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Spatial Resolution Enhancement of SSM/I Data

David G. Long,Member, IEEE,and Douglas L. Daum

Abstract—One of the limitations in using Special Sensor Mi- TABLE |
crowave/lmager (SSM/I) data for land and vegetation studies is Sizes oF THE 3-dB ANTENNA FOOTPRINTS OF THESSM/I
the relatively low-spatial resolution. To ameliorate this limitation, CHANNELS. THE APPROXIMATE SPACING OF THE MEASUREMENTS
resolution-enhancement algorithms can be applied to the data. IN THE CROSSTRACK AND ALONG-TRACK DIRECTIONS
In this paper, the Backus—Gilbert inversion (BGI) technique (i.e., THE SPATIAL SAMPLING DENSITY) IS ALSO SHowN
and the scatterometer image-reconstruction (SIR) algorithm are SSM/I Channel 3 dB Footprint (km) Approximate
investigated as possible methods for creating enhanced resolution  Frequency (GHz) | Pol. | Along-track | Cross-track | Spacing (km)
images from SSM/I data. The two algorithms are compared via 19.35 v 69 43 25
both the simulation and the actual SSM/I data. The algorithms 19.35 H 69 43 25
offer similar resolution enhancement, though SIR requires signif- 22.235 v 50 40 25
icantly less computation. Sample results over two land regions of 37.0 Vv 37 28 25
South America are presented. 37.0 H 37 29 25
Index Terms—Deconvolution, resolution enhancement, SSM/I. 85.5 v 15 13 12.5
85.5 H 15 13 12.5

I. INTRODUCTION . . _
ICROWAVE radiometers, such as the Special Ser?_lmulatlons used to compare the performance of the algorithms

sor Microwave/lmager (SSM/I) [6], [7], have Wideare described in Section 1V. Comparison of the algorithms

ST . . using actual SSM/I data is given in Section V. Finally,
application in atmospheric remote sensing over the oceal .\ sions are made in Section VI
and provide essential inputs to numerical weather-prediction '
models. SSM/I data has also been used for land and ice

studies, including snow-cover classification [5], measurements Il. BACKGROUND

of soil and plant moisture content [9], [14], atmospheric e 5oy s a total-power, seven-channel, four-frequency
moisture over land [11], land surface temperature [13], angiometer [6]. The channels are vertical and horizontal po-
mapping polar ice [19]. Unfortunately, the relatively 10wy, ;ati0ns at 19.35, 37.0, and 85.5 GHz and vertical polar-
resolution of the SSM/l is a limiting factor in its application for, ion at 22 235 GHz (see Table I). Radiometric brightness-
other land and ice studies. The intrinsic horizontal resolutiqgmperature measurements are made with an integrate-and-

of the SSM/l is determined by the antenna-beam patteffl,m, fiter as the antenna scans the ground track [8]. The
and depending on the channel, its resolution varies frofljg antenna footprints range from about 15-70 km in the
approximately 70 to 15 km. To ameliorate this limitationy,ss_gcan direction and 13-43 km in the along-scan direction
resolqun-enhancemgnt algorithms can b,e applied to Fhe df’st@e Table I). The 3-dB antenna footprints, which are different
[4], [16], [18]. Resolution enhancement is, in effect, equwale@(t)r each frequency, generally have an elliptical shape on

to antenna-pattern deconvolution. _ the surface of the Earth, due to the elevation angle of the
In this paper, we consider two resolutlon—enhancemelrgdiometer beam [7].

algorithms de\{elope_d for microwave data. The first, based.onThe brightness temperatures observed by the SSMI are a
the Backus—Gilbert inversion (E_;GI) method, has been app“ﬂ‘jjnction of the effective brightness temperature of the Earth’s
to SSM/I data for both resolution enhancement and optimglitace and the emission, scattering, and attenuation of the
interpolation [4], [15], [16], [18]. The second, known as thgnasphere. Because of the spatial and temporal variability of
scatterometer image reconstruction (SIR) algorithm [12], WS grface brightness, which is a function of the properties of
originally developed for SEASAT-A scatterometer data, byfe 5ojl and overlaying vegetation and their physical tempera-
has been adapted for use with SSM/I data. In th's PaPHires, it is difficult to decompose the observed brightness into
we compare the performance of these two algorithms ot i qividual components. The most crucial factors affecting a
generating enhanced resolution brightness images from SSMfljiometric measurement, however, are the surface emissivity

data over Iand_ areas. _ and temperature, the vegetation canopy, the viewing angle, and
This paper is organized as follows: after a brief baclfhe atmospheric conditions [20].

ground discussion in Section Il, Section Ill provides a detailed g his research, we are primarily interested in the surface

description of the BGI and SIR algorithms. The results cHrightness temperature. Ignoring, for the moment, the effects
of the atmosphere, an SSM/I measurement can be modeled as
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Fig. 1. Geometry of the resolution-enhancement algorithm. Enhanced resolution images are produced on the underlying rectilinear grid.nshe kbeatio
measurement footprints for several along-track measurements for two scans are illustrated for two different scan locations.

and the antenna at the surfa€e(z, y) underlying brightness distributiorify) on a high-resolution
. grid (see Fig. 1) from the lower-resolution measurements (
1.0)=G" [[ Gle it pdeay @ 02l
While the grid can be made arbitrarily fine, the resolution-
where enhancement capabilities of both the BGI and SIR algorithms
— are dependent on the sampling pattern and the overlap in
Gi= // Gi(z, y)du dy @ the response functions of the measurements. In general, the

here integrals over the surface area are corresponding to jgher the sampling density (leading to more overiap in
w Integ v u ponding 1o { measurements), the better the resolution enhancement.

nonnegligible gain of the antenna. The dependencé? ain Note that an overly fine grid increases the computational

éhagrl]sess Z(S)rt?];gentgg:;sgr:nsp?g:'ggrfgiethﬁlo?gtter]r;??HeW;r:%%uirements without improving the effective resolution of
9 u ' t% 8utput image. Like all resolution-enhancement techniques,

Er?]tltt?r:n t?](;tsef?:ct?/elor\g;?)?ust?o:ltc?frtr?é :;fa::jg?ﬁgn?”ghmeﬁ%‘th algorithms provide improved resolution at the expense of
9 ' an increased noise level in the images.

I1l. SSM/I RESOLUTION-ENHANCEMENT ALGORITHMS

When using SSM/I data for land and vegetation studied; 1he BGI Method
several limiting factors become apparent. These include theThe BGI algorithm is an inversion method for solving
differing spatial resolutions of the channels, their lack dhtegral equations [1]-[3]. The algorithm is used to determine
spatial coregistration, and the overall low-spatial resolutiogurface brightness from integrated, overlapping antenna pat-
To ameliorate some of these difficulties, a spatial resolutioterns. Several authors, including Farrar and Smith [4], Poe
enhancement algorithm can be applied to the data [4], [1§]5], Robinsoret al. [16], and Stogryn [18], have used BGI to
[18]. To this end, we consider two different resolutionsuccessfully enhance the spatial resolution and/or to perform
enhancement algorithms in this paper: one based on the B@timal interpolation of SSM/I data to either raise or lower
and a new algorithm based on the SIR algorithm. These aesolution for use in multichannel studies. They address the
briefly described below. Their performance for land imagingtility of resolution enhancement for SSM/I measurements.
are compared using both the simulated and the actual dat&/hen employed for spatial resolution enhancement, the BGI
in later sections. algorithm produces a weighted least-squares estimate of the

Note that both the BGI and SIR resolution-enhancemesitirface brightness on a rectilinear surface grid finer than the
algorithms generate images from the radiometer measui@rinsic resolution of the sensor (see Fig. 1). Given a set of
ments. While they effectively deconvolve the antenna pattelamtenna temperature measureme{ifs(:)} with associated
the algorithms do not “enhance” previously-produced imagestenna gain pattern&;(z, y), the algorithm estimates the
as done by image-processing algorithms; rather, they dméghtness temperaturés(xz;, y;) for each pixel ¢;, y;) of
“reconstruction” algorithms, which attempt to reconstruct thiie enhanced resolution image.



LONG AND DAUM: SSM/I DATA SPATIAL RESOLUTION ENHANCEMENT 409

To estimateT; for a given pixel, the BGI method uses ahe noise level of the images. The exact number of “nearby”
linear combination ofV “nearby” measurements, i.e., measurements used at a given pixel is a function of the gain
N pattern and sampling geometry and varies across the swath
: . and for each channel.
Ty(xj, y;) = ) aijTa(i) ®3)
=1
B. The SIR Algorithm
where the coefficients;; are determined from the measure- .. gr algorithm, originally designed to produce mul-

ment geometry f”“.]d the noisg—correlation matri>$ [4]. [15]. Nott?\/ariate scatterometer images [12], has been adapted for
that these coefficients are different for every pixel, due to trf'gidiometer measurements. It produces radiometric images by

varying antenna geometry over the swath. using an iterative procedure from an initial-brightness estimate.

Ther_e 'S ho unique solut|or_1 for_the coefiicients, however, The procedure is nonlinear and depends on the antenna-
regularization permits a subjective tradeoff between the noi ttern dimension, shape, and measurement overlap to obtain
level in the image and in the resolution. Regularization a

lecti f th . q ived in 3 olution enhancement.
selection of the tuning parameters are described in [3] an he SIR algorithm is a variation of the multiplicative

[18], but we provide some comments here. There are tv‘c’\?gebraic-reconstruction techniqgue (MART), a maximum-

tun!ng parameters, the d|_men3|_onal parametan_d the hoise- entropy reconstruction method [10]. The detailed derivation
tuning parametey. The dimensional parameteris arbitrary, for scatterometer data is found in Lomeg al. [12]. Since the

but Idolees a;fec(;.the optimlum \{alue of FOIIOng Rotz)inoscc))ln radiometer version of the algorithm has not been previously
etal.[16], the dimensional-tuning parametens set to 0.001. published, we provide it in its entirety below.

Th2e no'ste'}u?;]ngt pzrar?feée{, wh|c[1h can Vf‘?’ from dC:HO to . SIR provides a maximum-entropy estimate of the brightness
/2, controls the tradeoff between the resolution and the noi perature for each element of a rectilinear grid of pixels.

par_ameter. The vqlue_ of can be subjectively sel_ecte_d toAssuming that the brightness temperature is constant within
optimize the resulting image. The value of the optimgns each pixel, (1) can be written as
dependent on the value &¥T’, used for the noise level as well ’
as the penalty and the reference functions. We have used the 1 & T
constant penalty function of Farrar and Smith [4]. To maximize (i) == > > Tz, )Gz, y) (4)

the resolution enhancement, the reference function is defined P p=L; y=B;
to be unity over the pixel of interest and zero elsewhere.
In generaly is different for each SSM/I channel. Farrar andvhere
Smith [4] developed an objective technique for selectjrfor R T
the 19-, 22-, and 37-GHz SSM/I channels, based on maxi- G, = Z Z Gz, y) (5)
mizing the correlation between the 85-GHz channels and the omL; 4B

particular channel of interest. However, for a single-channel
instrument or for the 85-GHz channelsmust be subjectively and L;, R;, B;, andT; define a bounding rectangle for the
chosen. A detailed description of the BGI algorithm is giveith measurement.
by Poe [15], Robinsomt al. [16], and Stogryn [18]. In implementing the SIR algorithm, an initial guess for
The BGI-produced image is affected by the definition ahe 1, image is first made: typically, the average expected
“nearby” (V) and the relative locations and gain patternsrightness temperature. A predicted value (forward projection)
of the measurements included in the sum in (3). Restrictimg each measurement is calculated from a current estimate of
the size of the local region defining “nearby” measuremeriy and is compared to the measurement. A scale factor is
reduces the computational load at the expense of accuratyen computed as the ratio of the measurement to the forward
Increasing the size of the local area (and to include projection. An update term is computed for each pixel in the
additional measurements in (3) can improve the accuracy measurement cell by multiplying by the scale factor. Between
the resolution enhancement, but may significantly increase iterations, each pixel in the image is updated by averaging the
computational load. Previous investigators have used a fixgplddate terms for the pixel. As the process iterates, the scale
range of angles around the antenna-pointing direction to defiiaetors approach unity and all of the forward projections match
“nearby” [18]. This approach can lead to numerical problentse measurements. When noise is present in the measurements,
in the matrix-inversion step of the algorithm if the angldvowever, the scale factors may not always converge to unity.
range is large enough to include directions with very smdh this case, the algorithm attempts to balance the various
gain. To avoid this problem, a somewhat different approacisale factors for each measurement and pixel-using maximum
is used in this paper. We define “nearby” measurements exgtropy. In SIR, the scale factors calculated for each forward
those measurements that have nonnegligible gain at the pigmjection are damped by taking the square root. In addition,
of interest. A threshold, denoted lpy, is used to determine if the update terms are computed in a manner that limits the
the gain is nonnegligible: the measurement is used in (3) ordynount of change for a single update [see (8) below]. These
if the relative antenna gain at the pixel of interest is greatsteps tend to reduce the sensitivity of the update terms to noise.
than the threshold. Ay, of 11 dB below the peak gain has Let T,(z, y) be denoted by; andG;(z, y) by h;;, where
been used in this paper [18]. Setting a lower gain thresholds the row-scanned pixel number ands the measurement
results in more measurements being used in (3), but increasamber. Then for thé&th iteration and for théth measurement
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in the data set; and its corresponding weighting functiasg;,
the forward projectionf® is calculated as

1 M

FF==3" hinph (6)

VRt

M

n=1
where M is the number of pixels in the image. The scal
9; = Z hij. (10)
i=1

factor d¥ is then computed as
This set of equations is iterated ovkrfor N iterations

e [Taa)r/“’_
until the scale factors approach unity. Because of the dampi 270 —: 00

T ka
The nonlinear update tertmf is then computed, according to
employed in the update terms, the algorithm always converges,
i i i Fig. 2. Simulation images. Images cover an aréax66° in longitude and
and the iteration .may be Comlr!ued even for very lajge latifude at 32 pixels/deg. (a) Synthetic test image, (b) nonenhanced 19 V, (c)
values. As shown in the next section, however, the accuracynghenhanced 37 V, (d) nonenhanced 85 V, (e) SIR 1% 10, (f) SIR

the algorithm at first increases with the iteration number, bug Vv, &£ = 20, (g) SIR 19 V,k = 25, (h) SIR 19 V,k = 40, () BGI 19 V,

12, () BGI 19V, v = 7/5, (k) BGI 19 V,~ = 1, (1) BGI 19 V, ¥ =
then may decrease as the iteration continues. This is a comrgop 1Y SIR 37 Vik = 10, (0) SIR 37 V.k = 20, (0) SIR 37 Vik = 25, (p)
problem with algebraic reconstruction algorithms and is th§r 37 v, = 40, (q) BGI 37 V., = /2, (r) BGI 37 V,~ = 7/5, (s) BGI
result of excessive noise amplification. Fortunately, the alge? v, v = 1, and (t) BGI 37 V,y = 0.

rithm’s performance is not particularly sensitive to the exact

number of iteratipns used, and a range of values will produceThe synthetic test image [shown in Fig. 2(a)] fsléngitude
good results. This range depends on the antenna-pattern SIZ€o |atitude in size and includes a number of features
and sampling density. In the next section, simulation is used

“ " Similar to those seen in radiometric data over the Amazon.
to determine the “optimum” number of iterations to use for “ " N
each channel. The features include a 270-K “river,” 295-K “spots,” and a

pyramid-like feature. The background temperature is 285 K,
similar to the average temperature from SSM/I data over the
IV. SIMULATION COMPARISON BETWEEN Amazon. The pixel resolution was arbitrarily chosen to be 32
THE BGI AND SIR ALGORITHMS pixels/deg (to be several times finer than the resolution of the
While BGlI, in various forms, has previously been applied teasurements). To make the simulation as realistic as possible,
SSM/I data [4], [15], [16], [18], SIR has not been previouslgimulated brightness measurements are generated with (1)
applied to radiometer data. To compare the two algorithrusing the SSM/I antenna pattern and sampling geometry from
and understand their weaknesses and strengths, we first utifiidswath for a single-ascending pass. Monte Carlo random
simulated measurements of known surface brightness distrigise is added to the simulated measurements.
tions. For this, we have generated a synthetic image containindNoise, in the sense used here, refers to the random vari-
test patterns and characteristics similar to those obsenaddlity in the observed brightness temperatures over a region.
over the Amazon Basin. We provide sample images for twihis variability arises from two sources: 1) radiometric mea-
channels: 19- and 37-GHz V-pol. surement error A7) and 2) subscale spatial variability in

-1

1 1 1
‘ —(1- =)+ df>1
uly = l2fk< dk>+ kdk] =T (8
[3/F(1 = d¥) + phdl], dF < 1.

After the entire data set has been processed, each pixel esti
pJ is updated by computing a weighted average of the upd
terms, i.e. {V,, is the number of measurements),

k-l—l Z h“ u“

()
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TABLE I TABLE Il
F10 SSM/I DsTA SUMMARY FROM —55° E To—52° E, RMS ERROR AND CORRELATION COEFFICIENT BETWEEN SIMULATED IMAGES
0° N To 3° N, DESCENDING PASSES SEPTEMBER 1992 AND THE TRUE SYNTHETIC IMAGE FOR EACH CHANNEL. THE N AND 7 VALUES
il | e T (K) [ 7 () | Vi ()| W K] e B e o™
19.35 GHz V 288.3 106 | 291.5 285.6
19.35 GHz H 287.6 1.05 290.5 284.3 Channel | Algorithm | N or v | RMSE (K) | Correlation Coef.
22.23 GHz V 287.0 053 | 2903 284.0 19H non - 3.002 0.760
37.00 CHz V 2841 0.76 | 287.0 281.4 SIR 25 2.701 0.810
37.00 GHz H 283.7 0.91 286.4 280.7 BGI 1 2.790 0.796
85.50 GHz V 286.2 0.33 289.4 282.5 19V non - 3.006 0.759
85.50 GHz H 286.0 0.94 289.4 282.0 SIR 25 2.703 0.809
BCI 1 2.793 0.795
. . . 22V non - 2.734 0.812
the surface brightness temperature. To make the simulation SIR 40 9.362 0.860
noise as realistic as possible, the variability of the SSM/I BGI 7/5 2.499 0.843
measurements over the Amazon were examined. A large (5  37H non - 2.488 0.842
longitude x 3° latitude) spatially homogeneous region of the SIR 15 2.250 0-879
Amazon Basin was selected, and the variance of the brightness T ﬁfnl 7{ 2 ;ng 8:2;?
measurements determined. The results are summarized in SIR 20 2116 0.888
Table II. The average brightness is in the mid 280-K range, BGI 7/5 2.262 0.874
while the standard deviation is generally less than 1 K. 85H non - 1.807 0.920
For the noisy simulations, Gaussian noise, with a standard SIR 10 2.633 0.940
deviation given by the value of in Table Il, is added to =V ]ifnl ”_/2 1'?23 gg}ﬁ
the simulated measurements. In both the simulations and the SIR 25 1,968 0.961
actual data results shown below, this same&alue is used BGI 3/2 1.695 0.930

for the standard deviation of the noise in the BGI algorithm,
rather than justA7.

channel are given in Table Ill, along with the corresponding
A. Simulation Results correlation coefficients and the rms error. These values of

The simulation results for the 19- and 37-GHz V-pol chanj-v and y are used in the remainder of this paper. The

nels are illustrated in Fig. 2. For comparison, nonenhancgarresponding “optimum” images_ for SIR are Fig. 2(9? (19V)
19-, 37-, and 85-GHz V-p%l images are Ziven in Fig. 2(b)—(d 'nd (n) (37'V). For BGI, the “optimum” images are Fig. 2(k)
These images were generated by assigning each pixel ﬁg V) and (r) (37 V).

measurement value corresponding to the measurement V%iﬂ(ftomparlhng thﬁ tabgla_lted rms z”%r andhthe corre_laﬂop
the largest antenna gain. etween the enhanced images and the truth image given in

The simulation results for different iterationg (= 10, Table I, we _co_nclude that the performance of SIR and BGI
20, 25, and 40) of SIR are illustrated in Fig. 2(e)—(h) (19gre brpadly S|m|Iar,_thougf_1 SIR has somewhat lower rms error
V channel) and (m)—(p) (37-V channel). Simulation resyl@nd higher correlation. With the exception of §5 V, the tablg
for BGI for various values of the BGI-tuning parameter also shows_ that bot_h_BGI and SIR produce |mpr_ovement in
are shown in Fig. 2(i)—() (19-V channel) and (g)—(t) (37Lhe correlat.|on coefficient over thg nonenhanced image.

V channel). Examining these images, we see that as SIR'N€ “optimum” SIR and BGI images for each channel
is iterated, the resolution improves, though at the expenédd- 2(g) compared with (k) and (n) compared with ()]
of additional noise. Similarly, ag is varied fromz/2 (no are \_/llsually very similar. Both algorithms provide better
resolution enhancement, maximum noise filtering)yte= 0 definition of the river and other features than the nonenhanced
(maximum enhancement, no noise suppression), the resolufi®@gde. The SIR image has fewer artifacts along the river
improves at the expense of additional noise. and the edge of the pyramid than the BGI image. This

To objectively compare the algorithms, we use the rms erri§r most evident at 37 GHz. Both algorithms are unable to
and the correlation coefficient between pixel values of trecurately reconstruct the proper width of the river along its
reconstructed images and the truth image. Plots of the rms efftdl course. The spots are not clearly discernible in any of
and the correlation coefficient for all the channels versus tHee images, though there are hints of them in the images. The
iteration number for SIR angl for BGI are contained in Fig. 3. 37-GHz images have sharper edges for the river and for the
We note that as the number of iterations for SIR is increasd@yramid, but have more “noise” in the smooth forest regions.
the correlation first increases and then, for most channefjbjectively, the enhanced images provide better definition
decreases somewhat as the iterations continue. Similarly, then the nonenhanced image. This, coupled with the improved
rms error first decreases, then generally increases somewtwitelation of the nonenhanced images, demonstrates that the
as the number of iterations continues as a result of noisgsolution enhancement is effective for SSM/I.
amplification. The “optimum” number of iteration¥ to use One of the difficulties with using the actual data is that the
for SIR is selected as th& value, which maximizes the true brightness distribution is not known. This makes quantita-
correlation. For BGI, we choose thethat produces the highesttive evaluation of the resolution enhancement impossible. As
correlation [4]. The “optimum”XN and v values for each a result, we must resort to comparing the enhanced resolution
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Fig. 3. Correlation coefficient and rms error between simulation results and true simulation images. (a) SIR 19-V correlation versus SIR itelbation nu
k, (b) SIR 19-V rms error versus SIR iteration number(c) BGI 37-V correlation versus BGY coefficient, and (d) BGI 37-V rms error versus BGI
~ coefficient. The 19-H and 19-V lines overlay each other.

images to the data from a higher frequency channel, which resd BGI offer improved correlation with SIR somewhat higher
higher intrinsic resolution. This comparison is complicated kthan BGI.
the fact that since the two channels operate at different fre-
guencies, the surface brightness-response characteristics ma
be different. Nevertheless, with this limitation in mind, thd:
correlation between the two channels can provide a measurds is evident in these simulation results, both the SIR
of the resolution enhancement [4]. and BGI algorithms can enhance the data and have similar
We again turn to simulation to gain insight into the corresolution-enhancement capability. However, SIR is computa-
relation between the enhanced resolution images of a givinally less intense than BGI and is, therefore, faster. For
channel and the nonenhanced images from a higher resmample, the SIR-processed simulation images take about
lution channel. Plots of the correlation coefficients betweeme min on an HP workstation, while the BGJ.(= —11
the enhanced images and the 37- and 85-GHz nonenhandB)l images take approximately 30 min. (Significantly more
images versus iteration number amdire contained in Fig. 4. computation can be required for smalervalues, which result
These curves are similar to those in Fig. 3. The correlatiomlarger measurement matrices.) The computational difference
coefficient is maximized at slightly different values bfand comes from basic algorithmic approaches. BGI requires a
~, depending on the comparison image. Table IV comparestrix inversion for each pixel, while SIR requires only rela-
the correlation coefficients between the nonenhanced 37- dively simple calculations. We note that when multiple images
85-GHz channels with the processed images of the otheith exactlythe same measurement and pixel locations are
channels. The standard deviation of the difference imagecessed, the BGl-enhancement coefficients may be stored
is also tabulated. When the 37-GHz channel is used fand reused.
comparison, the SIR algorithm exhibits higher correlation than Another difference between BGI and SIR is the use of tuning
the BGI, but somewhat lower than in the nonenhanced caparameters to tradeoff noise and resolution. Hhepefficient
When the 85-GHz channel is used for comparison, both SiR the BGI algorithm explicitly provides a tradeoff between

omments
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Fig. 4. Correlation coefficient between simulation results and nonenhanced images. (a) SIR 19 V and nonenhanced 37 V versus SIR iteration number
k, (b) BGI 19 V and nonenhanced 37 V versus Blcoefficient, (c) SIR 19 V and nonenhanced 85 V versus SIR iteration nuibend (d) BGI
19 V and nonenhanced 37 V versus B&l coefficient.

TABLE IV
STANDARD DEVIATION OF THE DIFFERENCE AND THE CORRELATION COEFFICIENT BETWEEN SIMULATED PROCESSEDIMAGES AND NONENHANCED IMAGES OF THE
CORRESPONDINGPOLARIZATION. N AND v VALUES FROM TABLE Il A RE USED. NO OCEAN OR RIVER PIXELS ARE INCLUDED IN THE STATISTICS CALCULATION

37 GHz Comparison 85 GHz Comparison
Channel | Algorithm | Std (K) | Correlation Coef. | Std (K) | Corrclation Coef.
19H non 1.063 0.962 2.609 0.796
SIR 2.080 0.868 2.258 0.851
BGI 1.394 0.927 2.361 0.836
19V non 1.101 0.958 2.453 0.812
SIR 1.301 0.937 2.080 0.868
BGI 1.392 0.926 2.193 0.853
22V non 0.855 0.978 2.140 0.866
SIR 1.175 0.953 1.703 0.914
BGI 1.166 0.949 1.838 0.901
37H non 2.160 0.865
SIR 1.809 0.907
BGI 1.900 0.899
37V non 1.897 0.892
SIR 1.515 0.933
BGI 1.609 0.925

noise and resolution. Although a tradeoff between noise andit should be noted that when multiple passes are combined,
resolution can be made via the number of iterations us&dther resolution enhancement and noise reduction are pos-
for SIR, there is no explicit relationship between the noisgble with SIR, as done with scatterometer data [12]. The
variance and the number of iterations required. multiple passes permit, in effect, averaging of the measure-
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ments on the pixel grid with consequent noise reduction.
course, to be effective, the surface must be constant frc
pass to pass. As currently formulated, it is difficult to us
multiple passes with BGI, due to the occurrence of singul
matrices in the measurement matrix inverted as part of tl
algorithm. The singularity arises when several measuremel
occur at essentially the same location. Noise in these multicp
measurements gives rise to an inconsistent linear systeE
which can result in a singular matrix.

In summary, based on simulation, SIR and BGI offer simila
resolution enhancement. However, SIR requires much le
computation and can be used with multiple-pass data. Usi
the v coefficient, BGI offers a subjective tradeoff betweer
noise and resolution. A similar tradeoff is possible with SIF
by limiting the number of iterations.

V. ACTUAL SSM/I DATA WITH
THE BGI AND SIR ALGORITHMS

Having examined simulated images, we now consider actt .
data to compare algorithm performance. Since our prima
interest in using these algorithms is for land and vegetatic
imaging, we consider two illustrative examples over Sout
America. The two selected study regions have different radi
metric signatures. The Amazon River Delta region include
both ocean and river, which are both much cooler than veg
tated areas. The Guyana Highlands region has little surfa .'h' - 1 ‘ i :d _.l
water, but exhibits significant brightness variations, due 1 0 ETILI]
spatial variations in the vegetation coverage. Each example ) _
is generated from a different descending SSM/I pass from thg; > 'Images of A(gaig[‘vRs“l’g gr?('jta( dr)e%'go_’i/: (g) 19-V nanenhanced, (b)
F10 satellite during September 1992. As in the simulation, the ' ' '
nonenhanced comparison images are generated by assigning
the value of the nearest measurement to each pixel. All imagéd: and~. The values of: and~y that maximize the correlation

are 32 pixels/deg. are similar to those predicted by simulation. We note that
near the maximum correlation, the correlation coefficient is
A. Amazon River Delta not particularly sensitive to the exact valuekofThus, we can

use the values chosen in the simulation without significantly

the Amazon River Delta. This region was selected becausealﬁerlng the correlation. Similar conclusions can be made

contains large regions of relatively homogeneous vegetatif)EH%’_art?lmgvthe_7 Vahtf ' lati fficients betw th
along with rivers and coastlines. In the example illustrated aple gives the correlation coetlicients between the

here, the 19-GHz V-pol channel is used. The nonenhand@@enhanced 37- and 85-GHz images and “the_ procnessed
image is shown in Fig. 5(a). The 19-V SIR and BGI image§'ages from the other channels, using the “optimufi¥
for the “optimum” N and~ values from Table IIl are given in and v values from the simulation. The standard deviation of

Fig. 5(c) and (d). For comparison purposes, the nonenhand®g 'dlf'fere'nce' between the images is also given. The standgrd
37-GHz V image is shown in Fig. 5(b). deviation is higher for the 85-GHz channel comparison. This
The difference in the brightness response of the surfakgsults from large differences in pixel values along the river,
between the 19 and 37 GHz is evidenced by the dark sﬂﬁe to the fact that the river appears much wider in the lower
in the lower left of the images, which is most evident iffequency channels than it appears in the 85-GHz channel.
the nonenhanced 37-GHz image. This spot is due to ARis is because of the higher intrinsic resolution and sampling
atmospheric effect, such as a cloud or rain. Visually, the B@f the 85-GHz channel.
and the SIR images are very similar, though there are somdJsing the correlation coefficients in Table V, we see that
processing artifacts along the coast and rivers. Subjectivelyhen the nonenhanced 85 GHz is used for comparison, SIR
the SIR image exhibits the greatest contrast along the rivéx@s a similar or slightly larger correlation than both the
where the brightness-temperature step from water to landB&! and the corresponding nonenhanced images. When the
very large(~160 —~285 K). The overshoot in the brightnessnonenhanced 37-GHz image is used for comparison, the BGI
of the land along the river appears strongest in the SIR imad@s higher correlation than the 19-GHz SIR, but lower than
Fig. 6 plots the correlation between the enhanced imaghe 22-GHz SIR. The correlation for both the BGI and the
and the nonenhanced 37- and 85-GHz images, as a funct®iR images is lower than the corresponding nonenhanced

The study area is a 23ongitude x 15° latitude area over
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Fig. 6. Correlation coefficient between Amazon River Delta region results and nonenhanced images: (a) SIR 19 V and nonenhanced 37 V versus SIR
iteration numberk, (b) BGI 19 V and nonenhanced 37 V versus Blcoefficient, (¢) SIR 19 V and nonenhanced 85 V versus SIR iteration number
k, and (d) BGI 19 V and nonenhanced 85 V versus BGkoefficient.

TABLE V
STANDARD DEVIATION OF THE DIFFERENCE AND THE CORRELATION COEFFICIENT BETWEEN PROCESSEDIMAGES AND NONENHANCED IMAGES OF THE CORRESPONDING
POLARIZATION FOR THE AMAZON DELTA REGION. N AND v VALUES FROM TABLE Il A RE USED. OCEAN PIXELS ARE EXCLUDED IN THE STATISTICS CALCULATION

37 GHz Comparison 85 GHz Comparison
Channel | Algorithm | Std (K) | Correlation Coef. | Std (K) | Correlation Coef.
19H non 3.185 0.841 12.38 0.716
SIR 3.831 0.805 13.12 0.754
BGI 3.603 0.818 12.57 0.752
19V non 2.522 0.881 23.13 0.916
SIR 2.911 0.873 23.56 0.921
BGI 2.789 0.873 23.43 0.920
22V non 2.048 0.913 10.32 0.933
SIR 2.177 0.863 10.56 0.939
BGI 3.417 0.667 10.45 0.938
37H non 10.26 0.771
SIR 10.08 0.809
BGI 9.883 0.793
37V non 17.41 0.927
SIR 17.52 0.932
BGI 17.44 0.930

images. Overall, we conclude that BGI and SIR produd® Guyana Highlands

similar results and, based on the improved correlation of the _ o _

enhanced images, both algorithms are effective at resolutiorf* Second vegetation region is also considered. The study
enhancement. region is a 8 longitude x 5° latitude area over the Guyana
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TABLE VI
STANDARD DEVIATION OF THE DIFFERENCE AND THE CORRELATION COEFFICIENT BETWEEN PROCESSEDIMAGES AND NONENHANCED IMAGES OF
THE CORRESPONDINGPOLARIZATION FOR THE GUYANA HIGHLANDS REGION. N AND ~ VALUES FROM TABLE Il A RE USED

37 GHz Comparison 85 GHz Comparison
Channel | Algorithm | Std (K) | Correlation Coef. | Std (K) | Correlation Coef.
19H non 1.635 0.728 2.339 0.438
SIR 1.766 0.719 2.491 0.442
BGI 1.747 0.714 2.466 0.432
19V non 0.948 0.964 1.451 0.887
SIR 0.925 0.964 1.501 0.902
BGI 0.958 0.961 1.501 0.897
22V non 1.315 0.938 1.204 0.899
SIR 1.363 0.922 1.248 0.906
BGI 1.626 0.867 2.239 0.663
37TH non 1.485 0.795
SIR 1.474 0.803
BGI 1.393 0.814
37V non 1.601 0.897
SIR 1.639 0.907
BGI 1.487 0.908

ation of the difference between the images is also given. As
in the Amazon region case, the SIR provides somewhat better
correlation than the BGI, when the 85-GHz channel is used for
comparison. Though not shown here, plots of the correlation
versusk and-y for this region are similar to the results from
the Amazon River Delta region shown in Fig. 6.

Considering both the image and the correlation coefficient
results for the actual SSM/I data in these study regions, we
conclude that BGI and SIR produce similar results and are
effective for resolution enhancement. Because of its reduced
computational requirements, however, we prefer the SIR al-
gorithm.

VI. CONCLUSION

A comparison of two different methods, BGI and SIR, for
improving the resolution of SSM/I images over land regions
has been presented. The algorithms have similar resolution-
300 enhancement capability, based. on sim_ul_ation and results from
o7 e  Guvana Hidhlands redion: (a] 37 nonenhanced. (b 85actual .SSM/I data. BGI permlt§ explicit t_radeoffs between
nfr;er{hanceg’eicc)’ 37‘2’/‘3‘5?&'2”;((1)53879{? ég}? onenhanced, (b) rlésolutloq enhancement and noise reduction. A tradeoff be-

tween noise and resolution is possible for SIR by varying the

. ) ) . number of iterations. The most significant difference between
Highlands of South America. In this scene, the brightnesgje 5ig0rithms is computation: SIR requires less than 1/30 of

temperature step from the lowland tropical forest to the grasgy, computation required for BGI. In addition, SIR can also
highland region is much smaller280—285 K) than the o ;564 with multiple passes to reduce the image noise level.
river to fore.st step in the Amazon River Delta region IMaY€¥he enhanced resolution SSMII images better resolve small
For the image examples, the 37-GHz V-pol channel {3,y res and have a higher definition of coastlines and other
used. The nonenhanced 37-GHz image is shown in Fig. 7(@}4es than the nonenhanced images. For example, improved
Fig. 7(c) shows the SIR image, while (d) shows the BGI iMgqytion SSMII data has been shown to be effective in ice-

age. For comparison, the nonenhanced 85-GHz V-pol images, centration estimates near the ice edge [17]. Images will
is shown in (b). Though the SIR and the BGI images are Velyso pe useful in land and vegetation studies.

similar, edges are more clearly delineated in the SIR image
and then in the BGI image, and there is somewhat more detail
in the various regions than in the nonenhanced image. Some
processing artifacts are visible in the BGI image in the bright The SSM/I data used in the paper was made available
highland region. Table VI gives the correlation coefficientsourtesy of Dr. F. Wentz at Remote Sensing Systems [21]. The
between the nonenhanced 37- and 85-GHz images and dlaghors wish to thank Q. Remund for his help in processing
processed images from the other channels. The standard déheé- data.
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