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ABSTRACT

Scatterometers are low (25-50 km) resolution radars originally designed to measure winds over the ocean from space.
They measure the normalized radar backscatter coefficient (¢°) from which the wind is estimated. Over land and ice
o° is very sensitive to surface conditions and is useful for various scientific studies. Unfortunately, the low resolution
of the measurements limits the application of the data. The Scatterometer Image Reconstruction (SIR) algorithm can
produce significantly enhanced resolution radar images by taking advantage of measurement overlap from multiple
passes of the radar over the target site. The resulting measurements are on an irregular grid and may have different
response functions making the analysis of the non-linear SIR algorithm very complicated. Analysis of SIR is further
complicated by the fact that it is bivariate: two separate but related images (A and B) are determined from the
0° measurements where o is related to .A and B by the expression ¢° = A + B(6 — 40°) where 6 is the incidence
angle of the measurement which varies from measurement to measurement.

In this paper we provide a theoretical framework for scatterometer image reconstruction and resolution en-
hancement on irregular grids and provide examples of the resolution enhancement possible for the ERS-1 AMI

scatterometer. The paper should be of interest to other researchers dealing with resolution enhancement on irregular
grids.
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1. INTRODUCTION

Studies of the Earth’s surface are currently being carried out using a wide variety of instruments and platforms. Space-
based platforms offer the most comprehensive spatial and temporal coverage, although the resolution is much less
than systems flown on airplanes or surface-based systems. The work presented herein is directed towards developing
a compromise between the high resolution of synthetic aperture radar (SAR) and the frequent, wide-area coverage
of lower resolution sensors such as scatterometers by developing signal processing techniques to use traditionally low
resolution platforms in innovative ways.51!

In this paper, we discuss a theory for resolution enhancement from irregular samples and apply it for scatterometer
resolution enhancement. While the theory and techniques are illustrated for enhanced resolution ERS-1 scatterometer
imagery, they are generally applicable. The paper is divided into four main sections. In the first, a measurement
model is presented. Second, a theory of image reconstruction from irregular samples is presented. In the third section,
we demonstrate that reconstruction can recover sidelobe information and we consider the practical use of the theory
with the addition of noise to the reconstruction. We discuss scatterometer image reconstruction (SIR), a derivative
of multiplicative ART tailored to reduce the influence of noise on enhanced resolution image reconstruction from
scatterometer data.!! Finally, we demonstrate the SIR algorithm for ERS-1 scatterometer resolution enhancement.
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Figure 1. Block diagram illustrating sampling and signal recovery. The original surface, f, is filtered by the system
aperture function, A(z,y), and sampled to obtain the measurements z. In (a), the signal is uniformly sampled. The
surface function is recovered using low pass filtering which inverts only the sampling. In (b), the operator inverted,
denoted by H and the dotted box, includes both the aperture function and the sampling. Sampling is dense and
may be irregular. ,

2. SYSTEM MODEL

While the theory discussed here centers around-a model of the surface response that describes the microwave backscat-
ter from a point, it is generally applicable. We desire to make images of the backscatter from ERS-1 scatterometer’
measurements. We model the radar backscatter (¢° ) from the surface as a function of location with (for the moment)
the backscatter’s incidence angle dependence suppressed.

Let f(z,y) be the function that gives the backscatter from a point (z,y) on the surface. The measurement system
can be modeled by

z = Hf + noise oy

where H is an operator that models the measurement system (aperture filtering and sample spacing), f is the true
surface function, and z represents measurements of ¢° made by the instrument. For resolution enhancement, we are
interested in the inverse problem:

f=H"2 (2)

where f is an estimate of f from the measurements z. The inverse of the operator H, H™1, is exact only if the
measurements are noise free and H is invertible, in which case f=f.

Real-life sampling usually involves a non-ideal sampler with-a finite aperture which low-pass filters the data.
The aperture functions may have frequency nulls that result in information which-can not be recovered. However
if suitably sampled and processed, information in the aperture frequency response sidelobes can be recovered if the
signal-to-noise ratio (SNR) is sufficiently high.

The traditional approach to sampling and reconstruction is based on the Nyquist sampling theorem which states
that a band limited function can be completely reconstructed from regularly spaced samples if the sample rate exceeds
the Nyquist sample rate of twice the maximum frequency in the signal. The reconstruction is done with a simple low
pass filter consistent with the sampling. The filter is equivalent to using a sinc function as an interpolating function
(see Fig. 1). When possible, the aperture function is designed to act as a prefilter to eliminate high frequency
components of the signal that might otherwise cause aliasing in the reconstructed signal. Such an approach was used

with the ERS-1 scatterometer design: A desired sample spacing of 25 km dictated an aperture function that filters
wavelengths smaller than 50 km to minimize aliasing.

Because the aperture function is non-ideal, if the data is over-sampled at least some of the higher frequency
content of the original signal can be recovered using a reconstruction algorithm which inverts both the sampling and
aperture functions [see Fig. 1(b)].

Figure 2 presents a chart comparing the two methods outlined above. Each row of the chart represents the
spectra of (from top to bottom) the original image function, the aperture function and the reconstructed estimate of
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the function. The dotted lines represents the recoverable frequency range based on sample spacing. In the column
“Traditional Sampling’ the dotted lines are narrowly spaced because the sample spacing is larger, and the aperture
function and the low pass reconstruction filter are designed to reduce aliasing by attenuating higher frequencies. The
‘Reconstruction’ column shows the dotted lines spaced further apart because the reconstructed frequency range is
increased by more dense sampling.
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Figure 2. A comparison of the spectrum at various stages of the signal recovery problem illustrated in Figure 1.
The rows of the chart represent the spectra of (top to bottom) the original signal, the aperture function and the
reconstructed estimate of the signal. The dotted lines show the frequency range recoverable based on the sample
spacing. In “Reconstruction,” close (but possibly irregular) sample spacing is used with the estimate limited by the
nulls in the aperture function frequency response. In “Iraditional Sampling,” the recoverable range is limited to the
Nyquist frequency corresponding to the uniform sample spacing which corresponds to the twice the frequency of the
main lobe of the aperture function’s frequency response.

3. IRREGULAR SAMPLING AND RECONSTRUCTION THEORY

In this section we consider irregular sampling and reconstruction. We are interested in irregular sampling because
we can combine multiple passes of a scatterometer to achieve a closely spaced irregular sample grid.”

First, we establish some terminology. Let L2(R) denote the Hilbert Space of square-integrable functions on R?
with the norm ||f|| = (J°°_ |f(z)|*dz)}. Let @ C R? be a compact set where © denotes the cube 12, [~wi, wi).
The w = (w;,ws) define the extension of §2. Finally, let B2(2) be a closed subset of L2(R) such that B*(Q) = {f €

L?(R) : supp F C Q} where F is the Fourier Transform of f. B2(Q) is, by definition, a Banach space. These three
definitions provide a mathematical formalism for the discussion to follow.

Next are two definitions that are used to describe an operator used in the reconstruction algorithm to be presented
later. First, an operator A is bounded on the space B if there exists a constant C such that

|Aul| < Cllu|| Vu € B.
Second, the operator norm, denoted || - ||’ is the smallest constant C such that

Al" = supyuy=1l|Aull.

Now consider the irregular sampling grid which can b described as §-dense for the 1-D and 2-D cases as follows?:
A sampling sequence X = (Z;)icz,..- < ZTi—1 < T; < Ti41 < ..., is said to be §-dense if sup;(ziy1 — zi) < 6.
A sampling sequence X = (z;)icz in R? (z; = (£1,£2)) is § = (61,62)-dense if |J;cz Bs(zs) = R? where Bs(z:)
represents the square Hf=1 (& — %”-, &+ %‘] centered at z;.




-The-1-D: case is-presented ‘for use as “background to:the more applicable2:D: case, ‘but in: this treatment; :any
réetencetoé—dememtemeﬁ-’ﬁweaseunlwothemse specified. In’ 4D case; b is determined by the largest:
separation between two sample points. For an intuitive insight; consider:a 1-D-case-and recall thet the reconstruction
from reguler samples is aninterpolation using the sine(z) as a0 nf ation:function. If the samples are:not close
enough tqgetmt,themterpelaanfunctmncannot reconstruct the. y between samples.

For the 2-D case §-dense is defined as the minimum value of & arou;naleach 'sample’kpoint tﬂat completely ﬁlls the
R2 gpace. In Fig. 3(a), a set of sample points is shown with a:6; box sur rounding each sample point. Note that the
union of the boxes is not sufficient to cover the entire R? space. In Fig. 3(b), a larger § value, 8,, is used that does

COV?»I‘ the entire space. Thus, this particular sampling set is = (63,62). In reality, since a sampling set
is limited to some space in B2, we assume that the samy - in space with a period determined

B

by the x and y dimension of the finite sample space. By exte

; 1 space is then covered by the union
of the 6, boxes for the periodic grid. " ‘ :
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G

Figure 3. A graphical illustration of 6-dense in 2-D. (a) 6 is smaller ‘than the union of the boxes around each sample

point to cover the entire R? space. (b) A larger § where the union of the boxes spans the R? space. §-dense corresponds
to the smallest & for which the R? space is spanned.

Grochenig analyzed the reconstruction problem for an irregular sampled surface.? He presented a lemma which
can be stated as follows: Let A be a bounded operator on a Banach space B such that [|[I — Al <1 (I is the Identity
Operator), where || - ||’ denotes the operator norm on B. Then A is invertible on B and ATl =0 (I - A"
Moreover, every f € B can be reconstructed by the iteration

$o=Af
Pnt+1 = On — Adn

oo

f=z¢n

n=0

with convergence in B. The operator A which includes the sémpl'mg and aperture functions must be bounded with
|11 - Al <1. ' '

Gréchenig showed that if f is band limited on a Banach space and sambling is 6-dense with 6 -w < In(2) where
w represents the highest frequencies present in f, f can be reconstructed from its samples using this a,lgorithm.2




Experimental results for the ERS-1 scatterometer when several days of data are considered show that in the polar

regions, the sampling sets are 6-dense with § = 10 km t013 km.” The best resolution recovery is thus approximately
30 km, a value consistent with experimental results.”

It can be shown that Gréchenig’s Algorithm is functionally equivalent to the additive algebraic reconstruction
technique (ART), a well-established image reconstruction technique.® Block additive ART can be written as®

Zi(si - pi)h"j (3)
Zi h’t’J’
where a represents the image to be estimated, a, is the nt? iterative estimate of a, j is the pixel index and i is the

measurement index. The essence of this equation is that all measurements that touch a pixel a7 are summed and
normalized to create the per pixel update value. Eq. (3) can be written as

J = i
Qpy1; = ap+

@nt1 = an+H(a—ayp) (4)

where the a’s are now vectors with a being the ‘true’ image, a,, the nth iterative estimate of a and H = H'H is an
N x N matrix operator equivalent to Grochenig’s A H incorporates both the sampling and the aperture function.

While Gréchenig was primarily interested in low-pass function, we are interested in signals sampled by an aperture
function with side lobes and nulls. We thus consider the more general sub-band limiting scheme illustrated in Fig.4.
It can be shown that such a sub-band limited space defined in Fig. 4(a) is a Banach space.®
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Figure 4. (a) A band limiting scheme that delimits nulls in the filter response in (b). (b) Frequency response of
the ERS-1 scatterometer.

In the following discussion we assume that the sample spacing is adequate (6-dense) for recovering the desired
original and deal strictly with aperture function affects on invertiblity. We define the domain of H to be u € B2 ()
which consists of all functions with a sub-band limited frequency response as illustrated in Figure 4(a). The low pass
characteristics of the aperture function built into the operator H indicate that certain frequencies of an arbitrary input
are nulled out and therefore unrecoverable in any reconstruction. By setting the domain B?*(’) to be exclusively
functions without those frequencies, no information is lost for v = Hu, though v may have attenuated frequency

components. Then, v’ = H'v = H'Hu € B%(Q') is also in the original Banach space. Thus, H = H'H is a bounded




operator on the sub-band limited Banach space, meeting the first réquirement of Grochenig's Lemma. Further, H
will be invertible on this Banach space. It follows that Eq. (4) represents a valid algorithm for the complete recovery
of the original vector a within Banach space B2(QY'). Note, however, that complete recovery is only possible if the
original function is contained in the Banach space spanned by the operator inverse H™1, i.e., B3(f)'). Otherwise, as
discussed below, the result is an approximation of the original function. '

4. PRACTICAL APPLICATION

While H is a valid operator for Gréchenig’s algorithm for function which is band-limited or sub-band-limited, in
application the surface function may not be sub-band limited. The original function can only be recovered in the
sub-bands over which M is invertible. Ideally, we would modify or reduce the space to correspond to a band-limited
form. However, it is frequently impractical, from an algorithmic and computationsl standpoint, to reduce the problem
to such a form. Instead, for practical application regularization of H is used to insure its invertiblity over the full
space. The ART algorithms implicitly include regularization. Block additive ART is a least squares solittion to the
inverse problem in Eq. (2) while multiplicative ART with damping is a maximum entropy estimate in the limit.38
A maximum entropy estimate produces a generally “sharper” image than least squares, at least for high: contrast
images.? Maximum entropy can also insure a positive image if desired. Because regularization is used in the ART
algorithms, even if the complete original function is unrecoverable, the ART algorithms provide good estimates of
the original function.

We now consider the Scatterometer Image Reconstruction (SIR) algorithm. SIR is a modified ‘muitiplicative
ART algorithm specifically designed for scatterometer data reconstruction to reduce the effects of noise in the
reconstruction.”19411 SIR is based multiplicative ART with square root-damping and includes a non-linearity in
the update to minimize the effects of noise. Of importance in scatterometer applications is that SIR also estimates
the incidence angle dependence of the measurements.'! SIR. performs better in the presence of noise than the related
ART algorithms.

The results of additive ART, multiplicative ART and SIR are similar in the noiseless case. However, because of
noise in the measurements, none of the reconstruction algorithms can be run for more than a few dozen iterations
so the theoretical limits may not be reached. Nevertheless, as will be shown the algorithms provide good resolution
enhancement with only limited iterations. The limited iteration results are approzimations of the least squares or
maximum entropy solution. Experimental results demonstrate that even highly attenuated frequency components
are effectively recovered with finite iterations.

In order to illustrate and compare the ART and the SIR algorithm each are applied to a simple 1-D signal. A
sinc function was chosen since it readily shows the frequency domain reconstruction from the various methods. The
test signal is sampled with an irregular sampling grid. A rectangular aperture was chosen for convenience and its
utility for demonstrating sidelobe recovery. The relationship between the spectrum of the aperture function and the
test signal is illustrated in Fig. 5. The rectangular aperture for this study was chosen so that the first side lobe
of the aperture is inside the spectrum of the test signal as illustrated in Fig. 5, allowing the reconstruction of the
attenuated and nulled frequencies within the side lobe to be easily evaluated. Both noise-free and noisy cases are
considered. For the noisy case multiplicative noise is added to the test signal @orig using

Gnoisy = (1 +0.05N(0,1))agsig @

where N(0,1) is a zero mean Gaussian random variable. This is a simplified version of the noise model for the ERS-1
scatterometer. It should be noted here that the scatterometer has different noise model than is usually used for a
measurement system. Typical models use additive noise and the noise is usually independent of the measurement.
With the scatterometer noise model, however, the noise is multiplicative and depends on the actual measurement
value, further complicating the noise effects in the reconstruction algorithm.

To illustrate the resolution enhancement capabilities of the algorithms, we present a comparison of algorithm
results for the noiseless measurement case. Since the algorithms can only be run a finite number of times, we also
examine performance as a function of iterations. Figure 6 is comparison of the output of the three algorithms at
25, 100 and 1000 iterations with no noise. There are two significant observations to be made. First, there is little

145



I Spectrum ofrlnput Function

5 ._Spectrum of

2| Aperture = | > Nulls 1
o . J
a Function

Wave Number
Figure 5. Illustration of the overlay of the test signal spectrum (light) with the frequency response of the aperture
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Figure 6. A comparison of SIR, additive ART and multiplicative ART outputs after 25, 100 and 1000 iterations for
noiseless measurements. There is little difference between additive ART and multiplicative ART. SIR lags behind
the the other two methods as a result of the non-linear damping designed to reduce the influence of noise on the
output.

difference between the Additive ART and Multiplicative ART reconstructions. While there are some small numerical
differences as would be expected from the use of two different algorithms, the differences are negligible.

Second, the SIR output lags (as a function of the number of iterations) the output of the other algorithms. In
fact, the SIR output at 100 iterations and the output of Multiplicative and Additive ART at 25 iterations compare
very well. This lag is a result of the bounded multiplicative scale factor used in the SIR algorithm. As is illustrated
later, the bounded scale factor results in much better performance in the presence of noise.

Figure 7 shows the frequency domain representation of the output for 1000 iterations of all three algorithms.
The important thing to note here is the behavior of the side lobes within the desired frequency band. Refer back
to Fig. 5 and note that the aperture function has very low side lobes within the test signal frequency band. After
processing, the side lobes within the test signal frequency band are essentially recovered. All three algorithms
successfully reconstruct the original signal within the limits of the nulls in the aperture function as expected by the
earlier theoretical development for the noiseless case. In previous work, an inverse filter to compensate for the lower
side lobes resulting from incomplete reconstruction for SIR has been used with success.*

Figure 8 illustrates the spectra of the output from Multiplicative ART and SIR at 25 and 100 iterations for both
noiseless and noisy cases. (Both additive and multiplicative ART produce similar results for these cases.) While the
noiseless case shows very good spectral recovery for just a few iterations, the performance of the ART algorithms in
the presence of noise is significantly degraded. After 100 iterations the energy in the noise outside the desired band
is increasing rapidly for the ART algorithm.

The poor performance of ART in the presence of noise originally motivated the development of SIR.1! For SIR,
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Figure 8. Spectra of multiplicative ART and SIR with nmseless and no:sy measurements in the snnuiatlon

the multiplicative scale factor is damped so that large scale factOrs“do not overly magnify the noise at any one
iteration; slowing the reconstruction but minimizing the effects of the rioise. This is evident in:the ﬁrst sidelobe of
the SIR estimate which; while enhanced, is not as noisy -as it-is for ART
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Figure 9. Cumulative squared error between the output of the algorithms for various iterations and noise.

Figure 9 compares the error performance of the three algorithms in the simulation. . To compute the total squared
error shown, the output at each iteration is subtracted from the original test function and. the difference squared and
summed. The noisy cases for multiplicative and additive ART show greater error with increasing iterations after a
brief initial decrease. Even though the total squared error is low in the initial iterations:for the ART algorithms, a
minimum number of iterations (about 30) is required to generate acceptable resolution enhancement, in which case
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SIR begins to perform better than the ART algorithms. SIR is also convergent to a lower total error than the ART
algorithms which are nonconvergent for noisy measurements. The curves in Fig. 9 do not converge to zero because
of the nulls in the aperture function. The corresponding frequencies are unrecoverable and result in some minimum
error level between the original signal and the algorithm outputs. Based on Fig. 9 we conclude that SIR performs
better when noise is present. Noting that the SIR algorithm also recovers the incidence angle response,!! we conclude
that it is better suited for application to scatterometer data than an ART algorithm.

5. APPLICATION TO ERS-1 SCATTEROMETER MEASUREMENTS

The original SIR algorithm was developed for the Seasat scatterometer where the aperture function could be approx-
imated by a rect function, simplifying the algorithm.!? The ERS-1 scatterometer aperture function is a cosine on a
pedestal. In this case, the full response function is used in the SIR algorithm.!®

Each ERS-1 scatterometer 0° measurement consists of a series of pulses which are integrated and spatially filtered
with a raised cosine filter.!® The nominally 50 km resolution ¢° measurements are reported on a 25 km swath grid.
Over a several day period, multiple passes over the study region can be collected with a given point observed multiple
times with varying azimuth and incidence angles (see Fig. 10).

Over land and ice ¢° is a function of the measurement incidence angle, 8, and geophysical properties of the ice.
In the incidence angle range 20° < 6 < 60° corresponding to the range of scatterometer measurements, o° (in dB) is
approximately a linear function of the incidence angle 6

10log;o 0°(6) = A + B(8 — 40°) (6)

where A is the 40° incidence angle-normalized ¢°, while B is the dependence of o° on 6. The A and B coefficients
are functions of the geophysical properties of the surface. Note that 40° represents the mean @ of the observations
and is a convenient angle for making comparative analyses. Unlike ART, the SIR algorithm provides enhanced
resolution images of both A and B from multiple pass data. Combining multiple passes reduces the radiometric noise
and permits estimation of the incidence angle response. Multiple passes require, however, the assumption that the
surface is constant during the imaging time interval (see the discussion in Ref. 11).

To illustrate the application of SIR to ERS-1 scatterometer measurements, simulation is used. The geometry
and response function from actual ERS-1 measurements over a small study region in Antarctica are used with
synthetic A and B images (see Fig. 10) to generate simulated 0 measurements. Monte Carlo noise is added to the
measurements. The result of applying the SIR algorithm is shown in Fig. 10. The pixel resolution used is 8.9 km.
For comparison, a nonenhanced A image is also shown. This image was generated from one pass by first incidence
angle correcting the 0° measurements using a fixed (-0.15 dB/deg) B value. Each pixel in the swath is assigned
the resulting estimated A value corresponding to the measurement with the largest response for that pixel. While
the SIR image uses all available 0° measurements, only measurements from a single antenna beam can be used in

the nonenhanced image. Though there is some overshoot, the SIR image effectively enhances the resolution of the
resulting imagery.

While it is possible to use inverse filtering on the nonenhanced image to improve the effective resolution, the SIR
algorithm provides an effective methodology to combine multiple antennas and passes to infer both the incidence
angle normalized 0° (A) and the incidence angle dependence of ° (B). Because SIR can infer the incidence angle
response we conclude that it is better suited for application to scatterometer data than an ART algorithm. Because
of the non-overlapping 0° measurements for the Seasat and NSCAT scatterometer, multiple passes must be combined
to achieve full surface coverage for these instruments, requiring the use of SIR.

6. SUMMARY

In this paper, we have presented the theory behind scatterometer resolution enhancement. Grochenig’s algorithm to
recover an image from irregular samples was discussed. This algorithm is equivalent to additive ART. Experimental
data was used to compare the reconstructive abilities of additive ART, multiplicative ART and SIR for both noise
free and noisy cases. SIR performs substantially better in the presence of noise than comparable ART algorithms.
The application of SIR to ERS-1 scatterometer measurements is illustrated with simulation. We conclude that SIR
is an effective tool for scatterometer resolution enhancement.
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Figure 10. ERS-1 simulation results. The pixel resolution-is 8.9 km.- The filtered images were generated by lowpass
filtering the original true images to 95 km resolution. These represent the best the resolution ‘enhiancement: can
achieve given the sampling. The nonenhanced 1-pass image was: generated by setting pixel value to-the wvalue of
the measurement covering the pixel with the largest gain. ‘An incidence angle dependenee image (B) can not be
generated for the 1-pass case. RS i
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