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Wind Field Model-Based Estimation of Seasat Scatterometer Winds
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A model-based approach to estimating near-surface wind fields over the ocean from Seasat
scatterometer (SASS) measurements is presented. The approach is a direct assimilation technique in
which wind field model parameters are estimated directly from the scatterometer measurements of the
radar backscatter of the ocean’s surface using maximum likelihood principles. The wind field estimate
is then computed from the estimated model parameters. The wind field model used in this approach is
based on geostrophic approximation and on simplistic assumptions about the wind field vorticity and
divergence but includes ageostrophic winds. Nine days of SASS data were processed to obtain unique
wind estimates. Comparisons in performance to the traditional two-step (point-wise wind retrieval
followed by ambiguity removal) wind estimate method and the model-based method are provided using
both simulated radar backscatter measurements and actual SASS measurements. In the latter case the
results are compared to wind fields determined using subjective ambiguity removal. While the
traditional approach results in missing measurements and reduced effective swath width due to fore/aft
beam cell coregistration problems, the model-based approach uses all available measurements to
increase the effective swath width and to reduce data gaps. The results reveal that the model-based
wind estimates have accuracy comparable to traditionally estimated winds with less “‘noise’’ in the
directional estimates, particularly at low wind speeds. In addition, wind fields generated using the
model-based procedure can be used to detect and correct ambiguity removal errors in ambiguity-
removed point-wise wind fields. A separate procedure, based only on the wind field model, can also

be used as a data quality check to detect errors in point-wise ambiguity removal.

1. INTRODUCTION

From measurements of the normalized radar backscatter
(¢®) made by the Seasat scatterometer (SASS) the near-
surface wind over the ocean can be inferred using a geophys-
ical model function relating o® and the vector wind (see, for
example, Freilich [1986), Jones et al. [1982], Ulaby et al.
[1981], and Wentz et al. [1984]). Previously, a point-wise
approach has been used to retrieve SASS winds. In point-
wise wind retrieval, only the ¢° measurements correspond-
ing to a particular sample point are used to estimate the wind
at that sample point. Because of the biharmonic nature of the
geophysical model function (the upwind o° is similar in value
to the downwind ¢°) the wind estimate is not unique; that is,
there are several wind vectors which ‘‘explain’ the mea-
surements. These vectors have similar magnitude but quite
different directions. To obtain a single wind vector estimate,
an ambiguity removal (sometimes termed *‘alias removal’” or
““dealiasing”’ in the literature) procedure is required. Ambi-
guity removal algorithms are typically based on ad hoc
considerations or pattern recognition and tend to be very
error-prone [Schroeder et al., 1985; Shaffer et al., 1991;
Wurtele et al., 1982]. While model-based ambiguity selection
algorithms have been developed [e.g., Atlas et al., 1987;
Hoffman, 1982}, these have some of the same limitations as
other alias removal techniques. Instead, in this paper a
model-based wind retrieval technique is used.

The model-based wind retrieval method estimates the
wind field over the entire swath by estimating the parameters
of a model of the underlying wind field directly from the
measurements of ¢°; that is, the ¢° measurements are
assimilated directly into the wind field model. This approach
can result in more accurate estimates of the wind over a
wider swath with fewer holes than point-wise estimates.
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While point-wise wind estimates can be used to initialize the
model-based retrieval in order to save computation, point-
wise ambiguity removal is not a requirement. Additionally,
the wind field divergence and vorticity are directly estimated
as part of the model-based wind retrieval process.

The feasibility of model-based wind retrieval for simulated
NASA scatterometer (NSCAT) measurements was first
shown by Long and Mendel [1990a, b]. In this paper the
method is applied to SASS data. A comparison of the wind
estimation performance of model-based and traditional wind
retrieval is provided. The relative advantages and limitations
of the method are considered in detail with illustrative
examples given. Nine days of SASS data for which subjec-
tive ambiguity removal is available [Wurtele et al., 1982]
were processed using the model-based wind retrieval tech-
nique. Detailed comparisons between the resultant wind
fields were made. The results demonstrate the utility of the
technique for SASS wind retrieval.

2. PoINT-WISE WIND RETRIEVAL USING
SASS o° MEASUREMENTS

SASS made 14.6-GHz measurements of o at two azimuth
angles 90° apart over a 500-km swath on each side of the
spacecraft ground track [Grantham et al., 1982]. Because of
the often low signal-to-noise ratios (SNR) the o° measure-
ments were noisy. In addition, the swath width covered by
each antenna varied along the orbit owing to the effects of
Earth’s rotation on the resolution-creating Doppler filters
which resulted in misregistration of the o° measurements
made by the fore- and aft-looking antennas [Naderi et al.,
1991]. Multiple measurements of o from different azimuth
angles are required to retrieve the wind in point-wise wind
retrieval; this results in a narrowing of the effective wind
measurement swath and numerous ‘‘holes’’ or missing mea-
surements in the estimated wind fields.

While the actual SASS measurements fall on an irregular

14,651



14,652

grid, for the purposes of this study the SASS measurements
were binned into a 50-km resolution grid. Each ¢° measure-
ment was assigned to the single grid element in which the ¢°
measurement center was located. The binned measurements
are treated as if they were located at the grid element
centers. The error introduced by this approximation is
considered negligible. We note that modern scatterometers
such as ERS 1 and the future NSCAT are designed to insure
that the o measurements will fall on a regular grid. While
some previous investigators {e.g., Wurtele et al., 1982] have
resampled the ¢° measurements onto a lower-resolution
100-km grid for point-wise wind retrieval, in this work a
50-km grid is used.

In point-wise wind retrieval, only the ¢° measurements
associated with a single grid element are used to retrieve the
wind for that grid element. For those grid elements for which
point-wise wind retrieval can be performed, there are from
two to four wind vector ambiguities (sometimes termed
““aliases’ in the literature) with similar speed but quite
different directions. For point-wise wind retrieval with only
two azimuth angle observations of ¢° there is insufficient
information in the o® measurements to indicate which of
these vector ambiguities corresponds to the ‘‘true’” wind;
that is, it is impossible to select a unique wind direction from
the o measurements at a single grid element alone; they are
all equally viable solutions. Note that this would be true
even if the ¢® measurements were noise free [Long and
Mendel, 1991]. Thus, to select a unique wind vector, addi-
tional information must be used. In traditional wind retrieval
this information is provided by looking at nearby wind
estimates and employing pattern recognition or other tech-
niques [Schroeder et al., 1985; Wurtele et al., 1982]. Modern
scatterometers incorporate an additional antenna to make an
additional azimuthal measurement of ¢°. This additional
measurement provides some ‘‘skill”’ in selecting a unique
wind vector estimate [see Long and Mendel, 1991;
Schroeder et al., 1985]. However, multiple solutions still
occur even in this case. Further, the added *‘skill”’ depends
on the swath location and the wind speed resulting in
ambiguity removal errors which are correlated with the wind
field [e.g., Shaffer et al., 1991].

Using point-wise wind retrieval, a wind estimate can be
made only for those grid points for which there are o°
measurements from both the fore- and aft-facing antenna
beams. If measurements from only a single azimuth angle are
available at a given grid point, the ¢° measurements are
effectively discarded, resulting in ‘‘holes’’ in the estimated
wind field. This also leads to the narrowing of the SASS wind
estimate for point-wise estimation because of the misregis-
tration of the ¢® measurements from the fore- and aft-facing
antennas. For model-based wind retrieval, however, the
wind field can be retrieved even when there are some
missing ¢® measurements; hence there are fewer data gaps
and a wider swath in the retrieved fields.

3. WinD FIELD MoDEL

The model-based wind retrieval method is based on the
direct assimilation of the ¢ into a model for the wind field.
The model provides a description of the near-surface wind
field over the scatterometer measurement swath at a fixed
instant of time and a resolution of 50 km (corresponding to
the SASS spatial sampling). In model-based estimation the
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model provides constraints for the wind estimate derived
from the o® measurements. These constraints result in
reduced “‘noise’” in the estimated wind while eliminating the
requirement for point-wise ambiguity removal.

In this section the wind field model is derived. In devel-
oping the model, formulations which would require data
other than those from the scatterometer were avoided. While
this is a limiting factor in the modeling accuracy, it permits
the model to be employed even in the absence of any other
supporting data. However, as described below, some exter-
nal data may be required to resolve potential ambiguity in
the model-based wind retrieval procedure. We restrict our
attention to a limited-area region with a maximum spatial
extent of approximately 500 km, corresponding to the swath
width of the scatterometer.

Denoting the near-surface horizontal wind field of interest
by U = (u, v), the vorticity { and divergence & of U may be
defined as

{=k-VXxU (¢))]
8=V-U, 2)

where Kk is a unit vector in the vertical direction.

Using the Helmholtz theorem, U may be defined by a
stream function ¢ and velocity potential y according to [see
Bijisma et al., 1986; Lynch, 1988]

U=k Xx Vg + Vy, 3)

where k X Vi is a nondivergent vector field and Vy is a
curl-free vector field.

Taking the divergence and curl, respectively, of (3), we
obtain Poisson equations for ¢ and y,

Vi =¢ 4)
Vi = 8. (5)

For reconstructing a wind field from specified vorticity
and divergence, Lynch [1988] has argued that the reconstruc-
tion is not unique over a limited domain; an arbitrary
harmonic function may be added to y, provided ¢ is also
altered, to produce the same wind field. From this he
concludes that the boundary values of y may be set arbi-
trarily. He shows that setting the boundary values of y to
Zero minimizes the divergent component of the Kinetic
energy and that choosing y = 0 on the boundary ensures a
unique reconstruction of the wind field. Following this line of
reasoning, we set y = 0 on the region boundary. Thus we
assume (on scales from 50 to 500 km) that the wind field has
minimum divergent kinetic energy. By assuming y = 0 on the
boundary (equations (4) and (5)) the vorticity and divergence
fields and the boundary conditions for ¢ completely describe
the wind vector field.

To obtain simple boundary conditions for ¢, a second
assumption attributes ¢ to the geostrophic motion, that is,
that the stream function i is proportional to the geostrophic
pressure field p,

1
=—p, 6
¥ 2P (6)

where p is the density and f is the Coriolus parameter. Note
that in a strictly geostrophic formulation the wind field would
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be nondivergent and x would be identically zero. In the more
general formulation which we will adopt, x corresponds to
the ageostrophic component of the wind.

By making these assumptions the boundary values for (4)
and (5) can be specified in terms of the geostrophic pressure
field. This avoids the difficulties of using velocity boundary
conditions which may yield an overdetermined system
[Lynch, 1988].

A third modeling assumption is that over the region of
interest, p f is essentially constant (i.e., an f plane approxi-
mation with constant p). We can then normalize the pressure
field by pf so that ¢ = p; that is, ¢ is then the normalized
geostrophic pressure field. While in principle, this can lead
to difficulty in applying the mode! near the equator, in
practice, the model can still be applied [cf. Yu, 1987].
Equation (3) can be written in component form as

ap dx
u=—+— 7
dy odx
ap dx
v=—+—. (8)
dx dy

Equations (7) and (8), along with (4) and (5) form the basis of
the wind field model.

To complete the wind field model, models for the vorticity
and divergence fields are needed. Without requiring auxil-
iary data, usable dynamic models for these fields over the
scales of interest are difficult to formulate. Instead, we adopt
a descriptive modeling approach by assuming that the vor-
ticity and divergence fields are relatively smooth and can be
adequately described by low-order bivariate polynomials
over the region of interest. Such an approach, while not
physically based, produces a model of adequate accuracy for
use in scatterometer wind retrieval. However, the assumed
form for the vorticity and divergence field models limits the
ability of the final model to accurately describe fronts. This
limitation will be discussed further in section 4.7. For this
paper the following bivariate forms for the vorticity and
divergence fields are used:

Mc Mc

> 2 Cnnx"Y" &)

m=0 n=0
m+nsM,

{x, y)=

Mp Mp

22 g ey

m=0 n=0
m+n=Mp

8(x, y) = (10)

where M and M, are the model orders and ¢, , and d,, ,
are the model parameters. The number of parameters in the
vorticity and divergence field modelsis No = (M + N(M¢
+ 2)/2 and Np = (Mp + 1) (Mp + 2)/2, respectively.
Selection of M and M, will be discussed later.

Equations (4), (5), and (7)-(10) are discretized on an M X
N rectilinear grid with spacing # = 50 km over the desired
region corresponding to the 50-km sampling resolution of
SASS. M and N represent selectable model parameters
(typically, M = N = 10). The pressure and velocity
potential fields can be eliminated from the discretized system
of equations, and the velocity field can be written directly in
terms of the pressure field boundary conditions and the
parameters of the vorticity and divergence fields. The result-
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ing equation relating the velocity component fields to pres-
sure field boundary conditions and the vorticity and diver-
gence model parameters can be expressed as [Long, 1989}

W:[qzn?

v (1)

where the MN element vector U is the row-ordered u
component wind field at grid sample points, V is the row-
ordered v component wind field, and the X vector contains
2M + 2N — 2 pressure field boundary conditions and N¢o +
N vorticity and divergence field parameters. F is afull-rank
rectangular matrix of known constants. W is the total wind
field.

While not a required part of the model-based estimation
method, if we assume that the pressure field boundary
conditions are relatively smooth, the number of model
parameters can be reduced (at the expense of modeling
accuracy) by parameterizing the pressure field boundary
conditions using an N pth-order periodic function such as
low-order Fourier series. This version of the model will be
referred to as the PBC model, and the nonparameterized
version of the model will be referred to as the NB model.
Both models have the form of (11) but the PBC model has
slightly different definitions for F and X (e.g., Xisan Np +
N¢ + Np element vector). While the PBC model is some-
what less accurate than the NB model, it is computationally
more tractable when used in model-based wind estimation.

4. MoDEL-BASED WIND RETRIEVAL

The assimilation approach is based on a simple estimation
theory formulation. Equation (11) provides a parametric
wind field model which relates the model parameters (in X X)
to the wind field (in W). Using this model, the model
parameters are directly estimated from the noisy o mea-
surements. Estimation of X from the noisy o° measurements
is done using the maximum likelihood (ML) principle; the
negative log likelihood function for the model parameters
given the measurements is minimized to estimate the model
parameters [Mendel, 1973]. The wind field estimate is com-
puted from the estimated model parameters.

The remainder of section 4 describes the details and
considerations of the estimation process. Considerations for
selecting the wind field model size and order are also
discussed.

4.1. Region Size Considerations

Unfortunately, minimization of the log likelihood function
is computationally intensive; the computation required is
inversely proportional to the region area and proportional to
a power of the number of unknowns (parameters) in the
model. Thus to minimize computation, we minimize the
number of model parameters, while maximizing M and N.
However, the modeling accuracy decreases with increasing
M and N and increases for increasing M ¢ and M . The PBC
mode!, while slightly less accurate than the NB model,
requires less computation because it has fewer unknowns.
Thus selection of the region size, the model type, and the
model orders must be made by trading off modeling accuracy
and the computation required [Long, 1989].

Selection of the region size is determined primarily by the
usable swath width. Misregistration of the o° measurements
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from the fore and aft antenna beams limits the swath width
for point-wise estimation. However, ¢® measurements from
a single antenna beam are available over a much wider swath
[Grantham et al., 1982). Since multiple azimuthal ¢° mea-
surements are not required at every grid point, model-based
estimation can produce a wider effective wind measurement
for SASS than would otherwise be possible with point-wise
estimation. When excessive grid points within the model’s
region of support have missing o measurements, however,
the model-based wind estimate accuracy can deteriorate.
Experimentally, it was found that with a region size of M =
10 X N = 10 the effective wind estimate swath can be
extended by 100 km beyond the point-wise swath width
while maintaining reasonable accuracy along the outer edge
of the swath. Thus, in this work a region size of M = 10 X
N = 10 (corresponding to 500 X 500 km) was used. Further
discussion is reserved for section 5.

In application, each side of the observation swath is
segmented into overlapping 500 X 500 km regions. The
region overlap is 250 km in the along-track direction. The
model-based estimation procedure is applied to each region
separately. The wind estimates from each region are aver-
aged where they overlap.

4.2. ML Objective Function

At a given sample point with row-ordered index n, the kth
observation of ¢ (denoted by 0',(,) (k)) will be a function of
the true wind vector (u,, v,) at the sample point, the
observational azimuth and incidence angles, and the polar-
ization; that is;

o (k) = M{(u,, v,), k}

= M{((FX_)M (FX)MN+n)’ k}7 (12)

where M{(u,, v,), k} is the value of the geophysical model
function for a wind vector (u,,, v,). The dependence of the
model function on the antenna beam and incidence angles
and the polarization is subsumed in k. The measurements of
o° will be noisy. Let z,(k) be the noisy measurement a,‘,’ k);
that is,

2,(k) = o Ak) + v,(k), (13)

where v, (k) is a zero-mean, independent Gaussian random
variable with variance

Var [z,(k)] = a2(k)o 22 (k) + Bk 2(k) + y2(k),  (14)

where «,(k), B,(k), and y(k) depend on the measurement
geometry and the scatterometer design (see Long and Men-
del [1991] for further discussion). The conditional probability
density of z,(k) given X is then

p(z, (k)| X) = 77 eXP {—3 za(k)

1 1
Qm)2 {Var [ z,(k)]

= ao(k)]*/Var [2,(k)1},  (15)

where a-,?_ (k) is given by (12). The log likelihood function
I(X) for X given all the measurements z,(k) is then

N? L,

1X) =D > log p(z,(k)X).

n=1 k=1

(16)
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Disregarding any constants, /(X) can be written as

N L,
IX) = =2, >, {log {Var [z,(k)]}
n=1 k=1

+[z,0k) = o J(0)1HVar [2,(0]}, (A7)

where o-,‘,’ (k) is given by (12) and Var [z,(k)] is given by
(14). We define the ML objective function J(X) as the
negative of the log likelihood function. The ML estimate of
X is obtained by minimizing J(X).

4.3. Computation of the ML Estimate of X

Since M is a tabular function, a closed form for the
minimum of J(X) is not available; hence J(X) must be
numerically optimized. Unfortunately, the objective func-
tion can be difficult to optimize due to the dimensionality of
the problem and the nonlinear properties it inherits from the
nature of AL. In particular, the objective function has numer-
ous local minima with the possibility of several global
minima.

Classic nonlinear minimization algorithms include sto-
chastic algorithms such as simulated annealing and various
gradient search techniques. While random optimization
techniques are able to locate global minima using multiple
restarts, they may require an excessive number of function
evaluations to find even a single global minimum. While
gradient-based optimization algorithms can get stuck in a
local minimum and fail to find a global minimum, multiple
optimizations which start with different initial values can be
used to find multiple global minima. As a result, gradient
search algorithms can be used successfully provided appro-
priate initial values can be determined.

While alternate initial value computation schemes which
do not use the point-wise estimated winds can be used
[Long, 1989], point-wise estimated winds can be used to
simplify the computation of suitable initial values. Two
methods for computing initial values from the point-wise
estimates were developed. The first, termed FIT, is based on
fitting the wind field model to the wind vector field generated
by conventional point-wise wind retrieval and ambiguity
removal. The second, termed MINIT, uses the point-wise
wind speed estimates (but not directions) and does not
require ambiguity removal. Both methods are described
below. Given an initial value, the nonlinear optimization
routine IMING (which uses a quasi-Newton method) from
International Mathematics and Statistics Libraries is used to
minimize J(X).

4.4. Initial Value Computation

To compute an initial value from the ambiguity removal-
selected point-wise wind field using the FIT method, a least
squares fit of the model to the selected ambiguity field is
computed. Let W’ be the selected ambiguity field with
missing wind estimates filled with the average of nearby
estimates. Then an initial estimate X’ is computed:

X =F'w, (18)
where F' = (FTF) ! FT is the pseudoinverse of F. A single
initial value is provided by this method for a given selected
ambiguity field. While the quality of the FIT-computed initial
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value is dependent on the accuracy of the ambiguity re-
moval, the resultant wind estimate is tolerant of sparsely
occurring ambiguity removal errors. Thus, in practice, FIT
generally results in a good wind estimate. However, when
there are a large number of ambiguity selection errors in the
region, a poor quality initial value may result, leading to
convergence to a local minimum or to lack of convergence of
the gradient search algorithm. In this event the wind field
estimate may be poor. As shown below, however, such
occurrences are rare.

The second initial value computation method, MINIT,
utilizes only the wind speed information from the point-wise
wind estimates and so does not require point-wise ambiguity
removal. It provides multiple initial values. To apply this
method, the average wind speed of the point-wise ambigu-
ities is first determined for each grid point. A specialized
gradient search algorithm, combined with prototype wind
direction fields in various patterns and the point-wise wind
speeds, is then used to coarsely locate the minima of J(X).
After final optimization with IMING these initial values
result in a few distinct estimates. By proper choice of the
prototype wind direction fields and the search algorithm
parameters this method is virtually always able to locate the
(multiple) global minima of J(X). Because multiple optimi-
zations are used, however, considerably more computation
is required for the MINIT initial value computation method
than is required for the FIT method. When using the FIT
initial value computation method with a second-order PBC
model (N, = 10), the model-based wind retrieval approach
requires significantly (typically 4-8 times) more computation
than does point-wise estimation. Additional computation is
required for higher-order models or the NB model. Because
the accuracy of the NB and PBC models is similar [Long,
1989], the PBC model was primarily used in this work to
reduce computation. When the MINIT approach is used
with the second-order PBC model, the computation required
increases an additional 8-12 times.

4.5. Identifiability and Estimate Uniqueness

The estimation theory concept of ‘‘identifiability’’ indi-
cates whether or not an estimated quantity can be uniquely
determined from the available measurements [Mendel,
1973]. For point-wise estimation it can be shown that the
wind vector is set-wise identifiable from the ¢° measure-
ments and that the wind vector estimate is not unique; that
is, several wind vectors (the ambiguities) ‘‘explain’ the
observed ¢® values [Long and Mendel, 1991]. From the
measurements at a single point alone a unique wind estimate
can not be determined; hence the need for ambiguity re-
moval in which information from other sources (e.g., sur-
rounding measurements) is used to select a single wind
direction. For the two azimuth angle SASS, there are two to
six ambiguities at each sample point. The precise number
depends on the measurement geometry and the true wind
vector. Multiple ambiguities also occur for the three azimuth
angle ERS-1 scatterometer and NSCAT. Note that this
phenomenon is due in part to the geophysical model func-
tion’s biharmonic dependence on the wind direction in which
the upwind o® has nearly the same value as the downwind
o°. The point-wise case is considered in detail by Long and
Mendel [1991].

Like point-wise estimation, it can be shown that in model-
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based estimation X is set-wise identifiable from the measure-
ments of o° (Long, 1989]. This implies that the estimate of X
may not be unique; that is, the ML estimate of X is a set.
However, in order for this set, denoted by ch, to contain
multiple members, each of the members of D ¢ must produce
different wind fields which have wind vectors at all corre-
sponding sample points which have the same values of ad(k)
for all £ and n; that is,

DS & (RM{(FR),, K}

= M{(FX),, k} Vn & YKkE[1, L]}, (19)

where X, denotes the true value of X. This is infrequent for
the three azimuth angle NSCAT; however, for the two
azimuth angle SASS there are commonly two or more fields
for which this occurs. For example, for a given member of
D%, the X corresponding to a wind field with all the wind
directions reversed will generally be a member of D %.
Depending on the model order, there are generally no more
than six to seven members of D ¢. Each of these members
corresponds to a global minima of J(X). Unfortunately, from
the o° measurements over a single region alone, there is no
way to distingnish between these fields, so that selection of
a single field requires additional information. To further
complicate matters, the measurement noise may introduce
additional near-global minima.

4.6. Field-Wise Ambiguity Removal

When D § is multimembered, an additional step is required
to select a single solution. Such a procedure might be termed
“field-wise ambiguity removal’’ because of its seeming sim-
ilarity to the ‘‘point-wise ambiguity removal’’ which is
always required by the point-wise wind estimation approach.
There is, however, a distinct difference between field-wise
and point-wise ambiguity removal: in the point-wise case the
problem is to choose from two to six possible solutions at
each sample point (of which there are MN inan M X N
region), while in the field-wise case, we need only choose
between a few possible fields for each region within the
measurement swath. Continuity considerations with adja-
cent and/or overlapping regions greatly simplify field-wise
ambiguity selection.

The requirement that the wind estimates for each region
be compatible in the area of overlap of the regions dictates
the possible combinations of the ambiguous model-based
estimates. In this way a small number of feasible wind fields
over long (typically several thousand kilometers) along-track
segments are determined. Segments are created between
land masses and/or regions of very low wind speed where the
directional measurement accuracy is low. From the set of
feasible wind fields for each segment a single segment is
selected based on auxiliary data, for example, forecasts or
ship or buoy observations. Alternately, the auxiliary data
can be used to select the ambiguous model-based field on a
region-by-region basis. Since the point-wise wind estimates
determined using subjective ambiguity removal incorporate
auxiliary data when available, for this paper we have found
it convenient to select the field closest (in a root-mean-
square (rms) sense) to the subjective field. For simulations
the field closest to the point-wise wind field with ideal
ambiguity removal was selected.
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types and orders with size M = N = 10. (a) PBC model with N b
= 10 and M = Mp = 2. (b) PBC model with N, = 10 and
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with M- = Mp = 4.
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4.7. Model Order and Smoothing

The modeling approach used in this paper is based on a
geostrophic approximation (with some generalization for
ageostrophic winds) and does not explicitly include fronts
which exhibit wide changes in speed and direction on small
spatial scales. As a result these features can not be accu-
rately described by the model and will be ‘‘smoothed’’ in the
estimated wind fields. Note, however, that the inherent
scatterometer resolution is ~50 km with inherent under
sampling of very small scale wind field features and fronts.
Such features will tend to be smoothed even for idealized
wind retrieval. This may be desirable in order to remove
cloud divergence effects [see Overland and Wilson, 1984].

In model-based wind retrieval, additional smoothing arises
as a result of the smoothing of the vorticity and divergence
fields due to the low-order polynomial approximation.
Smoothing of the vorticity and divergence fields results, in
turn, in smoothing of the wind field. In addition, the PBC
model has additional smoothing due to the boundary condi-
tions parameterization. Increasing the model orders of the
vorticity and divergence fields (and, for the PBC model, the
boundary condition parameterization) decreases the smooth-
ing and hence the modeling error. However, increasing the
model order also increases the computation required to
optimize the ML objective function; hence selection of the
wind field model order requires a trade-off between the
accuracy of the wind field model and computational require-
ments.

To study the modeling error, consider the wind field model
as given by (11). For a given input wind field a least squares
fit of the model to the wind field can be computed using (18)
with the model fit wind field, W,,, computed using (11), i.e.,

W, = FF'W. (20)

The resulting error in the wind field is
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W,=W-W, =(-FFHW. (21)
We note that only components of W which are in the null
space of FF' will appear in W,. Wind fields in the range
space can be exactly represented by the model and will not
result in error.

There are a variety of ways of quantifying the modeling
error. In this paper we consider a very simple approach
based on a wavenumber analysis. Equation (21) describes
the wind field modeling error over a single M X N region. In
actual application, regions are overlapped, and the resulting
estimates are averaged. For sufficient overlap this process
can be viewed as the discrete convolution of the sampled
wind field and a model kernel, termed %, which may be
computed from FF' by shifting and adding. (Because of the
complexity of this computation, the details are not given
here.) Then & can be viewed as the spatial impulse response
of the model (see Figure 1).

A slice of the wavenumber response (the magnitude dis-
crete Fourier transform of %) is plotted in Figure 2. As
evident from this plot, the model attenuates high wavenum-
ber features in the wind field which have scale lengths less
than 200-250 km depending on the model order and type.
This is only slightly above the Nyquist sampling cutoff scale
length of 100 km. However, only wind field features not in
the range space of the model, such as fronts, are affected.
Although fronts and very small scale wind features are
attenuated, they remain visible in the estimated wind fields,
as will be illustrated below.

4.8. Ambiguity Removal Quality Control Using
the Wind Field Model

One difficulty with traditional ambiguity removal algo-
rithms has been in providing data quality estimates for the
estimated wind fields. The wind field model can be used for
quality control of the unique wind estimate from point-wise
ambiguity removal algorithms. In objective ambiguity re-
moval algorithms [Schroeder et al., 1985; Shaffer et al.,

—— 2nd Order PBC Model
------------------ 4th Order PBC Model
~—-- 2nd Order NB Model
— 4th Order NB Model
1@8 : L L :
197" o 3
1@~2 T T I|I|l|]— T T T 1 T 17T7F —1
1873 1872 18
rod/Km
Fig. 2. Slices of the model magnitude wavenumber response for

various model options along the line k, = 0 and ky = 0. The model
sizeis M = N = 10 and N, = 10.
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1991], ambiguity selection errors often occur in spatially
correlated groups or ‘‘clumps’” and result in unrealistic wind
field estimates. Such errors can be detected by fitting the
wind field model to the unique wind field and computing the
rms error using (21). If the rms direction error is less than a
threshold (typically 15°~20°), the wind field may be consid-
ered ‘‘feasible.”” However, if the rms direction error is
greater than this threshold, it is likely that significant ambi-
guity selection errors have occurred in the region. In apply-
ing (21) in this manner, it is first necessary to fill in missing
wind measurements in the point-wise wind field estimate
with an average of the nearby measurements.

5. SIMULATION STUDIES

To evaluate the performance of model-based wind estima-
tion for SASS, both simulated and actual SASS measure-
ments have been used. The advantage of simulation is that
the actual true wind field is known, permitting detailed
performance evaluation. To make the simulation as realistic
as possible, the actual SASS measurement geometry and the
corresponding actual «, B8, and y parameters in the noise
variance equation (equation (14)) were used.

Lacking sufficiently high-resolution wind field data to act
as input for the simulation, simulated wind fields were
generated from 1.875° resolution European Centre for Me-
dium-Range Weather Forecasts (ECMWF) data interpolated
to 10-km resolution with nondivergent small-scale variability
added. The added small-scale variability had a spectrum of
ak ~2 [see Freilich and Chelton, 1986)]. For a given 2000 x
2000 km region the value of a was selected to be consistent
with the ECMWF wind field spectrum. Seven fields were
selected to span a wide range of meteorological conditions,
including sharp fronts and small-scale cyclones from the set
used by Shaffer et al. [1991].

Five ‘‘template’’ SASS revs covering the Pacific basin
were randomly selected. Simulated SASS revs were then
generated by “‘flying’’ each of the template revs over each of
the input wind fields. For a given wind field and template
rev, several simulated revs were generated using different
realizations of the Monte Carlo noise added to the simulated
o measurements. In generating the simulated revs from the
template revs, the actual SASS o® measurements were
replaced with the value of o computed from the observation
geometry and the input wind field using the Wentz model
function [Wentz et al., 1984]. The corresponding actual
SASS a, B, and y parameters were then used to generate
Monte Carlo noise which was added to the computed a°
values to simulate the scatterometer measurements. No
explicit attitude or geophysical model errors were added.
The resulting simulated measurements exhibit the same
spatial sampling characteristics (including missing measure-
ments), signal-dependent measurement noise, and measure-
ment geometry as the original SASS measurements but with
a known *‘true’” wind field. Each simulated SASS rev was
processed using point-wise wind retrieval and model-based
wind retrieval. For the point-wise case the ambiguity closest
to the true wind was selected as the ‘‘ideal unique wind
field.”” Model orders of 2 and 4 were considered for the PBC
model with N, = 10. To compute the model-based wind
field estimate, both FIT and MINIT initial value computa-
tion methods were considered.

A visual illustration of point-wise and model-based wind
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field estimation is given in Figure 3. In this and the remaining
figures, wind vectors are plotted on a 50-km resolution
instrument-based cross-track/along-track grid coordinate
system. Wind speeds have been plotted so as to enhance the
visibility of the wind direction for low wind speeds. The true
simulated wind field sampled at the 50-km grid centers is
shown in Figure 3a. It contains two fronts, one in the left
(upper) swath centered at along-track index 221 and a
synthetic “‘front> across both swaths at along-track index
240. The model-based estimate (second-order PBC model
with N, = 10 using the FIT initial value computation
method) obtained from the simulated ¢ measurements is
shown in Figure 3b. The ideal unique wind from the point-
wise ambiguity set is shown in Figure 3¢. The missing wind
measurements in Figure 3¢ result from missing o measure-
ments due to antenna coregistration problems and instru-
ment calibration cycles. While precisely the same o mea-
surements were used to generate Figure 35, the model-based
wind retrieval approach is able to provide wind estimates at
each point of the swath. Comparison of the model-based and
point-wise wind field estimates in these figures reveals that
the model-based wind field estimates (1) are visually less
“noisy’’ and (2) have significantly fewer missing measure-
ments and a wider effective swath. While both fronts in this
example are smoothed in the model-based estimate, they
remain correctly located and oriented.

5.1. MINIT Versus FIT

Thirty-five simulated passes were processed using both
the FIT and the MINIT initial value computation methods.
In general, both methods produced similar results over the
1995 region locations compared. Some infrequent excep-
tions, consisting of 10 X 10 regions in which the two
estimates did not agree, resulted when the optimization
stopped at different local minima. The exceptions could be
grouped into three classes. For class one cases the two
methods’ results differed significantly, but the MINIT solu-
tion appeared to be a better estimate of the true wind field
than the FIT result. This result was quite rare, occurring
only 3 times in the entire simulated data set. For class two
cases the FIT-based estimate was a good estimate of the true
field, while the MINIT model-based wind estimate appeared
unrealistic. For this class the failure of MINIT to find the
“correct’” solution could be attributed to the failure of the
optimization algorithm to locate one or more of the global
minima. The particular global minimum of the objective
function corresponding to the FIT-based estimate was
among those missed. This problem was observed 18 times or
just less than 1% of the regions. In the third class both
model-based estimates differed significantly from the true
wind field (though they may or may not have agreed with
each other). Cases in this class could be attributed to the
modeling limitations inherent in the second-order model
used. Such cases can be detected by examining the rms error
resulting from fitting the second-order model to the true wind
field, with a large model fit error indicating the inability of
the second-order model to adequately model the underlying
wind field. Many of the class three errors were associated
with the artificial “‘fronts’’ in the true wind field. Seven class
three errors were identified.

In 11 (~0.5%) of the regions examined, the outer edge (last
wind vector estimate which extends 100 km beyond the
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point-wise estimate) of both model-based estimates was ob-
served to have a directional ‘‘ripple’” error artifact resulting
from the lack of sufficient ¢° measurements in the outer swath
region. A typical example of the error is illustrated in example
1 below. This artifact does not occur when there are sufficient
azimuth angle observations of o at the swath edges. This error
is the limiting factor in the swath width extension possible with
the model-based approach. When the o° measurement cover-
age over the region is insufficient (e.g., for regions containing
more than 25-35% land or at the very start or end of a swath),
the model-based estimates can not be expected to perform well
and were not included in the visual analysis.

Since both initial value computation methods produced
similar results, the FIT initial value computation method
with the initial value computed from the point-wise unique
wind field was selected as the primary method of processing
actual and simulated SASS data.

5.2. Model Order Selection Revisited

As previously indicated, selection of the wind field model
order requires a trade-off between the accuracy of the wind
field model and the computation required to optimize the ML
objective function. In addition, the order of the model may
affect the number of elements in D §.

To evaluate the effects of the vorticity and divergence field
model orders on wind retrieval accuracy, the simulated a°
measurements were processed using both second- and
fourth-order PBC models. The rms estimate errors were
computed and binned by true wind speed. The results are
summarized in Table 1 and contrasted with the errors for
point-wise wind estimation with ideal ambiguity removal. In
Table 1 the vector error is defined as the rms of the vector
magnitude of the difference between the true wind vector
and the estimated wind vector. Several observations can be
made from Table 1. At low wind speeds (<8 m/s) the
model-based results for both model orders have lower rms
speed, direction, and vector errors than the point-wise
estimates, while at higher wind speeds the model order is a
factor. For example, the fourth-order model has somewhat
better rms direction error than the point-wise estimate which
is somewhat better than the second-order model. For wind
speeds >8 m/s, point-wise retrieval has somewhat better rms
wind speed error than either model-based result. In general,
however, the performances of the model-based and point-

TABLE 1. Summary of rms Estimate Error for the Simulations

Described in the Text

Wind Speed Range, m/s

24 48 812 12-20 20+

Model-based (second order)

rms direction error deg 1193 7.65 522 535 413

rms speed error, % 15.1 8.5 59 4.6 35

rms vector error, % 248 152 106 102 7.9
Model-based (fourth order)

rms direction error deg 11.7 6.95 4.57 329 270

rms speed error, % 17.7 10.2 6.8 49 3.8

rms vector error, % 263 154 10.1 75 6.0
Ideal unique point-wise

rms direction error deg 15.7 851 495 419 3.83

rms speed error, % 262 113 4.9 20 1.4

rms, vector error, % 38.8 18.9 10.0 7.6 6.8
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TABLE 2. Summary Statistics of the Difference Between the
Second-Order Model and the Point-Wise Wind Fields With
Ideal Ambiguity Removal Estimated From Simulated Data

as Described in the Text

Wind Speed Range, m/s

24 48 812 12-20

Number of measurements, % 17 38 23 20 2

Mean direction difference, deg —0.2 -0.1 0.1 0.1 0.1
Mean speed difference, m/s -0.03 0.00 0.01 0.03 0.05
rms direction difference, deg 19.1 106 6.3 5.5 39
rms speed difference, m/s 0.56 0.55 0.60 0.70 0.77
rms vector difference, m/s 1.09 1.16 1.22 1.62 1.64

wise retrievals are similar. For later comparison, the mean
and rms differences between the second-order model-based
and point-wise wind estimates are given in Table 2.

As an aside, when comparing the performance difference
between the models, note that the SNR of the ¢° measure-
ments is wind speed-dependent, with the SNR much lower at
low wind speeds than at high wind speeds. For model-based
wind retrieval the modeling error dominates at high wind
speeds, while at lower wind speeds the retrieval error is
dominated by the o° measurement noise. Thus the perfor-
mance of both models is comparable at low wind speeds,
while a larger model order results in improved accuracy at
high wind speeds.

In a visual comparison the second-order model exhibited
somewhat more smoothing of frontal features than did the
fourth-order model. However, subjectively significant differ-
ences were noted in only 19 (~1%) cases. Of these, 13 were
associated with artificial ““fronts’’ such as the one illustrated
in Figure 3. The remaining six occurred at other fronts or
were associated with cyclones. Because the wind estimate
accuracy of the second-order and fourth-order models is
comparable, a second-order model was used for processing
actual SASS data in order to minimize computation.

6. SASS Data

When using actual SASS measurements, the performance
of model-based retrieval is difficult to independently estab-
lish, since the ground truth wind field is unknown. While
limited ground truth is available, it is geographically sparse
and therefore has limited utility in verifying the performance
of the model-based wind retrieval scheme. Instead, we must
resort to using SASS wind estimates made by point-wise
wind retrieval. Ambiguity selection errors in the point-wise
wind estimates, plus the noise levels in the point-wise
retrieved winds, complicate the use of these wind estimates
for comparison with the model-based winds.

While unique SASS wind data sets have been generated
using objective ambiguity removal {e.g., Atlas et al., 1987],
on close inspection these were found to contain numerous
localized regions of ambiguity selection errors with sharp,
artificial boundaries surrounding the regions. Instead, the
Wurtele et al. [1982] subjective ambiguity removal data set
was used to generate reference wind fields. The Wurtele data
set consists of 9 days of SASS winds retrieved on a 100-km
grid using the SASSI model function [Bracalente et al.,
1980] with subjective ambiguity removal using available
auxiliary meteorological data. A detailed analysis of this data
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Fig. 4. Actual SASS measurement example for Seasat rev 1070, September 9, 1978. (a) Point-wise reference

subjectlve ambiguity removal data set. (b) Model-based estimate using a second-order PBC model with N,

a region size of M = 10 X N = 10 with 50% overlap.

set and comparison with the Atlas data set is given by
Chelton et al. [1989].

Since 50-km resolution winds were needed to compare
with the model-based wind estimates, a ‘‘reference data set’’
was first generated by using point-wise estimation of the
SASS winds on a 50-km grid using the Wentz model function
[Wentz et al., 1984]. The ambiguity closest to the corre-
sponding Wurtele unique wind direction was then selected.
Note that the Wurtele result is based on many man-hours of
expert ambiguity removal.

6.1.

A detailed visual comparison of the model-based winds
and the point-wise reference set was conducted using 28
revs. In general, the model-based winds and reference sets

Case Studies

= 10 and

exhibited good general agreement, though some apparent
smoothing of fronts in the model-based results was noted
(see example 1). The model-based wind fields contained
approximately 30% more wind vectors than did the reference
set. Small direction and speed differences between the two
estimates were common (see the examples below). Such
differences are attributed to noise in the point-wise esti-
mates, possible point-wise ambiguity selection errors, and/or
smoothing in the model-based estimates. It was noted that
the point-wise reference set appeared to have significantly
more directional ‘‘noise’” than the point-wise simulation
results (e.g., see Figures 3 and 4).

In approximately 1.5% of the regions examined, a subjec-
tively significant difference between the model-based and
reference winds was noted. In approximately one half of
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at rev 1075, September 10, 1978. The center of the QE-II storm
wise reference subjective ambiguity removal data set. (b)

order model used. (¢) Model-based (fourth
, resulting in a success

Actual SASS measurement example for Seas:
adequately model the very tight storm

Fig. 5.
is near the center of the left (upper) swath. (a) Point-

Model-based (second-order model) estimate. Note the incorrect location of the storm center

capability second-
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Fig. 7. (a) Vorticity and (b) divergence field estimates derived from the wind field parameters estimated for Figure
4. The contour intervals are arbitrary: thick lines correspond to positive, dotted line corresponds to zero, and thin lines

correspond to negative.

these cases, the difference was apparently due to a problem
in the model-based estimate such as an inadequate model
order or the failure of the optimization. For the remaining
cases the reference set did not appear realistic because of
possible ambiguity removal errors (example 3 contains a
dramatic example). In less than 3% of the regions examined,
the outer edge (last wind vector estimate) of the model-based
estimate (which extends 100 km beyond the point-wise
estimate) was observed to have a directional ‘‘ripple’” error
artifact (illustrated in example 1) resulting from the lack of
sufficient o® measurements in the outer swath region. The
larger percentage of edge artifacts in the actual data may be
due in part to geophysical modeling errors.

The following sections present three visual examples
comparing the model-based and subjective point-wise esti-
mated winds. These were selected to illustrate the strengths

and weaknesses of model-based wind retrieval. The general
agreement of the model-based winds and the Wurtele winds
leads to the conclusion that the Wurtele ambiguity selection
is usually very good.

6.1.1. Example 1: Pacific Basin. A visual comparison
of model-based and point-wise wind retrieval for actual
SASS data (a portion of Seasat rev 1070, September 9, 1978)
may be made (Figure 4). The point-wise reference wind field
based on subjective ambiguity removal is illustrated in
Figure 4a with the corresponding model-based wind field
shown in Figure 4b. As in previous figures, a scatterometer-
based coordinate system with positions specified in terms of
along-track and cross-track distance is used. A minimum
length vector is used for low wind speeds in order to
highlight the wind direction.

Comparing Figures 4a and 4b, we note that the model-
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based estimate swath (1) is wider and (2) has fewer missing
wind measurements. (The missing wind measurements arise
in point-wise wind retrieval when there are not enough
azimuthal ¢ measurements to retrieve the wind or when the
wind speed drops below 2 m/s where the geophysical model
function is not well defined.) In contrast, the model-based
wind field estimate has a uniform swath width without
missing measurements. It should be noted that many of the
o sampling problems encountered with SASS measure-
ments will not occur for ERS 1 and NSCAT.

In this example a front (centered at approximately along-
track index 180) extends diagonally across the left (upper)
swath. Along this front the point-wise winds exhibit some
confusion due to errors in the ambiguity removal and the
inherent ¢® measurement under sampling. While the model-
based retrieval has smoothed the sharp change in the wind
field along the front, its location is unchanged. A direction
“‘ripple”’ artifact along the outer swath edge is evident at
along-track index 150 on the left (upper) swath.

6.1.2. Example 2: QE-II storm. The explosive QE-II
storm of 1978 was not well forecast with the tools of the era
and has become a ‘“‘classic” case to support space-based
remote sensing. The left SASS wind vector swath passed
directly over the storm center east of Newfoundland on
September 10, 1978, on rev 1075 at approximately 0245 UT.
The point-wise reference wind field based on subjective
ambiguity removal for this pass is illustrated in Figure 5a.
Unfortunately, the very tight structure of this particular
storm could not be adequately modeled by the second-order
PBC model. As a result, the second-order model-based
estimate failed to correctly locate the storm center (see
Figure 5b) resulting in an error. However, the fourth-order
PBC model, with its improved modeling capability, accu-
rately modeled the storm circulation pattern. The fourth-
order model-based estimate is shown in Figure 5c.

In an experiment to compare the performance of the
second- and fourth-order models with actual data, 11 revs
were processed using FIT for both second- and fourth-order
models. These were compared with the subjective reference
set. As in the simulations, there was generally good agree-
ment between the model orders with the second-order model
exhibiting somewhat more smoothing than the fourth-order
model. The cases for which there were subjectively signifi-
cant differences could be grouped into four classes. In the
first class the second-order model appeared to be unable to
adequately model the actual wind field, while the fourth-
order model performed well; that is, there was good agree-
ment between the fourth-order model result and the point-
wise reference set. Most examples of this class were tight
cyclonic wind patterns or very sharp fronts (e.g., Figure 5).
Of the 11 revs (containing approximately 1265 regions)
examined, this class was observed 9 times. In class two the
second-order model appeared to be in better agreement with
the reference set than the fourth-order model. Only one case
of this class was observed. For class three, possible ambi-
guity selection errors and/or missing measurements in the
reference set made it impossible to select between the model
orders. Eight examples of this class were identified. In the
fourth class the model-based estimates generally followed
the subjective set which appeared unrealistic. Three cases
from this class were observed. The small total percentage
(~1.6%) of exceptions observed supports the decision to use
the second-order model to process the complete data set.

LoNG: WIND FIELD MODEL-BASED ESTIMATION

6.1.3. Example 3: North Pacific. The final example
illustrates a case from rev 1071, September 9, 1978, in which
the model-based wind estimate generated using MINIT
(shown in Figure 6a) differs significantly from the estimate
generated by FIT because of ambiguity selection errors in
the reference data set. As is readily apparent in Figure 6c,
which shows the reference subjective ambiguity selection
data, the reference data set has a region of significant
ambiguity selection errors in the right (lower) swath just to
the south of the Kamchatka coast. In this region the vectors
should be reversed ~180° in order to produce a more
realistic wind field in the northern Pacific. The model-based
estimate generated via the FIT method (shown in Figure 65)
exhibits unrealistic behavior over the boundaries of the
subjective ambiguity selection error region. Over these
boundaries the objective function optimization stopped at a
local minimum in the objective function. However, the
model-based estimate generated via MINIT correctly esti-
mated this wind field.

This problem in the FIT method can be detected by
monitoring the rms change between the initial value and the
optimized estimate. When the change is large, the FIT-based
estimate accuracy is suspect, and the more sophisticated
(and time consuming) MINIT method should be used in-
stead. Thus the model-based estimation procedure can be
used to detect and correct at least some ambiguity selection
errors in the point-wise data set.

As a check, 10 revs were processed using both FIT and
MINIT, and the results were compared with the reference
set. As predicted by the simulation results, there was good
agreement between the results. Four classes of exceptions
were noted. For cases in class one it was possible to verify
the existence of errors in the ambiguity selection in the
subjective reference field with the model-based wind esti-
mate appearing ‘‘correct’’ (e.g., Figure 6). In class two both
model-based estimates and the reference wind fields ap-
peared realistic, but because of the lack of collaborative data
it was impossible to evaluate the ‘‘correctness’’ of either
result. For class three the MINIT model-based wind esti-
mate appeared unrealistic, while the FIT-based estimate and
the subjective reference set appeared realistic and were in
general agreement. In this case the MINIT was considered
to have failed to find the ‘‘correct’ solution because of the
failure of the optimization algorithm to locate all the global
minima of the objective function. No particular meteorolog-
ical conditions were associated with these failures. For the
fourth class the point-wise estimate appeared realistic, but
both model-based estimates failed to represent the key
features of the point-wise field or appeared unrealistic. This
was attributed to the modeling limitation of the second
model order used (see example 2) and/or failure of the
optimization algorithm. Of the 10 revs (containing approxi-
mately 1140 regions) examined, class one was observed
once; class two, 5 times; class three, once, and class four, 3
times. Because these exceptions constituted only a small
percentage (~1%) of the total regions processed, the deci-
sion to use the FIT initial value computation method to
process the full data set is justified. We note that when
applying the method to other scatterometers, the FIT initial
value computation method can only be used if a sufficiently
high-quality reference field is available. Otherwise, the
MINIT method must be used.



TABLE 3. Summary Global Statistics of the Model-Based Minus the Point-Wise Wind Estimates
for Actual SASS Data

Wind Speed Range, m/s

24 4-8 8-12 12-20 20+
Global ocean 60°S to 60°N
Number of measurements, % 16 40 29 14 0.5
Mean direction difference, deg —0.5 -0.2 —-0.1 -0.1 -0.4
Mean speed difference, m/s -0.21 -0.18 -0.15 —-0.12 0.23
rms direction difference, deg 32.8 20.9 16.8 15.4 18.3
rms speed difference, m/s 1.03 0.96 0.99 1.08 1.60
rms vector difference, m/s 1.94 2.26 2.85 3.83 6.73
Northern hemisphere 0° to 60°N
Number of measurements, % 23 48 22 7 0.3
Mean direction difference, deg -0.3 -0.3 0.0 -0.3 -6.0
Mean speed difference, m/s —0.18 -0.16 —0.15 -0.09 0.00
rms direction difference, deg 324 21.0 16.3 16.3 23.0
rms speed difference, m/s 0.85 0.89 0.92 1.01 1.26
rms vector difference, m/s 1.78 2.17 2.72 4.00 9.38
Southern hemisphere 60°S to 0°
Number of Measurements, % 12 36 50 19 0.6
Mean direction difference, deg -0.6 -0.1 -0.1 -0.1 1.4
Mean speed difference, m/s —0.24 -0.19 -0.15 -0.13 0.30
rms direction difference, deg 33.2 20.8 17.0 15.3 15.2
rms speed difference, m/s 1.20 1.01 1.01 1.10 1.70
rms vector difference, m/s 2.10 2.33 2.90 3.80 5.57

TABLE 4. Summary Statistics for the Atlantic Ocean of the Model-Based Minus the Point-Wise
Wind Estimates for Actual SASS Data

Wind Speed Range, m/s

24 4-8 8-12 12-20 20+
Atlantic Ocean 60°S to 40°S
Number of measurements, % 11 25 26 36 2
Mean direction difference, deg -1.5 -0.2 0.5 0.7 -0.8
Mean speed difference, m/s -0.53 —0.48 -0.45 —0.30 -0.12
rms direction difference, deg 45.6 32.0 27.5 20.9 21.9
rms speed difference, m/s 2.10 1.82 2.01 1.63 2.38
rms vector difference, m/s 3.22 3.85 5.07 5.30 8.00
Atlantic Ocean 40°S to 20°S
Number of measurements, % 17 32 32 18 0.6
Mean direction difference, deg -0.1 0.6 0.1 -0.9 33
Mean speed difference, m/s -0.17 -0.15 -0.14 -0.05 0.31
rms direction difference, deg 25.8 17.7 15.4 12.9 14.1
rms speed difference, m/s 0.86 0.87 0.84 0.84 0.98
rms vector difference, m/s 1.57 1.97 2.63 3.23 5.33
Atlantic Ocean 20°S to 0°
Number of measurements, % 14 63 22 0.3 0
Mean direction difference, deg 0.9 -0.4 -0.2 4.3 N/A
Mean speed difference, m/s —0.05 -0.07 -0.03 —0.60 N/A
rms direction difference, deg 16.9 11.2 7.8 20.5 N/A
rms speed difference, m/s 0.52 0.55 0.49 2.58 N/A
rms vector difference m/s 1.03 1.30 1.34 5.66 N/A
Atlantic Ocean 0° to 20°N
Number of measurements, % 24 60 16 0.2 0
Mean direction difference, deg 1.7 0.5 -0.7 -34 N/A
Mean speed difference, m/s -0.10 -0.09 -0.03 0.09 N/A
rms direction difference, deg 23.7 13.7 10.6 53 N/A
rms speed difference, m/s 0.63 0.68 0.57 0.81 N/A
rms vector difference, m/s 1.35 1.50 1.69 1.43 N/A
Atlantic Ocean 20°N to 40°N
Number of measurements, % 20 49 24 6 0.3
Mean direction difference, deg -0.2 -0.7 1.0 0.0 —4.8
Mean speed difference, m/s -0.20 -0.17 —0.15 -0.21 -0.25
rms direction difference, deg 30.9 19.8 17.0 27.9 29.1
rms speed difference, m/s 0.87 0.84 0.97 1.38 1.52
rms vector difference, m/s 1.77 2.13 2.84 6.64 10.61
Atlantic Ocean 40°N to 60°N
Number of measuremetns, % 8 27 30 31 3
Mean direction difference, deg -33 -3.0 -0.5 —0.6 -6.2
Mean speed difference, m/s —-0.25 -0.31 -0.27 -0.11 0.02
rms direction difference, deg 45.2 33.4 18.9 15.0 25.3
rms speed difference, m/s 1.01 1.15 1.04 0.95 1.24

rms vector difference, m/s 2:34 3.34 3:24 3.84 9:32
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TABLE 5. Summary Statistics for the Indian Ocean of the Model-Based Minus the Point-Wise
Wind Estimates for Actual SASS Data
Wind Speed Range, m/s
24 4-8 8-12 12-20 20+
Indian Ocean 60°S to 40°S
Number of measurements, % 4 17 34 44 2
Mean direction difference, deg 0.8 —0.1 —0.4 0.3 3.1
Mean speed difference, m/s —1.18 -0.57 —0.33 -0.15 0.37
rms direction difference, deg 522 32.6 25.1 15.9 10.6
rms speed difference, m/s 3.35 1.86 1.38 1.06 1.31
rms vector difference, m/s 4.74 3.96 4.14 3.93 4.08
Indian Ocean 40°S to 20°S
Number of measurements, % 16 39 33 12 0.1
Mean direction difference, deg 2.9 -1.3 -0.7 -0.1 2.7
Mean speed difference, m/s -0.22 -0.19 -0.13 -0.07 0.08
rms direction difference, deg 31.8 21.7 16.2 10.2 4.4
rms speed difference, m/s 0.98 0.94 0.86 0.89 0.65
rms vector difference, m/s 1.90 2.29 2.60 2.51 1.77
Indian Ocean 20°S to 0°
Number of measurements, % 17 41 36 6 0
Mean direction difference, deg -2.1 0.0 0.0 0.2 N/A
Mean speed difference, m/s -0.14 —0.12 —0.05 0.0 N/A
rms direction difference, deg 32.1 16.8 10.8 8.5 N/A
rms speed difference, m/s 0.88 0.81 0.66 0.70 N/A
rms vector difference, m/s 1.75 1.81 1.84 1.96 N/A
Indian Ocean 0° to 20°N
Number of measuremetns, % 27 53 20 0.5 0
Mean direction difference, deg 0.4 0.4 0.1 -2.5 N/A
Mean speed difference, m/s -0.16 —0.16 -0.10 0.36 N/A
rms direction difference, deg 27.3 18.3 14.5 8.9 N/A
rms speed difference, m/s 0.80 0.87 0.94 1.00 N/A
rms vector difference, m/s 1.60 1.96 2.45 2.12 N/A
6.2. Vorticity and Divergence Fields model-based wind speed. The errors in Tables 3-6 may be

As part of the estimation of the wind field, the model-
based wind estimation approach described in this paper also
determines the wind field vorticity and divergence via the
models for these scalar fields. Given the wind field model
parameter vector estimated from the ¢° measurements, the
vorticity and divergence fields can be computed. Since these
auxiliary product fields are, in effect, estimated directly from
the o° measurements, they are much less noisy than esti-
mates computed by differencing conventional point-wise
winds. Furthermore, the estimated fields are available at the
full width of the wind vector swath and have fewer ‘‘holes.”’
Ilustrations of the model-based estimates of the wind vor-
ticity and divergence fields (corresponding to the model-
based wind field estimate in Figure 45) are given in Figure 7.
In Figure 7 the contour levels are arbitrary. An extensive
study of the vorticity and divergence of SASS winds is
underway and will be reported in a future paper.

7. SASS DATA: OVERALL STATISTICS

The FIT initial value computation technique and a second-
order model were used to process 9 days (Seasat rev 1016,
September 6, 1978, through rev 1144, September 15, 1978) of
SASS data corresponding to the Wurtele data set. After
processing, a detailed comparison of the model-based and
point-wise reference set (which is based on the ambiguity
removal of the Wurtele data set) was made. A statistical
summary of the difference between the model-based wind
estimate and the point-wise reference set that is broken
down by geographical region is given in Tables 3-6. In
Tables 3-6 the statistics were binned according to the

compared with the simulation results in Table 2. Note,
however, that the simulation results in Table 2 are based on
ideal ambiguity removal, while the reference set used to
compute Tables 3-6 contains ambiguity selection errors. In
general, the rms and mean differences are larger for actual
data than predicted from the simulations. Since the true,
underlying wind field is not known, it is difficult to be
quantitative in evaluating the overall measurement accuracy
[cf. Chelton et al., 1989].

Table 3 provides a summary of the differences between
point-wise and model-based results. From Table 3 we con-
clude that there is only a limited difference in performance in
the northern and southern hemispheres. The model-based
wind speed estimates are biased slightly lower than the
point-wise estimates with a smaller bias at higher wind
speeds. The mean wind direction difference is essentially
zero. The rms wind direction difference is reduced at higher
wind speeds. The higher rms wind direction difference at low
wind speeds may be the result of the high directional
“‘noise’’ and ambiguity selection errors in the point-wise
estimates at low wind speeds. Globally, the rms speed
difference is approximately 1 m/s, well below the stated 2
m/s accuracy of the scatterometer system [Jones et al.,
1982].

From Tables 4-6 we note some variations in the differ-
ences for latitude bands, though there is general similarity
between ocean basins. At high latitudes (60°S to 40°S and
40°N to 60°N) the rms errors are significantly larger than for
low-latitude bands. This may be due to the higher variability
of the wind in these regions. However, the number of
ambiguity selection errors also appeared to be largest in
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TABLE 6. Summary Statistics for the Pacific Ocean of the Model-Based Minus the Point-Wise
Wind Estimates for Actual SASS Data

Wind Speed Range, m/s

24 4-8 8-12 12-20 20+
Pacific Ocean 60°S to 40°S
Number of measurements, % 4 20 34 41 2
Mean direction difference, deg -0.8 0.2 0.5 0.6 1.4
Mean speed difference, m/s -1.07 -0.57 -0.30 —0.18 0.27
rms direction difference, deg 51.8 33.5 25.1 17.1 129
rms speed difference, m/s 2.88 1.88 1.40 1.24 1.60
rms vector difference, m/s 4.30 4.06 4.16 4.20 5.0
Pacific Ocean 40°S to 20°S
Number of measurements, % 16 38 33 14 0.2
Mean direction difference, deg ~1.6 -1.0 -0.4 -0.3 —0.8
Mean speed difference, m/s -0.21 -0.19 -0.12 -0.09 0.1
rms direction difference, deg 31.3 21.2 16.1 10.9 8.0
rms speed difference, m/s 0.95 0.94 0.84 0.92 0.83
rms vector difference, m/s 1.85 2.24 2.59 2.76 2.99
Pacific Ocean 20°S to 0°
Number of measurements, % 19 42 35 S 0
Mean direction difference, deg -0.22 -0.1 0.2 0.3 N/A
Mean speed difference, m/s -0.13 -0.12 -0.06 0.0 N/A
rms direction difference, deg 30.3 17.6 11.3 9.8 N/A
rms speed difference, m/s 0.82 0.84 0.67 0.78 N/A
rms vector difference, m/s 1.66 1.84 1.90 2.20 N/A
Pacific Ocean 0° to 20°N
Number of measurements, % 27 54 18 0.7 0
Mean direction difference, deg -0.2 0.5 -0.6 —-4.7 N/A
Mean speed difference, m/s -0.19 -0.16 -0.10 0.38 N/A
rms direction difference, deg 31.3 19.4 16.8 23.0 N/A
rms speed difference, m/s 0.88 0.91 1.17 1.58 N/A
rms vector difference, m/s 1.81 2.07 2.92 4.76 N/A
Pacific Ocean 20°N to 40°N
Number of measurements, % 32 41 21 6 0
Mean direction difference, deg 3.6 1.3 2.7 4.3 N/A
Mean speed difference, m/s -0.20 -0.19 —-0.130 —0.18 N/A
rms direction difference, deg 323 25.3 19.8 19.8 N/A
rms speed difference, m/s 0.87 0.99 1.08 1.07 N/A
rms vector difference, m/s 1.77 2.54 3.53 4.6 N/A
Pacific Ocean 40°N to 60°N
Number of measurements, % 22 40 19 18 0
Mean direction difference, deg -4.4 ~3.1 -0.3 -1.8 N/A
Mean speed difference, m/s -0.23 -0.32 -0.42 -0.02 N/A
rms direction difference, deg 47.1 28.7 24.2 14.3 N/A
rms speed difference, m/s 1.06 1.30 1.42 1.26 N/A
rms vector difference, m/s 2.39 3.05 4.30 3.73 N/A

these regions. The differences were smallest near the equa-
tor in the Atlantic Ocean.

The lack of sufficient ground truth limits our ability to
quantify the accuracy of the model-based wind retrieval
technique. However, visual and statistical comparison of
model-based wind retrieval with point-wise wind retrieval
(and subjective ambiguity removal) suggests that the model-
based winds have accuracy comparable to the point-wise
winds.

8. DiscussioN AND CONCLUSIONS

For traditional point-wise wind retrieval, ambiguity re-
moval is required to select a unique wind direction. Unfor-
tunately, this process is error-prone. Model-based wind
retrieval can ameliorate the need for point-wise ambiguity
removal. It can also provide more accurate estimates of the
wind with fewer ‘‘holes’’ in the wind estimate swath.

Like other model-based methods, development and selec-
tion of the model play key roles in the method’s perfor-
mance. However, for model-based wind retrieval a simpli-

fied dynamic wind field model provides adequate modeling
accuracy for the retrieval of winds from noisy ¢° measure-
ments. The modeling method presented here provides a
trade-off between the model accuracy and the computation
required to estimate the wind using the model and permits
control of any ‘‘smoothing’’ introduced by the model. The
model can also be used as a data quality check for conven-
tional ambiguity selection.

When applied to SASS, which has only two azimuth
angles for measuring ¢°, there may be several wind fields
which minimize the model-based maximum likelihood objec-
tive function used to estimate the wind field model parame-
ters; hence ‘‘field-wise’” ambiguity removal may be re-
quired. While this is conceptually much easier than point-
wise ambiguity removal, this step can be avoided if a good
initial value can be obtained. Generally, such an initial value
can be computed from the point-wise estimate of the wind.
This issue is further simplified for three azimuth angle
scatterometers such as ERS-1 and NSCAT.

Using model-based wind retrieval, 9 days of SASS data,
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for which subjective ambiguity removal of point-wise esti-
mated winds are available, were processed. Careful compar-
ison of the point-wise and model-based results demonstrates
the feasibility of the new technique. On the basis of actual
data and simulation the accuracy of the wind estimated using
model-based retrieval is comparable to the accuracy of the
point-wise wind estimates.

Model-based wind field estimation offers several advan-
tages over traditional point-wise wind retrieval: (1) since
point-wise ambiguity removal is not required, the problems
and issues associated with point-wise ambiguity removal are
eliminated, (2) wind measurement accuracy is increased at
low wind speeds, (3) there are fewer data gaps, and (4) fuller
use of the available ¢® measurements results in a wider,
uniform swath width. Although model-based wind estima-
tion requires more computation than point-wise retrieval,
model-based wind estimation has reduced sensitivity to ¢°
measurement noise since it takes advantage of the inherent
correlation in the wind field over the measurement swath.
Because model-based estimation is more tolerant of noise in
the o® measurements than is the point-wise wind estimation
technique, its use may permit reductions in the size and
weight of future scatterometer instruments by reducing the
requirements on the SNR of the ¢° measurements, permit-
ting smaller transmitters and/or smaller antennas.
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