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Reconstructing Signals from
Aperture-Filtered Samples

Reinhard O. W. Franz © and David G. Long

Abstract. Sampling plays a crucial role in remote sensing and signal analysis. In classic sam-
pling theory, a signal is sampled at a uniform rate and at a minimum of twice the signal band-
width. In practice, only finitely many samples of the signal are available and these can often
only be obtained at irregular positions due to platform movement, scanning, pulsed operations,
etc. In addition, often only local averages of the signal at these irregularly spaced locations can
be measured, often with different apertures at different locations. We will use the one-to-one
correspondence between the analog and discrete band-limited signal spaces established by
the regular sampling theorem, and give a direct treatment of the discrete problem of irregular
samplings. This problem is finite-dimensional and linear, easily accessible, and transparent. Its
solution can be easily implemented and analyzed to solve engineering applications. We will
see that—different from other approaches—only the number of samples, not their location or
density, determine whether the signal can be recovered or not.

1. INTRODUCTION. One of the fundamental problems in signal analysis is: Given
the samples f(#), k € Z, of a function f in PW?, under which conditions can f be
recovered from its samples? Here PW? denotes the Paley—Wiener space

PW2 := (f € LX(R) | supp f C [—1/2,1/2]}

which is often called the space of “band-limited” functions by engineers. Recall that
f&) = Jo f(x)e™>*8 dx is the Fourier transform of f.

If f is band-limited and the samples are equally spaced and sufficiently dense, then
it is well known that f can be uniquely recovered by the cardinal series [14,15].

However, for instance, in a typical remote sensing application, measurements are
samples of an aperture-filtered signal. The aperture results from spatial filtering char-
acteristics of the antenna, optics, and/or signal processing used in the signal sampling.
Signal sampling may involve a combination of platform movement, scanning, and
pulsed operation, etc. Therefore, the samples are often irregularly spaced and consti-
tute only local averages of the signal at the sampling locations, often with different
apertures at different locations. If all the samples are obtained with a fixed aperture
function, then this function can be removed by deconvolution after the recovery of the
signal.

The mathematical approach to the analog version of this sampling setting is known
as “weighted average sampling.” It has become a very active field of research in the
last 20 years, where it has been studied in the setting of wavelet spaces, frame theory,
etc. See, for example, [1-8, 11].

In this article, we will use the one-to-one correspondence between the analog and
discrete band-limited signal spaces established by the regular sampling theorem and
deal directly with the discrete problem of irregular sampling, which focuses on recon-
struction from a finite number of samples; see [10]. This problem is finite-dimensional
and linear and can therefore be handled with methods of linear algebra. It is easily
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accessible, transparent, and its solution can be readily implemented to solve engineer-
ing applications. See, for instance, [12].

We show how the problem of reconstructing a discrete band-limited signal from
its irregular samples can be easily reduced to the regular case, where it can be
directly recovered using the discrete version of the well-known Shannon—Whittaker—
Kotel’'nikov sampling theorem. We will see that—different from other approaches
(see, for instance, [4,9, 10, 13])—only the number of samples, not their location or
density, determines whether the signal can be recovered or not. A modification of this
approach allows the reconstruction of discrete band-limited signals from aperture-
filtered samples, provided the apertures satisfy some linear independence conditions.

2. PRELIMINARIES. In digital signal processing, a signal consists of a finite
amount of data, i.., it is a finite sequence (f(0), f(1), f(2),..., f(N — 1)) of
numbers, where N € N can be very large. The irregular sampling problem asks the
following: Under which conditions can f be completely recovered from its samples
(f(n]), R f(n,)), where the sample locations ny, ...,n, € Nwith0 <n; <n; <
...,n, <N — 1 are given.

In applications, frequently the more general problem, which we will term the irreg-
ular aperture-filtered sampling problem, is encountered: Under which conditions can
f be completely recovered from its “aperture-filtered” samples ( fom), ..., fo, (n,))
at the given locations 0 < n; < --- < n, < N — 1; here the samples fvj (n;) = (f *
v;)(n;) (see equation (6)) represent the measured values of f at n; by some device
v; that provides some “local average” of the values of f in some neighborhood of n;
dependent on the device v; (j = 1,...,r). Generally, the device used for the mea-
surements may change from sample location to sample location, but we assume that
we know the “characteristics” v; of the measuring devices used.

The Hilbert Space of Nth-order signals. Since a digital signal in practice has finite
length N for some N € N, it can be modeled by a function f from {0,1,..., N —
1} into the complex numbers C. Similar to the theory of analog signals of finite
length, we will identify f with its periodic extension. To this end, we identify the
set {0, 1,..., N — 1} with the (finite) cyclic group Zy = Z/NZ and define a signal
or, more precisely, a Nth order signal to be any (N-periodic) function f : Zy — C.
We denote the C-vector space of all Nth order signals by £(Zy). Clearly, if f € £(Zy),
then f(k +mN) = f(k) forall k, m € N.
{(Zy) is a Hilbert space relative to the inner product

N—-1
(f.8) =Y [(g),

k=0

which induces the square norm

N-1 12
IF Il =V ) = (Z If(k)lz)
k=0

on £(Zy).
In the following, we introduce some more terminology and notation, which facili-
tates the presentation and discussion of the results of this article.
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Dirichlet Kernel. For convenience, we set
Wy = e 2N
We list some important, well-known properties of Wy in the following.

Proposition 1. 1. WX =1 if and only if k = 0 (mod N). In particular, Wy # 1
forall N e N.

2. Forallk € Z

N—1

szr\l/k= N ifk=0 (mod N),

0  otherwise.
n=0

For any n € Zy, we define the signals W7, e : Zy — C by
W (k) = Wik = =2mink/N,
e (k) =8,
(k € Zy) where §,; denotes the Kronecker delta. The families
On =(N"PWS,, ... N"PWA),
Cyi=(ey", ..., ey)

are orthonormal bases of £(Zy).
For M € Nand M < N/2, we define the signal Dy, := Dgflv) :Zy — Cby

which is called the Dirichlet kernel of order M and which can be written in closed
form as

sin((2M + 1)7”1/]\7) .
Dy (n) = sin(rn/N) ifn#0 (mod N), )
2M +1, otherwise.

Figure 1 depicts the graphs of the Dirichlet kernel function D,s (plotted in bold) and
the shifted Dirichlet kernel function t19(D»5) = Dys * e%’) in £(Zs1).

Note that Dy, (0) = 2M + 1 and Dy (n) = 0if and only if there exists a k € Z \ {0}
such that QM + I)n = kN.If2M + 1 | N, ie.,if @M 4 1)d = N for some d € Zy,
then Dy, (n) = 0 if and only if # is a multiple of d.

Operations. For ny € Zy, let 1,,, ¢ and u,, denote the operations of translation by
ny, reflection, and modulation by ny on €(Zy), respectively, i.e.,

Ty (f) (k) == f (k — no),
o(f)k) :==f(=k) = f(N —k),
Ty () (K) =Wy (k) - f (k)

RECONSTRUCTING SIGNALS 3
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Figure 1. The Dirichlet kernel D55 (bold) and 719(D»s) (light line) for N = 51.

for f € ¢{(Zy) and k € Zy. Let f, g € £(Zy); then the convolution f x g of f and g
is defined by

(f ) k) := Y f(egtk = j)

JELN
forall k € Zy.

The discrete Fourier transform. If f € €(Zy), then the discrete Fourier transform f
of f is the signal f € £(Zy) defined by

. R
= — W2
f W;f(n) v

It can be easily verified that the discrete Fourier transform F : £(Zy) — £(Zy) : [ —
f is an isometric isomorphism; in particular, we have Parseval’s formula

(f,8) = (f, 8), 2)
and thus

LFI = 11£1 3)

for all f, g € £(Zy). Moreover, we have the well-known inversion formula

1=
f=7 > FmWy )
n=0

We list, for easy reference, some further well-known properties of the convolution
product and the discrete Fourier transform (see, for instance, [10,16]).
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Proposition 2. Let f, g € £(Zy) andn,m € Zy. Then

Lfxgl=<Ifllgll

NW?Y ifn=m (mod N),
2. Wi« WY = N
v E N 0 otherwise.
3. tn(DM) * tm(DM) = Ntn+m(DM)-
4. F(N~'PWn) = ).

5. WK sel™ = WKWk
Band-limited signals. If M € N and 0 < M < N/2, then the signal f € ¢(Zy) is
said to be M-band-limited if f(k) = 0 for all k € Zy with |k| > M, i.e., supp(f)

{—M, ..., M}. For convenience, we will not consider here the case of an asymmetric
frequency band. We denote the set of all M-band-limited signals by By, i.e.,

By = {f € &Zy) | f(k) =0 for k| > M).

By =F ‘1((e,(<N) | k| < M)) constitutes a closed subspace of ¢(Zy) of dimension
2M + 1 with orthonormal basis Osy11 = (N7'2WX | [k| < M). We will also use
the basis i:)zMH = (W’]‘V | k] < M) of By;. The orthogonal projection Py of £(Zy)
onto By, is given by m(n) = f(n) for |n| < M and Im(n) =0 for |n| > M,
felZy).

Proposition 3. Letn,ny,n, € Zy. Then

2. (Ta; (D), Ty (Dy)) = N Dy (1 — nz). Hence t,,(Dy) L 7,,(Dyr) if and only
if (ny —ny)(2M + 1) = mN for some m € 7\ {0}.

3. lta(Dy)|l = /NCM + 1).

Proof. (1) The assertions follow immediately from Proposition 2(4):
M M M
Dy=F < > w;") =Y FWH=VN D eV =VNxu.m-
k=—M k=—M k=—M

(2) Again by Proposition 2 and using the fact that F preserves the inner product,
we can conclude

(20, (Das), Tay (D3)) = (T, (Dir), Ty (D)

..........

N-1
=N ZW'J\} () X(nt.ay (k) - W2 () x—pa....01y (K)
k=0
M
=N > Wi —ny) = NDy(ny —ny).
k=—M
(3) This identity follows immediately from (2). [ |

RECONSTRUCTING SIGNALS 5



The discrete regular sampling theorem. Reconstructing a signal from regularly
spaced samples is common and can be done using the discrete version of the classical
Shannon—Whittaker—Kotel’nikov sampling theorem. For convenience, we provide a
formal proof in this article. We first establish a specialized version of the discrete
sampling theorem.

Theorem 1. If M € N, such that 2M + 1 divides N, i.e., d2M + 1) = N for some
d €N, then:

1. Forall j,k €{0,1,...,2M)

0, k#j;

ICRICIES IV

2. By = (rjd(DM) |j=0,..., 2M) constitutes an orthogonal basis of By.
3. Any M-band-limited signal f € By has a basis representation of the form

d 2M
f= 2 FGDTa(Dy)
j=0

relative 1o By, i.e., f = %( fo¥ DM),where fi = M FGdeY) € 6@y,

Proof. (1). This assertion follows directly from equation (1) and 2M + 1)d = N.In
fact, if j, k € {0,...,2M]}, then

. sin(w(k — j)) =0; k j
1(Dan) (kd) = Dy (k — )d) = {2M(+(1, M=ok
Q) If j1,  €{0,1,...,2M}, then (jod — j1d)(2M + 1) = (j» — j1)N, since by
assumption (2M + 1)d = N. Hence, we can conclude using part 2 of Proposition 3
that 7;, (D)) and t;, (D)) are orthogonal, provided that j; # j,. Asdim(By) = 2M +
1, B, is an orthogonal basis of 3, as claimed.
(3) By (2), any f € B, has a basis expansion

2M
f=Y aTuw,
j=0

relative to B, where the coefficients a; are the Fourier coefficients

(f,tjaDy)) ([, Tja(Du))

a; = = :
a2 NCM + 1)

Thus, we only have to show that (f, 7;4(Dy)) = Nf(jd) for all j € {0,...,2M}.
Parselval’s formula (2) in conjunction with the inversion formula (4) implies

(f. (D)) = (f T5a(Da)) = (Fs W N o)

6 (© THE MATHEMATICAL ASSOCIATION OF AMERICA



N-—1
_ «/NZ F)Wy'(jd) = Nf(jd),
n=0

since, by assumption, f (n) =0forall |n| > M. ]

Corollary 1 (Discrete Regular Sampling Theorem). Let M € N and suppose d is
a divisor of N such thatd < N/2M + 1) and r := N/d — 1 is even. Then any M-
band-limited signal f € By has an expansion of the form

d r
=5 2 FUdTa(D).

j=0

Note that the family (r_,-d Dy) 1 j=0,..., r), in general, is neither orthogonal nor
linearly independent over C.

Proof. Let M’ :=r/2. Then N = M’ 4+ 1)d and asd(2M + 1) < N, M < M’ and,
therefore, By, C Byy. Thus, if f € By, then f € B, and by Theorem 1, we have the
expansion

N r
f=—7 2 FGDTDir) )
j=0

relative to the orthogonal basis By = (7;¢(Dy) | j =0,...,2M" =r). In order to
obtain an expansion in terms of the kernels t;,(Dy), we apply the orthogonal projec-
tion Py from £(Zy;) onto BB, to equation (5), which yields

N < N <
f=Pulf)="Pu| Z(; FUd)yTa(Dw) | = — 2; F(Gd) Py (tia(Dar)

and which equals

N < _
=D F(id)ma(Dy)
j=0
since Py, (rjd(DM/)) = rjd(PM (DM/)) = 7;4(Dy) as can be easily verified. [ |

3. IRREGULAR SAMPLES. We now turn to the problem of reconstructing a band-
limited signal from its irregularly spaced samples.

LetN,M e N,2M + 1) | N,and d := N/(2M + 1). Moreover, let r € N, and let
0<nyo<ny <ny<---<n,_; <N —1be the (irregular) sampling locations for the
signals in By;.

Definition 1 (Sampling Homomorphism). We call the unique homomorphism s, :

RECONSTRUCTING SIGNALS 7



By — €(Z,) defined by linear extension through the association

(D * e )(no)

w (D x €53)) (n1)
Dy % e .
(D €)1
(j=0,1,...,2M) the sampling homomorphism of By, with respect to the locations
ng, Ny, ..., n,_1. The representation matrix Sy, for s,
(N)
(DM * eo )(”0) (DM * esz)(”O)
Su = Mg, s, (su) = : : ,

(Dux€)”)n) - (D x €50,) (1)

is called the sampling matrix of B,; with respect to ng, ni, ..., n,_; relative to the

basis B, and €.

Note that the coordinate isomorphism ¢s,, : By — €(Zop1) of By relative to
B, defined by Dy, * eﬁN) = e§2M+1), j=0,1,...,2M, by Theorem 1, assigns to
each signal f € 3, the vector

03, () = X(f0). f@...., fCMd))',

whose components are the values of f at the regular locations 0, d, ..., 2Md scaled
by N/d.

The following theorem with its corollary contains the main result of this section.
It implies that any M-band-limited function f is uniquely determined as long as we
know at least 2M + 1 samples, independent of how they are spread over its domain.

Theorem 2. sy, has rank 2M + 1 if and only if r > 2M + 1.

Proof. Tt suffices to show that r > 2M + 1 implies rank(s,,;) = 2M + 1, since the con-
verse is trivial. Since Oap4 1 = (W’]‘V | k e {—M, ..., M}) is abasis of By, it suffices
to show that

W[’\ZJO(*M) .. W}”\’/OM
M@N,ézMH (sm) = .
o1 (=M M
W:, =M W;\Z, 1

has rank 2M + 1. Consider the square submatrix A consisting of the first2M +1 <r

rows of M (su). Setaj := W,/ then Wy ik = (;)* and

,§2M+|
A =diag(eg™, ... 05) - V(ao, ..., m),

where the second factor is the Vandermonde matrix

1 ooy o - oM
1 o a12 osz
Viag, ..., 00n) =
2 oM
I ooy a3y -0 iy

8 (© THE MATHEMATICAL ASSOCIATION OF AMERICA



Clearly,

2M
det(A) = ]_[a,;M ]_[ (a; — ay) # 0.
k=0

O<s<t<2M

Indeed, by definition, «; = W,’:,j #0forall j =0,...,2M. Moreover, o, — oy, = 0
if and only if W™ = 1 and thus n, — n, € NZ. However, by assumption 0 < ny <
ny<---<nyy <N —1,thus n, — ny, ¢ NZ. It follows that the 2M + 1 columns
of A and thus also the columns of My 5, . (sy) are linearly independent, which
concludes the proof. ]

In practice, the measured values of the M-band-limited signal f at the sam-
pling locations n; are subject to “noise.” The non-M-band-limited component of
the noise can be removed by solving the sampling equation Sy X/ = Y/ in the
“least-squares sense,” which can be done in a numerically stable way using the QR
decomposition of Sy,.

Corollary 2. Let Sy, = QR be the canonical Q R decomposition of Sy into the matrix
Q with orthonormal columns and the invertible upper triangular matrix R. If Y/ =

(f(no), ceey f(nr,l))l is the sampling vector of a M -band-limited function f, then

X" :=R'QY = (N/d) (£(0), £(d),..., FCM))'

is the regular sampling vector of f, i.e.,

2M i
f= Z X‘;Tjd(DM)-

j=0

Proof. Suppose r > 2M + 1 and Sy, € C,+1. By Theorem 2, Sy, has linearly inde-
pendent columns and thus S, Sy € Cop1.2m+1 1s invertible. Hence, the least-squares
solution of Sy, X/ = Y/ is given by

X/ = (S}, Su)~' Sy, Y/
which, using the canonical Q R-decomposition of S, reduces to
R'Q'Y/
as claimed. ]

4. APERTURE-FILTERED SAMPLES. In this section, we address the problem
of reconstructing a band-limited signal from its “aperture-filtered” samples. Again,
let M,N,r e NN M < N/2, CM + 1)|N,d :== N/(2M + 1), and let B, := (DM *
e%) |j=0,1,....,2M ) denote the canonical orthogonal basis of B,,. Moreover, let
v := (vo, ..., v,_1) denote the system of “aperture functions” vy, ..., v, € £(Zy)
representing the response profiles of the devices used for measuring the samples of
an M-band-limited function f € 8, at the (irregular) locations n := (ng, ..., n,_1),
0<ny<n; <---<n,_; <N — 1. Different from the setting of the previous section,
where we assumed that the exact values of the M-band-limited signal f € B, were

RECONSTRUCTING SIGNALS 9



available at the (irregular) locations n, we now consider the more general situation
where at each sampling location n; we only know the value of f convolved with the
“aperture function” v, for k =0, ..., r — 1. We therefore only know the values

(f *vo)(ng), ..., (f *v,_)(n,_1) (6)

of the M-band-limited function f. If the sampling values are measured using the same
device at each sampling location, i.e., if vg = --- = v,_; = v, then f can be easily
recovered provided supp(0) C [—M, M]. In the general case, we can also recover f if
the aperture functions vy, . .., v, satisfy some linear independence conditions.

Definition 2 (Sampling Homomorphism). As above, we call the unique homomor-
phism sy, : By — £(Z,) defined by linear extension through the association

N
(DM * e;d) * vo)(no)
(DM * e(-l;]) * U])(I’l])
D (N) J
M*€; " = .

N
(DM * ei'd) * vrfl)(nrfl)

(j =0,...,2M) the sampling homomorphism of By, with respect to u relative to the
apertures v. The representation matrix

S[l\j/l = M@rv%M (Sll\jd)

(D * el x vw)(ng) - (D * el x Vo) (120)
(D * el « Veoi)(,—) - (Dyx el) V1) (n,—1)

is called the sampling matrix of By, with respect to n relative to the apertures v. More-
over, let By, (v) denote the subspace of all M-band-limited signals f € B3, that can be
reconstructed from their samples at n relative to the apertures v.

The M-band-limited signal f can be completely recovered from its r aperture-
filtered samples if the conditions of the following theorem are satisfied. Note that
rank(Sy,) = 2M + 1 implies that r > 2M + 1. Again, the non-M-band-limited noise
component is eliminated by the least-squares solution used.

Theorem 3. Suppose S}, has rank 2M + 1 and S}, = OR is the canonical QR-
decomposition of Sy,. If Y/ = ((f * vg)(ng), ..., (f * UZM)(n,,l))I is the vector of
the aperture-filtered samples of the M -band-limited signal f, then X/ = R~'Q'Y/ is
the regular sampling vector of f, i.e.,

oM
f=Y_ X[tu(Du).
Jj=0
We will now investigate under which conditions on the aperture functions
(vo, - .., v,—1) the sampling matrix has linearly independent columns. We begin with

the special case that all samples are taken using the same aperture v assuming that
r>2M + 1.

Theorem 4. Suppose v = (v, ..., v) andr > 2M + 1. Then S}, has rank 2M + 1 if
and only if v(n) # 0 forall |n| < M.

10 (© THE MATHEMATICAL ASSOCIATION OF AMERICA



Proof. Consider the endomorphism ¢, : By, — Bj defined by f +— f % v. Then
sy = Su o ¢, and rank(sy,) = rank(c,) since r > 2M + 1 implies ker(sy) = {0}.
However, rank(c,) = 2M + 1 if and only if ker(c,) = {0}, which is equivalent to
v(n) #0forall |n| < M. [ ]

The following theorem gives more insight in the case of uniform aperture functions.

Theorem 5. Suppose r > 2M + 1, v = (v, ..., v) and the aperture v has the basis
representation

V= Z angl/Zva

teZy
relative to the orthonormal basis Oy = (N_I/ZWf\, | € € Zy). Then
Sy, = N'2Sy diag(a_y, . . ., am).
In particular, rank(S},) = 2M + 1 provided that a, # 0 for all |n| < M.

Proof. The identity follows easily from the equations sy, = sy o ¢, and S}, =
Mg, 55, (su) M\, 0,y (D)Mo, | %, (cy). Since, by parts 2 and 5 of Proposition 2,

co(Dy * e_(].]:;)) = Dy % e%) %V

M
S(S W) (S ) e
k=—M

[EZN

M
_ (Z akmwf;v) el

k=—M
M .
= 3 N W,
k=—M

the representation matrix of ¢, relative to the basis 28,; and O,y is

M92M+1-‘BM (cy) = (\/ﬁakW,\;jdk)k’j = \/NH diag(an, cees ),

where
1 W]/\l[/[d W]/\l]’I(Zd) . W]/\l’/IZMd
1 W](\]Mfl)d W](VMfl)(Zd) . WIE[Mfl)ZMd
H =
1 W}E/—M)d W](V—M)(Zd) L. W[E]—M)ZM(]

Clearly, My,,,,, »,(id) = H and therefore My, o,,,,(id) = H~'. It follows that

S = SyH 'VNHdiag(a_y, ...,ay) = Sy~/Ndiag(a_y, ..., ay). Since the
Fourier transform of v is

F)y=F > aNW, | =>" ae’,

[EZN ZeZN

RECONSTRUCTING SIGNALS 11



it follows immediately that 0(n) = a_, for n € Zy and the claim follows from the
previous theorem. ]

Remark 1. Note that
1. Y € £(Zy) is the v-aperture-filtered sample of a M-band-limited signal if and
only if Y € im(s},).
2. The band-limited signals fi, f>» € By have the same v-aperture-filtered samples
if and only if f, — f; € ker(s}f/,).
3. Bu(v) = By / ker(s). In particular, dim By, (v) = rank(s},).

Note: If ker(s}\’l) # {0}, then BB, (v) is a proper subspace of B,,. By (v) is not neces-
sarily of the form B, for some 0 < M’ < M.

The following theorem characterizes those systems of aperture functions v for
which the sampling homomorphism has full rank. We will see that any M-band-
limited signal f can be completely recovered from its aperture-filtered samples
((f * V9)(1g), - .., (f * UZM)(n,_l)) if and only if the family of “shifted apertures”
(r,,k(vk) | k=0,...,2M ) is linearly independent “over the frequency band {—M,
..., M} ie., if the family (PM (vg * e,((N)) |k=0,..., 2M) is linearly independent.

Theorem 6. The following statements are equivalent.

1. sy, has rank 2M + 1.

2. There exist 2M + 1 indices ky, . .., kyy in {0, 1,2, ..., r — 1} such that the sys-
tem (v;jWnNkj Xiem,..m | J=0,..., 2M) is linearly independent.

3. There exist 2M + 1 indices ky, . .., kyy in {0, 1,2, ..., r — 1} such that the sys-
tem (PM (vkj e k=0,..., 2M> is linearly independent.

ny .
k/

Proof. We only have to establish the equivalence between (1) and (2). As the signals
Dy * vy * e are M-band-limited, by Corollary 2 the system

((s3), [k=0.....r=1) %)
of all row vectors of S?
(Sv), = (Du*e)” xv) () -+ (D *eSh), * ve) (o)
= ((Dy * v %€0))(0) -+ (Dy * v % e))(=2Md))

has rank 2M + 1 if and only if there exist indices ko, . .., ko) in {0, ..., » — 1} such
that the system (DM * Uk eff;’ )1 j=0,1,....2M ) is linearly independent, which,
by applying the discrete Fourier transform, is equivalent to the linear independence of

the system (X{,M M}ﬁkjW’;\,kj |j=0,..., 2M), which establishes the assertion. M

5. NUMERICAL EXAMPLES. To illustrate the reconstruction technique intro-
duced in this article, we provide a simple numerical example with M = 2, d = 3, and
N = 15. A M-band-limited simulated real signal f (shown in Figure 2) with the spec-

trum f shown in Figure 3 was generated. f fork =-2,-1,0,1,2is9,-9,5, -9, 9.
Arbitrarily chosen irregular samples are at n = {2, 3, 4, 6, 13}. The sampling matrix
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Figure 2. Discrete signal f example shown as stem plot. Filled circles correspond to non-aperture-filtered
irregular samples. Dotted and dot-dashed lines show aperture filtered signals. Asterisks show variable aperture-
filtered samples.

S N B o ®©
——

N N
———

-6 -4 -2 0 2 4 6 8

Figure 3. Spectrum f of signal f. For simplicity, both are chosen to be real in this example.

Sy and its inverse corresponding to the irregular sampling locations are illustrated
in Figure 4. The condition number for the inverse is approximately 40. The result
of applying the inverse sampling map to the signal is illustrated in Figure 5. The
reconstruction is perfect to within numerical computation accuracy (magnitude error
between reconstructed f and f less than 1 x 10714).

For the aperture-filtered case, two different aperture functions are defined in
Figure 6. The results of convolving each aperture functions and the signal are shown in
Figure 2. The sampling alternately selects the value from each aperture-filtered signal
at the irregular sample locations illustrated in Figure 2. The corresponding sampling
map with respect to the aperture functions and its inverse are shown in Figure 7. The
condition number of the map is approximately 37 for this case. The reconstruction is
identical to Figure 5. The reconstruction is perfect to within numerical computation
accuracy (magnitude error between reconstructed f and f less than 1 x 1071%).
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Figure 4. Sampling matrix Sy, and its inverse for irregular samples atn = {2, 3,4, 6, 13}.

2 4 6 8 10 12 14

Figure 5. Reconstructed signal (stem plot) compared to the original signal (line).
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1 L .
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Figure 6. Plot of the two arbitrary aperture functions used. One is shown as open circles, the other as asterisks.
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Figure 7. Sampling map S}, with respect to v for irregular samples and its inverse.

“wn A WN

noise
T
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Figure 8. Random values (noise) added to samples. Dark x’s are the noise values added to the irregular
samples, while circles are the values added to the uniform samples.

To illustrate the effects of noise in measurements of samples, an independent identi-
cally distributed (i.i.d.) Gaussian random sequence was generated with variance 1/400.
This was added to the measurements for each case. Figure 8 shows the i.i.d. noise val-
ues added to the samples (shown Figure 2). Applying the reconstruction matrices to
the noise values, Figure 9 shows the results, which demonstrates that the error due
to noisy measurements is unevenly distributed, with larger error further from sample
locations. The noisy reconstructions are shown in Figure 10. The root mean sum (rms)
error for each case is shown in Table 1.

We note that the condition number of the reconstruction matrices depends on the
locations of the samples. For uniform sampling the matrix condition number is 1. For
the nonideal irregular samples (which are bunched up on the left, see Figure 2) the
condition number is approximately 40. For the variable aperture, irregular sampling
case, the condition number is approximately 37.

RECONSTRUCTING SIGNALS 15



Figure 9. Errors due to random noise added to samples. For the same errors, the uniform error (diamonds) is
small and uniformly spread. The error is larger when the sampling is irregular, especially for locations distance
from sample locations. The error in the irregular, constant aperture noisy reconstruction case is shown in circles
with light bars. The asterisks with dark lines show the irregular, variable aperture noisy reconstruction error.

Figure 10. Noisy reconstructed signals compared to the original signals. The original signal is shown with
circles. The reconstruction from uniform samples is shown as the light dotted line, while the irregularly sam-
pled reconstructed signal with a constant aperture and added noise is the dark dotted line with asterisks and the
irregularly sampled reconstructed signal with variable aperture and added noise is the thin line with circles.

Table 1. rms error for noisy reconstruction.

Case rms error
Samples alone 0.336
Uniform 0.00084

Irregular fixed aperture 0.082316
Irregular variable aperture  0.0155

6. CONCLUSION. In order to keep the presentation focused, we have not consid-
ered the issues of over-sampling or noise in our discussion of reconstructing band-
limited functions from irregular (aperture-filtered) samples. The standard method for
utilizing the additional sampling information in regular sampling is to use the pseudo-
inverse of the sampling matrix. This can be extended to the case of irregular sampling.

Moreover, it might be worthwhile to develop a direct algorithm for computing the
inverse of the sampling matrix S),; based on the inversion formula for Vandermonde
matrices to speed up the reconstruction process. The results can be extended to higher
dimensions; see, for instance, [12].
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