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Abstract: Variable aperture sampling reconstruction matrices have a history of being
computationally intensive due to the need to compute a full matrix inverse. In the field of
remote sensing, several spaceborne radiometers and scatterometers, which have irregular
sampling and variable apertures, use iterative techniques to reconstruct measurements of
the Earth’s surface. However, many of these iterative techniques tend to over-amplify noise
features outside the reconstructable bandwidth. Because the reconstruction of discrete
samples is inherently bandlimited, solving a bandlimited inverse can focus on recovering
signal features and prevent the over-amplification of noise outside the signal bandwidth.
To approximate a bandlimited inverse, we apply bandlimited constraints to several well-
known iterative reconstruction techniques: Landweber iteration, additive reconstruction
technique (ART), Richardson–Lucy iteration, and conjugate gradient descent. In the context
of these iterative techniques, we derive an iterative method for inverting variable aperture
samples, taking advantage of the regular and irregular content of variable apertures. We
find that this iterative method for variable aperture reconstruction is equivalent to solving
a bandlimited conjugate gradient descent algorithm.

Keywords: iterative inverse; bandlimited; resolution enhancement; variable apertures;
conjugate gradient descent

1. Introduction
Reconstructing an image or signal from a set of discrete measurements can be gener-

alized as computing an inverse of the sampling matrix [1]. While there is an abundance
of matrix inversion methods that can be used to perform reconstruction, the complexity
of computing a direct inverse quickly prevents these reconstruction methods from being
practical. However, in the case of uniform sampling and constant measurement apertures,
the sampling matrix takes on a Toeplitz structure. This means that its inverse can be com-
puted using fast Fourier transform (FFT) deconvolution techniques. When measurements
are not uniform or have variable aperture measurements, re-sampling and interpolation
techniques have been used to approximate a sampling matrix with a Toeplitz matrix [2].

When these techniques take on too much computational complexity, other methods
are needed to compute the sampling matrix inverse. Iterative matrix inversion methods are
often the preferred reconstruction method, as they typically require less computation to ap-
proximate a matrix inverse. Example iterative matrix inverse methods include Landweber
iteration, algebraic reconstruction techniques (ARTs), Richardson–Lucy iteration, and con-
jugate gradient descent algorithms. Each one of these methods has a different iteration
start, step size, and noise response.

In the field of remote sensing, several spaceborne radiometers and scatterometers have
irregular or variable apertures and rely on these iterative techniques and other inversion
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methods to perform measurement reconstruction of the Earth’s surface [3–5]. Since each
method uses different constraints and has different regularization tradeoffs, it can be hard to
know which algorithm’s constraints or regularization methods are ideal for reconstructing a
given set of variable aperture measurements. Instead of contrasting the differences between
these various iterative methods, we address how these methods approach a bandlimited
inverse under bandlimited sampling assumptions. A bandlimited inverse is ideal for
the reconstruction of variable aperture measurements as discussed in [6]. We focus on
applying three bandlimiting modifications: adjusting the starting point of iteration with a
deconvolution, adding a bandlimited constraint to each iteration step, and incrementing
the bandlimit of each iteration.

In this paper, we introduce a bootstrapping method for handling irregularly spaced
variable aperture measurements, which splits the inverse computation into uniform decon-
volution and variable aperture reconstruction steps. The uniform step performs deconvolu-
tion with an FFT, and the variable and irregular apertures are reconstructed iteratively. To
motivate this method, we first review the example iterative methods mentioned previously,
highlighting the aforementioned bandlimiting modifications.

2. Materials and Methods
To ensure consistent notation, we define a discrete sampling system as

y = Mx + ν, (1)

where x is a discrete signal or image of length N, y is a vector of M discrete measurements,
ν is a vector of measurement noise, and M is the [M× N] sampling matrix modeling each
measurement as a weighted average of x. Solving for, or approximating, the inverse of M
generalizes the process of signal or image reconstruction, as follows:

x̂ = M†y, (2)

where x̂ is the approximation or reconstruction of x, and M† is the generalized inverse
of M.

While a generalized inverse can be used to reconstruct and parse the overlap between
measurements and their apertures, sampling theory provides more efficient techniques
given specific sampling requirements [1]. Sampling matrices comprising regularly spaced
samples and fixed apertures can be solved readily with matrix deconvolution techniques.
Irregular apertures require more inverse considerations, which other sampling-based recon-
struction methods can provide [7]. One common feature of the relationship between matrix
inversion methods and sampling theory is that the number of independent samples limits
the reconstructable frequency content, or rank, of the sampling matrix. This concept leads
to a generalization that there is a bandlimit of reconstruction, or limit to the reconstructable
frequency content, found in the inverse of a sampling matrix, i.e., a bandlimited sampling
matrix inverse [8]. Under bandlimited assumptions, the generalized inverse solution in
Equation (2) can be modified to be a bandlimited inverse [6] using a bandlimited projection
matrix B, as follows:

x̂ = (BM)†y. (3)

In this paper, we focus on how existing iterative methods can be constrained to solve
Equation (2) using a bandlimited deconvolution preconditioner A†, such that AA† = B,
and using additional bandlimited step constraints (Bn for each nth iteration). A more
detailed derivation of a bandlimited inverse and its connection to sampling theory is given
in [6]. We now review some well-known iterative reconstruction techniques and how they
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relate to approximating the generalized inverse in Equation (2). Following this review,
we introduce the three bandlimiting modifications using a bandlimited deconvolution
preconditioner and additional step constraints. Using these modifications, we arrive at an
iterative method for variable aperture reconstruction.

2.1. Landweber Iteration

Landweber iteration [9] is a special case of gradient descent, where each iteration takes
a step in the opposite direction of the projected measurement error, as follows:

x̂n+1 = x̂n + λM∗(y−Mx̂n), (4)

where x̂n is the nth iteration step, and λ is a step size scalar used to control convergence.
If we initialize x̂0 as the zero vector 0, we can solve for the nth iteration of the Landweber
iteration as

x̂n =

[
n

∑
i=0

(I− λM∗M)i

]
λM∗y. (5)

If all the eigenvalues of (I− λM∗M) are less than 1, then the Landweber solution theoreti-
cally converges to the pseudo-inverse of M so that at n = ∞,

x̂∞ = (M∗M)†M∗y. (6)

While Landweber iteration appears simple and theoretically converges to a well-
known result, the starting step λM∗y may be far away from the final solution, and the
step size λ required for convergence may require an impractical amount of iterations.
Furthermore, each iteration step can be sensitive to the noise found within y, causing
small errors to accumulate and skew the converged solution farther away from the true
solution (this behavior is called semi-convergence [10], or noise amplification in other
inverse processes).

To mitigate these issues, both preconditioning and step size constraints can be used
at each iteration to regularize the measurement noise and alter the point of convergence.
The use of a preconditioner and regularizer to reconstruct variable aperture measurements
can be found in [11,12]. A preconditioning matrix R and a step constraint H can be
incorporated into each Landweber iteration as

x̂n+1 = x̂n + λHM∗R(y−Mx̂n). (7)

Given that the effect of H is dependent on the structure of M and the nature of y,
the ideal choice of step constraint and stopping rules is a wide field of study [13]. However,
under bandlimited sampling assumptions, we make the claim that bandlimited step con-
straints are ideal for variable aperture reconstruction. This is further expanded on in later
sections. To understand why other step constraints can be chosen as optimal, an assertion
on the bandlimited convergence of iterative step constraints is given in Appendix A.

2.2. Algebraic Reconstruction Technique

To allow each measurement to individually influence the iteration step, the algebraic
reconstruction technique (ART) updates each projected measurement error separately and
adds a normalization to each update [14], as follows:

x̂n+1,k = x̂n +
λ mik

∑l m∗il mil
(zi −∑

l
mil x̂nl), (8)
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where zi is the ith measurement, x̂nk is the kth element x̂n, and mik is each element of M. A
simultaneous, or block, version of ART can be formed by waiting to apply all measurement
ART updates at the same time, as follows:

x̂n+1 = x̂n + ΛM∗(y−Mx̂n),

Λ = λ

∥m0∥−2 . . . 0
0 ∥m1∥−2 0
· · · . . . ∥mn∥−2

 (9)

where block ART is a special case of a normalized Landweber iteration when the normaliza-
tion Λ is included in the step constraint. This normalization helps put each measurement
projection on the same scale so that one measurement update does not skew the iteration
process. Note that the starting iteration of block ART is equivalent to the backprojection
x̂0 = M∗y normalized by the magnitude of each measurement response Λ.

2.3. Richardson–Lucy

Instead of an additive update, the Richardson–Lucy [15,16] method uses a multiplica-
tive update and projected error ratio, as follows:

x̂0,k =
∑i m∗ik zi

∑j m∗jk
,

x̂n+1,k = ∑
ijl

m∗ik zi x̂nk

m∗jk mil x̂nl
,

(10)

where i and j are indices over each measurement, and k and l are indices over each value in
x̂n. The starting point is similar to the block ART method, being the backprojection M∗y
normalized by the sum of measurement responses at each point in x̂. If M is circulant, then
the normalization is equivalent to a scale factor (i.e., same scale on each column of M∗).
While the multiplicative nature of each iteration makes a proof of convergence difficult,
it has been shown that if the iteration converges, it converges to a maximum likelihood
solution [17].

2.4. Conjugate Gradient

To limit the total number of iterations and control the convergence, orthogonalization
of each iteration’s error can be performed. A method that uses orthogonal error steps is
conjugate gradient descent (CG). Because the conjugate gradient method requires the sam-
pling matrix to be symmetric, we summarize the conjugate gradient method using unique
variable names for the symmetric sampling matrix (Λ), its corresponding measurements
(d), and its conjugate directions (cn).

If each iteration’s measurement error is rn, then r∗i rj = 0, ∀i ̸= j means each iteration
error is orthogonal to all other iterations. When the sampling matrix is symmetric (Λ∗ = Λ)
and positive definite, the CG method can be used to iterate in conjugate steps (i.e., orthog-
onal with respect to Λ). If cn is the direction of each iteration step, then for each step to
be conjugate to all other steps, c∗i Λcj = 0, ∀i ̸= j. The conjugate gradient method can be
implemented by orthogonalizing each step’s direction with respect to Λ, as follows:

rn = (d−Λĝn),

cn = rn −
n−1

∑
i=0

c∗i Λrn

c∗i Λci
ci,

ĝn+1 = ĝn +
c∗nrn

c∗nΛcn
cn,

(11)
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where rn is each step’s predicted measurement error, cn is each step’s conjugate direction,
and ĝn is the symmetric iterative solution.

While the convergence of CG is limited to matrices that are symmetric and positive
definite, variations of CG such as the bi-conjugate or the generalized minimal residual
methods can further generalize these constraints [18,19].

2.5. Separating Regular and Irregular Apertures

To introduce the use of a bandlimited deconvolution preconditioner, we first take
advantage of the common structure often found in sampling matrices by separating the
sampling matrix M into two parts: an averaged regularly sampled constant aperture A and
irregular aperture perturbations P, where M = (A + P).

Theoretically, any A can be chosen for this separation; however, if the pseudo-inverse
of A is used as a preconditioner of the sampling matrix inverse, i.e., M† = A†(MA†)†,
then the choice of A† may speed up the computation of M†. Additionally, the choice of A†

can be used to bandlimit the computation of M†. To show these advantages, we use the
Woodbury matrix inversion lemma [20]. A reduced form of this lemma is

(A + P)−1 = A−1 −A−1(I + PA−1)−1P A−1, (12)

where A is full rank, P consists of k-rank updates to A, and (I− PA−1)−1 = C is called
the capacitance matrix. Since the lemma above assumes that both A and C are invertible
matrices, we rely on a more generalized solution [21] using rank-limited pseudo-inverses
of A and C, as follows:

(BM)† = (BA + BP)† = A† −A†(B + PA†)†PA†, (13)

where B = AA† is a bandlimited projection matrix. An example of how to compute the
direct solution to a rank-limited capacitance matrix can be found in [22].

Substituting Equation (13) into Equation (3), we can separate the solution to a ban-
dlimited reconstruction into the following two parts:

x̂ = x̂r − x̂i,

x̂r = A†y,

x̂i = A†(B + PA†)†PA†y,

(14)

where x̂r is a regular sampling solution bandlimited by A†, and x̂i is the accumulated
bandlimited error found in x̂r due to the irregular apertures in P, i.e., the irregular aperture
corrections. As both x̂r and x̂i are bandlimited by A†, the solution x̂ is also bandlimited. A
simpler way to express x̂i without the need to directly compute P is

x̂i = x̂r −A†(MA†)†y. (15)

If A† can be easily and quickly computed, the computational load of computing
a bandlimited M† falls on solving the inverse of the capacitance matrix (B + PA†)† =

(MA†)†. Thus, choosing A†, which can be computed efficiently and reduce the rank of P,
becomes advantageous when inverting variable aperture sampling matrices.

2.6. Bandlimited Deconvolution Preconditioner

Under bandlimited sampling theory, both irregular and regular sampling configu-
rations are functionally equivalent [7]. This means that every sampling matrix M has
an equivalent regularly sampled configuration that can perform the same reconstruction.



Remote Sens. 2025, 17, 236 6 of 17

While finding an exactly equivalent regularly sampled configuration is not trivial and
requires its own matrix inverse computation, we instead can choose A assumed to be
‘close’ to the equivalent regularly sampled counterpart of M. Depending on how close,
the choice of A can reduce the rank of P. Ideally, A, which produces the lowest rank P,
should be chosen.

As an example, we can choose A to be an interpolated bandlimited Toeplitz matrix, as
follows:

A = DF∗diag(Fa)F, (16)

where F is an N length discrete Fourier transform (DFT) matrix, diag(x) indicates a diagonal
matrix of x, Fa is the DFT of the constant aperture a, and D is a bandlimited interpolation
matrix, whose rows comprise evenly spaced order M length N Dirichlet kernels. Dy is
equivalent to performing the N point DFT of y and then taking the M point inverse DFT
of the first M frequency components. The bandlimited inverse of D is D∗, where D∗y is
equivalent to performing the M point DFT of y, zero padding up to N, and then taking its
N point inverse DFT.

Given its circulant nature, the pseudo-inverse A† of this choice of A can be computed
quickly using deconvolution methods, and its bandlimited interpolation can be performed
in the frequency domain. Using A† as the starting point, we can now iteratively reconstruct
the rest of the variable aperture perturbations P using a variety of reduced-rank matrix
inversion methods.

To visualize the use of a bandlimited deconvolution preconditioner, we give an ex-
ample reconstruction of a low bandwidth signal using variable aperture measurements.
The example truth signal, variable aperture measurements, regular aperture deconvolution,
and irregular aperture corrections are shown in Figure 1.

Figure 1. (A) Example truth signal, in black, and example variable aperture measurements, ordered
by peak value, as red dots. (B) Example regular aperture deconvolution solution and irregular
corrections iteratively found through bandlimited reconstruction. Both solutions add together to
form a bandlimited estimate.
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2.7. Bandlimiting Landweber-like Methods

Using A†, we can iteratively estimate the bandlimited capacitance matrix using an
approach similar to Equation (A4), assuming λ is sufficiently small, as follows:

(MA†)† = λ
n

∑
i=0

(B− λMA†)i. (17)

Substituting Equation (17) into (14), we find the following iterative solution:

x̂0 = A†y,

x̂n+1 = x̂n + λA†(y−Mx̂n).
(18)

This is a special case of Landweber iteration, which starts at A†y and removes aliased irreg-
ular aperture perturbations in bandlimited steps. A similar frequency-filtered Landweber
process is shown in [23].

Similarly, we can adjust the starting point (x̂0 = A†y) and iteration steps of both ART
Equation (8) and Richardson–Lucy Equation (10) iterations, respectively, as follows:

x̂n+1,k = x̂nk +
λ a†

ik

∑l mil a†
il
(zi −∑

l
mil x̂nl), (19)

x̂n+1,k = ∑
ijl

a†
ik zi x̂nk

a†
jk mil x̂nl

, (20)

where a†
ik is the i, kth entry of A†. Note that in both adjustments to ART and RL, the back-

projection A∗ is replaced with A† and x̂n is limited to the bandwidth of A†.
While the modified Landweber-like iterations in Equations (18)–(20) all theoretically

converge on the bandlimited solution in Equation (A4), the number of steps and the degree
of noise amplification can make this approach impractical, depending on the structure of
M and the noise in y.

2.8. Bandlimiting Conjugate Gradient Descent

If we make the following modifications to the inputs and outputs of the CG method in
Equation (11):

ĝ0 = y,

Λ = (MA†)∗MA†,

d = (MA†)∗y,

x̂n = A†ĝn,

(21)

we find a bandlimited CG solution to our variable aperture sampling problem, as follows:

x̂n+1 = A†y +
n−1

∑
k=0

A†ckc∗k rk

c∗k Λck
. (22)

2.9. Additional Frequency Constraints

While we have shown how different iterative methods can be modified to compute a
bandlimited inverse, so far, we have only placed a fixed bandlimited constraint on each
iterative step B = AA†. This bandlimited constraint is implicitly made a priori by the
choice and bandlimit of A†.
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To allow for more control over each inversion step, we can place a bandlimited step
constraint Bn, where Bn is a bandlimited projection matrix, before the application of A†.
This step constraint is placed before the preconditioner A† to prevent the aliasing of
frequency content outside the bandlimit of each Bn.

The ability to change the bandlimiting constraint of each iteration allows for more
complex bandlimiting schemes. Of particular interest for variable aperture reconstruc-
tion is that the ability to incrementally increase the bandwidth of each Bn allows existing
methods to solve for incremental bandlimited solutions, i.e., M†

n = A†Bn(MA†Bn)†. If each
bandlimiting step Bn is strictly increasing, then, assuming sufficient iterations and condi-
tions are taken for convergence, existing iterative methods can progressively solve each
incremental bandlimited solution M†

n without the need to recompute a new matrix inverse.
Furthermore, using additional error measures, such as a signal-to-noise ratio (SNR) test,
an appropriate bandlimited inverse, one that does not extend past the inherent bandlimit of
reconstruction, can be solved without determining the inherent bandlimit of reconstruction
a priori. This is particularly advantageous for variable aperture sampling configurations,
in which the inherent bandlimit of reconstruction can be difficult to determine.

Taking the result from Equation (22), the addition of a variable bandlimited step
constraint forms a block bandlimiting CG method (BCG), as follows:

x̂n+1 = A†y +
n−1

∑
k=0

A†Bnckc∗k rk

c∗k Λck
. (23)

Given the relationship between cn and rn, the bandlimiting step constraint Bn can be
equivalently applied directly to rn, i.e., rn = Bnrn. Thus, Bn can also be considered a
bandlimited measurement error constraint.

By reducing Bn to a single frequency, i.e., Bnrn = fnf∗nrn, where fn is a frequency-basis
vector, we can convert the terms in Equation (22) into a frequency-basis decomposition,
as follows:

ωn = (f∗nrn)
−1,

fn = ωnrn,

m†
n = ωncn,

qn = ωnMA†cn,

tn =
qn

q∗nqn
,

(24)

where ωn is the inverse of the bandlimited frequency magnitude of each iteration’s error.
Applying these substitutions into Equation (22), we arrive at a frequency-basis BCG solution
identical to the frequency-basis QR decomposition (FQR) derived in [6], as follows:

x̂n =
n

∑
k=0

A†m†
k t∗k y. (25)

In fact, this result indicates that the FQR method is a special case of BCG, where each
iteration’s error is bandlimited to a single frequency. The main difference between the
two methods is that BCG projects onto conjugate directions c∗i , which can contain multiple
frequency components, and FQR projects onto individual frequency directions qi. This
relationship is of interest since it suggests that BCG can be used to block-update the FQR
method. An example of how to perform this, with the threshold γ as a stopping constraint,
is shown in Algorithm 1.
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Algorithm 1 Block Frequency BCG

ĝ0 ← y
d← (MA†)∗y
Λ← (MA†)∗MA†

r0 ← d−Λĝ0
while∥rn∥ ̸= 0 do

Choose a bandlimit L =
{

m,|rnm| > γ
}

Bn ← ∑m∈L fmf∗m
rn ← Bnrn
cn ← rn −∑n−1

i=0 ciy∗i Λrn
yn ← cn/(c∗nΛcn)
ĝn ← ĝn−1 + cny∗nrn

x̂n ← A†ĝn
rn+1 ← d−Λĝn

if
∣∣∣r(n+1)m

∣∣∣ ≤ γ then
r(n+1)m ← 0

end if
end while

To reduce BCG to the original CG method, we remove both A† and Bn by replacing
them with the identity matrix. Thus, BCG serves as a means to move between CG and FQR,
depending on the chosen bandlimiting scheme.

2.10. Single- vs. Block-Frequency Constraints

To further contrast the choice of bandlimiting schemes, we consider the difference
between FQR (single frequency), BCG (block frequency), and CG (all frequency, i.e., identity)
bandlimited step constraints. Both CG and FQR methods solve the matrix inverse in a
fixed number of steps. However, FQR produces a bandlimited solution solely based on
the sampling matrix M, while CG produces a non-bandlimited solution based on the
averaged frequency content found in the measurements. This means that in the presence of
noise, CG tends to over-amplify error outside the bandlimit of reconstruction. In contrast,
the CG method may take fewer iterations to converge to a solution than the FQR method.
This is because the CG method can avoid inverting frequency content not found in the
measurements, while FQR requires computing over all frequency steps within the bandlimit
of reconstruction. The block BCG method takes advantage of both of these strengths, while
allowing for bootstrapping using the deconvolution A† and custom bandlimiting schemes
using Bn in the inversion process.

3. Results
To illustrate the differences between the CG, BCG, and FQR methods, we perform

simulations of a 1D truth signal using noisy and noise-free variable aperture measurements.
To create the variable apertures, several skewed Gaussian apertures are used, each sampled
at a random location. Example apertures, which have been reordered by their apertures’
‘center’ value for visual convenience, are shown in Figure 2. A short time-windowed chirp
was used as the 1D truth signal shown in Figure 3, alongside an ordered set of variable
aperture measurements.

Four reconstruction schemes are run in parallel using the same sampling matrix and
additive measurement noise inputs. The four reconstruction schemes are the original
CG and FQR methods alongside two bandlimiting schemes of BCG, a single-frequency
and a block-frequency scheme. The chosen bandlimiting scheme for the block-frequency
scheme consisted of block-frequency updates for the first 150 iterations, and switched to
single-frequency steps thereafter (to show how BCG compromises between CG and FQR).
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The simulations were repeated at 50 dB, 30 dB, and 10 dB SNR levels for each of these four
algorithm variations. Additionally, all simulations were repeated using a regular sampling
deconvolution step to initialize each algorithm.

Figure 2. Example MRFs ordered by peak value centers. Note how this diagonal structure is similar
to a Toeplitz matrix.

Figure 3. The short time chirp used in the simulation and the variable aperture measurements ordered
by peak MRF centers.

Each method’s total iteration error with respect to the truth signal is contrasted in
Figure 4. In general, the deconvolution initialized solutions do not change the total error
of each iteration, but do reduce the variance of each iteration step and achieve an earlier
convergence. Comparing the four reconstruction schemes, the CG method appears to
descend in total reconstruction error the fastest but is short-lived as the error levels out and
slowly progresses until the noise overtakes the reconstruction. The FQR method appears
to converge the slowest, but is able to reconstruct more of the truth signal. The BCG
appears to be the compromise between FQR and CG as it converges slightly faster than
FQR at first, is then slowed down by aliased content, but later catches up to FQR with
single-frequency constraints. Note that as the noise level is increased, the algorithms’
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minimum total reconstruction error is reached earlier, after which error amplification
overtakes signal reconstruction.

Figure 4. Total reconstruction error results for each iteration of CG, FQR, single-frequency BCG,
and block-frequency BCG algorithms. Simulations are run both with and without a regular deconvo-
lution initializer for comparison.

To better understand the trends seen in the total reconstruction results shown, we
examine the frequency spectrum of the truth signal and variable aperture measurements.
The discrete cosine transforms of both the truth signal and variable aperture measurements
used in these simulations are shown in Figure 5. Note that the majority (greater than 99%)
of the truth signal’s bandwidth is contained in the first 250 DCT frequency bins. However,
the variable aperture measurements possess frequency content beyond the truth signal’s
apparent signal bandlimit. Thus, the lowest reconstruction error occurred shortly after
250 iterations, and most algorithms began to over-amplify noise after 300 iterations.

Figure 5. The discrete cosine transforms of the truth signal and variable aperture measurements
to compare frequency contents. More than 99% of the truth signal is contained within 300 frequency
bins. In this case, the variable aperture measurements extend past this limit.
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The bandlimited nature of these algorithms can be better observed by computing the
bandlimited reconstruction error of each iteration, i.e., the error with respect to the truth
signal bandlimited to each iteration’s frequency constraint (note that CG has no bandlimited
constraint and thus is equivalent to the total error). A bandlimited error comparison is
shown in Figure 6. The bandlimited error trends follow the frequency content scale seen in
the DCT of the truth signal. This is because the beginning iterations have to decouple the
aliasing of higher frequency content and later iterations are closer to the bandlimit of the
truth signal.

Figure 6. Bandlimited reconstruction error results for each iteration of CG, FQR, single-frequency
BCG, and block-frequency BCG algorithms. Simulations are run both with and without a regular
deconvolution initializer for comparison.

4. 2D Reconstruction
To provide a practical example of the resolution capabilities of BCG bandlimiting

schemes, 2D simulations comparing the reconstructions of a recognizable image are made
using synthetic variable Gaussian apertures. The edges of the 256 × 256 pixel truth image
are tapered using an 80% Taylor window. This is performed to mitigate the poor condi-
tioning of undersampled edges and reduce the periodic effects from bandlimited filtering.
Twenty thousand 2D Gaussian ellipses with randomly chosen widths and rotations ranging
from approximately 3× 3 to 31× 31 pixels in minimum and maximum widths, respectively,
are synthetically generated to sample the truth image. Random Gaussian noise at the 0, 10,
and 20 dB SNR levels with respect to the mean magnitude of the truth image is added to the
synthetic variable aperture samples. All 2D simulations use the same noisy measurements
and sampling apertures as inputs.

Similar to the 1D example previously shown, the three bandlimiting schemes con-
trasted are as follows: no step constraints (original CG), single-2D-DCT-frequency steps
(equivalent to FQR), and block-frequency steps. Frequency constraints are sorted from
lowest to highest frequency components in both dimensions. In place of a deconvolution
preconditioner, a 4000 bin 2D DCT bandlimit is placed on the sampling apertures to reduce
non-recoverable high-frequency components. To compare the over-amplification of noise,
the stopping constraints are removed and a maximum of 4000 iterations are taken using
each set of noisy samples and each bandlimiting scheme. Example 2D reconstructions are
shown in a grid contrasting each bandlimiting scheme at various iterations at the 10 dB



Remote Sens. 2025, 17, 236 13 of 17

SNR level; see Figure 7. The corresponding total reconstruction error and total bandlim-
ited reconstruction error curves are shown in Figure 8 alongside 20 dB and 0 dB SNR
noisy measurements.

Figure 7. Selected 2D reconstructions at various iterations using the bandlimiting schemes with
10 dB noisy measurements: no step constraints (CG), block-frequency steps (block BCG), and single-
2D-DCT-frequency steps (BCG). (A–D) indicate no step constraints at 10, 20, 40, and 500 iterations,
respectively. (E–H) indicate block-step constraints at 100, 500, 1000, and 2000 iterations, respectively.
(I–L) single-step constraints at 100, 1000, 2000, and 4000 iterations, respectively. In general, results
start blurry and resolve more as further iterations are taken; however, noise is also amplified as
more iterations are taken. Note that the final iterations shown for each bandlimiting scheme are
approximately equivalent.

Comparing the sample 2D reconstructions shown in Figure 7, we can summarize the
similarities and differences between the choices of bandlimiting constraints. Without a
bandlimited step constraint, features are quickly resolved, reaching a minimum within a
few iterations. However, immediately after this minimum, noise amplification overtakes the
reconstruction. The single-frequency constrained scheme requires the full 4000 iterations to
converge to a similar noisy solution; however, higher-fidelity bandlimited solutions are
reached along the way. The block-frequency constraints converge to a similar solution in
fewer iterations, but do so at the cost of amplified noise.

The results in Figure 7 additionally show how increased measurement noise reduces
each reconstruction’s recoverable content, as the balance point between signal recovery and
noisy amplification increases in total error and is reached in fewer bandlimiting steps, i.e., at
a lower bandwidth. The CG scheme, or no bandlimiting step constraint, appears to reach the
lowest minimum total error reconstruction in the 20 dB and 10 dB comparisons. In contrast,
in the 0 dB case, the single-step and block-step schemes reach a slightly lower minimum.
While a lower reconstruction error in fewer iterations is often desired, note that this
minimum is only observable using the synthetic truth image. Additionally, such a minimum
solution is difficult to determine without being able to distinguish between signal recovery
and noise amplification. By analyzing the bandlimit reconstruction error in Figure 7, we
observe that the single and block steps start at higher-fidelity bandlimited reconstructions,
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but progressively increase in error as noise is amplified in each iteration. Note that all
bandlimiting schemes approximately converge to the same reconstruction error at their max
iterations. This is expected as the sampling apertures were preconditioned with the same
4000 2D DCT bin bandlimit. This was intentional to showcase that all three bandlimiting
schemes approximate the same bandlimited inverse when run to completion. However,
the slower convergence of the single- and block-step constraints allows for stopping the
reconstruction process before the bandlimit of the preconditioner, thus arriving at a valid
bandlimited reconstruction at an assumed SNR threshold or other stopping criteria.

Figure 8. Total and bandlimited reconstruction error results for each iteration of CG, single-frequency
BCG, and block-frequency BCG bandlimiting schemes repeated using 20 dB, 10 dB, and 0 dB noisy
measurements. In general, the increase in noise tends to cause the minimum point of total recon-
struction error to increase and be reached in fewer iterations. Note that all bandlimiting schemes
converge to approximately the same reconstruction error at their max iterations. This is expected as
the sampling apertures were preconditioned with a 4000 2D DCT bin bandlimit in this simulation.

5. Discussion
While many methods can be used to reconstruct variable aperture measurements,

we propose that an iterative bandlimited inverse is preferred for the reconstruction of a
bandlimited signal when the bandlimit is unknown. To this end, we have shown how
several iterative methods can be constrained to converge towards a bandlimited solution.
Additionally, we have shown how a regular aperture deconvolution can initialize the
iteration process and reduce the noise amplification of each inversion step. By using
progressive bandlimited steps, the estimation process can stop at a valid bandlimited
approximation when reaching an expected noise level or SNR.

The bandlimited conjugate gradient descent (BCG) method introduced in this paper is
a compromise between traditional conjugate gradient descent and frequency-constrained
reconstructions. The choices of initialization and iterative frequency constraint schemes
control the rate at which signal content is reconstructed and noise amplified. Using the
principles of interactive bandlimited reconstruction discussed in this paper, other existing
or future reconstruction algorithms for variable aperture measurements can benefit from
initializing the inverse process with a regular aperture deconvolution bandlimiting the
error of the reconstruction process and incrementally solving a bandlimited sampling
matrix inverse.
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While the BCG method can be used to enhance the variable aperture measurements
encountered in remote sensing systems, more efficient iterative methods are needed in
order to handle higher volumes of measurements, complex sampling systems, and noisy
sampling considerations. For example, if tens of thousands of measurements are to be re-
constructed using BCG, each iteration requires all previous iteration’s conjugate directions.
This quickly eats up memory and storage resources. Other iterative methods that do not
require such a large iteration history, or methods that reduce the number of measurements
such as compressed sensing, may be better suited to high numbers of measurements. Ad-
ditionally, sampling systems in two or more dimensions may be sensitive to directional
sampling errors and can require further frequency constraints to avoid amplifying errors.
Furthermore, BCG can be sensitive to noisy environments that contain high spectral com-
ponents within the bandlimit of reconstruction. Methods that use more than a simple SNR
test and other noise suppression techniques may be required for reliable reconstruction.

Regardless of these additional complexities and considerations, the bandlimiting mod-
ifications suggested in this paper can be applied to current and future methods to suppress
noise content outside the reconstructable bandlimit, speed up the iterative reconstruction
process, and progressively reconstruct bandlimited solutions without determining the
reconstruction limit beforehand.
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Abbreviations
The following abbreviations are used in this manuscript:

ART additive reconstruction technique
BCG bandlimited conjugate gradient descent
CG conjugate gradient descent
DFT discrete Fourier transform
DCT discrete cosine transform
FFT fast Fourier transform
FQR frequency-basis QR reconstruction
SNR signal-to-noise ratio

Appendix A. Bandlimited Convergence of the Iterative Step Constraint
Starting with the preconditioned and regularized Landweber expression in Equation (4),

we can solve for the convergence of the step constraint, assuming λ is sufficiently small to
guarantee theoretical convergence, as follows:

x̂n =

[
n

∑
i=0

(I− λHM∗RM)i

]
λHM∗Ry. (A1)

x̂∞ = (HM∗RM)†HM∗Rz. (A2)
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If H is a Toeplitz or circulant matrix, then H†H = B, where B is a bandlimited identity
matrix (Bi = B and B∗B = B). This can be shown by diagonalizing H and H† using a
discrete Fourier transform matrix [24,25].

Using a Toeplitz H, we can generalize Equation (A2) as to a bandlimited Landweber
convergence x̂∞, as follows:

x̂∞ = (BM∗RM)†BM∗Rz. (A3)

In theory, all circulant or Toeplitz H’s converge to a bandlimited solution x̂∞ in
Equation (A3); however, the noise in z and the conditioning of M can prevent this conver-
gence.

To illustrate the benefit of bandlimiting each iteration step, we consider the special case
when M is Toeplitz and R is the identity matrix. In such a case, we can choose H = M∗†

such that λHM∗ = λB, which reduces Equation (A2) to

x̂n = (BM)†Bz,

x̂n =

[
n

∑
i=0

(B− λBM)i

]
λBz,

x̂n+1 = x̂n + λB(z−Mx̂n).

(A4)

In this special case, iteration starts at the bandlimited projection of z onto x, and each step
removes a portion of the bandlimited measurement error, until the projected measurement
error is minimized. The benefit of using a bandlimited constraint on each iteration step
is that the iteration error is limited to the bandlimit, so the solution can converge before
excessive out-of-band noise amplification occurs.

This result can be generalized to any H by asserting that, through bandlimited inter-
polation, any projection matrix U = H†H can be interpolated into a bandlimited identity
matrix B of the same rank. This can be shown by rearranging and interpolating the eigen-
vectors of U using a bandlimited interpolation matrix D, i.e., DU = B, where an example D
is used in Equation (16).
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