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ABSTRACT

The behavior of electromagnetic fields in an inhomogeneous, anisotropic med-
ium can be characterized by a tensor Green function for the electric field. In this disserta-
tion, a new formalism for tensor Green functions using the calculus of differential forms is
proposed. Using this formalism, the scalar Green function for isotropic media is general-
ized to an anisotropic, inhomogeneous medium. An integral equation is obtained relating
this simpler Green function to the desired Green function for the electric field, generalizing
the standard technique for construction of the Green function for the isotropic case from the
scalar Green function. This treatment also leads to a new integral equation for the electric
field which is a direct generalization of a standard free space result. For the special case
of a biaxial medium, a paraxial approximation for the Green function is used to obtain the
Gaussian beam solutions. A straightforward analysis breaks down for beams propagating
along two singular directions, or optical axes, so these directions are investigated specially.
The associated phenomenon of internal conical refraction is known to yield a circular inten-
sity pattern with a dark ring in its center; this analysis predicts the appearence of additional
dark rings in the pattern.
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Chapter 1

INTRODUCTION

Electromagnetic fields interact with the materials in which they exist. On the
atomic scale, the interactions between fields and particles can be extremely complex, but
on a macroscopic scale, the influence of a medium on fields can be modelled by modifying
the constitutive relations between the electric and magnetic field intensity and the associ-
ated flux densities. These constitutive relations, together with Maxwell’'s laws, govern the
propagation of fields in materials. A medium for which the relationship between field and
flux density depends on the direction of field intensity is an anisotropic medium. If the con-
stitutive relations depend on position, then the medium is inhomogeneous. A bianisotropic
medium is one in which electric and magnetic fields are coupled by the constitutive rela-
tions. In this dissertation | consider the behavior of electromagnetic fields in an anisotropic,
inhomogeneous medium. Bianisotropic, nonlinear, and spatially dispersive media are not
considered. The term complex media is often used to denote the class of materials of
the most general type, but “complex media” or “general media” will be used here to de-
note the limited category under consideration. The most general constitutive relation to be
treated are possibly position dependent, linear relationships of thefipeme;;(r) E; and
B, = pi;(r)H;, whereg;; is the permittivity tensor ang;; is the permeability tensor. In
the general derivations of Chapters 3 and 4, the only restriction placed on the constitutive
tensors is that they must be non—singular. Special cases are treated thereafter. Chapters
5 and 6 deal with biaxial materials, which are homogeneous, magnetically isotropic, and
have a diagonalizable permittivity tensor with three unique eigenvalues. | consider only
time—harmonic {~*) fields, so that effects due to temporal dispersion are neglected. Al-
though many of the general results given in this dissertation are coordinate—free, | employ
rectangular coordinates almost exclusively when dealing with expressions in component

form.



Numerous types of materials fall into the class treated in this dissertation. Aniso-
tropic media are employed in electromagnetic devices for modulation and control of sig-
nals, especially those materials for which the anisotropy can be influenced by application of
a static or slowly varying electric field and devices which employ polarization—dependent
effects to control microwave and optical signals. Anisotropic effects of the ionosphere
must be studied in order to understand the behavior of radio waves for which transmission
is affected by this region of the atmosphere. Problems involving inhomogeneous media are
ubiquitous, and range from investigations of interaction between a biological object and
a radiating antenna to statistical analysis of effects on signal propagation due to random
fluctuation of atmospheric properties. Inhomogeneous media arise in a variety of remote
sensing applications, and their effects must be quantified in order to effectively evaluate
and interpret data obtained by detection of signals radiated or scattered by natural or artifi-
cial materials. Inhomogeneous materials such as graded index fibers are often employed in
optical systems. Problems for which the medium could be considered both inhomogeneous
and anisotropic include the scattering problem for bounded anisotropic materials of various
shapes, layered anisotropic media, or anisotropic coatings.

Methods for analysis of fields in complex media are manifold. Possible ap-
proaches include computational algorithms for solving differential and integral equations
as well as analytical approaches specialized to particular problems. The particular method
to be extended and applied here is the theory of the tensor Green function for the electric
field. Maxwell's laws can be solved for an arbitrary source configuration and a specified
boundary condition if an appropriate tensor Green function is available. The tensor Green
function essentially represents the electric field produced by an infinitesimal current source
of arbitrary orientation and location. If this Green function is known, then the fields due
to a given source can be obtained by direct integration, so that the Green function can
be thought of as completely characterizing the electromagnetic properties of a particular
medium.

For a general medium, a closed form representation of the Green function has
not been obtained. For an inhomogeneous medium, the problem of determining the Green

function is especially difficult, since information about the variation of the medium over



the entire region of interest must be incorporated into the Green function. Even for a biaxial
medium, the Green function can only be given in closed form asymptotically. The present
understanding of Green functions for complex media is far from complete, and the research
reported in this dissertation is intended to advance this area of electromagnetic field theory.

Chapter 2 is devoted to a study of previous work on Green functions for com-
plex media and an introduction to the primary tool used in this dissertation, the calculus
of differential forms. The power of differential forms as a tool for electromagnetics is the
foundation of the results of this dissertation. As outlined briefly in Chap. 2 and in detail in
Appendix B and Ref. [1], the calculus of differential forms offers both algebraic and geo-
metrical advantages over traditional vector analysis. With differential forms, many vector
identities and theorems are reduced to simple, algebraic properties. This makes differen-
tial forms ideal in searching for new theoretical approaches, since manipulations are often
more transparent and less tedious than they would be if the usual notation were employed.
Differential forms also allow field quantities and the laws they obey to be visualized in an
intuitive manner. This is valuable in research since problems can be understood and solved
first visually and then mathematically. The geometrical representation for electromagnetic
boundary conditions given in Chap. 2, for example, is naturally related to the mathematical
expression derived in Ref. [2] and Appendix A.

In order to employ the calculus of differential forms to treat the theory of elec-
tromagnetic Green functions, | represent the tensor Green function as a double differential
form, rather than as a dyadic. The utility of double forms for the case of free space has been
demonstrated in Ref. [3], where it is shown that differential forms make key expressions
more concise and easier to apply in some respects than their dyadic formulations. In order
to treat a general medium, | construct in Chap. 3 Hodge star operators from the permittivity
and permeability tensors. The new formalism arising from the use of these star operators
yields two benefits: first, the same few fundamental theorems and algebraic properties of
the calculus of differential forms which are used to treat electromagnetics in free space can

be employed for complex media with only minor modification. Second, expressions extend



in a more obvious way to the inhomogeneous, anisotropic case, facilitating the generaliza-
tion of free space results to complex media. Some results generalize to a complex medium
simply by reinterpreting the star operators which are already present in the expressions.

After using this formalism to define the Green form for the electric field, | re-
cover known results for the electric field in terms of the Green form, impressed sources,
and boundary values of the fields due to sources external to the region of interest. Unlike
previous treatments, this derivation follows the pattern of the standard, formal theory of
Green functions by obtaining key results from a generalization of Green’s theorem. With
the derivation cast into this form, the origins of symmetry and self-adjointness properties
of the Green form and the associated differential operator become clear. The treatment
also elucidates the role of boundary conditions in determining the properties of the Green
function and the associated differential operator.

For a homogeneous, isotropic medium, the tensor Green function can be con-
structed from a simpler Green function associated with the scalar Helmholtz equation.
Similar techniques have been sought for anisotropic media with limited success in cer-
tain special cases, as will be reviewed in Chap. 2. The primary intent of Chapter 3 is to
generalize this type of construction. While | do not obtain a closed form solution for the
Green function, the treatment does yield a result that is a rather direct generalization of the
free space method. Using the wave operator of the calculus of differential forms, | gen-
eralize to a complex medium the scalar Helmholtz equation and the associated free space
Green function. The associated Green function is a double form rather than a scalar quan-
tity, but is still simpler than the Green form for the electric field. This Helmholtz Green
form can be obtained analytically for an unbounded, homogeneous, anisotropic medium.
For an isotropic medium, it reduces to a double form with the usual scalar Green function
as the diagonal component. Following introduction of the Helmholtz Green form, the cen-
tral result of this work is derived: a relationship between the Helmholtz Green form and
the Green form for the electric field. In free space, the Green form for the electric field
can be expressed in terms of the scalar Green function and its derivatives. For a complex

medium, this relationship becomes an integral equation. Although the integral equation



does not reduce directly to the free space expression, the two constructions are very similar
in form. The work contained in Chap. 3 has been reported in Ref. [4].

Chapter 4 treats in more detail an integral equation for the electric field in terms
of the Helmholtz Green form of the previous chapter. The equivalence of this integral equa-
tion with a standard result for the electric field due to sources in an isotropic, homogeneous
medium is demonstrated. The isotropic expression is manipulated into a form that gener-
alizes directly to the case of a complex medium. | contrast this integral equation with the
usual integral equation method for complex media, and discuss cases where the present
approach may have advantage over the usual method. | also give a principal value interpre-
tation for integrals involving derivatives of the Helmholtz Green form, which is required in
order to implement the integral equation numerically.

Following these general considerations, | specialize to the case of a biaxial
medium. Chapter 5 treats the propagation of Gaussian beams in biaxial media. | give
the beam solutions and parameters in terms of the direction of propagation and the per-
mittivity of the medium. There are two singular directions, or optical axes, for which the
results of Chap. 5 break down. Narrow beams in these directions spread into a hollow cone.
This phenomenon is known as internal conical refraction. In Chap. 6, | give a special anal-
ysis of beams for these directions, obtaining an expression for field intensities that yields
new features of internal conical refraction not discerned by previous theories. The material
in this chapter is also reported in Ref. [5]. It has long been known that the characteristic,
annular intensity pattern produced by internal conical refraction of a narrow beam exhibits
in its center a fine, dark ring. This dark ring has been observed and explained theoretically.
The analysis presented here indicates the existence of secondary dark rings concentric to
the primary dark ring on the interior of the intensity pattern. For a biaxial medium, these
secondary fringes have apparently not been observed or predicted, although similar dark
rings have been reported for an optically active crystal [6]. | give quantitative results for
the field intensity at various parameter values and specify the parameter regime for which
this effect should appear.

In summary, the contributions of this dissertation to electromagnetic field theory

in general and the study of electromagnetic propagation in complex media are:



A new formalism based on the Hodge star operator for electromagnetic Green func-

tions in complex media;

A generalization of the Helmholtz equation to anisotropic, inhomogeneous media,
the definition of the associated Green form, and the solution for the Helmholtz Green

form for the case of a homogeneous, anisotropic medium;

An integral equation relating the Green form for the electric field to the Helmholtz
Green form which generalizes the standard construction for the free space Green

function;

A new electric field integral equation with kernel related to the Helmholtz Green

form which is a direct generalization of a standard free space result;
A generalization of the free space Stratton—Chu formula to complex media;

Explicit representation of Gaussian beam solutions for generic propagation directions

in a biaxial medium;

A precise analysis of internal conical refraction of a Gaussian beam with wave direc-
tion along an optical axes of a biaxial medium, and the prediction of new structure in

the associated intensity pattern.

The results of this research include not only the solution of specific problems, but also a new
theoretical approach to the theory of anisotropic, inhomogeneous media, with the definition
of the Helmholtz Green form and integral equation relating the Green form for the electric

field to the Helmholtz Green form. There are many special cases for which approximate or
exact methods of solutions for this integral equation might be sought. Numerical methods
based on this equation might also be developed. In the conclusion to this dissertation,

several of the more obvious avenues for further work are noted.



Chapter 2

BACKGROUND

The problem of electromagnetic propagation in anisotropic media has a long
history [7], and some aspects of the theory are well understood. The plane wave solutions
in a biaxial medium are known [8], as are the plane wave solutions in a general homoge-
neous medium [9]. The existence and uniqueness of solutions to the general problem of
Maxwell’'s laws with specified sources and boundary condition and arbitrary constitutive
relations have been treated in the mathematics literature [10, 11]. For types of fields other
than the plane waves in a complex medium, however, exact solutions are difficult to obtain.
Since wave solutions for an arbitrary source can be determined from the tensor Green func-
tion by direct integration, much of the work on fields in complex media has been directed
towards the search for exact or asymptotic representations of the Green function. In this
chapter, | will review past contributions to the theory of tensor Green function for complex
media. | will then give a brief introduction to the calculus of differential forms and its
applications in electromagnetics, since this is the primary tool used in this dissertation to

treat Green functions.

2.1 Green Function Methods for Complex Media

The primary intent of the research effort reported in this dissertation is to de-
velop a new theoretical method for the treatment of propagation in complex media which
will lead to an exact representation of the Green function for such materials. For a uniax-
ial medium, the tensor Green function has been given in closed form [14]. For a biaxial
medium, the near field limit of the tensor Green function is known [15], as well as the far
field limit for generic directions in the medium [16]. The singular behavior of fields in
the medium propagating in certain directions necessitates a more careful analysis, but for
the far field limit, this analysis has been completed [17]. A series solution for the Green
form of a biaxial medium has also been found in terms of vector wave functions [18], but

an exact, closed form solution is not known. For an inhomogeneous medium, the problem
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of finding the Green function is even more difficult than for a homogeneous, anisotropic
medium. Closed form representations must be sought using methods specialized to partic-
ular types of inhomogeneity, although general numerical methods for determination of the
Green function for inhomogeneous media are available [19].

As noted in the introduction, the main result of this dissertation is a generaliza-
tion of the free space construction of the tensor Green function for the electric field in terms
of a simpler Green function which can be obtained exactly. This type of representation has
been sought by other researchers, with success for certain limits or types of materials. Wei-
glhofer gives the tensor Green function for a uniaxial medium in closed form in terms of
scalar Green functions [14]. The Green function for an isotropic, inhomogeneous medium
has also been represented in terms of two simpler quantities satisfying coupled partial dif-
ferential equations [20]. The coupled equations can be solved for media varying only in
one dimension and in the limit of a weakly inhomogeneous medium. The far field limit
of the Green function for a biaxial medium can be expressed in terms of scalar quantities
which have the same form as the free space scalar Green function [16]. For a general com-
plex medium, however, a representation of this type for the tensor Green function has not

been has not been obtained in the past.

2.2 Present Approach

The theory developed in the following chapters relies on a new notation for
electromagnetics in complex media based on the calculus of differential forms. The tensor
Green function is represented as a double differential form, or Green form, as done for free
space by Thirring [12] in the spacetime representation and Ref. [3] if thé represen-
tation. This approach can be extended to the case of a complex medium by embedding the
permittivity and permeability tensors into the Hodge star operator, rather than employing
them directly as tensor quantities. The use of the Hodge star operator to characterize mate-
rial properties was suggested in passing by Bamberg and Sternberg [13]. This new notation
allows the the identities and theorems of the calculus of differential forms which are used

for electromagnetics in free space to be applied to the theory of complex media.



The calculus of differential forms is widely used in various fields of physics and
mathematics, and its advantages over traditional vector and tensor methods have been noted
by many authors. In Sec. 2.3, | give a brief outline of some areas in which differential forms
are used, and then survey in more detail applications within the field of electromagnetics. In
order to provide background for the following chapters, Sec. 2.4 gives a brief introduction
to the quantities, operators, and key theorems of the calculus of differential forms, including
the exterior product, exterior derivative, the generalized Stokes theorem, and the interior
product. Maxwell’s laws, the free space constitutive relations, and boundary conditions are
represented using differential forms. These and other topics are treated in greater detail in

the Appendices.

2.3 Survey of the Calculus of Differential Forms

A differential form is a quantity that can be integrated, including differentials.
More precisely, a differential form is a fully covariant, fully antisymmetric tensor [21, 22].
The calculus of differential forms was developed from the exterior algebra of Grassman by
Cartan, Poincé@r and others in the early 1900’s, and like vector analysis is a self—contained
subset of tensor analysis.

Differential forms are used regularly in fields of physics such as general relativ-
ity [23], quantum field theory [24], thermodynamics [13], and mechanics [25]. A section
on differential forms is commonplace in mathematical physics texts [26, 27]. Differen-
tial forms have been applied to control theory by Hermann [28] and others. Systems of
differential forms are currently a prominent method in nonlinear control theory, and differ-
ential forms methods are used to search for symmetries of nonlinear differential equations
[29]. In applied electromagnetics, however, vector analysis was already entrenched by the
time the calculus of differential forms became widely known. In spite of this, a number of
authors have employed differential forms to treat various aspects of EM theory.

Aside from early papers in which Maxwell's laws were originally written using
differential forms, the general relativity text by Misner, Thorne and Wheeler [23] is one
of the first works to emphasize the use of differential forms in electromagnetics. Since

the focus of the work is gravitation, applications of EM theory are not treated. Burke [30]



treats a range of mathematical physics topics. The chapter on electromagnetics gives an
elegant formulation of electromagnetic boundary conditions. Bamberg and Sternberg [13]
also develop various topics of mathematical physics. Maxwell’'s equations appear as the
continuous limit of the laws of circuit theory expressed using discrete differential forms.

Other works include that of Ingarden and Jamiotkowksi [31], an electrodynam-
ics text using a mix of vectors and differential forms, and the advanced electrodynamics text
by Parrott [32]. Thirring [12] is a classical field theory text which treats general relativity
in addition to electromagnetics, but certain applied topics such as waveguides are included.
Thirring represents an electromagnetic Green function as a double differential form, and
derives a result analogous to that of Sec. 3.2 for free space in the spacetime formulation.
Flanders [25] is a standard reference on the mathematical aspects and applications of dif-
ferential forms.

Deschamp was among the first to suggest the use of differential forms in engi-
neering. His article [33] considers briefly several applications, such as Huygen’s principle
and reciprocity. The papers [34], [35], [36], [37], [38], [39], [40] are essentially simi-
lar to previous treatments, with additional applications suclCaenkov radiation [36]
or the Hertz potentials [39]. Reference [41] advocates a variational technique derived us-
ing differential forms for numerical solution of electromagnetics problems, and Ref. [42]
suggests a numerical method for computation of fields in elastic, conducting media based
on a method for the discretization of electromagnetic field and source differential forms.
Sasaki and Kasai [43] review the algebraic topology of the differential forms representing
the electromagnetic field. Burke also gives an interesting discussion of electromagnetics
using twisted differential forms [44], so that parity invariance is explicit and a “right—hand
rule” is not required. The papers [45, 46] employ differential forms to treat the relativistic
rotation of a charged particle in an electromagnetic field.

More recent work includes that of Kotiuga, who uses differential forms to solve
the problem of making cuts for magnetic scalar potentials in multiply connected regions
[47] and to provide a metric—independent functional for the variational solution of elec-
tromagnetic inverse problems. Baldwin has investigated the use of Clebsch potentials to

represent field quantities [48] and classified the principle linearly polarized electromagnetic
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waves [49]. References [1] and [50] describe the intuitive geometrical viewpoint which dif-
ferential forms provide for the principles of electromagnetics; this material is included in

Appendix B.

2.4 Introduction to the Calculus of Differential Forms

This section provides a brief, elementary introduction to the calculus of differ-
ential forms. A more comprehensive treatment also at an elementary level can be found in
Ref. [1] and Appendix B. The references noted above offer more advanced and rigorous

discussions.

2.4.1 Degree of a Differential Form; Exterior Product

The calculus of differential forms is the calculus of quantities that can be inte-
grated. The degree of a form is the dimension of the region over which it is integrated. For
the remainder of this section we restrict attention to differential forms in three dimensions,
so that there exist O-forms, 1-forms, 2-forms, and 3-forms. O-forms are simply functions,
and are “integrated” by evaluation at a point.

z z

@ z (b)

(c)

Figure 2.1: (a) The 1-form dz. (b) The 2-form dydz. Tubes in the z
direction are formed by the superposition of the surfaces of dy and the
surfaces of dz. (c) The 3-form dzdydz, with three sets of surfaces that
create boxes.
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A 1-form is integrated over a path, and under the condition given in Sec. 2.4.4
can be represented graphically by surfaces, as in Fig. 2.1a. The surfaces of a 1-form have an
associated orientation, represented by a choice of one of the two normals of each surface.
The general 1-formu(z,y, z) dx + b(x,y, z) dy + c¢(x,y, z) dz is said to bedual to the
vector fielda(x,y, 2)x + b(z, y, 2)y + c¢(x,y, )z in the euclidean metric. The integral of
a 1-form over a path is the number of surfaces pierced by the path, taking into account the
orientation of the surfaces and the direction of integration.

2-forms are integrated over surfaces. The general 2-fdnmy, z) dy A dz +
b(z,y,z)dz A dx+c(z,y, z) de A dyis dual to the vector field(z, y, z)x + b(z, y, 2)y +
c(x,y, z)z in the euclidean metric. The wedgebetween differentials represents the ex-
terior product, which for 1-forms is anticommutative, so thatA dy = —dy A dx and
dx N\ dr = 0. Wedges are often dropped for compactness. The exterior product is the
antisymmetrized tensor product, so thah B = A® B — A® B, whereA and B are rank
one tensors.

Graphically, 2-forms can be represented by tubes (Fig. 2.1b). As the coefficients
of a 2-form increase, the tubes become denser. The tubes are oriented in the direction of
the associated dual vector. The integral of a 2-form over a surface is equal to the number of
tubes passing through the surface, where each tube contributes a positive or negative value
depending on the relative orientations of the tube and the surface.

A 3-formis a volume element, represented by boxes (Fig. 2.1c). The greater the
magnitude of a 3-form’s coefficient, the smaller and more closely spaced are the boxes. The
integral of a 3-form over a volume is the number of boxes inside the volume, where each
box is weighted by the sign of the 3-form. The general 3-fgfm y, z) dx dy dz is dual to
its coefficienty(z, y, z). Forms of degree greater than three vanish by the anticommutativity
of the exterior product.

The electric and magnetic field intensitiesand H are 1-forms; their surfaces
represent equipotentials if the fields are conservative. The electric and magnetic flux den-
sities D and B are 2-forms, as well as the electric current dengityThe electric charge

densityp is a 3-form with coefficient equal to the usual charge density scalar. Each box of
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the 3-form represents a certain amount of charge. Each of these differential forms is dual

to the corresponding vector or scalar quantity.

2.4.2 Maxwell's Laws in Integral Form

Using the differential forms for field and source quantities defined above, Maxwell’s

d

F = -2
}é dt Ja
f‘H—d/D+/J
P  dtJa A
g0 = Jo
S 1%
]{Bzo
S

whereA is a surface bounded by a pathandV is a volume bounded by a surfase As

laws can be written as

(2.1)

discussed in Appendix B, the units afand H areV and A, D and B have unitsC and
Wb, and the source$ andp have units ofA andC, since the differentials in these forms

are considered to have units of length.

@

@ (b)

(c)

Figure 2.2: (a) Gauss’s law: boxes of electric charge produce tubes of
electric flux. (b) Ampere’s law: tubes of current produce magnetic field
surfaces. (c) Tubes of D are perpendicular to surfaces of F, since D =
GO*E.

Gauss'’s law for the electric field shows that a closed surface containing a certain

number of boxes of the electric charge density 3-form must be pierced by a like number
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of tubes of the electric flux density 2-form. Thus, it has the geometrical interpretation that
tubes of electric flux emanate from boxes of electric charge, as illustrated by Fig. 2.2a.
Gauss’s law for the magnetic field requires that tubes of magnetic flux density never end.
Ampere’s law shows that in a similar way tubes of electric current or time—
varying electric flux produce magnetic field intensity surfaces (Fig. 2.2b). Each closed
path through which tubes of electric current or time—varying electric flux pass must pierce
the same number of surfaces of the magnetic field intensity 1-form. With vectors, Ampere’s
law and the curl operator are not as intuitive as Gauss’s law and the divergence, but with
differential forms, Ampere’s and Faraday’s laws obtain a geometrical meaning that is as
simple as that of Gauss’s law. These graphical representations are discussed more fully in

Appendix B.

2.4.3 The Hodge Star Operator and the Constitutive Relations

The Hodge star operator is a set of isomorphisms betwderms and(n — p)-
forms, where is the dimension of the underlying space. The star operator is dependent on

a metric, as will be discussed further in Chap. 3thwith the euclidean metric,
*dr = dydz, xdy = dzdr, *xdz = drdy

andxl = dxdydz. Also,~x = 1, so that the euclidean star operator is its own inverse.
The constitutive relations in free space dve= epxE and B = ugxH, whereg, is the
permittivity andy, is the permeability of the vacuum. Graphically, tubes of flux are per-
pendicular to surfaces of field intensity, as depicted in Fig. 2.2c. For the anisotropic star

operator which will be used in Chap. 3, tubes of flux are skew to surfaces of field intensity.

2.4.4 The Exterior Derivative and Maxwell’'s Laws in Point Form

The exterior derivative can be written formally as

0 0 0
- 2.2
d ( dz + ydy+3de>A (2.2)

and acts like the vector gradient operator on O-forms, the curl on 1-forms, and the di-

vergence on 2-forms. In practice, the computational rule for the exterior derivative can
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be stated simply as “take the partial derivative of a quantity by each coordinate and add
the corresponding differential from the left.” The exterior derivativefefr, for exam-

ple, is f, dvdx + f,dydx + f.dzdx = f,dzdx — f,dx dy, where subscripts represent
partial derivatives. The exterior derivative of a product of differential forms expands as
d(a A B) = (da) A B+ (—1)Pa A df3, wherep is the degree ofv.

The exterior derivative allows a condition to be given for the existence of the
geometrical representation of 1-forms given in Sec. 2.4.1. Jntlie solution to Pfaff’s
problem [51] shows this type of geometrical representation exists for a 1<qurovided
thatw A dw = 0. If w A dw # 0, then there exist coordinates for which= du + v dw,
so thatw is the sum of two differential forms which can be represented individually by
surfaces. In Reach 1-form can be represented graphically by lines.

An arbitrary, smooth 2-form in Rcan be written locally in the fornt dg A dh
[22], so that in the coordinatég, g, h) the 2-form can be represented as tubeg®i\ dh
scaled byf.

The generalized Stokes theorem is

dw = / W (2.3)
M oM

wherew is ap-form and M is a (p + 1)-dimensional region with boundayM. This
relationship is equivalent to the fundamental theorem of calculusig a O-form, the
vector Stokes theoremdf is a 1-form, and the divergence theorerwiis a 2-form.

Using the exterior derivative and the generalized Stokes theorem, Maxwell's

laws can be written as

0B
E = —— 2.4
d oy (2.4a)
0D
H = — 2.4
d oy +J (2.4b)
dD = p (2.4c)
dB = 0. (2.4d)

The physical nature of each field quantity is no longer contained in the type of deriva-

tive operator acting on it, but rather is expressed solely by the degree of the differential
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form representing the quantity. Derivations are often more straightforward with differen-
tial forms than they are when vectors are employed, since the algebraic properties of the
exterior derivative and other operators are largely independent of the degrees of the forms

involved and so a small number of theorems and identities suffice for most manipulations.

2.4.5 The Interior Product and Boundary Conditions

The interior product of a vector and a differential form is the usual tensor con-
traction. With the use of a metric, the interior product of differential forms can be defined,
by raising the tensor indices of the first form to make it a vector or multivector and then
contracting it with the left—most index or indices of the second form. In this dissertation,
the same symbal will be used for both the contraction of a vector and a form as well as
the metric—dependent interior product of two differential forms.

In the the euclidean metric, the interior product of differential forms reduces to
a few simple relationships. For pairs of 1-form&; J dx = dyJdy = dzJdz =1 and all

other combinations vanish. For the interior product of a 1-form and a 2-form,

dz1(dz A dzx) = —dy IJ(dz N dy) = dz
dri(dx A\ dy) = —dzJ(dy A dz) = dy
dyJ(dy N dz) = —dxJ(dz A dx) = dz

anddx J(dy A dz) = dy J(dz A dz) = dzJ(dz A dy) = 0. The interior product can also

be written in terms of the star operator:
alb=x(xbAa). (2.5)

Graphically, the interior product removes the surfaces of the first form from those of the
second.

Boundary conditions on the electromagnetic field can be written using the op-
eratorn JnA, wheren is the normalized exterior derivativ¥ /|df| of a functionf(x,y, z)

which vanishes along a boundary surface. In Appendix A and Ref. [2] it is shown that

nl(nA[E—Es]) = 0
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ni(nA[H, — Hy)) = Js
nl(nA[Dy—Ds]) = ps

nl(nA[By—Bsy]) = 0

whereJ, is the surface current density 1-form,is the surface charge density 2-form, and
the subscript 1 represents field values abgve (0) and the subscript 2 belowf (< 0) the
boundary.

These expressions for boundary conditions have a simple geometric interpreta-
tion. The discontinuityld; — H,, for example, is a 1-form with surfaces that intersect the
boundary along the lines of the 1-forth (Fig. 2.3a). Thus, restricted to the boundary,
H, — H, is equal toJ,. The operator._inA simply removes the component of the field
which has zero restriction to the boundary. In the expression/fothe exterior product
n A (Hy — H,) creates tubes with sides perpendicular to the boundary (Fig. 2.3b). The
interior productn J(n A [H; — Hy]) removes the surfaces that were added by the exte-
rior product, as shown in Fig. 2.3c. The total effect of the operatoi/ is to select the

component off; — H, with surfaces perpendicular to the boundary.

Figure 2.3: (a) The field discontinuity H; — H,, which has the same inter-
section with the boundary as J,. (b) The exterior product n A [H; — H|
yields tubes running along the boundary, with sides perpendicular to the
boundary. (c) The interior product with n removes the surfaces parallel
to the boundary, leaving surfaces that intersect the boundary along the
lines representing the 1-form J;.
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Unlike other differential forms of electromagnetick, is not dual to the usual

surface current density vectdg. The expression for current through a pétlis

[= /PJS (R x d8) (2.6)

wheren is a surface normal arids tangent to the path. Using the 1-fori this simplifies

to
[:AL (2.7)

which is the obvious definition for a surface current quantity.

2.4.6 Integration by Pullback

Integrals of differential forms can be evaluated in a straightforward manner us-
ing the method of pullback. A vector field must be converted to a differential form before it
can be integrated. This accounts for the presence of an inner product in the path or surface
integral of vector field. The method of pullback is more natural, since neither a metric nor a
differential vector is required to evaluate an integral of a form. To integrate a l<@mwer
a pathP parameterized g3(s), v(s), w(s)) in an arbitrary coordinate system, v, w), the
coordinates:, v andw in the arguments of the coefficients as well as the differentials of
are replaced with(s), v(s) andw(s). Jacobian factors enter automatically when the exte-
rior derivativesiu(s), dv(s), anddw(s) are computed. The result of the pullback operation
is a new 1-form which can be written g§s) ds. This 1-form is the pullback ob to the
path P, and is integrated over the limits of the parametef the path. Ifw is the 1-form

f(z,y, z) dz, for example, then the integral afover the pathP is

/Pw = /Pf(x,y,z)dx

Integration of a 2-form over a surface proceeds similarly, except that two parametsls

t are necessary and the final integrand is a 2-foraxin dt.
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2.5 Summary

In this chapter, | have given a survey of various results contained in the literature
on the theory of electromagnetic Green functions which relate to the work reported in
this dissertation. | have also outlined the calculus of differential forms, since this will be
the primary tool to be employed in the following chapters. Chapter 3, which constitutes
the core of this dissertation, begins by generalizing the euclidean star operator of Sec.
2.4.3 to an asymmetric, complex metric, so that the star operator can be used to express
the constitutive relations for materials with arbitrary permeability and permittivity tensors.
This formalism enables other operators and theorems of the calculus of differential forms
to be used in obtaining the key result of this research: a new representation for the Green

function for the electric field for anisotropic, inhomogeneous media.
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Chapter 3

GREEN FORMS FOR ANISOTROPIC, INHOMOGENEOUS
MEDIA

The goal of this chapter is to represent the tensor Green function for a complex
medium in terms of a simpler Green function which can be obtained exactly, generalizing
the standard construction method for the tensor Green function in free space. The material
given here is also contained in Ref. [4].

In order to derive this result, the tensor Green function is represented as a double
differential form. This method is employed to treat the special case of free space in Ref.
[3]. For the general case, in Sec. 3.1 material properties as characterized by the permittivity
and permeability tensors are embedded into the Hodge star operator. The usual definition
of the Hodge star operator must be modified for material tensors with negative or complex
determinants. In addition, the metric tensor from which the Hodge star operator is defined
is by definition symmetric. In order to employ the star operator to characterize media with
nonsymmetric material tensotg andy;;, the definition of the Hodge star operator must
be extended in a formal manner. Fortunately, this new operator retains many of the same
properties as the usual, symmetric Hodge star operator, as demonstrated in Sec. 3.1. As
far as the derivations of this chapter are concerned, the primary difference between the
symmetric and nonsymmetric star operators is that the nonsymmetric star operator is not
proportional to its own inverse.

Following these preparatory derivations, in Sec. 3.2 | define the Green form
for the electric field and recover known results [52] for the electric field in terms of the
Green form and current sources. The derivation presented in this chapter is analogous to
the standard treatment of the general theory of Green functions [27]. As a result, the origins
of conventions used in the definition of the Green form and symmetry and self-adjointness

properties of the Green form and the associated partial differential operator become clear.
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The reformulation of the tensor Green function as a double differential form
and the use of the Hodge star operator to express constitutive relations lead to a natural
generalization of the Helmholtz equation to anisotropic media. Unlike the Green form for
the electric field, the Green form for this generalized Helmholtz equation can be found
exactly for an important class of media, those which are homogeneous and anisotropic.
This class is quite general, since it includes biaxial media, lossy media, and nonreciprocal
media such as gyrotropic plasma. For an isotropic medium, the Helmholtz Green form
essentially reduces to the usual scalar Green function.

In Sec. 3.3 the main result of this chapter is given: an integral equation relating
the Green form for the electric field to the Helmholtz Green form. The kernel of this
integral equation consists of second order partial derivatives of the Helmholtz Green form.
The expression obtained in this chapter does not reduce directly to the usual result for
free space, since the usual result gives the electric field directly from the sources, while
the expression given here remains an integral equation even for free space. The integral
equation and the free space relationship, however, are very similar in form and have a clear
connection. The correspondence between the treatment of this chapter and standard free
space results is treated in Chap. 4.

By specializing to a homogeneous medium, this integral equation can be trans-
formed into the wavevector representation, leading to known expressions for the Fresnel
equation and the Fourier transform of the Green form for the electric field. The Neumann
series solution for the integral equation in the wavevector representation can be resummed,

yielding another type of representation for the Green form.

3.1 The Hodge Star Operator for a Complex Medium

In Sec. 2.4.3, the Hodge star operator was used to express the free space con-
stitutive relations. It was noted there that the Hodge star operator depends on a metric.
If this metric is related in the proper way to the permittivity and permeability tensors, the
free space constitutive relations of Sec. 2.4.3 can be generalized to the case of a complex
medium. In order to treat media which have nonsymmetric permittivity or permeability

tensors, however, the standard definition of the Hodge star operator must be extended in a
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formal manner. The standard definition must also be modified if the determinants of the
material tensors are not real and positive, as can occur if a medium is lossy. After making
the necessary generalizations, | determine the inverse of the star operator, prove the theo-
remv A x\ = x v A ) for p-formsv and )\, and define the Laplace—de Rham or wave
operator.

The most commonly used definition for the Hodge star operator is that given by
Flanders [25] and Bamberg and Sternberg [13],

ANV = (x\V)o (3.1)

wherev is ap-form, \ is an(n—p)-form, o is the volume elementl = /|g| dz'A- - A dz"
and( , ) denotes the inner product pfforms induced by the metric tensgy;. Thirring
[12] gives an alternate definition,

*A=\lo (3.2)

where J denotes the interior product on differential forms induced by the mgiridhese
two definitions can be shown to be equivalent using the relationshipw = (A Jw)o
where) andw arep-forms. Letr = xw. Then by making use ofxw = (—1)P("P)tsy,
Eqg. (3.1) becomes

AA v = (=1)POPFs(\ Juv)o. (3.3)

Thirring shows that —1)P("~P)*s(\ Jxv) is equal to the inner product of theforms x\
andv, so that this expression reduces to the definition (3.1). The text [23] on p. 97 also
defines a duality betweenforms and(n — p)-vectors. If the metric is used to lower the
indices of the(n — p)-vector, the resultingn — p)-form is equivalent to that obtained by
applying the star operator to the originaform (note that the tensarused in Ref. [23]
contains a factor o{/]]).

For the purposes of this chapter, an explicit definition of the star operator in

terms of a metric is most useful. For a simpkéorm,

9]
—p)!

wheree is the Levi-Civita tensory is the determinant of the metric tensaris the dimen-

*xdz AN d'h = it .gi”jpejl...jn( de/ et A A da? (3.4)
n

sion of space, angl” is the inverse metric. The derivation of this expression from (3.2) is
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given as an exercise in Ref. [12]. For the euclidean méffjove recover the result given
in Sec. 2.4.3, thatdx = dydz, xdy = dzdx, xdz = dx dy, andx1 = dz dy dz.

For symmetric, positive definite permittivity and permeability tensors, | define
*. Using (3.4) with the inverse metrig/ = ¢;;/(dete;;) andx, with ¢ = p;;/(detu;;).

The constitutive relations can then be written as

D = %E (3.5a)
B = w,H. (3.5h)

Since a metric tensor is by definition symmetric, the definition (3.4) produces a true Hodge
star operator only ifV = ¢’*. By employing the expression formally with a nonsymmetric
g%, however, an operator is obtained which retains many of the useful properties of the
Hodge star operator. This allows the treatment given in this chapter to apply to nonrecipro-
cal media, for which the material tensors are nonsymmetric.

Due to the presence of the absolute value in the fag@ of Eq. (3.4), the
definition of the star operator must also be modified if the determinants of the material
tensors are not positive and real. | therefore define the star operator employed in this
chapter according to

*dx" AN da't = gt giieey S (n\igp)! dx/P A A datn (3.6)

Using this definition, the constitutive relations (3.5) are valid for an anisotropic, inhomo-

geneous, nonbianisotropic, and linear medium. The operator obtained using the modified
definition, as well as its formal extension to a nonsymmetric tep<ois still referred to
as a star operator and given the same symltlbioughout this dissertation.

In rectangular coordinates, from Eq. (3.6) the star opesat@cts on an arbi-

trary 1-form in the obvious way, so that

*e(Erdr + Eydy + Esdz) = (e By + e1aFs + €13E3) dy dz+
(621E1 + 622E2 + 623E3) dz CZ.CE+ (37)
(es1 B + €30F0 + €33E3) da dy

23



where wedges between differentials are omitted. If the star operatisrapplied to a
2-form,
*xe(Dydydz + Dydzdx + Dydxdy) = (e"'Dy + €Dy + 31 D3) da+
(€'2Dy + €2Dy + €32 D3) dy+ (3.8)
(613D1 + 623D2 + 633D3> dz

where the-/ are components ef *. On 1-forms and 3-forms,
*.1 = (dete;;) de dy dz. (3.9)

The magnetic star operatey behaves similarly.

For media with symmetric permeability and permittivity tensers+ . ! and
*, = %, 1. As can be seen by inspection of Eq. (3.8), in the nonsymmetric case the star
operator is no longer equal to its own inverse. As will be shown below, the inverse of the
star operator must in general be defined using (3.6) witheplaced by its transpogé. |
give this transposed star operator the synibdlhe inverse star operatey—* = . is thus
obtained from (3.6) withy"? = ¢;;/(dete;;) andx, ' =, with ¢ = ;;/(detu,;).

| now prove thak is proportional to-—* for a nonsymmetrig® by demonstrat-
ing the result for a simplg-form. The general case follows by linearity of the star operator.

Applying the definition (3.6) and using the shorthand notatlaft A - - - A da' = da' ",

~ 9

dat = TG e g g I g IR E by g AT
pl(n —p)!

Raising the indices of;, . ;, and using the expressidi/g)d; " = e;, ;" for the

permutation tensaf in terms of the Levi—Civita tensor gives

o 1 . ; i1 ipl !
. iy A i ki ., SAiplpridn ky.kp
e = pl(n — p)lg S 9" Gjpralprr " Ginln Okyyy ooy ok dr '

Using the definitiong;;¢’* = oF of the inverse metrig//* and permuting the indices
k1 ...k,, thisbecomes

i 1 k i1eiplp1ond
*xdrittr = p+1 5kn<_1)p(n—p)5u...zp ptleeeln dxkl...kp.
In ki...kn

pl(n — p)! o

Summing the indiceg,; ... [, gives

(_1)p(n_P)(S]ill"'ipkp-Fl---kn dxkl...kp .

Jok dx'tr T

pl(n —p)!
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1...kn

Due to the antisymmetry of the permutation tensor, the quaﬁ@jt}?}ff” vanishes if
k, is equal to any ofy, . . ., i,. Thus, there are —p possible values fak,, which contribute
to the summation ovek,,, so that the summation introduces a factotof- p). If k,_; is
equal tok,, or any ofiy, ..., 1,, the quantity also vanishes, p_, hasn — p — 1 possible
values and thé,,_; summation yields a factor ¢f. — p — 1). By similar reasoning, after
summing overk,, throughk,_,, we have

_
pl(n —p)!

~ i1 ip

Frde (=D (= p)lay i datr

Since both the permutation tensor aidd* ~*» are antisymmetric in the indicds . . . k,,
the right—hand side consists pff copies of(1/p!)(—1)?*~?) dz*'-*» so that we have fi-

nally
Sk drtr = (_1)p(n—p)dxz‘1...ip‘

This proves the relationship
x b= (—1)PnP)x (3.10)

sothatin B, x~! = %.

The identityy Ax\ = x v A\ for p-formsy and) is required for the derivations
in Sections 3.2 and 3.3. Thirring [12] proves the result for a symmetric star operator; |
generalize to the nonsymmetric case. The proof is given for simple forms and extends to

the general case by linearity. By the definition (3.6) of the star operator,

dzi A xdgitIr = (n\igp)lgjlk1 co ey, g, datt e (311

By rearranging the differentials using the antisymmetry of the exterior product of 1-forms,
dritie A g dgit-e  — V9 gtk glnkng, L gitinkpinkn g len
(n—p) e

This can be rewritten using the permutation tensor

daitie A dgdt-dr — V9 giki . ipkp (n _p)!ailmip detm

Using an explicit representation [27] féor Eq. (3.11) becomes

dr A x dgitdr = 7 Z gjllw(l) .. .gjp%r(p)sgr(ﬂ-) dqjl“‘” (3.12)
9=
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wherer represents a permutation @bbjects. By rearranging the order of thiei~, this

can be transformed into
da™ " Axdp T = N gL g e sgn(1) dat "
N{ ;

since for each permutation, the inverse permutation is also included in the summation.

Reversing the steps leading to Eq. (3.12), we find that

daitiv A dgdtIr — \/§ gklil...kpipgklmkn dop--dokp+1---kn
(n —p)!
(n\igp)'gklil...kpipgklmkn(_1)p(np) dxkp+1.”knj1“.jp.

Using Eq. (3.10) together with the definition-ethows that
dz’ " A xda I = T g A da? (3.13)

In R? the inverse star operator in this expression can be replacedwith

Finally, | extend the definition of the Laplace—-de Rham or wave operator
to allow use of the nonsymmetric star operatdy.is a generalization of the Laplacian.
Variation in sign conventions fo exists in the literature; the two alternatives are found
in Bamberg and Sternberg [13] and Thirring [12]. | choose Thirring’s definition, since it

agrees with the sign of the usual vector Laplacian. Accordingly, | define
Aa = (—1)"PH) [(—1)"xdikd + d¥dx] a (3.14)

wherea is ap-form. This is equivalent to Thirring’s definition for a positive definite metric,
and for a constant metric with real eigenvalues it differs by the gigly = (—1)*, where
s is the signature of;;;. For a constant but otherwise arbitrary teng6r in a particular

coordinate system (3.14) reduces to

. . .. 2 . .
Awda™ ) = gi50 o ot (3.15)

which becomes the usual expression for the Laplacian in the euclidean metrig)’/ =
5.
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3.2 The Green Form for the Electric Field

In this section, | define the Green form for the electric field, and derive an
expression for the observed electric field due to sources and external fields in terms of
the operator transpose of the Green form. | consider a linear, nonbianisotropic medium
with macroscopic electromagnetic properties characterized by invertible permittivity and

permeability tensors;;(r) andy;;(r). Maxwell’s laws are

dE = iwB (3.16a)
dH = —iwD +J (3.16D)
dD = p (3.16¢)
dB = 0 (3.16d)

where £ and H are the electric and magnetic field intensity 1-formbsand B are the
electric and magnetic flux density 2—formsis the electric current density 2—form, apd
is the electric charge density 3—form. The constitutive relation®atex. £ andB = x, H
where the star operatoks andx; are defined in the previous section.

By applying the operatof,dx; to Faraday’s law and making use of the consti-

tutive relations and Ampere’s law, it can be shown that the electric fieddtisfies
(—‘khd;hd + wQ*h*e)E = —iw*hJ (317)

where the field quantities and the star operators are evaluated at the same point. The natural
Green doublé ® 1 form G for this system of partial differential equations obeys the same

equation, but withiw.J replaced by an elementary or delta function source:
(—xpdFpd + W ke )G (11, T9) = —x,0(r) — 19)1 (3.18)

where/ is the unit2 ® 1 form dy, dzy ® dzo + dzidx; @ dy, + dzy dy, @ dze and®
denotes the tensor product. In rectangular coordinates, the Green form G has components
G(ri,ry) = Gudry ® dre 4+ Gradry ® dy, + Gizdry ® dze +
Ggl dyl X dl’g -+ GQQ dyl & dy2 + G23 dyl X dZQ + (319)

Gs1dz1 @ dxe + Gsadzy @ dyy + Gazdzy @ dzs.
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where the coefficients&;;; are functions ofr; andr,. The tensor producd is explicitly
included in these expressions to show that there is no exterior product between the differ-
entials of ther; andr, coordinate systems.

For an isotropic medium, the definition 6fbecomes

w26

(—1*d1*d+ ) G(ry,r) = —lé(rl —1y)/ (3.20)
Lo 7 Iz

wheree(r) and u(r) are the scalar permittivity and permeabilityjs the euclidean star
operator, and is the unitl ® 1 form dz; ® dxs+ dy, @ dy,+ dz; ® dzo. Thex, operator

acting from the left on both sides of (3.18) does not affect the definiti@n ladit is retained
since—x,dx,d is part of the Laplace-de Rham operator to be employed in Sec. 3.3.

In Eqg. (3.18) and other expressions throughout this chapter, operators act on
the r; coordinates unless otherwise noted. The star operator is in general a function of
position, and is evaluated at the position vector of the coordinate system corresponding
to the differentials on which it operates. Althoughin the definition (3.18) represents
observation coordinates and represents source coordinates, the standard approach to
Green function theory employed in this chapter naturally leads to a reversal of the roles of
the two coordinates. For reciprocal or lossless media, the symmetry relations for the Green
form obtained in Sec. 3.2.2 allow the coordinates to be interchanged.

| note here an important difference between this notation for double differen-
tial forms and the usual dyadic formulation. With double forms, the coordinate system to
which each differential belongs is explicitly specified. With dyadics, the unit vectors of
each component are not associated with a particular coordinate system. The information
contained in the coordinate dependence of the differentials is for dyadics contained in the
ordering of dot products with other quantities. With double forms, the ordering of factors is
not important as far as the coordinate dependence is concerned. Thus, with double differ-
ential forms the order of exterior products can be interchanged with a possible sign change
depending on the degrees of the forms. The operation corresponding to the transpose of a
dyadic becomes interchange of the coordinate dependence of the coefficients of a double
form, since the differentials are explicitly associated with the coordinate systems of the

arguments of the double form.
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| define the formal transpose 6fto be thel @ 1 double formG satisfying
<_‘;hd*hd + WQ;h;e)éO'l, I'Q) = —;h5(r1 — I'2>I. (321)

This definition forG differs from Chew’s [52] definition for the dyadic Green function for
an anisotropic, inhomogeneous medium due to the presence of the opgratothe left—
hand side of (3.21). In genera} is not the coordinate transpose of the double fa¥m
although in Sec. 3.2.1 it is shown tk@(rl, ro) = G(rq,r;) for certain types of boundary
conditions.

Let L andL represent the operators on the left hand sides of Egs. (3.18) and
(3.21) respectively. In order to obtain the electric field in term&'pk andL must be such

that a relationship of the form

E1 N (;hLEQ) — E2 A (*hLEl) =dP (322)

holds for arbitraryF; andE,. This equation will lead to a generalized Green theorem, from

which symmetry and self—adjointness properties;dbr reciprocal and lossless media as

well as the solution for the electric field in terms of sources can be conveniently obtained.
The product rule for the exterior derivative [28]aAS) = (da) AB+(—1)Pan

d, wherea is ap-form, and the relationship A x\ = xv A A for p-formsv and\ obtained

in the previous section can be used to show that
d(Ey A 3 dEs + x1,dEy A Ey) = dxpdEy A Ey — By A d*,dBs. (3.23)
Applying this identity to (3.22) and using the definitions of L dnglields
P = Ey A #,dEs + *,dEy A Es (3.24)

for the conjunct ofF’; and E,. Note that star operators cannot be moved across the exterior
products in this expression sinég and E, do not have the same degreedd$ anddF;.

Integrating Eq. (3.22) over a volumé& and applying the generalized Stokes theorem

/Ww:/vdw (3.25)

yields a generalization of Green’s theorem for the operators LLand

El/\(;hLEz)—/V EsA(lE) = [ P (3.26)
1

V1 19} Vl
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wheredV; denotes the boundary &f. This relationship shows thatis the formal trans-

pose of L with respect to the inner product
< By By >— / By A % Bs. (3.27)
14

If the surface term vanishes, then Eq. (3.26) becomes for LLahd definition of operator
transpose with respect to the inner product (3.27). The term formal refers to the possibility
that L andL may have different domains; the spaces of functions on which they act may,
for example, satisfy different boundary conditions.

| now wish to replace; (r1) with G(ry, r5) in (3.26). Yaghjian [53] shows that
for the case of an isotropic, homogeneous medium, the identity (3.26) with this substitution
is not valid ifr; = ro, sinceé(rl, ry) does not have continuous and unique second deriva-
tives atr; = ry. This is due to ambiguity in the interpretation of the elementary saufce
The resulting inconsistency can be resolved by employing an appropriate principal value
interpretation for volume integrals involvir@.

Proceeding with the substitution and applying the definition (3.21) produces the

generalized Huygens principle for anisotropic, inhomogeneous media,

E(ry) = iw /V Ci(rr,12) A J(r1) + /avl (G(r1,12) A*dE(r1) + %4dGry,12) A E(r1)] -

(3.28)
This is equivalent to the dyadic result given in [52]. Note the absence of surface normal
vectors in this expression. Normal components of the fields naturally do not contribute to

the surface integral term of (3.28).

3.2.1 Boundary Conditions

In this section, | seek to determine boundary conditiongZpand £>; and the
Green forms such that the surface terms on the right—hand sides of (3.26) and (3.28) vanish.
| assume here thﬁ(rl, r9) as a function of; satisfies the same boundary conditiorfas
andG(ry, r9) as a function of; satisfies the same boundary conditiorfas|f the surface
contribution is zero, then replacing, (r;) with G(ry,r;) and Ey(r;) with G(ry,r3) in
(3.26) shows that

G(I‘g, I'Q) = G(I‘Q, I'3). (329)
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Thus, for properly chosen boundary conditiodsjs the coordinate transpose 6f In
addition, the electric field as given by (3.28) will satisfy the same boundary condition as
G(ry,r,) as a function ofr,. By Eq. (3.29), the electric field will then satisfy the same
boundary condition aé&/(ry, r;) as a function ofr;. Boundary conditions for which the
surface contribution vanishes include radiation, Neumann (magnetically conducting), and
Dirichlet (electrically conducting). There are other boundary conditions for which the sur-
face term of (3.28) vanishes; this section treats only the simplest types.

Suppose thak, has the asymptotic behavior

Thﬂrglo r [dEg — ko dr A EQ} =0 (3308.)
TILI?O T(*h d?”) AN E2 = 0 (330b)
lim r|Ey| < C (3.30c)

wherek; is a bounded function afandC' is a constant. LeE; have the same behavior but
with k, replaced withk; in (3.30a) andk, replaced withx, in (3.30b). If0V is a sphere
with radiusr, then

lim

T—00

E1 A ;h [dEQ — ’L]CQ dr A Eg]
oV

< lim 4rr2supyy | By | supyy |[dEs — ik dr A B
which vanishes by conditions (3.30a) and (3.30c). Using this result, we have that

lim P = lim [El VAN /lkz;h( dr N EQ) + ikl*h< dr A El) A\ EQ] . (331)

r—o0 Jov r—o0 Jov

Using (2.5), the integrand can be rewritten using the interior product as
—Z.kz;h[El ] ( dr A Eg)] + ikl*h [EQ i ( dr N El)]

where J is the interior product induced by the metric-of and J is induced byk,. The

interior products expand by (A.7) to become
—’Lk’g(Elj dr);hEQ + Zk?l(Eg i dr)*hEl + lk?Q(El ]EQ);}L dr — Z]Cl(EQ JEl)*h dr.

By making use again of (2.5), this becomes

—i/{?g [‘)N(h(;h dT A El)];hEQ + Zk’l [*h(*h dr A EQ)]*hEl
‘|‘Zk2 [;h (;hEQ A\ El)];h dr — Zkl [*h (*hEl A\ EQ)]*h dr.
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The first two terms of this expression vanish in the limit when integrated @vedue to
the conditions (3.30b) and (3.30c), by an argument similar to that used in arriving at (3.31).

The second pair of terms can be written using (3.13) and (2.5) as
i(EgJEl)(kg;h — kl*h) dr.

In order for this to vanish, we must have that the permeability tensor is symmetric. We must
also have that the asymptotic forms6f and £, as expressed by (3.30a) be identical. A
sufficient condition for this is that the permittivity tensor be symmetric. Thus, for a medium
with symmetric permeability and permittivity tensors and outgoing fields satisfying the
conditions (3.30), the surface contribution to (3.26) vanishes. It remains to show for specific
types of media that the fields behave according to (3.30).

For electrically conducting boundary conditions, the 1-forBisand F, are
oriented perpendicular to the boundary, so thatig a coordinate normal to the boundary,
thenE; andE, are proportional tan. The 2-formsE; A x,dE, andx,dF, N\ E, therefore
must each contain a factor @f. Since the surface integration is over all coordinates except
n, the boundary term of Eq. (3.26) vanishes.

For magnetically conducting boundary conditions, the 1-fdfmis oriented
perpendicular to the boundary, so thidt must be proportional tan. We have from
Faraday’s law and the constitutive relation fBrthat x,dE,; = iwH,, SO thatx,dFE; is
also proportional taln. In general,F/; need not satisfy the same boundary condition as
E5 (physically, F, satisfies Maxwell’s laws with constitutive relations as given by (3.5),
whereast); satisfies Maxwell’s laws with the magnetic constitutive relatidr- x, H). If
we require thak,dF; be oriented perpendicular to the boundary, then this 1-form contains
a factor ofdn as well. For these conditions diy and E,, the boundary term of Eq. (3.26)

vanishes.

3.2.2 Symmetry and Self-Adjointness Conditions

The reaction of a field® and source/ is

< B, J >p= / EAJ (3.32)
1%
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where £ is a 1-form and/ is a 2-form. The derivation of Eq. (3.26) together with the

relationship (3.17) show that #, = %, and*, = x., then
< By Jy i — < By, Jy >p— /W(E1 A Hy + Hy A Ey) (3.33)

where F; and E; here are solutions of (3.17) with sourcésand J, respectively. This

is the Lorentz reciprocity theorem. For boundary conditions such that the right—hand side
vanishes, Eq. (3.33) reduces to the definition of reciproegityys, J; >r=< FEi, Jy >g.

Thus, we recover the result that a medium is reciprocal indx. are symmetric and the
fields satisfy boundary conditions such that the surface contribution of Eq. (3.33) vanishes.
Making use again of (3.17), we find from the definition of reciprocity that

Ey A (yLEy) = [ Ey A (kLEy) (3.34)
V1 Vl

which shows that L is symmetric with respect to the inner product (3.27). Repl&ging

with G(ry,ry) and E, with G(ry, r3) in Eq. (3.34) gives the reciprocity relation [52]
G(I‘g, I'Q) = G(I‘g, I'3) (335)

for a medium with symmetric permittivity and permeability tensors and fields satisfying
boundary conditions such that the surface contribution of Eq. (3.33) vanishes.

The energy imparted to the fiekd by the source/ is
< B, J >p— / E*AJ. (3.36)
\%4

By slightly modifying the derivation of (3.26), one can show that.i= x." andx;, = %",
then
< By o g+ < By Jy >h= /8 (Hi A Ey— EX A H). (3.37)
|4

The superscript on . and*,” denotes complex conjugation of the coefficients of the
permittivity and permeability tensors employed in the definitions of the star operators. For
a given source/ and associated field, setting./; = J, = JandFE; = F, = E in (3.37)
yields

Re< E,J>g=—-Re| EANH" (3.38)

ov
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This equation represents a balance between energy imparted to the field by theJsource
and the power flow through the boundarylof so that the material in the regidn must
be lossless (note that this expression is the real part of Poynting’s theorem for a lossless
medium).

If in addition the boundary conditions are assumed to be such that the right—
hand side of (3.37) vanishes (so that no real power flows through the bounda)ytben
we have that

< El, Jo >p=— < EQ, J1 >*E . (339)

For boundary conditions of this type, (3.39) can be taken as the definition of losslessness,
in the same way that FEs, J; >r=< FE,, Jo >y is the definition of reciprocity.

For a resonant frequency of a bounded region, (3.39) leads to an apparent con-
tradiction. At a resonance, the electric fidldassociated with a sourcgis not uniquely
defined by Eq. (3.17). Fof, = J, = J, E; = E, andE; = E+ E,, whereE, is a homoge-
neous solution to (3.17), Eq. (3.39) leads to the resultiRat< F, J >= — < Ey, J >*.

But (3.39) withE; = E, = FE also requires that Re: £, J >= 0, so that< FEy,J >

must vanish. The quantity Ey, J >, however, is in general not zero, since the current

J is arbitrary. The resolution of the contradiction lies in the observation thatisf not
orthogonal to all resonant modesof power will continually be supplied to the field and

the assumption of steady state fields upon which the results of this section depend becomes
invalid.

Using the definition of L, Eq. (3.39) leads to

*

[ B A Gal By = [ [ BinGaLE)]| (3.40)
\%4 \%4
Thus, L is self—adjoint with respect to the inner product
< By By >= / B A B (3.41)
14

as has been shown by Chew [52]. Replacigwith G(ry,r;) and E; with G(rq,r3) in
(3.40) then yields
G*(rg, I'Q) = G(I‘Q, I'3) (342)

so that the Green form for a lossless medium is hermitian if it satisfies boundary conditions

such that the surface contribution of Eq. (3.37) vanishes.
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3.3 Green Form for the Anisotropic Helmholtz Equation

The derivative operator of Eq. (3.17) is not diagonal, making the solution for

the Green fornz difficult to obtain. Addingd*,dx*; E to both sides of Eq. (3.17) yields
(Ah + wQ*h*e)E = —iw*hJ + d;hd‘khE (343)

whereA\, is the wave operator in the metric due to the permeability of the medium and is
defined using Eq. (3.14) to bex,dxd + d*,dx,. For a constant permeability tensor, the
operatorA, is diagonal and therefore simpler than the derivative operator of Eq. (3.17).
Since the operator on the left—hand side reduces in free space essentially to the Helmholtz
operator, | refer to (3.43) as the anisotropic Helmholtz equation. The corresponding Green

1 ® 1 form g satisfies
(A + W2*h*e>g(r17 ry) = —0(r; — o)/ (3.44)

where operators act on the coordinate and is the unitl ® 1 form. The Green form
g can be found in closed form for certain types of media for which no exact solution for
G is known. In free spacey = 12gol, whereg, = ¢*o" /(47r) is the usual scalar Green
function.

In Eq. (3.44) | have not included thg operator on the right—hand side as was
done in Eq. (3.18). Sinc4,, is symmetric for constant,, the additionak;, operator does
not simplify the derivations of this section as it did in Sec. 3.2. The formal transpagse of

is defined to be the ® 1 Green formg which satisfies
(Ah + w2;€;h)g(r17 I'Q) = —(5(1‘1 — I'Q)I (345)
wherel is the unit2 ® 1 form. Note that the same derivative operator is employed in the
definitions ofg andg.
With the operators M= (A}, + w?,x.) andM = (A, + w?%.%,) appearing in
the definitions oy andg, | seek to obtain a relationship of the form

Cy AMEy — E; AMCy = dQ (3.46)

whereE; is an arbitrary 1-form and’, is an arbitrary 2-form. The conjun@ of F, and
(' defined by (3.46) can be shown to be

Q = ;hCl A ;thQ + *hd%hCl A E2 + 01 AN ;hd*hEQ — *hd(]l AN *hE’Q. (347)
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Integrating (3.46) over a volumié and applying the generalized Stokes theorem yields

| einme - [ Boamc = [ (3.48)

Substitutingg(ry, o) for C;(r) and using Egs. (3.43) and (3.45), we have

E(ry) = iw/

JV;

G(r1, ) A J(r1) —/

Vi

G(r1, 1) A dindsn E(r1) + /8 R (3.49)
\%1

whereR is

R = x,g(r1,19) A*pdE(r1) + *pdxpg(r1,v2) A E(ry) (3.50)
+§(I‘1, I‘Q) A ;hd‘khE(I‘l) — *hd§<r1, I‘Q) VAN *hE(I'l).
Integrating the second term on the right—hand side of (3.49) twice by parts cancels two of
the terms ofR, leaving
E(rs) = iw/ G(r1r2) A xpd (r1) — /V Fndxndg(re, vs) A E(ry) + /W R (3.51)
1 1

\%t

where the operatow, dx;,d acts on the; part of g and
Ry = xpg(r1,12) A *pdE(r1) 4 *pdspg(re, ro) A E(T1) (3.52)

is the integrand of the surface contribution.
If %,g and E satisfy boundary conditions such as those described in Sec. 3.2.1,
so that the surface integral term of (3.51) vanishes, then we obtain the relationship
E(ry) = iw /V G(r1, 1) Ak d (r1) — /V Fndxndg(ry, ta) A B(r1). (3.53)
This is a Fredholm integral equation of the second kind for the electric field in terms of the
source/. As will be discussed in the following chapter, it may be possible to employ this
equation as a basis for numerical techniques for treating scattering problems in complex

media.

3.3.1 Integral Relationship Betweenz and g

Substitutingg(r;, r2) for C; andG(ry, r3) for £, in Eq. (3.48) and following a

procedure similar to the derivation of (3.51), | obtain the integral equation

G(r1,19) = *,G(re,11) — /V *pd*pdg(rs, r1) A G(r3,12) (3.54)

3
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where the derivatives act on tiag coordinates of and surface terms have been neglected.
This expression generalizes to complex media the usual relationship between the scalar
Green function and the Green form for isotropic, homogeneous media [3].

By repeated substitution on (3.54) | obtain a formal series solutio& for
G = Fnj — / Tndind A Fnd + / / Tndndg A Fndindg AFng — - (3.55)

where coordinate dependence is suppressed. For free space, up to fagtoitseocsecond

term has components equal to the second partial derivative$’g¢fsrik). Beyond the
second term, increasingly high powersrofppear, so that for largethe series diverges.

For a homogeneous medium, however, the wavevector representation of this series can be

resummed, as will be shown in Sec. 3.5.

3.3.2 Symmetric Permeability Tensor

For a symmetric permeability tensor, one can simplify expressions (3.51) and
(3.54) by absorbing a star operatgr into the definition ofg. | therefore employ the

modified definitions

(A}, + WPkpxe)g = —*p6l (3.56a)

(Ah + w2*h§<€)§] = _*h5[ (356b)

whereg andg arel ® 1 forms and! is the unit2 ® 1 form. One can now obtain an identity
of the form
By A M'Ey — By AxpM'E; = dQ/ (3.57)

which replaces Eq. (3.46). By altering slightly the derivation given in the previous section,

one can show that Eq. (3.51) simplifies to

E(ry) = iw/ g(ry,ro) A J(ry) — / *ppdxpg(ri, o) A E(ry). (3.58)

V1 Vl

The integral equation (3.54) becomes

G(r1,19) = §(r1,10) — /v sendrndxn(rs, ta) A G(ry, 13) (3.59)

3

for a symmetricy, operator and the modified definitions (3.56).
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3.4 Electrically Inhomogeneous Media

The representation for the Green form (3.54), as well as the electric field integral
equation (3.53), connect scalar scattering by an isotropic, magnetically homogeneous, elec-
trically inhomogeneous medium with the electromagnetic scattering problem for the same
medium. Solution of Eq. (3.44) for the Helmholtz Green form reduces to the determination

of the usual scalar Green functignfor the Helmholtz equation,
[A 4 E*(r1)]gs(r1, 12) = =6(r1 — 12) (3.60)

wherek?(r) = w?ppe(r). If the left—hand side of the definition (3.44) is multiplied b,

the Helmholtz Green form is then equal t@g,/. The scalar Green function can be found
analytically for certain types of inhomogeneous profiles, including the one—dimensional
variation k*(r) = k2(1 + az) [54] and the spherical profilé?(r) = k2(1 + ar?®) [55],
leading to exact, closed form solutions for the Helmholtz Green form. If the Helmholtz
Green form is available in closed form, then the kernel of the integral equation (3.54) is
known and the integral equation becomes an exact representation of the Green form for
the electric field. The electric field integral equation (3.51) for electrically inhomogeneous

media will be discussed further in the following chapter.

3.5 Homogeneous Media

For a homogeneous medium, by spatial symmetry the componentsacd
shift-invariant functionsy;;(r; — ry). The integral in (3.54) becomes a convolution, so
that the Fourier transform of the integral is the product of the transformgsdsd,dg and
G. The following transform relations can be used to obtain the wavevector representation
of x,dxpdg. If a(ry,ry) isa2 ® 1 form, b(ry,re) isal ® 1 form, ande(ry, ry) is a0-form
in ther; coordinates, then

da(ry,ry) «—— ik’ a(k)
*pb(ry,re) —— u’b(k)
de(ry,re) «— ike(k)
wherek is the wavevector and derivatives act on thecoordinates. The coefficients of

the forms are functions af, — ry, and the spatial Fourier transform is taken with respect
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to this quantity. Throughout this section, the Fourier transforms of double forms will be
represented for convenience as matrices, and the same symbol used for both the physical
space representation of a double form and the matrix of the transforms of its components.
Matrix components are ordered according to Eq. (3.19).

The Fourier transform of;, dx,dg becomes-(1/detu)u"kk” §. Since the ex-
terior product of this term witlz acts on the first argument part rather than the second,
the matrix must be transposed in order to obtain the transform of the product. The spatial

Fourier transform of Eq. (3.54) is therefore

G=g"u '+ deltungkTuG. (3.61)
Solving forG, we obtain
1 -1
G = [@T—l ~ dety kkTu] . (3.62)

Similarly, the Fourier transform of Eq. (3.45) shows that

-1

1 -1
§= | (kT k)l — w2 " 3.6
g ldetu( pk)l —we (3.63)
where | is the identity matrix. Eqg. (3.18) leads to an alternate expressia@r, for
G=[-Tu"'T-uw " (3.64)
where
0 —k, ky
= k. 0 —k, |- (3.65)
—ky, ks 0
Substituting (3.63) into (3.62) gives
1 —1
= | ———pkk" p+ —— (kK" pk)p — w? 3.66
[ det u+dew( pk)p w61 (3.66)

which is equivalent to the result obtained in Ref. [9]. The poleg;ah the wavevector
representation represent plane wave solutions to (3.17), so that
det —ka% + i(k%k)l —Wutel =0 (3.67)
dety dety '

is the Fresnel equation [9, 56] for an arbitrary homogeneous medium.
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Finally, if the wave operataf\,, is applied to a 1-form, the Fourier transform of
the definition (3.14) becomes

1

~dety —— (k" k)l = 't —

— kkTyu. 3.68
dety <K # (3.68)

This expression shows explicitly that the operalqris diagonal for an arbitrary (constant)
permeability tensor.

The wavevector representation of the series solution (3.55§-fcan be re-
summed, leading to another representation for the Green form for the electric field. By
resubstitution, Eq. (3.61) can be transformed into

1
Tkleungu—l + 7§TkkT

— " kk gt + - (3.69
dety M et ? pwg po + (3.69)

G=9"17 4 et

This can be rewritten as

2
1
G=g"n'+-—3k 1+—kT Tk+<kT k) o KTt

detu detyu det
(3.70)
where the series is how scalar and geometric. Summing the series yields
G=g"p '+ delt { lgT — ] kk gt (3.71)

For free space, the quantity inside square brackets is equlitk?, so that this expression
in physical space reduces up to factorg.@to the usual expression for the Green form for
the electric field. The series in Eq. (3.70) is singular for valuds thfat represent allowed
plane waves, so that

—kT k=1 3.72
detu ( )

is equivalent to the Fresnel equation (3.67).

3.5.1 Exact Solution for the Helmholtz Green Form

If 1;; is diagonalizable by a rotation, then the inverse transforg(kf can be
obtained in closed form. In this case, the kernel of the electric field integral equation (3.53)

and the Green form integral relationship (3.54) is known exactly. From Eq. (3.63),

-1

1 ikr T i
; ./dke [d o (71— e (3.73)

g(ri,r2) = @y

40



wherer = r; —r,. By rotating the coordinate system so thatis diagonal and performing

a further change of variables such th&t = k” 1k /(dety), this simplifies to

d t
g(rhrZ) e/*L /dk/ 'Lk T {k/ | — 2 T,U/T 1} -1 (374)

wherer = \/detu(xx/ /i + yy/, /s + zz/\/u3). Here,z, y, andz are the components
of r and 4, 12, andps are the eigenvalues gf;;. | assume for convenience that the
eigenvalues ofi;; are positive and real. Rotatirlf so thatk, is in ther direction, we

obtain

detu

G(r1,1s) = / K2 sin 0 dk' do do "0 [k — w2 (3.75)

whered and¢ are the angles associated with By integrating the angles,

det / ik'7 —i ' / -1
G(r1, 1) = 427T’i/kdk k V)[R — w2 (3.76)

The remaining:’ integration can be performedel"f’/ﬁ_1 has a square root.

The matl’iXeT,uT_l Is not in general diagonalizable (see Ref. [9]), but it has a
Jordan normal forn$.7S~!. Consider one of the Jordan blocks.hfcorresponding to the
eigenvalueze® wherea andb are positive and real. For this block, | construct the square

root
- ] ~11/2 - -

aezb 1 \/aeib/Z 1/(2\/56112/2)

_ 4 - - | 3.77)
1 . 1/(2\/56111/2)

ae' Jaeh!?

where the sign is chosen so that{Re,/ac™*/?} is positive. As with the case thafu” " is
diagonalizable, the other root can be discarded by causality. (If the eigenvalugsaoé
not positive and real, then determination of the outgoing solution is more difficult 8ince
also becomes complex and nonunique.) The right-hand side of (3.77) exists,siacd
;; are by assumption invertible, so thﬁtuT_l has no zero eigenvalues.

By proceeding in this manner for each block .6f | construct.J'/2, so that
K = wSJY28 1 is a square root af2” ;7 ", Equation (3.76) then becomes

detu
w27 Jo

G(ry,10) = T (VT — e (K= K) 7 4+ (14 K)7 (3.78)
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This can be rewritten as

detu
Qim2r

G(r1,rs) = / dk' T[T — K™ — (K1 + K) 7 (3.79)

Since the eigenvalues df have positive real part, the second term can be discarded by

causality, and the final result is

K7

g(ry, r5) = (dety) (3.80)

Amr
for the transposed Helmholtz Green form with a radiation boundary condition. This can be
seen to be a direct generalization of the free space scalar Green furittjgarr).
The matrix exponential in Eq. (3.80) can be computed in closed form from the
Jordan normal form of<, so thaty can be obtained explicitly. There are three possible
cases for the normal formi, depending on the number of unique eigenvalues. If there is
only one unique eigenvalug:®®, thenJ'/? can be written as
m 1/(2m)
JY? = m 1/(2m) (3.81)
m
wherem = +,/ae**/? with the sign chosen as described above. The transposed Helmholtz
Green form then has components
1 1/(2m) 1/(8m?)
S 1 1/(2m) | S (3.82)
1

imr

A7t

g = (dety)

If 717" has two unique eigenvalues,e®® with multiplicity two andasei®* with multi-

plicity one, then
my 1/(2my)
JYV? = my (3.83)
mgy
wherem; = i\/_e“‘l/2 andm, = j:\/_ew?/2 with the signs chosen individually so that
m, andmy both have positive real part. In this cagdgecomes
eimT et [(9m))
§= (detu)471TfS e’ St (3.84)

imar
e 2
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Finally, if eTuT_l has three unique eigenvalues, there is a coordinate system for which

eTuT_l is diagonal. In that coordinate system, we have that

imir
elmi

1 o
g = (dety) — eima? (3.85)

r

imsr
evms

wheremy, my, andms are the square roots of the eigenvalues with positive real part.

As we have just seen, &ffuT_l is diagonal, therg is also diagonal. For sym-
metric or hermitiarg;; and;;, this is equivalent to the simultaneous diagonalizability of
e;; and ;. A commonly encountered type of medium for whi¢h” " is diagonal is
a biaxial material, which is a homogeneous, magnetically isotropic medium such that the
permittivity tensor has unique eigenvalues. For convenience, | €&l a factor ofug
andg by a factor ofu2. If the coordinates system is transformed so that the permittivity

tensor is diagonal with eigenvalugstheng(k) has the diagonal components

1

R,
whereky; = w./€;1ip and other elements vanish. In physical space,
iko1r ikoar ikosr
g(ri,ry) = dr; ® dre + —— dy; ® dy, + dz1 @ dzo (3.87)
4mr 4mr 4mr

wherer = |r; — ry|. The representation (3.71) of the Green form for the electric field
becomes

9 T
G= —— | kk 3.88
g9+ (1 - kTgk> 9 (3.88)

and the Fresnel equation can be writterk&gk = 1 for a biaxial medium.

3.6 Summary

In order to conveniently represent macroscopic electromagnetic properties of
a medium, | have defined anisotropic Hodge star operators in which the permittivity and
permeability tensors of the medium are embedded. The use of these operators along with
other tools of the calculus of differential forms makes expressions concise and simplifies
manipulations. Because the physical meaning of a quantity is contained in the degree of the

differential form, rather than in the type of derivative operator acting on it, a few general
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properties and theorems suffice for the derivations given in this chapter. This strength is
also a weakness, since final expressions with many exterior derivatives and star operators
are impossible to interpret physically without knowing the degrees of the differential forms
involved and keeping track of changes in degree as operators are applied. For derivations
such as those performed in this chapter, however, differential forms are ideal.

The use of electric and magnetic star operators to express the constitutive re-
lations leads to a natural generalization of the free space scalar Green function, which |
have called the Helmholtz Green form. The main result of this chapter is an integral equa-
tion connecting the Helmholtz Green form to the Green form for the electric field. This
integral equation extends to complex media the well-known construction of the free space
tensor Green function from the scalar Green function. The Helmholtz Green form with a
radiation boundary condition can be obtained exactly in physical space for a homogeneous
medium with diagonalizable permittivity tensor, and is essentially equivalent to the scalar
Green function for an isotropic, magnetically homogeneous medium. Also obtained is an
integral equation for the electric field in terms of the Helmholtz Green form, which will be

examined in greater detail in the next chapter.
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Chapter 4

ELECTRIC FIELD INTEGRAL EQUATION

The integral equation obtained in the previous chapter for the electric field in

terms of sources, field boundary values, and the Helmholtz Green form,
E= m/ Tng A J — / Fndndi A E + / (3nd A FndE + xnding A E)  (4.1)
|4 \% ov

is valid for an arbitrarily anisotropic, inhomogeneous medium. If boundary conditions are
such that the surface integral term can be neglected, this is a Fredholm integral equation
of the second kind. The integral equation may be useful as a basis for numerical methods
for computing scattered fields or could provide theoretical insights for various problems if
exact or asymptotic solution methods can be found. In this chapter, | examine this integral
equation, its possible applications, and relationship to other representations for the electric
field in free space and complex media.

Section 4.1 outlines possible applications of this integral equation and presents
arguments as to problems for which it may be superior to the usual integral equation meth-
ods. In Sec. 4.2, the standard free space expression for the electric field in terms of a scalar
Green function is manipulated into a form such that the integral equation (4.1) can be seen
to be a direct generalization. A principal value interpretation for the volume integration of
(4.1) is vital to its numerical evaluation. This is considered further in Sec. 4.3.

For clarity, coordinate dependence will be suppressed in nearly all expressions.
Integrals are over the coordinates unless otherwise noted. Any quantity under an integral
which is not a double form will depend on tlre coordinates. Operators under integrals
generally act on the, coordinates. Those few operators appearing outside of integrals

generally operate on quantities which are not double forms, and so there is no ambiguity.

4.1 Applications

For a given geometry, medium, and boundary condition, the integral equation

(4.1) can be applied directly only if the Helmholtz Green fayms known. As noted in the
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previous chapter, the Helmholtz Green form can be found in closed form for an unbounded,
homogeneous, anisotropic medium. For an electrically inhomogeneous, isotropic medium,
the defining equation for the Helmholtz Green form essentially reduces to the usual scalar
Helmholtz equation. These two classes of media include many of the types of problems
which are of interest in applications, and will be discussed further in this section.

There are media which do not fall into these two groups, such as isotropic,
magnetically inhomogeneous media and materials which are both anisotropic and homo-
geneous. The former case can be treated by duality, thereby reducing the problem to that
of an electrically inhomogeneous medium. Media with spatially varying properties as well
as anisotropy might be subdivided by types of symmetry, and methods of solving for the

Helmholtz Green form based on the symmetries of the medium then sought.

4.1.1 Homogeneous Media

For an unbounded, homogeneous, anisotropic medium with a radiation bound-
ary condition, the exact solution (3.80) for the Helmholtz Green form leads to a closed
form representation of the kernel of (4.1). If the radiation boundary condition is of the
form of (3.30), the surface contribution of vanishes as well, so that (4.1) can in principle
be employed to solve for the electric field due to a given source. For a bounded region, a
solution for the Helmholtz Green form satisfying an appropriate boundary condition would
be required in order to apply the integral equation.

Previous integral equation methods for scattering by electrically anisotropic me-
dia rely on the use of an equivalent source which depends on the electric field. For such

media, the electric field satisfies
(—xdxd + k) E = —iwpox] — w?pgrk, E (4.2)

wherek? = w?pgep andx.’ is defined similarly tox. but with the permittivity taken to be
€;;(r) — €0d;;. For a homogeneous, isotropic medium, the results of Sec. 3.2 for the electric

field in terms of the Green for@& simplify to [3]

E:wo/ GOAJ+/a (Go A HdE + xdGy A E) (4.3)
1% 14
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whereG, is the doublel ® 1 form given by
1
0
The equivalent source of Eq. (4.2) can be writtér= J — iw*.'F, so that the electric field

satisfies the integral equation
E= Wo/ Go A J — iw/ Go A *'E (4.5)
\%4 \%4

assuming boundary conditions such that the surface term vanishes. This integral equa-
tion has long been used as a numerical method for computation of fields in electrically
anisotropic and inhomogeneous media [57, 58]. The first term on the right (the “incident
field”) becomes equal to the exact electric fieldgér) approaches,d;;. Thus, for small
anisotropy, (4.5) can be solved efficiently by using the first few terms of the Neumann
series solution. For large anisotropy, the integral equation is more difficult to deal with.

For an electrically anisotropic medium, Eg. (4.1) can be simplified to

E= Wo/ gAT— / wdxdig A E. (4.6)
1% 1%

For a biaxial medium with radiation boundary conditions, the incident field term gives the
exact electric field it/ represents a plane current oriented perpendicular to any of the three
principal axes of the permittivity tensor. The corresponding term of (4.5) can produce the
exact electric field for a plane wave propagating in at most one direction. In this sense,
the incident field term of (4.6) is a more accurate approximation to the true electric field.
In effect, the incident field term of (4.5) approximates the wave surface of the medium by
a single sphere of radius,, while the incident field term of (4.6) implies a wave surface
consisting of three spheres of radjj;, ko2, andkq3. The true wave surface consists of
two sheets with portions lying near each of these three spheres [7]. This may lead to an

advantage when solving (4.6) numerically for the case of large anisotropy.

4.1.2 Inhomogeneous Media

As discussed in Sec. 3.4, finding the Helmholtz Green form for an electrically

inhomogeneous, isotropic medium reduces to the determination of the Green fypdétion
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the scalar Helmholtz equation. Thus, the integral equation (4.1) connects the scalar Green
function for media of this type with the scattering problem for the electric figldo that
exact or asymptotic results for vector scattering can be obtained from a knowledge of the
scalar scattering. Exact solutions for the scalar Green function are known for media with
certain types of permittivity profiles; examples are given in Sec. 3.4. These solutions in turn
yield exact representations for the kernel of the electric field integral equation (4.1). For a
general permittivity profile, a numerical solution to the scalar problem could be employed
to approximate the kernel of (4.1).

For a medium with slowly varying permittivity, the integral equation (4.1) may
be more efficient as a solution method than the usual integral equation (4.5). In order to

demonstrate this, we begin with the wave equation for the electric field in the form
[A+ E*(r)|E = —iwpgx] + dxdxE. (4.7)
Gauss's law requires that

p = de(r)xE

= (de) NxE + edxE.

If the spatial variation of the permittivity is much slower than the change in phase of the
electric field, then the first term on the right—hand side of this expression can be neglected
and we have thaixE ~ p/e. Equation (4.7) then shows that each component of the electric

field in the slowly varying approximation satisfies the Helmholtz equation
[A + K ()] E = —iwpexJ’ (4.8)

whereJ’ = J — xd*[p/(iwppe)]. It would therefore be expected that the electric field can
be approximated by an expression of the fdtha= iwug [ g A J'. This is indeed the case,
as will be seen below.

Using the results of Sec. 3.3 specialized to an isotropic, magnetically homoge-

neous medium, we have from (3.49) that

E = iwug / gAJT— / gAKdxdxE+ / [gARAE-+xdgAE+(xdxg)x E—xg(xdxE)] (4.9)
1% 174 oV
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whereg is equal tog,/ with I the unitl ® 1 form. Integrating the second term on the right

by parts yields
E = iwpg / GAJ+ / (xdg)dE + / [g A*dE ++dg A E — (xdxg)+E]  (4.10)
Vv Vv ov

Using Gauss’s law and integration by parts, this can be rewritten as

E = iwpy /Vg/\J’—k/V(*d*g) (iﬁ A *E) +/av [gA*dE+*dgNE— (xd*qg)*E+(*g)xp/€].

(4.11)
The first two terms of the surface contribution are zero for magnetically conducting, electri-
cally conducting, or radiation boundary conditions. For magnetically conducting boundary
conditions, the third surface term vanishes approximately for a slowly varying medium,
sincedxg = dxE ~ p/e andp = 0 on the boundary, and the fourth term vanishes exactly.
The third and fourth terms also do not contribute for radiation boundary conditions as well,
sincep = 0 at infinity. If in addition to the magnetically conducting or radiation boundary
condition the medium is homogeneous near the boundary or at infinity, all of the surface

terms vanish identically. If the boundary terms vanish, we obtain the integral equation

E = z'w,uo/ gNJ + / (*dxq) (de A *E) (4.12)
1% 1% €

for the electric field. Note thaf’ can be written as/ + xdx(1/k*(r))d.J, so that if the
medium is homogeneous, then Eq. (4.12) is equivalent up to boundary contributions to the
usual result for the electric field in terms of the free space scalar Green function.

If the wavelength is much smaller than the scale of spatial variation of the
medium, then the electric field is given approximately by the first term on the right of
(4.12). The volume integral term of (4.12) involving the unknown figldontributes only
a small correction to the total electric field. Determination of the unknown fiefdom
the source/ thus requires inversion of a well-conditioned integral operator. The series
solution for the integral equation will be rapidly convergent as well. By contrast, for a
medium which is slowly varying but not weakly inhomogeneous, the incident field term
of the usual integral equation methady., [, Go A J, Is a poor approximation to the true
field. The free space Green for@ contains no information about the variation of the per-

mittivity of the medium. Because of this, the integral equation (4.12) should be superior to
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the usual method for strongly varying dielectric profiles admitting an exact solution for the

scalar Green function. Even for inhomogeneous media without an exact Green function,
a two step approach in which the scalar Green function is first obtained numerically and
Eq. (4.12) then solved to find the electric field could have advantage over direct use of the
usual volume integral equation, since efficient computational methods for determination of

the Green function for the scalar Helmholtz equation are available [19].

4.2 Correspondence with Free Space Results

In this section, | show the relationship between the integral equation (4.1) and
the well-known expression for the electric field in terms of the scalar Green function for
an isotropic, homogeneous medium such as free space. In free space, the electric potential

¢ in the Lorentz gaugedxA = iweg o satisfies

(A+k2)p = —p/eo (4.13)
and the magnetic potential 1-forrhsatisfies

(A+E)A = —poxJ (4.14)

where A is defined to be a 1-form such th&t = dA, ¢ is a O-form which satisfie& =
iwA — dg¢, and the constar is equal tav?eg .
These two expressions show that the electric potential and each component of

Ain rectangular coordinates obey a scalar Helmholtz equation of the form
(A + E))u(r) = f(r). (4.15)
In order to solve this differential equation, one defines a scalar Green fuggtsuth that
(A + k§)go(ry, ra) = —6(r1 —13). (4.16)

| will denote by M, the differential operator on the left of this equation. From the definition
of A, if wis a 0-form, themAu = xdxdu. Using this result along with the product rule for

the exterior derivative, we have for arbitrary O-formsandus,

*ull\/loug — *UQMo'Ll,l = uld*du2 — uQ*d*dul

= d(ul*du2 — u2*du1). (417)
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This expression leads to a scalar form of Green’s theorem for the opergt@yNhtegrat-

ing (4.17) over a volum& and applying Stokes theorem, we obtain
/ (*UlM()UQ — *UQMoul) = /d (Ul*dUQ — Ug*dul> . (418)
\% oV
Settingu; = u(r;) andus = go(r1, re2) in this expression yields the result

u(ry) = — /\/1 *go(r1,12) f(r1) + /8‘/1 [u(ry)*dgo(r1, r2) — go(r1, ro)*du(ry)]. (4.19)

Using this result, we can write that

¢ = / gop/€o + / (goxdo — pxdgo) (4.20)
Jv Jov
A = /V*QO,UOJi + /av (goxdA; — Axdgp) (4.21)

where the coordinate dependence is suppressed and the compdnangstreated as O-
forms. The relationshify = iwA — d¢, allows the electric field to be written in terms of
(4.20) and (4.21), so that

E = iwuo/ *xgoJ; — d/ gop/€o0 + z'w/ (goxdA; — Axdgo) — d/ (goxde — pxdgo)
\% \%4 2% ov
(4.22)

for the electric field in terms of the sourdeand the boundary values gfand A.

The expression (4.22) appears to be different from the isotropic reduction of
(4.1), but I will demonstrate the equivalence of the two formulations. This can be done
most conveniently by employing the intermediate step of expreskirand A in terms of
the Helmholtz Green form, rather than the scalar Green functign For free space, the

definition (3.44) of the previous chapter can be simplified to
(A + kg)g(rl, I'Q) = —(5(1‘1 — 1'2)] (423)

where the derivative operator acts on theoordinates and is the unit doubld ® 1 forms.
With this definition,g is equal togy /.

The relationshiplygo(r1, r2) = —*1di*19(r1, r2), Where subscripts on the op-
erators indicate the coordinates on which the operators act, follows from the translational
invariance of the free space Green function. Using this result together with (4.20) shows

thatd¢ can be written as
dp = — /V(*d*g)p/eg — /av [(xdxg)*xdp — Ppxd*dxg] . (4.24)
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The magnetic potentiad satisfies Eq. (4.14), which is similar in form to Eqg. (3.43) of the

previous chapter. The derivation of Sec. 3.3 therefore can be employed to show that
A= 1o / gA T+ /6 (g A *dA + xdg A A+ (xg)kdsA — (xA)dsg] . (4.25)
\%4 14

Combining this expression with (4.24) fép shows that the electric field can be expressed

as
E:iwuo/ g/\J—l—/(*d*g)p/eo—I—/ S (4.26)
\%4 14 ov

where the2 @ 1 form S is given by
S = iwg A*xdA+iwkdg N A+iw(xg)xdx A — iw(xA)kdxg+ (xdxg)xdp — ¢kdxdxg (4.27)

and represents the surface contribution. It remains to demonstrate that Eq. (4.22) is equiv-
alent to this result and in turn that (4.26) is equivalent to the free space special case of the
integral equation (4.1).

The volume integral terms of Egs. (4.22) and (4.26) are easily seen to be equal.
The surface integral terms involvingare also clearly identical. All that remains to com-
pare between the two expressions are the surface integral terms invelvirigeaving
out a factor ofiw, the dxy component of the surface integrand duedt®f Eq. (4.22) is
(90A1z — A190z) dyy dz1 + (goAry — A1 goy) dz1 dzy + (9o A1 — Aigo-) dxy dy,, where the
subscriptse, y, andz denote partial derivatives by the coordinates. By computation in
coordinates, thelz, component of the corresponding surface integrand of (4.26) differs
from this by[(goAs). + (goA2)y] dy, dz1 — (goA2). dz1 dxy — (goAs). d1 dy,, Which can
be seen to be théz, component ofix(g A A). Similar reasoning for thely, and dz,

components shows that the difference between Egs. (4.22) and (4.26) is

iw /BV dx(g A A) (4.28)

which vanishes since the integral of an exact differential over a closed region is zero, as can
be verified by making use of the generalized Stokes theorem. Thus, the expression (4.22)
for the electric field intensity in terms of the scalar Green function is equivalent to (4.26)
in terms of the Helmholtz Green form.

Finally, I will show that the free space special case of the integral equation (4.1)

can be derived from Eq. (4.26). This will complete the proof that for free space the results
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of the previous chapter reduce to the usual expression (4.22) for the electric field in terms of
the scalar Green function. Sinée= iwA — d¢, the integrand of the surface contribution

in Eq. (4.26) can be written as
S =gA*xdE + *dg N E — (xd*g)*E + xdg N\ dp + iw(xg)xdxA — ¢*xdxdxg. (4.29)

The first two terms of this expression are identical to the integrand of the surface contribu-

tion of Eq. (4.1). By rearranging Eq. (4.26),

E = iwuo/ gNJ+ / (xd*g)p/€o —i—/ [g AN *dE + *dg N E — (xd*g)*E] +/ S’
Vv Vv oV oV
(4.30)
whereS’ = *xdg A d¢ + iw(*g)xdxA — ¢pxdxd*g. By using the Lorentz gaugeixA =

iweolgd, S’ can be transformed into

S’ = xdg A dp — px(dxdx + k2)g. (4.31)
The definition (4.23) shows that this is equal to

S" = xdg A\ dp — ¢x(xdxdg — 61). (4.32)

The first two terms of5” are equal to the exact formd(x¢dg), and so their integral over
0V vanishes by Stokes theorem. The third term appears to lead to a singulasity, bat
the surface integral of in the derivation of (4.26) originated from the volume integral of

dS, so that the contribution of the third term in (4.32) is more precisely equal to

/ d(po%1) (4.33)
\%
which vanishes due to the identity
3} of
/f(:t)%é(x —a)dr = = (a) (4.34)
Thus, the term containin§’ vanishes and Eq. (4.30) simplifies to

E = iw,uo/ gNJ+ / (xdxg)p/€0 + /a [g AN *dE 4+ *dg N E — (xdxg)*E]. (4.35)
v v v

The surface integral term of this expression is equivalent to the Stratton—Chu formula [59].
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Using the continuity equatioft/ = iwp, EQ. (4.35) can be rewritten as
E= iwuo/ g/\J—i—/ (*d*g)dJ/(z'weo)—1—/a [g A*xdE + *dg N E — (xdxg)xE]. (4.36)
\%4 \%4 \%
Integrating the second term by parts and using Ampere’s law,

E = iwpg /V g/\J—/V d*d*g/\J/(z’weo)+/;V [g AKdE + xdg A E + (xdwg)dH/(iwep)] .
(4.37)
The volume integral terms show that the Green form for the electric field can be written as
G = (1 + led*d*> g (4.38)
0
which is the usual result [3, 59] for an isotropic, homogeneous medium.
Gauss's law for the electric field can be used to replatg with d<E in Eq.

(4.35), so that the expression becomes a volume integral equation,
E = iwpg / GA T+ / (xdxg)dE + /8 [g A*dE ++dg A E — (xdxg)+E]  (4.39)
\%4 \%4 \4

where the unknown fiel& appears under the volume integral on the right hand side. For
the isotropic case, this reformulation is clearly not advantageous. By integrating the second

term by parts, however, Eq. (4.39) can be written as
E:iwug/g/\J—/*d*d*g/\E+/a [g A*dE +*dg A E]. (4.40)
\% \%4 \%

For a homogeneous, isotropic medium, the integral equation (4.1) reduces essentially to this
expression. If the free space Helmholtz Green fgrim (4.40) is replaced with witk,, g, x
replaced withk;, or x,, and the factors of,, removed, then the equation becomes identical

to (4.1). For the case of a medium with symmetric permeability tensor;tlaperator

can be absorbed into the definitiongés was done in Sec. 3.3.2, and the correspondence
between this expression and the general integral equation (4.1) becomes even closer. We
have now obtained the purpose of this section, which is to demonstrate the connection
between the usual free space expressions (4.20) and (4.21) and the integral equation derived

in the previous chapter.
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4.2.1 Plane Wave Solutions

In free space, plane wave solutions for the electric field correspond to poles of
the Green forny. In spite of this, the second volume integral term of (4.40) remains finite
even if £ represents a plane wave arids unbounded, due to the presence of the derivative
operatorxdxdx and the constraint imposed by Gauss’s law. This can be seen explicitly by
considering a very simple example.Afis equal toE,c*0* dz, then the right—hand side of

the integral equation (4.40) becomes

o 90 a290 8290
—E/d dy, dzre™ [ d dy,—2 90 4 4 4.41
o [ dridy,dze ( Vgt Wag g -t Ay o (4.41)

This integral can be evaluated as the inverse Fourier transform of the product of the trans-
forms of e’** andyg,
k2 kyk, kok.

1 ik,
EO%/dke r 871'3(5(kz—]€0)5<]€x)(5<ky) <d$2k ]{}2 + dy2 ]{32 ]{72 + dZQm
(4.42)
After performing thek, andk, integrations, this becomes
2
F / dk, 5(k,) d@eikﬂz:g — Eyeiton, (4.43)

so that the volume integration of (4.40) does yiéldas expected. Note that the integral
in (4.40) becomes singular & does not satisfy Gauss’s law and the wavevector is not
orthogonal toF.

For a general plane wavEOeil'r, whereEy = Eidx + Eydy + Ezdz is a
constant 1-form, the inverse Fourier transform integral becomes

k JE,
k2 — k2

so thatl and E, must be orthogonal in order for the integral to converge. Also, as above

/ dk K T28736(k — 1) (ky dzs + ky dyy + k. dz2) (4.44)

83

the integrations in the plane of the wavevector space perpendiculanuist be performed
before the integration in thiedirection. A similar computation can also be performed for a
plane wave propagating in a biaxial medium.

4.3 Singularity of the Helmholtz Green Form

Due to the singularity ofy(ry,ry) atr; = r,, the derivation of (4.1) in the

previous chapter was not strictly correct. As shown by Yaghjian [53] for the isotropic case,
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however, the final result is valid if the proper principal value interpretation for integrals
involving second order partial derivatives @©fs employed. The result is also valid if the
expression can be placed into a form such that only first order derivativearef present
[52].

The second order derivatives gfcan be eliminated from (4.1) by integrating

the second volume integral term by parts, so that the integral equation becomes

E=iw /V G A + /V wndj A dip E + /av 50 A $ndE + $nding A E — (knd)enE]
(4.45)

This is a generalization of the Stratton—Chu formula [59]. In a free space region contain-
ing no sources, the Stratton—Chu formula is a surface integral equation, &inEe=
top/eo = 0. For a complex medium, this generalization of the Stratton—Chu formula is a
volume integral equation, sinek, £ is not related talx. E = p in any simple manner.

For an arbitrary fundamental solutigrof the anisotropic Helmholtz equation,
the surface contribution of (4.45) does not vanish. In order for the soldigiven by
(4.45) to be physically meaningful, it must satisfy a specified boundary conditigion
If the electric fieldE andg(ry, ry) as a function of; satisfy a boundary condition such
that the surface contribution to (4.45) vanishes, then the result given by (4.45) will satisfy
the same boundary condition a&, rs) as a function of,. As shown in Sec. 3.2.1, the
first two terms of the surface contribution do not contribute¢ d@ind £ satisfy magnetically
conducting, electrically conducting, or radiation boundary conditions. Unfortunately, the
term(x,dg)=, E in general does not vanish. In order to avoid the additional surface integral
term, the integral equation (4.1) could be employed directly instead of (4.45). In order to do

this, one must determine the correct principal value interpretation for the volume integral
/ Fndindg(rr,12) A E(ry). (4.46)
\%1

Proper treatment of the integration is crucial, sidcés in general nonzero over all 6f
and so evaluation of the integral termmt = r; cannot be avoided. For free space, a
nontrivial principle value interpretation is required for the volume integral terms of (4.37)

only if the value of the electric field is desired at a location for whict 0.
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| will determine the principal value interpretation for the case of a biaxial medium.
In this case, Eqg. (4.1) simplifies to (4.6). The Helmholtz Green form is a ddubleform

with diagonal elements™oi /(47r). The volume integral term (4.46) becomes
/ wdxdkg(r1,rs) A E(ry). (4.47)
14

| assume thak’ satisfies a Holder condition in the interior'df so that loosely speaking, the
value of £ does not vary too much over any small region. With this condition, a principal
value interpretation leading to a uniquely defined value for integrals of the form of (4.47)
is known to exist [52]. The domain of the volume integration can be divided into two parts,
V — Vs andVjy, whereVs contains the point,. The volume integral ofdxdxg A E is then
equal to

/ dxdig AN+E + | dwdxg A «E. (4.48)
V—Vs Vs

Integrating the second term by parts and applying Stokes theorem yields

/ dxdxg N\ xF + / *dxg AN *xE — [ xdxg N\ dxE (4.49)
V—Vs Ss

Vs

where Sy is the boundary of/;. The first term represents the value which is obtained by
numerical integration of Eq. (4.47) for the particular exclusion voltnerhe second term
represents a correction to this value such that the sum of the first two terms is independent of
the choice of shape fdr;. The third term vanishes in the limit as the maximal dimension
§ of Vs becomes small, sinceixg has a singularity which is only of ordér/r?, where
r=|r; —rsl.

It remains to compute the limit of the second term of Eq. (4.49) as 0. In

the limit,

*dxg = g1z dTo + Goy dy, + g3. d2o

ikorr
Tz\ € . T (&
= (ikoﬂ“i — ) dlL‘Q + (lkog?“y — y>
r/) 4 r

ikoar ikosr

e

dZQ

r Arr Arr

dy2 + (ikog?”z — 7:)

12

g (ry dxe + 1y dyy + 1, dzs)

dg?"

42

where the subscript ol indicates that the exterior derivative of= |r; — ry| is with

respect to the, coordinates. By using this result, the surface integral term in (4.49) can be
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written

lim L sE(ry). (4.50)

0—0.Js5 4mr?

The value of the integral becomes linear in componen#s [§2], so that using the double

form

. dzT’
Lixa,r1) = —1151—1% S5 4mr?

where! here is the unit double forndy; dz; dxy + dz3drsdy, + dzsdysdz;, and the

I (4.51)

integration is over thes coordinates. The pullbacks of the 2-form factors/db S5 are
components of the surface normalof S;, so that this result for. is equivalent to that
obtained by Yaghjian [53] for free space. Yaghjian gives results faorresponding to
several commonly employed shapes for the exclusion volume.

In terms of this result for the double forim the volume integral (4.47) is equal
to

lim wdxdxg A E — L 1E(rs) (4.52)
0—0 V—-Vs

where the interior product acts on thedifferentials ofL and ther, differentials ofE. The
clumsiness of the coordinate dependencies in this term is due to the fattwioatid more
naturally have the delta function coefficie¥ir; — r,) and be integrated agains{r; ) over

V. I have chosen to mimic the standard dyadic treatment, for which coordinate dependence
is somewhat ambiguous and expressions such as (4.52) appear natural. Inserting this result

into the integral equation (4.40) gives

E:muo/ gAJ+lim *d*d*g/\E—LJE—l—/d (g AdE + »dg A E) . (4.53)
1% oV

6—=0JV-V;s
A similar derivation can be performed for the more general homogeneous, anisotropic case.
If the medium is magnetically anisotropic, then the componenisaaintain factors related

to the value of the permeability tensor for the medium.

4.4 Summary

In this chapter, | have discussed several issues related to the application of the
electric field integral equation which was derived in the previous chapter. | have compared
this integral equation to the usual equivalent source formulation used for electrically inho-

mogeneous or anisotropic media, and pointed out cases where the present integral equation
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may be superior as a basis for computational methods. Sec. 4.2 explored the connection be-
tween the results of the previous chapter and the usual solution for the electric field in terms
of the scalar Green function for an isotropic, homogeneous medium. The magnetic vector
potential A and the electric potential can be written in terms of the scalar Green function,
leading to an expression for the electric field. An equivalent formulation of this result can be
obtained using the free space Helmholtz Green form. Although the Helmholtz Green form
and the scalar Green function are trivially related for an isotropic, homogeneous medium,
it is interesting to note that the proof of the equivalence of the two formulations given in
Sec. 4.2 was not trivial. Once the standard free space result is expressed in terms of the
Helmholtz Green form, its connection with the integral equation of the previous chapter
becomes clear. The general integral equation (4.1) is a direct generalization of the free
space result.

In Sec. 4.3, a principal value interpretation of the integrals in Eq. (4.1) was
obtained for the case of a biaxial medium. Such an interpretation is required in order to
implement this integral equation as a numerical algorithm. An additional term lindar in
which depends on the geometry of a specified exclusion volume must be combined with the
numerical value of the integral in order to give a result which is independent of the type of
limiting process chosen in the numerical evaluation of the integral. For a biaxial medium,
this term is the same as that obtained by previous authors for the homogeneous, isotropic

case.
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Chapter 5

GAUSSIAN BEAMS IN BIAXIAL MEDIA

5.1 Introduction

Some electromagnetic problems in homogeneous, anisotropic media, such as
the analysis of optical devices relying on anisotropic effects, can be reduced to the study
of narrow beams. In this chapter, | treat Gaussian beam solutions in a biaxial medium
for directions of propagation away from the two optical axes of the medium. Propagation
of beams with wave vector along an optical axis behave in a singular manner, and the
associated phenomenon of internal conical refraction will be treated in the next chapter.

In order to compute the Gaussian beam solutions, a parabolic expansion for
the wave surface will be employed. Such an expansion has been used by many authors,
including étyroky [60] to give an integral formula for the Fresnel diffraction of a narrow
beam, and Moskviet al. [17] to obtain the far field limit of the tensor Green function for a
biaxial medium. As shown in Chap. 3, the Green form for a biaxial, nonmagnetic medium
can be expressed easily in the wavevector representation. The physical space representation
can only be obtained in certain limits. To obtain the far field limit of the Green form
itself, the inverse Fourier transform of the tensor Green function can be evaluated using
stationary phase [16, 17]. A similar approach is employed in this chapter. | express the
product of the Green form for the electric field and an equivalent Gaussian current source
in the wavevector representation, and employ a parabolic wave surface expansion to obtain
a paraxial approximation for the inverse Fourier transform of the product. This gives the
electric field corresponding to a Gaussian beam with waist at the location of the equivalent
current source.

Other approaches to the study of narrow beams in anisotropic media include
that of Shin and Felsen [61], who make use of the free space scalar Green function with
a complex position vector. This yields an exact solution to Maxwell’s laws which reduces

to a Gaussian beam in the paraxial limit. Using this method, Shin and Felsen give analytic
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results for the beam solutions for the special case of a uniaxial medium. Fleck and Feit
[62] derive a paraxial wave equation in order to obtain the Gaussian beam solutions for a
uniaxial medium. Ermert [63] derives another type of paraxial wave equation and gives
the associated beam solutions for a biaxial medium, but these are only valid if certain

conditions are placed on the principal permittivities of the medium.

5.2 Spectral Decomposition of the Green Form

| begin with the wavevector representation (3.66) of the Green form for the
electric field obtained in Chap. 3. Since a biaxial medium is magnetically isotropic, for

convenience | scale the Green form by a factorgfso that becomes
G = [k + K"K~ Wued] (5.1)

wheree is the real, symmetric permittivity tensor of the medium. By using the notation

k = kn, this can be rewritten as

G(k,w) = [2(1 — Ad") - wued] . (5.2)

As discussed in the previous chapter, the zeros of the denominator of the Green form lead to
the Fresnel equation. When considered as a quadratic equafiontive Fresnel equation
has one zero solution and two nonzero solutions. These solutions define the wave surface
for the medium. For each directiain the two corresponding values bfrepresents the
distance from the origin to the wave surface. Since there are two roots for each direction,
the wave surface consists of two parts, the internal part and the external parts. The external
and internal parts meet at four points, and these points are in the directions of the two
optical axes of the medium. Reference [7] contains an illustration of the wave surface for a
biaxial medium.

Since parabolic approximations for the wave surface must be found for both
the internal and external parts, a more convenient representation for the Green form is a
spectral decomposition, so th@tis separated into terms corresponding to each of the of
roots of the Fresnel equation individually. This spectral decomposition is derived by Lax

and Nelson [16]. Following their treatment, | define right eigenvectorand eigenvalues
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ky 2 such that

2
L —an”)v; = “’T’;Ovj. (5.3)

The left eigenvectors af ' (I — an”) are easily seen to be equalxtgie If the normaliza-

tions of the eigenvectors are chosen such that
viev; =1 (5.4)

then by the spectral decomposition theorem,

VJV €

[s|—€ (I—ﬁAT} Xi: _w% (5.5)

Settings = w?o/k* and rearranging this expression gives

T
\AZ

3
i=1 w2y <’,§§—1)

The definition (5.3) shows that the eigenvectors sat[kﬁ(l —nnl) — w%oﬂ v; = 0.

(5.6)

This is the Fourier transform of the wave equation satisfied by the electric field. The eigen-
vectorsv; therefore correspond to plane wave solutions with wavenumbers edyalitbe
k; are solutions of the Fresnel equation tﬁle%(l —nn’) — w%oﬂ = 0. In the principal
coordinate system of the permittivity tensor, for whichas diagonal components the
eigenvectors have components [16]

1y,

vie=M (5.7)

where M is chosen such that the normalization (5.4) holds. This expression is singular
for wavevector directions lying on the principal axes, but the eigenvectors can be obtained
for such directions by taking the limit as the wavevector approaches a principal axis. A
nonsingular representation for the eigenvectgrs terms of the wavevector has also been
obtained [17].

One of thev? 1 /k; is zero; the associated term of (5.8) represents the nonprop-
agating or static part af. From (5.3), the eigenvector corresponding to the zero eigenvalue

is proportional tan, so thatz can be rewritten as
VjVT nn”

2
J _
S (1) o TE) (5:5)

J
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where the summed terms correspond to the external and internal parts of the wave surface

and the right—-most term corresponds to the static root of the wave equation.

5.3 Paraxial Approximation of the Green Form

A Gaussian beam consists of a narrow distribution of components with wavevec-
tors spread about some central direction of wave propagation. The wave surface governs
the propagation of the energy associated with each component. We must therefore expand
the wave surface about the central direction of propagation of the beamk’ denote
the wavevector in the principal coordinates of the permittivity tensor.kletpresent the
wavevector in a rotated coordinate system such thatthexis is in the direction of the
central wavevector of the beam. In the two coordinate systems, the components of the
wavevector are related by

k' = Ak (5.9)

whereA is the orthogonal matrix

cosfcos¢p —sing sinfcos o
A= cosfsing cos¢ sinfsing |. (5.10)
—sin6 0 cos
The angles) andf represent the direction of the central wavevector of the Gaussian beam
in the principal coordinate system. The wave surface must then be expanded in térms of
andk,, which give the deviation of the wavevector away from the certralirection.
In the principal coordinate system, the wave surface is given by the Fresnel

equationF'(k., k!, k.) = 0, where

x?) Y vz

F(ky by k) = =K (kguky + Kook’ + Kogh™) + ki'hay (Ky + Koa)

x) Y vz

iy kg (ks + k1) + K2k (K, + ko) — kg kokds  (5.11)

andk?, = w?poe;. By using the relationshiR’ = £'n’, the Fresnel equation can be rewritten

so that it is biquadratic in'?,

F<klxa k;, k/z) = _kl4(k(2)1n;2 + k(2]2n;2 + kg?,nf) + K [nf/{gl(ng + k(2)3>

1y iy (ks + kiy) + nZhis (koy + kgz)} — kiikgokos.  (5.12)
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In the rotated coordinate system, the Fresnel equdtiotk) is no longer biquadratic, but

the roots can still conveniently be expanded using the implicit function theorem. Let the
function g(k., k,) be defined such that (Alk,, k,, g(k., k,)]") = 0. The wave surface
then can be written in the for, = ¢(k,, k,). By expanding(k,, k,) for small k&, and

k,, we obtain the parabolic approximation

g g
k. ~ aj + gikg + goky + %/& + grokaky, + %kz =T, (5.13)

whereq; is a solution toF'(A[0,0, «;]) = 0 andj indexes the components of the wave
surface, so that = 1 corresponds to the external part anhé- 2 to the internal part. The
subscripts oy denote partial derivatives by, andk,, and all derivatives of are evaluated
atk, = 0,k, = 0.

The Fresnel equation in the form of (5.12) can be written as

~kK'P+EQ-R=0 (5.14)

= kg, sin® 0 cos® ¢ + ki, sin® Osin® ¢ + kg, cos® 0
Q = sin?Ocos® g k2 (k2, + kZ3) +sin? Osin? ¢ k2, (kg + k2,) + cos® 0 kg (k2| + k2,)

R = k(2)1k§2k§3'

The constant term of the wave surface expansion (5.13) is therefore

ol = Q- <_1)Jé”PQ2 — APk (5.15)

The first order coefficients can be found using the implicit function theorem,

Fu(Ak)
 F3(Ak)

where the subscripts denote partial derivativestbyk,, andk,. By applying the chain
rule, this can be rewritten as

Al/mﬂ/ (Ak)

= — L VA 5.17
g AvsFy (AK) (®-17)
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where the index’ is summed and (Ak) denotes the partial derivative éf by thel’th
components ok’. The derivatives of?’ with respect to the principal coordinates can be
obtained from (5.11),

Fy (K k), kL) = —2K y (kG K2 + Kokl 4 kiakZ) — 2kG, Ky k™ 42K kg (kG — k§y). (5.18)

z Vyr V2

The expansion coefficients are obtained by evaluating (5.17) at thelpoint(0, 0, «;),
which corresponds tR’ = «;(sin 6 cos ¢, sin 0 sin ¢, cos 6) in the principal coordinate sys-
tem.

The second-order coefficients can be obtained by taking partial derivatives of

theg;. They are
o _anF3+FmF3n

mn = 5.19
g I (5.19)
where
F, = ApnFr(Ak) (5.20)
Fon = ApmAynFry(AK). (5.21)

The second derivatives @f in the principal coordinate system are

Firy = —AK 1k (K + k) — 200y [k K2 + Kohi? + Kok + k'™ — kg (kg — K3,)]
(5.22)
When expanded, the expressions (5.17) and (5.19) contain numerous terms and can be
simplified considerably, but this has been done adequately in Ref. [60].
| will give the coefficients explicitly for the special case@t 0, for which the
k. axis lies in ther’ — 2’ plane. In this plane, we have that is equal to the greater and
is equal to the lesser &f, andk3, k3 /G, whereG = kj, sin® 0 + ks cos” 0. Fora? = kf,,

the coefficients of the expansidn become

g = 9g2=0
_ 1
g = Fos
g1z = 0 (5.23)

koo (k3y — k2, cos® 0 — k3, sin® 0)
kg1 ks — kG

g2 =
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Fora? = k§, kg3 /G, the coefficients are

sin 0 cos 0(k2; — k2))

g = I
g2 = 0
korkos [2(sin 6 cos 0(k3; — k3))?
= mﬂ[ Kokt — kG _4
g1z = 0 (5.24)
_ 1 kiga (ki) + ki) G — ki ks G — ki ko kg
g2 = koikos VG [ kg1 Koz — koG 1 .

Note thatg;; andgs, become singular at the two angles

k2 (k‘2 - kz )
tanf = +,| =292 0L/ (5.25)
J kigy (ks — ki)

These angles correspond to the optical axes of the medium. In these directions the expan-

sion (5.13) becomes invalid, and a more sophisticated treatment must be made, as will be

done in Chap. 6.

5.4 Gaussian Beams

Using the expansion for the wave surface (5.13), we find the propagating part

of the Green forn@ to be

OéQVJVT

G = Zw% T (5.26)

for smallk,. | place an equivalent surface current dengity= £,(p)p on thez = 0 plane,

where
@e*pz/wé

o(p) = ”

(5.27)

and the constants are the free space impedanee,/ 1o/, and the beam waist parameter
wyp. p IS a unit 1-form specifying the direction of the equivalent source. The electric field is
then

B(xa) = iwpo [ Glry,ra) A J(r1) (5.28)

where the integration is over the = 0 plane.
The integration in physical space of (5.28) becomes a product in the wavevec-

tor representation. The electric field in physical space is therefore equal to the inverse
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Fourier transform of the product of the wavevector representations of the Green form
and the equivalent source. The Fourier transform of the equivalent currgyitjsp =

(2Ey/no)mwie~ %/, so that the electric field is

2

ZWMO /dk ’Lkr Oéj’Uj(Uj Jp) 5 29
S0 ; o (K2 — T7) 5-29)

where thev; are 1-forms dual to the polarization vectarsexpressed in the rotated coor-

dinate system. Integrating by a countour closing in the upper-half plane gives

E_

2
dk’ dk’ zk“Lz-Hkyy zzT(aJ) N 5.30
o fa(ky) 3 ¢y (13 p) (5.30)

for the outgoing solution. Substituting Eq. (5.13) fgrand using the definition &, yields

(1o
ajwi Eye'®i

E = / dk, dk, e"v;(v; 1p). (5.31)

8mwng
where F; represents the contribution due to the external sheet of the wave suHace,

represents the internal contribution, and the exponent is

2
R =ik, (7 + g12) + iky(y + goz) + k2 (g; — tio> + ks k:yglg—i—k2 (g;z_u:l())

The remaining transverse integrations can be performed by rotatiagdk, to clear the

k.k, term of the exponent in the integrand of (5.31). This yields

a;wi Eyeti® ) . wy wg
E; = W /dk;gc dk, exp lzk‘xC + ik, D — k,* <40 - A) — k,’ <40 - B)]”j(”j 1p)
(5.32)
where
A L /gn 922
i = — 2= cos? y—l—glgsmvcosv—l——sm Y
Oéj 2 2
1
B, = — (911 Sin® v — grasin 7y cosy + 222 cos? 7)
Q; 2 2
C; = (v+ g12)cosy+ (y+ g22) siny
D; = —(x+ gqi2)siny + (y + g22) cosy
cot 2y = dgin — 922.
2912
The contributions from the two parts of the wave surface are then equal to
2 pioyz C? D?
g, aywy Eoe exp l i wp). (5.33)

ZwT]O\/wO —4A; \/wo 4B; wg —44;  wi— 4B,

67



If the wavevector lies in thg’ = 0 plane, then this expression simplifies to

E

J

. 2E Q2 2 2
;%o H0c ex [_(m—kglz) — J v;(vjJp) (5.34)

B 2w770\/w8 —4g11 \/wg — 4g99 wg —4gn wh — 4g2
where the coefficients are given in Eq. (5.24).

In free space, the wave direction and the direction of the peak amplitude of a
Gaussian beam coincide. For a biaxial medium, the coefficients appearing in the functions
C; andD; are related to the angle of the ray direction away from the wave direction. The
ray vector lies in the direction of the normal to the wave surface at the ilnitite; ), and
in general does not coincide with the wavevector. The funct@nand D; shift the peak
of the Gaussian amplitude of the beam solution (5.33) so that it lies along the ray direction.
Neglecting the complicated effects due to refraction at a face of a biaxial medium, the
power contained in an incident beam splits into two parts, with the directions determined
by normals to each sheet of the wave surface for the particular value of the wavevector of
the incident beam.

If the wavevector coincides with one of the optical axes of the medium, the
coefficients found in (5.34) become singular. As noted above, the treatment of this chapter
is invalid for these directions. In the following chapter, the behavior of beams propagating

along the optical axes are studied in detalil.
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Chapter 6

INTERNAL CONICAL REFRACTION

6.1 Introduction

The paraxial approximation for the Green form of the previous chapter breaks
down if the direction of the wavevector about which the expansion is taken coincides with
one of the four singular points of the wave surface for a biaxial medium. The singular
points lie on two straight lines, which are known as optical axes or binormals. A narrow
beam propagating along one of the optical axes of a biaxial medium spreads into a hollow
cone. This phenomenon, internal conical refraction, was predicted by Hamilton in 1832
and observed shortly thereafter by Lloyd. A dark ring in the center of the circular inten-
sity pattern produced by conical refraction was observed by Poggendorf in 1839 and later
explained by Voigt. (These historical references and an elementary treatment of conical
refraction are found in Born and Wolf [7].) Voigt's explanation of the Poggendorf dark ring
was made more precise by Portigal and Burstein [64]. Lalor [65] and Juretschke [66] also
reported methods for quantitative analysis of internal conical refraction. Schell and Bloem-
bergen [67] further refined the work of Portigal and Burstein, achieving a result accurate to
second order in angle away from the optical axis. Despite the improved accuracy, Schell
and Bloembergen employed numerical integration in order to obtain some of the results
given in the paper. Other theoretical treatments include that of Uhlmann [68], who proved
the existence of the dark ring but did not examine the structure of the intensity pattern in
detail. This chapter gives the treatment of internal conical refraction reported in Ref. [5].

Previous theoretical methods for obtaining the field intensity due to conical re-
fraction amount to a two—dimensional stationary phase evaluation of an inverse Fourier
transform integral for the refracted field intensity. This approximation for the field inten-
sity can be understood geometrically, by considering the shape of the wave surface near an
optical axis. The wave surface for a biaxial medium consists of an external and an internal

sheet which meet in the directions of two optical axes. For wave directions away from the
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optical axes, power associated with the particular wavevector flows along two ray vectors,
one normal to the external sheet of the wave surface and the other to the internal sheet.
Near each singular point, the wave surface has the shape of a cone. Instead of two distinct
normals, at a singular point the wave surface has a family of normal directions lying on an-
other cone. Incident power propagates along this cone of normals. The contributions from
nearby wavevectors on the internal and external sheets are shifted slightly to the inside and
outside of the cone of refraction respectively, so that a dark ring appears in the center of the
circular intensity pattern produced by conical refraction [67].

The treatment of conical refraction given in this chapter employs the wavevector
representation of Lax and Nelson [16] for the Green function for the electric field which
was used in the previous chapter. A conical expansion for the wave surface near an optical
axis given by Moskviret al. [17] yields a paraxial approximation for the Green function.
The refracted fields can then be obtained by finding the inverse Fourier transform of the
product of the Green function and the spectral representation of a Gaussian beam. | treat
asymptotically an integration in azimuthal angle about the optical axis, and the remaining
transverse integration can be evaluated analytically. The resulting simple characterization
of the intensity pattern in terms of special functions is one of the primary contributions of
this chapter to the theory of internal conical refraction. In order to demonstrate the validity
of this approach, | have also performed numerical integrations for the field intensity at
certain parameter values.

The results obtained in this way agree with the theoretical and experimental re-
sults of Schell and Bloembergen [67] for a 1 cm Aragonite sample, @34éeam waist,
and a wavelength of .6328m. For a 10 cm sample length, however, their theoretical
results are qualitatively similar to the 1 cm pattern, whereas this treatment predicts sec-
ondary dark rings or fringes in the interior of the cone of refraction. | specify the parameter
ranges for which this secondary oscillatory behavior of the intensity pattern should appear,
and demonstrate that even allowing for large variation of the parameters the effect per-
sists. These secondary dark rings have apparently not been predicted by past theoretical
treatments, nor have experimental results been given for parameter values lying within this

oscillatory regime.
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Measurements by Schell and Bloembergen [6] indicate the appearance of qual-
itatively similar secondary rings for conical refraction by an optically active medium. Os-
cillatory behavior of the intensity pattern has been predicted for conical refraction in gy-
rotropic media [69, 70], but the field has an Airy function dependence and is identically
zero for certain distances from the cone of refraction. This behavior is qualitatively differ-
ent from that reported here for biaxial media. Other related work includes that of Naida
[71], who considers conical refraction in an inhomogeneous, weakly biaxial medium. Bel-
skii [72] obtains transmission coefficients for a thin biaxial plate along the optical axes,
and Belskiiet al. [73] discuss the change in astigmatism of a Gaussian beam propagat-
ing along an optical axis. Khatkevich [74] shows that a conically refracted beam is not
confined to a particular generator of the cone, and plane wave solutions near the optical
axis are discussed by Alexandroff [75]. References [69, 70, 76] also investigate the appli-
cation of conical refraction in gyrotropic media to beam focusing. A recent experimental

measurement for conical refraction in KTP is found in Ref. [77].

6.2 Propagation Along an Optical Axis

To determine the electric field due to the internal conical refraction of a Gaus-
sian beam, | begin with the decomposition of the Fourier transform of the Green form given
in Chap. 5 for a biaxial medium. As in the previous chapter, the refracted field can be ob-
tained from an equivalent current source at the focus of a Gaussian beam by an inverse
Fourier transform. The two main problems are the determination of the proper paraxial
expansion of the Green form for wave directions near an optical axis and the asymptotic
evaluation of the inverse Fourier transform in the paraxial limit.

For a given wave vector directiai, the Fresnel equation is biquadratic in the
length of the wave vector. The Fresnel equation therefore has two pairs of solutions, the
members of each pair differing by a sign. The wave surface defined by these solutions
consists of two sheets, one sheet for each pair of solutions. In four wave directions, the
solutions become equal, so that the two sheets of the wave surface meet. At each of the
singular points, the wave surface has the shape of a c