lower princi-
pal component images used in this study appear very noisy with image reconstruction
artifacts dominating the features. Hence, by ignoring these eigenvectors, undesirable
noise is eliminated and data dimensionality is reduced.

Another method for choosing principal component images is to keep the top
N PCA transformed images that account for some predetermined percentage of the
total variance in the data. For this classification project, the eigenvectors that span

90% of the variance are kept for use in the data segmentation. The 90% threshold
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Figure 6.3: Eigenvalue spectrum for the principal component data rotation during
the imaging interval of 1996 JD 261-266. A large majority of the data variance is
contained in the first few eigenvectors.

was chosen to balance increased computational complexity and increased informa-
tional content when including additional individual components. That is, eigenvalues
for the principal components beyond the first 90% are typically negligible in com-
parison. Only three PCA images must be retained in the case of the sample data
set, representing 1996 JD 261-266 Antarctic sea ice data. These principal component
scores are shown in the composite RGB image of Figure 6.4 where the red channel
contains the maximum variance principal component score, green contains the second
highest variance, and blue contains the third highest. Features from all 12 original
data value images are evident in this figure. The training regions are also indicated
and will be discussed later.

The composite image is composed of a variety of signatures in the sea-

ice annulus around Antarctica. For example, pixels that contain known icebergs are
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Figure 6.4: RGB composite image of the first three principal components for 1996 JD
261-266. The red channel is the top principal component image, the green is second,
and blue is third. This image is useful in evaluating ice type information contained
in the top three PCA scores. The six training regions are also indicated.
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bright orange in the image. Regions of old perennial ice are visible in locations where
a residual amount of old ice have been observed in late winter, such as near to the
north-eastern tip of the Antarctic peninsula [46, 76]. Signatures which appear close to
that of perennial ice may be observed in other coastal zones. In the southern Weddell
Sea, a patch of deformed old ice and fast ice may be found surrounding a number of
grounded icebergs [73], with a resulting purple color. Further such regions of deformed
ice may be found in the Amundsen and Eastern Ross Seas along the coast. Large
portions of the central ice pack have blue and green hues. Blue regions of undeformed
medium, snow-covered first year ice are found in the central Weddell and Ross Seas,
while green appears more closely related to the younger regions of first-year ice. For
instance, recently formed ice in the Ross Sea, just north of the Ross ice shelf, and
relatively thinner, saline young ice formed around East Antarctica display larger areas
of green hues. One factor that appears to confirm the relationship between principal
component three and young ice is the appearance of green in known coastal polynya
regions such as along the Ronne ice shelf front in the Southern Weddell Sea [73], and
in the wake of the large drifting icebergs, such as those observed off the Terre Adelie
Land coast, and those grounded off the Amery ice shelf [77].

Interesting mixtures of browns and cyans are observed predominantly at
the outer ice margin. Bright cyan signatures appear to be extensive regions of pan-
cake ice formation, as for instance in the region of maximum northern ice extent in
the Amundsen Sea. Brown hues are more extensively found at the ice margin, and
likely are associated with mixtures of deformed and wave fractured floes found in the
marginal ice zone, together with mixtures of open water and ice signatures.

Although previous classification efforts have identified many of these pri-
mary cluster types [61, 73] in single channel datasets, the unique attribute of the top
three principal components shown in Figure 6.4 is that they show mixtures of the
primary end-members. Pure red may be thought of as the ice with the most typi-
cal volume-scattering signatures. This encompasses icebergs, old, thick snow-covered
perennial ice, and fast ice - all with low salinity. In contrast, pure green appears to

indicate the most different cluster of ice typifying signatures which have the greatest
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rate of incidence-angle signature change, and the least volume-scattering like signa-
tures. Lastly, the pure blue appears to imply intermediate ice salinity, and the least
amount of surface deformations.

PCA can be used not only to reduce the dimensionality and noise levels of
the data, but to quantitatively assess the informational content of multisensor data.
By observing the relative magnitudes of the elements of the first few eigenvectors, one
can determine levels of informational content of the original parameters. An example
is given in Figure 6.5 in which the coefficient magnitudes of the top three eigenvectors
of the sample data are plotted. The first eigenvector gives very low weighting to the
NSCAT B and SSM/I 85 GHz images while high weighting is given to the NSCAT A
and SSM /I 19H and 37H images. The eigenvector plot can also be used to determine
which parameters can be eliminated from the classification. For example, the first two
eigenvectors have very low NSCAT B, and By, values indicating that the B data types
do not contribute to the majority of data variance. The third principal component
eigenvector has a much higher weight on Bj, than B, implying that one of the B

parameters could be eliminated without major impact on the classification.

6.4 Classification Algorithm

Several techniques are available for classification of N-dimensional data
sets. A nearest-neighbor approach is perhaps the simplest when centroids from train-
ing samples or electromagnetic models can be obtained. Iterative clustering algo-
rithms such as k-means or ISODATA represent another methodology and search for
natural clusters in the data. The task then remains to label the resulting clusters
as different classes. In contrast, the proposed approach is a statistical classification
scheme with the goal of maximizing the probability of correctly classifying sea ice
type. This section presents the classification methodology through a development of

an iterative maximum a posterior: algorithm.
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Figure 6.5: Vector element magnitudes for the first three eigenvectors. Eigenvector 1
spans the most data variance, 2 spans the second highest variance, and 3 spans the
third highest. The parameter numbers correspond with 1- NSCAT A,, 2- NSCAT
Ap, 3- NSCAT B,, 4- NSCAT By, 5- ERS-2 4,, 6- SSM/T 19V, 7- SSM/I 19H, 8-
SSM/I 22V, 9- SSM/T 37V, 10- SSM/I 37H, 11- SSM/I 85V, and 12- SSM /T 85H.

6.4.1 Statistical Classification

The intrinsic value of statistical methods of classification stems from the
ease of interpretation of results. That is, statistical classifiers attempt to maximize
a probability measure given some level of knowledge of class distributions. Two
primary branches have evolved in the field of statistical classification and estimation:
maximum likelihood and Bayesian classification.

Maximum likelihood (ML) methods as applied to discrete classification
problems such as the determination of sea ice type choose the solution that maximizes

the conditional probability of data vector observation over all possible sea ice types,
Cumr = argmaz. p(Z]C = c) (6.5)
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where C'sp is the chosen ice class, 2’ is the principal component data vector, C' is a
discrete variable of different ice types, and p(Z|C = ¢) is the probability of observing
Z given a particular ice type C = c¢. Hence, the maximum likelihood method can be
implemented as long as the conditional distributions are known. Unfortunately, this
is rarely the case. A weakness of this method lies in the fact that the occurrence
of each sea ice type is effectively considered to be equal. Consequently, classes that
occur infrequently such as icebergs are given equal weight in the data segmentation
and may be chosen too often.

Bayesian methods represent another class of statistical approaches. This
scheme requires the definition of a loss function which assigns a penalty for misclas-
sifications. The Bayes solution then minimizes the expected loss which is also called
the Bayes risk. Under a uniform loss function this reduces to a maximum a posteriori
(MAP) classifier. The MAP technique treats the ice type C' as a random variable and
maximizes the probability of ice type given the observation vector 2
p(Z|C)p(C)

p(%)

where p(C) is the a priori distribution. Since p(Z) is fixed for a particular observation,

Crpap = argmaz. p(C|Z) = argmazx, (6.6)

this reduces to
Cruap = argmaz,. p(Z|C)p(C). (6.7)

MAP classification has an advantage over maximum likelihood techniques in that the
probability of each class is included in the derivation ensuring that less likely ice types
appear less frequently in the final classification. However, the a prior: distribution
and the conditional distributions are required.

Under a Gaussian assumption, the conditional distributions are

1

=3 (F—fie)T K (7= i) 6.8
(QW)R/Q‘KC‘I/QG ( : )

p(Z]C) =

where ji. is the mean vector and K. is the covariance matrix of ice type c, respectively.
Hence, the statistical structure of the data for each ice class is completely determined
by the mean vectors and covariance matrices. Even if the Gaussian assumption is

not entirely correct, it is considered to be an improvement over the simple equal and
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isotropic distribution assumption inherent to a nearest-neighbor classifier since the
Gaussian model can account for covariance between separate principal component
scores. This allows the classifier to use cluster shapes in addition to the centroids
to segment the data. For the maximum likelihood development, the maximization of
Eq. (6.8) can be simplified. After taking the natural log (a monotonic function) and

a little mathematical manipulation the equations become
Cur = argmaz, p(Z|C) = argmaz,. [—(log|K.| + (Z — i) K, (Z - ii.))] (6.9)
which is equivalent to
Cur = argmin, [log|K,| + (Z — i) K, ' (Z — [i.)]- (6.10)

The second term in Eq. (6.10) is the Mahalanobis distance commonly used in Gaus-
sian classification problems [64]. Thus, the ML classification can be interpreted as
choosing the class centroid that minimizes a modified Mahalanobis distance.

A similar development applied to the MAP equations yields

Cuap = argmaz. p(Z|C)p(C) (6.11)

= argmaz, [—%(log\KJ +(Z— i)' K7 (Z — i) + log(p(C))]. (6.12)

Both ML and MAP methods are separately used and compared in the sea ice classi-

fication given below.

6.4.2 TIterative Approach

In order to fully implement the ML and MAP techniques, the mean vectors
fi. and covariance matrices K. of the individual ice type clusters are required along
with the a priori distribution p(C). While a rough estimate of the cluster centroids
can be generated from small homogeneous training regions, it is more difficult to
obtain reasonable estimates of the K. matrices. However, estimates can be obtained
through an iterative procedure, assuming that the statistical measures converge to
the correct values.

Figure 6.6 illustrates the complete process for the classification of a time

series of image data. The initial SIR-derived images are first masked to remove all land
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Figure 6.6: Flowchart depicting the iterative ice classification algorithm for both ML
and MAP methods.
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and ocean pixels using the ice extent mapping procedure defined in an earlier section.
The PCA linear transformation is then performed to rotate the coordinate space
into ordered maximum variance axes. Next, the resulting 12-dimensional principal
component space is truncated by choosing the top N eigenvectors that span 90% of
the data variance.

After the preprocessing, an iterative maximum likelihood or maximum
a posteriori classifier is implemented. The first iteration uses the fi., K., and p(C)
statistical measures computed from the classification of the previous image set. Thus,
the preceding classification is treated as a training set to obtain initial sea ice type
cluster centroids, covariance matrices, and the a prior: distribution. Due to the sea-
sonal nature of cluster characteristics, the approximated values are likely erroneous.
However, they represent a good initial starting point for the iterative procedure. After
the first iteration, the statistical measures are updated using the current classifica-
tion. These are then used in a new classification. The process iterates until predefined
convergence criteria are met. The result is a classified image which maps the spatial
extent of each sea ice type.

One important issue regarding the MAP algorithm is the behavior of the
p(C) estimate during the iterations. It is conceivable that an element of this distri-
bution could go to zero if the corresponding ice class becomes very scarce. If the
ice type later becomes more abundant, the zero probability from a previous iteration
precludes any pixels from being classified as this ice type. While this phenomenon is
not observed in any of the realizations in this study, the problem can be solved by
setting some very low value as a lower limit on values of p(C') preventing any of them

from becoming zero.

6.4.3 Convergence Metrics

Two metrics are used to determine algorithm convergence. Since the Gaus-
sian clusters are completely defined by the centroid vectors and covariance matrices,
appropriate norms are used to obtain scalar measures of individual cluster behavior

as a function of iteration. The Euclidean norm is used to measure the behavior of
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the cluster centroid vectors. The matrix spectral norm of each covariance matrix
K, is computed as a measure of the overall variance structure of each cluster. The
spectral norm is equivalent to the square root of the maximum eigenvalue of KI' K..
Convergence of both metrics for a particular cluster is a good indication that the

cluster remains unchanged from one iteration to the next.

6.4.4 Algorithm Initialization

The algorithm described above is a recursive method that uses the classi-
fication result from the previous imaging interval to compute the present sea ice type
map. In order to obtain an initial classification result to start the process, the fol-
lowing procedure is used. Cluster centroid vectors are estimated from small homoge-
neous training regions derived from a basic knowledge of sea ice type spatial behavior
and expected microwave signatures. For the ML classifier a simple nearest-neighbor
(minimum distance) classification yields the needed initial classification result. For
the MAP method, the data is segmented with a weighted nearest-neighbor technique
in which the distances to each cluster are inversely weighted by an initial estimate of
p(C). While an accurate estimate of the a priori distribution is difficult to produce,
an educated estimate can be made through a knowledge of sea ice type population
in Antarctica. For example, a large majority of the Antarctic ice pack consists of
various types of first-year ice. Other classes are much less prevalent. For either ML
or MAP, the nearest-neighbor solution is used to compute the necessary statistics for
the classifier and initiate the iterative algorithm.

Simulations of the algorithm for both the ML and MAP techniques are
performed. The simulation data consists of four different two-dimensional Gaussian
distributions with different mean vectors, covariance matrices, and cardinalities. The
distributions are chosen to have significant overlap to increase the classification diffi-
culty. Simulation results indicate that the iterative algorithms converge to solutions
that are very close to the actual ML or MAP solutions given two conditions. First,
the individual cluster centroids must be relatively close to the actual centroids. In

the simulations, this means that the centroid estimate merely has to be closer to its
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Table 6.1: Training region signatures used in the initial nearest-neighbor classification
for 1996 JD 261-266.

IB | PER | RFY | SFY | PNC | MIZ
NSCAT A, | -3.19 | -5.72 | -11.02 | -17.35 | -6.91 | -12.29
NSCAT A, | -3.77 | -5.79 | -11.01 | -17.34 | -6.51 | -13.65
NSCAT B, | -0.20 | -0.14 | -0.23 | -0.25 | -0.20 | -0.22
NSCAT B, | -0.23 | -0.14 | -0.21 | -0.24 | -0.18 | -0.32
ERS-2 A, | -4.46 | -9.25 | -14.80 | -17.96 | -11.19 | -13.58
19V Tg 224.6 | 235.7 | 249.2 | 256.6 | 233.4 | 1914
19H T’s 187.5 1 219.1 | 218.7 | 241.4 | 199.3 | 126.1
22V 1g 225.5 | 233.2 | 247.5 | 254.2 | 2324 | 199.2
37V Tg 231.2 | 224.1 | 242.2 | 249.6 | 221.7 | 213.7
37TH Tp 204.0 | 209.6 | 218.3 | 237.2 | 199.0 | 160.3
85V T 236.9 | 228.2 | 239.6 | 234.3 | 223.3 | 240.8
86H T'p 219.5 | 218.2 | 224.3 | 224.2 | 214.2 | 206.2

actual centroid than any of the others. Second, for MAP classification, the initial
distribution estimate of p(C') must be a reasonable estimate of the actual a priori

distribution.

6.5 Results

The iterative algorithms are applied to the classification of Antarctic data
during consecutive imaging periods in September and October of 1996. The algorithm
is initiated with multisensor data from JD 261-266. As noted in the previous section,
the nearest-neighbor segmentation is required for the first image of the time series.
As indicated in Figure 6.4, small homogeneous training regions are defined through a
knowledge of sea ice dynamics and microwave signatures. Table 6.1 contains the clus-
ter centroids obtained from these regions. In addition to the centroids, the MAP algo-
rithm requires an initial estimate of the a prior: distribution. For the 1996 JD 261-266
image classification p(C) = [p(IB), ,p(PER), p(RFY), p(SFY), p(PNC), p(MIZ)] =
[0.01, 0.02, 0.40, 0.45, 0.07, 0.05] is used.

Figures 6.7-6.8 show the convergence metrics as a function of iteration for

the ML and MAP classifications, respectively. After about 25 iterations, all metrics
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Figure 6.7: Maximum likelihood classification cluster convergence metrics. (Left)
The Euclidean norms of each ice type cluster as a function of iteration. (Right) The
spectral norms of the covariance matrices.
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Figure 6.8: Maximum a posteriori classification cluster convergence metrics. (Left)
The Euclidean norms of each ice type cluster as a function of iteration. (Right) The
spectral norms of the covariance matrices.
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have converged relatively well. Some minimal centroid drift is still evident in the
centroid norm trends. Most of the ML centroid norms shift significantly (and erro-
neously) during the iterations. On the other hand, only two of the MAP centroid
norms move significantly indicating that the original centroids are reasonable esti-
mates of the true values. Figure 6.9 illustrates the centroid drifts in the plane of
the top two principal components for the MAP implementation using data for 1996
JD 261-266. The starting points for each centroid are denoted with triangles while
the final centroid locations are represented by squares. The effect of the algorithm’s
iterative nature is evident as each of the points move varying amounts. Isoprobabil-
ity elliptical contours have also been plotted surrounding each centroid convergence
point using the sample covariance matrices from the final classification. The major
and minor axes for each ellipse are 2-0 wide. This figure not only shows iterative
migration of centroids, but gives a feel for how much separation exists between differ-
ent ice classes in the plane of the top two principal components. Table 6.2 contains
the final MAP cluster centroids in the normal parameter space. Table 6.2 can be
compared with Table 6.1 for an indication of how much the initial training signatures

were modified by the algorithm.

Table 6.2: Ice type centroid signatures after 25 iterations of the MAP algorithm for
1996 JD 261-266.

IB PER | RFY | SFY | PNC | MIZ
NSCAT A, | -5.35 | -6.63 | -11.66 | -15.17 | -7.85 | -11.66
NSCAT Ay | -5.85 | -6.67 | -11.77 | -15.27 | -7.41 | -12.39
NSCAT B, | -0.201 | -0.154 | -0.224 | -0.229 | -0.183 | -0.257
NSCAT By, | -0.218 | -0.152 | -0.221 | -0.225 | -0.164 | -0.286
ERS-2 A, | -6.69 | -9.47 |-13.77 | -16.72 | -12.18 | -12.99
19V T 230.3 | 239.6 | 246.9 | 256.2 | 232.0 | 213.8
19H Tp 195.8 | 219.6 | 217.5 | 235.8 | 196.5 | 160.8
22V Tg 230.6 | 237.9 | 245.9 | 253.9 | 229.1 | 219.2
37V Tg 234.1 | 231.2 | 241.5 | 248.3 | 215.4 | 226.6
37H Tg 208.2 | 214.4 | 219.0 | 230.8 | 192.6 | 184.6
85V Tp 238.4 | 229.0 | 236.8 | 234.5 | 211.5 | 243.3
85H Tp 220.5 | 217.3 | 223.4 | 222.3 | 200.7 | 215.8
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Figure 6.9: Centroid locations in the plane of the top two principal components for
the MAP classification of 1996 JD 261-266 data. The initial centroids (triangles) as
well as the final converged centroid points (squares) are shown. Also plotted are the
isoprobability contours according to the sample covariance matrices obtained from
the final classification. The ellipses are 2-o wide.

Figure 6.10 depicts the final M. and MAP sea ice type images. Since the
ML image has large regions classified as icebergs and perennial ice, it is concluded
that the ML algorithm performs poorly. The primary source of the error is the ML
assumption that all sea ice types are equally likely. This causes clusters that should
have low cardinality to grow to sizes similar to more common ice types. This effect
is responsible for the undesirable centroid drift discussed above.

In contrast, the MAP result exhibits a much more reasonable spatial dis-
tribution. Several icebergs known from the National Ice Center iceberg inventory
are classified correctly (see URL www.natice.noaa.gov). The largest concentration of
perennial ice is found just off the tip of the Antarctic Peninsula. The ice here has

survived the previous melt season by avoiding being swept out to sea by the Weddell
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Figure 6.10: ML (left) and MAP (right) sea ice classifications of 1996 JD 261-266
Antarctic data. The ML result is in error because of the assumption that each ice
type is equally likely.

Gyre. Rough first-year ice in the classification surrounds smooth first-year ice which
is located primarily in the inner portion of the ice pack. This is consistent with the
classification results in [73]. In addition, the marginal ice zone exists on the perimeter
of the ice pack as expected.

In order to gain an understanding of possible cross-confusion that may oc-
cur between classes using this algorithm, the Mahalanobis distance is computed be-
tween the final cluster centroids in principal component space. Since the Mahalanobis
distance requires a cluster covariance matrix and each centroid comes from a different
cluster, one of the centroids is treated as the reference and the other is considered
the test vector. In the computation, the covariance matrix of the reference vector is
used. The results are given in Table 6.3 for the 1996 JD 261-266 classification. The
table contents may be interpreted by observing individual columns corresponding to
a test ice type cluster. Each row cell value within a particular column is a measure of
dissimilarity between the reference and test vectors. Thus, lower values correspond
with higher probability that an ice type will be misclassified as the reference type. For

example, the PER column demonstrates that the perennial ice class is substantially
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Table 6.3: Mahalanobis distances between centroids for 1996 JD 261-266 providing a
measure of dissimilarity between different clusters in the classification. The covariance
matrix of the reference centroid is used in each computation.

Test Centroid
IB | PER | RFY | SFY | PNC | MIZ
IB 0.0 24.5 | 25.0 | 59.1 | 70.8 | 111.0
PER | 15,5 | 0.0 | 79.1 | 138.3 | 46.3 | 350.2
Reference | RFY | 27.0 | 17.6 | 0.0 8.0 11.5 | 21.5
Centroid | SFY | 119.2 | 67.0 | 17.0 | 0.0 | 87.9 | 180.3
PNC | 23.0 | 12.9 | 379 | 120.5| 0.0 | 56.6
MIZ | 23.3 | 16.5 | 12.6 | 44.6 | 11.6 0.0

more likely to be misclassified as pancake (PNC) ice than smooth first-year (SFY)
ice.

As previously stated, the MAP algorithm requires an initial estimate of the
a priori distribution p(C). The technique is designed to use the p(C) resulting from
the classification of the previous image set. However, the first classification in the
series requires the user to provide an approximate p(C) for initialization. In an effort
to determine the sensitivity of the final ice classification to the this parameter, a Monte
Carlo analysis is performed. Several random realizations within a neighborhood of
a nominal p(C) are used in the 1996 JD 261-266 image segmentation. The study
showed that the final spatial distribution of ice types is not particularly sensitive to
the original a prior: distribution.

Figure 6.11 shows classification images generated using two other methods
for comparison. Both were implemented using the same training data for initial cluster
centroids. The left image is the classification result of the standard k-means clustering
algorithm. The k-means approach yields a solution that minimizes the within cluster
sum of squared distances under the Euclidean distance metric. Since no regard is
given to the probability of ice type, the k-means result has problems similar to the
ML image. The second image was generated using a modified form of k-means in

which a “MAP distance metric” measured the similarity between data samples and
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Figure 6.11: K-means clustering classification results of 1996 JD 261-266 Antarctic
data using different distance metrics. The left image is the conventional k-means
result with the Euclidean distance metric. The right is k-means with the “MAP
distance” metric as defined in the text.

the centroids. The MAP distance metric is the negative of the argmaz argument in
Eq. (6.12). The resulting ice type map is nearly identical to the MAP classification.
In fact, the two agree for 96.5% of the image sea ice pixels. The differences primarily
occur in the number of pixels classified as pancake ice. Consequently, the modified
k-means classifier result is similar to the maximum a posteriori technique result.
An obvious error in the MAP classification in Figure 6.10 is the RFY
labeled tongue extending from the Ross Ice Shelf. The perimeter of the ice shelf
is actually a region of new ice formation and divergence. Consequently, the ice in
this regime should have been identified as smooth first year (SFY) ice rather than
rough first year (RFY) ice. The source of the discrepancy is likely due to frost flower
formation on the surface of smooth ice. Drinkwater and Crocker [78] found that
frost flower formation can yield microwave signatures that are very similar to RFY
ice. The proposed classifier did not include a classification cluster for this ice type.
Consequently, a useful line of future research would include a study of the potential
of segmenting frost flower covered ice from RFY ice using the results of Wensnahan

[72] and Ulander [22].
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Figure 6.12: MAP ice classification of the image series with day ranges 1996 JD
261-266, 270-275, and 279-284.
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Figure 6.12 shows the algorithm results when applied to a time series of
images. The original images are generated with three days of overlap between consec-
utive intervals. The three day spaced classification maps illustrate stability in the ice
classes between contiguous images. Since geophysical variability is greater on longer
time-scales, results from images separated by three day gaps are shown. The ice maps
in Figure 6.12 reveal a number of interesting features. First, the temporal continuity
between the spatial distributions of classes such as RFY and SFY ice types indicates
that the algorithm is stable. However, some misclassification does occur such as the
region of MY ice that appears in the outer ice margin of the Weddell Sea in the
JD 270-275 image. In this case, pixels are exchanged between the RFY and MY
categories.

Classified imagery can be used to better understand certain geophysical
processes. For example, the tongue of “RFY” ice extending from the Ross Ice Shelf
exhibits some interesting temporal behavior. As discussed previously, this region is
likely not RFY ice, but SFY ice covered with frost flowers formed as off ice-shelf winds
drive the ice pack northwards. Hence, temporal changes in the direction of the tongue
relate to changes in wind direction over the ice pack through dynamic adjustments
to the ice drift direction.

Another region of interest is in the outer Weddell Sea where a large region
classified as pancake ice appears in the last frame. Initially, this feature appears to
be an error in the classification. However, examination of the original data set images
reveals that this classification relates to an actual physical event. From the first image
in Figure 6.12 to the last, the scatterometer o° values increase several dB and the
radiometer Tg values drop significantly. For example, the average NSCAT A, value
in the area rises from -11.2 to -7.4 dB. The SSM/I 37V Tp average decreases from
236 to 210 K. The final signatures are typical of pancake ice. A possible cause for this
event is the occurrence of storm induced swells penetrating the ice margin. Under
such conditions, intense ice floe fracturing and wave-washing of floes are observed in
the field. Subsequent return of the signatures to values more typical of the marginal

ice zone, and rough first-year ice confirm that this is an event of transitory nature. If
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this is indeed the case, it may be possible to relate pancake ice “blooms” in ice margin
signatures to increased wave radiation stresses, or to surface flooding events caused by
increased swells. Further analysis of this phenomenon could compare the occurrence
of such signatures with the significant wave heights observed by altimeters in the
region of the Southern Ocean directly off the ice margin at those times. Similarly,

these events may be classified as “flooding” in future extensions of the algorithm.

6.6 Conclusions

This study has demonstrated the utility of a multisensor, iterative max-
imum a posteriori sea ice type classification algorithm for Antarctic sea ice. The
use of data collected from multispectral, dual-polarization, active, and passive instru-
ments increases the level of information that can be exploited in segmenting the data.
Through the use of principal component analysis, not only is the data dimensionality
minimized, but the effects of noise and imaging artifacts are reduced. The resulting
data set is classified in an iterative manner that utilizes MAP statistical techniques.
The MAP classifier performs better than ML and the standard k-means and is very
similar to a modified version of k-means with a different distance metric.

The iterative classification algorithm yields ice maps with spatial ice type
distributions that are reasonable when general Antarctic sea ice dynamics are con-
sidered. However, while the algorithm appears to function well, a more detailed
validation study is needed. Unfortunately, Antarctic validation data is difficult to
obtain during this period of sensor overlap. Though SAR data exists for continental
Antarctica, sea ice SAR imagery during the period spanned by our multisensor data
set is scarce. Future research will apply the algorithm to Arctic data where validation
data is much more abundant both spatially and temporally, and where current efforts
are underway to plot ice drift and dynamics on a Lagrangian grid.

Several implications must be considered in a medium-scale classification

such as the method presented in this study. First, the six day imaging period may
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introduce blurring in the images due to sea-ice motion resulting in ambiguous signa-
tures and misclassification. The limiting factors for this data set are the scatterome-
ters which need more time to achieve full coverage of the Antarctic ice pack. In the
future, similar algorithms may be applied using instruments with wider swaths such
as the SeaWinds scatterometer on board the QuikSCAT and ADEOS II spacecrafts.
Furthermore, AMSR in conjunction with SeaWinds aboard ADEOS II will provide
temporally and spatially coregistered active and passive data. This provides many of
the channels required for such a method to be applied in the future. Both SeaWinds
missions will reach full coverage in one to two days rather than six days. SeaWinds
on QuikSCAT is currently in flight while ADEOS II is scheduled for launch before the
end of 2001. Also, the relatively low resolution, even in the reconstructed imagery,
implies that some pixels may contain a mixture of ice types. Thus, the classification
result for a particular pixel is considered the spatial and temporal average behavior
of sea ice in that region. A promising line of future research is the extension of this
algorithm from a hard to a fuzzy classifier. That is, for each pixel the concentration
of each ice type may be estimated. It is conceivable that the MAP probabilities could
be used to achieve this. However, a greater understanding of the effects of within-
footprint mixtures on observed microwave signatures is first required. Nevertheless,
the algorithm yields results consistent with historic ice distributions and expectations.

This study has demonstrated one method for the application of multisensor
data sets to classification problems. The use of multiple sensors appears to improve
the ability to identify different classes by combining the inherent strengths of each
instrument. The three sensors used each add unique information to assist in segment-
ing the images into separate ice types. The scatterometers, NSCAT and ERS-2, are
sensitive to surface roughness, volume inhomogeneities, and other scattering mech-
anisms which vary across different ice types. In addition, these instruments collect
measurements at multiple incidence angles. Incidence angle dependence varies over
the spectrum of sea ice types justifying the value of this parameter. NSCAT in partic-

ular is valuable in that it collects dual polarization measurements over a wider swath
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at higher resolution. The primary strength of the C-Band ERS-2 lies in greater pen-
etration depth due to its lower frequency of operation. Unfortunately, both of these
sensors require several days of data to obtain complete coverage of the Antarctic.
SSM/I also contributes a great deal to the classification. As a passive instrument,
the SSM/T sea ice signatures are a more a function of surface emissivity and dielec-
tric properties than their active counterparts. The wide spectrum of frequencies and
dual polarization nature of the SSM/I channels offers sensitivity to a larger range of
surface properties than single frequency/polarization instruments. Additionally, the
SSM/I measurement collection geometry allows complete coverage of the Antarctic

usually in one day though at a lower resolution than NSCAT.
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Chapter 7

SeaWinds Applications in Cryosphere Remote Sensing

Chapters 5 and 6 presented the theory and methodologies used to deter-
mine the location of sea ice and the spatial distribution of sea ice types within the ice
pack. Polar sea ice extent was determined using NSCAT data sets alone. In contrast,
the sea ice classification required the use the multiple sensor combination of NSCAT,
ERS-2, and SSM/I. The unfortunate loss of the ADEOS satellite (and thus NSCAT)
has limited the use of these techniques. However, the methods can be modified for
use with data collected by the SeaWinds scatterometer. This chapter discusses the
use of SeaWinds in sea ice extent detection and sea ice classification. In Section 7.1,
sea ice extent mapping using SeaWinds data is considered. Significant changes to
the algorithm presented in Chapter 5 are required for adaptation to SeaWinds and
improvement of the ice edge estimates. The research detailed in Section 7.1 has been
submitted to the Journal of Geophysical Research and is currently in review. Section
7.2 presents a brief discussion on the application of the multisensor ice classification

methods in Chapter 6 to combined SeaWinds and SSM/I reconstructed imagery.

7.1 SeaWinds Ice Extent Mapping

The ability to accurately map sea ice with Ku-band NSCAT data was
demonstrated in Chapter 5 (see also [8]). The study described the development and
implementation of an adaptive sea ice extent mapping algorithm. Because NSCAT
data is no longer available, the state of the sea ice pack can no longer be observed using
this method. However, the ice detection method can be adopted for ¢° data from

present and future active Ku-band sensors such as SeaWinds aboard the QuikSCAT
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and ADEOS-II platforms; the basic concepts behind the algorithm still apply, though
significant modifications are required due to the design differences of SeaWinds and
NSCAT.

This section describes the adaptation of the NSCAT ice extent mapping
algorithm (hereafter referred to as the RL-N algorithm) to SeaWinds scatterometer
data. Algorithm implementation and validation are discussed. A comparison of
SeaWinds-derived and SSM/I-derived edges is given. In section 7.1.1, some brief
background is given about the various instrument specifications and the original RL-N
ice edge detection algorithm. Section 7.1.2, describes the SeaWinds data parameters
and their levels of sensitivity to the presence of sea ice. The algorithm development
is described in section 7.1.3. Implementation results are given in the section 7.1.4

along with detailed validation. Finally, the conclusions are presented.

7.1.1 Ice Extent Mapping Background

The primary advantage of SeaWinds over NSCAT is the rate of surface
coverage. The SeaWinds swath is 1800 km wide with no nadir gap. Consequently,
SeaWinds covers approximately 90% of the earth’s surface and 100% of the polar
regions each day. In contrast, NSCAT required 2-3 days to obtain complete v-pol
coverage. The significant increase in temporal resolution is extremely valuable in
observations of sea ice since ice packs can move dozens of kilometers in a single day.
Hence, SeaWinds reconstructed imagery is much less subject to blurring caused by
sea ice motion and evolution.

As discussed in Chapter 2, SeaWinds has two spatial resolution modes:
eggs and slices. The SeaWinds measurement cells (or eggs) have a nominal resolution
of 25-50 km while the slice measurements have dimensions of approximately 6-8 km
by 25 km. Science data products can be made from either measurement collection
scheme.

Using the scatterometer image reconstruction (SIR) algorithm, SeaWinds

measurements are used to create Ku-band ¢° imagery. For SeaWinds, SIR is used to
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construct v- and h-pol images from egg data on a 4.45 km grid with an effective reso-
lution of approximately 10-12 km. Slice measurements are used to produce enhanced
resolution imagery on a 2.225 km grid with an effective resolution of 4-8 km. While
the slice images have better spatial resolution, noise levels are inherently higher. For
the Arctic and Antarctic regions, both egg and slice images are produced at one day
intervals. For other lower latitude land areas, a longer imaging period may be required
to achieve complete coverage with adequate sampling for image reconstruction.

Due to the computational complexity of the SIR algorithm, near real-time
(NRT) slice image products are reconstructed using the AVE algorithm (see Chap-
ter 3), enabling surface o° analysis shortly after data acquisition. The NRT opera-
tional processing of polar SeaWinds slice imagery is currently implemented at the Jet
Propulsion Laboratory for ocean wind studies and by NOAA and the Brigham Young
University Microwave Earth Remote Sensing Laboratory for sea ice pack analysis.
Image products are being distributed by the Jet Propulsion Laboratory PO.DAAC.
Though SeaWinds egg imagery are used in the ice discrimination method presented
in this study, the technique can also be applied to SIR or AVE slice images.

Since the SeaWinds ice extent mapping algorithm presented in this study
is based on the RL-N method, the latter is briefly summarized here. An in-depth
description of the RL-N algorithm is given in Chapter 5 (see also [8]). The RL-N
algorithm uses NSCAT SIR enhanced resolution imagery to generate estimates of the
spatial distribution of sea ice. Three basic parameters are used in the RL-N classifi-
cation. The first is the copol ratio, v, of v- and h-pol ¢° at 40° incidence. In general,
this parameter is low for sea ice and high in open ocean regions [25]. The second
metric used in the discrimination is the v-pol incidence angle dependence of ¢°, B,,
exhibiting relatively low and high magnitudes for ice and ocean, respectively [25, 62].
The combination of these two parameters along with statistical classification meth-
ods shows great utility in identifying sea ice and ocean regions. The third parameter,
the o estimate error standard deviation, &, is used to further enhance the edge esti-
mate. Residual errors are minimized using binary image processing techniques. The

resulting edge correlates well with the NASA Team algorithm 30% ice edge.
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Extending the RL-N [8] algorithm to SeaWinds data presents several diffi-
culties due to inherent differences in the instruments. While both are Ku-band scat-
terometers, SeaWinds differs significantly from NSCAT. The fan beam configuration
of NSCAT allowed for the measurement of ¢ at vertical and horizontal polarizations
at multiple incidence angles [23]. In contrast, SeaWinds uses the scanning pencil
beam geometry discussed in Chapter 2. The distinct, fixed incidence angles of the
v- and h-pol beams preclude the computation of the two primary RL-N classification
parameters, the copol ratio and the incidence angle dependence of 0°. However, mod-
ified parameters can be constructed that exhibit significant sensitivity to the presence
of sea ice. These are described in the following section. The increased coverage of
SeaWinds when compared to NSCAT significantly improves the temporal resolution
of the sea ice extent estimates: one day’s worth of SeaWinds data can be used to

make enhanced resolution images in contrast to NSCAT’s 3-6 day data requirement.

7.1.2 SeaWinds Ice Extent Mapping Parameters

Four primary SeaWinds SIR images are reconstructed for each one day
interval: v-pol 0° at 54° incidence (A5%), h-pol ¢° at 46° incidence (A}%), and the
v- and h-pol 0° estimate error standard deviations (k, and kp). Sample images are
shown in Figure 7.1. For later use each of these parameters is defined and their utility

in sea ice detection is discussed.

The Modified Copol Ratio

The first parameter is the modified SeaWinds copol ratio, 7y, which is
defined as the ratio of A3* and A}®

VYsw = A15}4/A;1L6' (7'1)

This is equivalent to taking the difference in log space of v- and h-pol ¢°. A sample
Ysw image is shown in Figure 7.1 to illustrate the sensitivity of this parameter to the

presence of sea ice.
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Figure 7.1: Sample SeaWinds egg SIR imagery for 1999 day 245. The images are,
from top left to bottom right, A% A% ~. = k,, and &y, respectively. The original
images contain 1940 x 1940 pixels with a nominal pixel spacing of 4.45 km.

The modified SeaWinds copol ratio metric exhibits a combination of two
Ku-band backscatter signature dependencies. The first is the polarization dependence
of ocean and sea ice 0°. The utility of the polarization response has been shown in
identifying sea ice [25]. For conductive surfaces such as sea water, the backscattering
reflection coefficients for horizontal and vertical polarization waves are different. In
general, the vertically polarized waves reflect more than the horizontal waves. Sea ice,
on the other hand, behaves quite differently. Sea ice is not as lossy as sea water and
thus has greater penetration depths at microwave frequencies. Typical sea ice types
are composed of an ice crystal lattice with multiple inhomogeneities such as brine
pockets and air bubbles. These act as volume scatterers which effectively depolarize
the backscatter. As a result, vertical and horizontal polarization backscatter of sea

ice at the same incidence angle are similar.
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The modified SeaWinds copol ratio also contains cross polarization inci-
dence angle dependence. This component of the parameter is primarily sensitive to
surface roughness levels. Incidence angle dependence has been used by a number of
researchers to study sea ice [8, 18, 19, 61, 62]. Sea ice microwave signatures are typ-
ically more isotropic in incidence angle than sea water surfaces. Consequently, this
dependence can be used to assist in identifying ice pack extent.

To illustrate the parameter sensitivity, Figure 7.2 shows various s, values
along a 45° West longitudinal transect that extends from deep in the ice pack into
open ocean. Overall, the polarization and incidence angle dependence of 0° combine
such that 7, is low in the sea ice portions of the image and relatively higher in
ocean regions. However, while v, is the most sensitive of all the parameters to be
presented, it is not sufficient alone for the discrimination. Mechanisms such as high
wind induced roughness over the ocean can result in ambiguity-induced classification

errors. Thus, other parameters are included in the process.

Horizontal Polarization o¢°

The A;® image is also useful in discriminating between ocean and sea ice
pixels. An example enhanced resolution image of this parameter is shown in Figure
7.1. As discussed above, h-pol measurements over the ocean are typically much lower
than their v-pol counterparts while the sea ice has similar signatures. Consequently,
the h-pol responses of sea ice and open ocean are more easily segmented.

In Figure 7.2 the 45° West transect is given for A7°. The edge between sea
ice and sea water pixels is clearly defined using this metric. Still, the noise levels are
higher in the A%S data than in the 74, case, making this parameter less sensitive to
sea ice presence. In other ice edge regions, the boundary between the two regimes
is not as clearly defined, requiring the use of this parameter in concert with others
for effective sea ice discrimination. Similar to the copol ratio, wind-induced surface

roughness can potentially cause ambiguous signatures.
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Figure 7.2: Plots of the each classification parameter along 45° West longitude il-
lustrating the differences in sea ice and open ocean signatures. The sea ice extends
southward of approximately 62° S latitude. The plots are from top left to bottom
right: Ve, A5, ky, and kp,.

Dual-polarization ¢° Estimate Error Standard Deviation

Two additional parameters are used to complement 7y, and A® and in-
crease the ability of the algorithm to separate sea ice and ocean pixels: the vertical
and horizontal polarization ¢° estimate error standard deviations, , and xj,. These
metrics are reconstructed on the enhanced resolution grid for compatibility with other
SIR products. The mathematical definition of x for a particular pixel is given as

k= [> (of —57)? (7.2)

l
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where the o] are the measurements whose spatial response includes the pixel and 67
are the associated forward projections given by
1 B T
7= 3 hulif)AG.j) (73)
=Ly, j=Bx

where N is the number of pixels in the cell, Ly, Ry, T}, and By define a bounding
rectangle for the k™ o° measurement cell (egg or slice), (i, j) is the antenna gain
weighting function for the (4, )™ resolution element, and A (i, j) is the o° estimate
for the (4,7)" resolution element. In general, the x metric is statistically equivalent
the standard deviation of the difference error between the ¢° measurements touching
a pixel and their associated forward projections. A more in-depth discussion of & is
given in [8]. Figure 7.1 contains illustrative examples of the k, and x, images.

The dual-polarization o° estimate error standard deviation parameters are
functions of variations in observed ¢° during the imaging interval. Since the SeaWinds
measurements are at fixed incidence angles, the variations are primarily due to az-
imuthal and temporal dependence of surface backscatter. The azimuthal component
is an excellent differentiator of sea ice and sea water regions. Azimuthal modulation
over wind roughened ocean surfaces is a fundamental part of inverting the wind geo-
physical model function to extract ocean wind vectors. In contrast, sea ice has been
shown to have negligible C- and Ku-band azimuthal dependence, generally less than
1 dB [6, 63] (see also Chapter 3). This difference increases ocean « values when com-
pared to sea ice. However, regions with consistently low winds during the imaging
period can exhibit x values that are similar in magnitude to sea ice observations.

The second component contributing to differences in sea ice and ocean k
measurements is temporal variation. Changes in surface scattering mechanisms of a
particular region during the data collection interval cause x measurements to rise.
Open ocean signatures are much more dynamic in time since wind induced surface
roughness often changes between satellite passes. On the other hand, sea ice surface
properties exhibit much lower temporal variation. Diurnal variations can be observed

if significant surface melt occurs, but these effects are typically less pronounced than

temporal changes in ocean ¢°. Ice motion can also produce increased k.
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The RL-N ice extent mapping algorithm uses x as a secondary classifica-
tion parameter. Because six days of NSCAT data are required to generate enhanced
resolution h-pol images of the polar regions, x was used as a secondary rather than
primary classification parameter. The NSCAT « sea ice values are affected by sea ice
motion and temporal change. In contrast to NSCAT, the measurement geometry of
the SeaWinds instrument allows for complete coverage of the Antarctic and Arctic
regions in a single day. Hence, ice motion and other temporal variations in sea ice
signatures are significantly reduced and the x values are dominated by azimuthal
dependence. This facilitates the use of SeaWinds «, and k;, values as primary clas-
sification parameters. A longitudinal transect is plotted for these variables in Figure
7.2. While the graphs demonstrate obvious differences at the ice edge along 45° W,
plots along other transects do not always exhibit such a clear delineation between
the two regimes. Using all four parameters together maximizes the ice discrimination

capability.

7.1.3 Multivariate Sea Ice Extent Mapping

Through a combination of various processing techniques the sea ice extent
can be effectively mapped using 7, A3, k., and k;, imagery. This section describes
an algorithm designed specifically for SeaWinds Ku-band data. While based on the
fundamental methodology of the RL-N method, significant modifications and im-
provements are presented. Following the RL-N algorithm, the method can be broken

down into five major steps beginning with the reconstructed parameter images:

1. Data fusion and histogram generation.

2. Linear discrimination.

3. Iterative maximum likelihood discrimination.
4. Residual error reduction.

5. Sea ice growth/retreat constraint filtering.
Each of these steps is discussed in detail in the following sections.
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Data Fusion and Histogram Generation

Individually, each of the four classification parameters contains valuable
information about the presence of sea ice. Taken together, a more accurate classifi-
cation is possible. These data reside in a 4-dimensional hyperspace of measurement

vectors,

T = [Yow AR Ky kp]". (7.4)

The data fusion portion of the algorithm ensures that data is weighted to maximizes
classification accuracy. The first step consists of data standardization. Each of the
three different data types (7, Ap, and k) are normalized such that each type has a
mean of zero and a variance one. This transforms the hyperspace so each parameter
type is given equal weight.

While the standardization is useful for combining feature vector elements
with different units of measure in an impartial way, classification parameters contain
varying levels of useful information to be exploited in the algorithm. In an effort
to maximum classification accuracy, a weighting vector is applied to the all mea-
surements in the observation space which scales the individual measurement vector
elements by varying amounts. An empirical analysis of various weighting vectors re-
veals that the resulting sea ice map is not particularly sensitive to the precise level
of the weighting vector components. However, the general magnitude is important to
the algorithm performance. Through the consideration of several weighting vectors,
it is determined that the vector producing the best results gives equal weight to all
standardized parameters except -y, which is scaled by a factor of four. Since 7, is
the most sensitive to the presence or absence of sea ice, greater weight is given to this
dimension in the observation space.

Once the data is prepared through standardization and vector weighting,
the distribution of observation vectors is examined through histogram analysis. The 4-
dimensional histogram of the data space is generated revealing a bimodal distribution.
While it is impossible to show a 4D histogram graphically, a 2D distribution of g,

vs. Aj% is shown in Figure 7.3 along with the corresponding contour plot. The
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Figure 7.3: Two-dimensional distribution of 7, vs. A#® values for Antarctic Sea-
Winds data from 1999 day 245. The corresponding contour plot is also shown. The
highest peak is the mode of the sea ice distribution.

plot illustrates the bimodal nature of the distribution for these two parameters. The
two modes correspond with the sea ice and ocean pixel component distributions or
clusters. The sea ice distribution has a typically tighter covariance structure than
the ocean distribution in both the 2D and 4D histograms. That is, the variance of
each of the parameters is lower for the ensemble of sea ice measurements than their
ocean pixel counterparts. This is a function of the various mechanism described in
section 7.1.2 which described the nature of dynamic ocean signatures compared to
the relatively stable sea ice observations.

An important issue in polar sea ice extent mapping is the seasonal vari-
ability of the component distributions of ice and ocean. For sea ice, the seasonality of
microwave signatures is due to variations in surface properties caused by ice growth
and melt, surface deformation, brine drainage, and other mechanisms. For the ocean,
the cluster centroid can be modified by changes in prevailing wind characteristics
which vary with season. This phenomenon precludes the use of a fixed boundary to

segment the two clusters throughout the year. Rather, an effective algorithm must
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have the ability to adapt to current conditions to provide and optimal estimate of
sea ice extent. The following sections detail the iterative portion of the algorithm to

achieve automated adaptability.

Linear Discrimination

The main objective of the image segmentation algorithm is to separate
the sea ice and ocean clusters with minimal error. The first cut is achieved through
linear discrimination. Assuming that the component distributions are Gaussian in
the 4-dimensional space, the optimal linear boundary is a hyperplane that passes
through the saddle point in the distribution and is perpendicular to the line segment,
connecting the two modes.

To identify the hyperplane boundary, the distribution modes are first found
through an automated histogram search algorithm. The search method is similar
to the two-dimensional search performed in Chapter 5 though for SeaWinds, a four-
dimensional search window is used. Once the locations of the two modes are identified,
the histogram values that fall along the line connecting them are observed. The
values along such transects follow a curve illustrating the bimodal nature of the
distribution as well as the differing covariance structures associated with each of the
component distributions. The hyperplane is chosen to pass through the minimum
value of this curve (corresponding with the saddle point of the full distribution) and
is perpendicular to the line segment between the two modes.

In identifying the saddle point, noisy histogram values on the ocean side
can potentially cause spurious low values that are clearly not the correct saddle point.
Though rare, this phenomenon results in a hyperplane placement which is too close
to the ocean cluster center causing multiple misclassifications of ocean pixels as sea
ice. To ameliorate this problem, the location of the saddle point in relation to the two
modes is limited. Since the ice cluster has characteristically lower variance than the
ocean mode, the saddle point is always closer to the ice cluster center than the ocean
mode. Consequently, if the chosen center point is closer to the ocean cluster mode, the

hyperplane tie point is shifted to the center of the mode connecting transect. This
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Figure 7.4: Sample binary Antarctic ice maps for 1999 day 245 at various stages in the
algorithm: (a) nearest neighbor estimate, (b) iterative maximum likelihood estimate,
and (c) classification error filtered estimate.

placement of the hyperplane boundary results in a simple nearest neighbor linear
classification.

Figure 7.4 shows three binary ice masks resulting from various stages of
the algorithm for a sample image set in Antarctica. Figure 7.4a depicts the ice extent
estimate after the linear discrimination. While the ice edge can be readily observed,
significant errors still exist indicating that further processing is required to improve
the ice extent estimate. The classification quality is enhanced through the use of

iterative maximum likelihood discrimination as described in the following sections.

Maximum Likelihood Discrimination

While the linear method produces a reasonable initial estimate of the ice
edge, higher order classifiers can be used to improve the quality of the final sea ice
map. In the RL-N method, the Mahalanobis technique is used to provide a better
discrimination boundary. For the SeaWinds data, a maximum likelihood classification
technique is adopted from a study to identify sea ice types in Antarctica described in
Chapter 6 (see also [9]). A maximum likelihood (ML) classifier is derived assuming
that the two component distributions are Gaussian in the hyperspace. Maximum

likelihood techniques choose the solution that maximizes the conditional probability
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of observing a given measurement vector over the two possible surface types,
Cur = argmaz,. p(y|C = ¢) (7.5)

where C}p is the ML chosen surface type, ¥ is a standardized and weighted data
vector, C' is a discrete binary random variable denoting the surface type (sea ice
or ocean), and p(§|C = c¢) is the probability of observing a specific feature vector
given a particular surface type. In order to implement such a statistical classifier, the
conditional distribution must be known. Under the multivariate Gaussian assump-
tion, these distributions have the form given in Eq. (6.8) which is repeated here for

convenience:
1

(zﬁ)n/2|Kc|1/2e

where ji. is the mean vector and K. is the covariance matrix of surface type c, re-

(i) K& (G~ e) (7.6)

p(Z|C) =

spectively. Thus, the conditional distributions are completely characterized by their
individual mean vectors and covariance matrices. Sample estimates of these can be
computed from the linear discrimination described above.

The maximization of Eq. (7.6) can be simplified to reduce computational
complexity. Through some mathematical manipulation, the maximization of the con-
ditional distribution reduces to the minimization of a “maximum likelihood distance
metric,”

Cyr = argmin, [log|K.| + (F — i) K. ' (§ — fi.)]- (7.7)

The ML method results in a quadratic boundary which accounts for the differences
in component distribution variances and covariances. Equation (7.7) is similar to the
Mahalanobis distance metric used in the RL-N sea ice detection. In fact, the second
term in this equation is the Mahalanobis distance.

Using estimates of the mean vectors and covariance matrices of the two
clusters computed from the linear discrimination, the ML classification is employed.
After the first implementation of the ML method, the statistics are updated and the
ML classification is used once more. Within two iterations, the algorithm converges
to an improved estimate of polar sea ice extent. A sample of the resulting binary

ice masks is given in Figure 7.4b. Compared with the linear discrimination results
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(Figure 7.4a), significant improvements have been made, though some residual errors

are still present in the images.

Residual Error Reduction

The ML estimate of the sea ice extent can still contains some misclassifi-
cations due to high, persistent winds over a region during the imaging period which
can result in ambiguous signatures that confuse the algorithm. Consequently, a small
percentage of ocean pixels may be erroneously identified as sea ice. These errors are
manifested in the binary image as isolated patches of sea ice in regions that clearly
cover open ocean.

In general, the algorithm is most effective in correctly identifying sea ice.
The tighter covariance structure inherent to the sea ice cluster in the observation space
allows this regime to be mapped more accurately. In addition, since polynyas have
signatures very similar to open ocean, the method consistently identifies these features
within the ice pack. Unfortunately, a relatively low level of residual misclassification
noise still exists.

Isolated regions of misclassified pixels can be eliminated through the use
of the binary image processing technique of region growing described more fully in
Chapter 5. When complete, the misclassified patches in the ice or ocean regimes
are removed. Unfortunately, this portion of the algorithm filters out polynyas as
well. Since the objective of this study is to identify the total sea ice extent, polynyas
are ignored. However, the processing can be adjusted to retain polynyas along with
the infrequent misclassifications within the ice pack by skipping the inverse region
growing step. An example of the effect of region growing on the ice extent estimate

is shown in Figure 7.4c.

Sea Ice Growth/Retreat Constraint Filtering

An additional source of errors are misclassified “fingers” or “dents” along
the ice edge. Since they are connected to the edge itself, the region growing portion of

the algorithm does not remove these errors. Though both are encountered relatively
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infrequently, steps have been added to the algorithm to remove large manifestations
of these from the edge.

One important piece of information not exploited in the RL-N ice mapping
method is a knowledge of typical sea ice growth and retreat. That is, sea ice edges
have physical bounds on the amount of advance or retreat that can occur in a single
day. Hence, the previous ice map can be used to constrain the current discrimination.
The automated constraint is implemented through the use of binary image dilation
and erosion [65, 79] techniques.

The first step in constraining ice growth is to generate a binary difference
image between the current and previous ice masks. The difference image is non-zero
only where the two masks are dissimilar. Next, the previous ice mask is dilated
outward an arbitrary distance that represents an upper threshold on the maximum
possible ice advance. For this study, a 200 km maximum advance per day thresh-
old produces good results in eliminating erroneous ice fingers. At this point, the
dilated image is compared with the present ice mask. The binary difference of these
two images is generated. Non-zero values represent the tips of ice fingers that have
exceeded the limit on ice growth. In these regions, the previous ice edge estimate
is more accurate. To recover the former edge, the region growing algorithm (which
is actually a constrained dilation) is used to expand the remaining tips within the
original current/previous mask difference image. Enough dilations are used to reach
the previous ice edge. The resulting region is removed from the current ice mask.
The effect is to substitute the ice edge in only a small localized region affected by the
anomaly.

Less frequently encountered sea ice dents are corrected in a very similar
manner. All procedural steps are the same except that the previous image is first
eroded a specified amount rather than dilated. For large erroneous sea ice retreats,

the local ice edge is replaced with the previous estimate.
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Algorithm Summary

Together, the steps described above produce an automated adaptive algo-
rithm using mapping sea ice for Ku-band SeaWinds scatterometer data. The algo-
rithm results in a binary ice map depicting the extent of sea ice in either the Antarctic

or the Arctic polar regions. A summary of the algorithm follows.

1. Generate enhanced resolution imagery
2. Standardization and weighting

3. 4-D histogram generation

4. Linear discrimination

(a) Identify locations of the two distribution modes
(b) Optimal hyperplane boundary placement

(c) Cluster segmentation
5. Compute sample Gaussian statistics

(a) Cluster mean vectors

(b) Cluster covariance matrices
6. Maximum likelihood discrimination

(a) Two iterations

(b) Update statistics in between
7. Region growing to remove isolated misclassifications
8. Ice extent growth/retreat constraining

(a) Removal of erroneous ice edge “fingers”

(b) Removal of erroneous ice edge “dents”

The resulting mask is used to remove ocean pixels from polar imagery. Implementa-

tion and validation of the algorithm are discussed in the following section.

181



7.1.4 Ice Extent Results

The algorithm is implemented for all currently available QuikSCAT Antarc-
tic and Arctic data, spanning 1999 day 200 to 2000 day 50 (mid-July to late February).
Enhanced resolution imagery is produced on one day intervals resulting in a large time
series of ice-masked imagery that can be used for a number of applications. Examples
are the removal of sea ice regions in scatterometer wind processing and ice edge evo-
lution studies. In this section, the QuikSCAT generated ice extent maps are validated
and analyzed. For validation, comparisons are made with ice edges produced by the
NASA Team algorithm applied to SSM/I data in the Antarctic and Radarsat SAR
imagery in the Arctic. The evolution of total sea ice extent is also studied during
the SeaWinds mission and compared with sea ice extent observed by NSCAT during

similar seasons.

Ice-Masked Polar Image Sequences

Figure 7.5 shows four sample ice-masked SeaWinds A%* images of Antarc-
tica. An animation of the complete image sequence can be viewed at internet address
http://www.mers.byu.edu/Seawinds-1.html. The image series demonstrates the dy-
namic nature of Antarctic sea ice throughout the seasonal cycle. The first image
shows the state of the sea ice pack during Antarctic winter as sea ice growth rate be-
gins to decrease. The following image, day 278, shows the distribution of sea ice near
the peak of the seasonal sea ice extent. Substantial melting has occurred by the next
frame, day 346, in which a number of polynyas have begun to form. Most notable
of these are the large polynyas in the Ross Sea and north of the Bellingshausen Ice
Shelf. The images from day 346 to day 50 which are not shown in this figure reveal
that these two polynyas continue to grow until they break through the ice edge into
open ocean. The final image panel demonstrates that significant melting occurs from
1999 day 346 to 2000 day 50 as austral summer begins and the sea ice draws near its
minimal yearly extent. At this point, a large majority of the remaining Antarctic sea

ice is in the Weddell and Amundsen Seas.
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Figure 7.5: Sample ice-masked SeaWinds v-pol images illustrating the seasonal evo-
lution of Antarctic sea ice extent.
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Within the ice pack a wide spectrum of ¢° values are observed. The var-
ious levels of backscatter are related to important sea ice properties such as surface
roughness, snow cover, dielectric loss, and volume scattering due to inhomogeneities.
In general, older ice types appear very bright in the imagery due to increased volume
scattering as water and brine content drain from the ice. Very rough ice types also
exhibit high backscatter. Young, smooth ice forms have much lower ¢° values. Conse-
quently, the evolution of surface features can be monitored to better understand polar
sea ice dynamics. For example, from day 210 to 278 brighter relatively old ice moves
northwest away from the Ronne Ice Shelf along the Antarctic Peninsula due to ocean
currents and prevailing surface winds. Younger forms of ice fill in the gap shown by
the low backscatter region along the shelf. Near the eastern-most point of the Ronne
Ice Shelf, a number of large grounded bergs oppose sea ice floe motion forced by the
Weddell Gyre. As a result, ice floes pile up to the east of the icebergs. The deformed
ice rubble eventually overflow to the north of the bergs and travel northwest parallel
with the peninsula. This phenomenon is manifest in the day 210 and 278 images as
a bright band of sea ice in the southern Weddell Sea.

Figure 7.6 illustrates a similar image series for the Arctic region. Again, the
dynamic nature of sea ice extent is observed. The first image frame, representing day
210, shows Arctic sea ice distribution toward the end of the sea ice retreat phase. The
darkened sea ice ¢ values are indicative of widespread surface melt. The next frame,
day 278, illustrates the ice extent near the minimal point during the year. During
this period, high backscatter multi-year sea ice constitutes a large majority of the ice
pack. From day 278 to 346, extensive ice growth is observed. Lower backscatter first
year sea ice grows southward into the Bering Sea, Baffin Bay, and other areas. The
final image panel shows the sea ice pack near maximal extent. These figures illustrate
the nonuniform nature of sea ice advance during the Arctic growth cycle. In some
regions such as the Bering Sea, Baffin Bay, and Hudson Bay, sea ice extends much
further south than in the Barents and Norwegian Seas. Differences in backscatter
levels in portions of Greenland due to surface melting and refreezing of glacial ice are

also evident.
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Figure 7.6: Sample ice-masked SeaWinds v-pol images illustrating the seasonal evo-
lution of Arctic sea ice extent.
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NASA Team Algorithm Comparisons

In an effort to validate the technique, the SeaWinds ice extent images
are compared with SSM/I-derived sea ice concentration imagery produced by the
NASA Team algorithm. The images were provided by the National Snow and Ice
Data Center. The NASA Team method uses multifrequency, dual-polarization data
from the SSM/I radiometer to produce estimates of sea ice concentration on a 25
km grid [31, 36]. Both the NASA Team and SeaWinds images are presented using
similar polar stereographic projections. The SeaWinds egg images are produced on a
higher resolution grid with pixel spacing of 4.45 km. Daily ice concentration images
are compared with SeaWinds data by interpolating the NASA Team imagery to the
same pixel grid. These are then thresholded at various concentration levels to obtain
multiple ice edges for comparison.

Ideally, all SeaWinds images would be compared with corresponding NASA
Team products. However, the near real-time NASA Team ice concentration images
have significant processing errors in the Amundsen Sea quadrant of Antarctica (90°-
180° West longitude) from 1999 day 274 through the end of the available image set.
These artificial errors are unrelated to the NASA Team algorithm and have not been
corrected at the time of this writing. Hence, after day 274, the affected quadrant is
excluded in the comparisons.

For the correlation analysis, the NASA Team ice concentrations images
are thresholded at 5% increments from 5% to 45%. The disagreement percentage is
used to provide a measure of similarity between ice edges [8]. This metric is defined
as the ratio of the total pixel area for which the two methods disagree and the area
of the pixels that are classified as ice by either method. Hence, high correlation in
the edges results in low disagreement percentages. Figures 7.7-7.8 shows this metric
as a function of NASA Team algorithm ice concentration for the four sample images
shown in Figure 7.5. In Figure 7.7, the minima are found at 30-35% concentration.
This result is typical of daily imagery up to approximately 1999 day 300 and is similar
to the results found for NSCAT sea ice extent mapping [8]. Figure 7.8, illustrates the

disagreement percentages for two sample images later in the season. The resulting
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Figure 7.7: Disagreement percentages as a function of NASA Team SSM/I-derived
sea ice concentration for two sample days during ice advance and the beginning of ice
retreat. Strongest correlation occurs at 30%.
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Figure 7.8: Disagreement percentages as a function of NASA Team sea ice con-
centration for two sample images during rapid ice retreat and minimum ice extent.
Disagreement is lowest at 5-10%.
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correlation is significantly different. Not only are the disagreement percentage values
higher, but the minimum is found at very low concentration levels of 5-10% instead
of 30-35%.

Higher correlation with lower concentration edges is typical for all image
sets after approximately day 300. At this point, the Antarctic sea ice pack begins
a rapid retreat as austral summer approaches. Hence, during spring and summer
seasons, the SeaWinds edge correlates best with lower NASA Team concentrations.
In contrast, the RL-N algorithm was found to best match the 30% level throughout
the year. The discrepancies are attributed to the use of different parameters in the
classification. Though both SeaWinds and NSCAT are Ku-band scatterometers, the
parameter differences are large enough to cause significant changes in ice concentra-
tion sensitivity. NSCAT A images are reconstructed at 40° incidence while SeaWinds
A images have incidence angles of 46 and 54°. Also, the SeaWinds classification lacks
incidence angle dependence parameters.

To further illustrate the edge comparisons, Figure 7.9 shows a SeaWinds
Aj5 image of the Weddell Sea quadrant of Antarctica for 1999 day 245. Several ice
edge contours are superimposed on the figure. The white contour is the SeaWinds-
derived edge while the black lines are the 5% and 30% concentration NASA Team
edges. The figure shows the high correlation between the SeaWinds and 30% edges
though minor differences are observed. A similar image is shown in Figure 7.10 for
2000 day 5. Again, all three edges are plotted. While the closest correlation is
observed between the SeaWinds and 5% contours, significant discrepancies exist. In
particular, the SeaWinds edge is further north than low NASA Team concentrations.
Fetterer et al. (1992) observed similar trends in comparing GEOSAT radar altimeter
ice edges with NASA Team ice concentrations during ice ablation [66]. Fetterer found
that the radar-derived extent was consistently larger than the SSM /I-derived product.
These results indicate differences in active and passive microwave sensitivities to sea

ice concentrations as the ice edge recedes.
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Figure 7.9: Sea ice edge comparisons in the Weddell Sea quadrant of Antarctica for
1999 day 245. The NASA Team 5% and 30% ice edges are plotted in black with the
5% edge north of the 30% contour. The white contour is the SeaWinds edge.
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Figure 7.10: Sea ice edge comparisons in the Weddell Sea quadrant of Antarctica for
2000 day 5. The NASA Team 5% and 30% ice edges are plotted in black with the
5% contour north of the 30% contour. The white contour is the SeaWinds edge.

190



-

Figure 7.11: Radarsat images with SeaWinds (white), NASA Team 5% (black), and
NASA Team 30% (black) edge estimates. Images acquisition days are (from top left
to bottom right): 2000 day 37, day 38, day 48, and day 51. (Radarsat images (©
Canadian Space Agency.
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Comparison with Arctic Radarsat SAR Imagery

With high spatial resolution but limited coverage, SAR imagery can be
beneficial for ice edge validation in small localized regions. SAR instruments have
produce imagery Though SAR imagery of sea ice edges are scarce in the Antarctic,
an abundance of image frames are available in the Arctic. For this study, a number
of Radarsat hh-pol C-band SAR image frames were obtained from the National Ice
Center. The images cover sea ice edge regions near Greenland during February 2000.
Several sample Radarsat images are shown in Figure 7.11. Superimposed on each
frame are the SeaWinds and the NASA Team 5% and 30% ice edge estimates. In
general, the observed Radarsat and SeaWinds edges are highly correlated, matching
each other within approximately 10 km. The NASA Team algorithm edge contours
also provide good estimates of the sea ice edge albeit at a lower resolution.

While the Radarsat images are essentially instantaneous “snapshots” made
as the satellite passed over the region, the SeaWinds and NASA Team edges were
created using a full day of microwave data. Consequently, the SeaWinds and SSM /I
edges represent averages over the entire day. Some differences are expected since sea
ice edges can be very dynamic, moving tens of kilometers in a single day.

Figure 7.11 also illustrates the behavior of the algorithm under different
edge conditions. For example, the algorithm’s performance varies when the sea ice
edge is hard rather than diffuse. When the sea ice edge is clearly defined, the technique
estimates the location of the edge relatively well. As the edge becomes more diffuse
the SeaWinds edge does not identify the lowest concentrations as sea ice. This is
consistent with the finding that the SeaWinds edge correlates well with the 30-35%

NASA Team ice edge during this portion of the yearly cycle.

Sea Ice Extent Evolution

An important geophysical parameter, total sea ice extent area, can be
obtained from the ice-masked imagery. This parameter is computed by summing
the areas of all ice flagged pixels in the SeaWinds or NASA Team images. The

data set used in this study represents only a portion of the complete yearly cycle
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and more comprehensive analyses can be made once more SeaWinds data becomes
available. To illustrate the temporal dependence of sea ice extent, Figure 7.12 shows
the SeaWinds-derived total sea ice extent area from 1999 day 200 to 2000 day 50.
Days when the instrument was not in operation are not shown in the plot. This
figure illustrates sea ice extent during the final portion of ice growth through most
of the melt period in 1999-2000. The NASA Team 30% ice extent is also plotted
for the 74 day period in which full NASA Team image coverage was available. As
the plot indicates, a high correlation exists between the two estimates of total sea
ice extent area. The day range covered in this interval represents the final period of
ice growth until a maximum extent is reached. Unfortunately, the processing errors
in the Amundsen Sea quadrant of the NASA Team Antarctic imagery preclude an
accurate computation of total sea ice extent after day 273.

Figure 7.13 illustrates a comparison between the NSCAT ice extent esti-
mate in 1996-1997 and the corresponding SeaWinds estimate in 1999-2000. Overlap-
ping days of the year are only available in the period representing the initiation of
sea ice ablation to the point of minimum sea ice extent. Though both exhibit the
same seasonal trend, significant differences are observed. Throughout this period,
the NSCAT estimate is consistently lower, attributed primarily to the interannual
variability of sea ice extent.

The other contributing factor to observed differences in sea ice extent be-
tween the two data sets is the different sensitivities to sea ice concentration. As
previously noted, NSCAT was found to closely correlate to the NASA Team 30%
concentration level throughout the NASA mission. On the other hand, the SeaWinds
estimate more closely matches the 5-10% ice concentration during periods of rapid

sea ice retreat.

7.1.5 Ice Extent Conclusions

Previous studies have shown that Ku-band scatterometer data is capable of

effectively discriminating between open ocean and sea ice. This study demonstrated
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Figure 7.12: SeaWinds total sea ice extent estimate from 1999 day 200 to 2000 day
50. The NASA Team 30% ice concentration estimate is also plotted from 1999 day
200-273 indicating high correlation with SeaWinds in ice edge detection.
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Figure 7.13: SeaWinds vs. NSCAT ice extent comparison during the sea ice abla-
tion period. Differences are due primarily to differing ice concentration sensitivities

(SeaWinds: 5-10%, NSCAT: 30%).
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the development and implementation of a new algorithm for use with SeaWinds scat-
terometer data. The technique is fully automated and adapts to temporally changing
surface signatures. The resulting ice edges correlate best with the NASA Team 30-
35% ice concentration edge during ice advance and 5-10% during sea ice retreat. In
contrast, a strong correlation with the 30% contour was observed previously in an
NSCAT ice mapping study for both ice advance and retreat periods [8]. The method
works effectively for Antarctic and Arctic regimes as demonstrated by comparisons
with SSM/I-derived NASA Team ice maps and high resolution Radarsat SAR im-
agery.

Four microwave parameters are used in the classification: the modified
polarization ratio, the SeaWinds h-pol ¢°, and the dual-polarization o° estimate
error standard deviations. The combination of these parameters are proven effective
in identifying sea ice versus ocean regions in enhanced resolution polar imagery. This
study showed that the SeaWinds x images contain more information about sea ice
spatial distribution than their NSCAT counterparts. This is primarily due to the one
day SeaWinds imaging interval which reduces temporal dependence of the metric and
effectively increases sensitivity to azimuthal variations.

The SeaWinds edges are considered superior to the NSCAT product for
several reasons. First, the former have significantly better temporal resolution of
(one day rather than six days). Next, the ability to include the two k parameters
increases the overall quality of ice edge estimates. In addition, the quadratic bound-
ary classification is improved using maximum likelihood techniques rather than the
Mahalanobis distance. Finally, an additional post-processing step is added to the
SeaWinds method to incorporate a sea ice edge growth/retreat constraint.

The development of the described technique has resulted in the ability
to generate enhanced resolution sea ice extent maps on one day intervals. These
products can be applied in a variety of studies including ocean wind processing, sea
ice extent evolution, and global climate and weather studies. This research showed
that the SeaWinds and NSCAT sea ice extents were significantly different during
the 1996-1997 and 1999-2000 melt cycles. In particular, the SeaWinds extent is
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consistently higher throughout the sequence. This is due to interannual variability
in sea ice extent as well as differing sensitivities of SeaWinds and NSCAT to sea ice
concentration. While the NSCAT edge correlates best with the 30% NASA Team edge
throughout the year, the SeaWinds edge matches lower concentrations during sea ice
ablation. While the current available data set is relatively short, future SeaWinds
data from the instruments on the currently flying QuikSCAT platform and the future
ADEOS-II satellite will permit extended Ku-band polar sea ice mapping.

7.2 Ice Classification Using SeaWinds and SSM/I

In addition to the sea ice extent mapping methods of Chapter 5, SeaWinds
data can also be used with the sea ice classification techniques discussed in Chapter
6. This section discusses the application of multisensor ice classification to image sets
which, among others, contain SeaWinds ¢° data. In the following section, various
instrument combinations are considered for the implementation of the method. In
Section 7.2.2 principal component imaging of the chosen image set is considered.
Section 7.2.3 describes the implementation of the algorithm. Conclusions of this

study are given in the final section.

7.2.1 SeaWinds-SSM/I Ice Classification Data Sets

For the ice edge detection discussed in the preceding section, significant
changes in the original algorithm were required to facilitate its use with SeaWinds
data. In contrast, no modifications are needed to apply the new data set to ice
classification. Consequently, this portion of the chapter focuses soley on analysis
of the new classification results. The reader is referred to Chapter 6 for a detailed
description of the sea ice classification theory and procedure.

For the classifications implemented in Chapter 6, observations collected
from three instruments were used: NSCAT, ERS-2, and SSM/I. The combination of
active/passive, dual-polarization, multifrequency measurements proved to have great
utility in identifying six major types of sea ice in Antarctica. The loss of NSCAT

precludes the use of this technique in current and future studies of polar sea ice packs.
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However, the Ku-band SeaWinds scatterometer provides a good substitute for ice
classifications. SeaWinds reconstructed imagery consists of A3* and A} parameters.
Unfortunately, the incidence angle parameters B, and Bj cannot be estimated from
fixed-incidence angle SeaWinds data. Still, the improved temporal resolution offers a
reduction in blurring effects caused by ice motion during the imaging interval.

The one-day imaging interval for SeaWinds has several implications in
choosing data sets from other sensors for inclusion in the ice classification. First, the
ERS-2 AMI scatterometer requires six days of data to acheive full coverage of the
polar regions. To maintain the one-day temporal resolution, ERS-2 is not used in the
following ice classification experiments. It is expected that the loss of observations at
the lower ERS-2 frequency (5.3 GHz) will result in less ability to correctly segment
ice types in the imagery. Such lower frequency observations have greater ability to
penetrate the sea ice surface and observe the underlying ice structure. Subsurface
features are important in determining ice types.

The 85 GHz channels are also excluded from the classification data set.
High frequencies are more sensitive to atmospheric distortions such as cloud cover
and precipitation. In the ice classifications of Chapter 6, six days of data are used
to produce the SSM/I images. Consequently, the effects of transient atmospheric
phenomena are significantly reduced. However, for one day image reconstruction,
this is not the case. While the methods presented in Chapter 4 are designed to re-
move distorted measurements, one day does not provide enough SeaWinds data for
the technique to be effective. For similar reasons, the SSM/I 22V channel is also
excluded. This frequency is at a region in the microwave spectrum for which atmo-
spheric absorption due to water vapor is unusually high [29]. Without the temporal
averaging of a longer imaging interval, the 22V reconstructed imagery have significant

atmospheric corruptions that may cause classification errors.

7.2.2 Principal Component Imaging of SeaWinds-SSM /I Data

The resulting ice classification data set consists of two SeaWinds parame-

ters (A%* and A}%) and four SSM/I parameters (19V, 19H, 37V, and 37H). Thus, the
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Figure 7.14: Eigenvalue spectrum for the SeaWinds-SSM /I Antarctic data set during
1999 day 200.

sea ice observations reside in a six-dimensional space. The dimensionality of the data
space is reduced using principal component analysis (PCA). The PCA eigenvalue
spectrum contains the variances spanned by the associated eigenvectors. A sample
SeaWinds-SSM/I spectrum for 1999 day 200 is shown in Figure 7.14 which can be
compared with a similar spectrum in Figure 6.3. The plot demonstrates that the top
few principal components span a large majority of the variance in the data. In fact,
98% of the data variance is contained in the top three components. Consequently,
the lower three components are discarded in the classification.

Figure 7.15 shows an RGB composite image of the top three principal com-
ponents. The red, green, and blue images are the first, second, and third components,
respectively. This image illustrates the ability of the three-dimensional data set in
identifying sea ice types. Day 200 represents a period before which residual perennial

ice from the last season’s melt is completely swept out of the Weddell Sea. Remaining
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Figure 7.15: RGB composite image of the first three principal components for 1999
day 200. The red channel is the top principal component image, the green is second,
and blue is third. This image is useful in evaluating ice type information contained
in the top three PCA scores.
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perennial ice east of the Antarctic peninsula can be observed in the RGB image in
orange hues. Pancake ice regions in the outer Ross Sea have a similar orange signa-
ture indicating the inability of the data set to differentiate between these two types.
The loss of the o° incidence angle dependence, ERS-2, and SSM/I 22 and 85 GHz
parameters appears to have impeded the ability to distiguish between these types.
Accordingly, perennial and pancake ice forms are considered the same type for the
implementations discussed in the following section.

Other ice types can also be identified in Figure 7.15. Ice bergs and ice
shelves appear as bright pink regions. An example is the large ice berg, A22, northeast
of the tip of the peninsula. Smooth first year ice is evident in regions of green and
blue-green while rougher first year ice is shown as darker shades of blue. Finally, gray

regions denote the marginal ice zone and large polynyas.

7.2.3 Ice Classification Results

The three-dimensional principal component data space contains various
clusters representing different ice classes. These clusters can be segmented using
the mazimum a posteriori (MAP) methods presented in Chapter 6. The recur-
sive MAP ice classification algorithm is implemented with several sample SeaWinds-
SSM/I image sets to identify five general ice types: ice bergs (IB), perennial/pancake
ice (PER/PNC), rough first year ice (RFY), smooth first year ice (SFY), and the
marginal ice zone (MIZ).

Ice classifications are performed for 1999 day 201, 203, and 205 to show
short-term changes in the ice pack. The resulting Antarctic ice classification maps
are shown in Figure 7.16. The images reveal that the classification has moderate
success in identifying the spatial distribution of sea ice types. For example, residual
perennial ice is located in the Western Weddell Sea as it is slowly swept out to sea by
the Weddell Gyre. Ice berg A22 as well as several grounded ice bergs near the eastern
extent of the Ronne ice shelf are correctly identified. The rough first year ice regime
surrounds the smooth first year ice area. This result is consistent with the findings

in Chapter 6 and [73]. Areas labeled as marginal ice zone are primarily located at
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Figure 7.16: MAP ice classification of the image series for 1999 days 201, 203, and
205.
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the periphery of the ice pack as expected. A few exceptions are evident in polynya
regions within the ice pack. Since polynyas have characteristics very similar to the
MIZ, the algorithm appears to chosen correctly in these regions. In fact, the image
series illustrates the rapid formation of large polynyas north of New Schwabenland.

Unfortunately, errors are also evident in the classification. For example, in
the latter two images, significantly large regions are classified as ice bergs just east
of the Antarctic peninsula and in the outer Ross Sea. This error indicates that the
clusters for 1B, PER, and PNC have significant overlap in the data space. Through
the image sequence, the clusters get increasingly confused by the algorithm. Since
this phenomenon did not occur in the NSCAT-ERS2-SSM /T data set of Chapter 6, it
is concluded that the error is due to excluding the previously discussed parameter sets
(ERS-2 A, SSM/I 22V, 85V, and 85H) and the lack of incidence angle dependence
parameters (B, and By,).

The conclusions of Chapter 6 included a brief discussion about extending
the current method to a fuzzy classifier which estimates percentages of ice type. This
allows for the estimation of ice type concentrations in each pixel rather than assign
each pixel exclusively to a single class. Using SeaWinds data, a first step in this
direction is taken using the current methods. Instead of ice type concentrations, the
following method provides the spatial distributions of MAP probabilities for each ice
type. That is, each pixel contains the estimated MAP probability that it belongs to
a particular ice type cluster. This is obtained from the MAP distance metric in Eq.
(6.12). Hence, an image is produced for each ice type.

Sample fuzzy classification images for 1999 day 200 are shown in Figure
7.17. In this case, a six-cluster classification was performed (PER and PNC types
are considered separately). The image illustrates the transitional regions between
different ice types. The transition from one ice type to another is expected to occur
relatively gradually rather than in the distance of a single pixel as predicted by the
hard classification. In order to increase the utility of these products, more research is
needed to relate the MAP probabilities to ice type concentrations. Without significant

amounts of in situ data, this portion of the study must be left to future studies.
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Figure 7.17: Fuzzy classification results for 1999 day 200. The images contain the
MAP probabilities of ice type membership. Light values denote high probability while
black is low.
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7.2.4 Ice Classification Conclusions

This study has presented results from the application of the ice classifi-
cation algorithm derived in Chapter 6 to current data sets which include SeaWinds
scatterometer imagery. The SeaWinds one day imaging interval precluded the use of
ERS-2 data as well as SSM/I 22 and 85 GHz channels. While the resulting classifica-
tions demonstrated a moderately good segmentation of various ice types, classification
errors are noted which are attributed to the parameter exclusion.

A first step toward fuzzy classification is also considered in the study.
This allows for the estimation of ice type concentrations and allows for a greater
understanding of sea ice type dynamics and evolution. Resulting images illustrate
the MAP probability that each pixel belongs to a particular ice class. Since the
MAP distance metrics have not been conclusively related to ice concentrations, more

research is needed in this area.
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Chapter 8

Large Scale Ku-band Backscatter Inverse Modeling

8.1 Introduction

The primary goal of cryosphere remote sensing is the extraction of key sea
ice surface characteristics from the observed signatures. Preceding chapters have ad-
dressed the estimation of critical sea ice characteristics such as sea ice extent and ice
type. The various sensors used in the studies each contributed in different ways to
improve estimate quality. In this chapter, the theory and methods for the extraction
of other important surface parameters are presented. In particular, surface character-
istics closely related to microwave scattering mechanisms are estimated based on the
inversion of a well established forward scatter model. The research described in this
chapter has been submitted to the Journal of Geophysical Research and is currently
in review.

Several satellite instruments have proven the utility of scatterometers in
monitoring the Arctic and Antarctic regions. The first was the Seasat-A scatterometer
(SASS). Though the SASS mission was short, SASS data illustrated that Ku-band
measurements are sensitive to the presence of sea ice and show valuable variations
within the ice pack that relate to surface features [2, 14, 15, 16]. Later, the AMI
scatterometers aboard the European Remote Sensing Satellites (ERS-1 and ERS-
2) demonstrated the value of C-band active scatterometer data in monitoring sea
and glacial ice regions [9, 14, 18]. The NASA scatterometer (NSCAT) flew aboard
the Advanced Earth Observation Satellite (ADEOS) platform from approximately
August 1996 through June 1997. Ku-band NSCAT data have been used in a number
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of cryosphere studies [4, 8, 14, 26]. When the NSCAT mission was prematurely
terminated due to a solar panel failure, the NASA-built SeaWinds instrument aboard
QuikSCAT filled the gap of active Ku-band data in mid-1999. SeaWinds data is used
to monitor sea ice extent [80].

The described instruments have produced a large set of active multi-frequency,
dual-polarization microwave scatterometer measurements of sea ice spanning many
years. These observations can be interpreted through accurate backscatter modeling.
Forward scattering models have been developed to relate key surface parameters to
these observed signatures. Many critical sea ice parameters are of interest to the field
of cryosphere remote sensing [81]. Several studies have sought to extract information
about the surface from observed signatures. For example, the NASA Team algorithm
was developed to estimate sea ice concentration from passive radiometer data col-
lected by the Special Sensor Microwave/Imager (SSM/I) [31, 36]. Various studies
have developed methods for extracting sea ice type and extent from single and mul-
tisensor data sets [8, 9, 62, 69]. Model inversion techniques have also been employed
to determine the scattering components reponsible for observed microwave signatures
[2, 74]. While directly estimating the parameters mentioned can be difficult, this
study proposes a step in this direction through a better understanding of large-scale
sea ice scattering properties. Rather than deal with small-scale ice characteristics, a
simplified modeling approach is adopted to infer key electromagnetic scattering char-
acteristics. These are, of course, related to the desired physical properties of the sea
ice.

Thus, this chapter describes the development and implementation of a
large-scale model inversion methodology based on a simple forward scattering model.
The goal of the study is to provide an automated means for the inversion of microwave
scattering models over vast regions rather than small individual homogeneous regions.
The resulting sea ice parameter maps allow for interpretation of the evolution of scat-
tering mechanisms over the entire cryosphere. The chapter is organized as follows:
In the next section, the necessary background information is presented. Sea ice scat-

tering is discussed along with variable order image reconstruction of NSCAT data.
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In Section 8.3, forward electromagnetic modeling of sea ice backscatter (o°) is con-
sidered. The model used for the large-scale inversion is described along with the
associated surface parameters. Section 8.4 presents the inversion method and dis-
cusses its strengths and weaknesses. Next, in Section 8.5 simulations are described to
gauge the capability of the technique to extract surface ice characteristics from noisy
measurements. The method is implemented using NSCAT data in Section 8.6 to pro-
duce imagery of surface parameters over a temporal series during the early portion of
the NSCAT mission. Various phenomenon observed in the Antarctic and the Arctic

are analyzed using the model inversion products. Last, conclusions are given.

8.2 Variable Order NSCAT Image Reconstruction

Microwave ¢° signatures of sea ice contain important information about
surface characteristics. The goal of inverse modeling is to extract or estimate those
parameters from o° measurements. The observed signatures are also a function of
instrument design and measurement collection specifications such as frequency, po-
larization, and incidence angle. In previous chapters, data collected by NSCAT has
demonstrated its sensitivity to sea ice features. In this section, the reconstruction of
variable order NSCAT imagery is considered. These images function as inputs to the
inverse model of Section 8.4.

Multiple NSCAT passes over the polar regions are used to reconstruct
0° imagery. To improve the nominal resolution of NSCAT measurements, resolution
enhancement algorithms can be applied to generate images. These methods rely upon
a parameterization of the dependence of ¢° on incidence angle. Chapter 3 discussed
the generation of scatterometer imagery based on a linear (first-order) o° vs. # model.
However, in an effort to more accurately represent this dependence, various higher
order models can be used with increasing sensitivity to noise as order is increased. In

general, ¢° (in dB) can be modeled with by
0°(dB) = A+ B(0 — 40°) + C(6 — 40°)? + D(0 — 40°)® + . .. (8.1)
where 6 is the incidence angle, A is ¢° normalized to 40°, B is the linear incidence angle
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dependence of ¢°, C is the quadratic incidence angle dependence of ¢°, and so forth.
Equation (2.2) is a special case of the generalization in Eq. (8.1) above. Though,
NSCAT o° is found to have a nearly linear dependence on 6 for a limited range
of incidence angles (20°-60°), higher order models can be used to more accurately
represent the dependence though the higher coefficients become increasingly sensitive
to noise.

Several reconstruction methods exist for the generation of scatterometer
imagery. For this study a polar stereographic projection was used in all image prod-
ucts. The first reconstruction method consists of binning 0 measurements into 22.25
x 22.25 km grid cells. For each cell, a polynomial fit of a chosen order is applied to
model the # dependence of 0°. Hence N+1 binned images are produced where N is
the polynomial order. Since the nominal NSCAT resolution is 25 km, this technique
does not improve measurement resolution but is less prone to reconstruction artifacts
and noise.

The AVE algorithm (see Chapter 3) is another reconstruction technique
for scatterometer image production [39]. Like the binning method, a polynomial fit is
used for each pixel to estimate the pertinent coefficients. However, the AVE method
uses a higher resolution 4.45 x 4.45 km grid and produces images with an effective
resolution of 12-15 km. For a particular pixel, the polynomial fit measurement set
consists of all the measurements whose spatial footprint response include that pixel.
AVE images are produced for each polynomial coefficient. Sample ice masked AVE
images of the Antarctic during 1996 day 270-275 are shown in Figure 8.1 in which
a second order model was employed. The images are ice masked using an NSCAT-
derived method described in [8]. Significant detail relating to surface parameters is
evident in varying A, B, and C pixel values. The images also demonstrate that higher
order terms are increasingly sensitive to measurement and reconstruction noise.

The final image reconstruction method is the scatterometer image recon-
struction (SIR) algorithm [39] as described in Chapters 2-3. SIR is a modified mul-
tivariate multiplicative algebraic reconstruction technique which uses multiple passes

of a satellite instrument to increase spatial resolution. Like the AVE algorithm, a
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Figure 8.1: Sample ice masked NSCAT AVE v-pol imagery for 1996 days 270-275.
The images are, from top left, A,, B,, and C,, respectively. The original images
contain 1940 x 1940 pixels with a nominal pixel spacing of 4.45 km.
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4.45 km nominal pixel spacing is used. SIR reconstructed images produce an effective
resolution of approximately 10 km instead of the nominal 25-50 km resolution of the
instrument [40]. SIR results in increased reconstruction artifacts as well as increased
resolution. For this reason, only the first order o° vs. # model is used for SIR imagery.

Each of the described reconstruction algorithms have inherent strengths
and weaknesses. The binning images have the lowest resolution, but less noise in
higher order coefficients. The AVE images have medium resolution also with lower
noise levels. The SIR reconstructed images have the highest resolution but are more
sensitive to noise in the high order coefficients. For the Antarctic and Arctic regions,
all of these methods require 6 days included in the image generation to achieve full v-
and h-pol coverage with a range of incidence angles in each pixel. Ice motion during

the imaging interval can cause blurring in the final image products particularly in the

AVE and SIR images.

8.3 Large-scale Forward Modeling of Sea Ice Backscatter

Forward models of sea ice backscatter have been developed which predict
0° as a function of incidence angle and important surface parameters. Various sea
ice characteristics affect observed signatures. For example, surface roughness reduces
specular reflections and increases backscatter. Geophysically, this parameter is im-
portant in modulating wind sheering forces on the ice pack and can be an indicator
of internal stresses. Liquid water content also influences backscatter signatures. In-
creased water content results in less penetration by incident microwave pulses. Hence,
the backscatter is dominated by the surface scattering response. Snow cover adds an-
other layer to the multilayer structure. Very dry snow appears electrically transparent
at many microwave frequencies. However, as snow liquid water content increases, the
sea ice signature is increasingly masked. In addition, sea ice salinity plays a role in
determining backscatter responses. Brine pockets increase the effective permitivitty
and provide volume scattering elements. Since brine pockets are commonly ellipsoidal
in shape, the orientation of these inclusions influence the ¢° polarization response.

Both snow cover and brine pocket distribution are closely related to sea ice age. Older
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ice forms typically have greater accumulated snow cover. Also, sea ice aging results
in increased brine drainage. Volume scattering air bubbles often remain in the place
of old brine inclusions.

A better understanding of scattering from sea ice enhances the ability to
estimate geophysical parameters through inverse modeling. Current research in the
field has focused on mathematically modeling the complex process of scattering from
sea ice on small scales as a function of the previously described parameters. The
complexity is due in part to the anisotropic nature sea ice permitivitties. A particular
source of anisotropy is the vertically oriented brine pockets caught within the ice
crystal lattice. In addition, sea ice is a multilayer medium with rough surface and
volume scattering contributions to the backscatter signature. Multilayer anisotropic
scattering models have been proposed using a dyadic Green’s function as well as the
first-order Born approximation to predict backscatter coefficients [82]. Tjuatja et al.
developed a scattering model for snow-covered sea ice using radiative transfer theory
[83]. While several radiative transfer techniques have been proposed in the past,
Tjuatja’s model is considerably more robust by accounting for non-Rayleigh particle
sizes and close spacing between scatterers. An example of sea ice forward scatter
modeling is the work of Nghiem et al. [84] in which a polarimetric backscattering
model is derived. Nghiem relates ice, brine, air, and salinity properties to backscatter
signatures.

Two primary factors limit the use of such models in large-scale inversion
studies. First, these models assume the region of interest has relatively homogeneous
scattering properties. Some randomness is allowed in the form of random surface
height or other parameters with specified variances but, in general, the region is
considered to be spatially homogeneous. This may be appropriate for SAR imagery
where the resolution is a few tens of meters, but scatterometer footprints have 5-
50 km resolution and thus can often cover very heterogeneous regions. Also, the
detailed models are very computationally complex. Inversion of the models on large
fields of measurements is not computationally feasible. Consequently, a model for

use at the lower resolution found in scatterometer imagery must be based on more
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general, average, large-scale parameters. Computational complexity of the forward
model must be simple enough to allow for inversions of large data sets in relatively
short time frames.

One such simple model assumes that sea ice scattering consists of incoher-

ently summed surface and volume scattering responses [85, 86, 87],

o . o o
Om = Us+av

° ° noy
b = oo+ t? (—2a )0080,- (8.2)
where

measured o°,

o? surface scattering o,

o, volume scattering o°,

f; measurement incidence angle,

t  plane wave power transmission coefficient at 6 = 6;,
n  number density of subsurface scatterering elements,
op 0o per particle,

a  volume attenuation coefficient.

This bulk model does not require a detailed description of the ice medium. Instead,
several large scale parameters are used to represent the mean response in the region
of interest. Following Swift [86] three primary volume scattering parameters are

combined into one variable, the volume scatter albedo given by

n=—. (8.3)

Though it is a general parameter, 7 is related to sea ice features such as the number
of volume scattering brine pockets and air bubbles. It is also sensitive to the effective
permitivitty of the sea ice layers below the surface. Highly saline brine pockets have
higher o3, than air bubbles resulting in greater n values for the same number density,
n.

This simple volume scattering model assumes only single scattering. While

multiple scattering certainly occurs in a sea ice medium, the model assumes these are
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Figure 8.2: Model generated volume scattering v-pol 0 responses vs. incidence angle.
Various volume scattering albedo values are used to show the o° dependence on 7.

negligible compared to the direct backscatter response. Figure 8.2 shows v-pol vol-
ume backscatter as a function of incidence angle for various 7 values. The signatures
exhibit low dependence on incidence angle. As 7 increases, the level of ¢° also rises.
Volume scattering occurs primarily in ice types containing numerous inhomogeneities
and low loss such as multiyear ice. Snow layers containing crystallized structures
can also result in strong volume scattering contributions. Hence, in the model inver-
sion, multiyear ice forms are expected to have relatively high n when compared with
younger ice types such as first year ice.

Surface scattering is also an integral component of the backscatter model.
Assuming that the surface can be modeled as an ensemble of reflective facets with

Gaussian slope distributions, a geometric optics solution can be used [86, 88] so that,

—tan?0;/25?
oo = T0e (8.4)
s 252cos%0;

where
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Figure 8.3: Model generated surface scattering v-pol ¢ responses vs. incidence angle.
The parameter [ is related to RMS surface slope and is defined in the text. For these
plots, the reflectivity, r(0), is 0.08 corresponding with a dielectric constant of 3.2.

r(0) =1 —¢(0) surface power reflection coefficient at nadir,

S RMS surface slope.

The geometric optics solution is derived under the assumption that the wavelength
is significantly smaller than the typical roughness dimensions. At 14 GHz, the corre-
sponding wavelength is approximately 2.1 cm. Hence, the model accounts for rough-
ness features which are much larger than this, while smaller roughnesses may not be
fully accounted for in the model. Tt is expected that large surface roughness due to
wave action and ice pack sheering forces are within the bounds of this assumption.
However, very small-scale roughness due to such phenomena as wind roughening and
small surface inhomogeneities are not accounted for in the model.

For the purposes of this chapter, a new parameter is defined, 3 = 252, to
simplify the model inversion. Figure 8.3 illustrates the theoretical v-pol scattering

responses for various values of 3. The plots show that as surface slope increases,
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the o° response broadens in incidence angle. For very smooth surfaces, a significant
portion of the response occurs below 20° incidence. Since 20° is used as the lower
cutoff for the NSCAT measurements used in the image reconstructions, it is expected
that the inversion will have limited capability in accurately identifying very low (3.

At Ku-band, surface scattering dominates young and first year ice responses
which have relatively high water and brine content. These types have significant con-
ductivity and, hence, high loss. Surface melting masks lower level volume scattering
and creates greater relative dependence on surface scattering contributions. Inverse
modeling of 0° images should result in relatively high § in regions of significant
surface deformation and low values over smoother ice forms.

The two fundamental parameters in the surface scatter model, 7(0) and 3,
are both related to important surface features. The Fresnel reflectivity coefficient,
r(0), is directly related to the effective permitivitty of sea ice. It has been shown
that lossless sea ice permitivitties are roughly between 3.0 and 4.5 [85, 89] in the
Ku-band portion of the spectrum resulting in 7(0) values within the range of 0.072-
0.13. However, the forward model assumes that the sea ice is lossless. While this
applies reasonably well for older ice forms such as ice bergs and multiyear ice in
winter, internal water content or surface melt introduces conductivity and loss to the
medium. Hence, dielectric constants should not be directly computed from estimates
of r(0) derived from the inverse model described in the following section. Nevertheless,
7(0) can be used to obtain a general idea of effective relative permitivitties throughout
the ice pack.

Figure 8.4 shows the total scattering v-pol responses for sample r(0), 8, and
1 values. The plots illustrate that the theoretical o° vs. 6 signatures can not always
be fit with a linear approximation between 20° and 60°. A linear model is appropriate
for plot (a), but (b) and (c) clearly require higher order terms to accurately represent
the incidence angle dependence. In general, the linear dependence assumption does
not fit well in scenarios with relatively low (3 values. Swift was able to fit such plots
to SASS ¢ observations of multiyear ice in the Arctic [86], demonstrating the ability

to invert the model and estimate the three fundamental parameters.
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Figure 8.4: Model generated composite (volume + surface) v-pol scattering responses
for sample combinations of 7(0), 3, and n. The curves show the nonlinear nature of
0° as a function of incidence angle.

The three forward model parameters (r(0), 3, n) can be used as proxy
values in the interpretation of polar imagery. A close relationship is expected to exist
between these values and sea ice type. Consequently, the parameter estimates can be

used in ice classification efforts.

8.4 Model Inversion Methodology

The theoretical scattering model parameters, 7(0), #, and 1 can be esti-
mated from observed NSCAT ¢° signatures given sufficient incidence angle sampling.
In this section, an automated inversion technique is presented for determining the
three parameters from NSCAT reconstructed imagery.

The inversion approach consists of the automated steepest descent opti-

mization of an objective function. The objective function provides a measure of the
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error between observed signatures and estimated model parameters,

J(0%,r(0),8,m) = 3 [0°(0:) — o7, (6:))°

6;,=20
N 60 T.(o)eftan201/252 n 2
J(c°, h) = [9 — 101 ( t2(—> ei)] 8.5
(0°,h) aiz:;o o°(0;) 0910 55c0st0, + 5 ) C08 (8.5)
where
J total squared modeling error,

0°(6;) observed backscatter cross section at 6;,

[e]

o2,(0;) modeled backscatter cross section at 6;

h vector of model parameters [r(0), 3, n]T.

Hence, J(o°, ﬁ) is a measure of the accuracy of the model parameters in predicting
the observed signature. The ¢°(f;) response is computed given the ¢° vs. @ variable
order polynomial fit coefficients for a particular pixel in the reconstructed imagery.
Since total squared error is a sufficient statistic for mean squared error, the inversion
method is a minimum mean squared error technique.

In an effort to detemine the convexity of the objective function, J was
computed for all parameter values in the ranges given in Eq. (8.10) for several sample
o° signatures. The resulting objective function cube is then analyzed by observing
multiple two-dimensional “slices” through the cube at various levels. These analyses
indicate that the function has a well defined single minimum within the range of
expected r(0), 3, and 7. Hence, the optimal parameters are found at the h yielding
minimum J(o°, i_i)

One method of automated optimization of an objective function is the
steepest descent approach. Steepest descent locates the minimum of a function in
an iterative fashion through the estimation of the local slope. The slope is obtained
from the partial derivatives of the objective function,

o 7 a o T a o 7 8 o 7 r
G(Uah): _aT(O)J(O-’h)’ __J(th): _8_77J(07h) (86)

where G(0°, h) is the direction vector. The partial derivatives in Eq. (8.6) are ana-

lytical functions of o°(#), r(0), 3, and n given any location in the objective function.
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Consequently, G(o°, FL) can be computed for any location vector h and points in the
direction of steepest descent.
A recursive algorithm for computing the model parameters, and thus search-

ing for the minimum of J(o°, ﬁ) is given by,
h(m+1) = h(m) + A(m) ©G(m), m=,0,1,2,... (8.7)
where

A vector of step sizes for each model parameter,

®  Schur element by element vector product operator.

The step size A can be chosen in a number of ways. Steepest descent algorithms often
use step sizes that are a function of the objective function. Hence, smaller steps are

taken closer to the minimum. For this study, a fixed step size is used,
A =1[0.001, 0.002, 0.002]" (8.8)

yielding model parameter estimate resolutions of 0.001, 0.002, and 0.002 for r(0), 3,
and 7, respectively.

The algorithm is initialized with arbitrary #(0). Simulations indicate that
the minimum is found as long as 77,(0) is in the range of possible sea ice parameter
values. For a given image set of polynomial fit coefficients, the algorithm is run for
each pixel. The resulting products are images of 7(0), 3, and 7 used in determining
the spatial distribution of important surface parameters.

The algorithm has various strengths that make it useful in model inversion.
First, the proposed algorithm is fully automated. Many previous inverse modeling
studies focusing on fitting observed and forward modeled signatures have relied on
user interaction to manually perturb the model parameters until a satisfactory match
is obtained. The technique presented in this chapter requires no user interaction
and quickly estimates model parameters given an observed o° vs. 6 response. This
facilitates the production of model parameter image sequences from scatterometer

imagery. In addition, if the the o° incidence angle dependence model is sufficient (of
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Figure 8.5: Flowchart illustrating the inverse model simulation process.

high enough order) the algorithm finds the best parameters in the minimum mean
squared error sense.

The estimated parameters provide, in effect, the mean responses over the
pixel region. These are useful on a macroscopic level when viewing entire sea ice
packs. However, the products of the inversion technique have limited utility on very
small scales. Because the model is based on a specific forward model, the quality of
the resulting parameter estimates are directly related to the quality of the original
forward model. Some error is expected since the forward model does not account for

such things as complex sea ice permitivitties and small-scale roughness features.

8.5 Inverse Model Simulations

To evaluate the capability of the inversion technique, simulations are de-
signed and implemented. The simulation methodology is outlined in Figure 8.5. First,
the “ground truth” model parameters r(0), 3, and 1 are run through the forward
model to produce a 0° vs. 6 response. This signature is then sampled in incidence
angle between 20° and 40° to simulate scatterometer measurement collection. At this
point, Monte Carlo scatterometer noise is added to each measurement using the noise
model,

0,(0;) = 0°(0:)(1 + N(0,kp)) (8.9)
where

o2(0;) noise-added o° at incidence angle 6;,
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0°(6;) original noiseless 0,

N(0, k,) normally distributed random variable with standard deviation k.

The noise-corrupted measurements are used to obtain polynomial fit coefficients.
Variable degree polynomials are used to determine the effect of model order on the
inversion. The coefficients are then input to the inverse model resulting in surface
parameter estimates. Error analysis is performed with the original parameter values
and the inverse model results.

For the purposes of illustration, model inversion is considered using the
total scattering cases in Figure 8.4. The inverse model is first evaluated in the absence
of noise with ideal incidence angle sampling consisting of samples at each degree from
20° to 60°. For each case, the simulation is implemented using polynomial fit orders
from one to four to illustrate the algorithm’s performance. The first case to be
inverted is example (a) from Figure 8.4. Table 8.1 contains the resulting estimates
for all three parameters using different reconstruction model orders. These values
demonstrate that virtually all polynomial orders provide good estimates of the true
values. Since the response is close to linear in the 20°-60° range which the inverse
model considers, even the first order model performs reasonably well. Figure 8.6
shows a comparison of the true ¢° signature with the estimated signatures at each
of the considered orders. The vertical lines at 20° and 60° incidence angle bound
the range over which the signature matching is performed. The plots are virtually
indistiguishable demonstrating the proper performance of the algorithm.

The case (b) inversion illustrates the inverse model’s performance with
nonlinearities in the true o vs. # signature. In Table 8.1 it is evident that the first-
order model performs poorly. The [ estimate is particularly erroneous. However, at
order two and above, the estimates are close to the actual values. Figure 8.7 offers
a graphical interpretation of the inversion case. The plots clearly show the poor
performance of the first-order model values.

The true response in case (c) exhibits extreme nonlinearities. While such
a case is not expected to be common, it is included to show the inverse model’s

performance in extreme circumstances. For this scenario, third or fourth order model
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Figure 8.6: Comparison of inverse model-derived responses at various orders with the
true response for case (a) in Figure 8.4.

coefficients are required as inputs to the inverse model to provide reasonable estimates
of the surface parameters. Figure 8.8 illuminates the situation further. These plots
show the difficulty encountered by first and second order inputs in matching the true
signature. The sharp “elbow” in the response can only be accounted for by third or
fourth order polynomial fits. A greater range of incidence angles included in the model
would conceivably yield better estimates at all orders. Unfortunately, scatterometers
like NSCAT do not collect measurements over such a broad range of viewing angles.

These three simulations demonstrate that the inverse model performs prop-
erly in the absence of noise given sufficient incidence angle sampling and satisfactory
polynomial fit coefficient inputs. In actual scatterometer image reconstructions, such
ideal incidence angle sampling is not common. For 6 day NSCAT images generated
at the SIR and AVE spatial resolutions of 4.45 km, average pixel regions usually
encounter at least 10 hits. Hence, for the remaining simulations, incidence angle

sampling is performed randomly from a uniform distribution between 20° and 60°
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Figure 8.8: Comparison of inverse model-derived responses at various orders with the
true response for case (c) in Figure 8.4.
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Table 8.1: Inverse model simulation examples in the absence of noise and with inci-
dence angle sampling at each degree in the range 6 € [20°, 60°].

Case (a) Case (b) Case (c)
r0) | B n_ | 0 | B n_| 0 | B n
True 0.05 | 0.25 0.4 0.08 | 0.15 0.1 0.11 | 0.05 0.2
Order=1 || 0.049 | 0.242 | 0.404 || 0.06 | 0.242 | 0.082 | 0.015 | 0.222 | 0.178
Order=2 || 0.049 | 0.246 | 0.402 || 0.079 | 0.146 | 0.102 || 0.033 | 0.094 | 0.182
Order=3 || 0.05 | 0.252 | 0.4 | 0.078 | 0.154 | 0.1 | 0.073 | 0.06 | 0.19
Order=4 | 0.05 | 0.25 0.4 0.08 | 0.15 0.1 | 0.101 | 0.052 | 0.198

with 10 samples for each realization. In addition, measurement noise is simulated
using Eq. (8.9) and various k, values. Typical NSCAT £k, levels are in the range 0
to 0.1. In fact, for the NSCAT Antarctic v-pol data collected from 1996 day 270 to
275, 97% of the k, values are below 0.1 and 86% are below 0.05.

To offer more comprehensive simulations which consider a broad range of
(r(0), B, n) triplet combinations, synthetic “ground truth” images are constructed
of each parameter that represent all possible sample combinations of the parameters

within the ranges,

r(0) € [0.01,0.3],
3 € [0.05,0.4],

n € [0.05,0.4]. (8.10)

These values represent ranges which cover typical sea ice surface parameters. The
images are generated using 25 evenly spaced samples of each parameter resulting in
253 combinations. Figure 8.9 shows the truth images which are used in the simulation
process. Noise-corrupted polynomial coefficient images are simulated which become
inputs to the inverse model.

The simulations are run using the incidence angle sampling described pre-
viously. Noise levels (k,) are considered at 0.02 increments from 0 to 0.1. The results
are summarized graphically in Figures 8.10-8.12. In Figure 8.10, the 7(0) estimates

are shown with k, values of 0, 0.04, and 0.08. The image frames demonstrate the
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Figure 8.9: “Truth” parameter images, r(0), £, and 7, used in the model simulations.

increasing ability of the algorithm to accurately represent the left-to-right increasing
gradient as the model order increases. Nearly all images show that the algorithm
has difficulty in areas corresponding with very low ( values. As previously noted,
extremely low (3 correspond to scattering responses that are primarily contained be-
low the 20° incidence angle limit for NSCAT data. The images also exhibit that
higher order models are increasingly sensitive to noise as evident by the speckling in
the estimate frames. Thus, a trade off exists between ability to estimate parameters
accurately (on average) and sensitivity to measurement noise.

The performance of the algorithm in estimating [ is shown in Figure 8.11.
The image panels reveal that first-order coefficients are not sufficient to accurately rep-
resent the surface roughness induced characteristics of the forward scattering model.
The first-order frames are nearly constant in value. In contrast, the second to fourth-
order models are much more successful in reproducing the upward 3 gradients in the
truth image. Like 7(0), the [ estimates are increasingly sensitive to noise as order
increases.

Estimates of the final parameter, n, are shown in Figure 8.12. Similar

trends with order exist for 7 estimates as with the previous two. The first-order
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Figure 8.10: Inverse model 7(0) parameter estimates at various o° vs. § model orders
and noise levels.

model has difficulty generating the constant frames in the truth image. However, all
of the higher order models appear to perform relatively well.

In order to provide a quantitative measure of algorithm performance over
all the possible parameter combinations, the median absolute error is used. This
metric is computed for each parameter as the median of the ensemble of absolute
errors over the entire truth image. The estimate images have few very large errors
caused by poor sampling or extreme noise. However, the few outliers can skew an
average error metric. The median absolute error is used to reduce the confusing effects
of theses outliers.

Figures 8.13-8.15 illustrate the error metric for the three forward scattering

model parameter estimates as a function of k,. All of the plots indicate that parameter
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Figure 8.11: Inverse model § parameter estimates at various ¢° vs. 6 model orders
and noise levels.
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Figure 8.12: Inverse model n parameter estimates at various o° vs.  model orders
and noise levels.
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Figure 8.13: Median absolute error of r(0) estimates as a function of measurement
noise parameter k, and model order.

estimate error is lower for higher order models in the absence of noise. However, as k,
rises, the second or third-order estimates have the lowest median absolute error. The
curves also show that higher order models are increasingly sensitive to k,, evident in
steeper slopes in the error plots. The first-order model is relatively insensitive to k, in
all three figures since this model performs the most averaging. The results in Figures
8.13-8.15 indicate that the second or third order ¢° vs. 6 polynomial coefficients
provide the best inputs to the inverse model in the presence of noise. Since both offer
similar error characteristics, the second order model is used with actual NSCAT data

as presented in the following section.

8.6 Results

The inversion method is applied to second-order NSCAT reconstructed v-
pol AVE imagery (A,, B,, and C,) to study the behavior of the technique and to

interpret phenomenon observed in the reconstruction ¢° images. First, the inversion
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is performed on Antarctic image sequences. Three six day Antarctic SIR images are
shown in Figure 8.16. The images are ice masked using an NSCAT-derived ice edge
algorithm [8]. The three frames each show significant ¢° detail within the ice pack.
The goal of the inversion is to extract useful surface features from these variations
and to provide maps of them. An interesting phenomenon illustrated in this image
sequence is the “blooming” of o values near the ice perimeter. That is, the A, values
increase significantly in a very short period of time in localized regions. An example
is shown near the ice edge in the outer Weddell Sea. The A, values in this region
during the day 279-284 image are significantly higher than the previous two images.
SSM/I radiometer brightness temperatures drop significantly in the bloom area. As
described below, the inverse model is used to provide a physical interpretation of this
phenomenon.

The inverse model is implemented for the Antarctic AVE image sets cor-
responding the images in Figure 8.16. Figure 8.17 shows the spatial distribution of
r(0) estimates for each time interval. Several large ice bergs with very high r(0)
are clearly observed in the images such as B10A in the lower-left quadrant of the
image and several grounded ice bergs near the eastern limit of the Ronne Ice Shelf.
First year ice dominates much of the Antarctic ice pack. These regions have typically
low 7(0) levels compared with ice bergs and several regions near the ice edge. The
Weddell Sea bloom is evident in increased r(0) indicating an increase in the effective
permitivitty in the area.

The Antarctic 3 estimate images are shown in Figure 8.18. The 3 estimates
are visually more noisy than r(0). Areas of very smooth first year ice have low 3 values
in the images. One example is near the western edge of the Ronne ice shelf which is a
region of new ice growth as older ice forms are drawn northward along the peninsula
by the Weddell Gyre. The area surrounding the previously discussed grounded bergs
have high § consistent with sea ice deformations caused as the ice pack collides with
the bergs. The bloom area does not indicate any obvious change in this parameter.

The n parameter images are shown in Figure 8.19. The highest volume

scattering albedo values are found in pixels covering ice bergs. Since ice bergs are
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Figure 8.16: Ice masked NSCAT Antarctic A, SIR image series.
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Figure 8.17: Inverse model estimates of Antarctic 7(0). The greyscale image display
range is r(0)€[0,0.12].
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Figure 8.18: Inverse model estimates of Antarctic 5. The greyscale image display
range is 3€[0.1,0.4].
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Figure 8.19: Inverse model estimates of Antarctic 7. The greyscale image display
range is n€[0,0.3].
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composed of glacial ice, they have virtually no salinity and, thus, low loss. Mi-
crowave frequency pulses, therefore, are sensitive to scattering from subsurface inho-
mogeneities. A small region of multiyear ice near the tip of the peninsula also appears
very bright in the image. A narrow stream of older deformed ice with medium 7 values
is also evident running through the middle of the Weddell Sea parallel to the Ronne
Ice Shelf. This line is created by the Weddell Gyre motion pulling ice debris away
from the grounded ice bergs near the shelf. Much of the remaining ice pack, consisting
primarily of various forms of first year ice, have low volume scattering albedo. The
only exception to this are in various bloom regions. In the final image, the increased
A, in the Weddell bloom is accompanied by a sudden rise in 7. A local refreezing
event, could cause the observed change in volume scattering.

These results can be compared with the ice type classifications of Chap-
ter 6 as shown in Figure 8.20. This figure illustrates the ice classification for 1996
day 261-266 along with the corresponding estimates of the three model parameters.
Correlation between ice type and the scattering parameters is observed. For exam-
ple, PER ice has relatively high r(0) and 5 values. High volume scattering albedo is
expected for this ice class since PER ice has very low loss and hence, high volume
scattering contributions. On the other hand, RFY and SFY ice types have much
lower 7(0) and 7 values. While some correlation is observed in the § image compared
to the RFY and SFY regimes, the 3 estimates are clearly noisier than r(0) and 7.

The distributions of 7(0), £, and 7 for each ice type are shown in Figures
8.21-8.23. These plots characterize typical parameters ranges that are observed for the
various ice classes. Figure 8.21 illustrates that the IB and PER types exhibit a broad
range of reflectivity. Of the remaining ice types, PNC has the highest r(0) followed
by MIZ, RFY, and SFY, respectively. In Figure 8.22, similar distributions are shown
for 3. IB and PER ice types have a large range of surface slopes. PNC and RFY ice
are expected to exhibit higher surface roughnesses than SE'Y and MIZ. The PNC and
RFY distributions are, in fact, shifted toward higher # though significant overlap is
observed. The high variability of the § distributions indicate that the inverse model

estimates contain more noise than the r(0) and 7 estimates. Finally, Figure 8.23
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Figure 8.20: Comparison of a sample Antarctic ice classification image with the cor-
responding surface parameter estimates (1996 day 261-266).
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Figure 8.21: Normalized histograms of 7(0) for each ice type in the 1996 day 261-266
ice type classification.

shows the distributions of volume scattering albedo, 7, for each classified ice type.
The plots demonstrate that IB and PER ice have higher n values as expected. These
types have very low loss resulting in greater volume scattering contributions to the
observed signatures. Ice classes with greater loss (due to increased salinity and water
content) such as RFY, SFY, and MIZ have much lower 1 values.

The inversion method is also applied to Arctic data. A four AVE image set
series representing the onset of Arctic summer is used as inverse model inputs. The ice
masked image series is illustrated in Figure 8.24. The Arctic ice pack is characterized
by large regions of multiyear ice exhibiting high A, values near the centers of the
images. Younger forms of ice have lower A, signatures. The phenomenon examined
in this sequence is the annual drop in ¢° observations due to the passage of warm
fronts over the ice pack inducing significant surface melting. While the first few images

have very high multiyear o° signatures differentiating this ice type from lower ¢° first
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year ice, by the end of the image sequence the two types are virtually indistiguish-
able.

Figure 8.25 contains the image estimates of Arctic r(0). The noisy values
near the pole are due to insufficient incidence angle sampling caused by satellite
orbit geometry and the NSCAT measurement collection configuration. Unsatisfactory
sampling of the incidence angle spectrum results in poor estimates of polynomial fit
coefficients in the image reconstruction. Consequently, very low confidence is placed
on the near-pole parameter estimates. The general trend in the (0) imagery consists
of relatively high and low values for multiyear and first year sea ice, respectively. The
melt event causes r(0) to drop quickly over the entire multiyear area.

The distribution of 3 surface roughness values are shown in Figure 8.26.
Multiyear ice has typically high 8 levels in contrast to lower observations over first
year ice. Newer ice forms are typically less deformed than old ice that has been
subjected to wave deformation, ice pack sheering, and large-scale roughness caused
by melt/refreeze cycles. As the sequence progresses, 3 values drop until nearly the
entire multiyear region appears similar to the first year 3 observations. The source
of the change may be due to surface smoothing of features due to melting and the
creation of melt ponds.

The estimate images of Arctic volume scattering albedo 7 is shown in Fig-
ure 8.27. These images illustrate the intense volume scattering contributions charac-
teristic of multiyear ice. Varying levels of n within multiyear regions can be related to
the number density of volume scatterers and mean volume scattering element cross
sections. Areas of younger ice have much lower 7 due to higher salinity and dielectric
loss. The image progression shows 7 decreasing as temperature rises and surface melt-
ing occurs. In the last image frame, volume scattering has been almost completely
masked by increased water content which reduces penetration depth. Such signature
masking makes the various ice types competely indistiguishable at Ku-band.

These results illustrate the utility of the inverse model in interpretting the
sources of scattering phenomena observed in reconstructed NSCAT imagery. Since

the model inversion method is fully automated, large ensembles of measurements
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Figure 8.24: Ice masked NSCAT Arctic A, SIR image series.
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Figure 8.25: Inverse model estimates of Arctic (0). The greyscale image display
range is 7(0)€[0,0.1].
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Figure 8.26: Inverse model estimates of Arctic 3. The greyscale image display range
is 3€[0.1,0.45].
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Figure 8.27: Inverse model estimates of Arctic n. The greyscale image display range
is n€[0,0.45].
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can be inverted providing estimates of the spatial distribution and magnitude of
important surface parameters. These parameters can then be related to sea ice types
as previously described. In general, older ice types such as multiyear ice exhibit very
high r(0) and n values in the absence of significant surface melt. In contrast, first
year ice and other relatively young ice types have much lower r(0) and 7. Smoother
ice types have typically lower 3 levels. Temporal variations in the parameters can
be used to understand the evolution of scattering mechanisms within the various ice

types as considered in this section.

8.7 Conclusions

This study has presented an inversion technique applied to a simple, but
robust forward scattering model. The method is fully automated requiring no user
interface. Consequently, large scatterometer polynomial fit coefficient images rep-
resenting the incidence angle dependence of ¢ can be used as inputs to the inverse
model. The algorithm is used to determine the spatial distribution of three important
surface parameters, the power reflection coefficient at nadir, r(0), the RMS surface
slope, S (represented by 8 = 252 in the inverse model), and the volume scattering
albedo, 7.

Simulations of the method demonstrate the capability of the algorithm.
Higher order incidence angle dependence models yield better estimates of the surface
parameters in the absence of noise. When noise is introduced, a trade-off exists
between the capability to estimate a wide range of possible parameter combinations
and sensitivity to noise. The first order model performs reasonably well for r(0) and
71 estimation but cannot effectively reproduce true 3 values. A good balance is found
in using a second order model.

The inverse model is applied to NSCAT Antarctic and Arctic image se-
quences. The results show that the parameter images have consistent spatial dis-
tributions. The image products are used to interpret ¢° “blooming” phenomena in

the Antarctic. An increase in 7(0) and 7 is observed in the bloom regions with little
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change in . The method is also used to analyze drastic ¢° decreases over multi-
year ice in the Arctic as the summer season begins. The accompanying surface melt
causes all three parameters to decrease abruptly. Surface roughness appears to be
reduced and increased water content masks the volume scattering contribution that
give multiyear ice its characteristically high o° signature.

The results of this study demonstrate the utility of one technique in invert-
ing simple forward scattering models for sea ice surfaces. Validation data of surface
roughness parameters, dielectric properties, and volume scattering element charac-
teristics are needed to accurately measure the algorithm’s effectiveness. Regardless,

the method aids in the interpretation of important polar geophysical phenomena.
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Chapter 9

Conclusion

Microwave remote sensing is a valuable tool in monitoring many critical
surface characteristics and geophysical processes in the earth’s cryosphere. The pre-
ceding chapters described several studies which address critical issues in this relatively
young field. Following a brief background of the history of polar remote sensing, var-
ious image reconstruction issues were considered such as the optimization of SIRF
for NSCAT, azimuthal modulation of Ku-band scatterometer data over Antarctic sea
ice, and inter-sensor calibration for the ERS scatterometers. These studies ensure
the quality image reconstruction required before enhanced resolution imagery can be
applied to studies of surface characteristics and geophysical processes.

In the next chapter, methods were developed to reduce the adverse effects of
atmospheric distortion in reconstructed radiometer imagery. A hybrid technique was
derived which provides quality estimates of the true surface response in the presence
or absence of cloud cover and precipitation. Though developed in tropical regions,
the techniques can be used in cryosphere studies as well. The technique enables the
filtered imagery to be used with greater confidence in studies of surface brightness
temperatures.

In Chapter 5, the automated mapping of sea ice extent from NSCAT data
was addressed. An adaptive algorithm was derived which identifies the ice edge using
only NSCAT data. The resulting ice edges correlate well with the SSM/I-derived
NASA-Team algorithm 30% ice extents. The ice masked imagery was also validated
using high resolution Radarsat SAR imagery in the Arctic which showed high levels

of correlation between the SeaWinds and actual ice edges.
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The next chapter considered the large-scale identification of sea ice types
within the Antarctic ice pack using multisensor NSCAT, ERS-2, and SSM/I imagery.
Maximum likelihood and mazxzimum a posterior: recursive statistical methods were
proposed and implemented. The MAP algorithm was found to perform the best and
was shown to be functionally equivalent to a modified k-means clustering technique.
The resulting ice type maps are consistent with general sea ice dynamics and the
results of previous investigators.

The application of the ice extent and ice classification methods to more
current data sets containing SeaWinds imagery was discussed in Chapter 7. Due
to significant differences in the NSCAT and SeaWinds instruments, multiple mod-
ifications are required in the sea ice extent algorithm for application to SeaWinds.
Like the NSCAT products, the SeaWinds-derived edges correlate well with NASA-
Team estimates. For the ice classification, it was found that the SeaWinds-SSM/I
combination had slightly less ability in segmenting imagery into ice types.

Finally, Chapter 8 discussed the theory and development of large-scale in-
verse modeling. A simple forward scattering model was inverted using an automated
steepest descent approach to estimate surface and volume scattering parameters. Im-
ages of these parameters were then used to determine the sources of various polar

0° phenomenon observed in reconstructed NSCAT imagery.

9.1 Contributions

Several significant contributions have been made to the remote sensing
community through the work presented in this dissertation. The following sections
briefly summarize each of the major contributions of this dissertation. Much of this

work has already appeared in journal papers prepared as part of this research.

9.1.1 Image Reconstruction

Enhanced resolution image reconstruction of microwave scatterometer and
radiometer measurements has great utility in a number of land and ice research stud-

ies. However, several steps must be taken to ensure the integrity of the data in
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order to facilitate their application in analyses of surface characteristics. Chapter 3

addressed several of the critical issues such as
1. The optimization of SIRF for NSCAT data,
2. Ku-band azimuthal modulation of ¢° over Antarctic ice,
3. Inter-instrument calibration for ERS-1 and ERS-2.

The results can be used to ensure the proper generation and interpretation of en-

hanced resolution microwave imagery.

9.1.2 Atmospheric Distortion Removal

An important issue in the reconstruction of microwave imagery is mea-
surement distortion effects caused by cloud cover and precipitation. In Chapter 4,
methods were developed and presented which reduce the corrupting effects of these
phenomena in radiometer imagery. The resulting hybrid technique ensures that the
best possible brightness temperature estimates are obtained in cloudy or clear scenar-
ios. The approach is particularly useful when applied to higher frequency microwave
radiometer measurements which exhibit high sensitivity to atmospheric distortions.
Consequently, the method greatly increases the utility of these data in studies of sur-
face characteristics. This work was published in the IEEFE Transactions on Geoscience

and Remote Sensing (7).

9.1.3 Sea Ice Extent Mapping

An important contribution of this dissertation is the development and anal-
ysis of a sea ice extent estimation algorithm for NSCAT ¢° data. The method is fully
automated and adapts to the temporal variations of sea ice and ocean microwave re-
sponses. The algorithm is also adapted to work for SeaWinds scatterometer imagery
allowing for current and future studies of polar sea ice extent. The operational tech-
nique is currently being used by the Jet Propulsion Laboratory in their near-real time

wind processing and by the National Ice Center for sea ice evolution studies. This
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research was published in the Journal of Geophysical Research [8]. A manuscript on
the SeaWinds adaptation of the algorithm has been submitted to the same journal

and is currently in review [80].

9.1.4 Multisensor Sea Ice Classification

While several studies have pursued the classification of sea ice on small-
scales with single instruments such as synthetic aperture radars, relatively few have
addressed this problem on large-scales using multiple sensors. However, in Chapter
6 the theory, development, and implementation of a recursive statistical classifier is
discussed. The method combines several active and passive microwave instruments
to determine the spatial distribution of sea ice in the Antarctic sea ice pack. The
adaptive nature of the algorithm allows it to adjust to seasonally varying microwave
signatures of various ice types. The ice classification research has been accepted for

publication in the IEEE Transactions on Geoscience and Remote Sensing [9].

9.1.5 Large-scale Backscatter Inverse Modeling

The primary focus of many electromagnetic inverse modeling studies has
been on determining scattering mechanisms from small homogeneous regions. Unfor-
tunately, spaceborne scatterometer footprints usually cover very heterogeneous mixes
of scattering features. In an effort to address this problem, an inverse modeling ap-
proach was developed and analyzed in Chapter 8. The method is used to invert a
simple, but robust forward scattering model which parameterizes the observed scat-
tering using three large-scale surface and volume scattering metrics. Through the au-
tomated optimization of an objective function, the inverse model is able to generate
imagery of these scattering parameters for use in the study of large-scale geophysical
characteristics as shown in Chapter 8. This work has been submitted to the Journal

of Geophysical Research and is in review.
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9.2 Future Research

This dissertation has developed a number of useful cryosphere techniques.
Various lines of research represent natural extensions to the work presented. These

are briefly discussed in the following sections.

9.2.1 Atmospheric Distortion Studies

Chapter 4 discussed the removal of atmospheric distortion effects in passive
microwave radiometer observations of vegetated land areas. These regions were chosen
since they exhibit significant corruptions due to water vapor and hydrometeors. A
natural extension to this work is a study of the application of the proposed methods

in glacial ice regions and with different sensors.

9.2.2 Ice Extent Mapping Extensions

In Chapter 5, the utility of an NSCAT-derived sea ice extent mapping tech-
nique is demonstrated. As discussed in the chapter, researchers have also developed
methods for identifying sea ice extent using passive radiometers such as the SSM/I
though at a lower resolution. Both the active and passive sea ice edge estimates
have their individual weaknesses. For example, the scatterometer ice extents may
encounter problems in areas of sustained high winds near the ice edge. SSM/I ex-
tents have been shown to underestimate the ice edge during the ice ablation phase. A
promising line of research may be to use sensor fusion to combine enhanced resolution
scatterometer and radiometer data to produce daily estimates of sea ice extent. It is
anticipated that the iterative techniques used in the NSCAT and SeaWinds methods
can be extended to higher dimension data sets containing both active and passive

observations of the polar regions and produce higher fidelity ice extent estimates.

9.2.3 Sea Ice Classification

The results of Chapter 6 demonstrate the ability of the described approach
in correctly identifying various general sea ice types in Antarctica. Several lines of

research can be followed to refine this work. The first involves further investigation of
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the fuzzy classification concepts introduced in Chapter 7. A fundamental requirement
is the availability of in situ measurements of sea ice type concentrations. With
this information, MAP probabilities can be related to concentration. Hence, the
percentage of each constituent ice type can be estimated for image pixels enhancing
the ability to understand sea ice type formation and evolution.

Another promising line of research is the use of data from future instru-
ments in polar ice classification. In Chapter 7, it was found that the SeaWinds-SSM /I
combination yielded moderately good results in segmenting the ice pack into ice types.
However, limitations were evident due to the exclusion of several important param-
eters. Thus, current and future sensors must be identified that can provide high
confidence estimates of sea ice type distribution. One such potential combination
is found on a single satellite platform, ADEOS-II. This satellite will carry another
SeaWinds scatterometer as well as the Advanced Microwave Scanning Radiometer
(AMSR). The SeaWinds-AMSR, combination has great potential in sea ice classifi-
cation. For example, AMSR will be a dual-polarization radiometer observing Tz at
6.9, 10.7, 18.7, 36.5, and 89 GHz. The broad spectrum of observations increases the
ability of AMSR to detect subsurface scattering mechanisms which distinguish several
sea ice types. In addition, since SeaWinds and AMSR will be aboard the same plat-
form, 0° and Tp measurements will be coregistered in time as well as space. Hence,
differences due to transient effects and diurnal variations will be eliminated.

Another extension to the ice classification research is long-term analysis of
the sea ice algorithm’s behavior. Since the sea ice signatures are only well defined
during Antarctic winter, only a very limited portion of the NSCAT data set could
be used in ice classification. Current and future instruments that observed scattering
and emission properties of the sea ice over many years can be used to monitor the

evolution of sea ice type signatures.

9.2.4 Large-scale Inverse Modeling

The large-scale backscatter inverse modeling study described in Chapter 8

represents a first step in determining sea ice parameters over very large image fields.
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While the method showed great utility in interpreting various observed cryosphere
phenomena, more validation is needed. In particular, in situ measurements of sea
ice permittivity, roughness, and volume scattering element characteristics are needed
to quantify the quality of the inverse model estimates. Also, validation data may
facilitate the relation of the parameters which can be estimated from the current
technique to other important sea ice characteristics such as ice age, thickness, and
type. Such a relationship enables the indirect estimation of these parameters as well.
While the inversion method was applied to a relatively simple forward electromagnetic

scattering model, the concepts can be extended to more complex models.
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