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ABSTRACT

A direct relationship between a one-dimensional time series and
its unwrapped phase was first shown by McGowan and Kuc [1].
They proposed an algorithm for computing the unwrapped phase
by counting the number of sign changes in a Sturm sequence
generated from the real and imaginary parts of the DFT. Their
algorithm is limited to relatively short sequences by numerical ac-
curacy. In this paper an extension of their algorithm is proposed
which, by using all integer arithmetic, permits exact computation
of the number of multiples of # which must be added to the prin-
ciple value of the phase to uniquely give the unwrapped phase of
a one-dimensional rational-valued finite-length sequence of arbi-
trary length. This extended algorithm should be of interest when
highly accurate phase unwrapping is required.

1. INTRODUCTION

McGowan and Kuc [1] first showed that the number of multi-
ples of 7 which must be added to the principle value of the phase
to obtain the continuous unwrapped phase can be uniquely de-
termined by counting the number of sign changes in a Sturm
sequence generated from a finite-length real sequence. Unfor-
tunately, the numerical accuracy required for computation of
the Sturm coefficients and evaluation of the Sturm sequence pre-
cludes the application of their algorithm beyond relatively short
time sequences. In this paper, an extension to this approach is
described which uses all integer arithmetic to permit exact nu-
merical computation of the multiples of 7 (denoted L(w)) which
must be added to the principle value of the phase to obtain the
unwrapped phase when the one-dimensional finite-length real se-
quence is rational-valued. The sequence may be of arbitrary
length.

This paper is organized as follows. First, the Sturm sequence
method of computing L(w) first proposed by McGowan and Kuc
is summarized. This is followed by a brief discussion of the lim-
itations in the numerical accuracy of the approach. Next, ex-
tensions to this method are provided which permit the use of
all-integer arithmetic to exactly compute the coeflicients of the
Sturm polynomial sequence and to insure the accuracy of the
computation of L{w). A brief discussion of the tradeoffs in mem-
ory and computation required versus accuracy is presented. The
appendix presents an important theorem in the application of
Sturm sequences to phase unwrapping. A companion paper ex-
tends this one-dimensional result to multidimensional sequences
and demonstrates the uniqueness of the phase of a multidimen-
sional sequence with a rational Z transform {2].

CH2561-9/88/0000-1782 $1.00 © 1988 IEEE

2. STURM SEQUENCE PHASE UNWRAPPING

The DFT, X(w), of the real-valued, finite-length time se-
quence {z(n), n=0,...,N -1} is,
N-1
Xw)y=Y" z(n)e ™.
n=0
Assuming that |X(w)| # 0, the phase of X(w) relative to the
phase at w = 0, is,

_ Im[X(w)]
arg[ X (w)] — arg[X (0)] = arctan{m} — L(w)r.

The integer-valued function L(w) indicates the number of
multiples of 7 which must be added to the principle value of the
phase of X(w) to produce a continuous phase function, i.e., the
unwrapped phase. Figure 1 shows a plot of the of arctanz +{ for
several values of [ [1]. As w increases through a zero of Re[X (w)],
the ratio, y(w) = Im[X(w)]/Re[X(w)] passes through a pole
at either —oco or +00. (X(w) is non-zero on the unit circle so
Im[X(w)] and Re[X (w)] are not both simultaneously zero.) At
this pole, the integer-valued L(w) must increase or decrease in
order to maintain a continuous phase function (which is the un-
wrapped phase). L(w) will increase if Imm[X (w)]/Re[X (w)] goes
from positive to negative as w goes through a root of Re[X (w)]
and will decrease if Im[X(w)]/Re[X(w)] goes from negative to
positive through a root of Re[X(w)] (see Figure 1). In regions
where Im[X (w)]/Re[X (w)] does not change sign, L(w) does not
change value. Thus, computing L(w) is reduced to computing the
sign changes in I'm[X (w)]/ Re[X (w)] at the roots of Re[X (w)] [1].
This may be accomplished by using a Sturm polynomial sequence
computed from the real and imaginary parts of X (w).

The real and imaginary parts of X(w) can be conviently ex-
pressed in terms of Chebychev polynomials of the second kind
using the fundamental Chebychev polynomial equations [3],

sin(n + 1)w

Tu(w) = cosmo,  Upfw) = BT )
Ta(w) = 50a() = Una(@)] Va2 2,
Ti(w) = 5Uh(w),  To(w) = Uolw) = 1,
X(w) = et=Me 3_‘,_: po(n)Un(w) +y‘sinw1§p1(n)Uﬂ(w> (2)
with - -
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[g(N-n)-a(N-n-2)]/2 n<N-2 (3)
z(N —n)/2
pi(n) = z(V-n-1)

z(N)—z(N - 2)/2 n=0
po(n) = {
N-1<n<N

0<n<N-1 4)

Note that T,(w) and U,(w) are polynomials in arccosw. The
e/(1=N)w term in (2) adds a linear phase term to the phase of the
term in brackets and is included for convenience.

The sinw term in equation (2) does not affect the sign or the
roots of Im[X (w)] on the interval {0,7] nor the location of the
roots of Re[X(w)]. Thus, it does not affect L(w) and need not
be considered in the computation of L(w). A Sturm sequence of
Chebychev polynomials {FPy(w), Pi(w), ..., Pn(w), m =N -1}
can be generated from the terms of (2) which permits compu-
tation of L(w). Define the first two polynomials of the Sturm
sequence,

N-1

Po(w) = 3 po(n)Un(w)
n=0
N-2

P(w) = Epl(n)Un(w).
n=0

where the remaining polynomials of the Sturm sequence are gen-
erated from the “negative remainder” relationship:

Pro1(w) = Qu(w) Pe(w) = Pry1(w)

such that the order of the (k—1)th element of thé Sturm sequenc.
is less than the k th element. Following [1] Qx(w) is defined as,

Qi(w) = U1 (w) + relo(w).

Then, using the recursive relationship between Chebychev poly-
nomials of the second kind,

U,,,+1(UJ) = Un(w)Ul(w) — Un_l(w) n 2 1

Up(w) =1
the following is obtained,
(VN —k)
*E (N -k-1) @
_ P (N —k—1) —qpe(N - k- 2)
T = oV —k-1) )
N-k-2
Pip(w)= Y peaa(n)Un(w) (6)
n=0
Pk-1(0) — rkpi(0) — grpr(l), n= N -k,
Prar(n) = § pa(n) = rapr(n)~ (")
1<n<N-k-2.

ge[pr(n — 1) + pr(n + 1)},

with Pit1(w) defined,

N-k-1
Pk+1(w): Z Pk+1(")Un("-’)s
n=0

The polynomial division algorithm indicated in equations (4)
through (7) is repeated until Pp(w), m = N — 1, contains only
constant Up(w) terms.

By the theorem presented in the appendix, the difference be-
tween the number of variations of sign in the Sturm sequence
evaluated at w; and the Sturm sequence polynomials evaluated

at wy (0 < wy < wy < 7) gives the number of positive to neg-
ative changes in the sign of Pi(w)/Po(w) through the zeros of
Po(w) minus the number of positive to negative changes in sign
on [wy,wy], i.e. L(wy) — L(w;). Note that L(w) is uniquely spec-
ified by Pp(w) and Py(w) and thus by z(n). While w; and wy
can be arbitrarily chosen on [0,], they are typically chosen at
equally spaced intervals corresponding to FFT spacing.

This approach to computing the unwrapped phase clearly in-
dicates that the unwrapped phase is unique in the sense that
once a value for the phase at w = 0 is determined, all other
values follow. In a later section it will be shown that if z(n)
is rational-valued, L(w) can be exactly computed using integer
arithmetic.

3. NUMERICAL CONSIDERATIONS

Direct application of the algorithm described above can re-
sult in numerical problems for long sequences. These problems
exist because more digits of significance are required to repre-
sent the coefficients of the Sturm sequence polynomials than are
available in ordinary or double precision floating point represen-
tations used in such high level languages such as FORTRAN or
C. Inaccuracies in the computation of the Sturm sequeri¢e poly-
nomial coefficients and evaluation at a particular w due to the
loss of least significant digits during floating point multiplication
and division can result in the value of the evaluated polynomial
having an incorrect sign. When the number of sign changes in
the Sturm sequence is counted, an incorrect value for L(w) will
result.

The sensitivity of this algorithm to numerical accuracy can
be emperically observed as the sequence length is extended. For
time sequence lengths longer than 20-40 points using ordinary
floating point representations, the computed unwrapped phase
estimate is very often incorrect.

The next section presents a technique to eliminate the under-
flow problems associated with the use of floating point computa-
tion by using all-integer arithmetic.

4. ALGORITHM EXTENSION

The extension described in this section assumes that the time
sequence takes on only rational values. This is considered to be
a relatively mild restriction since signals are typically digitized
to integer values. Note that a sequence of rational values can
always be expressed as a sequence of integers with a common
divisor. The divisor does not affect the phase function and can
be ignored. Thus, without loss of generality, the time sequence
can be further restricted to strictly integer values.

For integer-valued time sequences, the Chebychev polnomial
coefficients in (3) are integers with a multiplicative constant of
%. However, since only the signs of the Sturm sequence poly-
nomials are of interest, any of the Sturm sequence polynomials
can be multiplied by positive constants without affecting the re-
sult. Thus, the multiplicative factor of % can be discarded so

that po(n) can be redefined as,

2z(N)— z(N - 2), n=0,
pg(n)—{x(N—n)——z(N—n—2), n<N-2,

z(N —n), N-1<n<N.

By the same reasoning, the polynomial division algorithm
in equations (4) through (7) can be modified to eliminate the
divisions in equations (4) and (5) by scaling them by the positive
constant p}(N — k — 1). Equations (4) through (7) then become,
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g% = pe-1(N —k)p(N -k —1)

ke = pe-1(V =k~ Dpe(N -k 1)
—Pre—1t(N — k)pp(N ~ k- 2)

~pk-1(0)p}(N —k - 1)
+7ep(0) + grpr(1),

—pr-1()pR(N —k — 1)
+ripr(n) + gelpr(n — 1)
+pr(n + 1)),

n=N -k,
Pe-1(n) =

1<n<N-k-2

The resulting modified Sturm sequence consists of polynomi-
als with strictly integer coefficients. If integer overflow is avoided,
the integer coefficients can be computed exactly. Since the poly-
nomials can be arbitrarily scaled without affecting the results so
long as overflow or underflow errors are avoided, the number of
bits required to represent the coefficients can be reduced, at the
expense of additional CPU time, by removing common factors
of the coefficients of Py(w) until they are relatively prime. This
does not affect the sign changes in the resulting Sturm sequence
and, hence, L(w).

Having shown that the coefficients of the Sturm sequence
polynomials can be exactly computed using integer arithmetic, I
now demonstrate an approach to evaluating the Sturm polyno-
mial sequence with sufficient accuracy using-all-integer arithmetic
to guarantee that the elements of the evaluated Sturm sequence
have the correct sign.

The inherently large, (-0, %), dynamic range of U, (w) com-
plicates a numerical algorithm. However, note that the denomi-
nator of Up(w), sin w, is independent of n (see (1)) and is positive
for 0 < w < 7. Thus,

Afn+1, w=0,

Valw) = { sinf[(n + Dw], w#0. (18)
can be used in place of Uy, (w) without effecting the number of sign
changes in the Sturm sequence. The smaller range of V,,(w) re-
duces the propagation of numerical errors if the decision is made
to truncate the polynomial coefficients to reduce storage require-
ments (discussed below). V,(w) can be obtained to the desired
significance by computation of the sine to the desired accuracy
or from a sine table. This solves the problem of obtaining a
sufficient number of digits of significance for U,(w). V,(w) also
allows us to exploit the circular symmetry of the sine function
when evaluating the Sturm sequence polynomials to reduce the
computation required as well as reduce the number of distinct
values of V,,(w) which must be computed and stored.

Evaluation of the Sturm sequence polynomials can be done
with all-integer arithmetic by using a D-digit truncated integer
representation of V,,(w), i.e., by defining,

Vi, (w) = Nearest Integer{V,(w)10"}.

The fact that |Vin(w) — Vo(w)10P| < 1 can be exploited to check
the accuracy of the polynomial evaluation to insure that a suf-
ficient number of digits in V,(w) have been retained to permit
accurate determination of the sign of the evaluated polynomial.
Note that when w is a multiple of 3, V,(w) is an integer and
the Sturm sequence polynomials can be exactly evaluated using
integer arithmetic.
For w # 0 define,

N—-k
P(©) = Y pe(n)Va(w)10

n=0

N-k
Z Pe(n)Vin(w)

P,i(w) =
n=0
N-k
Ar = Y ap(n)
n=0
0, [Va(w)]=1or 0,
ax(n) {ka(")l» otherwise.

Py (w) represents the ideal value for the evaluated Sturm poly-
nomial element while Pj(w) is an integer-valued approximation.
Note that terms for which |V,(w)| = 1 or 0 can be computed
exactly. Ag provides error bounds for Pr(w),

[Pi(w)] = Ak < |Pu(w)] < [PL(w)] + Ar.

If | P{(w)| > Ay then Pj(w) will have the correct sign. If, however,
[Pi(w)| < Ay then the correctness of the sign of Pj(w) can not
be guaranteed.

When evaluating the Sturm sequence, A can be computed
and checked against |Pi(w)|. When this check fails, i.e., Ay >
| Pi(w)| for any k, D must be increased to guarantee that Pi(w)
has the correct sign. The minimum D to guarantee the correct
sign of P}(w) depends on the value of w as well as sequence.

The number of sign changes in the modified Sturm sequence,
{Pj(w), k =1,N —1},at w > 0 and w = 0 is used to compute
L(w). The principle value of the phase at w can be computed us-
ing the first two terms of the modified Sturm sequence evaluated
at w and the additive linear phase term in (2). The unwrapped
phase is,

arg X ()] - argl X (0)] =
Pi(w)
Pi()
5. ACCURACY VERSUS COMPUTATION

For extremely long sequences, the number of bits required to
exactly represent the integer coefficients may become very large.
Since ultimately only the sign of the evaluated polynomial is
needed to compute the number of sign changes in the Sturm
sequence, the amount of storage and computation can be reduced,
with some loss in accuracy, by scaling and truncating some of
least significant bits of the coefficients the Pi(w)’. The errors
introduced by truncating the coeficients can lead to errors in the
sign of the evaluated polynomial. However, this can be controlled
by selecting the number of bits truncated. The error due to
truncation can be bounded to insure accuracy of the number of
sign changes in the Sturm sequence by applying an accuracy test
similar to the one described above for checking the accuracy of
the polynomial evaluation.

- arctan{2 sin w} + L(w)r + (N — 1)w.

6. SUMMARY

This paper has demonstrated the uniqueness of the unwrapped
phase of a one-dimensional finite-length real sequence to within
an additive multiple of 2. It has shown that when the sequence
is rational-valued, all-integer arithmetic can be used to exactly
compute the number of multiples of 7 which must be added to
the principle value of the phase to give the unwrapped phase.
An algorithm for computing the unwrapped phase is provided.
This approach should be of interest when highly accurate phase
unwrapping is required.

1784



REFERENCES

[1]R. McGowan and R. Kuc, “A Direct Relation Between a Signal
Time Series and Its Unwrapped Phase,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-30, pp. 719-726, Oct.
1982.

[2] D. G. Long, “Phase Unwrapping for Multidimensional Ratio-

nal and Finite-length Sequences”, ICASSP’88.

[3] T. J. Rivlin, The Chebychev Polynomials, John Wiley and
Sons, New York, New York, 1974.

[4] L. Weisner, Introduction to the Theory of Equations, The
MacMillian Co., New York, New York, 1938.

{5] D. G. Long, “Phase Unwrapping Algorithm for Multidimen-
sional Sequences with Finite-support and Rational Z Transforms”,
Submitted for publication in IEEE Trans. on Acoust., Speech,
and Signal Processing.

APPENDIX

The following theorem, not generally found in this form in the
literature, is essential in demonstrating the uniqueness of L(w).
Proof of this theorem is similar to the proof of the Sturm theorem
for real polynomials given in [4]. Details of the proof are given
in [5].

Theorem 1 The number of sign changes in the real and

imaginary parts of a complex polynomial. Let F(z) be a
finite order complex polynomial,

N
F(2) =Y fa?" = Po(z) + i Pi(2)
n=0
where f, and z are complez, F(z) has no real zeros in the closed
real interval [a,b], and where Po(z) and Pi(2) are finite order
polynomials with real coefficients po(n) and p1(n),

N

Po(z) = ) po(n)z"
n=0
N

Pi(z) = ) pi(n)2"
n=0

with Py(2) not identically 0. As the point z = & moves along the
real azis from the point z = a to z = b, let o be the number of
times that G(z) = Pi(z)/Po(z) changes from ~ to + at the roots
of Po(z), and 7 the number of times that G(z) changes from +
to — at the roots of Po(z) in the interval [a,b]. Let Py(z), Pa(z),
...y Ps(z) be the Sturm sequence formed from Py(z) and Pi(z)
using the negative remainder division algorithm,

Pr_1(z) = Qi(z)Pi(z) — Peya(=)

where Q(z) is a polynomial chosen such that the order of the
(k + 1)t element of the Sturm sequence is less than the order
of the k' element until the Ps(z) does not change sign over
the interval [a,b]. If Ps(z) is identically zero, we assign it an
arbitrary constant value. Then,

T—0’=va—vb.

where V, and V, denote the sign change counting operator applied
to the Sturm sequence evaluated at a and b, respectively.
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Figure 1: A plot of arctanz + I for several values of /



