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Model-Based Estimation of Wind Fields Over the
Ocean From Wind Scatterometer Measurements,
Part II: Model Parameter Estimation

DAVID G. LONG, MEMBER, IEEE, AND JERRY M. MENDEL, FELLOW, IEEE

Abstract—A wind scatterometer is a radar remote sensing instru-
ment which measures the wind-dependent radar backscatter of the
ocean’s surface. From these measurements the near-surface wind over
the ocean can be determined. The traditional approach to wind esti-
mation uses only the measurements associated with a given sample point
to estimate the wind at that sample point. This point-wise procedure
yields nonunique estimates of the wind vector and requires a second
‘‘dealiasing”” step to select a single estimate. In this second of two pa-
pers (see [29]), we demonstrate the feasibility of a new model-based
approach to wind field estimation. In the model-based estimation ap-
proach we use the parametric model for near-surface mesoscale wind
fields developed in Part I [29]. We estimate the parameters of the model
from the wind scatterometer measurements; the wind field estimate is
then computed from the estimated model parameters. Unlike the tra-
ditional point-wise approach, this approach takes advantage of the in-
herent correlation in the winds at different sample points to more ac-
curately estimate the wind field and resolve directional ambiguity. We
compare the accuracy of wind field estimates obtained using the tra-
ditional point-wise estimation scheme and our model-based approach
using simulated scatterometer measurements from the NASA Scatter-
ometer (NSCAT) [10].

I. INTRODUCTION

N PART I of this series of two papers [29] we intro-

duced a parametric model for near-surface mesoscale
wind fields over the ocean. In this paper we use this wind
field model as the basis for a fundamentally new estima-
tion-theory-based approach to estimating wind fields over
the ocean from wind scatterometer measurements, which
we call ‘*‘model-based wind field estimation.”” We dem-
onstrate the feasibility of this approach and show that it
can produce more accurate estimates of the wind field than
the traditional approach to wind estimation. It does this
by taking advantage of the inherent correlation in the wind
over the measurement region. The improved accuracy of
the model-based method will expand the utility of winds
estimated from wind scatterometer data.

In our model-based estimation approach we formulate
an objective function, based on maximum-likelihood
(ML) principles, for the model parameters from the scat-
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terometer measurements. The value of the model param-
eters which minimizes the objective function is the ML
estimate of the model parameters. The estimated wind
field is computed from the ML estimate of the model pa-
rameters. We refer to our companion paper [29] for the
development of the wind field model.

This paper is organized as follows: First, a background
in wind scatterometry is provided. This is followed by a
discussion of the measurement noise model for the scat-
terometer. Next, the development of an objective function
for the model parameters is presented. Considerations
about the optimization of the objective function are then
discussed. A simple approach to the optimization of the
objective function, based on a gradient search with initial
values computed using point-wise wind estimates, is used
to demonstrate the feasibility of the model-based wind
field estimation approach. Finally, examples are pre-
sented which compare the accuracy of the traditional
point-wise estimation scheme with our model-based ap-
proach; the examples use simulated wind scatterometer
measurements from the NASA Scatterometer (NSCAT)
[10], [25].

II. BACKGROUND

The normalized radar backscatter (¢ °) (at Ku band) of
the ocean’s surface depends on the wind speed and rela-
tive azimuth angle between the radar illumination and
wind direction in a manner which varies with the inci-
dence angle of the radar on the ocean surface and the radar
polarization [3], [27]. The relationship between ¢ ° and
the wind is known as the geophysical model function and
will be denoted by M. A typical example of M, which
we have used in this paper, is the SASS' model function
which relates o ° to the neutral stability wind at 19.5 m
[3]. The model function exhibits a strong cos 2x depen-
dence of ¢ ° on wind direction.

The scatterometer measures the ¢ ° of the ocean’s sur-
face. The radar scatterometer transmits a pulse of known
power and duration towards the ocean’s surface. A por-
tion of this power is reflected, or backscattered, toward
the radar. This reflected ‘‘signal’’ power is measured by
the scatterometer. The amount of power which is received
is a function of the known radar parameters and ¢ °, which
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is a function of the wind blowing over the ocean surface
[5]. Unfortunately, the power measurement is corrupted
by noise. A separate measurement of the noise-only power
is made and subtracted from the signal + noise power
measurement. This provides the measurement of the
backscattered signal power. The ¢ ° measurement is ob-
tained from the signal power measurement using the well-
known radar equation [27]. ¢° is related to the wind by
the geophysical model function 9.

Since M has a multivalued inverse, several measure-
ments of ¢° from different azimuth angles must be used
to determine the wind vector [27]. The Seasat scatter-
ometer (SASS) obtained ¢ ° measurements from only two
azimuth angles on an irregular sampling grid [7]. Second-
generation scatterometers such as the NASA Scatterom-
eter (NSCAT) will obtain ¢ © measurements from three or
more azimuth angles on an equally spaced grid of sample
points over the measurement swath. NSCAT will provide
measurements of ¢ ° at a 25-km resolution over a 600-km
wide swath on either side of the spacecraft ground track
[29, fig. 1], [10], [14]. These noisy measurements of ¢ °
provide an essentially instantaneous observation of the
wind field in the observation swath over the ocean’s sur-
face. The problem is to estimate the original wind field at
the sample points from the noisy ¢ ° measurements.

In the traditional approach the noisy ¢ ° measurements
are used in a point-wise estimation scheme in which only
the o ° measurements for a given grid cell are used to es-
timate the wind for that cell. An objective function (typ-
ically based on the likelihood function or least-squares
[5]) is formulated using the noisy ¢ ° measurements and
is minimized with respect to the wind speed and direction
at the sample point. Unfortunately, due to the nature of
I the objective function is minimized by several wind
vectors. This approach is unable to uniquely estimate the
wind vector and several ambiguous wind estimates result
for each cell [13]. The multiple estimates are termed am-
biguities or aliases [23]. To select a single wind estimate
for each cell, a post-estimation procedure, known in the
literature as ‘‘dealiasing’’ or ‘‘ambiguity removal,”’ is
used [23], [28]. Dealiasing procedures have used various
ad hoc measures and/or pattern recognition of significant
weather features to select a wind vector at each sample
point of the wind field and are prone to large systematic
errors [1], [23], [25], [28].

Rather than using the traditional point-wise approach to
wind estimation, we propose using a model-based esti-
mation procedure to estimate the entire wind field over an
entire region of the measurement swath. This new ap-
proach can eliminate the need for dealiasing and provides
more accurate wind field estimates by taking advantage of
the inherent correlation in the wind between different
sample points. In this approach we formulate an objective
function based on the likelihood function for the model
parameters, using the noisy o ° measurements. The model
parameters are estimated by minimizing the objective
function. Finally, the estimated wind field is computed
from the model parameters. In effect, this procedure per-

mits us to estimate the entire sampled wind vector field in
one step.

Because model-based wind field estimation uses the
wind field model to take advantage of the inherent corre-
lation in the wind across the swath, it is more tolerant of
noise in the o ° measurements than is the pointwise tech-
nique. This may permit reductions in the size and weight
of future scatterometer instruments by reducing the re-
quirements on the measurement signal-to-noise ratio of
the ¢ ° measurements, permitting smaller transmitters, an-
tennas, etc.

The pointwise wind estimation approach requires that
there be co-located measurements of ¢ ° from at least two
different azimuth angles in order to retrieve the wind [25].
Where there are missing o ° measurements (due, for ex-
ample, to calibration cycles), the wind cannot be re-
trieved. This produces ‘‘holes’’ in the estimated wind
fields and complicated dealiasing. In the model-based ap-
proach a wind vector is determined at every point of the
swath, even when there are missing ¢° measurements;
hence, there are fewer data gaps in the retrieved winds.
Furthermore, all of the available o °© measurements can be
used at all sample points even if there is only one ¢ ° mea-
surement in a given wind vector cell (for which a point-
wise wind estimate cannot be determined). These addi-
tional measurements help reduce the overall wind field
estimate error.

III. THE SCATTEROMETER MEASUREMENT PROCESS

The wind scatterometer provides essentially instanta-
neous measurements of ¢ ° over a grid of sample points
in each of the measurement swaths (refer to [29, fig. 1]).
For NSCAT, the sample points or resolution ‘‘cells’’ are
separated by 25 km. At each sample point noisy measure-
ments, denoted z(k), of the true ¢°, denoted o ° (k), are
obtained for each of the antenna beam azimuth angle/po-
larizations. In the case of NSCAT, the center antenna
beam is dual-polarized so that there are three azimuth an-
gles but four observations of ¢° [14]; hence, k ranges
from 1 to 4. Occasionally, due to calibration cycles and
co-registration errors, there may be missing o ° measure-
ments for some sample points.

The NSCAT instrument is designed to provide o ° mea-
surements at 25-km resolution. However, the wind is typ-
ically estimated at a 50-km resolution by first resampling
the 25-km resolution ¢ ° measurements onto a 50-km grid.
For each grid point, the wind is estimated using point-
wise wind estimation followed by dealiasing [10]. Our
method can be applied to provide wind estimation at both
25- and 50-km resolution [15], though we present only
50-km resolution results in this paper.

0° (k) is related to the wind at the sample point by the
geophysical model function,

o (k) = M{(u, v), k} (1)

where u and v are the components of the wind at the sam-
ple point, and the k argument in N subsumes the depen-
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dence of ¢ ° on the antenna observation azimuth angle ¥,
the incidence angle @, and polarization p. Note that the
relative azimuth angle x is

x=¥-2¢

where ¢ is the wind direction.
Let us consider the measurement process for a partic-
ular observation k at a given sample point. The noise

model for the noisy measurement z (k) of the true ¢ ° value
may be expressed as

z(k) = o°(k) + v(k)

(2)

(3)

where v(k) is a zero mean Gaussian random variable
whose variance is dependent on the true ¢°, ¢°(k), the
measurement geometry, the scatterometer design, and in-
cludes the statistical fluctuations in the return due to scat-
ter from the ocean surface [13], [27]. The variance of z (k)
is

Var[z(k)] = o’(k)a 2 (k) + B*(k)o° (k) + 7*(k)
(4)

where o (k), B(k), and v (k) depend on the measurement
geometry and scatterometer design [5], [13]. Additional
discussions of the scatterometer measurement model are
found in [6], [4], [13], [15], [27].

The conditional probability density of z(k), given
°(k),is

p(z(k)|o° (k)
_ Lt
 Var VWar[z(k)]

- exp {— % [z(k) — o°(k)]2/Var [z(k)]}.
(5)

At a given sample point the log-likelihood function (ig-
noring constants) L{u, v) can be expressed as [5], {13],
[25]

L(u,v) = — ké {log {Var [z(k)]}
+ [ek) = ST /Var [2(0]} (6)

where L, is the number of measurements at the sample
point.

IV. MoDEL-BASED WIND FIELD ESTIMATION

The role of the wind field model in model-based wind
field estimation is to provide a description of the wind
field over the scatterometer measurement swath at a fixed
instant of time and resolution of from 25 to 50 km (cor-
responding to the scatterometer sampling resolution). In
Part I [29] we developed a model for the wind field W
over a square region £ with N samples on a side having
the general form:

(7)

where W contains the components of the sampled wind
field over the region in lexicographic order (see Part I
[29]), Fis a 2N? X N, dimension constant matrix of full
rank, and X is an N,-dimensional model parameter vector.
The value of N, depends on the order of the wind field
model. Typically, we choose N = 8 or N = 12 for the
PBC model (see Part I [29]), with M, = 8 and M, = M,
=2,N, =20.

This model readily lends itself to the following param-
eter estimation formulation: The model parameters in X
are estimated directly from the noisy ¢ ° measurements,
and then the wind field is computed from the estimated
model parameters. .

Given an arbitrary wind field, denoted by W,, the least-
squares fit X of the model parameters to W, is

X=F"W, (8)

where F' = (FTF)™'F" is the pseudo-inverse of F. The
wind field computed from the model parameter vector can
then be computed using (7). Note that the components
u; ; and v;; of the wind vector at the sample point (i, j)
within £ are

u,“j = Wn = (F}_()n (9)
(10)

where n = (j — 1) + i is the lexicographic index cor-
responding to i, j, where i and j range from 1 to N.

vij = Ween = (FX)a,,

V. OBIECTIVE FUNCTION FORMULATION

Following a standard approach in estimation theory, we
define an objective function for the model parameters from
the available measurements [19], [20]. The parameter es-
timate is determined by minimizing the objective func-
tion. In our approach, we base the objective function on
the maximum-likelihood principle {20].

The true value of ¢°, denoted o (k) (corresponding
to the kth observation of the nth sample point identified
by the lexicographic index n), can be expressed as

a2 (k) = M{(u,, v,), k}
= M{((FX),, (FX)y2+1). K}

n’

(11)

The conditional probability density of the kth measure-
ment of ¢° at n, z,(k), given X, is (refer to (5))

p(z(k)|X)
_ 1 1
V2r Var [z,(k)]

. exp {— % [2,(k) = 02 (k)] /Var [z,,(k)]}

(12)

where o, (k) is given by (11) and Var[z, (k)] is given by
(4). There are L, measurements available at the sample
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point n; L, may vary from its nominal value (of 4 for
NSCAT) due to missing measurements.

The measurement noise is assumed to be independent
for each z, (k). It follows that the log likelihood function
1(X) for X, given all the measurements z,,(k), is

N2 Ln

1(X) = 2 2 log p(z,(k)|X). (13)

Disregarding any constants, 1(X) can be written as
B N2 L
I(X) = - ngl /\;1 {log {Var [z,,(k)]}

os ()]’ /Var [2,()]}  (14)

where o (k) is given by (11) and Var[z,(k)] is given by
(4). We define the objective function J (X ) as the negative
of the log likelihood function. The maximum-likelihood
estimate of X is obtained by minimizing J(X).

The estimation theory concept of ‘‘identifiability’ in-
dicates whether or not an estimated quantity can be
uniquely determined from the available measurements
[13], [20]. It can be shown that X is. set-wise identifiable
from the measurements of ¢ ° [15]. An outline of the proof
is given here.

For an arbitrary W there exists a unique corresponding
X = F'W, and, for a given X, there is a corresponding W
= FX; consequently, showing that X is identifiable from
the noisy ¢° measurements is essentially equivalent to
showing that W is identifiable from the noisy ¢° mea-
surements.

Due to the nature of the model function (i.e., the up-
wind ¢ ° has the same value as the downwind ¢ °), there
may be several possible wind fields (with corresponding
model parameter vectors) that could have given rise to the
observed ¢ ° measurements. Let the set D, denote the set
of all X which give rise to the same true ¢ ° observations;
ie.,

+ [z,(k)

D £ {X|M{(FX),. k} = M{(FX)),, k} ¥ n, k)

(15)

where X, denotes the true value of X. The set Dj can have
one or more members. In general, however, Df contains
only a single member. In order for Df to contain multiple
members each of the wind fields corresponding to the dif-
ferent X must have wind vectors at all corresponding sam-
ple points that produce exactly the same values of ¢,; (k)
for all k and n. For a given wind field, this is a highly
unlikely occurrence.

To show identifiability of the model parameters in
model-based wind field estimation, we need to show that
as T — o (corresponding to a longer and longer mea-
surement), the locations of global minima of J(u, v) con-
verge in probability to the members of D;. We apply the
technique used in the point-wise case [13] to show (i) that
J(u, v)/T converges in the mean square to E[J(u,

v)/T}, and (ii) the maximum-likelihood estimates of X
converge in probability to some element X, e Dyg;i.e.,

2] i 1 [ 28]

X T—oo

lim E (16)

T-®

Details of the proof are given in [15].

VI. OBIECTIVE FUNCTION OPTIMIZATION

Since 9N is a tabular function, a closed form for the
minimum of J(X ) is not available; hence J(X ) must be
numerically optimized. Unfortunately, the objective
function can be difficult to optimize due to the nonlinear
properties it inherits from the nature of 9 and the dimen-
sionality of the problem. The objective function has nu-
merous local minima with the possibility of several global
minima. When multiple minima occur, the maximum-
likelihood estimate is a set. Selection of a single solution
cannot be obtained from just the o ° measurements. In this
event an additional step is required to select a single so-
lution. This situation is discussed below.

Classic nonlinear minimization algorithms include sto-
chastic algorithms [18], [21] such as simulated annealing
[8] and various gradient search techniques [2], [16]. Re-
cently, Slump and Hoenders [26] developed a technique
which is capable of locating all the global minima of an
objective function; however, the computation require-
ments of their method for a large dimensional problem
such as ours prohibits its use. While random optimization
techniques are able to locate global minima, they may re-
quire an excessive number of function evaluations to find
even a single global minimum [18]. Multiple global min-
ima are determined by restarting several times. Gradient-
based optimization algorithms can get stuck in a local
minimum and fail to find a global minimum. Starting the
search at different initial values can be used to find mul-
tiple minima with similar objective function values, al-
though there is often no way to determine if the minima
are global.

In spite of its limitations, a gradient search algorithm
can be used successfully if appropriate initial values can
be determined. Such initial values can be computed for
the optimization of the field-wise objective function using
the results of the traditional point-wise approach to wind
field estimation. We will describe one such approach to
the initial value computation in the sequel. This optimi-
zation technique is relatively simplistic; better results can
be obtained with more sophisticated initial-value and op-
timization algorithms [15]. Even so, our model-based
wind field estimates that were obtained using this sim-
plistic optimization approach are more accurate than the
traditional point-wise wind field estimates. Our simple
optimization approach is adopted merely for the purpose
of demonstrating the feasibility of model-based estima-
tion.

VII. FIELD-WISE DEALIASING

Due to the nature of the geophysical model function 91T,
it is possible to have several global minima of the objec-
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tive function (see the discussion above on identifiability).
When this occurs the maximum-likelihood estimate is a
set, and a single estimate cannot be determined from the
¢ ° measurements alone. In this event, an additional step
is required to select a single solution. Such a procedure
might be termed ‘‘field-wise dealiasing’’ because of its
seeming similarity to the ‘‘point-wise dealiasing’’ which
is always required by the point-wise wind estimation ap-
proach. There is, however, a distinct difference between
field-wise and point-wise dealiasing: In the point-wise
case, the problem is to choose from two to six possible
solutions at each sample point (of which there are N 2 in
an N X N region), while in the field-wise case we need
only choose between a few fields. The use of auxiliary
data, climatological data, and/or continuity considera-
tions with adjacent regions can easily resolve the field-
wise ambiguity problem.

Since the occurrence of multiple global minima is very
rare and our goal is only to show the feasibility of the
model-based wind estimation approach, we will not here
consider field-wise dealiasing any further here.

VIII. INiTIAL VALUE COMPUTATION AND OPTIMIZATION

In order to use a gradient-search optimization algorithm
successfully in this application, proper selection of the
initial values is crucial. In this section we describe a tech-
nique for computing an initial value wind field based on
a point-wise wind field estimate, followed by a median-
filter-based dealiasing algorithm. The initial value model
parameter vector is computed using (8). Alternate initial
value computation schemes are described in [15]. While
dealiasing errors can result in very poor quality initial val-
ues, this approach is suitable for demonstrating the fea-
sibility of model-based wind field estimation. This ap-
proach has the additional advantage of providing both
point-wise and model-based wind field estimates for com-
parison purposes.

A. Point-Wise Wind Estimation

In the traditional approach to wind estimation, only the
measurements of ¢ ° associated with each sample point of
the measurement swath are used to estimate the wind vec-
tor at the sample point; i.e., the wind is estimated on a
point-wise basis. Unfortunately, on a point-wise basis the
wind vector is only ser-wise identifiable from the ¢ ° mea-
surements; 1.e., there is not a unique wind estimate (see
[13]). Due to the nature of the I, there are several local
minima (two to six) in the point-wise maximum-likeli-
hood objective function (6) that are near-global. Collec-
tively, the wind vectors corresponding to these local min-
ima are known as the noisy ambiguity set. Typically, the
aliases have similar wind speed but differ significantly in
direction. While all of the aliases have similar values of
the objective function, they may be ‘‘ranked’’ according
to the objective function value; hence the ‘‘first’’ alias
(corresponding to the alias with the lowest objective func-
tion value) would be the classic ML estimate of the wind.
However, since other members of the ambiguity set are

very often closer to the true wind than is the first alias,
the traditional approach has been to retain all of the
aliases and use dealiasing or ambiguity removal to select
a unique wind estimate. Traditionally, dealiasing has been
based on various ad hoc considerations, including pattern
recognition of significant wind field features, continuity
considerations, etc. [23], [28].

As a graphic example of point-wise and model-based
wind estimation, consider Fig. 1(a), which shows a sec-
tion of a wind field, taken from [29, fig. 5], sampled at
25 km over a 300 X 300 region. This is the true wind
field. A least-squares fit of the model parameters to this
true field can be made using (8). The resulting model pa-
rameter vector is known as the ‘‘true model parameters.’’
The wind field computed from these true model parame-
ters, using (7), is termed the ‘‘true model field’” and ap-
pears to be virtually identical to the true field shown in
Fig. 1(a). The model used is the PBC model (cf. [29, figs.
3and 4]) with N = 12, M, = M; = 2, and M, = 8 (N,
= 20). Better fits can be achieved with a higher-order
model at the expense of additional unknowns N,. Simu-
lated ¢° measurements from this field were generated
based on the NSCAT scatterometer design [15], [25]; the
resulting point-wise ambiguity sets are plotted in Fig.
1(b).

B. Dealiasing

We have used the baseline NSCAT dealiasing algo-
rithm which is based on two-dimensional median filtering
[25]. Unlike a low-pass filter, the median filter does not
smooth edges or boundaries in the data. Performance of
the dealiasing algorithm is dependent on the underlying
wind field, any missing measurements, the ¢ ° measure-
ments, and the median filter window size. Fig. 1(c) illus-
trates the dealiased wind field corresponding to Fig. 1(b).
Careful examination will reveal that in this example the
dealiasing algorithm was unable to correctly select the
ambiguity closest to the true wind vector at every sample
point (see also the example in Figs. 4-9 discussed below).
Compare the dealiased wind field in Fig. 1(c) to the true
wind field in Fig. 1(a); the dealiased wind field appears
to be a ‘‘noisy’’ estimate of Fig. 1(a).

While overall performance of the median filter-based
dealiasing is good in moderate-to-high wind speeds, am-
biguity selection errors tend to be highly clustered, par-
ticularly in low wind-speed regions that contain signifi-
cantly more dealiasing errors [25]. The selection error
dependence on wind speed is typical of dealiasing algo-
rithms [23], [28].

C. Model Parameter Initial Value Computation

The dealiasing algorithm is applied over as large a re-
gion as possible to minimize edge effects. The dealiased
field is segmented into adjacent N X N (typically, N =
12) regions, and the least-squares fit of the model param-
eters for each region is computed using (8). Missing de-
aliased wind estimates at a given sample point are filled
with an average of adjacent dealiased winds. For each re-
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Fig. 1. Application of model-based wind field estimation for a given 300
X 300 km region with # = 25 km. A vector length equal to the sample
spacing corresponds to 15 m/s. (a) An example of wind field. (b) Noisy
ambiguity sets resulting from point-wise estimation of (a) using simu-
lated 0 © measurements from NSCAT. Solid lines indicate the ambiguity
closest to the true wind vector. (c¢) The result of median-filter-based de-
aliasing to (b). (d) The initial value wind field computed from (c) using
the computational method described in the text. (¢) The wind field com-
puted using the optimized model parameters. This is the model-based
wind field estimate.

gion, the model parameters computed using this least-
squares fit to the dealiased wind field are referred to as
““initial value model parameters.’’ These are used as the
initial values to begin the optimization of the objective
function with respect to the model parameters for the par-
ticular region. The wind field computed from the initial
value parameters using (7) is known as the *‘initial wind
field.”” The model-based estimate of the wind field is
computed from the optimized model parameters.

Fig. 1(d) illustrates the initial wind field computed from
the least-squares fit of the model parameters to the de-
aliased wind field in Fig. 1(c). Compare this initial value
wind field in Fig. 1(d) to the true wind field in Fig. 1(a)
and the dealiased wind field in Fig. 1(c). We note that
Fig. 1(d) makes a better estimate of the true wind field
than Fig. 1(c) even without further optimization. This ob-
servation can be used to reduce the computation required
to obtain the model-based wind field estimate (discussed

TABLE I
WIND FIELD ESTIMATE ERROR
Field Figure RMS Error
Number | Vector {m/s) Direction {deg) Speed (m/s)
True Model - 0.99 11.62 0.65
Point-wise Closest 1b 1.33 21.63 0.58
Point-wise Dealiased lc 2.42 54.51 0.62
Initial Value 1d 2.04 47.25 113
Model-based Estimate le 1.16 13.81 0.74

below). Table I provides a summary of the root-mean-
square (rms) difference in wind speed, direction, and the
magnitude of the vector difference between the true field
and each case in Fig. 1.

The difference (known as the model-fit error) between
the initial value wind field and dealiased wind field (from
which the initial value wind was computed via a least-
squares fit of the model parameters) provides a measure
of the accuracy of the dealiasing. When the dealiasing
algorithm chooses the correct ambiguity at each sample
point, the initial value rms model-fit direction error is
generally small. However, when there are clustered de-
aliasing errors, the initial value rms model-fit direction
error is generally much larger. This leads to a simple
threshold-based dealiasing algorithm accuracy check.
When the rms initial value model-fit direction error is
above a threshold (typically 15°-20°, depending upon
wind speed), the accuracy of the dealiasing for the region
may be considered suspect. The model-fit errors for the
initial value field in Fig. 1(d) relative to the dealiased field
in Fig. 1(d) are 1.76 m /s rms vector error, 36° rms di-
rection error, and 1.15 m/s rms speed error.

D. Gradient-Search Optimization

Given initial values, a gradient-search algorithm has
been used to perform the optimization of J(X ). For this
purpose we have used the standard IMSL routine IMING
for nonlinear optimization, which uses quasi-Newton gra-
dient optimization. Starting with the initial value field in
Fig. 1(d), the wind field computed from the optimized
model parameters, known as the ‘‘optimized wind field,”’
is shown in Fig. 1(e). Compare Fig. 1(f) with the de-
aliased point-wise wind field estimate in Fig. 1(c). From
these figures and Table I we see that the model-based es-
timate is superior to the point-wise estimate; it is less
“‘noisy’’ and has a smaller rms vector and direction error.
The model-based estimate has a slightly larger rms speed
error, since the model-based approach effectively mini-
mizes the rms vector error at the possible expense of the
speed error; point-wise estimation can provide slightly
better estimates of the wind speed at the expense of a
higher direction error.

IX. SAMPLE RESULTS FOR SIMULATED NSCAT Darta

To further demonstrate the feasibility of model-based
wind field estimation, we use the simulated mesoscale
wind fields described in Part I [29], and Monte Carlo re-
alizations of simulated measurements of ¢ ° obtained by



LONG AND MENDEL: MODEL-BASED ESTIMATION OF WIND FIELDS OVER THE OCEAN, PART II 367

(v ngerale) Point-wise Point-Wise
True Wind A Wind Wind Field
Field o Estimate

Measurements
Compute
Least-Sq
. Model
Geophysical Parameters
Model Function
Initial Value
Compute Optimization of the Model Parameters
Least-Squares Field-wise
Modet Objective Function
Parameters
True Model Initial  Value
Parameters Wind Field
Compute Model-Based
Wind Field Wind Field
4 from Model .
from Model Parameters Estimate
Parameters

Z s .
77, Wodeiessad wind fisid Esimation 7/

True

Fig. 2. Diagram of the model-based estimation procedure.

NSCAT [25]. A flowchart of the system simulation is
shown in Fig. 2. We start with the *‘true’’ wind field (de-
scribed in Part I [29]). Simulated o ° measurements are
created using a state-of-the-art simulation of the NSCAT
instrument, including all the effects of spacecraft-attitude
control errors, uncertainty in the parameters of the radar
equation used to compute ¢° from the power measure-
ments made by the scatterometer, and the uncertainty in
the correct relationship between ¢ ° and winds (i.e., geo-
physical modeling error in 9 ). The simulation is the
same which is used in [25].

The simulated ¢° measurements are used to compute
the point-wise wind estimates (ambiguity sets). This is
followed by point-wise dealiasing using the median-filter-
based dealiasing algorithm to compute the initial values
for the field-wise objective function optimization. For
each region of the measurement swath, initial value model
parameters are computed using a least-squares fit (equa-
tion (8)). Starting with this initial value, the optimized
model parameter vector is computed using the IMSL rou-
tine IMING. The final wind field estimate is computed
using (7).

For model-based wind estimation, the left and right
swaths are segmented in the along-track direction into 12
X 12(600 x 600 km) regions (see Fig. 3). These region
segments are indicated with dotted lines in the following
figures. No continuity considerations between regions
have been used, although this can simplify the computa-
tion [15].

Fig. 4 shows a wind field over both the left and right
scatterometer swaths with an along-track distance of 3000
km. The resolution is 50 km (see the discussion above).
This will be the ‘‘true’’ wind field in the results that fol-

* Model Field
Spacecraft Direction
Left Swath Right Swath
\H H
N\
36
(Il LL H
\E:
N
N
N
13
- 12
wer
< ‘2 CD : Along-Track
K] : Sample Index
AN N\ z AW AN 1

1 - 12 13 e 04
—— Cross-Track Sample Index

Fig. 3. Diagram of the region segmentation scheme for the 50-km reso-
lution example.

low. Fig. 5 shows the results of computing the least-
square fit of the model parameters to the true field, and
computing the resulting field on a region-by-region basis.
This true model field represents the best the model-based
estimation technique can achieve. For reference, Fig. 6
shows the closest alias to the true wind vector at each
sample point, obtained from the ambiguity set using point-
wise wind estimation. The results in Fig. 6 can only be
obtained in a simulated example such as ours, because
this field can only be obtained if the true field is known.
This field would be the result of “‘perfect’’ dealiasing;
actual dealiased results are worse due to dealiasing errors.
The actual dealiased point-wise wind field estimate is
shown in Fig. 7. Comparison of Figs. 6 and 7 reveals that
in region F the dealiased wind field has significant direc-
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Fig. 5. True model field corresponding to Fig. 4.

tion errors. Note that in many regions the point-wise wind
estimates (even the closest ambiguity field) appear to be
very noisy. Fig. 8 shows the initial value wind field com-
puted from Fig.7. The optimized wind field, which is the
model-based estimate of the wind field, is shown in Fig.
9. The rms errors for selected regions are given in Tables
II-VI. These regions were sclected to span a variety of
fields and results. They include regions of low wind speed
and rapidly changing wind speed where dealiasing algo-
rithms often perform poorly. Careful comparison of Figs.
4 and 7 will reveal that the wind field model effectively
performs some ‘‘smoothing”” of the wind field. The

Along Track

The plotting convention is the same as in Fig. 4.

amount of smoothing and distortion in the region corners
can be controlled by selection of the model type and order
(see Part I [29]). Larger model orders minimize this
smoothing effect and reduce the estimate error at the ex-
pense of additional computation during the optimization.
This permits us to trade-off computational requirements
and accuracy.

Again we note that the initial value field (Fig. 8) is a
good estimate of the true wind field even without further
optimization everywhere except in region F. In fact, the
optimized field (shown in Fig. 9) does not look much dif-
ferent than the initial-value field except in region F, which
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Fig. 7. Dealiased point-wise wind field estimate. Compare with Fig. 4. The plotting convention is the same as in Fig. 4.

will be considered below. This conclusion is strengthened
by the rms error summary given on a region-by-region
basis in Tables II-VI: With the exception of region F, just
the process of initially fitting the wind field model to the
point-wise wind field estimate dramatically improves the
rms wind error. Optimization generally improves the rms
error, although optimization of the objective function may
increase the rms error slightly, since the objective func-
tion and rms error are different ‘‘cost’” measures. Note
that in virtually all regions the model-based estimates are
better than the point-wise estimates even when perfect de-

aliasing occurs. Table VII contrasts the roral rms errors
over all regions for the model-based (using a simplistic
optimization scheme) and point-wise estimation results.
The values given in the lower half of Table VII were com-
puted with region F excluded.

In region F, where large dealiasing errors were made,
the initial model parameter vector was of very poor qual-
ity. While optimization improved the objective function
value, the optimization algorithm stopped at a local min-
imum rather than at the global minimum. A more sophis-
ticated optimization algorithm which finds the global min-
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TABLE IV
REGION D (AT 13,85) WIND ESTIMATION PERFORMANCE
Field | Obj Func RMS Err
Value | Vector Direction Speed
True Model -5791.83 | 0.741 7.898 0.552
Point-wise Closest - 1.260 10.327 0.513
Point-wise Dealiased - 1.361 24953 0.528
Initial Value -5722.53 | 0.913 18.905 0.584
Optimized from:
Initial Value 5861.44 | 0.884 7881 0565
True Model L—5861.44 ‘ 0.884 7.880 0.565
TABLE V
REGION F (AT 13,97) WIND ESTIMATION PERFORMANCE
Field Obj Func RMS Err
Value | Vector Direction Speed
Model Fit -6740.41 0.691 26.257 0.444
Point-wise Closest - | 0872 23.012 0.344
Point-wise Dealiased - | 2.567 89.739  0.555
Initial Value -5717.32 | 2.268 84.218 1.064
Optimized from:
Initial Value -6409.16 | 2.324 78.070 0.758
True Model ’ -6841.41 ‘ 0.811 27.058 0.446
TABLE VI
REGION G (AT 1,109) WIND ESTIMATION PERFORMANCE
Field ‘ Obj Func RMS Err
! Value | Vector Direction Speed
True Model -6158.89 | 0.574 4356 0417
Point-wise Closest [ 1.9 12,006 0.293
Point-wise Dealiased 1.198 12.039 0.292
Initial Value -6128.49 [ 0.711 6.056  0.440
Optimized from -
Initial Value T -6219.37 [ 0.734 6.266  0.445
True Model -6219.37 i 0.732 6.236  0.446
TABLE VII
ToTaL WIND FIELD ESTIMATE ERROR
Field RMS Error
Vector (m/s) Direction (deg) Speed (m/s)
True Model T 0.669 10.033 0.485
Closest Ambiguity 1.038 10.777 0.366
Point-wise Dealiased 1.266 28.554 0.389
Initial Value ; 0.994 26.079 0.578
Optimized from Initial Value ‘ 1.098 24.243 0.539
Optimized from True Model ! 0.874 10.946 0.508
Point-wise Dealiased! 1o 12.544 0.370
Initial Value! 0.781 9.856 0.511
Optimized from Initial Value! | 0.907 9.331 0514
Optimized from True Model! 0.880 8.009 0.513

TRegion F has been excluded.

imum results in a significantly more accurate estimate
(discussed below). Even so, the model-based wind field
estimate is better in an rms sense than the point-wise de-
aliased estimate. We note that the problem of stopping at
a local minima can often be detected by comparing the
wind speeds estimated using model-based estimation and
the speeds estimated using point-wise estimation. When
there is a significant difference, the model-based optimi-
zation has stopped at a local minimum.

Since the wind estimates shown above are based on a
gradient-search optimization algorithm which uses a very
simple technique for computing initial values, the opti-
mization algorithm may get stuck in a local minimum;
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thus these results represent an upper bound on the perfor-
mance of the model-based estimation technique. To dem-
onstrate this, we used the true model parameters to ini-
tialize the gradient search. In all cases, the optimization,
starting with the true model parameters, either locates the
same (global) minimum as was previously found (starting
with the initial-value field) or it locates a minimum with
a lower value (i.e., the global minimum), which is closer
to the true field than the initial-value field (see Tables II-
VI). In these tables, compare the rms error and objective
function values after optimization, starting with the initial
value and true model value, respectively. Of particular
interest is region F' (Table V). The optimized wind field
obtained from starting the optimization with the true
model parameters is shown in Fig. 10. These results in-
dicate that improved initialization/optimization ap-
proaches (which find the global minimum) will yield even
better estimates of the wind field. Our simple approach to
initialization and optimization is, however, adequate for
demonstrating the feasibility of model-based wind field
estimation.

X. CoMPUTATIONAL CONSIDERATIONS

A disadvantage of the model-based estimation approach
is that it requires significantly more computation than does
the point-wise estimation approach, even for our simple
initialization/approximation approach. If we require al-
ways locating the global minimum the computational re-
quirements increase. We note that most of this time is
consumed in optimizing the objective function. We have
observed that if the initial-value wind fields have accept-
able accuracy, we can save a significant amount of com-
putation by not optimizing the objective function; i.e., by
just using the initial-value wind field as our final result.
We have observed that, in general, this accuracy is
achieved if: (a) the rms of the estimated wind speed is
larger than 4 m/s, and (b) the rms direction difference
between the initial-value field and dealiased field is less
than a threshold value (about 15 °). These conditions can
be checked before starting the optimization. If they are
met, we can elect not to optimize and thereby trade off
the accuracy of the estimate and computation time.

XI. CONCLUSION

In this paper we have demonstrated the feasibility of
model-based wind field estimation and have shown, by
simulation, that even with simplistic initialization/opti-
mization schemes, the model-based wind field estimates
are more accurate than the point-wise wind estimates.
Better results can be obtained by improved optimization
schemes [15].

The methodology used in this research has application
in other areas involving distributed parameter systems. In
wind estimation we started with a well-defined measure-
ment equation for a parameter (o °), which is related to
the quantity of interest (the wind) via a model function.
Our approach to the estimation of the wind from mea-
surements of ¢ ° is to view the wind field as a distributed
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Fig. 10. The model-based wind field estimate computed from the optimized model parameters resulting from starting the opti-
mization from the true model parameters. Note especially region F. Compare with Figs. 7 and 9. The plotting convention is

the same as in Fig. 4.

parameter system which can be approximately modeled
by using partial differential equations. In effect, this Sys-
tem of equations provides constraints on the estimate of
the quantity of interest, thus permitting more accurate es-
timates.

The partial differential equation system is solved by
converting it to a finite-difference system, which is then
arranged to express the quantity of interest in terms of a
set of unknown parameters. This yields a simple model
of the distributed parameter system. The quantity of in-
terest is estimated indirectly by first estimating the un-
known parameters directly from the measurements, then
using the model to compute the quantity of interest from
the estimated model parameters.

As the results of this research indicate, this methodol-
ogy can be successfully used even when the relationship
between the measured parameter and the desired quantity
is nonunique, as is the case with the geophysical model
function relating ¢ ° and winds.

This methodology has possible application in other re-
mote sensing problems such as the estimation of atmo-
spheric aerosols, surface topography, and wave height, as
well as in such down-to-earth problems as the thermal
control of steel in rolling mills.
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