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Large-Scale Inverse Ku-Band Backscatter
Modeling of Sea Ice
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Abstract—Polar sea ice characteristics provide importantinputs  extremely valuable in observing the polar regions. Active mi-
to models of several geophysical processes. Microwave scatteromcrowave instruments exhibit low sensitivity to cloud cover, pre-
eters are ideal for monitoring these regions due to their sensitivity cipitation, and other forms of atmospheric distortion in the polar
to ice properties and insensitivity to atmospheric distortions. Many . ’ L e . .
forward electromagnetic scattering models have been proposed to "€910NS; bgt significant sensitivity to sea ice cha_racterlstlcs. Be-
predict the normalized radar cross section &°) from sea ice char- Cause active weather patterns in the polar regions often result
acteristics. These models are based on very small scale ice featuresn heavy cloud cover during a significant portion of the annual
and generally assume that the region of interest is spatially homo- weather cycle, and polar winters are characterized by long sea-
geneous. Unfortunately, spaceborne scatterometer footprints are sons of continuous darkness, optical sensors can be difficult to

very large (5-50 km) and usually contain very heterogeneous mix- v Unlik tical inst t . d td
tures of seaice surface parameters. In this paper, we use scatterom-2PPly- UNIIKe oplical Instruments, microwave sensors do notde-

eter data in a large-scale inverse modeling experiment. Given the Pend upon solar illumination to collect measurements.

limited data resolution, we adopt a simple geometric optics for-  Several satellite instruments have proven the utility of scat-
ward-scattering model to analyze surface and volume scattering terometers in monitoring the Arctic and Antarctic regions. The
contributions to observed Ku-band signatures. A model inversion first was the Seasat-A Scatterometer (SASS). Though the SASS
technique based on recursive optimization of an objective function . .

is developed. The result is a least squares estimate of three surfacgMisSsSIon was short, _SASS data illustrated that Kl‘!'band mea-
parameters: the power reflection coefficient at nadir, the rms sur- SUrements are sensitive to the presence of sea ice and show
face slope, and the volume scattering albedo. Simulations demon-valuable variations within the ice pack that relate to surface
strate the performance of the method in the presence of noise. The features [3]-[6]. Later, the Active Microwave Instrumentation
inverse model is implemented using Ku-band image reconstructed (an)y scatterometers aboard the European Remote Sensing 1
data collected by the National Aeronautics and Space Administra and 2 (ERS-1 and ERS-2) satellites demonstrated the value of

tion scatterometer. The results are used to analyze and interpret X - o )
o° phenomena occurring in the Antarctic and the Arctic. C-band active scatterometer data in monitoring sea and glacial

Index Terms—nverse modeling, National Aeronautics and ice regions [4], [7], [8]. The National Aeronautics and Space

Space Administration (NASA) Scatterometer (NSCAT), scattering Administration (NASA) Scattel-’ometer (NSCAT) flew aboard
models, sea ice, Special Sensor Microwave/lmager (SSM/1). the Advanced Earth Observation Satellite (ADEOS) platform

from approximately August 1996 through June 1997. Ku-band
NSCAT data have been used in a number of cryosphere studies
|. INTRODUCTION [4], [9]-[11]. When the NSCAT mission was prematurely ter-
HE CRYOSPHERE regions of the earth play a criticahinated due to a solar panel failure, the NASA-built SeaWinds
role in many global geophysical processes. In particulanstrument aboard QuikSCAT filled the gap of active Ku-band
polar sea ice packs are important in understanding weather gita in mid-1999. SeaWinds data is used to monitor sea ice
terns and climate trends. Sea ice influences heat exchange, feggnt [12].
water exchange, and the absorption of solar radiation and is be-
lieved to be a sensitive indicator of long-term climate trends [1], |l. NSCAT INSTRUMENT AND IMAGE RECONSTRUCTION
[2]. Consequently, the remote sensing community has great inyjicrowaves© signatures of sea ice contain important infor-
terest in monitoring these important regions. The primary 99glaion about surface characteristics [13]. The goal of inverse
of cryosphere remote sensing is the extraction of key seaice §{{fsgeling is to extract or estimate those parameters fs6m
face characteristics from the observed signatures. measurements. The observed signatures are also a function of
_ Awide array of spaceborne instruments has been employgdment design and measurement collection specifications
in past and current efforts to study and monitor the cryosphetg,ch, a5 frequency, polarization, and incidence angle [14]-[18].
The various instruments cover a broad spectrum of frequencigfis section describes the instrument used in this paper for mea-
polarizations, spatial resolutions, and measurement collectifiement collection and the image reconstruction algorithms
schemes. Microwave remote sensing instruments have proygfy nroduce enhanced resolution imagery. These images func-
tion as inputs to the inverse model of Section IV.
NSCAT has a number of characteristics that make it useful in
Manuscript received January 21, 2001; revised March 6, 2003. monitoring sea ice [10]. It is a dual-polarization Ku-band scat-
Q. P. Redmund is with Ball Aerospace and Technologies Corporatickgrometer operating at approximately 14 GHz. NSCAT employs

Boulder, CO 80301 USA. _ ___six v-pol and two h-pol fan beams that measure the normal-
D. G. Long is with the Department of Electrical and Computer Englneerlngz drad . . . h | 191. Th

Brigham Young University, Provo, UT 84602 USA. ed radar cross section) at various azimut angles [19]. e
Digital Object Identifier 10.1109/TGRS.2003.813495 beams are further resolved through Doppler filtering, resulting
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Fig. 1. Sample ice-masked NSCAT AVE v-pol imagery for 1996 days 270-275. The images are, from Sleft td sight, andC', , respectively. The original
images contain 1948 1940 pixels with a nominal pixel spacing of 4.45 km.

in a number of measurement cells within each fan beam foébotprint response include that pixel. AVE images are produced
print. The cells have various incidence angles with a nominfar each polynomial coefficient. Sample ice-masked AVE im-
spatial resolution of about 25 km. Observations at multiple inckges of the Antarctic during 1996, days 270-275 are shown in
dence angles allow for the estimation of incidence angle depéiig. 1 in which a second-order model was employed. The im-
dence—an important factor in determining surface characterages are ice masked using an NSCAT-derived method described
tics. Furthermore, dual-polarization measurements allow for the[9]. Significant detail relating to surface parameters is evident
determination of the polarization response of sea ice. in varying A, B, andC pixel values. The images also demon-
Multiple NSCAT passes over the polar regions are used $trate that higher order terms are increasingly sensitive to mea-
reconstructz® imagery. To improve the nominal resolution ofsurement and reconstruction noise.
NSCAT measurements, resolution enhancement algorithms caifhe final image reconstruction method is the scatterometer
be applied to generate images. These methods rely upon aipage reconstruction (SIR) algorithm [20]. SIR is a modified
rameterization of the dependence «f on incidence angles. multivariate multiplicative algebraic reconstruction technique
Various-order models can be used with increasing sensitivitytttat uses multiple passes of a satellite instrument to increase
noise as order is increased. In genesdl(in decibels) can be spatial resolution [21]. Like the AVE algorithm, a 4.45-km nom-
modeled by inal pixel spacing is used. SIR reconstructed images produce an
S S oo s effective resolution of approximately 10 km instead of the nom-

0 (dB) = A+ B(6-40°)+C(6—40°)"+D(6-40°)°+-- (1)  inal 25-50-km resolution of the instrument [22]. SIR results in
increased reconstruction artifacts as well as increased resolu-
tion. For this reason, only the first-ordef versusf model is
used for SIR imagery.
range of incidence angles of 28nd 60, NSCAT o° is found Each of the described reconstruc_nop algorlthms have inherent

) ) strengths and weaknesses. The binning images have the lowest
to have a nearly linear dependenceforigher order models : AR S

res?]lutlon, but less noise in higher order coefficients. The AVE

can be used to more accurately represent the dependence thou . - . . i
. - . : e ._Images have medium resolution with somewhat higher noise

the higher coefficients become increasingly sensitive to noise . ) .
. . : e}/els. The SIR reconstructed images have the highest resolution

Several reconstruction methods exist for the generation 0 " S . .

scatterometer imagery. For this study, a polar stereographic p%‘E are more sensitive FO NoISe In the high-order coefficients. For
' ' the Antarctic and Arctic regions, all of these methods require

jection was used in all image products. The first reconstrugi-x days included in the image generation to achieve full v- and
tion method consists of binning® measurements into 22.25 Y 99

22.25-km grid cells. For each cell, a polynomial fit of a choseh pol coverage with arange O.f incidence angles in each_ pixel.
: . o ce motion during the imaging interval can cause blurring in the
order is applied to model thedependence of°. Hence N +1 . . ; : .
. . ) : final image products particularly in the AVE and SIR images.
binned images are produced whéYeis the polynomial order.

Since the nominal NSCAT resolution is 25 km, this technique
does not improve measurement resolution but is less prone to
reconstruction artifacts and noise.

The AVE algorithm is another reconstruction technique for Forward models of sea ice backscatter have been developed
scatterometer image production [20]. Like the binning methothat predictc® as a function of incidence angle and impor-
a polynomial fit is used for each pixel to estimate the pertinetant surface parameters. Various sea ice characteristics affect
coefficients. However, the AVE method uses a higher resolutiobserved signatures. For example, surface roughness reduces
4.45x 4.45-km grid and produces images with an effective respecular reflections and increases backscatter. Geophysically,
olution of 12-15 km. For a particular pixel, the polynomial fithis parameter is important in modulating wind shearing forces
measurement set consists of all the measurements whose spatiahe ice pack and can be an indicator of internal stresses.

wheref is the incidence angled is ¢° normalized to 49; B is
the linear incidence angle dependencefC is the quadratic
incidence angle dependencedsf, and so forth. For a limited

Il. L ARGE-SCALE FORWARD MODELING OF
SEA ICE BACKSCATTER
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Liguid water content also influences backscatter signatures. such simple model assumes that sea ice scattering consists of
creased water content results in less penetration by incident meoherently summed surface and volume scattering responses
crowave pulses. Hence, the backscatter is dominated by the $26]—[28]
face scattering response. Snow cover adds another layer to the o
multilayer structure. Very dry snow appears electrically trans- m

parent at many microwave frequencies. However, as snow liquid 00 =00 4t (
water content increases, the sea ice signature is increasingly
masked. In addition, sea ice salinity plays a role in determinil’ﬂfﬁeore
backscatter responses. Brine pockets increase the effective pe?lon
mittivity and provide volume scattering elements. Since brine "g
pockets are commonly ellipsoidal in shape, the orientation of 7
these inclusions influences theé polarization response. Both 0;
snow cover and brine pocket distribution are closely related’

to sea ice age. Older ice forms typically have greater accu-" . _
mulated snow cover. Also, sea ice aging results in increased’® ¢ Per particle;

brine drainage. Volume scattering air bubbles often remain jn®  Volume attenuation coefficient. »
the place of old brine inclusions. This bulk model does not require a detailed description of the

A better understanding of scattering from seaice enhances't%%med'um' Instead, several large-scale parameters are used to

ability to estimate geophysical parameters through inverse m p_resent the mean response in the region of interest. Following

eling. Current research in the field has focused on mathem it [.27] three primary volume scattering parameters are com-

cally modeling the complex process of scattering from sea %@ed into one variable, the volume scatter albedo given by
noy

on small scales as a function of the previously described param- n=—2 (3)

__ o o
g _GS +G’l7

noy

) cosf; (2)

a

measured°;

surface scattering®;

volume scattering°,

measurement incidence angle;

plane wave power transmission coefficientat 0;;
number density of subsurface scattering elements;

eters. The complexity is due in part to the anisotropic nature sea @
ice permittivities. A particular source of anisotropy is the vertifhough it is a general parameteris related to sea ice features
cally oriented brine pockets caught within the ice crystal latticuch as the number of volume scattering brine pockets and air
In addition, sea ice is a multilayer medium with rough surfadeubbles. Itis also sensitive to the effective permittivity of the sea
and volume scattering contributions to the backscatter signatugg. layers below the surface. Highly saline brine pockets have
Multilayer anisotropic scattering models have been proposbighero; than air bubbles resulting in greatgvalues for the
using a dyadic Green’s function as well as the first-order Boggme number density,
approximation to predict backscatter coefficients [23]. Tjuetja  This simple volume scattering model assumes only single
al. developed a scattering model for snow-covered sea ice usff@ttering. While multiple scattering certainly occurs in a sea
radiative transfer theory [24]. While several radiative transfége medium, the model assumes these are negligible compared
techniques have been proposed in the past, Tjuatja’s modeldghe direct backscatter response. Fig. 2 shows v-pol volume
considerably more robust by accounting for non-Rayleigh parackscatter as a function of incidence angle for varipualues.
ticle sizes and close spacing between scatterers. An examphe signatures exhibit low dependence on incidence angle. As
of sea ice forward-scatter modeling is the work of Nghiem 7 increases, the level of° also rises. Volume scattering occurs
al. [25] in which a polarimetric backscattering model is deprimarily inice types containing numerous inhomogeneities and
rived. Nghiem relates ice, brine, air, and salinity properties tew loss such as multiyear ice. Snow layers containing crystal-
backscatter signatures. lized structures can also result in strong volume scattering con-
Several factors limit the use of such models in large-scale itiloutions. Hence, in the model inversion, we expect multiyear
version studies. First, the wide seasonal and spatial variabilityfi§ forms to have relatively highwhen compared with younger
the dielectric and large-scale surface roughness properties ofififetypes such as first-year ice.
ice hamper the interpretation of the backscatter maps. Secondburface scattering is also an integral component of the
the detailed ice scattering models models assume the regiofP@gkscatter model. Assuming that the surface can be modeled
interest has relatively homogeneous scattering properties. Sc¥iean ensemble of reflective facets with Gaussian slope distri-
randomness is allowed in the form of random surface height®tions, a geometric optics solution can be used [27], [29] so
other parameters with specified variances but, in general, fhat
region is considered to be spatially homogeneous. This may be r(0)e~ tan? 6, /252
appropriate for SAR imagery where the resolution is a few tens o, = Y Ty (4)
of meters, but scatterometer footprints have 5-50-km resolution ¢
and thus can often cover very heterogeneous regions. Also, Wigerer(0) = 1—1(0) is the surface power reflection coefficient
detailed models are very computationally complex. Inversion af nadir ands is the rms surface slope.The geometric optics so-
the models on large fields of measurements is not computatidution is derived under the assumption that the wavelength is
ally feasible. Consequently, a model for use at the lower ressignificantly smaller than the typical roughness dimensions. At
lution found in scatterometer imagery must be based on mdré GHz, the corresponding wavelength is approximately 2.1 cm.
general, average, large-scale parameters. Computational cbtence, the model accounts for roughness features that are much
plexity of the forward model must be simple enough to allow fdarger than this, while smaller roughnesses may not be fully ac-
inversions of large data sets in relatively short time frames. Oneunted for in the model. We expect that large surface roughness
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high loss. Surface melting masks lower level volume scattering
2] and creates greater relative dependence on surface scattering
] contributions. Inverse modeling ef images should result in

] relatively highg in regions of significant surface deformation

] and low values over smoother ice forms.

The two fundamental parameters in the surface scatter model,
r(0) andg, are both related to important surface features. The
Fresnel reflectivity coefficienty(0), is directly related to the
- effective permittivity of sea ice. It has been shown that lossless
4 sea ice permittivities are roughly between 3.0 and 4.5 [26], [30]

V-pol Volume Scattering Sigma—0

0 10 20 30 mc;ﬁf;me i(ixgle 60 70 80 90 in the Ku-band portion of the spectrum resulting-{i0) values
. T ' ' T oo 3 within the range of 0.072—-0.13. However, the forward model as-
!.E o Zigiég sumes that the sea ice is lossless. While this applies reasonably
L ] well for older ice forms such as ice bergs and multiyear ice in
H RN E winter, internal water content or surface melt introduces con-
3 RN ] ductivity and loss to the medium. Hence, dielectric constants
H \\ E should not be directly computed from estimates (@) derived
3 Y from the inverse model described in the following section. Nev-
E \ 3 erthelessr(0) can be used to obtain a general idea of effective
? \‘ relative permittivities throughout the ice pack.
g LR Fig. 2 shows the total scattering v-pol responses for sample
Incttence angle 0% r(0), 8, andn values. The plots illustrate that the theoreti¢al
0 T ' ' ' ' ' ' versusf signatures can not always be fit with a linear approxi-
----- U < i X el mation between 20and 60. A linear model is appropriate for
-5 = == () r(0)=0.11, §=0.05, 7=02 | plot a), but b) and c) clearly require higher order terms to ac-

curately represent the incidence angle dependence. In general,

the linear dependence assumption does not fit well in scenarios

with relatively low 5 values. Swift was able to fit such plots

to SASSc° observations of multiyear ice in the Arctic [27],

. demonstrating the ability to invert the model and estimate the

three fundamental parameters.

20 . . . ‘ . ‘ L) The three forward model parameter§(), 3, ) can be used

010 R0 dence amgle 0% as proxy values in the interpretation of polar imagery. We expect
a close relationship to exist between these values and sea ice

Fig. 2. Model-generated volume scattering v-pet responses versus type. Consequently, the parameter estimates can be used in ice

incidence angle. Volume scattering responses as a functigraeé shown in ~ classification efforts.

the top frame. Surface scattering as a functiofBof= 252 is shown in the

middle assuming:(0) = 0.08 corresponding to a dielectric constant of 3.2.

The bottom frame illustrates three total scattering examples. IV. MODEL INVERSION METHODOLOGY

The theoretical scattering model paramete(8), 5, andn
can be estimated from observed NSCAT signatures given

sufficient incidence angle sampling. In this section, an auto-

dgt(ra]ftotvr:/a\ée acgon,flfs pack she?rmgl_fiorces, and rldgesli;\re ted inversion technique is presented for determining the three
within the bounds ot this assumption. HOWEVer, Very Small-SCa\g . yaters from NSCAT reconstructed imagery.

roughness due to such phenomena as wind rogghenlng of 9P inversion approach consists of the automated steepest de-
water and melt ponds and very small surface inhomogeneities

are not accounted for in the model sCent optimization of an objective function. The objective func-
: e .. ... tion provides a measure of the error between observed signa-
For the purposes of this paper, we defihe- 25= to simplify

. : . . ) tures and estimated model parameters
the model inversion. Fig. 2 illustrates the theoretical v-pol scat- P

Total V—pol Scattering Sigma-0
1
5
T

tering responses for various values®bfThe plots show that as 60

surface slope increases, the response broadens in incidencd (¢°, r(0), 8, ) = Z [0°(6;) — (00]2

angle. For very smooth surfaces, a significant portion of the re- ;=20

sponse occurs below 20ncidence. Since 20is used as the . 60

lower cutoff for the NSCAT measurements used in the image J (ao, h) = Z [00(6,;) — 10logyq

reconstructions, we expect that the inversion will have limited 6,=20

capability in accurately identifying very low. ~tan2 6. /252 2
; ; r(0)e o/ 2 (M

At Ku-band, surface scattering dominates young and ~(#+t (—) cos 61-)]
first-year ice responses that have relatively high water and brine 252 cos* 0; 2

content. These types have significant conductivity and, hence, (5)
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Fig. 3. Flowchart illustrating the inverse model simulation process.
where 0 ' T o
J total squared modeling error; v Qrder=)
o°(0;) observed backscatter cross sectiofi; at S —7 Qrder=3 |
a2.(6;) modeled backscatter cross sectiod;at g
h vector of model parametefs(0), 3, n]*. éﬂ \
Hence, J(o°, l_i) is a measure of the accuracy of the model >.3~ Ther i
parameters in predicting the observed signature. dhé,) 3
response is computed given theversug variable-order poly- € -151 a
nomial fit coefficients for a particular pixel in the reconstructed
imagery. Since total squared error is a sufficient statistic for 20 . e .
mean squared error, the inversion method is a minimum mean 00 B0 0 ence Amgle L0 %0 %
squared error technique. Simulated three-dimensional objective 0 T . True
functions (given an observed® signature) indicate that the S DT eaerd

—-—- Order=3

-5k —--- Order=4-

function has a well defined minimum within the range of
expectedr(0), 4, andn. Hence, the optimal parameters are
found at the?, yielding minimum.J(c°, h).

One method of automated optimization of an objective func-
tion is the steepest descent approach. Steepest descent locates
the minimum of a function in an iterative fashion through the
estimation of the local slope. The slope is obtained from the

Total V—pol Sigma-0
L
o
T

—15+

partial derivatives of the objective function -20 . l . \ N
0 10 20 30 40 50 60 70 80 90
N 0 o }_]: 0 T(o° }_{ o Incidence Angle
G o h — _ J . _ . ‘I\ \ T T T T r‘;e
(0' ’ ) 87“(0) (U ) )7 ap (0' ’ ) -\‘\ — 'g rier=1
P T 3 " oraerss
——J(c°, h 6 T e
TRAREC] IO

whereG(c°, h) is the direction vector. The partial derivatives
in (6) are analytical functions @f° (), r(0), 3, andn given any
location in the objective function. Consequentl{s°, ﬁ) can
be computed for any location vectoand points in the direction
of steepest descent. 20 ‘ . ‘ . \

A recursive algorithm for computing the model parameters, 0 10 20 30 e N, 00 B0 w0
and thus searching for the minimum $fc°, h) is given by

Total V—pol Sigma—0

h(m+1) = h(m)+A(m)oG(m) m=0,1,2,... (7) Fig.4. Comparison of inverse model-derived responses at various orders with
the true response from the three total scattering cases in Fig. 2. Case (a) (top),
where case (b) (middle), case (c) (bottom).

A vector of step sizes for each model parameter;
® Schur element by element vector product operator. range of possible sea ice parameter values. For a given image
The step size\ can be chosen in a number of ways. Steepestt of polynomial fit coefficients, the algorithm is run for each
descent algorithms often use step sizes that are a function ofpireel. The resulting products are images-¢9), 3, andn used
objective function. Hence, smaller steps are taken closer to thedetermining the spatial distribution of important surface
minimum. For this study, a fixed step size is used parameters.
A=[0.001, 0002, 0.002]7 ®) The glgorit_hm he}s various strengths tha_t make it useful in
model inversion. First, the proposed algorithm is fully auto-
yielding model parameter estimate resolutions of 0.001, 0.0@@ated. Many previous inverse modeling studies focusing on fit-
and 0.002 for-(0), 3, andn, respectively. . ting observed and forward modeled signatures have relied on
The algorithm is initialized with arbitrarj(0). Simulations user interaction to manually perturb the model parameters until
indicate that the minimum is found as long /51@0) is in the asatisfactory match is obtained. The technique presented in this



1826 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 8, AUGUST 2003

TABLE |
INVERSEMODEL SIMULATION EXAMPLES IN THE ABSENCE OFNOISE AND WITH INCIDENCE ANGLE SAMPLING AT EACH DEGREE IN THERANGE 8 € [20°, 60°]

Case (a) Case (b) Case (c)
1(0) B n 1(0) B n 1(0) B n
True 0.05 0.25 0.4 0.08 0.15 0.1 0.11 0.05 0.2
Order=1 0.049 | 0.242 | 0.404 0.06 | 0242 | 0.082 [[ 0.015 | 0.222 | 0.178
Order=2 0.049 | 0.246 | 0.402 || 0.079 | 0.146 | 0.102 || 0.033 | 0.094 | 0.182
Order=3 0.05 | 0.252 0.4 0.078 | 0.154 0.1 0.073 0.06 0.19

Order=4 || 0.05 | 025 | 04 008 [ 0I5 [ 01 || 0.101 | 0.052 | 0.198
pendence model is sufficient (of high enough order) the algo- I'
rithm finds the best parameters in the minimum mean squared
error sense. (a) 7(0) (b) B ©n

The estimated parameters provide, in effect, the mean re-
sponses over the pixel region. These are useful on acroscaggc 5. “Truth” parameter images;(0), 4, and #, used in the model
level when viewing entire sea ice packs. We note that the prginulations.
ucts of the inversion technique have limited utility on very small
scales. Because the model is based on a specific forward mode
the quality of the resulting parameter estimates are directly re-
lated to the quality of the original forward model. We expect
some error since the forward model does not account for suct
things as complex sea ice permittivities and small-scale rough-
ness features.

paper requires no user interaction and quickly estimates model
parameters given an observetlversus response. This facili-
tates the production of model parameter image sequences from
scatterometer imagery. In addition, if th& incidence angle de-

V. INVERSE MODEL SIMULATIONS

To evaluate the capability of the inversion technique, simu-
lations are designed and implemented. The simulation method <
ology is outlined in Fig. 3. First, the “ground truth” model pa-
rameters-(0), 8, andn are run through the forward model to
produce ar° versud response. This signature is then sampled
in incidence angle between 2@nd 60 to simulate scatterom-
eter measurement collection. At this point, Monte Carlo scat-

terometer noise is added to each measurement using the ngis _ ,
9 Bllg Inverse model(0) parameter estimates at varion$ versusy model

model orders and noise levels.
02(6:) = 0°(6;) (14 N(0, k,)) ©
<
where ?
a2(6;) noise-added® at incidence anglé;; &

o°(6;)  original noiseless°;

N(0, k,) normally distributed random variable with stan- 2
o)

dard deviatiork,,.
The noise-corrupted measurements are used to obtain polync 'R
mial fit coefficients. Variable degree polynomials are used to < |
determine the effect of model order on the inversion. The coef-
ficients are then input to the inverse model resulting in surface g
parameter estimates. Error analysis is performed with the orig- |,

inal parameter values and the inverse model results. &

For the purposes of illustration, we consider model inversion i

) . A . . Order=1
using the total scattering cases in Fig. 2. The inverse model is 0.05

first evaluated in the absence of noise with ideal incidence angle

sampling consisting _of sample_s at each degree fl’_O?n(YeO)- Fig. 7. Inverse modeB parameter estimates at variow$ versusé model
For each case, the simulation is implemented using polynoméaders and noise levels.
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fit orders from one to four to illustrate the algorithm’s perfor- . A , , L = Order
mance. The first case to be inverted is example a) from Fig. 2. 0-00 0.02 o e 0 0.08 010
Table | contains the resulting estimates for all three parame- 0.05¢ ‘ ' ‘ ' ]

ters using different reconstruction model orders. These values
demonstrate that virtually all polynomial orders provide good
estimates of the true values. Since the response is close to linear
inthe 20 to 60 range that the inverse model considers, even the
first-order model performs reasonably well. Fig. 4 shows a com-
parison of the truer® signature with the estimated signatures
at each of the considered orders. The vertical lines ata?@l -1
60° incidence angle bound the range over which the signature e=- o oy 25
matching is performed. The plots are virtually indistinguishable 0.00 . \ LT Jrder=4 g
demonstrating the proper performance of the algorithm. Xp

The case (b) inversion illustrates the inverse model’s perfor-
mance with nonlinearities in the true® versusé signature. Fig. 9. Median absolute error of (top)0), (middle) 3, and (bottom)y
In Table | it is evident that the first-order model performeastimates as a function of measurement noise pararmgetand model order.
poorly. Theg estimate is particularly erroneous. However, at
order two and above, the estimates are close to the actual valiRguts. In actual scatterometer image reconstructions, such ideal
Fig. 4 offers a graphical interpretation of the inversion case. THicidence angle sampling is not common. For six-day NSCAT
plots clearly show the poor performance of the first-order modiénages generated at the SIR and AVE spatial resolutions of
values. 4.45 km, average pixel regions usually encounter at least ten

The true response in case (c) exhibits extreme nonlinearitié§s. Hence, for the remaining simulations, incidence angle sam-
While we do not expect such a case to be common, itis includ@éng is performed randomly from a uniform distribution be-
to show the inverse model’'s performance in extreme circurve€en 20 and 60 with ten samples for each realization. In ad-
stances. For this scenario, third or fourth-order model coefflition, measurement noise is simulated using (9) and vatipus
cients are required as inputs to the inverse model to provide r¥glues. Typical NSCATE,, levels are in the range 0 to 0.1. In
sonable estimates of the surface parameters. Fig. 4 illuminaf@g, for the NSCAT Antarctic v-pol data collected from 1996
the situation further. These plots show the difficulty encounteré@ys 270-275, 97% of th, values are below 0.1 and 86% are
by first and second-order inputs in matching the true signatufelow 0.05.
The sharp “elbow” in the response can only be accounted forT0 offer more comprehensive simulations that consider a
by third— or fourth-order polynomial fits. A greater range of inbroad range of #(0), 8, n) triplet combinations, synthetic
cidence angles included in the model would conceivably yiefground truth” images are constructed of each parameter that
better estimates at all orders. Unfortunately, scatterometers [[R@resent all possible sample combinations of the parameters
NSCAT do not collect measurements over such a broad ran¥jhin the ranges
of viewing angles.

These three simulations demonstrate that the inverse model
performs properly in the absence of noise given sufficient inci- f €[0.05,0.4]
dence angle sampling and satisfactory polynomial fit coefficient n €[0.05, 0.4].
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Fig. 10. Ice-masked NSCAT Antarcti¢, SIR image series.

These values represent ranges that cover typical sea ice surfaeeentire truth image. The estimate images have few very large
parameters. The images are generated using 25 evenly spareats caused by poor sampling or extreme noise. However, the
samples of each parameter resulting id 26mbinations. Fig. 5 few outliers can skew an average error metric. The median abso-
shows the truth images that are used in the simulation procdage error is used to reduce the confusing effects of these outliers.
Noise-corrupted polynomial coefficient images are simulated, Fig. 9 illustrates the error metric for the three forward-scat-
which become inputs to the inverse model. tering model parameter estimates as a functioky,ofAll of the
The simulations are run using the incidence angle sampglts indicate that parameter estimate error is lower for higher
scheme described previously. Noise levéis) @re considered order models in the absence of noise. Howevek;asses, the
at 0.02 increments from 0 to 0.1. The results are summarizegtcond or third-order estimates have the lowest median absolute
graphically in Figs. 6-8. In Fig. 6, th€0) estimates are shown error. The curves also show that higher order models are increas-
with k, values of 0, 0.04, and 0.08. The image frames demaingly sensitive td:,, evident in steeper slopes in the error plots.
strate increasing ability in the algorithm to accurately reprdhe first-order model is relatively insensitive kg in all three
sent the left-to-right increasing gradient as the model order ifigures since this model performs the most averaging. From the
creases. Nearly allimages show that the algorithm has difficultysults in Fig. 9, we conclude that the second- or third-osder
in areas corresponding with very lo#values. As previously versusf polynomial coefficients provide the best inputs to the
noted, extremely lows correspond to scattering responses thatverse model in the presence of noise. Since both offer similar
are primarily contained below the 2@hcidence angle limit for error characteristics, the second-order model is used with actual
NSCAT data. The images also exhibit that higher order mod@SCAT data as presented in the following section.
are increasingly sensitive to noise as evident by the speckling in
the estimate frames. Thus, a trade off exists between ability to
estimate parameters accurately (on average) and sensitivity to
measurement noise. The inversion method is applied to second-order NSCAT re-
The performance of the algorithm in estimatjfigs shown in  constructed v-pol AVE imageryA,,, B, andC,) to study the
Fig. 7. The image panels reveal that first-order coefficients dbehavior of the technique and to interpret phenomena observed
not sufficient to accurately represent the surface roughnessimthe reconstructioa® images. First, the inversion is performed
duced characteristics of the forward-scattering model. The firsia Antarctic image sequences. Three six-day Antarctic SIR im-
order frames are nearly constant in value. In contrast, the secaggs are shown in Fig. 10. While the inversion is performed on
to fourth-order models are much more successful in reproducitingrd-order AVE imagery, enhanced resolution IR images
the upward3 gradients in the truth image. Likg0), thes es- are shown here for illustrative purposes. The differences be-
timates are increasingly sensitive to noise as order increasesween the SIR and AVE algorithm products are discussed above.
Estimates of the final parameter,are shown in Fig. 8. Sim- The images are ice masked using an NSCAT-derived ice edge
ilar trends with order exist fon estimates as with the previousalgorithm [9]. The three frames each show significahtletail
two. The first-order model has difficulty generating the conwithin the ice pack. The goal of the inversion is to extract useful
stant frames in the truth image. However, all of the higher ordsurface features from these variations and to provide maps of
models appear to perform relatively well. them. However, in this discussion we restrict ourselves to a few
In order to provide a quantitative measure of algorithm pegeneral observations in supplement to other studies, e.g., [31].
formance over all the possible parameter combinations, the e interesting phenomenon illustrated by this image sequence
dian absolute error is used. This metric is computed for eaishthe “blooming” ofo° values near the ice perimeter. That is,
parameter as the median of the ensemble of absolute errors dkierA, values increase significantly in a very short period of

VI. RESULTS
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Fig. 11. Inverse model estimates of Antarctic. (Left columff)). (Center columnp. (Right column)y.

time in localized regions. An example is shown near the ice edte spatial distribution of (0) estimates for each time interval.
in the outer Weddell Sea. The location of the Weddell Sea aBéveral large ice bergs with very hig0) values are clearly
the Ronne Ice Shelf (to be discussed below) are indicated in tteserved in the images such as B10A in the lower-left quadrant
first frame of Fig. 1. Thed,, values in this region during the dayof the image and several grounded ice bergs near the eastern
279-284 image are significantly higher than the previous twienit of the Ronne Ice Shelf. First-year ice dominates much of
images. Special Sensor Microwave/lImager (SSM/I) radiometie Antarctic ice pack. These regions have typically i)
brightness temperatures drop significantly in the bloom area. kevels compared with ice bergs and several regions near the ice
described below, the inverse model is used to provide a physiedije. The Weddell Sea bloom is evident in increagédindi-
interpretation of this phenomenon. cating an increase in the effective permittivity.

The inverse model is implemented for the Antarctic AVE Theg estimates in Fig. 11 are visually more noisy th#).
image sets corresponding to the images in Fig. 10. Fig. 11 shotweas of very smooth first-year ice have lgivvalues in the
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Fig. 12. Ice-masked NSCAT Arctid, SIR image series.

images. One example is near the western edge of the Ronndaweer o° first-year ice, by the end of the image sequence the
shelf, which is a region of new ice growth as older ice forms ate/o types are indistinguishable.
drawn northward along the peninsula by the Weddell Gyre. TheFig. 13 contains the image estimates of Arcti®). We
area surrounding the previously discussed grounded bergs hawete that the noisy values near the pole are due to insufficient
high 3 consistent with sea ice deformations caused as the ioeidence angle sampling caused by satellite orbit geometry
pack collides with the bergs. The bloom area does not indicated the NSCAT measurement collection configuration. Un-
any obvious change in this parameter. satisfactory sampling of the incidence angle spectrum results
The n parameter images are also shown in Fig. 11. The poor estimates of polynomial fit coefficients in the image
highest volume scattering albedo values are found in pixekconstruction. Consequently, very low confidence is placed on
covering ice bergs. Since ice bergs are composed of glacial itee near-pole parameter estimates. For comparison, SSM/I-de-
they have virtually no salinity and, thus, low loss. Microwaveived multiyear and first-year ice concentration images are
frequency pulses, therefore, are sensitive to scattering framesented in Fig. 14 for the first Arctic image in the set (1997
subsurface inhomogeneities. A small region of multiyear iaays 138-143). These were produced by the NASA Team
near the tip of the peninsula also appears very bright in taéyorithm and were obtained from the National Snow and Ice
image. A narrow stream of older deformed ice with mediuBata Center (NSIDC). The general trend in tH®) imagery
n values is also evident running through the middle of theonsists of relatively high and low values for multiyear and
Weddell Sea parallel to the Ronne Ice Shelf. This line is creatst-year sea ice, respectively. The melt event cauges to
by the Weddell Gyre motion pulling ice debris away from therop quickly over the entire multiyear area.
grounded ice bergs near the shelf. Much of the remaining iceThe distribution of3 surface roughness values are shown
pack, consisting primarily of various forms of first-year icein Fig. 13. Comparison with the ice concentration imagery of
have low volume scattering albedo. The only exceptions to thigy. 14 illustrates that multiyear ice has typically highevels
are in various bloom regions. In the final image, increaded in contrast to lower observations over first-year ice. Newer ice
in the Weddell bloom area is accompanied by a sudden risefimms are typically less deformed than old ice that has been sub-
7. A local refreezing event could cause the observed changgented to wave deformation, ice pack shearing, and large-scale
volume scattering. roughness caused by melt/refreeze cycles. As the sequence pro-
The inversion method is also applied to Arctic data. A fougresses(3 values drop until nearly the entire multiyear region
AVE image set series representing the onset of Arctic summeaispears similar to the first-year observations. The source of
used as inverse model inputs. The SIR ice-masked image setiieschange may be due to surface smoothing of features due to
corresponding to the AVE imagery actually used in the inversionelting and the creation of melt ponds, [6], [10].
is illustrated in Fig. 12. As with the Antarctic case, SIR images The estimate images of Arctic volume scattering albedo
are shown though AVE imagery are used in the inversion. Tkbown in Fig. 13 illustrate the intense volume scattering con-
reconstructed SIR images exhibit greater detailindh@andA;,,  tributions characteristic of multiyear ice. Varying levelspf
images, but are more susceptible to imaging artifacts that makihin multiyear regions can be related to the number density
them less desirable than their AVE counterparts for use in tbévolume scatterers and mean volume scattering element cross
inversion. The Arctic ice pack is characterized by large regiossctions. Areas of younger ice have much loweue to higher
of multiyear ice exhibiting highd,, values near the centers ofsalinity and dielectric loss. The image progression shpws-
the images. Younger forms of ice have lowgr signatures. The creasing as temperature rises and surface melting occurs. In
phenomenon examined in this sequence is the annual dedp inthe last image frame, volume scattering has been almost com-
observations due to the passage of warm fronts over the ice ppetely masked by increased water content that reduces penetra-
inducing significant surface melting. While the firstimages haw@n depth. Such signatures masking makes the various ice types
high multiyears° signatures differentiating this ice type fromcompletely indistinguishable at Ku-band.
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Fig. 13. Inverse model estimates of Arctic (Left columm) ). (Center column). (Right column)y.

These results illustrate the utility of the inverse model in iris fully automated, large ensembles of measurements can be in-
terpreting the sources of scattering phenomena observed inwerted providing estimates of the spatial distribution and magni-
constructed NSCAT imagery. Since the model inversion methge of important surface parameters. These parameters can then
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Fig. 14. NSIDC SSM/I-derived multiyear (left) and first-year (right) Arctic sea ice concentration images for 1997 days 138-143.

be related to sea ice types as previously described. In genetahtribution that give multiyear ice its characteristically high
older ice types such as multiyear ice exhibit very high) and signature.

n values in the absence of significant surface melt. In contrast,The results of this study demonstrate the utility of one tech-
first-year ice and other relatively young ice types have mugctique in inverting simple forward-scattering models for sea ice
lower (0) andn. Smoother ice types have typically lowgr surfaces. Validation data of surface roughness parameters, di-
levels. Temporal variations in the parameters can be used to alectric properties, and volume scattering element characteris-
derstand the evolution of scattering mechanisms within the vaics are needed to accurately measure the algorithm’s effective-

ious ice types as considered in this section. ness. Unfortunately, access to suitable validation data over such
large areas for this initial study was very limited and thus further
VII. CONCLUSION work is required. Regardless, the method can aid in the interpre-

This study has presented an inversion technique appliedt%Ion of important polar geophysical phenomena.

a simple, but robust forward-scattering model. The method is
fully automated requiring no user interface. Consequently, large

scatterometer polynomial fit coefficientimages representing theNSCAT data were provided by the Jet Propulsion Laboratory
incidence angle dependenceddf can be used as inputs to thepAAC. SSM/I-derived Arctic and Antarctic ice concentrations
inverse model. The algorithm is used to determine the spatjgre obtained from the NSIDC.
distribution of three important surface parameters: the power
reflection coefficient at nadir(0), the rms surface slope§ REFERENCES
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