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ABSTRACT

AN IMPLEMENTATION OF FIELD-WISE WIND RETRIEVAL FOR

SEAWINDS ON QUIKSCAT

Andrew S. Fletcher
Department of Electrical and Computer Engineering

Master of Science

Field-wise wind estimation (also known as model-based wind estimation) is
a sophisticated technique to derive wind estimates from radar backscatter measure-
ments. In contrast to the more traditional method known as point-wise wind retrieval,
field-wise techniques estimate wind field model parameters. In this way, neighbor-
ing wind vectors are jointly estimated, ensuring consistency. This work presents an
implementation of field-wise wind retrieval for the SeaWinds scatterometer on the
QuikSCAT satellite.

Due to its sophistication, field-wise wind retrieval adds computational com-
plexity and intensity. The tradeoffs necessary for practical implementation are exam-
ined and quantified. The Levenberg-Marquardt algorithm for minimizing the field-
wise objective function is presented. As the objective function has several near-global
local minima, several wind fields represent ambiguous wind field estimates. A de-
terministic method is proposed to ensure sufficient ambiguities are obtained. An
improved method for selecting between ambiguous wind field estimates is also pro-

posed.



With a large set of SeaWinds measurements and estimates available, the o°
measurement statistics are examined. The traditional noise model is evaluated for
accuracy. A data-driven parameterization is proposed and shown to effectively esti-
mate measurement bias and variance. The parameterized measurement model is used
to generate Cramer-Rao bounds on estimator performance. Using the Cramer-Rao

bound, field-wise and point-wise performances are compared.
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Chapter 1

Introduction

For several decades, space-borne radar systems called scatterometers have been
used to estimate near-surface ocean winds. By examining the electromagnetic power
scattered and reflected off of the ocean’s surface, an estimate for both the wind
speed and direction may be derived. The traditional estimation method, known as
point-wise wind retrieval, is generally effective, although limitations to the method
have led to the development of more sophisticated methods. This thesis proposes
an implementation of one such method, known as field-wise wind retrieval, for the

Scatterometer SeaWinds on QuikSCAT, a NASA satellite launched in June of 1999.

1.1 Topic Motivation

Weather prediction and climate studies have been pursuits of great interest to
the scientific community. In recent years, this interest has intensified particularly as
the global community have become more aware of humanity’s effects on the global
ecosystem. Concerns about global warming and long-term weather patterns have
increased the desire to thoroughly understand the geophysics of our planet.

Fortunately, modern technology has provided many new avenues for geophys-
ical study. With the advent of space flight, global data is available to scientists on a
scale unimaginable just decades before. Earth observing satellites have the capability
to make daily high resolution measurements over much of the Earth’s surface. These
measurements can be made passively (e.g., measuring the Earth’s radiation or by

photography) or actively (e.g., radar systems).



Since its development, radar has demonstrated the capability to observe geo-
physical phenomena. Natural surfaces have distinctive signatures when illuminated
by an electromagnetic wave. Water, ice, vegetation, and dry land each reflect and
scatter waves in a measurable and distinctive way.

Radar systems also have great advantages for use with a satellite platform.
Unlike satellite photography, radar is not limited by cloud cover or daylight, but can

make measurements through virtually all weather conditions.

1.2 Scatterometer Wind Estimation

Remote sensing successfully gathers data from previously difficult sources.
When restricted to on-site data collection, geophysical data has been limited to the
more accessible sites. Remote sensing, however, allows measurements to be taken over
the Antarctic, the Arctic, deserts, jungles, and the Earth’s oceans. Ocean studies have
particular significance, as they comprise a large majority of the Earth’s surface.

The radar signature of the ocean surface is not constant across the globe.
Indeed, the presence of ocean waves and ripples in the surface affect the scattering
characteristics of the water. In this way, radar measurements can obtain information
about the ocean roughness. As near-surface winds are a major contributor to ocean
surface roughness, radar instruments can collect data to estimate wind vectors.

In 1978, the SeaSat Scatterometer (SASS) successfully demonstrated that
near-surface ocean winds are estimable using a space-borne radar measurement. Since
then, the relationship between ocean winds and radar backscatter has been explored
and utilized, with several more satellites launched to estimate the winds. In 1999,
NASA launched the instrument SeaWinds on QuikSCAT, which has proven to be a
powerful instrument for estimating ocean wind vectors. A large portion of the world’s
oceans are measured daily, and wind estimates are available on a global scale. Sea-
Winds provides data to geophysical researchers with previously unattainable coverage
and scale. Point-wise wind estimation has been successfully used with SeaWinds data;

however, the point-wise technique has limitations.



1.3 Thesis Overview

Field-wise wind estimation ([1],[2]) has been proposed as a method for ocean
wind retrieval which avoids some of the limitations of point-wise estimation. While
the comparative advantages of this method over the traditional point-wise estimation
have been presented [3], practical usage of field-wise is limited by its computational
difficulty. This thesis examines several of the complicating issues involved in field-wise
wind estimation, such as wind field model order, optimization routines, and ambiguity
selection. A practical implementation is presented for SeaWinds data.

In Chapter 2, a brief summary of scatterometry and wind estimation practices
are presented. The instrument SeaWinds is introduced, along with its unique charac-
teristics. An empirical relationship between radar backscatter and near-surface wind
vectors is presented. Point-wise wind retrieval, the traditional estimation method, is
summarized. The concept of field-wise wind retrieval is also introduced, along with
the Karhuenen-Loeve wind field model.

Chapter 3 examines the field-wise objective function, integral in obtaining
wind field estimates. An algorithm to find the local minima of the objective function
is presented. Chapter 3 also discusses the measures necessary to insure that sufficient
estimates are located to remove ambiguity from the wind field.

In Chapter 4, the details of ambiguity selection for field-wise wind retrieval
are presented. The chapter discusses combining separate wind field region estimates
into a more comprehensive swath estimate. Chapter 4 also discusses the frequency
resolution of field-wise wind estimates.

The noise model used in SeaWinds wind estimation is examined in Chapter
5. The traditional model is verified using point-wise SeaWinds estimates. A pa-
rameterization of the measurement bias variance is presented based upon SeaWinds
measurements and wind estimates. The Cramer-Rao bound on estimator performance

is presented for both point-wise and field-wise wind retrieval.






Chapter 2

Background

A brief summary of scatterometry and wind estimation is prerequisite to any
discussion of field-wise wind retrieval. First, an introduction to general scatterometry
is presented. Next, the relationship between backscatter measurements and the near-
surface ocean winds is discussed. The estimation problem is then defined, including
the statistical models for noise. Finally, several standard ambiguity selection methods

are described.

2.1 Scatterometry

Any instrument designed to measure the scattering coefficient (of a surface or
a volume) is known as a scatterometer [4]. The surface scattering coefficient can be
simply understood as a surface roughness measurement, specifically the roughness on
the same order as the electromagnetic wavelength. The standard measurement is the

normalized radar cross section, denoted ¢°, which is obtained by the radar equation

A7 3R4LPT
o = A (21)
i eff

where R is the range to the surface, L is the system loss, GG is the gain of the antenna, A
is the wavelength and A.ss is the effective area of the antenna. The radar crossection
is essentially a normalized ratio of the power received to the power transmitted. As

rougher surfaces will scatter more power, ¢° is proportional to surface roughness.
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Figure 2.1: The spacecraft and antenna geometries for SeaWinds on Quickscat.

2.1.1 SeaWinds on QuikSCAT

In June of 1999, NASA launched the Ku-band scanning pencil-beam scat-
terometer SeaWinds. Launched on the platform QuikSCAT, SeaWinds is unique
from previous scatterometers in that it employs a scanning pencil-beam as opposed
to the previous fixed, fan beam antennas.

The scanning nature of the SeaWinds antenna has several effects. Unlike the
NASA Scatterometer (NSCAT) and others, there is no nadir gap so that SeaWinds
has a continuous swath 1800 km wide.

While SeaWinds has a wider swath, the improvement comes with a perfor-
mance tradeoff. NSCAT and other scatterometers used fixed beams, and thus the
variation in measurements from cell to cell was small. SeaWinds employs two scan-
ning beams, both at Ku-band. On the swath edges, measurements are recorded only
for the outer beam (see Fig. 2.2). This limitation reduces wind estimation effective-

ness. Another tradeoff is experienced in examining the nadir region. While SeaWinds
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Figure 2.2: A top view of the SeaWinds swath showing the two overlapping swaths
from the inner and outer beam.

records backscatter from the region, there is limited azimuthal variation between the
measurements. As will be seen later in this chapter, azimuthal variation is necessary
for wind estimation.

Due to its azimuth sampling, SeaWinds’ performance varies greatly as a func-
tion of swath position. While performance can be good on either side of the swath
center (known as the “sweet spot”), performance along the swath edges and in the
nadir regions is significantly degraded.

SeaWinds is designed to generate a wind vector estimate for a grid of ocean
cells. These grid points, designated wind vector cells (wvc’s) are squares of side 25
km. Several backscatter measurements are observed in each cell, and in the estimation
they are all assumed to be colocated (i.e. there is assumed to be no spatial variance

within a wind vector cell).



2.2 The Geophysical Model Function

The ocean surface contains variations at many frequencies, with wavelengths
varying from hundreds of meters (or even kilometers) to centimeters and fractions
of centimeters. Microwave scatterometers observe roughness on the low end of this
spectrum, with wavelengths on the order of two centimeters. Near-surface winds are
the primary source for ocean surface roughness on the microwave wavelength. Thus,
observed ¢° measurements can be used to estimate the near-surface winds.

Accurate wind estimates from scatterometry require a known relationship be-
tween the observed 0° measurements and the wind vectors. Several theoretical scat-
tering models have been explored, but a complete model has yet to be theoretically
derived [5]. Instead, empirical data has been tabulated to form the Geophysical Model
Function (GMF), represented by

0° = M(S, x,0) (2.2)

where S is the near-surface wind speed, x the wind direction relative to the instrument
azimuth angle (0 — ¢, where 1) is the instrument azimuth angle and ¢ is the wind
direction), and # the instrument incidence angle.

The GMF variation with respect to both wind direction and wind speed in-
troduces an important and complicating dimension to wind estimation. Figure 2.3
demonstrates the variation with respect to both S and x. It is important to note that

° increases with S and varies in a nearly cos(2y) manner, with maxima at 180° (or

o
downwind) and 0° (or upwind). The variation in yx is not exactly sinusoidal — there is
an asymmetry referred to as the “upwind-downwind asymmetry” evident in larger ¢
at 0° than at 180°. The variation in x allows wind estimates to be a vector quantity,

as both speed and direction can theoretically be resolved [5].

2.3 Estimating the Wind

The Geophysical Model Function is inherently non-invertible. Even with a
fixed azimuth angle, the GMF maps the wind vector space of dimension 2 onto the

backscatter space of dimension 1. Figure 2.4 shows the continuum of wind vectors

8
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Figure 2.3: The Geophysical Model Function evaluated with 6 of 46°.

that give rise to a single 0°. For this reason, a wind estimate requires several o°
measurements.

In the noiseless case, several measurements can be used to generate a unique
estimate. Figure 2.5, a simulation without noise, shows a clear intersection of each
measurement at a single wind vector. Yet even without noise, several wind vectors
provide “near-solutions.” In the presence of noise, a unique solution cannot be deter-
mined; the “near-solutions” are indistinguishable from the correct estimate (see Fig.
2.6). Several wind vectors are classified as ambiguous estimates or aliases.

Noise is introduced into the estimation in two places. First, the GMF is not a

perfect model for o°. While near-surface winds are the primary source of backscatter,
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Figure 2.4: A single backscatter measurement (with fized geometries) is the range of
a continuous domain of wind vector estimates projected through the GMF.

the observed ¢° is also a function of unknown and inestimable variables (i.e. water
salinity, long waves, rain contamination, etc.). Thus, for a given wind vector the
observed ¢° will randomly vary from the predicted ¢°. This variation is classified as
“modeling error” or “modeling noise” and is modeled as a Gaussian random variable

with variance denoted Kgm [6]. Thus the “true” backscatter is a random variable
0% = (1 + Kppnv1 ) M(w), (2.3)

where v; is a unit variance Gaussian random variable, and M (w) refers to the GMF
evaluated at the wind vector w. (Note that for convenience, the dependence upon
the measurement geometries § and 1 have been omitted.)

Further noise is introduced by the scatterometer during measurement. The

standard noise model [7] is that the observed measurement, z, is a realization of a

10
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Figure 2.5: To resolve a unique wind vector estimates, several measurements at vary-
ing geometries are required. FEach curve represents the possible solution for a given
noisy o° measurement.

random variable with mean o°:
z=0%+n, (2.4)
where n is a zero-mean Gaussian random variable. The variance of n is given by
Var[n] = a(c°)* + Bo° + v (2.5)

where «, (3, and 7 are noise parameters which are dependent upon the instrument

but independent of the wind vector [7]. Equation (2.4) is often expressed
z = (1 + Kpev9)0°, (2.6)

where vy is a zero-mean, unit variance Gaussian random variable, and K, is

K, = \/a + g + (UZ)Z. (2.7)

11
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Figure 2.6: In the presence of noise, no unique wind estimate can be determined.

Combining both the modeling noise and the instrument noise into one model

completes the statistical model for the estimation:
z = (1+ Kpcva) (1 + Kpmvr) M(w). (2.8)

Thus the observed measurement is a realization of the random variable z. While
instrument noise (K,.) is a relatively well understood quantity [5], modeling error

(Kpm) is not [8]. Therefore, K, is in general be assumed to be 0 in this thesis.

2.4 Point-wise Wind Retrieval

Point-wise wind estimation calculates a wind vector estimate for each wvc. In
the estimation phase, the estimate at each wvc is calculated independently — there
is no implicit correlation from cell to cell. A correlation is assumed only after the
estimate has been performed to select between the ambiguous estimates. Point-wise

wind retrieval is the primary method employed by the SeaWinds science team.

12



2.4.1 The Point-wise Objective Function

Under the preceding noise model, the observed measurements are a random
variable parametrized by the true wind vector w. Thus we may compute the proba-
bility density function

1 (z — M(w))?
pew) = oo {0 (2.9

V2ms 2
a(M(w))? + BM(w) + 1. (2.10)

S

If we assume each measurement is independent, we may compute the joint distribution

of the K measurements at a given wind vector cell as the product of the individual

pdf’s:

o 2 — My(w))?
p(zlw) = kl:[l\/mexp{—( 2%( ) } (2.11)

We may formulate a maximum likelihood estimate as the maximum of the
conditional pdf given in Eq. (2.11):

w = arg max p(z|w). (2.12)

This arg max operation is equivalent to minimizing the negative log-likelihood func-

tion

w = argmaxp(z|w)

= arg m“i,n {—In(p(z|w))}

-1 (
= argmvénz §ln(27r§k)+
k=1

= arg m“ilni {ln(27r§k) + w} . (2.13)

k=1
Equation (2.13) can be interpreted as a cost function or objective function, the
variance-normalized squared error between the observations and the forward pro-
jection of the wind vector. Calculating the objective function minimum is equivalent
to maximizing the conditional pdf of Eq. (2.11). Equation (2.13) is referred to as the

point-wise objective function.

13



As mentioned above, the shape of the GMF leaves several ambiguous estimates
of the wind vector. For this reason, instead of simply choosing the global minimum of
the objective function, each of the near-global local minima is calculated. The result

is a set of ambiguous estimates, known as ambiguities or aliases.

2.4.2 Point-wise Median Filter

To generate an estimate for the entire swath, a single wind vector estimate
must be chosen from among the ambiguities at each wind vector cell. Ambiguity
selection allows a consistent swath to be chosen by assuming a correlation between
wvc’s. Although there are numerous potential selection algorithms, each is somewhat
ad hoc and subject to error. The most common algorithm is called the point-wise
median filter (PWMF). The PWMF assumes that adjacent wind vectors are highly
correlated, and the difference between them should be small. Simply stated, the
PWMF iteratively selects the ambiguity that minimizes the error between itself and
its neighboring cells. The selected ambiguity at cell (4,7) is

J+3  i+3
w = argmkin Z Z W — Upall, (2.14)

n=j—3m=i-3
where U,,, represents the wind vector at cell (m,n) and k is the index of ambiguities.

The median filter must be initialized, and a common first selection is the global
minimum (or the first ambiguity) of the objective function for each wvc in the swath.
The median filter is then successively implemented until there are no further changes
(or a sufficiently small number of changes are reached).

Point-wise wind retrieval has several advantages. First, the objective function
is relatively cheap both to calculate and to minimize, and thus the ambiguities are
easily obtained. Second, in the “sweet spot” there is almost always an ambiguity
that is relatively close to the true surface wind. Point-wise wind retrieval’s largest
shortcoming, however, is in the ambiguity selection step. As the PWMF is heavily
biased toward its initialization, if a large number of the first ambiguities are incor-
rect the swath estimate can have significant error. For this reason, several “nudging”

schemes initialize the point-wise field using weather information independent of the

14



scatterometer. Such an approach, while reasonably effective, potentially introduces
errors inherent in the weather model. Point-wise estimation is also degraded in the
nadir region and the swath edges where there is insufficient variation in the measure-

ments to provide a reliable estimate.

2.5 Field-wise Wind Retrieval

Field-wise wind retrieval applies a correlation condition on the wind vector
cells during the estimation process. By estimating an entire region of wvc’s simulta-
neously, field-wise wind retrieval can simplify the ambiguity removal step problematic
in point-wise wind retrieval. Furthermore, field-wise wind retrieval can compensate
for cells with noisy, corrupt, or insufficient measurements. By using good data from
neighboring wvc’s, problem regions can be estimated with a higher degree of reliabil-
ity. In this way, swath edge and nadir performance may be improved as compared to

point-wise estimation.

2.5.1 The Wind Field Model

To describe the cell-wise correlation of the wind field, wind field models are
employed. For this reason, field-wise estimation is also known as model based esti-
mation. Several wind field models have been proposed, including a wind divergence,
curl and boundary conditions model [1], a Legendre model, and a Karhuenen-Loeve
(KL) model [9]. The KL model is used exclusively in this thesis.

We represent the wind in the region in the following way. Let u and v represent

the rectangular components of a wind vector. Thus,

u = Scos(e), (2.15)
v = Ssin(¢). (2.16)

where S is the wind speed and ¢ is the wind direction. Let u and v be the rectangular

components of each cell in a region vectorized with cross-track direction varying more
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rapidly. The vector w then represents the entire wind field:
[ u
w = . (2.17)
| v

For a region with M cross-track cells and N along-track cells, w has dimension
2MN. The purpose of a wind field model is to represent the wind field with fewer
than 2M N dimensions. For any linear model, w can be represented in the matrix

vector equation
w = Fx (2.18)

where x a vector of model parameters and F' is a “tall” matrix representing the
transform.

The KL transform is chosen as a wind field model because it is known to
minimize basis restriction error [10]. The KL transform matrix F' is obtained by the
eigen decomposition of the autocorrelation matrix R,,,. The columns of F' are the
eigenvectors associated with the largest eignenvalues of the autocorrelation matrix of
w Ryw.

The autocorrelation matrix is estimated using point-wise retrieved winds to

generate a large sample of w vectors, and a sample autocorrelation is computed

Ryw = E{ww’} (2.19)
K WWT
Ryw = Kk 2.20

The first six eigenvectors of R,, are shown in Fig. 2.7. Note that the first two
bases represent constant fields in the along-track and cross-track directions. These
represent the fields with the highest amount of energy, and thus are the primary bases
in the model. With bases ordered according to descending eigenvalues, the KL model
can be shown to optimally maximize energy compaction [10]; thus truncating the KL

model generates optimally small modeling error.
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Figure 2.7: The first 6 Karhuenen-Loeve basis fields.

2.5.2 The Field-wise Objective Function

The field-wise estimation model is a direct extension of the point-wise esti-
mator. Field-wise wind retrieval assumes that each measurement is an independent

Gaussian random variable. Thus the field-wise objective function is given by

N M Kjj 2
1 1 ( 2k — Mija(x)
pz(Z‘X) = H H H 72 eXp —5 ( Y g .k” . (221)
i=1 j=1k=1 4/ 2731 g

where 7 and j index the region by along-track and cross-track, respectively, k£ indexes

the measurement at a given cell, and Kj; is the number of measurements at a given
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cell. Note the field-wise dependence on x instead of w. Recall that w = Fx, so
x completely parameterizes the wind field estimate. M;;;(W) represents the GMF
evaluated at the wind vector estimate of cell (i, j) for measurement k. This notation
can be simplified by converting from w dependance to x dependance and dropping

the F' dependance

Mije(W) = My (Fx) = Mji(x).

2.5.3 Field-wise Ambiguity Selection

As in point-wise wind retrieval, each objective function gives rise to a global
solution as well as a near-global local solution. Thus instead of purely maximum
likelihood estimation, each near-global solution must be found to generate a set of
ambiguous wind field region estimates. As in the point-wise case, to generate a
consistent swath estimate, a single ambiguity must be selected for each region.

Richards proposed a field-wise ambiguity selection algorithm for SeaWinds [3].
In his algorithm, the wind field is initialized to the global solution (first ambiguity)
and then correlational constraints are iteratively imposed between regions.

In the Richards method, the SeaWinds swath is divided into overlapping re-
gions (see Fig. 2.8), and wind field ambiguity sets are calculated at each region.
When combining selected ambiguities at each region into a single swath estimate,
swath portions with overlapping estimates are averaged, with weighting determined
by location within the region. (As the wind field models more accurately the vectors
in the region center, these vectors are given greater weight in the averaging process.)

The correlation constraint between regions is imposed by low-pass filtering
the combined swath. At each region, the ambiguity closest to this averaged field is
selected, and the process is repeated. The iterations continue until sufficiently few
regions are changed; this swath estimate is the final field-wise product.

While developed before SeaWinds’ launch, the Richards algorithm demon-
strated relatively successful ambiguity selection for simulated data. Estimate per-
formance in nadir and swath edges was improved from point-wise wind retrieval,

although it was mildly degraded in the “sweet spot.” The Richards algorithm’s most
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Figure 2.8: The SeaWinds swath gridded into wind field regions as per the Richards
method.

significant drawback is the ambiguity selection stage. Although it enjoys good success,
the field-wise ambiguity selection algorithm is highly dependent upon the initializa-

tion choice, with the final estimate heavily biased toward its initialization.
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Chapter 3

Minimizing the Field-wise Objective Function

For field-wise wind retrieval, the objective function provides an error metric
between an estimated wind field and the observed radar backscatter (¢°). To generate
the “best” estimate, the objective function is minimized, thus finding the wind field
estimate “closest” to the observed ¢° measurements.

Due to the nearly symmetric nature of the Geophysical Model Function (GMF),
the objective function often has several local minima with objective function values
very close to the global minimum. As with point-wise wind retrieval, it is impor-
tant to locate all these near-global local minima. Thus several ambiguous solutions
are retained and a consistent field is generated through the process of “ambiguity
selection.”

This chapter presents a detailed description of the field-wise objective function.
A minimization algorithm is presented, as well as a methodology for locating the

necessary local minima.

3.1 The Field-wise Objective Function

In Chapter 2, the field-wise objective function is derived as a maximum like-
lihood estimation problem. Alternatively, we may consider the objective function as
a score function or error metric between a wind estimate and the observed measure-
ments.

Given a field-wise wind estimate x, we perform a forward projection using the

GMF,
Zijk = Mijr(x). (3.1)
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The quantity Z;;, is the backscatter value expected for the k™" measurement of cell
(1,7) if x were the true value of the wind field model parameter vector. Thus the
objective function can be composed of any error metric between the observed mea-
surement z and the forward projection M(x).

Perhaps the simplest and most common objective function uses the squared
error metric. This metric can be described as the Euclidean distance or the £5 norm,
which gives rise to the “least squares” solution. Thus, the objective function can be

written as
N M K

JSE ZZZ Zijk — z]k ))Qa (32)

i=1 j=1 k=1

where Kj; is the number of measurements per cross-track cell, 7j.
While simple, the squared error objective function fails to incorporate known
information about the variance of each measurement. As presented in Chapter 2,

each measurement has a variance estimated to be

gijk(x) = a(Mijk(X))2 + ﬂMijk(X) —+ Y. (33)

If each measurement is scaled by its variance, then the objective function becomes

Trar(x iii (Z”’“ — ”’“( )>2. (3.4)

i=1 j=1 k=1

This objective function is almost the same result that arises in maximum likelihood

estimation. If we take the negative log-likelihood of Eq. (2.21), the result is

Tunlx i%i{( Ukw z)gk(X)>2+1ng§jk(x)}. (3.5)

i=1 j=1 k=1

While it is not technically a maximum likelihood estimator, Eq. (3.4) is preferable to
Eq. (3.5) due to the In¢Z(x) term.

We may understand the preference for Eq. (3.4) by examining the scale of
each the two terms in the summation of Eq. (3.5). The first term is the square of a
zero-mean, unit-variance Gaussian random variable, thus a x? random variable with
one degree of freedom, which has mean value of 1. As ¢? is on the order of 1075,

In¢? is on the order of -11.5, so summed over all of the measurements, the In¢? term
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dominates. The parameters «, 3, and v are only approximations which are nearly
constant from measurement to measurement, so the dominant term is not nearly as
relevant to the error metric as the smaller x2.

Minimization of the field-wise objective function is greatly facilitated by fur-
ther simplifying the objective function of Eq. (3.4). Most minimization routines (and
all effective routines for the complicated field-wise minimization problem) require an
evaluation of the first and sometimes the second partial derivatives of the objective
function with respect to the estimate. The dependence of ¢ on x significantly com-
plicates these partials.

To simplify the model, we set
_ 2
Sijk =z, + Bzijr + - (3.6)

In words, the variance of the random variable z is estimated using the observed

realization, or the measured ¢° rather than the estimated parameter value.

3.2 The Levenberg-Marquardt Algorithm

Function minimization (or optimization) arises in many engineering contexts.
In creating a minimization algorithm, the classic tradeoff is between fast local con-
vergence and global convergence. On the two extremes are gradient descent, a slow
stable method, and Newton’s method, which shows rapid local convergence though it
is often unstable. The Levenberg-Marquardt algorithm is a hybrid between gradient
descent and Newton’s method [11]. By combining the two, Levenberg-Marquardt
incorporates the fast local convergence of Newton’s method with the global stability
of gradient descent. A brief summary of all three algorithms follows.

Gradient descent is a simple minimization technique. Since the gradient of a
function points in the direction of steepest increase, the negative gradient points in
the direction of steepest decrease. Thus an iterative minimization algorithm can be
described by

xFt = xF — ' (xF), (3.7)
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where J'(x*) represents the function gradient evaluated at x*. By careful selection of
the step size «, gradient descent guarantees convergence to a local minimum [12]. The
convergence, however, can be extremely slow, which necessitates the development of
faster algorithms.

Newton’s method is an example of a minimization algorithm with fast local
convergence. That is, when close to a local minimum, Newton’s method iterates to
the local minimum in only a few iterations. The objective function near some point

X, can be represented by a Taylor expansion
1
J(x) =c+ (x —x,)"J'(x,) + §(X — %) J"(%,)(x — %,) + h.o.t. (3.8)

where J” represents the Hessian matrix (the matrix of second derivatives). If the

function is exactly quadratic (i.e. the higher order terms are non-existent), then
J(x) = J'(x0) + J" (%0) (x — %0), (3.9)

and

x = —(J"(x,)) T (%) + X, (3.10)

is a critical point, where J'(x) = 0. If the function is exactly quadratic, such a
calculation locates the local minimum in a single iteration. Since many functions
are approximately quadratic near a local minimum, Eq. (3.10) suggests an iterative

method of successive Newton steps:
x = xF — (J"(x*) 7T (xP). (3.11)

When close to a local minimum, such an algorithm converges very quickly as the
function is well represented by its quadratic approximation. However, when far from
a minimum point, the function may not be well represented by a quadratic, and often
Newton’s method does not converge at all.

The Levenberg-Marquardt algorithm combines gradient descent and Newton’s
method using a clever hybrid scheme. The algorithm is specifically designed for

use with the Weighted Squared Error (WSE) objective function, i.e. a constant
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variance x? objective function. Using the simplified variance of Eq. (3.6) the field-

wise objective function fits this criterion, and is given by

<zz~jk — Miji(x) ) ’ ' (3.12)

Sijk

N

JWSE(X) = Z Z

i=1 j=1 k=1

The WSE Hessian is derived to be

*Jwsk _ o i i i (Zije — Mijr(x)) 0> Mijp(x)
axp(?xq =1 j=1 b=l gink aXanq
OMijk (%) OM,j5(x)
S BT (3.13)
Sijk

(The complete derivation for the derivatives of the field-wise objective function is
provided in Appendix A.)

A first derivative approximation (j ") is made to the Hessian matrix by keeping
only the second term in the summation of Eq. (A.59),

N M Ki OMijr(x) OMijr(x)

a2jWSEZQZZZ 9%, i oy (3.14)

6Xpaxq i=1 j=1 k=1 Sijk

The first term from Eq.(A.59) can be dropped by noting that the second derivative
(Zijk—Mijr(x))
ik

information is multiplied by the term which for a successful model is a
zero mean, unit-variance random variable. This term tends to cancel out over the
entire summation [11].

The value of making this approximation is two-fold. First, second derivatives
of the model-function need not be calculated — a valuable savings in computation
time. Second, each term along the diagonal of the Hessian approximation is non-
negative. This second fact makes possible the Levenberg-Marquardt algorithm, as
will become apparent.

Let A = J"(x*)4\I, the Hessian approximation with a constant value A added
to the main diagonal. Let b = —J'(x*). A single step in the Levenberg-Marquardt

algorithm is then

x 1 =x* + A7, (3.15)
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As A — 0, A — J"(x¥) and Eq. (3.15) is a full (approximate) Newton step. As A
gets large, A is diagonally dominant, and A~* ~ ;1. In this case, Eq. (3.15) becomes
Eq. (3.7) with @ = ;. Here we have used the fact that the main diagonal of A
is non-negative. By varying A, Eq. (3.15) is either a gradient descent step or an
(approximate) Newton step.

The Levenberg-Marquardt algorithm begins with an initial guess x° and a
small value of A (e.g. A = .001). The algorithm is iterated by Eq. (3.15). If
J(xF1) < J(x*), the step is accepted, and ) is reduced, say A = .1\. If J(xF*1) >
J(x*), the step is rejected, and X is increased, say A = 10\. The algorithm is stopped
when J(x*¥*1) — J(x*) is less than the stopping criterion (0.01 for this case).

The choice of stopping criteria may seem odd. Theoretically, .J'(x*) should
be effectively O for a local minimum. In practice, optimizing to nearly 0 wastes
computation time with little gain. For some cases, however, the optimization finds
several “minima” within a hyper-ball which are similar but not identical solutions. To
compensate, after the Levenberg-Marquardt algorithm is completed, a full Newton-
method is iterated using the complete Hessian matrix and stopping when the gradient
is sufficiently close to 0. As the Newton-iteration presumably starts near a local min-
imum, it converges rapidly to the optimal solution. This second iteration is generally
successful in “tightening” the solutions around a true local minimum with acceptable

computational cost.

3.3 Parameter Choices

Despite a fast-converging algorithm, minimizing the field-wise objective func-
tion is highly intensive computationally and therefore time-consuming. The minimiza-
tion cost greatly increases as a function of region size and number of model parameter.
Thus, small regions with only a few model parameters are preferred computationally.
With such a preference comes a significant tradeoff: larger regions provide a greater
cell-wise correlation, and more model parameters provide higher frequency resolution.

To understand the tradeoffs involved in KL model truncation and wind field

region size, Draper [13] analyzed the frequency content of the KL basis fields. Using
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the Discrete Fourier Transform (DFT), Draper analyzed the natural truncation points

within the KL model.

Table 3.1:  Comparison of frequency bin groupings between different models. The last
model parameter that used only the first N bins is listed.

Nth | SeaWinds | SeaWinds | SeaWinds | SeaWinds
Bin | 12x12 12x12 16x16 24x24

1 2 2 2 2

2 6 6 6 6

3 12 12 12 12

4 - 26 26 26

5 - 36 36 38

6 - 50 53 57

7 - 65 70 78

To investigate the natural truncation points, Draper examined the number of
bases necessary to represent each DF'T bin. He found an orderly representation, i.e.
the first two bases represented the first bin, and the next four bases the second bin
(see Table 3.1). In this way, we may see that truncating the KL model is in many
ways equivalent to imposing a low frequency constraint on the retrieved wind fields.

The natural truncation points are also observable in the eigenvalues of the wind
autocorrelation. For the 12x12 model, Fig. 3.1 shows the eigenvalues in descending
order. Note that sharp drop-offs in eigenvalues correspond with those observed in
Table 3.1.

Previous implementations of field-wise wind retrieval have used 24 x24 sized
regions with 22 model parameters [3]. Such a large region and high truncation point
makes objective function minimization prohibitive, and for this reason, a smaller wind
field region is chosen. The wind field region size is chosen for the current implemen-
tation to be 12x12. Truncating the 12x12 at 6 model parameters is equivalent in

frequency content to 22 model parameters for a 24 x24 region.
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Figure 3.1: The eigenvalues of the wind autocorrelation matriz. Note the discrete
drop-offs after the 2", 6! 12t 16" and 26" eigenvalues. Dotted lines after 6 and
26 parameters represent chosen cutoffs for wind estimation.

3.4 Objective Function Minima

As with point-wise wind retrieval, minimization of the field-wise objective
function does not produce a unique wind field estimate. The shape of the GMF
causes several local minima of similar likelihood. These can be considered ambiguous
estimates. Instead of generating a unique estimate for each region, a set of ambigu-
ities is estimated. A separate process, known as “ambiguity selection” chooses one
ambiguity for each region to create a consistent swath estimate.

Generating a solution set requires minimizations from multiple initial vectors;
the initial vectors form the initialization set. Optimization is performed starting at
each vector in the initialization set, and the resulting minima make up the solution

set.
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The objective function may have many local minima, some near-global and
some not. While it is not necessary to include all local minima in the solution set,
selection of a consistent wind field generally requires identification of most of the near-
global minima. (Recall that local minima with values much greater than the global
minimum are wind field estimates that are much less likely, based on the observed
measurements and thus less important.) Ideally, only the “true” solution needs to be
located, but it is not difficult to identify these. Therefore the optimization needs to

assure that the best ambiguity is within the solution set.

3.4.1 Random Initialization Set

In the past, the initialization set was randomly generated [3], [14]. The idea is
to select a large number of initialization values to span the wind field space. In this
approach, the standard deviation (o) of each model parameter is calculated, and each
vector element is a realization of a uniform random variable over the range [—20, 20].
Thus, each vector in the initialization set is randomly generated, with independent
elements. Random generation requires a large initialization set to have confidence in

finding the near-global minima.

3.4.2 Deterministic Initialization Set

Alternatively, a deterministic initialization set can be chosen to best span the
wind field space. A deterministic set can utilize the correlation between the model
parameters, and assures that each subspace of the reasonable solution space is being
searched for local minima.

The initialization set needs to be representative of the range of observed wind
fields. To generate the set, three assumptions are employed. First, the initialization
set need only span the common solution space. There is little reason to search the
wind field space in where the regions are known to be highly unlikely. Secondly, we
may assume that initial vectors that are very close together optimize to the same

local minimum.
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The third assumption follows from observing the comparable wind speeds of
field-wise and point-wise ambiguities. Ambiguous estimates often agree on the wind
speed but vary as to the estimated wind direction. Good wind speed estimates are
much simpler to obtain than accurate representations of the wind direction. The
point-wise ambiguity set provides a reliable estimate of the wind speed, which may
be used as a priori information when generating a field-wise estimate. The a prior:
information can be used to reduce the dimension of the wind field space to be searched.
The initial vectors are all scaled to match the estimated region speed. Therefore, the
initialization set need only be composed of unit-norm vectors.

A sample set is obtained by creating a least squares model fit to point-wise
wind fields in over 50,000 regions of actual SeaWinds data. To employ the first
assumption, all vectors with parameters outside the range of [—20, 20] are excluded.
All of the remaining vectors in the sample set are normalized to 1 m/s Root Mean
Square (RMS) wind speed. (Prior to optimization, each vector is multiplied by the
average point-wise wind speed for the region.) Next, all of the redundant solutions
(those within 0.125 m/s RMS difference) are eliminated. These three steps reduce
the sample space set to 165 (normalized) vectors.

However, 165 optimizations are still too costly to be computed for each region;
the initialization set must be a reduction of this sample. If we assume that all relevant
minima are located by optimizing these 165 vectors, any further reduction of the
initialization set may come at the cost of missing local minima. To quantify this
tradeoff, 1422 randomly selected regions are optimized using all 165 vectors as the
initialization set. By examining the resulting minima and the initial vectors that
“find” them, an initialization set may be chosen to locate the most important minima
with an acceptable computational load.

On average, each region contains ten local minima. When examining the
objective function values for each solution, there is always at least one clear break in
the objective function values, as shown in Fig. 3.2. In this case, there are four minima
that we may classify as near-global or “pre-break” and five minima that we may

classify as “post-break.” “Post-break” solutions are generally less realistic, having

30



N
o
o

[y
o
(]
T
|

Objective Function Value
a5
(o] (]
T T
| |

o
N —O
w—>o

4 5
Solution Number

o
~
[e]
©

~
(]

o
T
1

(o]
T
1

N W A O O
o O
T
[

Objective Function Difference

o ©

"‘8 T

N O

o0

< o

0 ——0
L

;

w0

5
Solution Number

Figure 3.2: Top: Typical WSE objective function values for a region. Bottom: Differ-
ence between objective values of consecutive solutions. One obvious breakpoint occurs
after solution 4.

objective function values significantly higher than the global minimum. Thus they
are estimates with significantly greater disparity from the observed measurements.
While legitimate local minima of the field-wise objective function, they are less likely
to contain the correct wind field. Therefore, in determining an initialization set, only
the “pre-break” solutions are considered essential.

The initialization set is determined from the sample set of 165 vectors in an
iterative manner. For each vector in the sample set, the percentage of regions in
which the vector optimized to a “pre-break” solution is calculated. The vector with
the highest percentage is placed in the initialization set. For the remaining vectors,
we calculate the percentage of regions in which the vector optimizes to a “pre-break”
solution not previously “found.” Again, the vector with the highest percentage is
added to the initialization set. This process is repeated indefinitely until an arbitrary

percentage of “pre-break” solutions is obtained.
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Figure 3.3: The percentage of “pre-break” solutions against the number of initial
searches.

Figure 3.3 demonstrates the tradeoff between initialization set size and near-
global minima “found.” Increasing the size of the initialization set yields ever dimin-
ishing returns. While failing to locate a near-global minimum can have significant
consequences in the ambiguity selection process, the computational cost of an opti-
mization forces this possibility. Requiring 94% of “pre-break” solutions, necessitates
using only 23 initial vectors in the initialization, which results in acceptable compu-
tation times.

Concluding the discussion on the deterministic initialization set, it is important
to note the limited use of “post-break” and “pre-break” distinctions. When estimating
the wind, all local minima are retained for the solution set, regardless of their objective
function. “Pre-break” solutions are only considered when selecting the initialization

set. Thus, there is no objective function threshold for an ambiguity.
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3.5 Results

Scatterometric wind estimation is the only source for near-surface wind esti-
mates on a global scale. Thus, wind retrieval is performed completely in the absence of
“truth” data. Without independent data to verify results, analysis of wind retrieval is
limited to either simulated wind retrieval or anecdotal evidence. Without truth data,
wind fields and swath estimates are judged on their believability, self-consistency, and
simply what appears to be correct. For this reason, analysis of field-wise ambiguities
can be performed mostly by comparison with point-wise wind retrieval.

Compared with point-wise retrieved regions, field-wise ambiguities have several
dominant characteristics. The truncated KL model imposes a low-frequency criterion
on the wind estimate. This minimizes the noise inherent in the estimate, though if
the wind contains higher frequency features these are also suppressed.

One goal of field-wise wind retrieval is the simplification of the ambiguity
selection step of wind estimation. While ambiguity removal is still necessary for field-
wise wind retrieval and will be discussed in the next chapter, the dimension of field-
wise ambiguity removal is greatly reduced from point-wise. For a given 12 x 12 region,
field-wise estimation generates between two and ten ambiguities. Each ambiguity
represents a relatively reasonable wind field. In comparison, at each of the 144 wind
vector cells in the region, point-wise wind retrieval generates between two and four
ambiguities. Thus there are often thousands of combinations of ambiguities, many of
which are unreasonable wind fields.

As discussed in Chapter 2, the nadir region has minimal azimuthal variation,
which limits the effectiveness of wind-retrieval. Minimal azimuthal sampling creates a
situation analogous to an ill-conditioned matrix. Small perturbations in the backscat-
ter measurements can significantly modify wind estimates. The point-wise result in
the nadir region is often a noisy field. In simulations (see [3]), field-wise wind retrieval
improves estimate performance in the nadir region and on the swath edges. Figure
3.4 shows typical results from the nadir region for both the point-wise and field-wise
products. Note that the field-wise ambiguities are lower frequency, which appears to

remove much of the noise.
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Figure 3.4: Point-wise and field-wise products for QuikSCAT Rev 01289 beginning in
the upper left corner at alongtrack 333 and crosstrack 35.

Aside from the nadir region and the swath edges, field-wise wind retrieval

contamination.
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performance is observably better in the presence of rain corruption. Rain affects
surface roughness, thus adding an element that is difficult to remove for wind re-
trieval. The point-wise product is generally characterized by high speed vectors close
to perpendicular with the satellite track. Figure 3.5 shows a point-wise region with
an apparent rain artifact. The field-wise product contains no obvious artifact while
maintaining several believable wind fields. In this case, the second ambiguity is quite

close to the general wind flow shown in the point-wise product, but it shows no rain




Aside from the increased computation, the largest drawback of field-wise wind
estimation is its limited modeling of wind features. With a model order low enough
to permit practical computation, the frequency constraint limits the ability to model
fronts and storms, permitting only estimation of general wind flow. Figure 3.6 is an
example of a potentially troubling region. Although the front observed in the point-
wise product may not be accurate, field-wise wind retrieval succeeds only in modeling
the general flow for the region. To model the high frequency front requires a higher
order model, which is computationally costly. This limitation is discussed further in

Chapter 4 and a potential remedy is proposed.
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Figure 3.5: Point-wise and field-wise products for QuikSCAT Rev 01289 beginning at
alongtrack 369 and crosstrack 35. The high speed vectors in the point-unse product are
characteristic of rain contamination. Note that the field-wise does not demonstrate
the same artifact, while the second field-wise alias maintains a similar wind flow to
the PWMF product.
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Figure 3.6: Point-wise and field-wise products for QuikSCAT Rev 03079 beginning at
alongtrack 457 and crosstrack 59. The wind feature shown in the point-wise product
is essentially eliminated in the field-wise retrieval (Field-wise Alias #1). While not
necessarily evidence of field-unse retrieval failure, in the absence of truth data the
inability to model features is a troubling result.
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Chapter 4

Field-wise Ambiguity Selection

In scatterometer wind vector estimation, a necessary step is ambiguity selec-
tion. Due to the symmetry inherent in the GMF and the sufficiently high noise level
in the measurements, several wind fields appear nearly equal in their likelihood. For
this reason, after the estimation stage in the wind retrieval process, a set of ambiguous
solutions is generated and the “correct” estimate must be selected from this set.

Several ambiguity selection algorithms have been proposed for both point-wise
and field-wise wind retrieval, but as yet no algorithm has demonstrated any degree
of optimality. Ambiguity selection is very difficult to analyze statistically, and as a
result, each algorithm can only be classified as ad hoc. In the absence of truth data
(which is only available for simulated data and introduces its own complications),
ambiguity selection performance is often characterized simply by what subjectively
“looks good” or appears to give consistent results.

The algorithm implemented in this thesis is based largely on the Richards
algorithm [3], with several significant modifications. The modifications are detailed
in this chapter, and are such that the revised algorithm is titled the Field-wise Median
Filter (FWMF).

4.1 Median Filtering

A median filter is an image processing technique used to improve image quality
while maintaining edge features. While spatial averaging of an image can be shown to

be nearly optimal in its statistical performance (see [10]), an averaging filter generally
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blurs an image by smoothing edges. While statistically optimal, edges are essential
features in images; thus median filters are preferred.

A median filter performs no average, but instead chooses a median value from
within a window around an image pixel. The median filtered image v is computed

from the image y at pixel (m,n) by [10]
v(m,n) = median{y(m — k,n —1), (k,1) € W} (4.1)

where W is a chosen window. The effect of the median filter is to reduce image noise
while maintaining image edges. The filter is especially adept when in the presence of

binary noise, i.e. an isolated pixel is highly variant from its neighboring pixels.

4.2 The Point-wise Median Filter

Before considering the field-wise median filter, it is valuable to re-examine the
point-wise median filter (PWMF). The PWMF is introduced in Chapter 2, and is the
most common point-wise ambiguity selection method.

The PWMEF is based on the image processing principles described above, but is
a bit of a misnomer. Instead of choosing among the median of the surrounding values,
the surrounding values suggest a choice from within a discrete set of estimates (the
ambiguity set). The PWMF is not a spatial median filter as described in Section 4.1,
but due to its discrete nature is of the same class. The distinction is important, for
the resulting selected field is composed entirely of ambiguities that are local minima
of the objective function. Thus each wind vector estimate locally minimizes the
measurement errors.

Recall that the spatial median filter of Section 4.1 maintains image edges
while removing binary noise. The PWMF has similar performance, and as such is a
reasonable algorithm choice. Edge preservation is highly desirable in wind estimation
since features such as fronts and storms are of great interest. Furthermore, ambiguity
selection errors are somewhat analogous to binary noise in images. Consider Fig. 4.1,
which shows the first point-wise ambiguity at each wind vector cell. While the overall

wind flow is apparent (a majority of the vectors point to the right), several isolated
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Figure 4.1: Typical point-wise wind field with each wind vector set to the first ambigu-
ity. Note that the field contains several obvious ambiguity selection errors — individual
wind vectors at odds with the neighboring wind vectors.

wind vectors point in entirely different directions. The PWMF proves to be generally
proficient at removing such obvious selection errors.
As described in Chapter 2, the PWMF chooses the ambiguity that minimizes

the error with the surrounding cells. Thus the point-wise median filter is given by

j+l 43
w = argmkin Z Z am,n,||wfj — Unal|, (4.2)
n=j—Ilm=i—3
m = m—i,
n' = n-—1i,

where a,,,» is a weight applied to each neighboring wvc and the window size is

(20 4+ 1) x (20 +1). A standard window size is 7 x 7.
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The PWMF is relatively cheap computationally, a distinct advantage of the
method. It is also relatively successful at selecting a self-consistent swath estimate.
The PWMEF is generally successful in removing binary noise, but does not reduce
the noise inherent in the estimates. In other words, even if the PWMF successfully
selects the wind vector closest to the “true” wind, the ambiguity selection does not
reduce the error between the closest ambiguity and the true wind. This is, in fact, a
characteristic of all ambiguity selection schemes, not merely the PWMF. The process
of ambiguity selection is a choice from among a discrete set of solutions, and thus any
noise reduction is inherently limited to discrete noise by the parameters of ambiguity
selection.

The other major drawback of the PWMEF is its bias toward initial conditions.
The final selected swath is highly dependent on the initial field. For highly inconsistent
initial fields, the final result from the PWMF often retains the initial inconsistency.
More specifically, the PWMF' corrects individual ambiguity selections, but generally
does not alter the overall wind flow from the initalized field. Thus if the initial
wind flow in a region is incorrect, the PWMF may retain the error. To improve
performance, a nudging field is often used; the swath is initialized to the ambiguity
closest to an independent weather model. While nudging generally improves perceived
performance, dependence on outside data is problematic and non-ideal. Errors in the
nudging field also can introduce inconsistencies. The user community would prefer
that nudging not be used. Nevertheless, nudging is effective in improving ambiguity

selection.

4.3 The Field-wise Median Filter

As in point-wise estimation, field-wise wind retrieval requires an ambiguity
selection step. Each wind field region has several ambiguous estimates. To generate a
swath estimate, one estimate must be selected for each region. This section presents
a method for field-wise ambiguity selection, entitled the Field-wise Median Filter.

In point-wise wind estimation, no cell-wise correlation is assumed during the

estimation phase. Correlation is applied only during the ambiguity selection phase
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when the PWMF applies an ad hoc band limitation. The error metric from Eq. (4.2)
gives preference to the alias that is most similar to its neighbors, thus favoring low
frequencies.

Such an approach makes little sense for field-wise ambiguity selection. Field-
wise ambiguities are already band-limited during the estimation process. By using a
truncated wind field model, field-wise wind estimates are limited only to those fre-
quencies contained in the model bases. For this reason, field-wise ambiguity selection
must use an alternative consistency criterion.

The main criterion for ambiguity selection is overall swath consistency. For
point-wise, this is achieved by choosing neighboring estimates that vary as little as
possible with their neighboring estimates. For field-wise, wind field regions are colo-
cated; that is wind field estimates are chosen to overlap by several wvc’s. The overlap-
ping sections of the wind field estimate can be used to quantify the variation between
neighboring wind field estimates. If neighboring ambiguities have very similar esti-
mates for the overlapping wvc’s, then they may be considered “close” or consistent
estimates.

The field-wise median filter follows a principle similar to the point-wise median
filter. An initial field is chosen, and each ambiguity at each wind field region is
compared with the neighboring selections. The ambiguity “closest” to its neighbors
is selected. Thus, the selected ambiguity at a region is a function of its neighboring
regions. Ambiguities are selected from a discrete set. By following similar methods
to the PWMF, the field-wise median filter also has similar results. Specifically, the

field-wise median filter maintains image edges and removes binary errors.

4.3.1 Combining Overlapping Regions

Overlapping regions help to make ambiguity selection more feasible, but gen-
erate a separate issue — how to combine the selected estimates into a single swath
estimate. A simple average between the coincident estimates is a straightforward so-
lution, but a weighted average is preferable. To recognize the preference of weighted

averaging, note that the KL modeling accuracy is a function of location within the
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region. This can be demonstrated by computing the average error in computing a
model fit.

A model fit to the region vector w is computed
w=FF'w, (4.3)

where F' is the truncated KL model. In general a model fit is calculated F Ffw, where
Ft = (FTF)~'FT. For the KL model, however, the basis vectors form an orthonormal
set, so FTF = I where I is the identity matrix and F' = F”. Computing model fits
to several swaths of point-wise retrieved data, we may note the error variation across
the region (see Fig. 4.3.1). Note that the wind vectors in a circle about the center of
the region appear to contribute the most to a model fit. We may conclude that the
KL model gives preference to those locations within the region. Such a conclusion
suggests that the observed errors of Fig. 4.3.1 are logical weights when averaging
wind regions. Thus, to average cell estimates each estimate is weighted according to

region position by the inverse of the average modeling error.

4.3.2 Algorithm Summary

To perform the field-wise median filter, each region is initialized to its first
ambiguity (the global minimum of the field-wise objective function). For each region
in the swath, all of the neighboring regions are combined. As there is overlap between
regions, this creates an averaged wind field coincident with the given region. Each
ambiguity for the given region is then compared to the averaged wind field, and the
ambiguity with the smallest error is selected. After the process has been performed for
every region in the swath, the process is repeated iteratively until the swath estimate

stabilizes (i.e., each region remains with the same selected ambiguity).

4.3.3 Parameter Choices

As mentioned in Chapter 3, the estimated regions are 12 x 12 wvc in size. In
his implementation, Richards used 24 x 24 wvc regions and overlapped by 50% in the

alongtrack direction and either 25% or 33% in the crosstrack direction (depending
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Figure 4.2: Average modeling error as a function of region location. The region edges,
espectally the corners are much less accurate than the region’s center.

upon swath position). The minimal overlap reduced the number of coincident esti-
mates between regions which are essential to performance of the field-wise median
filter. When the neighboring regions are combined for comparison many cells are
the result of averaging the less-accurate region edges, and few from the region cen-
ter. Such an overlapping scheme degrades the apparent performance of the field-wise
median filter.

In this thesis, the overlap is set at 67% in both the alongtrack and crosstrack
directions. Thus, in performing the field-wise median filter, the field averaged from
neighboring fields contains many region estimates, and thus reduces spurious compar-
isons. The resulting swath estimate in general is significantly more consistent than
fields with less overlap.

Overlapping regions and averaged fields come with performance tradeoffs.
While high levels of overlap facilitate ambiguity selection, heavily averaged estimates

may be considered sub-optimal. In the final swath estimate, each wind vector, rather
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Crosstrack

Alongtrack

Figure 4.3: Region overlap for field-wise estimation. Region to be selected outlined by
solid line.

than being the result of a direct estimation, is an average result from several esti-
mates. In addition, greater overlap increases the number of wind regions that must

be estimated, thus increasing computational costs.

4.4 Results

As mentioned previously, a discussion of results for wind retrieval is almost
completely limited to anecdotal evidence. As such, the results for the field-wise
median filter are limited to discussing observed features of the estimated swaths.

The aim of field-wise ambiguity selection is two-fold; it must select a consistent
swath estimate from among the region ambiguities while maintaining the desirable
characteristics of field-wise estimation. Specifically, the selected swath estimate must
continue to improve noise performance and successfully estimate general wind flow,
even in the presence of contamination. The ambiguity selection must generate a

consistent swath without diminishing the performance of individual ambiguities.

46



In general, the field-wise median filter is quite successful at maintaining the
characteristic performance of the individual ambiguities. Of primary consideration
is noise reduction, while maintaining overall wind flow. Figure 4.4 shows the field-
wise and point-wise products in a region with a cyclone feature. Observe that the
general wind flow is nearly identical between the two, while the field-wise product is
noticeably noise reduced.

Figure 4.5 demonstrates field-wise performance amid rain contamination. The
center of the shown swath has the signature common to rain contamination; specifi-
cally wind vector estimates perpendicular to the path of the satellite. Once again the
field-wise performance appears superior to point-wise, as the swath estimate is not
so glaringly inconsistent. The reader is reminded, however, that since truth data is
not known the apparent improved performance is not necessarily a reflection of the
actual near-surface wind.

Field-wise ambiguity selection is on a significantly reduced scale from point-
wise ambiguity selection. Indeed, a stated advantage of field-wise wind retrieval is
the simplification of the ambiguity selection step. While such a claim is accurate,
it underscores a significant shortcoming of field-wise wind retrieval. An incorrect
selection in point-wise estimation results in increased noise, often of the discrete
variety. An incorrect selection for field-wise wind retrieval fails in a more detrimental
manner. As the region is larger than one single cell, the ambiguity selection error is
apparent over a much larger area. A field-wise ambiguity selection error has a broad
spatial effect.

Figure 4.6 shows an example of a field-wise ambiguity selection error. Note
that the boxed region reveals the algorithm’s attempt to reconcile inconsistent es-
timates above and below. The resulting wind field is not very realistic, nor is the
overall wind flow.

Errors in the wind field are not always the fault of the selection algorithm. The
point-wise product in Fig. 4.6 shows equal difficulty reconciling the ambiguities for
the region in question. While the error is not so glaring to the eye, adjacent estimates

point in opposite directions. In most cases, field-wise trouble spots are coincident with
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point-wise difficulties. Likely there are insufficient ambiguities to resolve the region
in a consistent manner due to deficiencies in the data, not in the estimation process.

Another source for error is in the estimation process. While all near-global
ambiguities should be obtained, as discussed in Chapter 3, this is not practical. An
ambiguity selection error may be due to an incomplete solution set. That is, the
“true” wind field is not among the ambiguities so the ambiguity selection algorithm
is forced to select erroneously. Further minimization effort in trouble spots may yield
improved results. This is a topic for further research.

Generalizing, the field-wise median filter is generally successful in selecting a
consistent swath estimate from the ambiguities. The algorithm maintains the desir-
able qualities of field-wise estimation, namely improved performance in trouble spots
such as rain contamination and nadir regions. Selection errors generally occur in
regions which also contain point-wise errors, from which we may conclude that the

data are inconsistent in such an area.

4.5 Spatial Frequency Enhancement

An advantage of field-wise wind retrieval is its “low-pass” characteristic. By
using a truncated wind field model, a low frequency constraint is placed on the es-
timated winds. While the constraint demonstrably reduces the noise, the low-pass
estimator can be criticized for “filtering out” signal as well. The field-wise product
presented in this chapter is quite successful in displaying the large-scale wind flow,
but the frequency resolution is quite limited. This chapter discusses the necessary
frequency range to model the wind and a method for field-wise estimation that spans

the range.

4.5.1 Frequency Content of the Wind

As discussed previously, both point-wise and field-wise wind retrieval assume
that the wind field is, in general, low frequency. Point-wise wind retrieval applies the
assumption during the ambiguity selection stage, and does so in an ad hoc manner.

Using the PWMF, frequency is minimized over a small window. For field-wise wind
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retrieval, the low frequency constraint can be quantified more precisely by examining
the frequency content of the model bases.

The low frequency constraints are applied because the wind is assumed to have
a red spectrum. In other words, on the scale at which the wind is estimated, the wind
power is assumed to be located in the lower frequency ranges, with almost no power
in the higher frequencies. Noise is generally modeled as a white spectrum for any
problem. That is to say that the power spectral density is flat across all frequencies.

Draper [13] used the difference between the wind and noise spectra to quantify
the extent of the wind spectrum. He examined the DFT of the point-wise retrieved
winds for SeaWinds. He concluded that the majority of the wind energy is contained
in the first 1/4-1/3 of the DFT bins. At higher frequencies, the spectrum is virtually
flat, suggesting majority contribution from noise. The spatial frequency observation
suggests a method for choosing KL model truncation points. For any given region
size, the model should be chosen to span between 1/3 and 1/4 of the DFT bins.

For a 12 size region, to span 1/3 of the frequency bins, 12 model parameters
should be included. To span 1/4 of the frequency bins, 26 model parameters should
be chosen. This analysis suggests that 6 model parameters (the number used for the

results in chapters 3 and 4) are insufficient to span the entire wind spectrum.

4.5.2 Increasing the Frequency Resolution

When choosing the number of model parameters to include in field-wise es-
timation, computational load is a significant consideration. To perform field-wise
estimation, each valid region in the swath must be optimized several times to ob-
tain a comprehensive solution set. For six model parameters, 23 minimizations are
performed at each region in the swath.

A higher model order increases the computational load in two ways. First, the
minimization algorithm is significantly more complicated as a function of model size.
Each iteration grows in cost on the order of the square of the model size. In addition,
while the algorithm successfully minimizes the higher order objective function, the

convergence is significantly slower requiring more iterations. Also consider that the
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number of initialization vectors needed to span the reasonable solution space grows as
a function of model order. Thus, increasing the number of model parameters requires
more optimizations that are significantly more intensive to perform.

The computational reality leads to an unsatisfactory tradeoff. To span the
entire wind spectrum requires a model order between 12 and 26, but computational
requirements practically limit the global search to an order of six.

A logical compromise is a two-step estimator. Starting with no prior knowl-
edge requires a global search of the kind detailed in Chapter 3. As the global search
necessitates many optimizations per region, a low model order must be used to facil-
itate the computation. The estimated regions are then ambiguity selected using the
field-wise median filter. Finally, the results of the field-wise median filter are used as
the initial vectors in a higher order search.

As the general wind flow is already known before the higher order estimation,
the minimization is reduced from global to local, necessitating only a single optimiza-
tion. Given that the power spectrum of the wind is denser in the low frequencies, it
is hypothesized that essentially one higher order alias is to be expected close to the

field-wise selected wind.

4.5.3 High Model Order Results

As only one optimization is necessary per region, the second optimization is
performed with 26 model parameters. In general, the resulting wind estimates appear
quite reasonable. The higher order wind fields maintain the same characteristics as
the lower order estimates, while including a larger range of frequencies. Figures 4.7,
4.8, and 4.9 show resulting wind estimates using 26 model parameters. The regions

are the same as are shown in Figs. 4.4, 4.5, and 4.6.
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Figure 4.4: A comparison between the point-wise and field-wise ambiguity selected
products for QuikSCAT Rev 3081 beginning at alongtrack 150. Note that the field-
wise product demonstrates a significant reduction in noise. The rain artifacts apparent
in the point-wise product are not evident in the field-wise product.
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Figure 4.5: A comparison between the point-wise and field-wise ambiguity selected

products for QuikSCAT Rev 2176 beginning at alongtrack 415. The point-wise product

shows many cell with rain contamination which greatly distort the overall wind flow.

The field-wise product successfully models the wind flow without showing the signature

of rain contamination.
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Figure 4.6: A comparison between the point-wise and field-wise ambiguity selected
products for QuikSCAT Rev 04790 beginning at alongtrack 155. Note the ambiguity
selection error in the field-wise product outlined by the dotted line.
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Figure 4.7: A comparison between the point-wise and field-wise ambiguity selected
products for QuikSCAT Rev 3081 beginning at alongtrack 150. The field-wise product
s performed using 26 model parameters.

o4



- - \\\\\\x\\u\\\s\ P —————

PEPSPEPEDEDE S \\\\\\\\\\\\.\\s\\n\:\\\\\ R L

rrrcrrr e e EE R A 5 » e,

TIIzIIIIIiiiio s s erres ZToooiiiis

PIREREDINEDIDINPERPIR R R L \hﬂaﬁ\ T T

o TooooIoiiis P SY pescs oo A

s PRI IDENR I .,..\\\:l_ﬁ . PINIAAAad

PEDEDEIPIDIDE R aee e mr s ANN ey v ———

aai e - ——————— ':.,_z)aﬂ//r - st ———

e —————— PN T T L N et S, Pt V= gttt s e ————

B SN PR N N L NN A Y s\lfl'\'bﬂ\ \'\'\‘\\\HH\\H\!lI'll!/

SememmSsSsaaNNAsNy ;;;;I;;/;lllllu\\..ﬂs\‘ .\nﬂt\ B L S

P N R SANNAANANNNNSNNNSG D e e e = NN VAR AN A AN

P N R R R RN i SRR RN

NAassANAAAAANA Y R R R DY II|I".|;\\\;|\.|\’.\\C\0|"!I/I/}I//;;l;//;—

e r e v e rre— I O Y ,;:,;|::1|AA\Illll;l\f\ P T S N N S S S RN

P L R P PPyt wNANSSNANANAANNN Y B I P N R e e AR RNNNNNANNN

v vy e —rrt————— NN NN NN NS AN LAY B S N R N s VPR N AR AR R

e vt vttt r ettt SRR AL LA LAY aANN AN :.;:\\\\\\\\\.\Ilulllff-ltr////z:,_”_::

CIlIIIiiiIiiii o SN LAY AANSANS s S f///(r?..l//”” \ A

S R EL LR SRR d g SNNNAN VALY \\lwale.4’\11\\\‘\5\5\'\k\t\u|\‘\ffﬂild/fiﬂnl\//// do

Ll gl aE g ab el o o g SANNAN AN \’llll‘l—/—l’\\l\‘\\\\\\\'llill"-ul"ll‘l" / J - ‘—
\\\\\\\\\\\\\\\\\\\\\\\\\\.\l‘l‘li\l.ll.n!ltlllflz;an—a [ENENENEY N N S N N O ./\\\\.ﬂ\b\\b\h\\{olfoldlrl.l.llo.lldl J o_
P D B R bt L Py AN ”;z—r\alzz—/l\\\\\&\l\\l‘ -\«“-
P NNEEsslel N AAANAY /zr;——llzl.ﬂll\\\\\.\_b\.b\h\c\\t% A { )

P N PP R R Rl T s s~ SNV /z;aafa_””,l\\\\\.\u\n\ e VN

P N PP I DYDY PRt PP N N Y A N N /1/\\\\.\ i i \\lﬂl\\h\\\\ o
IR ST PP PP PP PP EadEd —=NNAN ;r;ﬂﬂ”rz;/ ”l\-\b\\-\s\b\b\\o\s\\\;\\\nﬁ\ P et s I

R L P S a2 A AR SebalNN zz/////”;;z /s\s\\\\\ 1w S, s e e ==Y

LR P N PP DD DD 2 il dd —-~ U.//N///.”/” /-N s BT T L T L 7Y ik st

T r Al ST L akakalialind z///z;//\/ e b\b\;\fll/l!..\’k\ CC E E a7 et dabthahalinkd

Rt e PR Al - Lttt NN R ST Ty e

e P g —u. e - AN N N 23 N raue t\fl'b\b\b\t\.“.\\\\\\\

s R O R B R bt e AN \\\/’\l\\tﬂ.\b\'flll'\;\\\\b\\\\\\\\\\

N N S e e s st p " e e it it o ara o ar a SNNNNSSNNN D S e Jr =SSN = NN vy

N N N N S e b r ot " e e - - ﬁl’lflllll\\\ \\\.\\\\Illl1'\\/1/!!\\\\;\5\\\\!\\\\

N N N N S e e v = e e e e - - N3N Vs e e N e L e

N N N N N N e e " e e e e e e e e - AR Y R O T L L o e r kel bk

R R R E I I S SO AN IR N S S SIS NANARN - << ~ S e R R

L N N N I R i R R X R DI IR NRAARN —a— ' AAII%/&AA\\\S.N\ - .

L N PRI SRR ISR IR AR AARECT A NN SNl S

LN N PR RIS IR N NN NN £ 8 S S NN N NN s I}

AR R R R R R R e N N R T N N N N S SRR R R AR R RARRRARRRRA R R R R AR R 2 -\Il\ollll/flllli

AR R R R T O O PP A APUPUE AP AANALANNAN LN A AANANARAN I n A N NANRNNSNRSNNRRNNNN

AR N N N N N N N N N N P PP ARALLRINALRALARAARARARAAAARN P ta s ananannsa s s NNy

A R R R N R Y R Y ATATAAATILIRRRRRANRARANA AR fas s s s ssssy

L N L S N S S e S N S SN S SN I S L Y N S LA N AN VAN E L PN N N SR N

N O O N N N N N N R N NN N N O S Y

%)

A comparison between the point-wise and field-wise ambiguity selected

products for QuikSCAT Rev 2176 beginning at alongtrack 415. The field-wise product

formed using 26 model parameters.

1S per.

Figure 4.8



trea R R RN RN}
vaeaa R R RN R RN SN
vaeaa PryruvAV LV LV
brvesa TERAYAMLAAVNLLAVAVL L VALY
NN SUTSTANNSAUANNL VNN
VN ST TNNNNANNNNNNNLY
N S SNNNNANNNMAANNLWY
VN PR SNANNMMANY
VAV LY oo T TTENSSSANNSANANNY
IR ERE) - TS S SSNNSSNNNSNANNNN
NN NN LI IIIIIIIaII N I Y NN
PR SR . .. NN

ORI -..__,”“,u”,,_-.._.\“,:§§:\\.§\\\\:§
NN -a—rd””I”’ll”nn——\\\‘\\\\N \\\
ANNANNSY S S --————lll"’/l——aa~‘~‘\\\\\\\\\\ N
R R ——rfrIlIIIl/ll—f—¢“‘~\\\\\\NNN\\
\\\\\\~~-—-,-_—z’z11111l///a”,o,-“ww\yy\
A R Rt atadaded

AN IS R Rttt e \:::t\\
AN ) O S —— O
AR s ,/,’/,’/,/'M‘\
A et P R R PPPL IR PAT AR oo,

et e e A 2 AP P AR I AR AR,
RAREEEEEESR /II///I—-»»/__,\‘::\
At e W R R RARRIPPARRAAL AR S e \\\
e IS ettt ettt ol ataialtalal R
et o e e RARRRPAPRAAP PP S 2 . NN
S Lo oo o rr o r P A P PP ey e 0
e L L e o P P PP PRP L PP e o
B N A e e
e e e AP RRAPRRAPP S PR, R
Bttt gltatal glgts ai g O A
et e b 8 7 /’ﬂ//#/-__\k N

.

_

7

//%/

-

ettt e b 0 P S /z’/////vw_ﬂN\

e R PP L L LA P PSS T «\\\\
A et S NN
R T AN
R TR
TSSTTIIIIIIIUNNONY RRRRRRNY
I L L T
Raettuitstatui ML AA TN
BT TR LR N T TN
TooIIIY \\\\\\} RRRRRRIRN \i\\
B N DN N T R D RN

Vit jeorvryrrrer/mcres tit v L LVVVVLVLL L VLV LV L VY
RN RS A A I I I B R S R O S SRS
IR AR S R LSRNt STOVVV VRS VAR NN VA VY
R R e A R R N N N R S S S S 5
R A I I B I I N A N A A R S Y
\‘...,,,.,,,.~..---\\\\\\\\l\\\\\\\\\\\\\\\\\\\\
NVE VBB s s |uull\\l\\\\\\\\\\\\\\\\\\\\\\\\
DR S S SR W A B ST AE RO N NN R R
ANV LAVAZT vy -\.~\\\~\\~\\\\\\\\\\\\i\ NN Y
D O R R e Dt R R T Ny
R R R R kTP NN ) \ N
R D D R SSRERRRRA RS XS \\\\
NANNIIIIIIIINIIOIIIIIIIIIIIIINNITOY NS
NNIIININIIIIIIINZCIZAIIIIZIIIIIINTS

NN P A T

.~
‘\----,--,,,,,,f,//,r,/;,;/r?izhﬁY\
::::\\~---,__.-..-,,z/,//ff PrY Yy _._.\\_\\::::
I e Ll L lor vt s o e e 0N L
ST LU L ///I’//_M-z’/‘..k\ \Q‘\‘
NN m e S e FIF LS AR RANS T o
\\

SIS CEERClLlllllrrr s r 7 arm e e S QN 0
P el R el elal ol al k\
RS I S S SRR
B At s gt P ‘l\\
Tt s o o e N N\
T L T L o o mm r o n A AR ARRS A g SO T

e b R PP AP ARFFRAZTS],
....—.,,.-,.-,//////////// /
Y et s,
....-...——v-//z!/////////;/
e n P P PP PP LI LAY

RasapeRis Y YIYIN YT 4/ 5
: _..._.,.._,z///u/////‘/; 772
.,,,.,_._.,.-’,/////fllf/';; n
\\.....—m;//////l/l/’/ Sl
Raanans sy ¥/ f////
3 Raneerrr YRS ¥/ Ve ANE
RAARSaEFMII D I 9 Ay
Rae-Sne@Ne2 N/ ANAAN A
\“\_._.‘......--/III)}\ Naaiay
RISl .\ \ AANANY
\_.._......_‘“-”,,/\\\\'\\\\\\\\\
am——mmm T o e s o A NNNRNAXN NN
——mmmmmm m == 2 2V VAANTANANANN AN !
NSRRI | AVNRNRARRRARNNN
NN NN S~ = 200 VRRRRRARRRRY )
\::\::\\\‘\\\\\\\\\\\\\\\\\\ {

Figure 4.9: A comparison between the point-wise and field-wise ambiguity selected
products for QuikSCAT Rev 04790 beginning at alongtrack 155. The field-wise product
s performed using 26 model parameters.
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Chapter 5

Examination of the Backscatter Noise Model

The wind retrieval objective function, both for the point-wise and the field-
wise case, utilizes a model for the 6° measurements. The model, presented in Chapter
2 and defined in Eq. (2.8), contains representations for measurement noise (K,.) and
for modeling noise (K,). The measurement noise, also known as communication
noise, can be derived from first principles [8] and is modeled as quadratic in SNR.
The modeling noise for the wind estimation problem is less understood. Johnson 8]
developed a model similar in form to that used for K,.and attempted an iterative
estimation of the value K,,,. While the iterative approach demonstrated surprisingly
large values for K,,,, the lack of a closed form representation results in the parameter
being disregarded in wind estimation implementations.

For simplicity in the field-wise implementation presented in this thesis, the
noise model of Eq. (2.8) is reduced in two manners. First, as mentioned in Chapter
2, Kpp,is assumed to be 0. The second reduction, represented by Eq. (3.6), bases the
communication noise on the observed backscatter, rather than the “true” backscatter.
By such an assumption, the noise variance is no longer a function of the estimated
wind, simplifying the objective function considerably.

This chapter examines the validity of the noise model in both its complete and
reduced form. A separate noise parameterization is presented, which is based solely

on data from the SeaWinds instrument.
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5.1 Evaluating the Noise Model

With months of SeaWinds data available as a sample set, a verification of
the noise model is possible. To develop the experiment, recall that the observed

backscatter is modeled as a random variable
z = (1+ Kpevs)0°, (5.1)

where o° represents the “true” backscatter. Using the assumption that K, is zero,
the “true” backscatter is the forward projection of the wind vector w (i.e., 0° =
M (w)). While the true wind is unknown to generate this model, we can use the
estimated wind vector to determine the measurement variance.

Assuming that the point-wise estimated winds are equivalent to the true winds
in the mean, we may generate a histogram to demonstrate the accuracy of the noise
model. The histogram permits a comparison of the variance estimate of Eq. (3.6)
with the more traditional Eq. (3.3).

The experiment is performed as follows. The quantity y = z — M(W) is a zero

mean random variable. The variance is represented by either
7 = aM(W)? + BM(W) + 7, (5.2)
or
G =az’ + Bz +7. (5.3)

The quantities % and % are calculated for 50 revs of SeaWinds data and a histogram
is created.

The resulting histograms, shown in Fig. 5.1, have an interesting symmetry.
At first glance, ¢; and ¢, appear to invert the distribution about y = 0. This in-
terpretation is incorrect. Note that both distributions are calculated with the same
values of y. Given that both ¢; and ¢, are always positive values, the normalization
does not affect the sign of the random variable.

The symmetry may be instead interpreted in terms of variance bias. The

random variable y is calculated as the difference between z and M (W), which are
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-10 -5 0 5 10

Figure 5.1: A histogram of the random variable y = z — M(W) normalized with (a)
G1 and (b) s3. Overlaying both figures is a unit normal distribution for comparison.

used to calculate ¢, and ¢; respectively. When y > 0, the value of z is larger, and
the ¢ normalization is aggressive, causing a small tail, while the ¢; normalization is

weak, allowing a longer tail. For y < 0 the performance is reversed.

5.2 Data-driven Parameterization of Backscatter Measurements

Aside from a discussion of the symmetries, Fig. 5.1 demonstrates some de-
ficiencies in the current o° distribution. With K, assumed to be 0, the calculated
value of K is insufficient to normalize the backscatter vectors to unit variance. Fur-
thermore, the Gaussian assumption appears an oversimplification of the problem.

While the non-Gaussian nature of the measurements is intrinsic, the large
sample of measurements and corresponding wind estimates can be used to parame-
terize the variance of y. By calculating a joint histogram of z and M(w) (shortened
hereafter to M) we may approximate p(z, M), the joint probability density function.

The joint pdf allows data-driven estimates for all of the desired moments z, M, and

y.
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Figure 5.2: The joint distribution of z and M
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Figure 5.3: The first and second central moments of y|zg = z — M|zy. In words, for
a given observed measurement (zy) value, the figures show the measurement bias and
variance.

The moments of y vary both as a function of z and M, but it is desirable to
parameterize in z, as z is the observed backscatter, and is known prior to estimation.

Thus, for a given 2y, we may calculate the central moments of y,

E(ylzg) = E(z0 — M|z,) = 20 — E(M|zy) = B(2), (5.4)
E(ylzo — E(yl=))* = E(z20 — M|z — B(x))
= E(M)|%)* - (20 — B(20))>. (5.5)

A plot of each moment appears in Fig. 5.3.

It is of interest to note that y is not zero mean. The first moment has a bias
which is negative over the first half of the range of values for z. The larger values of
z, where the bias is positive, are much less common comprising less than 5% of the
observed backscatter measurements. Thus for most backscatter, M is greater than
z. This is verified by the histograms taken in Fig. 5.1. In each case, there are more

values of y less than zero (although this is difficult to ascertain from the figures).
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Figure 5.4: A piecewise polynomial fit to the first and second moments of y = z — M.
The solid line is the parameterization and the dots represent measured data points.

As the dependence on z is quantifiable, both the bias and the variance may
be parameterized. Both moments are too complicated to be represented by a single
polynomial fit without a prohibitively high the polynomial order. Instead, the data
is segmented into smaller pieces, and each piece is fit with a second order polynomial.
The resulting piece-wise polynomial fit is shown in Fig. 5.4.

Using the parameterization, a histogram is computed for the random variable

z—M-—b>
Yy = =M-b ), (5.6)
S
¢ = avpz2 + ﬂvp + Yops

b = abpz2 + ﬁbp + Yops

where «, (3, and ~ are the piece-wise polynomial coefficients for the variance and the
bias. The resulting histogram is shown in Fig. 5.5.
While it is clear from Fig. 5.5 that the measurements are not normally dis-

tributed, the first two moments can be represented quite accurately. Thus the error
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Figure 5.5: A histogram of ', the parameter normalized backscatter. The parameter-
ization of the bias successfully normalizes the distribution, i.e. vy is zero-mean and
unit variance. The unit Gaussian distribution is included for reference.
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between the forward projection M(W) and the observed backscatter z can be nor-

malized to zero mean and unit variance to a much greater degree of accuracy.

5.3 Estimator Performance Bounds

The empirical noise model adds legitimacy to several statistical analyses. Per-
haps the most valuable analysis comes in the realization of bounds on the error
covariance. Oliphant and Long [6] analyzed the accuracy of the wind estimates based
upon the Cramer-Rao (C-R) bound. Using the parameterized bias and variance mod-
els, these results can be refined. Given the statistical accuracy of the first and second
moments, greater confidence may be placed upon the results.

The C-R bound may be expressed

R(w) = E{[w—w]w-w]"} (5.7)
> JY(w), (5.8)

where J(w) is the Fisher information matrix (FIM). The FIM is defined as

J(w)=F { [aLé”v"v’ Z)} oLtw,2) } , (5.9)

where
L(w,z) = Inp(z|w). (5.10)

We may write the distribution of the backscatter measurements as

1 . {_% 5 (2 — My(w) — bk)2} )

p(zlw) = ;
(2m)K/24 /SN 2 k=1

Sk
Before proceeding, we should note the limitations of this model. As demonstrated in

Fig. 5.5, the measurements are not normally distributed. The first two moments are
known, however, and thus the Gaussian model in Eq. (5.11) is accurate only in mean
and variance.

Furthermore, both b and ¢ are estimates parameterized by the realization of z.

In essence, the variance and mean of the random variable are functions its realization.
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While this is not good statistical practice, it is included here to simplify the expression
of J(w). The same assumption is made in the variance estimate of Eq. (3.6).

Using Eq. (5.11),

, 5.12
ow; p— G} ow; (5.12)
and
o 0L(w,z) OL(w,z)
(N)ij = E, du. ow, (5.13)
K K
N (Zk - Mk(W) - bk) aMk(W)
- E;; 2 T,
(z — M(w) — by) OM;(w)
X 2 s (5.14)

Assuming the measurements are independent, the elements of the FIM simplify to

Ey(zi — My(w) — by)? OM,(w) OM, (w)

M=

()i = (5.15)

k

1

1 OMy(w) OMy(w)

¢ Ow; ow;

I
M=

. (5.16)

B
Il

1
(Note that in this equation the vector w may be composed of either the speed and
the direction of the wind vector, or the rectangular components of the wind field, u
and v.)

Averaging the C-R bound for each rectangular component as a function of
crosstrack position, we may compare the bound as derived in [6] with the new distri-
bution presented here. To help compare the bounds, we also estimate the estimator
variance by correlating the selected wind alias with the ECMWF nudging field. While
ECMWFEF winds cannot be considered truth data, in the mean they provide a statis-
tical measure of the estimate moments. Figure 5.6 shows the bound under each noise
model as well as the variance computed against the ECMWF fields.

From Fig. 5.6 it is evident that the parameterized estimate for the C-R bound
is much closer to the observed variance of the estimate. Neither, however, approaches

the variance estimate computed with ECMWEF fields. To explain the significant
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separation between the bound and the ECMWF estimated variance, we note three
caveats. First, the ECMWF fields are considered “true” wind fields when generating
the estimated variance. The ECMWF is a weather model, and its inaccuracies, as well
as inaccuracies in the scatterometer derived estimate, are included in the variance.
We may consider the curve in Fig. 5.6 as an upper limit on the estimator variance.
Secondly, the C-R bound requires evaluating the GMF at the true wind. As the
true wind is unavailable, the selected ambiguity is used in its place. While necessary
given the absence of truth data, this practice likely introduces inaccuracies in the C-R
bound estimate. Finally, it should be noted that for an estimator with ambiguous

solutions at low SNRs, the C-R bound is less accurate [15].

5.3.1 Performance Comparisons using the C-R Bound

The C-R bound can be computed for the field-wise model parameters by the

same derivation as the point-wise model. The distribution for field-wise is

1
zZlx) = X
vk (2m)MNK \/Zz]il 29{1 Zlf:ijl gizjk
i=1 j=1 k=1 ijk
and the elements of the FIM are given by
YL A 1 OMOM
(J)pq = ;;; % axp (9Xq . (5-18)

Before the point-wise bounds and the field-wise bounds can be compared, we
must examine several issues. First of all, the field-wise C-R bound is performed in the
parameter space. In other words, the variance of each parameter estimate is bounded,
rather than each individual wind vector.

The second issue is examined by Oliphant [9]. Oliphant writes the error co-

variance matrix as a sum of two matrices, the covariance of the wind estimate and
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Figure 5.6: The point-wise Cramer-Rao bound with the traditional variance estimate
and the parameterized variance estimate. An estimated variance based on ECMWF
nudging fields is also presented.
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the modeling error matrix:

ce = E[w—w|T[w—w]
= EW - Ew+ Ew — w|'[W — Ew + Ew — w|
= FE[w — Ew|'[W — Ew] — E[Ew — w|'[Ew — W]
= Cy+CF. (5.19)

Assuming that the estimator is unbiased, (i.e., Ex = x = FTw), the C-R bound
places a bound only upon the matrix C,. Before comparing the point-wise C-R bound
with the field-wise result, the modeling error matrix CZ must also be included.

For the unbiased estimator, the error covariance matrix can be written [9]

Cr = E[Ew —w|"[Ew — W]
= E[FEx—w|'[FEx — W]
= E[FF'w —w|'[FFTw — w]|

= (FF' - Eww™(FFT —1I). (5.20)

For the KL model, we may further simplify this expression for C¥. Recall
that the KLL model is computed by taking the eigen decomposition of the wind au-
tocorrelation matrix, Eww?’. The model matrix F is composed of the eigenvectors

associated with the largest eigenvalues. Thus,

. 5 FT
Eww” = [F @] . (5:21)
Yo G

= FX,FT + GE,G7, (5.22)

where F' is the transform matrix, G' contains the eigenvectors not included in the

model, and 3; and ¥, represent the eigenvalues of Eww?’. (Note that FT'G = 0 as
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the eigenvectors are mutually orthogonal.) Using Eq. (5.22), Eq. (5.20) becomes

Cl = (FF" = I)(FX, F" + GY,GT)(FF" - 1)
= FF'FS\FT'FFT — P\ FTFFT - FFTF2 FT + FY, FT
+ GEL.GT
= 2F% FT —2F% FT + G%,GT

= G,GT. (5.23)

To convert the field-wise C-R bound into a bound on individual wind vectors,

we rewrite the bound equation and note the following:

Ex —x|x—-x" > J(x) (5.24)
FEx —x|[x - x]"FT > FJ'x)FT (5.25)
Ew —w][w—-w]" > FJ ' (x)F" (5.26)
Cw > FJ'(x)FT (5.27)
Including the modeling error,
Ce, > FJ Hx)FT + GS,G". (5.28)

This result is now directly comparable to the point-wise C-R bound. The average
C-R bound in the field-wise swath is compared to the point-wise C-R bound in Fig.
5.7. Note that field-wise has significantly improved performance at nadir as well as
along the swath edges, even accounting for modeling error. In general, field-wise C-R
bound suggests superior performance to point-wise wind retrieval.

It is interesting to note that the field-wise C-R bound is comparatively flat
across the swath. Nadir performance is not significantly worse than sweet-spot per-
formance. Such a result suggests that field-wise is successful in incorporating measure-
ments from neighboring wind vector cells to compensate for minimal data at nadir.

The C-R bound quantifies claims of improvement in areas with limited measurements.
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Figure 5.7: The field-wise Cramer-Rao bound is compared to the parameterized point-
wise Cramer-Rao bound. The field-wise bound is displayed twice, with and without

accounting for modeling error. For comparison, the estimated point-wise variance
using the ECMWEF is also included.
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Chapter 6

Conclusion

This thesis has presented an implementation of field-wise wind estimation from
actual scatterometer data and considered a number of key issues described below. The
results are directly applicable to SeaWinds data, and can be implemented on a large

scale with reasonable computational cost.

6.1 Summary of Contributions

The contributions of this thesis can be divided into two areas. First, an im-
proved algorithm has been presented to minimize the objective function and and as-
sure a sufficiently complete ambiguity set. Second, an improved ambiguity selection
algorithm has been presented. The selection method includes a two-step estimator
to verify that the wind spectrum can be completely represented. In addition to the
field-wise estimation process, the measurement noise model has been examined. By
creating a more accurate model, the effectiveness of both field-wise and point-wise
wind estimates may be quantified. Each of these contributions is considered in greater

detail below.

6.1.1 Objective Function Minimization

In Chapter 3, several objective functions were examined and compared. A
weighted least squares objective function with a simplified noise model was presented
for use in field-wise wind estimation. The Levenberg-Marquardt minimization al-
gorithm was applied to the field-wise objective function. The gradient and Hessian

matrices were derived for use within the algorithm.
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Chapter 3 also discussed generating a sufficiently complete set of local minima
for the objective function. The tradeoff between ambiguity set completeness and com-
putational load was quantified, and a set of initial vectors was presented to maximize

performance within reasonable computational parameters.

6.1.2 Swath Estimate Selection to Span the Wind Spectrum

A field-wise ambiguity selection algorithm was presented in Chapter 4. Mod-
ified from an algorithm presented by Richards [3], the swath estimate was selected
using a field-wise median filtering approach. The modeling accuracy across the wind
field region was presented, and the resulting modeling errors were used to combine
adjacent region ambiguities into a consistent wind field.

The spectrum of model-based wind estimation was examined in Chapter 4 and
compared with the estimated spectrum of the near-surface ocean winds. A method
was presented to generate model-based estimates that completely span the wind spec-
trum. This was accomplished using a two-step estimator. The initial estimator used
six model parameters to obtain a general wind flow. The second estimate was per-
formed on a higher order (26 model parameters) to enhance the frequency resolution

of the estimates.

6.1.3 Measurement Noise Model and Estimator Performance

The traditional models for scatterometer wind estimation were examined in
Chapter 5. The measurement variance as used to weight the objective function was
quantified, by examining a large set of SeaWinds data. It was found that the standard
noise model underestimates the measurement variance. The existence of a bias in the
point-wise estimator was verified and quantified.

A parameterization of the measurements was presented as a function of radar
cross-section. Using a piece-wise polynomial fit, both the measurement bias and
variance can be estimated from the backscatter. In this way, the distribution of the

measurements as a function of wind vector may be known with greater accuracy.
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Using the more accurate parameterized measurement distribution, the estima-
tor performance may be known with greater accuracy. The Cramer-Rao bound was
re-derived in Chapter 5 for both point-wise and field-wise estimation with the param-
eterized noise model. The bounds were compared, with field-wise retrieval showing

distinctly lower estimate variance, particularly at nadir and in the swath edges.

6.2 Future Research

The field-wise estimation algorithm has been applied to a set of 55 revolutions
of SeaWinds data. This set represents four days of measurements. While such an
implementation is sufficient for developmental purposes, an evaluation over a range of
revolutions should be performed and the results analyzed. Such an implementation
could provide greater insight into the ambiguity selection process. Point-wise quality
assessment algorithms [16] [17] could be adapted to the field-wise selection process.

While the implementation of field-wise estimation presented in this thesis has
an acceptable computational cost, point-wise estimation is still much cheaper to per-
form. As field-wise and point-wise estimates have similar performance in many re-
gions, future research could develop a hybrid scheme, using field-wise estimation only
in regions contaminated by rain or demonstrating noisy estimates.

The parameterization of the noise model opens several areas of research. With
a more accurate Cramer-Rao bound, the variance of the wind estimates may be exam-
ined on a more detailed basis. For example, the estimator variance may be computed
as a function of along-track position, backscatter power, or azimuth angle. Estimator
performance may also be examined as function of time, to analyze the stationarity of
the instrument. The Cramer-Rao bound may also have value in quality assessment
algorithms. Wind estimates with unusually high variance bounds may be flagged as
potential errors. The bound may also be used in developing hybrid algorithms be-
tween point-wise and field-wise, flagging areas where field-wise estimation might be

warranted.
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Appendix A

Field-wise Objective Function Derivatives

In order to minimize the field-wise objective function, first derivative infor-
mation is necessary. For the Levenberg-Marquardt algorithm implemented in this
thesis, first and second derivative information is necessary. This appendix presents
the four standard field-wise objective functions (Squared Error, Weighted Squared
Error, Maximum Likelihood, and Reduced Maximum Likelihood) and derives the
gradient for each and Hessian for the Squared Error and Weighted Squared Error

Objective functions.

A.1 Field-wise Objective Functions

To mathematically represent the measurements in a region, let z be a three-
dimensional array containing the observed values (0°) for each measurement. The first
two dimensions index the measurement location (along-track and cross-track position)
of a wind field region. The third dimension indexes the measurement number in each
cell. Thus z;j is the k" measurement of the ij™ cell in the region. (Note that the
number of measurements may vary at each swath location).

To represent the forward projection of one wind vector measurement, let
M(U, — ¢,0) be the GMF, where ¢ is the wind direction, U is the wind speed,
and v is the instrument azimuth angle. As x parameterizes every wind vector in the
region, the forward projection of the k* measurement of the ij%* cell can be denoted

Mk (x) where the measurement geometry is implied by k.
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A.1.1 The Squared Error (SE) Objective Function

Perhaps the simplest and most common objective function is the squared error
objective function. This error metric can be described as the Euclidean distance or
the £, norm, which gives rise to the “least squares” solution. Thus, the objective

function can be written as

K”

Tsp(0) = 37303 (e — M), (A1)

i=1 j=1 k:l

where Kj;; is the number of measurements per cross-track cell, 7j.

A.1.2 The Weighted Squared Error (WSE) Objective Function

While certainly the simplest option, the squared error objective function fails
to make use of all available information, and, as a result, can be overly sensitive to
noise. The measuring instrument introduces noise that has been well studied. The
noise is represented by a zero-mean, Gaussian random variable v, with variance (K3)
given by

¢* = a(o})’ + for + 7. (A-2)

The parameters «, 3, and v are functions of the instrument design and signal to
noise ratio (SNR), and of is the “true” ¢° measurement (i.e. the ¢° that would
be observed in the absence of measurement noise). Thus, ¢° is a realization of the
random variable equation

0°=o0f+ . (A.3)

Using the variance estimate from Eq. (A.2), instrument noise can be accounted
for, by dividing each term in the squared error sum by the measurement variance.

Thus,

<zz-jk — Miji(x) ) g (A.4)

Sijk

Twsp(x) =Y >

i=1 j=1 k=1
represents an objective function that can be classified as a “weighted squared error.”

It may be valuable to note that minimizing this objective function can be considered

a maximum likelihood estimator, assuming that the variance of each measurement is
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constant with respect to x. This assumption will be examined in greater detail in the

following section. Jysg(x) is also a quantity known as a “chi-square” (x?).

A.1.3 Maximum Likelihood (ML) Estimation

In the preceding section, the weighted squared error objective function was
casually mentioned to be a maximum likelihood (ML) estimator given a constant
measurement variance. The ML estimator is explicitly derived in this section.

The ML estimator calculates the model parameters most likely to give rise to
the observed measurements. For a given x, the estimator evaluates the probability
that the observed measurements z would occur. The estimated quantity X,z is the

x that maximizes this probability. Thus,
Xy = argmaxp,(z|x). (A.5)

If the measurements are assumed to be independently Gaussian, with variance ¢2

defined above, then

9 =TI~ o exp{—§ (Z”’“‘M”’“(X))Q}. (A6)

i=1 j=1 k=1 Sijk

Computing the maximum of p,(z|x) is equivalent to computing the minimum of the

negative log-likelihood function £(x) = —Inp,(z|x), which is

N M Kij 2
1/ 20 — M.,
_ Z Z Z { In2r 4+ = ln §Uk (Zzglc Mz]k(X)> } ] (A7)
i=1 j=1 k=1 2 Sijk

Note that the first two terms in the sum are constant with respect to x, so they may
be disregarded when calculating the arg min. The common scale factor of % may also

be ignored. Therefore the weighted squared error objective function is

Xy = argminp,(z|x)
X

Kyj

N M 2
. Zijk — Uk(x)
= argmin E E
x
j=1 k=1

1=

= arg mm{JSE(x)} (A.8)
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Before declaring the weighted squared error a maximum likelihood estimator,
the constant variance assumption needs to be examined in greater detail. Recall from
Eq. (A.2) that ¢? depends upon the value of 0%. Also recall that in computing p, (2]x),
we estimate the probability of the observed measurements under the assumption that
the true wind field is represented by x. Under this assumption, 0% = M(x). Thus,

¢? is a function of x:

Gk (%) = M, (x) + B Miji(x) + 7. (A.9)

This dependence on x changes the simplification of £(x); the 1 In¢? term must be
retained the minimization. Thus the objective function for maximum likelihood esti-

mation is

K;j
k=

Taan(x i%Z{(Z”k_ z;k( )>2+1ng3jk(x)}. (A.10)

=1 j=1 k=1

While both Egs. (A.4) and (A.10) can be said to represent objective functions
of maximum likelihood estimation, the constant variance assumption in Eq. (A.4) is
inconsistent with the probability model p,(z|x). Therefore, for the duration of this

paper “maximum likelihood” will refer exclusively to Eq. (A.10).

A.1.4 The Reduced Maximum Likelihood (RML) Objective Function

While a theoretically sound objective function, in practice Eq. (A.10) presents
some difficulties. Examining the scale of the terms in the summation reveals one
reason. The first term is the square of a zero-mean, unit-variance Gaussian random
variable, thus a x? random variable with one degree of freedom, which has mean value
of 1. ¢% is on the order of 107°, so In¢? is on the order of -11.5, so summed over all of
the measurements, the In¢? dominates. The parameters o, 8, and 7 are only rough
approximations, though, so the dominant term is not as accurate as the x? term.

For this reason, the final objective function analyzed here is the reduced max-

imum likelihood objective function:

K;;

Trap(x iﬁz (Z”’“ e ”’“( )>2. (A.11)

i=1 j=1 k=1
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A.2 Objective Function Gradients

As mentioned before, to be useful as an estimation tool, the objective function
minima must be obtained. Many minimization routines require the calculation of the
objective function gradient. Below, the gradient is analytically derived for the four

cited objective functions.

A.2.1 SE Objective Function Gradient

Evaluation of the gradient requires a straightforward application of the chain
rule, differentiating with respect to each model parameter. With respect to the p*
model parameter, the partial derivative of Eq. (A.1) is:

N M Kij

0 0
A Tsp(%) = =2 ) ) (zik — Mijr(x)) 5 Mij(x) (A.12)
0%y i=1 j=1 k=1 0%y
where
0 o 8M (Uij, Uij) 8ui]‘ 8M (Uij, Uij) 8vij
0%, Migw(x) = Ouj 0%, N 0v;j 0%, (A.13)

The terms u;; and v;; represent the rectangular components of the wind field at the
17i, wve. Note that these may be represented in terms of the F' matrix representing

any linear wind field model:

Uiy = F}TX, (A14)
vij = FlunX, (A.15)
I = N(@-1)4j, (A.16)

where [ is the index into the column scanned representation of the wind region and

FT is the I row of the wind field model transform matrix. Therefore,

8uij

= F Al
8Xp lap ( 7)
8UZ"
8—Xj, = Fiiunp (A.18)
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The Geophysical Model Function is an empirically derived table of values with no
closed form solution. The table has three dimensions: wind speed U, relative azimuth
X (instrument azimuth 1 - wind direction ¢), and incidence angle #. In order to
evaluate the function, an interpolation routine must be used. The IMSL bspline
function is used, interpolating in all three directions. Through this function, partial

derivatives can be easily obtained with respect to wind speed and relative azimuth,

i.e. 33—/;" and %—A;. These are related to the rectangular components by
s = Vu?+ 2, (A.19)
X = Y—0, (A.20)
= tan~'(2). (A.21)
u
Thus,
oM OMOs OMOP
B~ G5 v 99 dw (4-22)
oM OMOs  OMOP
Fu ~ 05 ou’ g ou (4.23)
0s U
i T Ve 20
0s v
o T Vare 29
oM _ oMox
dp — Ox 09
oM
= —W. (A.26)

The partials of ¢ with respect to v and v require more careful attention. The inverse

tangent with only one argument, defined on the interval [—7, 7], has a well known
derivative:
d 1
—tan '(z) = ——. A.27
dx an-(z) 1+ 2? ( )

For purposes in wind retrieval, the four quadrant inverse tangent (defined on the

interval [—7, 7], and denoted tan; ') is necessary. This can be defined in the following
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way:

/

tan~' (%) Quadrants I and IV,

v
tanzl(a) = tan (%) + 7 Quadrant II, (A.28)

ISHS]

tan~'(%) —7 Quadrant IIL
\

Thus the partial derivatives will be the same in all quadrants, i.e.

op 0 VU 1 —v
o™ Q) T T
—v
= —. A2
u? + v? (4.29)
Jdp 0 Uy 1 1
ov %t T (5) N 1+Z—§u
u
—_ m. (A-30)
Therefore,
oM oM v oM u
= = A.31
ov 0s \/u2+1)2+ 0¢ u? +v?’ (A-31)
OM _OM_u_ M v (A52)

ou 0s VuZ+v2  0¢ u?+v?
A.2.2 WSE Objective Function Gradient

The WSE objective function differs from the SE objective function by only
the ¢ term which is constant with respect to x. Thus, the gradient differs from Eq.
(A.12) by the same term:

0 N oMKy Zzgk Z]k(x)) 0
—JWSE = —2222 Mijk(X). (A33)
0%y i=1 j=1 k=1 0%

A.2.3 RML Objective Function Gradient

The RML objective function differs from the WSE objective function only in

that ¢? depends upon x. Computation of the gradient requires use of the derivative

81



quotient rule:

N M Kjj QZijk_ (x
s ) = Y33

P i=1 j=1 k=1

L (A3)
(ginkV
where
agz?jk 8Mijk(x) 8./\/1”16(){)
a—xp = QCMM,]]C(X) 8Xp + ﬂ 8Xp (A35)

A.2.4 ML Objective Function Gradient

Differentiating Eq. (A.10) requires only the addition of one term to Eq. (A.34):

K;;

a%JML(X) = aiJRML )+ ZZZ 5 ! ) (A.36)

X
P lelklgljk ap

A.3 Objective Function Hessian Matrices

Several minimization algorithms for the objective function require a realization
of the Hessian matrix, or the matrix of double partials. Although the derivation is

involved, like the gradient, it is a straightforward implementation of the chain rule.

A.3.1 SE Objective Function Hessian

To completely specify the derivation, it is sufficient to derive expressions for

the following:

(A.37)
5 AN OMik(x) _ (OMin(x) "
aszE =2 [(zwk — Mijr(x)) 8;!; ( 3’]: ) ’
i=1 j=1 k=1 ’
and
2 Jeg AR 0% M (x)
0x, 0% _21':21];119—1 [(Zijk . Mii’“(x))m
OM ;i (x) OM;jk (%)
ox,  Ox; |’ i
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where p # q. By the chain rule,

PM 9 (OM Ou N oM Ov
ox2  0x, \ Ou 9x, Ov Ox,
0 (OMN\ Ou  OMOPu O [(OMY Ov N OM 0%v
 Ox, \ Ou ) Ox, Ou Ox2  Ox, \ Ov ) Ox, Ov Ox2
0 (OMY\ Ou 0 (OMY\ Ov
= A.
0x, ( ou ) 0x, N ox, ( ov ) ox,’ (A-39)
2
OM 0 (OM) Ou 0 (OMY\ Ov ' (A.40)
0x,0x, ox, \ Ou ) 0x, Ox, \ Ov ) 0%,

Note that the double partials, g% and 327‘; are both 0. The mixed partials of the
V4 V4

model function are further developed as

i aﬂ _ 0*M ou N 0’ M Ov (A1)
0x, \ Ou T Qw2 ox, Oudvox,’ ’
0 (6./\/1) M ou  0*M Ov

ox, \ v ~ Oudv 8xp+ ov? 0x,’ (A.42)

and thus, the above simplifies to

PM _ PM (u\ | PM v du  PM (v’
> = > | 2 2 + , (A43)
o ou? \ 0%, Oudv 0x, 0x,  Ov? \0x,
PM  PM du du n O*M v du
Ox,0x,  Ou? 0x,0x, Oudvidx,0x,
2 2
M Ou v O°M Ov Ov (A.44)

t ud o, %, T 97 Ox, 0%,
When using the bspline version of the Geophysical Model Function, the double

M 92M
u2 ? o2

92M

and 3= are not directly available, as the model function is splined

partials

with respect to s and x. Thus, expressions for these partials must also be derived to
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implement the Hessian matrix.

PM 9 [(OM
ou?: ~ ou E)
0 U oM v oM
T Ou \/mﬁs_u2+v28¢)
_ o (oM v? oM
T V2 +20u (%) (u2 + v2)3/2 9s
B 0 (8./\/[) N 2uv OM
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Thus,
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The mixed partial is found to be
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Obtaining 882 ;\2" and % from the model function requires only a simple ap-

plication of the chain rule. Recall that

oM oM
S = 5 (A.55)
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Therefore,
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A.3.2 The WSE Hessian Matrix

As with the gradient of Jy s, the Hessian requires only the addition of the

constant ¢2 term to the Jgz Hessian matrix

(A.58)
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