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Abstract: The concentration, type, and extent of sea ice in the Arctic can be estimated
based on measurements from satellite active microwave sensors, passive microwave sensors, or
both. Here, data from the Advanced Scatterometer (ASCAT) and the Special Sensor Microwave
Imager/Sounder (SSMIS) are employed to broadly classify Arctic sea ice type as first-year (FY) or
multiyear (MY). Combining data from both active and passive sensors can improve the performance
of MY and FY ice classification. The classification method uses C-band σ0 measurements from ASCAT
and 37 GHz brightness temperature measurements from SSMIS to derive a probabilistic model
based on a multivariate Gaussian distribution. Using a Gaussian model, a Bayesian estimator selects
between FY and MY ice to classify pixels in images of Arctic sea ice. The ASCAT/SSMIS classification
results are compared with classifications using the Oceansat-2 scatterometer (OSCAT), the Equal-Area
Scalable Earth Grid (EASE-Grid) Sea Ice Age dataset available from the National Snow and Ice Data
Center (NSIDC), and the Canadian Ice Service (CIS) charts, also available from the NSIDC. The MY
ice extent of the ASCAT/SSMIS classifications demonstrates an average difference of 282 thousand
km2 from that of the OSCAT classifications from 2009 to 2014. The difference is an average of 13.6% of
the OSCAT MY ice extent, which averaged 2.19 million km2 over the same period. Compared to the
ice classified as two years or older in the EASE-Grid Sea Ice Age dataset (EASE-2+) from 2009 to 2012,
the average difference is 617 thousand km2. The difference is an average of 22.8% of the EASE-2+
MY ice extent, which averaged 2.79 million km2 from 2009 to 2012. Comparison with the Canadian
Ice Service (CIS) charts shows that most ASCAT/SSMIS classifications of MY ice correspond to a
MY ice concentration of approximately 50% or greater in the CIS charts. The addition of the passive
SSMIS data appears to improve classifications by mitigating misclassifications caused by ASCAT’s
sensitivity to rough patches of ice which can appear similar to, but are not, MY ice.
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1. Introduction

The physical properties of Arctic sea ice evolve with each year of age, resulting in differences in
porosity, salinity, and roughness between first-year (FY) and multiyear (MY) sea ice. Such physical
differences produce a difference in the microwave signatures from FY and MY sea ice and enable
classification of sea ice type in the Arctic using microwave sensors.

Various algorithms have been devised for classification of sea ice type using active sensors,
passive sensors, or both. Scatterometer classification of FY and MY ice has been accomplished using
a threshold on the radar backscatter coefficient (σ0) [1–3], and techniques for ice classification using
synthetic aperture radar (SAR) have been explored and developed [4–7]. SAR has also been employed
to evaluate scatterometer classifications [3]. Passive microwave sensors have been used to classify
areas of MY ice [8–12] in addition to estimating the extent and concentration of sea ice [12,13]. In
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addition, fusion of both active and passive microwave sensor data has been employed to classify
ice type. Techniques for ice classification using a combination of QuikSCAT and AMSR-E data are
described by Shokr and Agnew [14] and Yu et al. [15], while Walker et al. [16] describe a method for ice
classification using QuikSCAT combined with NASA Team ice concentration data.

Efforts to develop effective techniques for remote sensing of sea ice are partly motivated by the
importance of sea ice and its effects on global climate and ocean dynamics. The insulating layer of sea
ice strongly reduces ocean-atmosphere heat exchange during the freezing season, and the high albedo
of sea ice also helps to regulate climate by reflecting electromagnetic energy from the sun back into
space. The decline of sea ice area can impact atmospheric circulation [17], leading to changing weather
patterns [18]. Changes in sea ice cover can also lead to changes in ocean current patterns [19].

Large changes to MY ice coverage over the Arctic within recent decades also motivate the
continued monitoring of the composition and extent of Arctic sea ice. Within the past decades,
coverage of MY ice has declined [11] and Arctic ice has become younger overall [20]. As MY ice tends
to be thicker than FY ice, it is suggested that the total sea ice volume has decreased [21]. Ice type
classifications can contribute to studies of Arctic ice volume, having application in altimetry-based ice
thickness modeling [22].

Previous ice type classification records have been developed using the SeaWinds scatterometer
instrument on the QuikSCAT satellite and the scatterometer onboard the Indian Space Research
Organization Oceansat-2 (OSCAT) [1–3], though as of 2009 and 2014, respectively, these sensors are no
longer fully operational. Extending the scatterometer classification data record beyond 2014 requires
use of another sensor. Lack of a currently operational polar-orbiting Ku-band active sensor with
readily available data motivates the use of the C-band Advanced Scatterometer (ASCAT), which was
launched in 2006 aboard the MetOp-A platform by the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) and continues to operate [23–25].

In general, the lower frequency of the ASCAT sensor at 40 degrees incidence angle (V-polarized)
compared to OSCAT or QuikSCAT at 57.6 and 54 degrees incidence angle (V-polarized) results in σ0

measurements that are less sensitive to differences between FY and MY ice. At Ku-band wavelengths
(2.24 cm for QuikSCAT/OSCAT), volume scattering from air pockets in porous MY ice results in higher
σ0 values than from FY ice. At C-band, such air pockets are small relative to the wavelength (5.7 cm
for ASCAT) and so lower σ0 values are observed [26]. FY ice exhibits lower σ0 values relative to MY
ice in part because of a higher brine content which increases electromagnetic absorption and reduces
backscatter [27]. Hence the separation between FY and MY ice σ0 is typically smaller at C-band than at
Ku-band. Ice classification at C-band is also complicated by high sensitivity, relative to Ku-band, to
rough surface features: backscatter from rough, fractured ice near the ice edge can appear similar to
backscatter from MY ice [23]. Though the incidence angles between the sensors differ, the slope of the
sea ice backscatter response versus incidence angle at Ku-band is similar to the slope at C-band across
the range of incidence angles from 40 to 60 degrees [26], so the effect of the difference in incidence
angle is small relative to the effect of the difference in frequency.

In an attempt to compensate for decreased sensitivity at C-band and to increase the information
available to the classification algorithm, we exploit data from the 37 GHz channel of the Special Sensor
Microwave Imager/Sounder (SSMIS) to aid in distinguishing distributions of FY and MY ice. SSMIS is
a passive microwave radiometer first launched aboard the Defense Meteorological Satellite Program
(DMSP) F-16 satellite in 2003. The sensor is currently operational aboard the DMSP F-16, F-17, and
F-18 satellites.

SSMIS measures the brightness temperature, or intensity of the microwave energy emitted by
the earth. During the winter season, FY and MY Arctic sea ice can be discriminated by brightness
temperature because of their differing emissivities [11]. The high salinity content of FY ice relative
to MY ice results in increased absorption of electromagnetic energy in FY ice and susceptibility to
scattering in MY ice [11]. The scattering of electromagnetic energy by air pockets in porous MY ice
leads to low emissivity, while FY is typified by high emissivity [28,29].
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This paper describes how a combination of ASCAT and SSMIS data can be used to classify FY and
MY ice in the Arctic using a Bayesian estimator. The remainder of the paper is organized as follows:
Section 2 provides the methodology, Section 3 provides results, and Section 4 concludes.

2. Methodology

The winter season backscatter properties of sea ice at Ku-band result in a bimodal distribution of
σ0 measurements over the Arctic with the distribution modes representing FY and MY ice occurring
between approximately −25 and −18 dB and −12 and −10 dB, respectively [1]. To illustrate the
separation of FY and MY ice at Ku-band and C-band, time series of daily σ0 histograms from resolution
enhanced QuikSCAT and ASCAT data at 40 degrees incidence angle are shown in Figure 1. The data
are obtained from the Scatterometer Climate Record Pathfinder [30]. Histograms of σ0 are produced
for each day and concatenated together to create the time series. Only Arctic σ0 values from within the
sea ice extent are used, where the extent is identified by a 40% threshold on a daily NASA Team sea ice
concentration product [31]. Data are shown for the winters of 2000/2001 and 2001/2002 for QuikSCAT
and 2010/2011 and 2011/2012 for ASCAT.

Figure 1. Time series of daily histograms for QuikSCAT (top row) for the winters of 2000/2001 and
2001/2002 and ASCAT (bottom row) for the winters of 2010/2011 and 2011/2012. The QuikSCAT
distribution demonstrates a separation of modes corresponding to FY ice and MY ice, whereas the
ASCAT distribution does not clearly demonstrate such separation. Each histogram in the time series is
normalized by its maximum bin count.

In the figure, the backscatter distributions are shown from day of year 287 to 141 of the next year.
Classifications of sea ice are completed for days 284 to 134 of the next year; they are not completed
during the summer melt because the backscatter signatures of FY and MY ice become similar, resulting
in poor ice classification results. In the QuikSCAT histograms, regions of high bin count for σ0 greater
than −12 dB and less than −17 dB can be identified and correspond to distributions of MY and FY ice,
respectively [1,2].

The QuikSCAT and OSCAT ice classifications [2] use a threshold fitted to a minimum histogram
bin count between FY and MY ice distributions in a time series of histograms (as in Figure 1) to
classify ice as FY or MY. In this classification scheme, pixels with σ0 measurements above the threshold
are classified as MY ice, and those with measurements below the threshold are classified as FY ice.
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While a region of minimum bin count between the two modes can be easily observed in the QuikSCAT
histograms, in the ASCAT histograms, two separate regions of high bin count which can be associated
with FY and MY ice cannot be identified. As distributions of MY and FY ice are not as separated in
the ASCAT histograms as in the QuikSCAT histograms, the thresholding method used by Swan and
Long [1] and Lindell and Long [2] to classify FY and MY ice may not be as effective for ASCAT as it
was for the Ku-band sensors, QuikSCAT and OSCAT. Rather than continuing the QuikSCAT/OSCAT
ice classification record with ASCAT using the same classification methodology as [2], we show how a
Bayesian classification algorithm, which uses data from ASCAT and SSMIS, can be used to classify
ice type.

2.1. Sensor Information

A summary of the characteristics of the ASCAT and SSMIS sensors is shown in Table 1. The ASCAT
sensor is a fan beam scatterometer launched in 2006 into a sun-synchronous near-polar orbit.
It operates at 5.255 GHz (C-band) and continues to deliver near-global daily coverage. The SSMIS
sensor is a passive microwave radiometer and was launched aboard the Defense Meteorological
Satellite Program (DMSP) F-16, F-17, and F-18 platforms in 2003, 2006, and 2009. SSMIS operates at
24 different frequency channels and can collect atmospheric temperature measurements and brightness
temperature measurements at a number of different polarizations and frequencies. In this study, data
from SSMIS aboard the F-17 platform are used because it provides measurements for the full period of
the ASCAT mission.

Table 1. Characteristics of the Advanced Scatterometer (ASCAT) and Special Sensor Microwave
Imager/Sounder (SSMIS).

Parameter ASCAT SSMIS

Organization
European Organization for the Defense Meteorological
Exploitation of Meteorological Satellite

Satellites (EUMETSAT) Program (DMSP)

Frequency Channels 5.255 GHz (V-pol) 37 GHz (V-pol) *

Orbital Period 101 min 102 min (F-17)

Orbital Inclination 98.7◦ 98.8◦

Ascending Node Local Time 9:30 p.m. 5:31 p.m.

Satellite Altitude 817 km 850 km

Start Date 19 October 2006 4 November 2006

Incidence Angle Various 53.1 degrees

Swath Width
Two 500 km-wide

1707 kmswaths separated by a 360 km-wide
nadir gap

Footprint Size ≈ 19–35 km × 500 km† 70 × 45 km (19.35 GHz)
38 × 30 km (37 GHz)

Image Resolution 4.45 km per pixel ‡ 25 km per pixel

* Frequency channel and polarization used in this paper. SSMIS has frequency channels ranging from 19.35
to 183.311 GHz at various polarizations. † Area illuminated by the fan beam. Range-Doppler processing
results in measurements from smaller footprints within the total illuminated area. The size of and shape of
the range-Doppler footprints vary across the swath but are generally elliptical with dimensions to the −3 dB
level on the order of 5 × 40 km [32,33]. ‡ Enhanced-resolution (4.45 km per pixel) data are obtained from the
Scatterometer Climate Record Pathfinder [30] and are provided as daily postings of two-day averaged σ0 data
normalized to 40 degrees incidence angle.
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2.2. Sensors and Data Sources

The new classification method is completed using data from ASCAT and from the 37 GHz
V-polarization (V) channel of SSMIS. The choice of frequency channel is motivated by the sensitivity to
differences between FY and MY ice. While the 19 GHz V and 19 GHz H-polarization (H) channels
are also available, the brightness temperature separation between FY and MY ice at these channels
is not as great as the 37 GHz channel. In the NASA Team algorithm [12], brightness temperature
measurements for known areas of 100% FY and MY ice are referred to as ice “tie-points” and are shown
in Table 2 [12].The table shows that the brightness temperatures of FY and MY ice are separated by
approximately 66.5 K for 37 GHz V, 38.9 K for 19 GHz H, and by 35 K for 19 GHz V.

Table 2. NASA Team Tie Points.

Frequency Polarization Ice Type Brightness Temperature

19 GHz
V FY 258.2 K

MY 223.2 K

H FY 242.8 K
MY 203.9 K

37 GHz V FY 252.8 K
MY 186.3 K

SSMIS data are obtained from the National Snow and Ice Data Center (NSIDC) [34], which
provides daily average Arctic brightness temperature images on a 25 km/pixel resolution grid in a
polar stereographic projection. To improve the detection of high-resolution features in the FY and
MY ice classifications, we incorporate the enhanced resolution ASCAT data [30] and interpolate the
SSMIS data onto the ASCAT 4.45 km/pixel grid in the polar stereographic projection. Though a
technique for resolution enhancement of radiometer data [35] has been applied to data from the Special
Sensor Imager (SSM/I) and the Advanced Microwave Scanning Radiometer-Earth Observing System
(AMSR-E), the resulting datasets do not contain data for years after 2011 [30]. We therefore choose to
combine the nominal resolution SSMIS data, which are available for the extent of the ASCAT dataset,
with the resolution-enhanced ASCAT data.

ASCAT enhanced-resolution data are obtained from the Scatterometer Climate Record
Pathfinder [30], which provides daily postings of two-day averaged ASCAT Arctic σ0 data normalized
to 40 degrees incidence angle and gridded at 4.45 km/pixel resolution in a polar stereographic
projection. The enhanced resolution data are produced using the Scatterometer Image Reconstruction
(SIR) algorithm [36], a modified algebraic image reconstruction technique which employs the sampling
geometry and spatial response function (SRF) of the ASCAT sensor [37]. The SRF describes the
contribution of each area within the antenna footprint to the measured value of σ0. Each ASCAT
measurement represents an integration of σ0 weighted by the spatial response function over the area
illuminated by the antenna. For a fine pixel grid, the area illuminated by the antenna encompasses
multiple pixels, so if the SRF is known for a given measurement, information about multiple pixel
values can be inferred from the single measurement. The SIR algorithm exploits knowledge of the
ASCAT spatial response function to reconstruct σ0 onto a fine pixel grid.

The two-day averaged reconstructed ASCAT data provide full coverage of the Arctic. As multiple
passes of data are required, it is assumed that the backscatter does not change substantially over the
time the measurements are taken.

Example Arctic sea ice data from ASCAT and SSMIS for arbitrarily selected day of year 61, 2011
are shown in Figure 2. The main areas of MY ice can be visually identified by locating areas containing
higher σ0 values and lower brightness temperatures compared to the rest of the ice extent.
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Figure 2. Example images of ASCAT σ0 values and brightness temperatures for day of year 61, 2011
from the 37 GHz (V) channel of SSMIS over the Arctic. Areas of open water and land are masked as
light yellow or black, respectively. The areas of MY ice correspond generally to the areas of high σ0

values and low brightness temperature (Tb) values.

Following the QuikSCAT/OSCAT classification scheme [2], the area of classification is restricted to
within the ice extent by applying a 40% threshold to a daily NASA Team ice concentration product [31].
The NASA Team product was selected because of its consistent performance [38] and the long time
series of available data, which continue to be published. Data from pixels in the ASCAT and SSMIS
37 GHz products which fall within the 40% ice extent are collocated and classified as FY or MY ice.
Ice types are classified using a Bayesian estimator where the likelihood and a priori probabilities are
initialized at the beginning of winter using the ASCAT/SSMIS classifications from the previous winter
and then updated iteratively as subsequent classifications are processed.

2.3. Comparison Datasets

The classification results are compared to classifications of MY and FY ice using OSCAT [2] and to
classifications from two other datasets: the EASE-Grid Sea Ice Age dataset [39], and the Canadian Ice
Service (CIS) Arctic Regional Sea Ice Charts [40]. Both datasets are provided by the NSIDC.

The EASE-Grid Sea Ice Age dataset is produced from 1979 onward and reports the age of sea ice
in years on a 12.5 km/pixel Equal-Area Scalable Earth (EASE) grid. The ice age estimates are produced
using sea ice motion vectors derived from a Lagrangian tracking procedure [41,42]. The trajectories
of grid cells containing ice are estimated over the years, and the age of tracked ice is recorded. For
comparison with the ASCAT/SSMIS classifications, the extent of MY ice in the EASE-Grid Sea Ice Age
dataset is calculated by interpolating the ice age data onto the ASCAT/SSMIS grid and summing the
area of the grid cells with ice age labels of two years or greater.

An analysis of tracking error has been completed by Kwok et al., who use motion vectors derived
from SSM/I data to track ice parcels and compare the estimated trajectories to buoy motion trajectories
and trajectories derived from SAR data [43]. Though the dataset for which Kwok et al. complete
their analysis is independent from the EASE-Grid Sea Ice Age dataset, the results of the analysis are
instructive. They find the location error to be approximately 5 to 12 km per day; the errors do not
necessarily accumulate, as annual location error is on the order of 50–100 km [43]. In the EASE-Grid
product, similar tracking errors may exist, and the extent of older ice may be overrepresented because
each grid cell classification describes the oldest type of ice present and not necessarily the most
abundant type of ice [42]. We use the EASE-Grid Sea Ice Age product with the ASCAT/SSMIS
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classifications to compare the total extent of pixels classified as MY or FY ice. As the comparison deals
with extent rather than location, it should be relatively insensitive to the errors in ice location tracking.

The CIS charts are prepared by the Canadian Ice Service and are typically available at weekly
intervals from the year 2006 onward [40]. Each ice chart is prepared manually from inspection of in situ
observations and from satellite data [44]. Charts are prepared with data from up to 72 hours prior to
the reported date.

Ice charts are produced for different regions of the Canadian Arctic, including the Western Arctic,
Eastern Arctic, the Hudson bay, the Great Lakes, and the East Coast. As the Western Arctic region has
the most overlap with the ASCAT/SSMIS classifications, it is selected for comparison.

Various characteristics of ice are reported in the charts, including the total ice concentration,
ice form, and stage of development. In each region, the charts outline subregions of approximately
homogeneous ice properties. Total ice concentration is reported, as well as properties of the three
thickest ice types: the partial ice concentration, the stage of development or thickness, and the ice form
or floe size. The sum of the three reported partial ice concentrations is always less than or equal to the
reported total ice concentration.

To compare the ASCAT/SSMIS classifications to the CIS charts, we identify areas of total ice
concentration greater than 40% in the CIS charts and follow the procedure of Swan and Long [1]. All ice
stages having survived at least one melt season in the CIS charts (second-year ice, MY ice, and old ice)
are grouped as MY ice, while all other ice types are grouped as FY ice. For each subregion detailed in a
given CIS chart, the three ice types are identified as FY or MY ice and their concentrations are summed
to determine a FY and MY ice concentration. The CIS chart subregions are defined by polygons (using
latitude and longitude points), so we collocate the CIS chart data with the ASCAT/SSMIS classifications
by identifying pixels on the ASCAT/SSMIS grid which fall within each polygon. The ASCAT/SSMIS
classifications can then be compared to the CIS chart subregions, and the MY and FY ice concentrations
are observed for which ice is typically classified as FY or MY using ASCAT/SSMIS.

2.4. ASCAT/SSMIS Classification

The classification of FY and MY ice with ASCAT and SSMIS uses a Bayesian decision model.
The classification is completed by iterating over all pixels within the ice extent and using the decision
model to select FY or MY ice. The input to the decision function is a measurement column vector, x,
which is given as

x = [ASCATσ0 , SSMIS37]
T , (1)

where x consists of an ASCAT σ0 measurement and an SSMIS 37 GHz brightness temperature
measurement of the same pixel; the SSMIS data are from the first of the two days corresponding
to the ASCAT σ0 measurement.

The Bayesian classification decides whether the probability of FY ice (IFY) given the measurement
vector x is greater than the probability of MY ice (IMY) given x, or

P(IMY|x) ≷ P(IFY|x). (2)

Using Bayes’ rule, an equivalent decision is derived in terms of the FY and MY ice distributions:
the probabilities of x with the assumption that x is an observation of FY or MY ice, or

P(x|IMY)P(IMY) ≷ P(x|IFY)P(IFY), (3)

which can be practically implemented.
The multivariate normal expression used for the probabilistic model is given as

f (x) =
1√

(2π)3|S|
e−

1
2 (x−µT)S−1(x−µ), (4)
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where S is the data covariance matrix, |S| is the determinant of S, and µ is the mean vector.
The probabilities P(x|IFY) and P(x|IMY) are determined by evaluating f (x) where S and µ are
estimated for FY and MY ice from σ0 and brightness temperature measurements of FY and MY ice.

The distributions of FY and MY ice can be observed by visually inspecting scatterplots of
brightness temperature and σ0 values from the sensors. Joint scatterplots/2D histograms are shown
in Figure 3 for data from day of year 61, 2011. The joint scatterplots/2D histograms plot ASCAT σ0

versus SSMIS 37 GHz data points. In areas where the scatterplot point density is too great to be able to
discern individual points, a 2D histogram is used. The distributions of FY and MY ice are also plotted,
using the OSCAT ice type classifications to identify pixels corresponding to FY or MY ice [2]. The plots
show that distributions of FY and MY ice are moderately separated, motivating the use of the Bayesian
decision model for classification.

Figure 3. Joint scatterplots/2D histograms of ASCAT σ0 values and SSMIS brightness temperatures
(Tb) for day of year 61, 2011. When the density of the scatterplot becomes too great to be able to discern
individual points, the density is shown in a 2D histogram. For the 2D histogram, bin sizes are 0.5 dB by
1 K. Scatterplots/2D histograms of MY ice, FY ice, and both (all ice) are shown from left to right. The
distributions of brightness temperatures and σ0 corresponding to FY and MY ice are derived using the
OSCAT ice type classifications [2].

The first ice classifications are processed for day of year 284, 2009 using the QuikSCAT
classifications [2] to identify the areas of FY and MY ice in the ASCAT and SSMIS data. Areas of FY and
MY ice are identified for days 284 to 289, 2009, and the mean and covariance values of the brightness
temperature and σ0 measurements from regions occupied by FY and MY ice are used to calculate
P(x|IFY) and P(x|IMY) and initialize the processing. The probabilities of FY and MY ice (P(IFY) and
P(IMY)) are also calculated from these data by calculating number of pixels classified as FY or MY ice
divided by the total number of pixels within the ice extent.

Using the calculated mean, covariance values, and probability values, the first classification of
grid cells as FY and MY ice is carried out for day of year 284, 2009 using the ASCAT/SSMIS data.
Completed classifications are used to recalculate the mean, covariance, and probability values for FY
and MY ice, and an average of the calculated statistics for the five previously classified days are used
for successive classifications. After the first five classifications are completed, the statistics used to
initialize classifications for day of year 284 are no longer used. At that point, classifications rely on the
statistics generated from the classifications for days after day 284. This initial procedure is repeated for
every year after 2009. Instead of using OSCAT results for the initialization, however, ASCAT/SSMIS
data and classifications from the previous year are used to initialize the statistics and probabilities.
As ice is not classified during the summer melt, and classifications begin on day of year 284, we choose
to use the prior year’s statistical and probabilistic data, or a priori data, to re-initialize the processing.



Remote Sens. 2016, 8, 294 9 of 19

Some days in the ASCAT and SSMIS datasets have gaps or are missing data. Data from these
days are not used to update the a priori data used for classification. Instead, subsequent classifications
rely on the a priori data from the five previously completed classifications where no data was missing.

In the marginal ice zone (MIZ), the area at the interface between sea ice and open water, ocean
dynamics can result in rough, broken patches of sea ice, leading to areas of increased backscatter near
the sea ice edge. Areas of MY ice are typically characterized by greater backscatter levels than FY
ice, and such high backscatter levels from ocean regions near the ice edge can result in erroneous MY
ice classification. The ASCAT sensor is sensitive to such areas of rough or broken ice, and so using
data from the ASCAT sensor alone to complete the classifications becomes impractical as the Bayesian
parameters quickly become corrupted by ice misclassifications, leading to more and more errors.
Addition of the SSMIS data mitigates the amount of misclassified ice and provides more information
for the Bayesian estimator; however, some areas of misclassified ice remain near the ice edge. To further
reduce such areas of misclassified ice, we employ a two-step correction procedure. We embed the first
step of the correction procedure in the Bayesian approach by introducing cost functions. In the second
step, after the initial classifications are completed, we employ the MIZ correction algorithm described
in [2]. The MIZ correction algorithm identifies main areas of MY ice which are consistent from day to
day and reclassifies transient areas of MY ice outside the main area of MY ice to FY ice.

To mitigate the apparent misclassifications, cost functions, CFY and CMY, are introduced to
the Bayesian decision model and updated for each day of classification. The main areas of MY ice
are identified by selecting all grid cells which fall into an area given by the boundary between FY
and MY ice contracted by approximately 65 km (15 grid cell lengths) away from the FY ice region.
Similarly, main areas of FY ice are identified by selecting all grid cells which fall into an area given by
the same boundary but contracted by 65 km away from the MY ice region. The 65 km distance on each
side of the FY/MY ice boundary is assumed to adequately allow for possible movement of areas of
FY and MY ice from day to day. For the initial classification (before boundaries of FY and MY ice are
known), the cost functions are set to a value of one and have no effect on the classifications.

After the initial classification, the cost function CMY is set to a high value (near unity) for pixels
within the main area of MY ice, as identified by the contraction operation described previously.
For areas within the main area of FY ice, CMY is set to a low value (near zero). The cost function CFY is
set in a similar fashion for pixels within and without main areas of FY ice. For areas near the FY/MY
boundary, the cost functions take on a value of one, and so have no effect. The cost functions are binary,
and so only take on one of the two values for a given pixel. With the addition of the cost functions, the
Bayesian decision model becomes

P(x|IMY)P(IMY)CMY ≷ P(x|IFY)P(IFY)CFY, (5)

and this model is used for ice classification.
As an experiment, the Bayesian algorithm is also used to process classifications using ASCAT

data only and SSMIS 37 GHz data only. For these classifications, we use the same procedure as
for ASCAT/SSMIS, except that Equation (1) is modified to contain the appropriate measurements,
and the normal probability density function (Equation (4)) is changed to the univariate case.
For the ASCAT-only classifications, we incorporate the corrections for MIZ misclassifications. Such
misclassifications do not appear in the SSMIS-only classifications, so we incorporate neither the cost
functions nor the MIZ correction algorithm. While the SSMIS classifications are comparable to the
ASCAT/SSMIS classifications, using the Bayesian estimator with ASCAT-only data produces untenable
results. For the ASCAT-only case, misclassifications appear despite the cost functions and corrupt the
a priori probabilities, leading to increasing error in the classifications.
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3. Results and Discussion

The decision model is applied to data for the years 2009 to 2014 to create classification images for
each day. The ASCAT/SSMIS classifications are compared to the OSCAT classifications [2], the CIS
charts [40], and the EASE-Grid Sea Ice Age dataset [39]. The CIS charts are used to find the typical
concentration of MY ice for which an area of ice is classified as MY using ASCAT/SSMIS. A time
series analysis of annual minimum total ice extent and MY ice extent is also completed using extent
data from the ASCAT/SSMIS classifications, OSCAT classifications, and the EASE-Grid Sea Ice Age
dataset [39]. Extent data are also included for classifications processed using the same methodology as
the ASCAT/SSMIS classifications, but only using SSMIS data for comparison.

Example classification images for day of year 61 of years 2010, 2011, and 2012 are shown in Figure 4;
we select this day of year arbitrarily because the images are representative of typical ASCAT/SSMIS
classification results. The images also provide a comparison to the OSCAT classifications for the same
days. Differences between the ASCAT/SSMIS and OSCAT classifications are occur noticeably in the
central Arctic, in the Greenland Sea, and, in the 2012 image, near the sea ice edge at approximately
60 degrees east longitude.

Figure 4. Example ice classification images from day of year 61 for years 2010, 2011, and 2012.
The ASCAT/SSMIS classifications are compared to the OSCAT classifications and the differences
are highlighted. Areas classified as MY in the ASCAT/SSMIS classifications but not by OSCAT are
highlighted in pink. Areas classified as MY in the OSCAT classifications but not by ASCAT/SSMIS are
highlighted in red.

In the central Arctic, the ASCAT/SSMIS classifications of MY ice frequently extend beyond the area
classified with OSCAT. This difference may be due to a difference in the sensitivity of the classification
algorithms to different concentrations of MY ice. To determine the typical concentration of MY ice
for which an area of ice is classified as MY using ASCAT/SSMIS, we compare the ASCAT/SSMIS
classifications to the CIS charts in an analysis described later in the section.

Differences also appear in Figure 4 near the east coast of Greenland, where the OSCAT
classifications classify MY ice which is classified as FY with ASCAT/SSMIS. To investigate the
classification differences in the Greenland Sea, classifications with ASCAT/SSMIS, SSMIS-only, OSCAT,
and from the EASE-Grid Sea Ice Age product are analyzed for the time period around day of year 61,
2011. Figure 5 shows sample classification images for days of year 59, 61, and 62 (day of year 60 is
omitted because of a gap in the OSCAT data). Within each classification method, the classifications
appear to be consistent across the days shown, and only small changes are visible between days as
expected. Note that while the EASE-Grid Sea Ice Age product reports large areas of MY ice extending
south to approximately 75 degrees N latitude, only the OSCAT classifications classify large areas of
MY ice south of approximately 81 degrees N latitude. The cause of the classification differences in
the Greenland Sea is not readily apparent. It seems unlikely that the MIZ correction steps cause the
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differences because both the ASCAT/SSMIS classifications, which incorporate the correction steps,
and the SSMIS-only classifications, which do not incorporate the correction steps, demonstrate similar
behavior in the Greenland Sea. We are unable to determine the precise cause of the Greenland Sea
classification differences, though the variability of Greenland sea ice composition and the ice fraction
sensitivity differences between the classification algorithms are possible contributing factors.

Figure 5. Collection of ice classifications from the EASE-Grid Sea Ice Age product (top), ASCAT/SSMIS
(second row), SSMIS (third row), and OSCAT (fourth row). The EASE-Grid product is provided weekly
and is here shown for days of year 57 to 63, 2011. The other classification images are shown for days of
year 59, 61, and 62, 2011. Data from day of year 60 are omitted because of a gap in the OSCAT data.

On day of year 61, 2012, Figure 4 shows that the OSCAT classifications classify a patch of ice
near the ice edge as MY ice despite the correction algorithm. When areas of high backscatter near the
ice edge persist for several days, the effectiveness of the correction algorithm is decreased and such
misclassifications can remain [2].
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3.1. CIS Chart Comparison

The ASCAT/SSMIS classifications are compared to the CIS charts for the region of the Western
Arctic. Figure 6 shows the ASCAT/SSMIS classifications for arbitrarily selected day of year 2, 2011
and the same classifications with the CIS chart classifications from day of year 3, 2011 overlaid. As
data for up to 72 h prior to the reported date are used to create the CIS charts, we choose a single-day
offset for the comparison. In the figure, the CIS chart data indicate the fraction of MY ice derived
from summing reported fractions of 2nd-year ice, MY ice, and old ice. The areas of same MY ice
concentration in the CIS chart overlay are identified by a red outline. Visual comparison of the plots
shows that the ASCAT/SSMIS classifications of MY ice correspond to areas of approximately 50% MY
ice concentration or greater as indicated by the CIS chart data.

Figure 6. Images of ASCAT/SSMIS ice classifications for day of year 2, 2011 (left), and CIS chart
classifications for day of year 3, 2011 overlaid on the ASCAT/SSMIS classifications (right). The data
dates are offset because CIS charts are constructed using data retrieved up to 72 h prior to the reported
date. In the right image, areas of the same CIS chart classification are enclosed by a red line.

A further analysis is conducted using CIS chart data from 2010, 2011, and 2012 to estimate the
probability that ice is classified as FY or MY for different ice fraction values. For days on which both
ASCAT/SSMIS classifications and CIS chart classifications are available, pixels classified as MY ice
using ASCAT/SSMIS are collocated with the CIS chart classifications of MY ice fraction and FY ice
fraction to produce histograms of ASCAT/SSMIS MY ice pixel count and FY ice pixel count versus CIS
chart MY and FY ice fraction. The histograms are normalized by the total pixel count of each MY/FY
ice fraction histogram bin. The total pixel count is computed for each bin by adding the number of
pixels in each bin classified as FY ice and as MY ice. The MY/FY ice fraction bin totals are rescaled so
that they sum to one, forming a probability distribution. Using this method, the probability functions
are also estimated for the SSMIS-only and OSCAT classifications.

The resulting probability distributions are shown in Figure 7. The figure shows that for most
pixels classified as MY ice using ASCAT/SSMIS, the corresponding CIS chart concentrations of MY
and FY ice are usually greater than 50% and less than 40%, respectively. FY ice classifications are
approximately uniform in probability over FY ice fractions of 50% to 100% and MY ice fractions
of 0% to 50%. The relationship between the MY and FY ice fraction classification probabilities is
approximately inverse: where the FY ice fraction probabilities are large for MY ice classification,
the FY ice fraction probabilities are small for FY ice classification, and the same for MY ice fraction
probabilities. The inverse relationship results from the binary nature of the classifications. Overall, the
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classifiers appear to have a greater MY ice fraction threshold for MY ice classification than FY ice
fraction threshold for FY ice classification.

Figure 7. Probability distributions of ice classified as MY (top) and FY (bottom) with ASCAT/SSMIS
(left), SSMIS-only (middle), and OSCAT (right) versus the CIS chart fractions of FY and MY ice. Most
ASCAT/SSMIS pixels classified as MY ice (MYI) correspond to a MYI fraction of approximately 50% or
greater and a FY ice (FYI) fraction of approximately 40% or less in the CIS charts.

The probability plots also demonstrate differences in behavior between the ASCAT/SSMIS,
SSMIS-only, and OSCAT classifications. The ASCAT/SSMIS classifications appear to be the most
restrictive in that they classify ice of a lower MY ice fraction as MY less often than the other classifiers.
The SSMIS-only classifications are similar to the ASCAT/SSMIS classifications, though they classify
more MY ice areas of a low MY ice fraction. The OSCAT classifications demonstrate a sharper MY ice
classification threshold than ASCAT/SSMIS or SSMIS-only, with a lower probability of classifying MY
ice in areas with a MY ice fraction lower than 60%.

3.2. Ice Extent Time Series

A time series of total ice extent and MY ice extent from ASCAT/SSMIS, SSMIS only, OSCAT, and
the EASE-Grid Sea Ice Age datasets is shown in Figure 8. In each case, the MY ice extent is determined
by summing the area of grid cells classified as MY ice. Similarly to [2], we do not include grid cells
of the pole hole (black disc in Figure 4), which extends from 87 to 90 degrees N latitude over an
area of 364 thousand km2. The grid area for each pixel is determined using the Scatterometer Image
Reconstruction grid area file for the north polar stereographic projection. The area file is available
from the Scatterometer Climate Record Pathfinder FTP site [30]. As a measure of the uncertainty in
the classifications, we calculate the standard deviation of the MY ice extent values for ASCAT/SSMIS
using a sliding window of 60 days of extent values. The standard deviation values are too small to
be easily observed on the plot, and so are not included. The average value of the calculated standard
deviations is 192 thousand km2 with a standard deviation of 80 thousand km2. The 60-day window
standard deviation values are typically lower (around 100 to 160 thousand km2) during the beginning
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of winter and then may increase to between 250 and 350 thousand km2 in the middle of winter and
again at the very end of winter.

Figure 8. Time series of minimum total ice extent and MY ice extent. Plots are shown of the MY ice
extent from SSMIS-only, ASCAT/SSMIS, and OSCAT ice classifications, as well as the extent of old ice
including (EASE 2+) and excluding (EASE 3+) second-year ice as taken from the NSIDC EASE-Grid
Sea Ice Age dataset. The annual total ice extent minima are calculated using a 40% ice concentration ice
edge as reported by a NASA Team ice concentration product [31]. The average standard deviation for
the ASCAT/SSMIS MY extent over 60-day windows is 192 thousand km2.

In the EASE-Grid Sea Ice Age dataset, the age of sea ice is classified by year using integer values
from one to ten. MY ice areas including (EASE 2+) and excluding (EASE 3+) second-year ice are
identified by summing the area of all grid cells classified with a value of two or greater and three or
greater. Again, grid cells within the pole hole are omitted. Both EASE-Grid Sea Ice Age groups are
included for comparison with the ASCAT/SSMIS, SSMIS-only, and OSCAT ice classifications. We
note that the EASE-Grid Sea Ice Age data are available only through 2012, so data for years after are
not included.

The total extent of MY ice appears to decrease from the winters of 2009 to 2013, followed by a
recovery in 2014. Other studies have similarly reported a decline in MY ice [2,11] and recovery in
2014 [45]. Total MY ice extent levels appear to follow roughly the same cycle from the winters of 2009
to 2013. Following the winter of 2012/2013, MY ice extent levels do not drop to the low levels observed
in previous years (below 1 million km2), and vary from approximately 2 to 3.5 million km2 during
the majority of the winter. From 2009 to 2014, the MY ice extent of the ASCAT/SSMIS classifications
demonstrates an average difference of 282 thousand km2 from that of the OSCAT classifications. The
difference is an average of 13.6% of the OSCAT MY ice extent, which averaged 2.19 million km2 over
the same period. Compared to the EASE-2+ classifications from 2009 to 2012, the average difference
is 617 thousand km2. The difference is an average of 22.8% of the EASE-2+ MY ice extent, which
averaged 2.79 million km2 from 2009 to 2012.

In Figure 8, the ASCAT/SSMIS classifications show general agreement with the OSCAT
classifications, though some differences are apparent, including during the winters of 2009/2010
and 2010/2011 and near the end of each winter. Also, at the beginning of winters, increases in MY ice
extent appear, followed by a decrease. An increase in MY ice area is not physically supported as new
MY ice is not created during the winter, rather the area of MY ice decreases.

During the first two winters shown in Figure 7, the differences in MY ice extent are mainly due to a
difference in ice classifications in the central Arctic where more MY ice is classified with ASCAT/SSMIS
than with OSCAT. Near the end of winter, the ASCAT/SSMIS classifications tend to drop sharply in
MY ice extent and become more sporadic, with large changes in the classifications from day to day.
The rapid decline in the extent of classified MY ice could result from changing microwave signatures
of ice at the onset of the summer melt.

The MY ice extent increases during the beginning of winter could correspond to areas of high MY
ice concentration becoming spread out during events of divergent sea ice motion, resulting in greater
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areas of diffuse MY ice, which continue to be classified as MY ice with ASCAT/SSMIS. Though the
area of MY ice does not increase throughout the winter, the extent of MY ice could increase through
such a process. Other factors which cause FY ice to appear similar to MY ice could contribute to an
increased area of MY ice classification. Such factors include deformation of FY ice, which can increase
σ0 at C-band due to the increase in surface roughness [23], and deep snow, which can cause a decrease
in brightness temperature at 37 GHz [28]. Note that the 37 GHz and 18 or 19 GHz channels (V) have
been used to retrieve snow depth on FY ice [46,47]. More work is required to determine the precise
physical cause of the MY extent increase at the beginning of winter.

The variability in the MY ice extent of the ASCAT/SSMIS classifications may be caused by
the changing parameters of the Bayesian classifier, which result in greater variation of the FY/MY
boundary than for the ice motion vector tracking method of the EASE-Grid Sea Ice Age product.
ASCAT/SSMIS classifications in the Greenland Sea can change rapidly from day to day and contribute
to the variability observed in the MY ice extent. Further investigation of the classification algorithm is
required to determine the cause of the variability.

The SSMIS-only classifications appear very similar to the ASCAT/SSMIS classifications, which
suggests that ASCAT data does not add too much new information. Comparing the MY ice extents of
the two classification methods in Figure 8 shows that the ASCAT/SSMIS classifications are slightly less
variable in some periods and tend not to increase at the end of the year as the SSMIS-only classifications
do in a few cases. A zoom-in comparison of classifications for day of year 2, 2011 in Figure 9 shows a
similar MY ice extent, but some finer resolution details are present in the ASCAT/SSMIS classifications
which are not present in the SSMIS-only classifications.

Figure 9. Zoom-in comparison of ASCAT/SSMIS and SSMIS-only ice classifications for day of
year 2, 2011. In some areas, the ASCAT/SSMIS classifications contain finer details than the SSMIS
classifications because of the inclusion of enhanced-resolution ASCAT data.

The addition of SSMIS passive data is useful because it not only provides more information for
the Bayesian classifier, but also helps to compensate for the sensitivity of ASCAT σ0 to areas of broken
ice near the ice edge and reduce misclassification of ice. Using ASCAT data alone results in large
areas of misclassified ice near the ice edge that skew the Bayesian classification parameters as they are
updated using previous classifications, resulting in greater and greater amounts of error. A series of
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ASCAT-only classification images are shown in Figure 10 and shows that the classifications classify
a lesser and lesser area of MY ice until nearly all of the ice is classified as FY. Similar results are not
observed when including the SSMIS data.

Figure 10. Time series of ice classification images produced using ASCAT data only for the winter of
2009/2010. Images are labeled according to day of year and year. Misclassifications of ice near the ice
edge result in increasing classification errors until nearly all ice is classified as FY.

Differences between the ASCAT/SSMIS, SSMIS-only, OSCAT, and EASE-Grid ice classifications
can be evaluated by noting that the area of MY ice should decrease over the winter and drawing
comparisons between the rate of decrease in the EASE-Grid product and in the other classifications.
In the following, we note some observed trends and reflect on possible causes. (1) For the winter of
2009/2010, the ASCAT/SSMIS and SSMIS-only classifications show better agreement with the EASE-2+
MY extent than with EASE-3+ and are close in value to the OSCAT MY extent; (2) During 2010/2011,
ASCAT/SSMIS and SSMIS-only remain similar to EASE-2+ over the first half of the winter, but then
rapidly decline in MY extent. During the same period, OSCAT shows a decline in MY extent similar
to EASE-3+; (3) For the winters of 2011/2012, 2012/2013, and 2013/2014, the ASCAT/SSMIS and
SSMIS-only MY extent are more comparable to the OSCAT MY extent, which tends to approximate
EASE-3+ more than EASE-2+ in terms of value and the pace of the MY ice decrease over each winter.

During the winters of 2009/2010, the ASCAT/SSMIS, SSMIS-only, and OSCAT MY extent appears
to follow the EASE-2+ pace of extent decrease, though at the end of the winter, the SSMIS-only
and OSCAT MY extent demonstrates an increase which appears to be caused by melt effects; the
ASCAT/SSMIS extent shows a sharp decrease as classifications become sporadic from day to day,
possibly also because of melt effects.

Over the 2010/2011 winter, the OSCAT MY extent shows greater agreement with EASE-3+ while
ASCAT/SSMIS and SSMIS-only exhibit a sharper decline in MY extent than EASE-2+ or EASE-3+.
The rapid decline in MY extent for ASCAT/SSMIS and SSMIS-only appears to be caused by changing
classifications in the Greenland Sea. For the first half of the winter, nearly all of the ice in the Greenland
Sea is classified as MY; near the end of the winter, the Greenland Sea classifications become quite
variable and then begin to decrease rapidly in MY extent, leading to the rapid decline observed in the
total MY extent.

During the following winters of 2011/2012, 2012/2013, and 2013/2014, the ASCAT/SSMIS and
SSMIS-only MY extents generally agree with the OSCAT MY extent. During these winters, the
ASCAT/SSMIS and SSMIS-only classifications typically show better agreement with OSCAT during
the first half of the winter than for the second half. For the winter period of 2011/2012, the MY
extent in the central Arctic closely follows the OSCAT MY extent, but the total MY extent begins to
demonstrate greater differences after the beginning of 2012. While the OSCAT classifications continue
to classify MY ice in the Greenland Sea during the beginning of 2012, the ASCAT/SSMIS classifications
demonstrate a decline in the area of classified MY ice in the Greenland Sea, leading to the observed
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MY extent differences. Similar trends are observed for the winters of 2012/2013 and 2013/2014
where the ASCAT/SSMIS MY extent agrees with the OSCAT extent for the first half of the winter
before decreasing in the second half due to a decline in classified MY ice in the Greenland Sea. This
phenomenon is prominently displayed by the strong decline in MY ice extent at the beginning of 2014.
Overall, the rate of decline in the ASCAT/SSMIS MY extent in the central Arctic is comparable to both
OSCAT and EASE-3+.

4. Conclusions

Using a fusion of active and passive microwave data, FY and MY ice can be classified in the Arctic.
Comparison of ASCAT/SSMIS classifications to the CIS charts shows that areas of approximately 50%
or greater MY ice concentration in the CIS charts are typically classified as MY ice in the ASCAT/SSMIS
classifications. The extent of classified MY ice in the ASCAT/SSMIS classifications generally agrees
with that of OSCAT and demonstrates comparable declines in MY extent over the winter to what
is observed in the EASE-2+ and EASE-3+ classifications. Differences between the ASCAT/SSMIS
and OSCAT or EASE-2+/EASE-3+ classifications arise from the variability of the ASCAT/SSMIS
classifications in the Greenland Sea and from an increase in ASCAT/SSMIS MY extent which occurs
at the beginning of winters. As the cause of classification differences in the Greenland sea is not
apparent at this point; further investigation of the classification algorithm performance in that area
could be performed. More investigation is also required to determine the physical cause of the increase
in MY extent observed at the beginning of winters. Though the area of MY ice should not increase
throughout the winter, the extent increase of MY ice may be caused areas of high MY ice concentration
becoming spread out during events of divergent sea ice motion, resulting in a greater area of diffuse
MY ice, which continues to be classified as MY ice with ASCAT/SSMIS. The overall variability in the
ASCAT/SSMIS MY extent may be caused by the variation in the parameters of the Bayesian classifier,
which might vary substantially during the course of the winter.

The addition of the passive SSMIS data appears to improve classifications by mitigating
misclassifications caused by ASCAT’s sensitivity to rough patches of ice which can appear similar to,
but are not, MY ice. As the ASCAT and SSMIS sensors continue to operate, future work could be done
to reduce the variability in the MY ice extent of the classifications and to improve classification of MY
ice outside the main area of MY ice, especially in the Greenland Sea.
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