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ABSTRACT

The NASA Scatterometer, NSCAT, is an active spaceborne
radar designed to measure the normalized radar backscatter co-
efficient (o,) of the ocean surface. These measurements can, in
turn, be used to infer the surface vector wind over the ocean using
a geophysical model function. Because of the nature of the model
function, several ambiguous wind vectors result. A median-filter-
based ambiguity removal algorithm will be used by the NSCAT
ground data processor to select the “best” wind vector from the
set of ambiguous wind vectors. This process is commonly known
as “dealiasing” or ambiguity removal. The algorithm incorporates
a number of selectable parameters such as window size, mode, and
likelihood weighting which can be adjusted to optimize algorithm
performance. This paper describes the baseline NSCAT ambiguity
removal algorithm and the method used to select the set of opti-
mum parameter values. An extensive simulation of the NSCAT
instrument and ground data processor provides a means of testing
the resulting “tuned” algorithm. This simulation generates the am-
biguous wind field vectors expected from the instrument as it orbits
over a set of realistic mesoscale wind fields. The ambiguous wind
field is then dealiased using the median-based ambiguity removal
algorithm. Performance is measured by comparison of the unam-
biguous wind fields with the “true” wind fields. Results have shown
that the median-filter-based ambiguity removal algorithm satisfies
NSCAT mission requirements.

1. INTRODUCTION

The feasibility of spaceborne scatterometers to make estimates
of both wind speed and direction over the ocean was demonstrated
by the Seasat scatterometer (Grantham et al., 1982). A scatterom-
eter measures the normalized radar backscatter coefficient (o,) of
the ocean surface. These measurements can then be used to esti-
mate vector surface wind using a geophysical model function and
a wind retrieval algorithm. The NASA scatterometer, NSCAT, is
scheduled to fly in the mid 1990’s (Martin et al., 1986). The o,
data will be processed to vector wind estimates at 50 km resolu-
tion using 2 point-wise Maximum Likelihood (ML) technique {Chi
and Li, 1988). Because of the harmonic dependence of 0, on wind
direction, though, the retrieval technique is unable to uniquely re-
solve the wind vector. A set of 2 to 6 possible wind vectors known
as ambiguities are determined (Chi et al., 1986). Associated with

each ambiguity is a likelihood value which may be used to order
the ambiguities. For NSCAT, a median-based ambiguity removal
algorithm will be used to select one wind vector from the set of
ambiguities that, when successful, is the closest vector to the true
wind for each wind resolution cell.

This paper describes the NSCAT ambiguity removal algorithm
and the set of adjustable parameters which permit algorithm tun-
ing. Descriptions of the mesoscale wind fields and instrument sim-
ulation used in the tuning process are also provided. Methods to
evaluate algorithm performance are then developed. The tuning
procedure is outlined. Finally, the optimum algorithm parameters
and corresponding performance are given.

2.  ALGORITHM DESCRIPTION

The median-based ambiguity removal algorithm was chosen for
use by NSCAT because of its simplicity, tunability, and overall per-
formance. It is an extension of the vector median computation
given in the appendix, with additional weighting parameters intro-
duced to permit algorithm tuning and performance enhancement.
The steps it follows to select the ambiguities are listed below:

1. The algorithm constructs a two dimensional array of wind
vectors of sufficient size to contain an entire swath.

2. The array is initialized using the the “Most Likely” wind vec-
tors generated by the ML retrieval algorithm.

3. For each wind vector cell (WVC) in the array, determine the
ambiguity, k, at the point (7,7) which minimizes the error

function for one of two possible modes of operation:
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Af»‘]» = Kkth ambiguity vector at point (%, )
Upn = (m,n)th vector in the array

Wmn = location weight for the (m,n)th vector
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ij = retrieval algorithm likelihood associated ‘
with the ktB ambiguity at (3, 7)

P = likelihood weighting factor

N = algorithm window size

I = (N -1)/2 index bound
Wind vector cells not containing data are ignored.

4. Replace Uj; with the vector A{?j correspounding to the lowest
error function.

5. Repeat steps 3 and 4 until convergence.

The four adjustable parameters which permit algorithm tuning
are: mode, window size (IV), likelihood weight (P), and location
weight (Wi,,). The mode controls whether wind speed is included
in the calculation of the error function (Ef). For Mode 0, the
vectors A{?j and U, are in the direction of the wind ambiguities
and have unit length. The mode 1 vectors are in the same direction
as mode 0, but their magnitudes corresponds to the ambiguity wind
speeds. N can range between 3 and 11 WVCs on a side. Wiy
controls the relative contribution of each vector in the window.
P determines the advantage given to vectors with a higher retrieval
algorithm likelihood.

3.  ALGORITHM SIMULATION

The goal of ambiguity removal tuning is to select the set of
parameters which maximizes the algorithm performance. An ex-
tensive simulation of the NSCAT instrument and the ground data
processor provides a useful data set to use for algorithm tuning
and performance assessment. The instrument simulation includes
0, modeling error, measurement geometry determination error, etc.
The baseline antenna polarization mix was used. The ground pro-
cessing simulation includes o, recovery, grouping and wind retrieval
using the ML technique. The resulting swath of ambiguous wind
vectors has a 50 km resolution and extends 600 km in the cross
track direction.

Twelve mesoscale wind fields originally generated by the Eu-
ropean Center for Medium-range Weather Forecasting were used
to simulate wind structures over the ocean. The fields were con-
structed using both SASS and conventional data. Additional small
scale variability was added (Bevan and Freilich, 1987). The files
were selected to span a wide range of wind features including sharp
fronts and small-scale cyclones with wind speeds between 0 and 30%
m/s (Long et al., 1989).

4. ALGORITHM PERFORMANCE

Two performance metrics were used to select the optimum set
of ambiguity removal parameters, the algorithm skill and the 12 by
12 clumpiness metric. The algorithm skill is the percentage of wind
vectors selected by the median-based ambiguity removal algorithm
which are also the closest vectors to the true wind direction for a
given mesoscale wind file. Clumpiness is the tendency of ambigu-
ity selection errors to occur in the proximity of other ambiguity
errors. The 12 by 12 clumpiness metric is a means of estimating
the clumpiness of ambiguity errors in a given wind file. It is de-
fined as the percentage of 12 by 12 contiguous WVC regions having
greater than 85% successful selection. The higher this percentage
for a given algorithm skill, the less clumpy the file is. NSCAT sci-

ence requirements state that the algorithm skill must be greater
than 96.0% and the clumpiness metric be greater than 98.0% in
regions of the swath where the true wind speed is between 3 and
30 m/s (Long, 1988). To conform with these requirements, both
performance measurements are only calculated in this wind speed
region.

5. TUNING PROCEDURE

Performance of the median-based ambiguity removal algorithm
depends on the features of the wind field. The twelve wind files
were divided into two separate groups, a test group and a withheld
group. The test group was used to tune the ambiguity removal al-
gorithm while the withheld group was used to determine the actual
performance of the algorithm. Averaging the performance over the
six wind files in the test group provides a reasonable measure for
ranking the sets of input parameters.

Over one hundred different input parameter configurations for
the algorithm were evaluated, spanning most degrees of algorithm
freedom; mode, window size, location weight, and likelihood weight.
Fach configuration was used to select the unambiguous wind vectors
for the six mesoscale wind files in the test group. In addition to
calculating the algorithm skill and clumpiness metrics, spatial plots
of the ambiguity errors and distributions of the errors as a function
of wind speed and swath location were made.

6. TuNING RESULTS

The variation in ambiguity removal performance observed in
this study indicates that algorithm tuning can have a significant
effect. One of the most prominent features is the dependence on
algorithm mode. In every case where two configurations differ only
by mode, the configuration using mode 1 has a higher algorithm
skill; hence, the vector error function performs better than the di-
rection error function. The median-based algorithm also exhibits
a strong dependence on window size. The algorithm performance
peaks at 7 by 7, though the difference between 5, 7, and 9 is quite
small. The algorithm skill drops substantially when the window
size is reduced to 3 by 3 WVCs. The results also display a slight
dependence upon the likelihood weighting. The algorithm skill for
both modes 0 and 1 increases as the likelihood weight increases
between 0.0 and 2.0. The skill for mode 1 drops as the likelihood
weight increases from 2.0 to 3.0. Mode 0 increases slightly over the
same range, but the increases is insignificant. Figure 1 summarizes
this observed relationship between mode, window size, likelihood
weight, and the average algorithm skill for uniformly weighted con-
figurations over the test group of wind files. A comparison has
also been made using the 12 by 12 metric with similar results (see
Figure 2).

With the exception of configurations using mode 0 or a window
size N = 3, the algorithm performance is quite good and fairly
uniform, making the selection of a single, “optimum” configura-
tion difficult. Based on Figures 1, 2, and a subjective assessment
of algorithm performance, the optimum set of ambiguity removal
algorithm parameters has been chosen as follows:

Mode: 1 (Vector error function )
Window Size: 7 by 7T WVC

Window Shape: Square, Uniform weight
Likelihood Weight: 2 (Advantage to “most likely”
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Fig. 1. Histogram of algorithm skill verses filter size and likelihood weight for

both mode 0 (left) and mode 1 (right).
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Fig. 2. Histogram of the 12 by 12 clumpiness metric verses filter size and
likelihood weight for both mode 0 (left) and mode 1 (right).

With these values, the median-based ambiguity removal algo-
rithm achieves an algorithm skill of 96.7% and a 12 by 12 metric
of 98.7% over the test group.

Although several configurations utilizing non-uniform location
weighting were also tested, it is clear that any improvement in per-
formance due to location weighting will be small. Detailed analysis
of non-uniform configuration performance was complicated by the
large number of possible weighting gradients.

7. ALGORITHM EVALUATION

To validate the selection of an optimum set of algorithm param-
eters. the test was repeated using the withheld group of wind fields.
Although the average performance of all algorithm configurations
was slightly lower for the withheld data set, the drop was not signif-
icant. The optimum parameter configuration selected above ranked
4% ysing the withheld group of wind fields. The difference in algo-
rithm skill, though, between it and the highest ranked configuration

for the withheld group was only .3%. The standard deviation in the
algorithm performance averaged over the 6 withheld wind fields is
approximately 2%, making this difference insignificant. When both
wind field sets were combined, the optimum set of algorithm pa-
rameters ranked the highest. The performance of both metrics for
the optimum algorithm configuration is summarized in Table 1.

Table 1
Median-Based
Ambiguity Removal Algorithm
Metric Performance

[ Wind Files [ Algorithm Skill | 12 by.12 Metric |

Test Set 96.7% 98.69%
‘Withheld Set 96.0% 98.07%
Combined 96.4% 98.38%
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8. CONCLUSION

The median-based ambiguity removal algorithm is a very ef-
fective method of selecting the closest vector to the true wind field
from a set of ambiguities. It is a simple algorithm to implement and
performs well over a large variety of wind fields. An optimum con-
figuration for the ambiguity removal algorithm has been selected.
The configuration consists of a 7 by 7 square filter with all locations
within the filter weighted equally and an advantage given to am-
biguities selected as most likely wind vector by the wind retrieval
algorithm. The algorithm skill is 96.7%, with 98.69% of the 12 by
12 contiguous regions having greater than 85% successful selection.

APPENDIX

The median of a set of N values is defined for N (odd) as the
[(V 4 1)/2]*" largest number, i.e. there is an equal number of val-
ues greater and lesser in magnitude than the median. Because the
selection of a median is determined only by the order of numbers,
the median is not affected by extremely large or small values in the
data. Therefore, the advantage of a median filter is that it elim-
inates impulses while preserving edges. On the contrary, a linear
filter such as a mean filter or a Hamming window filter smooths
(not eliminates) impulses and smears edges.

It is difficult to define the median for circular data such as
directions because the order of numbers cannot be specified. One
method developed by Mardia defines the median of directional data
to be the direction «, such that an equal number of data exist in
the half circles (o, o +180°) and (o —180°, @) (Mardia, 1972). This
definition is not only cumbersome to work, but also gives multiple
solutions. Mardia also pointed out that the circular mean deviation
is 2 minimum when measured from the median direction. i.e. for
circular data a(1),a(2),.....,a(N), the median is the value a(m)
which minimize the function:

N
S(m) = (1/N)E|a(m)— a(i)l 1<m<N.
=1

Here the absolute values are defined as positive angles between
0° and 180°. For multi-dimensional data such as vectors and com-
plex numbers, it is even more difficult to define the median. The
minimum deviation can be extended to define the median of multi-
dimensional data. For vector data, V(7), the median is defined as
the vector V(m) which minimizes S(m), where

S(m):ilV(m)—V(iH and 1<m<NAN.

=1

Here the absolute value represents the magnitude of the vectors.
Similar to the median of non-circular and circular data, the vector
median defined here is not affected by the data of extreme values.
The NSCAT median-filter-based ambiguity removal algorithm is a
generalization of this technique.
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