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ABSTRACT

A wind scatterometer is a radar remote sensing instrument
which measures the wind-dependent radar backscatter of the
ocean’s surface. From these measurements the near-surface wind
over the ocean can be inferred. We introduce a model-based
approach to estimating the entire wind field over the swath si-
multancously. This fundamentally new approach incorporates
dynamical constraints provided by a mathematical model of the
wind field and climinates the “dealiasing” required in traditional
wind retrievel process. The new approach results in more accu-
rate wind estimates and the ability to quantify the accuracy of
the resulting wind field estimates. This paper summarizes the
development of the wind field model and provides an illustrative
comparison of the model-based and traditional wind estimation
schemes.
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1. INTRODUCTION

In the mid 1980’s the NASA-sponsored experimental satel-
lite known as SEASAT demonstrated, among other things, that
winds over the ocean could be measured from space using a
wind scatterometer (Refs. 15,7). The scatterometer measures
the wind-dependent radar backscatter of the ocean’s surface from
which the speed and direction of the wind over the ocean’s surface
is estimated. Unfortunately, the point-wise estimation procedure
traditionally used results in non-unique estimates of the wind
vector. Since a single estimate of the wind is required for most
occanographic and meteorological studies, the ambiguity in the
wind vector estimate is resolved using an error-prone “dealiasing”
step to select a unique wind field map (Ref. 14).

The purpose of this paper is to introduce an estimation-theory
based approach to estimating the wind vector field; it uses a
model, based on fundamental physical principles, for the un-
derlying wind field. In the proposed approach, the noisy wind
scatterometer measurements are used to estimate the parame-
ters of the wind field model. The wind field estimate is then
computed using the model parameters. This approach is fun-
damentally different from the traditional point-wise approach to
wind field estimation. It eliminates the “dealiasing” step and
yields more accurate estimates of the wind field. While the ap-
proach is computationally intensive, the model-based wind ﬁ::ld
estimation technique permits analysis of the accuracy of the wind
ficld measurement. This can be very difficult using the traditional
approach due to the ad hoc nature of the dealiasing step. )

An outline of this paper is as follows. First, background in-
formation is provided, followed by a brief description of the tra-
ditional estimation approach. We then present a mathematical
development of a very simple descriptive wind field model. The
resulting estimation problem is formulated and simulated results
are presented and compared with the more traditional point-wise
wind field estimates.

2. BACKGROUND

The normalized radar backscatter (¢°) (at Ku band) of the
ocean’s surface depends on the wind speed and the relative az-

imuth angle between the radar illumination and the wind direc-
tion in a manner which varies with the incidence angle of the
radar on the ocean surface and the radar polarization (Refs.
15,4). The relationship between ¢° and the wind is known as
the geophysical model function and will denoted by M. A typi-
cal example of M is the SASS-I model function which relates o
to the neutral stability wind at 19.5 m (Ref. 4).

Since M has a multi-valued inverse, several measurements of
o {from different azimuth angles are used to infer the wind. The
SeaSat scatterometer obtained ¢° measurements from only two
azimuth angles on an irregular sampling grid. Second-generation
scatterometers such as NSCAT (Ref. 11) will obtain 0° mea-
surements from 3 or more azimuth angles on an equally-spaced
grid of sample points over the measurement swath. These noisy
measurements of 0° provide an essentially instantaneous sample
of the wind field across the swath over the ocean’s surface. The
problem is to estimate the original wind field at the sample points
from the noisy ¢° measurements.

3. POINT-WISE WIND ESTIMATION

In the traditional approach, the noisy ¢° measurements are
used in a point-wise estimation scheme in which only the ¢° mea-
surements for a given grid cell are used to estimate the wind for
that cell. An objective function (typically based on the likelihood
function) formulated using the noisy ¢° measurements, is mini-
mized with respect to the wind speed and direction at the sam-
ple point. Unfortunately, due to the nature of M, the objective
function is minimized by several wind vectors. This approach is
unable to uniquely estimate the wind vector and several ambigu-
ous wind estimates result for each cell. The multiple est'mates
are termed ambiguities or aliases (Ref. 14). To select a single
wind estimate for each cell, a post-estimation procedure known
in the literature as “dealiasing” or “ambiguity removal” is used
(Refs. 14,16). Dealiasing procedures have used various ed hoc
measures and/or pattern recognition of significant weather fea-
tures to select a wind vector at each sample point of the wind
field (Refs. 14,16). More recently, dealiasing based on dynamical
considerations for the resultant wind field with data assimulation
techniques has been studied (Refs. 2,9,10). Dealiasing is prone
to large systematic errors {Refs. 1,14,16).

4. MODEL-BASED WIND FIELD ESTIMATION

Rather than using the traditional point-wise approach to wind
estimation, we propose using a model-based estimation procedure
to cstimate the entire wind field over the measurement swath.
This new approach eliminates the need for dealiasing and pro-
vides more accurate wind field estimates by taking advantage
of the inherent correlation in the wind between dilferent sam-
ple points. In this approach we formulate an objective func-
tion based on the likelihood function for the model parameters
using the noisy ¢° measurements. The model parameters are
estimated by minimizing the objective function. Finally, the es-
timated wind field is computed from the model parameters. In
effect, this procedure permits us to estimate the entire wind field
simultaneously.

For model-based wind field estimation a mathematical model
for describing and/or representing the wind field for the purposes
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of wind estimation is needed. The wind field model must be ca-
pable of representing near-surface mesoscale wind fields. Since
other data sources are not always available, we require that the
model use only scatterometer data. To be useful for wind field es-
timation, the model must be computationally tractable and lend
itself to a model parameter estimation formulation. Note that
while we will base the model formulation on physical principles,
the model does not necessarily have to be based on atmospheric
dynamics since the model is used only for describing a snapshot
of the near-surface wind field and not for propagating winds.

In this paper we present a particularily simple wind field
model based on the geostrophic equation and rather simplistic
assumptions regarding the divergence and curl of the wind field,
which is adequate for use in wind field estimation. As part of
our continuing research we are investigating more sophisticated
models.

5. THE WIND FIELD MODEL

The wind field model provides a description of the wind field
over the scatterometer measurement swath at a fixed instant of
time and a resolution of 25 km (corresponding to the scatterom-
eter sampling). To simplify matters we restrict our attention to
limited-area regions with a maximum spatial extent of approxi-
mately 600 km (Ref. 11).

Denote the near-surface horizontal wind field of interest by
U = (u,v)T. We are interested in a mathematical model provid-
ing a reasonably accurate description of U over a (limited-area)
region L. The vorticity { and divergence § of U are defined, as

¢ = k-YxU 1)
§ = V.U (2)

Using the Helmholtz theorem, U may be defined by a stream-
function 9 and velocity potential x, according to

U=kxVy+Vy (3)

where k x V1 is a nondivergent vector field and Vy is a curl-free
vector field (Ref. 3).

Taking the divergence and curl, respectively, of Eq. (3) we
obtain Poisson equations for ¢ and x (Ref. 13),

Viy = ¢ 4
Viy = 6 (5)

These equations appear in the classic problems of partition-
ing a given wind field into its rotational and non-divergent com-
ponents and reconstructing a wind field from specified vorticity
and divergence (Refs. 3,13). For this latter problem, Lynch (Ref.
13) argues that the reconstruction is not unique over a limited
domain; an arbitrary harmonic function may be added to x, pro-
vided ¥ is also altered, to produce the same wind field. From
this he concludes that the boundary values of x may be set arbi-
trarily. He shows that setting the boundary values of x to zero
minimizes the divergent component of the kinetic energy. Choos-
ing x = 0 on the boundary ensures a unique reconstruction of
the wind field.

Following this line of reasoning, our first modeling assumption
is to assume that x = 0 on the region boundary. This corresponds
to wind fields with minimum divergent kinetic energy. Assuming
that x = 0 on the boundary, Eqgs. (4) and (5), the vorticity and
divergence fields and the boundary conditions for 9, are sufficient
for describing the wind vector field.

To obtain simple boundary conditions we make a second ma-
jor modeling assumption by attributing 1 to the geostrophic mo-
tion. This second assumption is that the streamfunction % is
proportional to the geostrophic pressure field p,

1
psf

where p, is the density and f is the Coriolus parameter. Note
that in a strictly geostrophic formulation, the wind field would
be non-divergent and x would be identically zero. In the more
general formulation which we will adopt, x corresponds to the
ageostrophic component of the wind. This generalization allows
us to apply the model to mesoscale wind fields which depart from
strict. geostrophy. Inclusion of the ageostrophic flow permits the
model to span a wider space in describing the wind field. Note
that ¢ and x will be derived from the observed wind field.

By making assumption two, the boundary values for Egs. (4)
and (5) can be specified in terms of the geostrophic pressure field.
This avoids the difficulties of using velocity boundary conditions

w:

P (6)

which may yield an overdetermined system (Ref. 13).

Qur third modeling assumption is that over the region of in-
terest p, f is essentially constant (i.e., an f-plane approximation);
we do this to simplify the mathematics. We can then normalize
the pressure field by p;f so that ¥ = p, i.e., 9 is then the nor-
malized geostrophic pressure field. Using this definition, Eq. (3)
can be written in component form as,

dp  Ox
= - -_— 7
By + 35, )
dp OJx
= - - 8
v =ty ()

These two equations, along with Eqs. (4) and (5) form the basis
of our wind field model.

To complete the wind field model, descriptions of the vorticity
and divergence fields are needed. Our fourth and final assumption
is that the vorticity and divergence fields are relatively smooth
and can be adequately modeled by low-order ‘bivariate polyno-
mials over the region of interest. Note that the coeflicients of
the polynomials will be derived from the observed wind fields.
In this paper, we have assumed the following bivariate forms for
the vorticity and divergence fields,

Mc Mc

((z,y) = Z Z Cmnl " Y" (9)
m=0 =0
m+n<Mc
Mp Mp

b(zy) = Y T (10)
m=0 My

where Mc and Mp are the model orders and ¢, . and dp y are
the model parameters. The number of parameters in the vorticity
and divergence field models are N¢ = (M¢ + 1)(M¢ + 2)/2 and
Np = (Mp+1)(Mp+2)/2, respectively. While the model orders
can be selected at will, we have found, based on simulations, that
Mc = Mp = 2 is typically adequate for wind estimation.

To solve Egs. (4), (5) and (7) through (10), these equations
are discretized on an N x N equally-spaced grid with spacing
h = 25 km over the desired region £. This corresponds to the 25
km sampling resolution of the wind scatterometer. While N = 24
will cover the entire swath width, the swath can be segmented
into smaller regions to reduce N and the corresponding compu-
tational requirements. The pressure and velocity potential fields
can be eliminated from the discretized system of equations and
the velocity field can be written directly in terms of the pressure
field boundary conditions and the parameters of the vorticity
and divergence fields. The resulting equation relating the veloc-
ity component fields to pressure field boundary conditions and
the vorticity and divergence model parameters can be expressed,
as (Ref. 12)

U _
[0]=rr ay

where the N? element vector U is the lexicographic-ordered u
component wind field at grid sample points, V is the lexico-
graphic ordered v component:wind field, and, the X vectors con-
tains 4N — 2 pressure field boundary conditions and Ng + Np
vorticity and divergence field parameters. The full-rank rectan-
gular matrix F' consists of known constants.

Equation (11) provides a parametric wind field model which
relates the model parameters (in X) to the wind field (in U and
V). This wind field model easily lends itself to the parameter
estimation formulation: the model parameters in X are directly
estimated from the noisy ¢° measurements and the wind field is
then computed from the parameters using Eq. (11).

6. WIND FIELD MODEL EVALUATION

To evaluate our model formulation we have used simulated
mesoscale wind fields since little conventional oceanic mesoscale
data is available (Ref. 5). The test wind fields were generated by
state-of-the-art numerical weather prediction techniques at 1.875
deg resolution. The fields were interpolated to 10 km and small-
scale variability with a k=2 spectrum (Ref. 7) was added. The
wind fields were selected to span a wide range of meteorological
conditions.

To test the vorticity and divergence model order, a grid size
N was selected and the modelling error evaluated for different
model orders Mg and Mp. The modeling error was computed
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as follows. At a given location, the model parameters X were
computed, by

X = (FTF) 1 FT [ g ] . (12)

The model wind field computed from these parameters, is
Tl .=
[ v ] =FX. (13)

The RMS errors (vector, speed, and direction) between the true
field and the model field were computed. To limit the compu-
tation required, the swath was segmented to permit the use of
various NV values. The errors reported below are the RMS over all
segments of the wind fields. The results for N = 12 (a 300 x 300
km region £) and various M¢ and Mp are shown in Table 1. The
effects of varying N but holding M¢ and Mp fixed are illustrated
in Table 2.

For a fixed N, as the model orders are increased, the RMS
errors decrease and the number of unknowns grows. Values of
Mp = Mp = 1 or Mp = Mp = 2 keep the number of un-
knowns small while providing adequate accuracy for wind field
estimation. From Table 2 we see that for fixed Mp and M¢ the
RMS error increases with N. While the number of unknowns
also grows with N, the total number of swath segments also de-
creases. We have found that both N = 8 and N = 12 are suitable
for wind estimation. Larger values of N can be used but require
more computation to optimize the objective function.

7. OBJECTIVE FUNCTION FORMULATION

The scatterometer provides noisy measurements of ¢°, which
is a non-linear transformation, M, of the velocity field. At a
given sample point, the k™ measurement z(k) of the true o®
value includes additive zero-mean Gaussian noise which has a
variance that is a quadratic function of the true o° (Ref. 6), i.e.,

kY + BHk)o (k) +¥7(k)  (14)

where a(k), B(k), and y(k) are known constants which depend
on the observation angle, polarization, and swath location of the
measurement. The measurement noise is assumed to be inde-
pendent for each different measurement of o°. Disregarding con-
stants, the point-wise log-likelihood function is

Var[z(k)] = o?(k)o°¥(

L
[{u,0) = — Z{ln[az(k)aoz(k) + BHE)o°(k) + v2 (k)]

k=1

Ha(k) = (Rl (K)o (k) + B2(k)a"(K) + Y2 (K))} (15)
where L is the number of available 0° measurements at the sam-
ple point and o°(k) is related to the components (u,v) of the
wind vector by the geophysical model function M, i.e.,

a’(k) = M{(u,v),k}. (16)

In the traditional point-wise approach, the values of (u, v) which
maximize the log-likelihood function in Eq. (15) are the ambigu-
ity set for the sample point.

In the model-based approach, we estimate the wind field
model parameter vector X directly from the noisy o° measure-
ments and then compute the velocity fields from the-estimated
model parameter vector. For our wind field model, formulation
of the field-wise objective function (based on either maximum-
likelihood or least-squares criteria) for the model parameters (X')
is straight forward. Disregarding constants, the log-likelilood
function for X can be written, as

N
IX) = Z

(k)a? (k) +72;(k)]

£ 1
nM“

{m (K)o (k) + 52
11(1‘) —0; ](k)] /[ 'J(L)U ‘”) +
;AH@AM+mJHH (17)

where 0?.(k) is the value of o° obtained by evaluating the wind

field model at X and using the u and v components of the wind
vector at the grid point (¢,7) in the M function, i.e.,

o?;(k) = M{(FX):;,k} (18)

The field-wise objective function is the negative of the field-wise
log-likelihood function. The value of X which minimizes the
ficld-wise objective function is the maximum likelihood estimate
of X. The estimated wind field is computed from X.

Due to the complicated nature of the field-wise objective
function we must resort to numerical techniques. Unfortunately,
the dimensionality of the minimization is rather high (there are
4N — 2+ N¢ + Np model parameters in X). Numerical mini-
mization of the objective function is difficult due to the nature
of the objective function which inherits its properties from the
nature of M. The harmonic form of M gives rise to (a) nu-
merous local minima, and (b) the potential for multiple global
minima in the objective function. While it is possible to have
multiple global minima, which would give rise to multiple field
estimates, we have not observed this in our testing. In the event
that multiple minima should occur, selecting a single solution for
the field-wise case is much simpler than for the point-wise case,
since the ambiguity can readily be resolved by comparison with
adjacent swath segments.

8. COMPARISON OF APPROACHES

The comparisons we have made between our model-based ap-
proach and the traditional point-wise approach indicate that our
approach yields significantly more accurate wind field estimates
even when perfect dealiasing is assumed (i.e., the ambiguity clos-
est to the true wind is used as the dealiased wind). The point-
wise approach can never do better. This comparison was made
using simulated NSCAT data and includes the effects of commu-
nication noise, imperfect o° cell coregistration, and geophysical
modeling errors in M.

To illustrate the performance difference, consider Figs. 1-3.
For this example N = 8 and My = Mp = 2. Fig. 1 shows a
300 x 300 km region of the true mesoscale wind field, sampled
at 25 km resolution, in solid vectors. The broken vectors show
the wind field resulting from fitting the model to the true wind
field. Fig. 3 shows the ambiguous solution sets obtained using
the point-wise estimation approach on the simulated ¢° mea-
surements. The solid vector indicates the closest ambiguity to
the true wind field. A wind field consisting of these closest am-
biguities would be the result of “perfect dealiasing”. Note that
point-wise solution sets are not present at some sample points.
This is due to the fact that for adequate point-wise wind estima-
tion, at least one o°® measurement from each of the antenna beams
is required. Instrument calibration cycles and ¢° cell coregistra-
tion errors result in missing measurements at some sample points
in the swath. At these sample points, no wind can be estimated
using the point-wise approach. Fig. 2 illustrates the results ob-
tained using our model-based estimation approach applied to the
same o measurements. These results should be compared to the
solid vectors of Fig. 1. The model-based approach does not suffer
from the limitation of requiring a full compliment of 6° measure-
ments at each sample point, but is able to obtain wind estimates
for each point of the wind field. Note that the model-based wind
field estimate is much less “noisy” than the point-wise closest
ambiguity wind field. A comparison of the RMS difference be-
tween the true wind field and the estimated wind fields for both
cases is shown in Table 3.

9. SUMMARY

The traditional approach to solving the wind estimation prob-
lem leads to multiple solutions requiring ad hoc dealiasing tech-
niques to produce a unique solution. We have introduced a
model-based estimation technique which, by imposing a model
on the underlying wind field, eliminates this error-prone dealias-
ing step and yields more accurate estimates of the wind even
when perfect dealiasing is assumed. In our approach, the noisy
wind scatterometer measurements are used to estimate the pa-
rameters of the wind field model. The improved performance can
be attributed to the fact that the model-based approach takes ad-
vantage of the inherent correlation between the wind at different
sample points to reduce the noise in the final wind estimates.
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Table 1: Wind Field Modeling Error — (N = 12}

Model Order RMS Error

Vector Magnitude | Direction | Speed

Mc | Mp (m/s) (deg) (m/s)
0 0 0123 6.256 0.082
0 1 0.111 5.725 0.074
0 2 0.107 5.502 0.071
0 3 0.105 5.445 0.069
] 4 0.105 5.373 0.070
1 0 0.108 5.591 0.070
1 1 0.094 4.914 0.060
1 2 0.089 4.658 0.057
1 3 0.088 4.566 0.056
1 4 0.089 4.617 0.057
2 0 0.104 5.397 0.067
2 1 0.089 4.666 0.056
2 2 0.085 4.378 0.053
2 3 0.083 4.289 0.052
2 4 0.083 4.277 0.052
3 0 0.103 5.357 0.066
3 1 0.088 4.623 0.056
3 2 0.084 4.331 0.052
3 3 0.083 4.237 0.051
3 4 0.082 4.207 0.051
4 0 0.102 5.374 0.066
4 1 0.087 4.580 0.056
4 2 0.081 4.227 0.051
4 3 0.082 4.263 0.052
4 4 0.083 4.439 0.053
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Table 2: Wind Ficld Modeling Error - (Me=AMp=2)

RMS Error
Vector Magnitude | Direction | Speed
N (m/s}) (deg) | (m/5)
4 0.04 1.49 0.02
6 0.08 3.18 0.05
8 0.09 3.76 0.05
12 0.09 4.38 0.05

Table 3: RMS difference between the estimated and true fields

Wind RMS Error

Estimation Vector Magnitude | Direction | Speed
Approach (m/s) (deg) (m/s)
Point-wise 1.3 15.1 0.44

Model-based 0.9 7.3 0.68

Figure 1: True wind field (solid), model wind field (dotted).
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Figure 2: Model-based wind field estimate.
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Figure 3: Point-wise ambiguities.




