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An Advanced Ambiguity Selection
Algorithm for SeaWinds

David W. Draper and David G. Longenior Member, IEEE

Abstract—SeaWinds on QuikSCAT, a spaceborne Ku-band as nudgingto initialize the ambiguity selection process and
scatterometer, estimates ocean winds via the relationship be- enhance self-consistency [2]. In nudging, the ambiguity at

tween the normalized radar backscatter and the vector wind. oach wing vector cell (WVC) that most closely matches the
Scatterometer wind retrieval generates several possible wind

vector solutions or ambiguities at each resolution cell, requiring oW of numeric weather prediction (NWP) fields is selected
a separate ambiguity selection step to give a unique solution. In as an initial estimate. A modifiedointwise median filtethen
processing SeaWinds on QuikSCAT data, the ambiguity selection jteratively selects the ambiguity at each WVC that best matches

is *nudged” or initialized using numerical weather prediction ¢ girectional flow of the surroundings77 WVC region until
winds. We describe a sophisticated new ambiguity selection

approach developed at Brigham Young University (BYU) that Convergence is_ reached [3]. The main limitation to t_he nudging
does not require nudging. The BYU method utilizes a low-order method is that it creates a dependence on the quality of outside
data-driven Karhunen-Loeve (KL) wind field model to promote  information to select a unique solution from the ambiguity sets.
self-consistency. Ambiguity selected winds from the BYU method As an alternative to the nudged pointwise winds, Long [4]

and standard SeaWinds processing are compared over a set of . . . ; . . . h
102 revs. A manual examination of the data suggests that the developed a fieldwise wind estimation technique. In fieldwise

nonnudging BYU method selects a more self-consistent wind field wind retrieval, estimates are made on a region-by-region basis
in the absence of cyclonic storms. Over a set of cyclonic storm using a low-order linear wind field model. The low-order model
regions, BYU performs better in 9% of the cases and worse in a55mes an inherent correlation between neighboring wind vec-

20% of the cases. Overall, the BYU algorithm selects 93% of the ¢ hich tricts th lution t ind field satisfving th
same ambiguities as the standard dataset. This comparison helps{0rS: Which restricts the solution to a wind field satisfying the

validate both nonnudging and nudging techniques and indicates Correlation constraints.
that SeaWinds ambiguity selection can be generally accomplished  In addition to its fieldwise utility, the low-order wind model

without nudging. can also be used to make pointwise ambiguity selection. Gon-
Index Terms—Ambiguity selection, Karhunen—Loeve model, zales and Long [5] demonstrated that some ambiguity selection
nudging, scatterometer, Seawinds. errors in pointwise retrieved winds can be corrected by selecting
the ambiguity that is closest to a least squares model fit to the

I. INTRODUCTION JPL winds.

This paper describes a nonnudging pointwise ambiguity

R ETRIEVING ocean winds is the fundamental applicatiogg|ection method for Seawinds developed at Brigham Young
of scatterometer data. Spaceborne scatterometers h@Yﬁ/ersity (BYU). The BYU method uses the low-order
proven utility over conventionain situ wind measurement y o -hunen—Loeve (KL) wind model to create an initial es-
techniques due to broad coverage and insensitivity 10 thgate of the overall wind flow which replaces nudging. A
time of day or cloud cover. The SeaWinds on QUIKSCAfogel-based correction technique then reselects ambiguities
scatterometer, launched in 1999 by the National Aeronautigere the data are not self-consistent. The new method is
and Space Administration (NASA), provides global coveraggs.contained and computationally efficient.

of ocean surface winds on a daily basis. Scatterometers infef, section 11 we give an overview of the SeaWinds on

the near-surface ocean wind via the geophysical model functigyikSCAT instrument and the KL wind model. In Section I1I,
(GMF), which relates the vector wind to the normalized radgfe gescribe the BYU technique in detail. Because we lack
backscattering cross secti¢n®) observed by the scatterom-y i, gata, the ambiguity-selected JPL winds are used as a
eter. Because of symmetry in the GMF, the wind estimatiQ@ference dataset to which the BYU method is compared in
process results in several possible wind vector solutions knoWRtion |V. We find that the BYU method generally selects
as gmb@mh_es. A gepara_te amb|gU|.ty selection process iz, same ambiguities as traditional JPL pointwise ambiguity
required to give a unique wind vector field [1]. ~ selection with more self-consistent performance in regions of
In conventional SeaWinds pointwise ambiguity selectiofy,. frequency winds. The BYU method, however, is somewhat
NASA's Jet Propulsion Laboratory (JPL) uses a method knowgss aple to correctly define fine-scale cyclonic flow than the
JPL nudged method. The fact that both the BYU and JPL
Manuscript received May 24, 2002; revised November 28, 2002. methods produce approximately the same result simultaneously
The authors are with the Microwave Earth Remote Sensing Lab, Brighaw@ps validate both the nudged and nonnudged approaches. It
mggbyﬂ 'gg;s)'_ty’ Provo, UT 84602 USA (e-mail: Olraloem'@et'byu'e‘mailso indicateg that qualit_y ambiguity selection can generally be
Digital Object Identifier 10.1109/TGRS.2003.810228 performed without nudging.
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[I. BACKGROUND swath edges, poor instrument geometry from the outer beam

: ; measurements produces a much lower instrument skill. Also

A. SeaWinds on QuikSCAT - : . ’
i Q _ the outer two cross-track positions on either side (1, 2, 75, and

The SeaWinds scatterometer on QuikSCAT was launcheg) are not always estimated in pointwise retrieval due to very

in mid-1999 by NASA. The QUIkSCAT satellite revolves in goor instrument geometry. Thus, the effective wind swath width
near-polar orbit, covering 90% of the earth daily. SeaWinds’ dgs 72 WVCs.

sign enables swath coverage of 1800 km in cross track with nan regions of high instrument skill, the field of first ambi-
nadir gap. Measurements are obtained from an offset dual-fefifities generally contains enough information to estimate the
pencil-beam antenna. The rotating antenna produces two beawsrall flow of the wind. Where the instrument skill is lower, ad-
that trace out a helical pattern on the surface. The inner (h-palional information is needed to produce a self-consistent wind
beam measures the backscatter &t #@idence. The outer field. JPL uses a method known as thresholded nudging to ac-
(v-pol) beam operates at 54ncidence. The backscatter dataount for the variation in instrument skill. Where the instrument
are binned into (approximately) 2625 km resolution cells skill is high, a smaller set of ambiguities is used in nudging.
with a total swath size for one revolution (rev) of 76 WVCs irOn the swath edges where instrument skill is low, all ambigui-
the cross-track direction and 1624 WVCs in the along-traties may be used [2]. The thresholded nudging method reduces
direction. Along theswath edgegouter 8 WVCs on either side the impact of the nudging field in high instrument skill areas.
of the cross track), the instrument only receives measureme@tgerall, the nudging process enhances the self-consistency of
from the outer beam [6], [7]. the ambiguity selected winds.

The algorithm presented is customized to SeaWinds’ geom-
etry. Nevertheless, it can be adapted to other instruments with KL Wind Field Model

different sized swaths or WVC resolutions. Rather that using outside nudging data, the BYU ambiguity
. . L L selection method utilizes the KL wind model to enhance self-
B. Estimation of Pointwise Ambiguities consistency. The KL wind field model is a linear set of or-

The scatterometer transmits a radar signal and measurestliegormal basis wind fields derived from a sample set of Sea-
power scattered from the ocean surface. The returned powéinds on QuikSCAT winds [5]. A wind field can be approx-
is used to calculate®. Wind induces ocean-surface capillarymated as a linear combination of the basis fields by a least
waves to which microwave frequencies are particularly sensiquares fit. The KL model minimizes the basis restriction error
tive. The returned° value is a function of the size and orientagiven the autocorrelation of the wind [10].
tion of the waves, and thus a function of the wind [1]. In general, a KL basis set is formed by the eigenvalue de-

Scatterometer wind retrieval requires multiple measureme@mposition of an autocorrelation matrix. With respect to wind
from different azimuth angles to help reduce ambiguity in thiéelds, an autocorrelation matrix is estimated over a sample set
solution. SeaWinds achieves the azimuthal diversity with foRf ambiguity selected wind fields by
and aft observations from the two beams. For each WVC, all M
backscatter measurements whose footprint center lies within the k= izwnwnT 1)
25x 25 km cell are combined to create a wind vector estimate. anl

Wind vector estimates are generated using a maximum-likq}\ilhereM is the number ofV x N regions examined, anat

h.OOd esfur'na.tlon (MLE.) technique [1], [6], [8]. Thg MLE te,Ch'is the standard vector form of theh wind field. Thestandard
nique minimizes a Welghted least squares quect|ve funcﬂonchtor formis created by stacking the column scanned U and V
find the “most likely” estimate of the wind given the measurey,; | components into N2 length vector. The dimension of
ments. The objective function is a measure of the error betwetﬂla empirical autocorrelation matrikis 2N2 x 2N2. The basis

the observed® measurements and values generated by pro-ge s extracted by taking the eigenvale) decomposition of
jecting the wind vector through the GMF for each observatios \\ here

Due to symmetry in the GMF, the objective function generally
has several local minima whose corresponding wind vector di- B = SAST. 2)
rections are typically 90or 180 apart [9]. Each local minimum
of the objective function corresponds to a possible correct sthe diagonal elements dfare the eigenvalues, and the columns
lution or ambiguity. The ambiguities are ordered according & S are the eigenvectors or basis fields of the KL model.
likelihood, where the most likely ambiguity is referred to as the Eigenvalues are ordered from high to low. Because of the gen-
“first” ambiguity, and the next most likely, the “second,” and s@rally red spectrum of the wind [11], larger eigenvalues repre-
forth. SeaWinds processing retains only the first four ambig§ent eigenvectors with lower spatial frequency. Restricting the
ities. Because of noise, the “first” ambiguity is not always theasis suppresses high-frequency content due to noise and incon-
closest to the true wind. Thus, ambiguity selection is requir&éstencies resulting from ambiguity selection errors. The basis
to produce a unique wind vector field. matrix S is truncated to an appropriate number of vectors to give
The percentage of correct first ambiguities for a given swathe restricted basis sét. A model fit to the wind field can be
location is known as instrument skill. For Seawinds, each WW\itten as a linear combination of the restricted basis set, i.e.,
in the inner beam region has at least two fore-looking obser- W — F% ®)
vations (one for each beam) and at least two aft-looking ob- opt
servations, which provide sufficient measurement density amdhere x contains the coefficients for each parameter of the
azimuthal diversity to afford a high instrument skill. On thenodel [5].
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[1l. OVERVIEW OF BYU POINTWISE AMBIGUITY SELECTION Fipish

Converged?

In this section, we describe the BYU algorithm in detail. To ['Create hibalB o }
No

avoid nudging, we utilize the KL model to determine an initial Using KL Model
ambiguity selection over the high instrument skill inner beam -

portion of the swath. The pointwise median filter is initialized peform P:intwisc

from this initial selection. The swath edges, where the instru- [ Median Filter [ Perform Pointwise ]
ment skill is lower, are separately estimated by extrapolation MEd‘a‘}Fﬂ‘“

of the inner beam wind flow. A correction routine locates and

repairs inconsistencies in the selected wind field. The masking = [ Repar J
and repairing steps are repeated until the wind field meets s oo
convergence criteria. Fig. 1 outlines the steps involved in the I 1

BYU method. Section IlI-A describes the initial estimate. Perform Pointwise Flag }
Section IlI-B gives an overview of the pointwise median filter. [ Median Filter Inconsistencies
Section 1lI-C describes ambiguity selection of the swath edges.

Lastly, Section I1I-D details the repair process. Fig. 1. Flowchart of the BYU ambiguity selection method.

A. Initial Estimate guities with second ambiguities. The order of the KL model

1) Methodology: The high instrument skill of the inner dictates the “smoothness” of the model fit, and thus influences
beam portion of the SeaWinds swath affords estimation of thee cluster size that is replaced by second ambiguities. Wind
main wind flow using the first ambiguities. Although we cannovector cells exhibiting large errors between the first/second am-
calculate the actual instrument skill without truth data, a rehiguity field and the model fit are flagged. Next, a second low-
sonable estimate is the average percentage of first ambiguitieder model fit is performed to the first/second ambiguity field,
selected by the JPL method. On average, the JPL ambiguitgighting out flagged WVCs. Where neither first or second am-
selection method selects over 70% of first ambiguities in tHeguities are consistent with this model fit, the closest third or
inner beam portion of the swath. In the outer beam portidaurth ambiguity may be chosen.
of the swath, only about 35% first ambiguities are selected.Although this initial estimate corrects small to medium clus-
Because a vast majority of WVCs in the inner beam region haigss of incorrect vectors (depending on the KL model order),
“correct” first ambiguities, the inner beam first ambiguity fieldarge regions where the first ambiguity field is incorrect must
can be utilized to initialize the ambiguity selection process. be repaired separately with a more sophisticated routine (see

Incorrect first ambiguities can be either isolated or clustere@ection 111-D).

In general, isolated incorrect first ambiguities can be corrected2) Detailed Description of the Initial Estimate: Application
by simply applying the pointwise median filter to the field ofo SeaWinds SwathThe large swath size prohibits applying a
first ambiguities. Small to large clusters of incorrect first ambL model to the entire swath due to computational concerns. As
guities on the order of half the filter size or larger remain incof result, the swath is divided into 6060 WVC sections over-

rect after median filtering. These errors can significantly affe&PPing by 75%in the along-track direction. Thex®0 region
the ambiguity-selected wind flow. size is chosen because it spans the entire inner beam portion of

the cross track. A square region size is chosen for historical rea-

initial ambiguity selection, the BYU method replaces first ambﬁ(_msh[‘l]’h[‘r’]' Sinﬁe thz m(:j%il ﬁ;[ requires t:e ;;yersri]on 9;";]”16"
guities that oppose the main flow by second ambiguities. Sintcg@(t at has on the order elements wherey Is the widt
S

the JPL method selects over 90% first and second ambiguitP a r_egion, each .6@ 60 section is additionqll)_/ decir_nated into
. . A ' S icldine interleaved fields of 20 20 WVCs. This is equivalent to
in the inner beam region, a first/second ambiguity field yields . .
creasing the measurement spacing from 25 km to 75 km for

better final solution. Further, where neither the first or second . . N

mbiauity brod If-consistent solution. the ambiquit each field. Segmentation and decimation allow the use of a rea-
ambigurty produces a sefi-consistent solution, the ambigu ySsednably sized model to reduce the computational expense of the
lection may be replaced by a third or fourth ambiguity to crea

S . . S “problem.
an even better initial estimate. In this way, ambiguities are in- For each 20« 20 decimated region, a model fit is made to the

serted into the swath based on priority. This priority-based amix; ampiguity field. Nonocean WVCs and WVCs that contain
guity selection is the basic idea behind the BYU initial estimatggnificant rain contamination as determined by the L2B rain
In order to replace clusters of incorrect first ambiguities Withag [12] are weighted out of the model fit. The model fit is

second ambiguities, a low-order constraintis placed on the wiggmputed via a weighted regularized least squares estimate
flow of the first ambiguity field. To do this, an initial low-order

KL model fit is made to the first ambiguity field. High spatial F(jpt - (FTWF + A;1)—1 FTw (4)
frequency content caused by small clusters of incorrect first am-

biguities are smoothed by the model fit. All WVCs are set twhere Ar contains the eigenvalues of the basis vector$'jn
the nearest first or second ambiguity. This step replaces isolatadi|V is a weighting matrix with diagonal elements of “1” cor-
vectors and small to medium clusters of incorrect first amhiesponding to valid data cells and “0” corresponding to nondata

Rather than simply using the field of first ambiguities for al
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cells or cells that are to be ignored. The coefficients for the ba: Select 1st Ambiguities
fields x,p¢ are

(Segment Inner Swath (60)(60))__)( Select 60x60 region )

Xopt = F oW (5)

o

wherew is the standard vector form of the wind field. The mode

fit field W,y is constructed by the equation (Select 20x20 region

Wopt = FXopt- (6) Ist Model Fit

This model fitis regularized by the eigenvalues to give a realis!(_ Select Closest st or 2nd Ambiguities )
solution to points that have been weighted out.

After amodelfitis made to the first ambiguity field, all WVCs
in the 20x 20 region are set to the nearest first or second aml
guity to the model fit. The directional and vector error betwee
the new ambiguity-selected field and the model fit are comput
for each WVC over the region. Cells where the directional err ( Recreate S0RED Region )
exceeds 450r the vector error is greater than the average wir
speed of the region are flagged as poor. A second higher or (_Save Center 30x60 Region
model fit is then made in which vectors flagged as poor a
weighted out. The second model fit interpolates new values 1

( Flag Inconsistent wvcs )

2nd Model Fit

All 20x20
Regions Estimated?

All 60x60
Regions Estimated?

the flagged cells. ( Overlap and Average all 30x60 Regions)
After second model fits are made to all nine fields corre
sponding to a 6& 60 region, the entire 68 60 region is recon- (___Select Closest Ambiguities )

structed by interleaving the second model fit fields. Thand

v components of the 68 60 reconstructed field are then me-_
dian filtered to ensure consistency among the interleaved fielﬁ]ég.'rﬁbs
To rebuild the entire swath, the center 30 along-track rows are
saved. All along-track sections are likewise estimated, and eat:h Estimating Swath Edges
section is overlapped and window averaged. A simple triangular

averaging window is used in our implementation, although the The initial selected ambiguity field only includes the inner
shape of the window is not critical. This creates a low-resolfeam portion of the swath. Due to low instrument skill in the
tion initial wind field close to the wind flow dictated by the firstouter beam region, ambiguity selection of swath edges must be
and second ambiguities. Lastly, each WVC is set to the nearBgfformed separately. We make no assumption about the cor-
ambiguity to the low-resolution wind field. All ambiguities are"éctness of the first ambiguities on the swath edges. Instead, we
included in the selection process. The result is an ambiguity-$€ the wind flow of the inner beam region to infer a solution
lected field dictated mainly by the flow of the first and secon! the outer beam region by extrapolating values for the outer

ambiguities. The steps involved with creating the initial estimafé€!!s via the KL model.

Finish
Flowchart summarizing the initial estimate. The shaded bubbles show
t important steps.

are shown in Fig. 2. The swath edges, including the outer beam WVCs and the
outer edge of the inner beam, are divided intox166 WVC
B. Pointwise Median Filter regions overlapping by 50% in the along-track direction. These

I L i . regions contain nine cross-track rows assigned unique ambigu-
The_ initial g_mblgwty_-sel_ected f|_eld r_eplaces the nudgl_ng d_affi‘es by the previous steps and seven cross-track rows of unse-
used_ in _trad|_t|0nal p0|ntW|s_e estimation. N_ext, the POINtWISR ~tad outer beam WVCs. The choicedf= 16 is arbitrary, but
median filter is employed to insure self-consistency among eagides a good compromise between computational efficiency
selected ambiguity and its neighbors. The pointwise medigy jnciusion of inner beam data. The outer cross-track row
filter selects the ambiguity that minimizes the directional erQ¢ ot included because wind retrieval is not performed there.
between it and the surrounding initial wind vectors, i.e., A low-order model fit is made to each 1616 region using
13 j+3 only the inner beam wind vectors. This yields an estimate of
P : no_ the outer seven cross-track rows via interpolation of the model
v Aty 2 2l (I)kll{[o"*lso"]} @ fit. A new 16 x 16 field is constructed from the closest ambi-
guity to the model fit. If the rms error between the closest alias
where®,,; are directions of the surrounding wind vectors, anfield and the model fit falls beneath a threshold, the new ambi-
¢7; s the direction of thesth ambiguity at WVCi, j. The new  guity selections are inserted into the swath. This threshold is set
chosen ambiguity; replaces the initial estimate for the first it-at 1.5 m/s and is relaxed (increased by 1.5 m/s) for each pass
eration and replaces the previous selected ambiguity on eachil all WVCs have a unique vector selected. Thus, the best
successive iteration. The pointwise median filter is iterated ungiblutions are inserted first and used to influence subsequent es-
convergence is reached. This is the same pointwise median filierates. The swath is again passed through the pointwise me-
implemented by JPL, although JPL initializes the filter witldian filter after estimating the swath edges. The estimation of
NWP model fields. the swath edges is summarized in Fig. 3.

k=i—31=j—3
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i f {\"/ - Y
(Insert Wind Vectors ) Ot \ NPV AN o o b -
MRS p PR P 0
B N T N d?;j-‘:?ep"ﬁw'
LT T T T Y o3 boo
Selection made No ii‘;j ;'/, j " l NN R
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% A A A AR
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Finish Fig. 4. Example of the steps involved with flagging ambiguity selection error

edges. (a) Ambiguity-selected wind, (b) median-filtered wind, (c) average-

Fig. 3. Flowchart summarizing the estimation of swath edges. The shac{_'é,tgrﬁs W'erzjdé:?ﬁcé?])sgtz%rte&?ﬁﬂgﬂ;j' Where the errors are large, the WVCs
bubbles show the crucial steps. 99 '

D. Repairing Inconsistencies accomplished through modified dilation and erosion techniques

. . . - ee the Appendix for details).

The previous steps yield a.un|-que.amb|gu|ty at each WVé'S 2) Seleftliong a Consistenz Wind Fieldill isolated am-
Although  this selectgd ambiguity field coyld be th? flna{Jiguity selection error regions are reestimated through
p.rod_u'ct, <_jue to .p(_)'ssuble .Iarge clusters c_)f incorrect first ar|n'terpolati0n using the KL model. The swath is divided into
b_lgu_lt_les n the_ |n|_t|al estlm_ate, there still may be areas 9, 72 WvC sections overlapping by 50% in the along-track
S|gn|f|<_:ant ambiguity selection errors. Cl_usters of amb'gwtgirection. This region size is chosen because it includes the
se!ect_lon errors are generally characte_r!zed by 80 180 entire cross track except the outer two cells on either side that
shifts in the selected wind flow. The transition between aclustgr not always contain estimated ambiguities. Each region is
.Of am_biguity selection errors anq the correctly SeleCted.WirbG;cimated into nine 24 24 WVC smaller interléaving regions
|s_typ|cally sharp, and it results in unngtural and |ncon5|ste{6 reduce computational expense. This region size is larger than
wind flow. In order to correct such possible errors, we develclHe 20x 20 WVC region size used earlier because the outer
an inconsist_ency flag foIIovv_ed by a correction z_sllgorithm. beam portion of the swath is now included in the estimation

1) Inconsistency Flag:Wind vector cells neighboring the rocess. Each region is model fit using a truncateck 24
sharp transitions from the correctly selected winds to the am [ model weiahtina out flagaed cells. Flagaed cells are
guity selection errors can be identified by evaluating the ConSIrse'estimate,d thrgughginterpolaggn and tr;e arr?tg)giguities closest
tency of_the wind flow [1.3]' In order to flag inconsistent WVCSto the model fit are selected. Each’>722 WVC region is then
Sexetrrilelrnmi%eia?]r%ﬁi??éng tol(i)(lz ?(;et#: Z?]'d components of reconstructed, and the center 36 along-track rows are kept. The
h biqui | d .pg h | Y h pon | oyter along-track rows are discarded because they are more
tbetaz rr:gelélitg:gf?ﬁteev;}/l:gs(;rgl}/r? dui(ta \?vtiti?r? &Vévvf/:&%r?g_acﬁéely to contain modeling errors. The 50% overlap provides
Y ) . Co L an estimate of the entire swath from the individual pieces. The
gion). This technique reduces the noise in the wind field Wh'sewath is reconstructed from the ¥236 pieces. and pointwise
preserving edges caused by inconsistent wind flow. The med'r%rédian filter ambiguity selection is ICérform,ed onpthe entire
wind field is then filtered with a % 3 WVC averaging flter (the _= guity P
components of each cell are replaced by the average of thos§) I.teration of the Repair ProcessFor each iteration of the
around it). This technique reduces noise, but smoothes edqes. . NS . ,

The median field and the averaged field are compared Ce\ﬁ%a" process, the output field is compared to the input field.

: : 9 ! pared. en the number of changing cells falls beneath a threshold
are flagged asmconsistenwhere the normalized vector differ- et at 20) or a maximum number of iterations is reached, the
ence between the averaged and median field is large (greeg forithm stops. Most swaths converge in about ten iterati’ons
than 0.25). Fig. 4 shows an example of the steps involved w Te repair rocéss is summarized in Fia. 5 '
flagging ambiguity selection error edges. pairp g

The WVCs flagged as inconsistent indicate the location o
ambiguity selection error edges. In order to repair areas of a V. COMPARISON OFBYU AND JPL AMBIGUITY SELECTION

biguity selection error, we flag WVCs isolated by the inconsis- Without an extensive truth dataset, assessing the quality of
tency flag and other features such as low wind speed areas,ttieeBYU ambiguity selection is difficult [5]. As a result, we use
swath edge, or land. The “filling in” of such isolated regions ithe JPL level 2B (L2B) nudged winds as a reference dataset.
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A\ - TABLE |
(_Segment Swath (72x72) J—>(__ Select 72x72 region ) PERCENTAGES OFAMBIGUITIES CHOSEN BY THE JPL L2B
H PRODUCT AND THE BYU ALGORITHM

Category JPL L2B product | BYU method
1" Ambiguity | 65.47% 64.80%

( Select 24x24 region )

2" Ambiguity | 20.58% 20.76%
@odcl Fit, ignoring flagged wvcs_) 39 Ambiguity | 8.63% 8.89%
All 24x24
(Select Closest Ambiguities Regions Estimated? 4™ Ambiguity | 5.32% 5.55%
£ , TABLE 1l
( Recreate 72x72 Region ) PERCENTAGE OFAMBIGUITIES CHOSEN THESAME AND CHANGED FROM FIRST
All 72x72 No TO SECOND ORFROM FIRST OR SECOND TO THIRD OR FOURTH FOR THE

(_Save Center 36x72 Region

Regions Estimated? SAMPLE SET OF BYU AND JPL AVBIGUITY -SELECTED WINDS

Category Percentage
( Insert all 36x72 Regions ) Same ambiguity selected for JPL and BYU | 93.03%
Finish JPL selected 1% ambiguity and 1.41%

BYU selected 2™ ambiguity

Fig. 5. Flowchart summarizing the repair process. The shaded bubbles show
the most important steps. JPL selected 2™ ambiguity and 1.13%

BYU selected 1** ambiguity
JPL selected 1** or 2™ ambiguity and 2.23%

We perform three comparisons of BYU to standard JPL pro-
cessing on a set of 102 revs. Ambiguity selection is performed
on revs 1000-1050 and revs 6000-6050 of QuikSCAT data. In  BYU selected 3" or 4" ambiguity
Section IV-A, we perform a direct comparison of the ambigu-  jpL selected 3™ or 4™ ambiguity and 1.74%
ities selected by both techniques. In Section IV-B, we perform
a quality assurance analysis with a model-based technique [13].
In Section IV-C, we present statistics based on manual inspec-
tion of the data.

BYU selected 1% or 2™ ambiguity

< 100 » 5100
A. Direct Comparison of Selected Ambiguities % gom % 90
To quantify the similarity of the BYU ambiguity-selectedg o

winds to the JPL reference dataset, we compare the percent& 8o g 80

of each ambiguity selected by both techniques over the t<§ 70 (@) g 70--(b)

datasetin Table I. The BYU algorithm selects slightly fewer firsg i 3 v

P ; 0 20 40 60 0 5 10 15 20 25

ambiguities than the JPL product and slightly more of the oth Cross-track position (Wvc) Wind speed (m/s)

ambiguities. Like the JPL product, the BYU algorithm selects a
majority of first and second ambiguities (about 85%), which isig. 6. Percentage of individual WVCs selected the same for both JPL and
consistent with our assumption that the overall flow of the win@YU methods per (a) cross-track position and (b) average wind speed of the
is dictated mainly by the first two ambiguities. The other ambfMPiguities.
guities are chosen in approximately the same proportion as the
JPL product. assign a unique wind speed to a WVC, we average wind speeds

Further, we compare the percentage of ambiguities similaf all ambiguities. Since all ambiguities at a WVC generally
selected by both the BYU and JPL algorithms and the percdlgve similar wind speeds, the averaging does not significantly
of each ambiguity changed in Table Il. From Table I, the anfffect the results. Fig. 6 displays the percentage of ambiguities
biguity selection is the same for both BYU and JPL in 93% dihosen the same per cross-track position and wind speed. Fig. 6
WVCs. Thus, the BYU algorithm gives generally the same winidicates that the ambiguity selection differs the most along
vector solution as the JPL product, which simultaneously helg‘é/ath edges and at nadir. This is intuitive, because more am-
validate both BYU and JPL techniques. This resultis significaRtguities are generally produced in these regions, allowing for
because the BYU method was independently developed and ad¥gher probability of a different selection. Also, low and high
tuned against the JPL reference data. It suggests that the ¥4Rd speed data (which tend to be the noisiest) have a higher
Winds noisy ambiguity sets contain a sufficient percentage Bgrcentage of changed WVCs.
correct first ambiguities to allow self-contained ambiguity se- .
lection that is very close to a nudged solution. B. Quality Assurance Assessment

Next, we compare the percentage of similar ambiguities se-In this section, we present a quality assurance (QA) assess-
lected as a function of cross-track position and wind speed. f@nt of the ambiguity-selected data based on the self-consis-
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bin (right axis).

Vo ohr] o~ 1 oA s
720 22
725 5%
——'/.’/;;:: W v
o] RN el
7. S SSds Ine ,/’ (LI
i - 7~ v v
Zisprrs M%,ﬁrﬂ,«”
,,’7’; % 05, /:
el '~z e
72024 2
22255040 : 77
verirird Diteresrer: . T e s st
i M AL
voeveiriid [“ree o200
vorssyed | ek A
AL AR
7 it
s Mese o AR
.’,::,’.;;‘ ..y/./,f:“'
...... '/ ', W
AN v P Dt (2,

AR A

o

BSSSSSSSsss=iys e, f

RS~ SSSNSSSV 1 jrrrerme——e ]

L e et r 2l e e mmmar n
b e e e L s e e A DT

S P

Nessssssss=yvio--4
RSSSSSSSsss g7 --

Fig. 8. Examples of the various classifications of regiafithioutcyclonic features when comparing the JPL and BYU ambiguity selection routines.

tency of the winds (see [13]). This method compares the selectedNext, we examine the percentage of QA-determined ambi-
wind to the low-order KL model fit over eachx88 region inthe guity selection errors as a function of cross-track position and
swath. Where the wind field exceeds certain empirically deteegion rms wind speed (see Fig. 7). The region rms wind speed
mined error thresholds from the model fit and other criteria, the defined as

8 x 8 WVC area is identified as a possible ambiguity selection 1/2

error. The use of this method is somewhat incestuous, because 1 2 8

KL models are used in both the BYU ambiguity selection and n Z ] (8)
4,J

QA techniques. However, because the BYU and JPL winds are
derived from the same noisy ambiguity sets, the performancqmereUiyj is the wind speed at cefli, j} of the region, and is
the QA method should be consistent for both BYU winds anfle number of valid wind data WVCs in the region (WVCs over
the JPL reference winds. The QA analysis is only valid for wingcean). The BYU method performs particularly better in the
speeds greater than 3.5 m/s. “sweet spot” (off-nadir region characterized by high instrument
The QA method is applied to both JPL and BYU ambiguityskill) and at low to moderate wind speeds (4—10 m/s). Many
selected test sets. Of JPL ambiguity-selected winds, 4.5%adffthe “sweet spot” cases occur in rain-corrupted areas where
8 x 8 WVC regions inspected by the QA method are determindiaresholded nudging fails to select ambiguities consistent with
to contain possible ambiguity selection errors. Of the BYU winthe overall flow of the nonrain-corrupted wind [13]. At moder-
vector selections, about 3.4% of all regions are determineddately high wind speeds (10-18 m/s) both methods perform about
contain possible ambiguity selection errors. These numbers stige same. At extreme winds (£8n/s) the JPL method performs
gest that the overall consistency of the BYU method is somieetter. Extreme winds, however, only occur a small percentage
what better than JPL. of the time.
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Fig. 9. Examples of the various classifications of regiaiith cyclonic features when comparing the JPL and BYU ambiguity selection routines.

TABLE i rect first ambiguities or fine-scale wind features. An interesting
TOTAL NUMBERS AND PERCENTAGES OFREGIONS SUBJECTIVELY RATED ; ; i i :
“GooD" OR “POOK" IN BOTH BYU Anb JPL DATASETS FOR38 x 38 WVC obsgrva}t!on is that in some cases, large areas of incorrect first
AREAS WITHOUT AND WITH CYCLONIC FEATURES PERCENTAGESARE ambiguities occur near the southern end of the swath at mod-

CALCULATED FOR REGIONSWITH AND WITHOUT CYCLONES SEPARATELY erately high wind speeds, creating ambiguity selection errors in
the BYU data, but not in the nudged JPL winds.

Without Cyclone With Cyclone For cyclonic cases, the BYU method performs the same as
BYU BYU the JPL winds in about 71% of the cases. Of the remaining
JPL Good Poor Good Poor cases, BYU winds are subjectively better in about 9% of the

cases and worse in about 20% of the cases. Thus, the BYU
method is somewhat less able to produce realistic cyclonic fea-
tures. Although the JPL nudging technique is not perfect in
storm regions, it provides an initial guess of the placement of
cyclonic rotational features. These features may not be clearly
evident in the noisy first ambiguity field. Additionally, in the
This section provides a subjective comparison of BYU anBYU method, cyclonic storms are sometimes overly smoothed
biguity selection with the JPL selection in regions with anby the low-pass effect of the KL model, resulting in poor am-
without cyclonic features. For each revolution of test data, théguity selection. Of the poorly retrieved storms for the BYU
swath is segmented into 3838 WVC sections. Because cy-algorithm, a higher percentage occur on the swath edges than
clones represent areas of high spatial frequency, regions comthe inner swath. Eighteen storms are centered on the swath
taining cyclonic features are analyzed separately. A 38 re- edge in the test dataset. Of these storms, 11 (61%) are subjec-
gion is rated “good” if there is a visually consistent wind flowtively identified as “poor,” a much higher percentage than the
If the region contains an area of visually inconsistent flow, it isverall 34.5% of BYU storm cases that are identified as “poor.”
rated “poor.” These ratings are applied to eachx3B WVC The higher rate of poorly retrieved storms on the swath edge is
region of the 102 swath test dataset. Examples of each typepadbably due to the fact that solutions for the swath edge are
region are found in Figs. 8 and 9. Table Ill summarizes statistisslected via extrapolation of the inner swath. Thus, small-scale
on the regions for the study. features located in the other swath region are more likely to be
For noncyclonic areas, both JPL and BYU methods produng@ssed by the algorithm.
very visually consistent flow in about 95% of the test dataset. The analysis in this section suggests that the BYU method is
The BYU algorithm on average produces somewhat more n@emewhat less effective than JPL in creating visually consistent
cyclonic “good” regions. From visual observation, JPL poaryclonic storm regions, but is generally better in areas lacking
areas often occur where the first ambiguity field is corrupted tyclonic features. The BYU method could be improved by de-
rain from which the JPL algorithm cannot recover. This is conecting and separately processing storm regions with a special-
sistent with results found in [13]. Ambiguity selection errors iized algorithm or by mitigating the effects of rain in storm re-
the BYU data are often associated with large regions of incagions. Further work is planned to accomplish this.

Good | 6154 (94.8%) | 63 (1.0%) | 91 (56.2%) | 32 (19.7%)
Poor | 147 2.3%) | 125 (1.9%) | 15 (9.3%) | 24 (14.8%)

C. Analysis of Storm and Nonstorm Regions
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V. SUMMARY AND CONCLUSION

BYU pointwise ambiguity selection uses a data-driven model
rather than a nudging field to produce self-consistent wind fields 1 1
for scatterometer wind ambiguity selection. A correction routine
locates and corrects further large inconsistencies in the wind.
The algorithm is applied to a set of test revs. The algorithm

generates the same basic wind flow as the current JPL product

without using the nudging field. Fig. 10. “Nearest neighbor” structuring element. A value of “1” indicates a

: . t neighbor. Th ter pixel is the origin.
Largest differences between the JPL and BYU selectiong cor e1gnPor The center pxetis te ongin

occur in low and high wind speed regions, at nadir and alona

. a) Dilation Steps

swath edges. Our QA analysis demonstrates that low to Mc s 11(, Z S——- p AT

erate wind speed data (between 4 and 10 m/s) are gener HHHnH o A ARBBEEEE ERREEEEE

more self-consistent for the BYU method, while higher wini 5 EF EERMBEEEE EEEEEEEE

. 122 2 2 2| 11— 2022333223 11— (2223332233 11—»

speed data are somewhat less self-consistent. Also, ther [zzzzz 22" 222222223 FEEPEPEEE

. . L 1202022 2 2 32222223 3222202233
increased performance in the sweet spot for the BYU methc | EEEEEE EEEEEEEE
especially in rain-corrupted regions. {

From gmanual inspection of the JPL and BYU ambiguity U2 [ 1 - OSE—
lected winds, we conclude that BYU produces fewer possit G- a2ot+  AHbHr oo L
ambiguity selection errors in regions without cyclonic storm: S35 sa s 85 1~  3ssaassaa s

. . . . . 222/ 333223311 —m (20223332233 1[1—s 222333223311
Ambiguity selection errors in the BYU algorithm are generall EEEEEELEEENE EEEEELEEEEE FEPEEEELEEEE
associated with storms, extreme winds, and large areas of a3 as3a39 EEEEEEEEE EEEEEEEEEE
correct first ambiguities. However, these cases are rare. Over
the BYU method selects 93% of the same ambiguities as tne .

JPL. This result indicates that ambiguity selection canbegen (DpErosionSteps
ally accomplished without the use of a nudging field. The BY| S55HE 2222 INEEEEEEN UEREEEEE
ambiguity selection method is well suited for operational amk -1 33332233 | INEEEEEEENR ey,
guity selection, since the NWP nudging field is not required ar 332 aaaaaa o~ oo adaaaa |~ Baasasaes
. . . . . 1 2022222
the algorithm is computationally efficient. SEEEEEERNNEN L LR ELE
T
APPENDIX RERRERERE RRRRRRF: A
" A . . . 13222 T 113 2] 2 2 IERREEEE!
Dilation and erosion are morphological operations that e 33z EENNEEEE INEEEEEE
. . 113 3 3 3 2 2 L1133 3 3 2 2 11133 3 3 2 2
pand or co_ntragt features of a bl_nary image [1_0]._ Morpholo Tfssssszas 1 Cisssssaa T CEEesEe [T
ical operations involve a structuring element, similar to a col 33422222 EEEELEEE q724222
volution kernel. One of the simplest structuring elements is
“nearest neighbor” element. The “nearest neighbor” element

shown in Fig. 10. If the “nearest neighbor” element is used, a ai-
lation step turns on a pixel where any neighboring pixel is turneg. 11. (a) Dilation and (b) erosion steps, demonstrating how an isolated
on. Erosion turns off a pixel where any neighboring pixel is offegionis “filled in.” The initial state matrix is derived from the example in Fig. 4.
A general technique of filling bounded regions is to dilate fof® enhance readability, state 0 cells are left blank.
several iterations, and then erode for several iterations.

Morphological operations are a subclass of cellular automataCells not assigned state 1 or 2 are initially assigned state 0.
A cellular automaton is an array of identically programmed cellghrough dilation and erosion, state 3 is assigned to all isolated
that interact with each other. For each cell, there is a state (e@gions of ambiguity selection error. We redefine dilation as the
the binary casepN or OFF), a neighborhood, and a set of rulexhanging from state 0 to state 3, and erosion as the changing from
on how the state changes. Morphological operations are binatgte 3 to state 0. Our neighborhood is all “nearest neighbors.”
but a multivalued operation is needed in the BYU method of During the dilation step, the rules for states change are as
locating isolated regions of ambiguity selection errors. Thufgllows: States 1 and 2 do not change. State 0 changes to state
we modify the dilation and erosion techniques to better suit oBrwhen the neighborhood contains at least one state 2 cell, or
application by defining a cellular automaton over the swath. contains a state 3 cell accompanied by at least one other state 1

Foreach WVC, we define four states. State 1 is assigned to@iI3 cell. After iterating, these rules allow the inconsistent edges
WVCswhose median-filtered wind vectoris lessthan 3 m/s or a@dilate until they come in contact with WVCs of state 1, 2, or
nondata WVCs. Note that the outside cross-track row is assigri&dilling isolated regions. The dilation step is iterated 20 times.
state 1 because retrievalis not performed there. State 2 is assigndaliring the erosion step, the rules on state changes are modi-
toallWVCsthatare flagged as “inconsistent” (see SectionllI-Djied. State 3 changes to state 0 when the neighborhood contains
These are the edges of the regions of ambiguity selection erare state O cell and no state 2 cells, or contains at least two state
Because states 1 and 2 are defined by the characteristics ofGlwells. Again, cells of state 1 or 2 never change. Thus, the non-
selected wind flow and not by the states of the surrounding celiisplated cells erode away, leaving only the isolated regions. The
they never change during the dilation and erosion steps. erosion step is iterated 40 times. All WVCs with nonzero state
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are flagged as isolated regions of ambiguity selection error. \"* David W. Draper received the B.S. degree in elec-

demonstrate the dilation and erosion steps in Fig. 11.
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