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Abstract: Because a finite set of measurements is limited in the amount of spectral content
it can represent, the reconstruction process from discrete samples is inherently band-
limited. In the case of 1D sampling using ideal measurements, the maximum bandwidth
of regular and irregular sampling is well known using Nyquist and Gröchenig sampling
theorems and lemmas, respectively. However, determining the appropriate reconstruction
bandwidth becomes difficult when considering 2D sampling geometries, samples with
variable apertures, or signal to noise ratio limitations. Instead of determining the maximum
bandwidth a priori, we derive an inverse method to simultaneously reconstruct a signal
and determine its effective bandwidth. This inverse method is equivalent to incrementally
computing a band-limited inverse using a frequency-constrained QR decomposition (FQR).
Comparisons between reconstruction results using FQR and QR decompositions illustrate
how FQR is less sensitive to noisy measurement errors, but it is more sensitive to high-
frequency components. These methods are particularly useful in the reconstruction of
remote sensing images from such as microwave radiometers and scatterometers.

Keywords: pseudo-inverse; band-limited; resolution enhancement; variable apertures

1. Introduction
Signal reconstruction from a finite set of measurements is a common problem found

in signal and image processing. When measurements are modeled as idealized delta-like
samples, the Nyquist sampling theorem [1] and Gröchenig’s sampling lemma [2] can be
used to determine a reconstruction’s maximum spectral band limit in the 1D sampling case.
However, when dealing with measurements with variable apertures, SNR limitations, or
2D sampling considerations, finding the reconstructable bandwidth can be difficult [3].

To address these reconstruction issues, we review the concept of a band-limited
sampling matrix, its inverse, and an iterative method to determine a reconstruction’s re-
constructable bandwidth as treated in [4]. In this paper, we present an inverse method for
simultaneously reconstructing a signal and determining its effective bandwidth, i.e., the
maximum amount of the recoverable signal bandwidth without significant noise ampli-
fication. This work is motivated by the need for finer resolution from microwave remote
sensors such as radiometers and scatterometers, which have irregular sampling with
variable apertures [5–8].

We first consider the need for a band-limited inverse by reviewing how a discrete
sampling matrix is inherently band-limited in order to find a unique, nonaliased solution.
We also review how noise is amplified and how model aliasing occurs in the computation of
a sampling matrix inverse. We then show how to incrementally invert a sampling matrix’s
band-limited content and derive a method for computing an incremental band-limited
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inverse using a frequency-constrained QR decomposition (FQR). We then compare the
difference in reconstruction using FQR and QR decompositions.

2. Materials and Methods
2.1. Discrete Sampling

To motivate the need for a bandlimited inverse, we consider how finite measuring
systems are inherently band-limited. We start by defining an ideal finite measurement as a
sample of a continuous linear system,

zi =
∫

mi(r) a(r) dr, (1)

where zi is the ith discrete measurement, mi(r) is the measurement’s response function
(MRF), a(r) is the truth signal, and r is a positional index. Given a finite number of
measurements N, inverting the measurement system in Equation (1) is an ill-posed problem,
since the existence, uniqueness, and stability of a solution depend on the configuration,
spacing, and number of mi(r), as well as assumptions about a(r).

To illustrate the difficulty in estimating a(r) from a set of zi, imagine if each mi(r) is a
delta function centered at position ri (i.e., mi(r) = δ(r− ri)) and then zi = a(ri). Although
each zi may accurately represent the value of the truth signal at the point ri, it is impossible
to uniquely infer the entire continuous signal (a(r)) without further information, since an
infinite number of signals may also cross at the same discrete values. However, if a(r) is
assumed to be band-limited, sufficient sampling configurations can uniquely determine
a(r). Under band-limited sampling theory, only a periodic band-limited signal a(r) can be
perfectly reconstructed from a finite set of samples [3].

We define a band-limited signal a(r) to be a signal which only posses frequency
content below a maximum cutoff frequency, or band limit B (i.e., the Fourier transform
of a(r) has a finite region of support). Let A(ω) be the Fourier transform of a(r), A(ω)

that is band-limited if |A(ω)| = 0∀ω > B. According to Nyquist, a uniformly sampled
band-limited signal can be perfectly reconstructed from a set of ideal discrete samples
a[n] as

a(r) = ∑
n

a[n] d(r− rn), (2)

where a[n] = a(rn), d(r) is a Dirichlet kernel (i.e., band-limited identity function) cor-
responding to the band limit of a(r), and n represents an arbitrary sample index cor-
responding to position rn when the sample distances between rn is at least twice the
highest frequency. Since d(r) is a periodic band-limited identity, a(r) is periodic. Note that
Equation (2) is equivalent to bandlimited interpolation. Even though multiple sampling
configurations (i.e., the particular spacing and number of sample positions rn) can satisfy
the reconstruction in Equation (2), all such configurations are equivalent under the band-
limited assumption [3]. For convenience, we can assume that rn is spaced on a uniform
grid, where the grid spacing is ∆r <= 1/(2 fc) with fc as the highest frequency within the
band limit of a(r) (i.e., 1/(2 fc) is the Nyquist sampling distance).

The relationship between zi and a[n] can be found by combining Equations (1) and (2),
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zi =
∫

mi(r)

[
∑
n

a[n] d(r− rn)

]
dr,

zi = ∑
n

[∫
mi(r) d(r− rn) dr

]
a[n], (3)

zi = ∑
n

mi[n] a[n], (4)

mi[n] =
∫

mi(r) d(r− rn) dr, (5)

where mi[n] is a discrete band-limited sample of mi(r), and d(r− rn) is the Dirichlet kernel
function centered at rn. Note that mi[n] ̸= mi(rn), unless mi(r) is already band-limited
within d(r)’s corresponding bandlimit.

Equation (3) can be expressed in vector and matrix form as

zi = mT
i a,

z = Ma,
(6)

where mi and a are length ‘N’ vectors of mi[n] and a[n], respectively, z is a length M vector
of zi, and M is a matrix with rows of mT

i and is [MxN], where M is the total number of zi,
and N is the total number of rn. From Equation (6), it can be seen that the band-limited
reconstruction process is equivalent to finding the inverse of M; however, the invertibility
of M depends on the chosen band-limited discretization and spacing of each MRF.

In the case of uniformly spaced samples and constant MRF apertures, i.e., mi = mj,
M is square and invertible (assuming each mi[n] is defined over the assumed band limit).
When measurements are dependent, i.e., they do not increase the rank of the inverse of
M, they do not improve the resolution of the estimate but do provide redundancy for
noise reduction. Irregular sampling and variable apertures tend to have more dependent
measurements. A unique band-limited solution only exists if a band-limited inverse of
M exists.

In order to define the band-limited inverse of M, it is helpful to study the discretization of
ideal and band-limited measurements. Under band-limited assumptions, the discrete equiva-
lent to an ideal measurement is found by substituting mi(r) = d(r− ri) into Equation (5):

mi[n] =
∫

d(r− ri) d(r− rn) dr = d(rn − ri) = di[n], (7)

where di[n] is a Dirichlet kernel centered at ri that is discretely sampled over the grid
defined by rn.

To express Equation (2) in matrix form, we define a band-limtied identity matrix D
constructed with rows d(r− rn) sampled over the grid defined by rn. The multiplication
of a by D is an identity operation, as a is unchanged by the band limit of D. This band-
limited identity operation, a = Da, is the discrete band-limtied reconstruction equivalent
to Equation (2). Using this result, we can express a band-limited inverse of M:

D = WM,

a = Wz,
(8)

where W is a band-limited inverse of M. The existence of W depends on M being full rank
over a band-limited subspace. When this criteria is met, W is the SVD pseudo-inverse of
M. When M is full row rank, W is the Moore–Penrose pseudo-inverse, and D becomes
the identity matrix. The existence of W depends on the sampling positions ri, the choice
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of discrete positions rn, and the band limit. For a more rigorous study on how sampling
conditions affect the existence of this band-limited inverse, see [1,4,9,10].

In summary, an ideal band-limited reconstruction can be accomplished from a finite
number of measurements if a band-limited inverse of M exists, where M is the discrete
band-limited sampling matrix of all measurement response functions.

2.2. Background
2.2.1. Sampling Matrix Inversion

The process of estimating a discrete signal a from a discrete set of measurements z
is equivalent to estimating a particular inverse of the sampling matrix M. The estimated
signal can be found by using the sampling inverse of M,

â = M†z, (9)

where â is the estimated signal, and M† is a unique inverse of the sampling matrix M.
While there may be a plethora of matrix inversion methods that could be used to estimate
M†, their various constraints, assumptions, and approximations can affect the quality of
the reconstructed signal â.

2.2.2. Inverse Error Amplification

In order to better understand noise amplification and reconstruction artifacts, we
consider the additive noise model:

z̃ = Ma + ν, (10)

where z̃ is a set of noisy measurements, and ν is measurement noise. Assuming M† exists, let

aν = M†ν, (11)

where aν is the inverse noise. Let

aµ = (I−M†M)a, (12)

where aµ is the aliasing of inverse model artifacts,

ã = a + aµ + aν, (13)

and ã is the estimated signal corrupted by amplified noise and model artifacts.
In the ideal case, M† is a perfect inverse of M, i.e., M†M = I and aµ = 0, such that

there are no model errors or reconstruction artifacts. However, when sampling model
errors are introduced into the computation of M†, M†M ̸= I, the content from a can be
aliased in aµ. Additionally, since M† is sensitive to small errors, computational errors can
be amplified such that features in aν can overpower recoverable signal features.

2.2.3. Deconvolution Example

To illustrate how errors are amplified and aliased in the inversion of a sampling matrix,
we examine the case of discrete deconvolution using a shift invariant sampling function m.
The measurement vector is
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z = m ⊛ a

= Ma, (14)

M =



m0 m1 . . . mN−1

mN−1 m0
... mN−2

mN−2 mN−1
. . . mN−3

...
...

. . .
...

m1 m2 . . . m0


(15)

where z is the convolution of vectors m and a, (⊛) is the circular convolution operator, and
M is a circulant matrix of m. Because M is a circulant matrix, it can be factored using the
Discrete Fourier Transform (DFT) matrix F [11]:

M = F∗(Fm · F)
= F∗diag(Fm)F

(16)

where ∗ denotes the conjugate transpose, (·) is an element-wise multiplier, diag(x) denotes
forming a diagonal matrix with the vector x, and F is normalized such that F∗F = I.

The deconvolution of m can likewise be represented in matrix form. In the ideal case,
the deconvolution of m is w, where

w = F∗(Fm)−1. (17)

The deconvolution then is

ã = w ⊛ z

= Wz,

= WMa,

(18)

where W is a circulant matrix of w, and W is also the ideal inverse of M. Then, we have the
following:

W = F∗diag(Fm)−1F,

= M−1.
(19)

However, the deconvolution of m is sensitive to small spectral values within Fm. The
inversion of small spectral values is a common cause of noise amplification. When the
deconvolution does not match or equalize the spectrum of Fm, aliasing of spectral features
can occur as follows:

aµ = F∗diag(1− (Fw · Fm))Fa (20)

where aµ defines how spectral features are aliased by deconvolution.
To demonstrate noise amplification and model error aliasing, a simple Gaussian MRF

was used to blur a 300 sample truth signal with 3 Dirichlet kernels of different degrees.
The deconvolution of this synthetically blurred scene was performed twice. The first
deconvolution was done after noise ν added to the scene in order to achieve a 30 dB
SNR. The second deconvolution was done after adding corruption to the Gaussian MRF to
achieve a 10 dB SNR of corruption. Both deconvolutions are shown in Figure 1a. The FFT of
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the ideal Gaussian MRF, i.e., Fw · Fm alongside its equalization at an expected 30 dB SNR
level and equalization using the corrupted MRF, are shown in Figure 1b. Note that even a
small amount of error, without any conditioning, significantly distorted the equalization
such that 1− (Fw · Fm) amplified the noise floor to a visible level.

(a) (b)

Figure 1. Deconvolution example. (a) An example deconvolution. (A) Truth signal of two Dirichlet
kernels and one Kronecker delta function. (B) Truth signal blurred by a Gaussian MRF function.
(C) Deconvolution result after equalization with an band-limited deconvolution on a scene with 30 dB
SNR additive noise. (D) Deconvolution result with corrupted MRF with 10 dB SNR of corruption.
Note that noise limits the resolving capability and amplifies the noise floor of the deconvolution.
(b) The equalizations of the two deconvolution examples shown in Figure 1a. (A) DFT of the Gaussian
MRF function. (B) Equalization using a band-limited inverse Gaussian at 30 dB SNR. (C) Equalization
after adding 10 dB SNR of corruption to the Gaussian MRF function. The ideal equalization is
perfectly flat at magnitude 1, corresponding to an ideal band-limited reconstruction. However, the
corrupted Gaussian equalization is distorted, corresponding to the amplification and attenuation of
different content.

Regularization techniques can be used to avoid inverting small errors in the frequency
domain, lessening the sensitivity of deconvolution to small errors. However, regularization
inherently changes the assumed measurement response spectrum and distorts the recon-
structed signal. To preserve the recoverable measurement response spectrum, the sampling
matrix can instead be band-limited such that deconvolution only inverts a subset of the
recoverable measurement response spectrum, minimizing the effects of small errors.

2.2.4. Band-limited Inverse

To mitigate the amplification of noise and reconstruction artifacts, band-limited fil-
tering can be used to remove frequency content within the model before it is aliased in
the calculation of the matrix inverse. One way to accomplish this is by band-limiting
each row of M (i.e., taking its DFT, applying a band-limiting filter by multiplication, then
taking the inverse DFT) and then calculating the pseudo-inverse of M. Assuming that
the same band-limiting filter is applied to each row, we can express this process in linear
algebra terms by recognizing that a band-limiting frequency filter h can also be applied by
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a band-limited matrix D = F∗diag(h)F. We define the right-hand band-limited inverse of
M bandlimited by D as

Mβ = (MD)†, (21)

where Mβ is the band-limited inverse, and D is a band-limiting matrix that applies the
frequency filter h to each row of M.

While there may not be a computational advantage to computing the band-limited
inverse using Equation (21), since band-limiting with a matrix multiplication is O(n3),
and contrastingly, the DFT is O(n2 log n), Equation (21) can help us understand how a
band-limited inverse is related to the ideal pseudo-inverse, for instance, Mβ = M−1 when
M is full rank and D is an identity matrix (maximum discrete bandwidth). Mβ = M†

when M is not full rank and D is a band-limited identity matrix (i.e., when D is a Toeplitz
Dirichlet kernel matrix) with a higher bandwidth than each row of M. However, when D is
lower rank than M, i.e., a lower bandwidth than the rows of M, then Mβ ̸= M†.

Ideally, to preserve model content and remove noise, a band-limiting filter matching
the recoverable model spectrum should be used. However, since the recoverable model
spectrum depends on measurement sampling locations and MRF bandwidths, it can be
hard to determine for variable aperture measurements a priori. One approach to teasing
out the recoverable spectrum of variable aperture measurements is suggested in [3], which
involves incrementally bandlimiting a sampling matrix and repetitively calculating its rank.

Instead of treating the bandlimiting and inverse steps sequentially, it becomes advan-
tageous to compute a band-limited matrix and matrix inverse simultaneously. In this paper,
we derive a method for calculating an iterative band-limited inverse , which we later show
is equivalent to a partial QR decomposition using a frequency basis (see Appendix A).

2.3. Frequency QR

Here, we define a method for computing a band-limited inverse using single-rank up-
dates. When computed in full, this method is equivalent to performing QR decomposition
on a frequency basis (FQR). When computed sequentially, it can progressively construct a
band-limited inverse from low to high frequencies, stopping when the magnitude of each
frequency component falls below the assumed SNR noise floor in the frequency domain.
This stops the reconstruction at the point where measurement noise theoretically overtakes
the magnitude of reconstructable content. In the noise-free case, these criteria stop the
reconstruction at the inherent sampling band limit without going over. An additional
example comparing the result of FQR to that of a QR decomposition is provided in the
following section.

2.3.1. Partitioned Band-Limited Matrix

Let fn represent an orthonormal basis vector of the frequency domain such that
f∗i fj = 0, ∀i ̸= j.

F =
[
f0, f1, . . . , fN−1

]
,

F∗F = I,
(22)

where F is a matrix of the basis vectors fn and I is the identity matrix. Typically, each fn

corresponds to a DFT kernel within the calculation of the DFT. However, other frequency
bases may be used when advantageous. More examples of frequency bases and their
advantages are discussed in a later section.
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A band-limiting frequency filter can be applied in the frequency domain by applying
the filter weights hn to each corresponding basis vector fn. Taking advantage of the
orthogonal basis, MD can be partitioned into a set of singular matrices:

MD = MFdiag(h)F∗,

MD = (B0 + B1 + · · ·+ BN−1),
(23)

where diag(x) denotes the formation of a diagonal matrix with x along its diagonal, h is a
frequency filter, and each Bn is a singular matrix defined by the outer product:

Bn = Mfnhnf∗n,

Bn = bnf∗n,
(24)

where hn are the values of h corresponding to each basis vector fn, and bn is a column
vector of MF weighted by hn:

bn = Mfnhn. (25)

Note that the matrix product BiB∗j = 0, ∀i ̸= j, because the row space of each Bn

is orthogonal. However, the column spaces of Bn are not orthogonal, meaning that
B∗i Bj ̸= 0, ∀i ̸= j.

Using the partitioned representation of MD, we can express the progression of band-
limited sampling matrices (MD)n as

(MD)n =
n

∑
k=0

bkf∗k , (26)

where each (MD)n progressively increases in bandwidth as n increases. The direct inver-
sion of each (MD)n leads us to the existence of a progressive band-limited inverse:

Mβ
n = (MD)†

n.

Mβ
n = (B0 + B1 + · · ·+ Bn)

†.
(27)

Regrettably, while each Bn may have orthogonal row spaces, the progressive band-
limited inverse cannot be formed by the sum of B†

n, i.e.,

Mβ
n ̸=

n

∑
k=0

B†
n, (28)

since each Bn does not have orthogonal column spaces. However, given that sequential
(MD)n only differ by singular matrix updates, it stands to reason that Mβ

n can also be
partitioned into singular band-limited matrices.

2.3.2. Derivation

Our derivation of the progressive band-limited inverse Mβ
n begins with the following

theorem, which relates the generalized inverse of the sum of two matrices to the generalized
inverse of each individual matrix [12]:

if rank(X + Y) = rank(X) + rank(Y),

then (X + Y)† = (I− S)X†(I− T) + SY†T,

S = (PY∗ [I− PX∗ ])
†,

T = ([I− PX ]PY)
†,

(29)
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where X and Y are two arbitrary matrices, PX denotes the projection onto the column space
of X, S represents the disjoint portion of the row space of Y from the row space of X, and T
represents the disjoint portion of the column space of Y from the column space of X.

Recursively applying the theorem in Equation (29), we can find each progressive
band-limited inverse. Applying the theorem to Bn and the zero matrix, we trivially find the
initial bandlimited inverse:

Mβ
0 = B†

0 =
f0b∗0
b∗0b0

. (30)

The next bandlimited inverse can be found by performing a rank update to B†
0 using B1:

given rank(B0 + B1) = rank(B0) + rank(B1),

then (B0 + B1)
† = (I− S1)B†

0(I− T1) + S1B†
1T1,

S1 = (f1f∗1(I− f0f∗0))
† = f1f∗1 ,

T1 =

([
I− b0b∗0

b∗0b0

]
b1b∗1
b∗1b1

)†

,

(31)

where T1 is the disjoint portion of the column space of B1 from B0, and S1 is the row
space projection of B1. As the row space of each B1 is already disjoint S1B†

1 = B†
1 and

(I− S1)B†
0 = B†

0, upon simplifying using this result, we find the following:

Mβ
1 = (B0 + B1)

† = Mβ
0 (I− T1) + B†

1T1, (32)

where Mβ
1 can be found using Mβ

0 , T1, and B†
1. Applying the theorem to the nth rank

update, we can form a recursive relationship, which iteratively constructs a band-limited
inverse:

Mβ
n = Mβ

n−1(I− Tn) + B†
nTn,

Tn =

([
I− P(MD)n−1

]bnb∗n
b∗nbn

)†

,
(33)

where Mβ
n can be found by applying a rank update to Mβ

n−1 with the disjoint column space
projection of each B†

n.
To find Tn recursively, we use the fact that each Tn’s column space is disjoint and

{T0, T1, . . . , Tn} spans the column subspace of (MD)n to re-express (I− P(MD)n−1
) with

the sum of the disjoint column spaces of Tn:

(I− P(MD)n−1
) = (I− PTn−1)(I− PTn−2) . . . (I− PT0),

(I− P(MD)n−1
) =

(
I−

n−1

∑
k=0

PTk

)
.

(34)

By substitution, we find a recursive relationship to calculate each singular matrix Tn:

Tn =

([
I−

n−1

∑
k=0

PTk

]
bnb∗n
b∗nbn

)†

,

Tn = bn

(
bn −

n−1

∑
k=0

PTk bn

)†

,

Tn = bnt∗n,

(35)
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where t∗n is the vector inverse of qn

qn = bn −
n−1

∑
k=0

tkt∗k
t∗k tk

bn, (36)

and qn is a column space basis vector of Mβ
n. Note that this recursive relationship is

equivalent to the Gram–Schmidt process used in QR factorization [13–15].
Substituting Tn = bnt∗n into the recursive relationship for Mβ

n in Equation (33), we
have the following:

Mβ
n = Mβ

n−1(I− bnt∗n) + B†
nbnt∗n, (37)

which reveals that the row space of Mβ
n is spanned by orthogonal tn. As each band-limited

update is singular, we can slove for the column space vector m†
n, which updates each Mβ

n.
By multiplying both sides of Equation (37) by qn and noting that B†

nbn = fn, we find an
expression for m†

n:

m†
n = Mβ

nqn,

m†
n = fn + Mβ

n[qn − bn],

m†
n = fn −Mβ

n

[
n−1

∑
k=0

qkt∗k bn

]
,

m†
n = fn −

n−1

∑
k=0

m†
k t∗k bn.

(38)

Note that Equation (38) is equivalent to the process of forward substitution used to
solve a matrix inverse using a QR decomposition. Each m†

nt∗n forms a band-limited singular
matrix partition of Mβ

n, which—when summed together—form progressive band-limited
inverses:

Mβ
n =

n

∑
k=0

m†
k t∗k . (39)

It is important to note that although the row space of each m†
nt∗n is orthogonal, and

the column space (spanned by m†
n) is not orthogonal, which is similar to the inequality

in Equation (28). Specifically, each m†
n may contain content from previous m†

k , which
are removed through forward substitution each band-limited update. This means that
each band-limited inverse Mβ

n is not necessary equivalent to the pseudo-inverse of M
band-limited by each previous Bn,

Mβ
n ̸=

[
n

∑
k=0

Bk

]
M†, (40)

since M† may contain content associated with higher-frequency features than contained in
[∑n

k=0 Bk]. Therefore, Mβ
n = [∑n

k=0 Bk]M† only when Bn has a higher bandwidth than the
maximum bandlimit of M.

As pointed out in the derivation, the vectors tn and m†
n can be solved for using Gram–

Schmidt orthogonalization and forward substitution methods, respectively. These are the
basic steps for QR decomposition and inverse solutions. Appendix A shows how FQR
is equivalent to applying a frequency rotation to a matrix and then solving for its partial
inverse using QR iterations. A summary of the algorithm steps matching the notation given
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in this paper is shown in Algorithm 1. Note that many algorithmic improvements can be
made to make the orthogonalization and forward substitution methods more numerically
stable and efficient [16,17]

Algorithm 1 Frequency-constrained QR.

f∗i fj = 0, f∗i fi = 1, ∀i ̸= j

bn ←Mfnhn

qn ← bn −∑n−1
k=0 qkt∗k bn

tn ← qn/(q∗nqn)

m†
n ← fn −∑n−1

k=0 m†
k t∗k bn

Mβ
n ←Mβ

n−1 + m†
nt∗n

2.3.3. Observations

When computed over all N nonzero singular updates, this method is identical to
taking a full inverse. In theory, this progressive band-limited inverse can be used as an
inversion method for any arbitrary matrix X. However, the computational complexity of
this method is no better than using QR decomposition and forward substitution methods
using O(n3).

The main difference between this inversion method and other inversion methods is the
order in which mutually independent information is inverted. For comparison, we describe
how the SVD and QR decompositions break up a matrix inverse. The computation of the
inverse using SVD decomposition breaks a matrix down starting with its largest eigenvec-
tors, cutting off the inversion when eigenvalues become too small. The computation of
the inverse using QR decomposition breaks a matrix down starting with its first column,
cutting off the inversion when new column’s contributions become too small. The compu-
tation of the inverse using FQR breaks a matrix down starting with its lowest frequency
projection, cutting off the inversion when higher frequency’s contributions become too
small. All three methods (SVD, QR, and FQR) are essentially rotations of each other. In the
noise-free case, all three of these methods are equivalent when run to completion, but in the
presence of computation noise or model errors, the methods posses different sensitivities.

As a sampling matrix is inherently band-limited, the FQR inverse is advantageous to
limit the inversion of noise content outside the sampling bandlimit.

2.3.4. SNR Filtering

When the inherent bandlimit of M is unknown, but the expected noise floor or signal-
to-noise ratio (SNR) is known, FQR can be modified to stop inversion when the magnitude
of new tn drops below the expected noise level. This is very similar to the process of
Wiener filtering [18], except that no regularization is added to the inversion process. As the
expected SNR is decreased, the recoverable bandwidth shrinks and FQR iterations reach
the raised expected noise level earlier. Further SNR filtering can be implemented by adding
a weighting or taper on the magnitude of each tn. Such a taper can be used to mitigate the
Gibbs phenomenon present at the edge of band-limited signals.

3. Results
To demonstrate the difference between QR and FQR decompositions, we iteratively

performed reconstruction on two example 1D truth signals. To contrast both decomposi-
tions, two simple synthetic signals of 101 samples were generated and used as truth for
each simulation. The first signal consisted of three low-bandwidth peaks, and the second
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signal resembles a rect function with higher frequency trends. The average magnitude of
the second signal was set to 100× that of the first signal.

In order to form a variable aperture sample matrix M, 101 MRFs were synthetically
generated selecting by shifting three MRFs apertures centered at random indices. The three
MRF apertures were one Gaussian centered with a standard deviation of 25 indices, one left
skewed Gaussian approximately 13 indices wide, and one skewed right that mirrored the
previous MRF. Each MRF was normalized to sum to 1. The same sampling matrix, a 101× 101
matrix, was used on each input truth signal to create two corresponding sets of noise free
measurements. To both of these measurement sets, additive Gaussian noise was added to
achieve a 30 dB SNR. Example MRFs are shown in Figure 2 to visualize the centered and
skewed apertures.

Figure 2. Selected portion of the sampling matrix using 3 randomly shifted MRFs. The MRFs were
4× upsampled and renormalized to make them easier to visualize in this illustration. Each MRF was
normalized to sum to 1.

In general the main difference between the reconstruction using QR vs. FQR is that QR
reconstructs onto a basis of orthogonal MRFs, while FQR reconstructs onto an orthogonal
frequency basis. To illustrate this, three selected MRFs are shown in Figure 3 along with the
low-order truth signal for reference. Next to this plot in Figure 3, an example QR reconstruction
using the same three MRFs is shown. Additionally, a FQR reconstruction using the first three
discrete cosine transform (DCT) bins of all MRFs is shown. Not surprisingly, the FQR took
fewer iterations than the QR to represent a low-bandwidth signal, since FQR uses all MRFs to
reconstruct each frequency basis, while QR only uses one MRF for each iteration.

The full reconstruction for the low bandwidth input signal was performed using all
measurements and frequency iterations. A few sample QR reconstructions using only the
first 5, 11, and 21 MRFs are shown in Figure 4a. Similarly, sample FQR reconstructions
using only the first 5, 11, and 21 DCT bins are also shown in Figure 4a. The same process
was repeated for the higher bandwidth input signal in Figure 4b. Note that in the QR
decomposition, a single MRF could greatly bias the reconstruction due to the mismatch
between MRF shape and truth signal features. Theoretically, if all iteration steps are taken,
the bias caused by a single measurement is removed in future iteration steps. Likewise,
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in FQR, a single frequency basis can bias the reconstruction due to sampling density
sensitivities.

Figure 3. (A) Example MRFs overlaid with the truth signal. (B) The reconstruction from the first 3
columns of a QR decomposition (first 3 MRFs). (C) The reconstruction from the first 3 FQR DCT bins.

(a) (b)

Figure 4. Partial reconstructions using QR and FQR decomposition. (a) (A) Example low bandwidth
truth signal. (B) The reconstruction from the first 5, 11, and 21 columns of a QR decomposition.
(C) The reconstruction from the first 5, 11, and 21 DCT bins of a FQR decomposition. Note that the
band-limited QR reconstruction required less iterations to achieve similar results to QR. (b) (A) Ex-
ample truth signal. (B) The reconstruction from the first 5, 11, and 21 columns of a QR decomposition.
(C) The reconstruction from the first 5, 11, and 21 DCT bins of a FQR decomposition. Note that the
FQR reconstruction uses all measurements’ frequency response for each iteration, while conventional
QR reconstructs one measurement at a time.
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The total error with respect to each truth signal was calculated for each iteration for
both the QR and FQR reconstruction methods. The total error per pixel for these four
simulation are all shown on the same scale in Figure 5. Note that signal 2 is higher than
signal 1 due to the intentional 100×magnitude to plot both simulations on the same total
error curves. In both cases, the FQR method was able to resolve more low-bandwidth
content before the amplification of noise overtook the reconstruction process.

Figure 5. Total reconstruction error per pixel for each of the 4 simulations. Each simulation contained
noise at a 30 dB SNR level. Input 1 is the low-bandwidth signal. Input 2 is the higher frequency signal,
whose average magnitude was intentionally 100× larger than Input 1 to plot these errors on the same
scale. Note that in each error trend’s error, there appears a minimum between reconstruction and
noise amplification.

4. Discussion
4.1. Equivalence

Given that FQR is equivalent to performing QR decomposition after a frequency-basis
rotation (see Appendix A), it stands to reason that other matrix inversion techniques can also
be used to compute a band-limited inverse. For example, an iterative SVD decomposition
could be used to compute band-limited inverses (see Appendix B). If inverting a noise-
free and well-conditioned matrix, the frequency-basis rotation becomes redundant, as an
identity matrix could be theoretically used as a trivial rotation. However, in the presence
of noise or poor conditioning, the basis rotation can reorder and prioritize reconstructing
signal content to minimize amplifying noise.

The prioritizing of reconstructed content in a QR inverse computation has been a wide
field of study. Many rigorous and specialized algorithms have been developed to solve very
large or sparse matrices [19,20]. To extend the discussion of how the choice of frequency
basis can prioritize signal content differently, we review several frequency basis choices
and their benefits in 1D and 2D sampling.
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4.2. Choice of Frequency Basis

Theoretically, any basis that is chosen results in the same inverse if the sampling matrix
is full rank and all basis vector iterations are taken. However, not all basis vectors are
needed to compute a band-limited inverse. Thus, the choice of frequency basis can affect
when and how much noise amplification occurs during the inversion process. Depending
on the assumed structure of each inverse, a recombination or reordering of frequency
components can be useful in computing progressively band-limited inverses.

4.2.1. DFT vs. DCT

The DFT is typically preferred in 1D sampling, as it works for both real and com-
plex signals. To progressively reconstruct lowpass signals with an increasing bandwidth,
reordering the DFT frequencies from low to high is useful.

If we define the DFT basis vector as

fnk =

√
1
N

exp
(
−2πikn

N

)
, n, k ∈ [0, N − 1] (41)

we find that the first half n ∈ [1, floor(N/2)] increases from low- to high- frequency compo-
nents (often called the positive frequencies), while the second half n ∈ [ceil(N/2), N − 1]
decreases from high- to low- frequencies (often called negative frequencies). To rearrange
these basis vectors in order of increasing bandwidth, we need to alternate positive and
negative frequencies. The ordering is [0, 1, N − 1, 2, N − 2 . . .]. For real signals, the positive
and negative frequencies of the DFT are conjugates of each other, making one redundant in
computing the inverse. Thus, for real signals, only the first half of the complex DFT basis
vectors is needed to compute each band-limited inverse [0, 1, 2, floor(N/2)]. An equivalent
real-only basis can be formed by using the discrete cosine transform (DCT), which takes
advantage of conjugate symmetric pairs. The most common forms of the DCT are already
ordered low to high frequencies (DCT-I, DCT-II, DCT-III, DCT-IV) by taking half-frequency
steps [21].

4.2.2. 2D Frequency Basis

For the case of 2D sampling, similar bases can be used such as the 2D DFT for complex
signals and 2D DCT for real signals. However, the extra dimensionality of the 2D basis
introduces directional frequencies. While directional frequencies may not be a concern
when inverting a uniform sampling scheme, some irregular 2D sampling schemes may be
sensitive to directional sampling errors.

One method to mitigate these directional sensitivities is to combine the symmetry
of the four quadrants of the 2D DFT. Just as the DCT in one dimension takes advantage
of the positive and negative symmetry of DFT bins offset by π/2, it can also be used to
pair symmetric quadrants in 2D. To take advantage of this symmetry for complex signals,
the discrete sine transform (DST) can be used to fill in the other π/4 shifted quadrants,
i.e., using the DCT and DST to respectively compute the real and imaginary portions of
a symmetric DFT basis. Note that basis vectors still need to be ordered by their radial
distance to perform progressively bandlimited reconstructions.

It is possible to further combine radially symmetric DFT bins by reducing the frequency
step size and applying the appropriate 2D rotations to preserve the orthogonality of each
unique radial DFT bin. Example 2D basis vectors for the DFT, DCT, and a shifted even DCT
basis are shown in Figure 6.



Remote Sens. 2025, 17, 464 16 of 19

Figure 6. Example 2D basis vectors using DFT, DCT-IV, and a shifted even DCT basis. The DFT basis
vectors have directional components, the DCT has fractional frequency content and the shifted even
DCT Basis has up to 4 radially symmetric orthogonal vectors.

4.3. Advantages

While there may be many practical uses for the incremental computation of a ban-
dlimited inverse using FQR, we highlight three main advantages for its use in discrete
reconstruction problems. Firstly, since it can be hard to determine the maximum recon-
struction bandwidth a priori , FQR can be used to simultaneously reconstruct and find the
maximum reconstruction bandwidth. Secondly, since FQR uses a frequency basis, modern
filtering techniques can be leveraged to further constrain, condition, and regularize the
FQR band-limited inverse. Thirdly, since each singular update to the FQR inverse uses all
measurements, noisy measurement errors are mitigated when terminating the inversion
process early.

4.4. Applications

Using a 2D frequency basis, the FQR or similar frequency-constrained reconstruc-
tion methods can be applied to enhance the spatial resolution of remote sensing systems,
without the need to determine the maximum reconstruction bandwidth a priori. This is
particularly useful for reconstructing irregular sampling schemes and measurements with
variable apertures, often found in spaceborne radiometers and scatterometers. However,
the requirement of FQR to reconstruct each individual frequency basis can be as computa-
tionally taxing as other pseudo-inverse methods. Iterative methods could be used to reduce
the computational complexity by approximating a band-limited inverse, but may amplify
more noise than an individual frequency-basis inverse. Furthermore, since a frequency
basis implicitly assumes a spatial periodicity or band limit, additional spatial tapering
or windowing may be required to preserve the temporal or spatial relevance between
measurements.

5. Conclusions
A frequency-constrained QR decomposition improves reconstruction performance for

bandlimited signals, particularly for measurement with variable apertures, SNR limitations,
or 2D sampling considerations. Additionally, a frequency-constrained QR reconstruction
can simultaneously reconstruct a signal and determine its effective bandwidth. While this
paper focused on applying frequency constraints to QR reconstruction, in order to highlight
the theoretical difference between standard matrix inverse techniques and a bandlimited
inverse, similar frequency constraints can be applied to more practical and efficient inverse
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methods. Further work is needed to demonstrate the benefits of a bandlimited inverse, i.e.,
applying frequency constraints to existing inversion methods and remote sensing datasets.
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DFT Discrete Fourier transform
DCT Discrete cosine transform
DST Discrete sine transform
FQR Frequency-constrained QR reconstruction
MRF Measurement response function
SNR Signal to noise ratio
SVD Singular value decomposition
QR QR matrix decomposition

Appendix A. Relation to QR
As noted previously, tn can be found using the Gram–Schmidt orthogonalization

procedure. By comparing the computation of tn and m†
n to the QR decomposition method,

we can see that the derivation of FQR is a particular case of QR decomposition using a
frequency basis.

By examining Equations (23)–(25), we can express (MDF) as a matrix with rows of bn:

(MDF) =
[
b0 b1 . . . bN−1

]
. (A1)

An orthogonal basis matrix (T) can be formed by grouping together the column basis
vectors tn:

T =
[
t0 t1 . . . tN−1

]
. (A2)

Based on the orthogonalization process, applying T∗ to (MDF) results in an upper-
triangular matrix U:

U = T∗(MDF),

=


1 t∗0b1 t∗0b2 . . . t∗0bN−1

0 1 t∗1b2 . . . t∗1bN−1
...

...
. . .

...
0 0 0 . . . 1

.
(A3)

Rearranging the definition of U we find a factorization of (MDF):

(MDF) = (T∗)†U. (A4)
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Taking advantage of the orthogonality of T, we know that T∗T = L is a diagonal
matrix, which can be inverted and used to find (T∗)†:

(T∗)† = TL†, (A5)

where L† is a diagonal matrix depicted as

L† =


(t∗0t0)

−1 0 0 . . . 0
0 (t∗1t1)

−1 0 . . . 0
...

...
. . .

...
0 0 0 . . . (t∗N−1tN−1)

−1

. (A6)

Using the substitution in Equation (A5), we can find the QR factorization of (MDF):

(MDF) = QR,

Q = TL† 1
2 ,

R = L† 1
2 U.

(A7)

where Q and R are the QR decomposition of (MDF), T is a matrix of tn, U is an upper-
triangular matrix formed by applying T∗ to (MDF), and D† is a diagonal matrix of the
inverse squared norm of each tn. By closer inspection of the recursive definition of tn, it is
clear that the FQR process is an un-normalized QR decomposition.

Further analysis reveals that m†
n is also related to the QR decomposition of (MDF). By

examining Equation (39), we can form a matrix of m†
n by using Equation (A5):

(T∗MD)† =
[
m†

0 m†
1 . . . m†

N−1

]
(A8)

Taking advantage of the orthonormal frequency basis FF∗ = I and substituting in the
factorization from Equation (A4), we can reduce the matrix of m†

n further:[
m†

0 m†
1 . . . m†

N−1

]
= FF∗(T∗MD)†,

= F(T∗MDF)†,

= FU†,

(A9)

where FU† is the normalized QR decomposition of the matrix of m†
n.

Appendix B. Relation to SVD
Single-rank SVD decomposition updates can be used to incrementally find a band-

limited inverse. However, the reorderings of new singular values of each update makes the
SVD method more tedious. To relate the SVD decomposition of a band-limited inverse to
its corresponding FQR decomposition, we show how the SVD of a band-limited inverse is
a rotation of the FQR decomposition.

Define the band-limited SVD as

(MD) = UΣV∗, (A10)

where U and V are both unitary matrices (i.e., U∗U = I and V∗V = I), and Σ is a diagonal
matrix of the singular values of (MD). With the FQR decomposition as MFdiag(h) = QR
(see Appendix A), then

(MD) = QRF∗, (A11)



Remote Sens. 2025, 17, 464 19 of 19

where Q is a normalized T, and R is a weighted upper-triangular matrix from the FQR
decomposition.

By rotating the SVD of (MD) we find the SVD of R,

R = Q∗(MD)F = UrΣV∗r , (A12)

which, if we substitute back in to Equation (A11), we find

(MD) = QUrΣV∗r F∗, (A13)

where we compare it with Equation (A10) U = QUr and V = FVr. We compute the
bandlimited inverse as

(MD)† = FVrΣ−1U∗r Q∗. (A14)
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