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ABSTRACT

IMPROVING ELECTROMAGNETIC BIAS ESTIMATES

Floyd W. Millet

Electrical and Computer Engineering

Doctor of Philosophy

The electromagnetic (EM) bias is the largest source of error in the

TOPEX/Poseidon and Jason-1 satellite sea surface height (SSH) estimates. Due

to incomplete understanding of the physical processes which cause the bias, current

operational models are based on empirical relationships between the bias wind speed

and significant wave height. These models reduce RMS estimation errors of the EM

bias to approximately 4 cm.

To improve EM bias estimation the correlation between the bias and RMS

long wave slope is studies using data from tower-based experiments in the Gulf of

Mexico and Bass Straight, Australia. Models based on significant wave height and

RMS slope are more accurate than models based on wave height and wind speed by

at least 50% in RMS error between predicted and ground truth bias values.

Nonparametric models have been proposed as a method to reduce the vari-

ability of EM bias estimates. Using tower data, nonparametric models developed from

wind speed and significant wave height measurements are shown to provide some im-

provement over parametric models. It is also shown that the historical discrepancy



between satellite and tower EM bias measurements is reduced by nonparametric mod-

eling.

A validity study of rough surface scattering models is conducted for sur-

faces with Gaussian and power law power spectra. Models in the study include

physical optics (PO), geometrical optics, small perturbation method, and small slope

approximation. Due to the prevalence of the PO approximation, particular emphasis

is placed on the development of a validity criterion for the PO model. An empirical

study of the PO approximation shows that the validity of the model is more accu-

rately described by the RMS wave slope than the classic surface curvature criterion

for surfaces with a Gaussian power spectrum. For surfaces with a power law PSD,

the accuracy of the PO approximation is related to the significant slope (RMS surface

height/wavelength of the dominant spectral peak). The validity of other models in

the study are also shown to be well approximated by bounds on surface slope.

An EM bias model is derived using the physical optics scattering model,

hydrodynamic modulation, and non-Gaussian long wave surface statistics. Using a

modulation transfer function, the hydrodynamic modulation of small wave heights

is shown to be linearly related to the long wave RMS slope. The resulting EM bias

model expresses the relative bias as a function of the long wave surface parameters

RMS wave slope, surface skewness, and tilt modulation. Coefficients of the long

wave parameters are determined by the short ocean waves, and provide insight into

the physical mechanisms that cause the bias. From measured values of the ocean

surface profile, estimated values of the bias are computed from the bias model. A

comparison of these estimated values with in situ EM bias measurements shows a

strong correlation between the estimated and measured values.

Nadir and off-nadir measurements of the EM bias collected during the

BYU Off-Nadir Experiment (Y-ONE) are presented. The in situ measurements are

compared with bias estimates computed from an off-nadir generalization of the nadir

EM bias model. From theoretical and experimental bias measurements a model of

the angular dependence of the bias is developed as a function of the normalized bias

at nadir.
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Chapter 1

Introduction

In 1982 a weather phenomenon called El Niño caused intense changes

in normal weather patterns across the globe. Off the South American coast water

temperatures in the Pacific Ocean were close to 10◦ higher than normal, desert re-

gions of Ecuador and Peru received over 100 inches of rain in six months, and the

normally tranquil weather of Hawaii and Tahiti was interrupted by a number of ty-

phoons. Across the Pacific the normal monsoon seasons in Asia and Australia were

dry, resulting in drought conditions for most of the Far East.

These changes in weather patterns often come at a great cost in life and

property. A particularly intense El Niño in 1877 killed over nine million people in

China and another 8 million in India. In South America, heavy rains from the 1982

event caused mudslides that resulted in thousands of deaths, while the most recent

event in 1997 caused property damage in the U.S. estimated at more than a billion

dollars.

With increased knowledge and understanding of the geophysical processes

that create global weather patterns, the effects of large scale disturbances can be

mitigated. The El Niño in 1997 was the first time that scientists were able to predict

such an event. With six months of warning, governments and people were able to

prepare for the consequences and science was able to study the results of the weather

disruptions.

Measuring and predicting long-term weather patterns is largely a result of

the advent of satellite based remote sensing instruments. Altimeters, scatterometers,

radiometers, and other instruments collect global measurements of the ocean topog-

raphy, near surface winds, sea surface temperature, and other relevant data. As the
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accuracy of such measurements increase, our understanding of the forces of nature

improves and our ability to accurately predict global weather patterns is enhanced.

Among the geophysical measurements used to create global weather models

is the mean sea level (MSL). Conceptually, the methodology to remotely measure the

mean sea level is simple. The basic operation of altimeters is to measure the time

of flight of an electromagnetic pulse to reflect off the ocean surface and return. By

converting the time of flight to a distance measurement the MSL can be calculated.

Though simple in concept, the actual practice of measuring the MSL is complicated

by variations in the satellite ephemeris, atmospheric interference, and interaction of

the electromagnetic energy with the ocean surface.

With improved satellite technology the error budget of satellite measure-

ments were reduced from the order of meters to tens of centimeters. Further refine-

ments and a better understand of atmospheric and oceanic properties have reduced

errors in MSL estimates to the centimeter order. In this dissertation I focus on the

dominant error term remaining in mean sea level estimates: the electromagnetic (EM)

bias.

1.1 EM Bias Background

The EM bias is caused by a non-uniform return of electromagnetic energy

over the height of ocean waves. For nadir looking instruments, the backscattered

energy return from wave troughs is larger than that returned by the crests. This

differential in energy is perceived by the altimeter as a delay in the pulse return, and

the estimated surface height is biased low. A derivation showing the relationship of

the bias definition to the working definition used in the tower experiments is shown

in A.

1.1.1 Satellite-based Models

Empirical models developed from satellite-based altimeter measurements

describe the EM bias in terms of remotely measurable ocean and environmental pa-

rameters. To first order these models all describe the bias as a linear function of the

significant wave height, H, with higher order dependencies described as a function of
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other estimation parameters. Such definitions of the bias can be written as

ε = Hf(θp : U,H, ...), (1.1)

where f describes the high order dependencies of the bias, and θp represents the bias

estimation parameters.

Because satellite-based empirical models are necessarily confined to using

remotely measurable parameters, the estimation parameters must be derived from

byproducts of the altimeter range estimates. The most common bias estimation

parameters are wind speed, U , and significant wave height, though other parameters

such as direct power measurements and a pseudo wave age have also been used.

The accuracy of bias estimates made using remote sensing instruments are

limited by a lack of ground-truth bias measurements. Operational models for the

satellite based altimeters, TOPEX/Poseidon and Jason-1, are derived from collinear

or cross-track measurements of the surface [6, 7, 8, 9, 10]. After adjusting for known

variations in the ocean height and atmospheric effects, such as tide, atmospheric

pressure changes, propagation delays, and humidity changes, the difference in height

between two measurements, ∆r, is written as

∆r = r1(U1, H1) − r2(U2, H2) (1.2)

= ε(U1, H1) − ε(U2, H2) + δ, (1.3)

where δ is assumed to be a zero mean noise process, uncorrelated to the EM bias.

Using a least squares fit to the estimation parameters, an estimate of the bias is

computed.

1.1.2 Tower-based Models

EM bias models created from tower-based data have the advantage over

satellite models of direct measurements of the EM bias, but are limited in spatial and

temporal extent compared to satellites. Measurements of the bias are computed as

the normalized correlation between the backscatter coefficient profile, σ◦(ζ), and the

surface height, ζ,
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ε =
E [σ◦(ζ)ζ]

E [σ◦(ζ)]
, (1.4)

where σ◦ is a normalized backscatter measurement.

Due to the proximity of the tower experiments to the ocean surface, direct

measurements of the surface profile, ζ, and related backscatter measurements, σ◦,

are available. Using these values in equation (1.4), the EM bias can be computed

directly. The correlation of the EM bias values with simultaneous measurements of

the related ocean and atmospheric estimation parameters, such as significant wave

height and wind speed, is used to create the EM bias models.

Because tower-based EM bias models are created from ground truth data,

they provide an important check to satellite-based models. As a check of satellite-

based models, the first tower-based models described the bias as a function of the wind

speed and significant wave height [11, 12]. More recent models have been developed

by parameterizing the EM bias as a function of other ocean surface parameters [13].

1.1.3 Theoretical Modeling

Two physical effects have been shown to cause the EM bias: non-Gaussian

surface statistics and hydrodynamic modulation. The first bias theories were de-

veloped using the weakly nonlinear theory of Longuet-Higgins [14] to describe the

non-zero, higher order moments of the surface. These models described the EM bias

as a function of the non-Gaussian height distribution, skewness, and the correlation

between the height and tilt of the surface, tilt modulation [5, 15, 16].

More recently, other EM bias theories have described the bias as a function

of small wave height modulation [13]. These models are implicitly based on the

relationship of short wave modulation with the RMS slope described by Longuet-

Higgins [17], and have been shown to greatly improve EM bias estimates.

1.2 Dissertation Objectives

The objective of this dissertation is to develop methods to improve EM

bias estimates for remote sensing instruments. Research topics include the analysis of
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current operational models, the development of a better bias theory, and the collection

of in situ measurements. Measurements and theory are also expanded to off-nadir

incidence angles, in anticipation of future satellite missions, such as the Wide-Swath

Ocean Altimeter.

The first contribution of this dissertation results from an empirical analysis

of EM bias modeling parameters. Because operational EM bias models are developed

using empirical relationships, the accuracy of the model depends on the correlation

of the bias with atmospheric and oceanic parameters. The analysis presented here

provides two important results. The first shows that models developed from just

the wind speed and significant wave height, are inherently noisy due to the weak

correlation of these parameters with the relative bias. The second shows that the

inclusion of the RMS wave slope as an estimation parameter can reduce error values to

the sub-centimeter level. This study has been published in the Journal of Geophysical

Research [18].

The next contribution investigates the improvement of EM bias models

using nonparametric estimation. Typical bias models, developed as least-squares

estimates over the entire parameter space, have the potential to be inaccurate in

regions with small data densities. In contrast, nonparametric models are developed

as a set of local estimates created from nearby data values, and can better estimate

the data in low density regions of the parameter space. This modeling bias toward the

regions of high data density causes satellite and tower models to differ on the order

of 2-5 cm for average bias estimates. Using nonparametric modeling techniques,

the historical differences between tower and satellite based models are significantly

reduced, and similar models were created by both types of data. This study has been

published in the Journal of Geophysical Research [19].

Another contribution in this dissertation is a validity study of rough sur-

face scattering models, as these are used in theoretical EM bias models. Of primary

importance is the region of validity of the physical optics scattering model for sur-

faces with a power law PSD. By numerically modeling the EM scattering from power
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law surfaces, the validity of the PO model is shown to be a function of the signifi-

cant slope of the surface. Similar validity criteria are found for other models in the

study, including geometrical optics. This portion of the dissertation research has been

published in Waves and Random Media [20].

The development of an improved EM bias theory is the next contribution.

Using the physical optics scattering model, the EM bias theory includes bias con-

tributions from the two physical processes that have been shown to cause the bias:

hydrodynamic modulation and the non-Gaussian long wave surface statistics. The

final form of the model describes the relative bias as a function of long wave surface

statistics with coefficients related to the short wave surface scattering. By including

the PO scattering approximation in the derivation of the bias theory, the calculation

of the models is greatly simplified relative to other theories. The final model is shown

to be more accurate than previous bias theories, and provides an insight into the

physical mechanisms that influence the EM bias. This research has been submitted

to the Journal of Geophysical Research and is currently in review.

The next contribution is the deployment and analysis of the Brigham

Young University Off-Nadir Experiment (Y-ONE). Measurements of bias at nadir

and off-nadir incidence angles provide information on the EM bias. With the nadir

measurements, the Y-ONE data is the latest in a set of tower-based EM bias exper-

iments that have been used to corroborate theoretical EM bias models. Off-nadir

measurements of the bias are made in anticipation of the launch of the Wide-Swath

Ocean Altimeter. These measurements demonstrate the angular dependence of the

bias such that increasing incidence angles result in a decrease in magnitude of EM

bias measurements. Results from the Y-ONE experiment have been submitted to

Journal of Geophysical Research and the article is currently in review.

The final contribution in the dissertation is the development of an off-nadir

EM bias theory. The off-nadir theory is developed by generalizing the EM bias theory

to off-nadir incidence angles. This theory develops an off-nadir approximation of the

bias, and describes the angular dependence as a function of changes in the short

wave scattering with incidence angle. A comparison of the theory with measurements
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from the EM bias experiments shows qualitative similarities. This research have been

submitted with the Y-ONE experiment to Journal of Geophysical Research and is

currently in review.

Each chapter in this dissertation develops one of the contributions to the

EM bias modeling discussed above. Analysis of the EM bias modeling parameters is

considered in Chapter 2. The development, application, and improvement of EM bias

estimates with nonparametric modeling method is discussed in Chapter 3. Chapter 4

discusses the validity study of the rough surface scattering models, and the physical

optics scattering approximation. In Chapter 5 the EM bias model is developed and

analyzed, and the Y-ONE experiment and data are presented in Chapter 6. In Chap-

ter 7 the nadir model is generalized to off-nadir incidence angles, and the angular

dependence of the EM bias theory is described. Conclusions and future work are

discussed in Chapter 8.
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Chapter 2

RMS Wave Slope

Numerous studies on the EM bias have been conducted since its discovery

by Yaplee, et al. [21]. Efforts to explain the theoretical mechanisms and physics that

cause the EM bias have included laboratory experiments [22, 23], numerical analy-

sis [24], and non-linear sea surface models [16, 25]. Theoretical models have been

of limited usefulness due to the difficulties inherent in modeling nonlinear ocean sur-

face hydrodynamics and improving on approximate electromagnetic scattering models

such as physical and geometrical optics. Because of this, operational EM bias esti-

mation relies on empirical models. Current empirical models are based on significant

wave height and wind speed measurements from the TOPEX/Poseidon satellite mis-

sion [6, 7, 8, 9]. Other models created from satellite data have accounted for wave

development by including a wave age or pseudo-wave age parameter to improve the

bias estimates [26, 27]. Empirical models have also been obtained from aircraft [28]

and tower experiments [11, 12].

The large amount of data collected from the TOPEX/Poseidon satellite

have allowed very accurate models of the mean value of the EM bias to be created

using crossover differences [9]. Mean-bias models are limited by large variability of

EM bias as a function of significant wave height and wind speed. The ultimate goal of

current research efforts is to reduce this variability by including additional measurable

or predictable parameters in bias models.

The importance of hydrodynamic modulation in determining EM bias has

been the subject of much study, especially in recent years [25, 27, 29, 30]. These

theoretical studies indicate a relationship between EM bias and a higher order moment

of the surface height power spectral density, such as RMS long wave slope, or a
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quantity that is closely related to a higher order moment, such as orbital velocity.

In this chapter, I study the correlation between the RMS long wave slope and the

EM bias. It is shown that the wave slope is more strongly correlated to the EM bias

than either wind speed or significant wave height. Due to the stronger correlation

between the EM bias and the wave slope, the errors between measured and estimated

values are significantly reduced relative to traditional wind speed and wave height

models. The wave slope is also shown to create accurate estimates of the EM bias

over different sea states, wind speed ranges, and locations.

2.1 Data Sets

One of the difficulties in creating EM bias measurements using remote

sensing instruments is the lack of measured truth values. Previous EM bias studies

have used a variety of methods to obtain accurate estimates. Gaspar, et al. [7] and

Chelton [6] used cross-track or collinear estimation techniques, respectively, to create

EM bias estimates from satellite data. Hevizi, et al. [28] used laser measurements in

their airplane experiments to collect the data necessary for EM bias estimation.

The tower experiments of Arnold, et al. [12] in the Gulf of Mexico (GME)

and Melville, et al. [13] in the Bass Strait, Australia (BSE) [31, 32] created direct

measurements of the EM bias. Each experiment used a Ku-band altimeter to measure

the apparent sea surface height. Concurrent measurements of the ocean surface were

made using wave gauges. The EM bias was then calculated as the difference between

the measured and apparent sea surface heights. Simultaneous measurements of the

wind speed were also made.

In agreement with past experiments, the GME and BSE data sets show

a roughly linear relationship between the significant wave height, H defined as four

standard deviations of the surface height, and the EM bias, as shown in Figure 2.1.

As is commonly done, the leading linear dependence on H is removed and I study

the normalized EM bias

β =
ε

H
. (2.1)
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Figure 2.1: Correlation between the EM bias and significant wave height for GME
and BSE data sets. A strong linear correlation between the significant wave height
and EM bias is evident.

Thus, the models studied in this chapter are of the form

ε = a(U,H)H, (2.2)

where a(U,H) is a normalized bias model and U is wind speed referred to a 10 meter

height. Since values for the significant wave height typically range from 0.5− 3 m for

these data sets, a value of 1% of the significant wave height for the normalized bias

ranges from 0.5 − 3 cm. After this point, the normalized EM bias is referred to as

EM bias for brevity.

It will be seen that GME and BSE data sets show similarities that can

be attributed to general traits in the oceans of the world as well as specific regional

characteristics. The data sets are combined to form a third data set, referred to as

TOT. The relationships between the models created from the three data sets are used

to identify regionally applicable characteristics as well as the general features that are

applicable to global EM bias estimates.

2.2 RMS Long Wave Slope and Hydrodynamic Modulation

Studies of the relationship between scattering from the ocean surface and

hydrodynamic modulation have been an active area of research in recent years. A
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number of results have provided strong empirical and theoretical support for the

importance of hydrodynamic modulation as a determinant of the EM bias [25, 27, 29,

30]. Because of the difficulty of solving the nonlinear equations which govern sea-air

interactions, a number of approaches to parameterizing hydrodynamic modulation

have been suggested. Most treatments involve higher order moments of the surface

height power spectral density. Surface slope variance has long been suggested as a

candidate for including the effects of hydrodynamic modulations in EM bias models,

on both empirical and theoretical grounds [27]. Later studies lend further support to

the importance of surface slope [23]. Indeed, a simple computation based on a two-

scale surface model and nonlinear hydrodynamic theory shows that to first order,

the change in amplitude with displacement of small waves riding on long waves is in

direct proportion to RMS long wave slope S [33]:

a(η)

a(0)
' 1 +

√
2Sη/al (2.3)

where η is surface displacement due to a long wave of amplitude al. These consider-

ations motivate the use of RMS slope in this study.

Instead of slope variance or RMS surface slope, which can be obtained from

the the second moment of the surface height PSD, EM bias dependence on the first

moment of the surface height PSD, orbital velocity, has also been studied theoretically

[25]. Orbital velocity can be related to the first moment of the surface height power

spectral density (PSD). The dependence of EM bias on orbital velocity has also been

studied using the tower data from the GME and BSE data sets. In fact, Figure

2.2 shows that the correlation between normalized EM bias and RMS wave slope is

similar to that of orbital velocity. A more detailed comparison shows that models

based on wave slope performed slightly better than models using orbital velocity. As

the difference between both sets of models is slight, however, the results cannot be

considered to support RMS slope over orbital velocity, but rather demonstrate that

inclusion of some parameter related to a higher moment of the surface height PSD

leads to models that perform significantly better than those based only on significant

wave height and wind speed.

12



0 0.05 0.1 0.15
−6

−4

−2

0

Wave Slope

N
o

rm
a

liz
e

d
 B

ia
s
 (

%
H

)

0 0.05 0.1 0.15
−6

−4

−2

0

Orbital Velocity (rad/m)

N
o

rm
a

liz
e

d
 B

ia
s
 (

%
H

)

Figure 2.2: Normalized bias vs. RMS wave slope and normalized bias vs. orbital
velocity. The RMS wave slope and orbital velocity are similar in their correlation
with the normalized bias.

There is good reason for the similar correlation of EM bias with RMS slope

and orbital velocity. To improve bias models depending only on significant wave height

and wind speed, additional model parameters must include information not available

from these two parameters. Significant wave height is dominated by the longest

surface wave components at wavenumbers much lower than the EM wavenumber.

Instantaneous wind speed determines the amplitude of capillary wave components

with very high wavenumber, on the order of the EM wavenumber. Higher order

moments of the surface height PSD tend to emphasize surface components near a

cutoff frequency which is generally chosen to be less than the EM wavenumber and

larger than the wavenumber of the longest waves. Thus, RMS slope and orbital

velocity contain information about mid-range surface waves, smaller in wavelength

than those represented in the significant wave height and longer in wavelength than

Bragg-scale capillary waves driven by local winds.

Because surface height measurements in the BSE and GME experiments

are performed as a function of time but at the same spatial point, the surface height

wavenumber PSD is not directly available. Well-known and commonly used tech-

niques allow the RMS surface slope to be obtained from the time frequency PSD,
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W (ω), instead. Cox and Munk [34] obtain the result

S =

[∫

k2W (ω)dω

]1/2

(2.4)

where k is given by the surface wave dispersion relation

ω2 = gk + γk4. (2.5)

Here, γ is the ratio of surface tension to density and g is the acceleration due to gravity.

Since I am interested in medium to long wave surface components with wavelength

on the order of one meter or longer, we neglect the second term of (2.5), since it

is significant only for capillary waves of centimeter-scale and smaller. Discretizing

the integral in (2.4) using an N -point Euler quadrature rule and making use of the

dispersion relation leads to

S =

[

∆ω
Nc
∑

n=1

ω4
n

g2
W (ωn)

]1/2

(2.6)

where ∆ω = ωmax/NFFT , ωmax is the maximum time frequency at which the NFFT

PSD is computed, and Nc corresponds to the upper cutoff frequency, ωc. For the

GME experiment, the sampling rate of surface height measurements is 8.2 Hz.

One of the chief difficulties in determining a meaningful RMS long wave

slope is an appropriate choice of a cutoff frequency for the surface height displacement

spectrum. For both the GME and BSE tower experiments, the radar footprint is

small enough that each instantaneous backscatter measurement can be considered to

be due to a single facet consisting of small, Bragg-scale waves tilted and modulated by

longer waves. Thus, the long wave surface components can be considered to consist

of wavelengths longer than the radar footprint. Using the gravity wave dispersion

relation, this leads to a long wave cutoff frequency of roughly 1 Hz. Figure 2.3 shows

that the typical time frequency surface spectrum deviates from the expected power

law trend near 1 Hz. To avoid this region, the cutoff frequency for both experimental

data sets is chosen to be fc = 0.8 Hz.

The mean RMS slope values for the GME and BSE experiments differ by

a small factor, likely due to different choices for periodogram window lengths used to
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Figure 2.3: Typical one hour averages of the surface height power spectrum, W (f),
and slope spectrum S(f).

compute surface PSDs or other constants in the RMS slope calculation. Because the

raw data for the BSE experiment is not available, the RMS slope values could not be

recomputed using identical processing, so the GME slope values are multiplied by a

factor of 0.67 to coregister the two data sets.

2.3 Qualitative Analysis

After the removal of the linear relationship between the EM bias and the

significant wave height, it can be seen in Figure 2.4 that the normalized bias is

only weakly correlated with the significant wave height in either experiment. The

second-order polynomial, least squares estimates in the plots also show that the fit
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to significant wave height is not consistent across the two experiments. The func-

tional form and the zero significant wave height intercept of the estimates show large

discrepancies.
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Figure 2.4: Normalized bias, β, vs. significant wave height, H, showing a second-order
least-squares fit to the data.

Figure 2.5 shows a more strongly correlated relationship between the wind

speed, U , and the normalized bias. The plots show more regional correlation between

the GME and BSE experiments, but as with the second order fit to H, the zero wind

speed intercepts are significantly different for the two data sets.

Of the three parameters studied, the normalized EM bias is the most

strongly correlated to RMS long wave slope, as seen in Figure 2.6. Although the

improvement is less pronounced for the GME experiment, there is less scatter asso-

ciated with the wave slope than with either wind speed or significant wave height for

both data sets. The shape of the estimates is more consistent from one data set to

the other, indicating that wave slope may explain regional variability in the EM bias.

As with the significant wave height and wind speed second-order fits, the intercepts

for fits to slope are also different for the two models. It is clear from inspection of the
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Figure 2.5: Normalized bias, β, vs. wind speed, U , showing a second-order least-
squares fit to the data.

data sets, however, that the trend for low slope values for both experiments is toward

a very small or zero intercept value that is nearly identical in both cases.

2.4 Methodology

The general form of the EM bias models considered is

β = a0 +
N
∑

i=1

aiPi (2.7)

where β is the normalized bias, N is the number of terms in the model, and Pi is a

linear or second-order term in the Taylor series expansion of a(U,H, S), so that Pi is

chosen from the set U , H, S, U 2, H2, S2, UH, US, or HS. Writing the coefficients

ai in equation (2.7) in vector form ~a and minimizing the RMS error of the model over

a data set leads to the least squares solution

~a = (~P T ~P )−1 ~P T ~β (2.8)

where ~P = [1, P1, . . . , PN ]T and ~β is a vector of measured normalized bias values.

By subtracting estimated values from measured values over a data set, a

vector of error values is created. These are referred to as residual errors. The metric
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Figure 2.6: Normalized bias, β, vs. wave slope, S, showing a second-order least-
squares fit to the data.

used in determining the most effective models is the RMS value of the residual errors.

This approach to determine the optimal combination of parameters is similar to that

of Gaspar, et al. [7]. Models are created for each of the three data sets: GME, BSE,

and TOT. These models are used to estimate each of the data sets. Residual errors

are calculated and the models ranked according to the RMS residual error. Best-case

models are also created for each of the data sets, with and without the wave slope

parameter.

2.5 Results

The effectiveness of the modeling parameters is evaluated by observing the

contribution of the terms individually and in combination with others.

2.5.1 One-Term Models

One-term models are defined to be of the form

β = a0 + a1P1

where P1 is one of the parameters U , H, S, U 2, H2, S2, UH, US, and HS.
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Figure 2.7: One-term model performance. The wave slope, S, generally provides
the best models, while the significant wave height, H, carries the least amount of
information on the normalized EM bias.

The plots in Figure 2.7 show RMS error values for the differences between

the measured normalized bias values and the one-term models indicated. Each of the

plots shows the models for a given data set: GME, BSE, or TOT. The parameters

on which the models are based are ordered for monotonically increasing RMS error

values for the TOT data set.

The best one-term models of the normalized bias for each data set are

created using the wave slope data. The BSE normalized bias values are seen to be

especially well correlated with the S. Other terms which have contributions from

the wave slope are also seen to be more highly correlated to the normalized bias.

To calculate the normalized bias, the linear dependence on H is removed. The one-

term models show that there is much less bias information remaining in H than that

contained in U and S. This is seen in Figure 2.7 by models containing contributions
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from H having the largest error values. Models containing wind speed information

are more strongly correlated to the normalized bias than models based on H, but

generally have larger RMS error values than models using S.

2.5.2 Two-Term Models
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Figure 2.8: Two-term model performance. The best models show the complementary
information that the wave slope, S, and significant wave height, H, parameters use
to create more accurate models.

Two-term models provide significant improvement over the one-term mod-

els. For every combination of model and data set, the top two-term models signifi-

cantly outperform the best one-term model. There is also a shift in the importance of

the various parameters when two terms are used. The one-term models identified the
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Figure 2.9: Best two-term models for each data set. When estimating the TOT data
set, the terms in the best models are composed solely of the wave slope and significant
wave height. Shaded areas indicate regions with no data.

wave slope and the wind speed as the parameters which contain the most information

individually.

The two-term models identify the combination of parameters which con-

tain complementary information. Figure 2.8 shows that the models with lowest error

values are derived from terms containing S and H. Though U contains more in-

formation on the normalized bias than H, the two-term models indicate that it is

redundant information to that contained in S. Conversely, the information contained

in the H and S terms is complementary. Combinations of terms derived from S and

H constitute the best five models in every case.
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2.5.3 Three-Term Models

The 20 three-term models with the lowest RMS errors from each of data

set is shown in Figure 2.10. The addition of a third term to the normalized bias

models results in improvement over the two-term models on the order of 0.1% of the

significant wave height. In addition, the differences in the RMS error values among

the top three-term models is very small. Much of this is due to the most accurate

models relying on the same terms. It can be seen that the wave slope S is included

in the best 10 models regardless of the data set from which the models are created.
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Figure 2.10: Best three-term model performance. The best models are predominantly
derived from the wave slope, S, and significant wave height, H, parameters.
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2.5.4 Best Case Models

Models created with more than four terms result in very slight improve-

ments in some cases, and in many cases the RMS error values increased. For all

cases the RMS error values for the four-term models are within 0.012 %H of the best

model for that combination of model and data set. The best four-term models are

consistently those including the terms S, H, H2, and HS.

For comparison purposes, the best models for each of the combinations of

models and data sets are created without using the S parameter. The Taylor series

expansion for these models yields five terms: U , H, U 2, H2, UH. Figure 2.11 shows

the results of these models and the best-case models using S.

The models including the wave slope parameter have RMS error values that

are better by over 50% in every case but one, and every case shows improvements

of at least 0.23 %H. For the more generally TOT model, the improvement is over

0.5 %H regardless of the data set to which it is applied.

2.6 Residual Errors

Figure 2.12 shows the residual errors for the best one-term, two-term, three-

term and best-case models for the TOT data set. The vertical line on the graph

indicates the break between the GME and the BSE data. The x-axis is a chronological

ordering of values, with each point representing a ten-minute average. Due to spurious

data points in the two experiments there are jumps in the data sequence, so that the

horizontal axis is a a pseudo-time representation of the data.

It can be seen from these figures that the residual plots show some remain-

ing correlation in time. As the number of terms increases, not only do the errors

decrease, but the correlation can be seen to decrease as well. However, even for the

best-case model with slope, there are indications that the errors are correlated and

show some time-dependent physical property of the wave field. Future research should

investigate the cause of this correlation.
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Figure 2.11: Residual errors for best-case models. The models derived using the wave
slope show error values that are significantly smaller than those models that use only
wind speed and significant wave height.

2.7 Conclusion

This study investigates the improvements in EM bias estimation using the

RMS wave slope parameter. Measurements from the Gulf of Mexico Experiment

(GME) and the Bass Strait, Australia Experiment (BSE) show regional differences in

the wind speed and significant wave height parameters. The correlation of the EM bias

with these parameters exhibits significant variability. Due to these characteristics,

models based on the wind speed and significant wave height result in large residual

errors when compared with truth data. Including RMS long wave slope as a model

parameter reduces estimation error across a wide range of wind and sea conditions.

The improvement in model correlation is evident over a variety of models based on

various combinations of wind speed and significant wave height. Models based on wave
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Figure 2.12: Residual error values for the best 1-4 term TOT models using wave slope
and the best TOT model that does not use wave slope.
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slope also reduce the regional variability of the models when the two experimental

data sets from widely separated locations are combined. Slope-based models also

improve cross-estimation of one data set using a model based on the other set. Typical

improvements over wind speed and significant wave height-based models are on the

order of 50% as measured by RMS error between predicted and truth EM bias values.

The information provided by the wave slope is also shown to be comple-

mentary to the significant wave height. Models based on combinations of the wave

slope and significant wave height consistently result in the smallest error values be-

tween the measured and estimated bias values relative to models which included wind

speed. RMS residual bias errors for these models are on the order of 0.34 %H.

As satellite altimetry instrumentation improves, the gains to be realized

by improving EM bias estimates become increasingly important. Future satellite

missions may have EM bias error budget contributions on the sub-centimeter level.

Models based on the RMS long wave slope improve estimation errors to essentially

this level. These results will obtain operational value if a means can be found to

obtain remotely the wave slope or another sea-state parameter such as orbital velocity

containing similar information on hydrodynamic modulation. Various means have

been suggested for accomplishing this, including detailed studies of altimeter return

signal waveforms and predictive wave models based on wind history, but conclusive

results along these lines await further work.
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Chapter 3

Nonparametric Estimation

3.1 Introduction

Due to the complexity and limited ranges of validity of theoretical EM

models, empirical models are more commonly used in operational EM bias correc-

tion. These models are based on significant wave height and wind speed, as these

parameters are available as a byproduct of altimeter measurements. With the launch

of the TOPEX instrument, a number of models have been created from satellite data

sets using crossover difference estimation techniques. The geophysical model func-

tion currently employed to estimate the EM bias for the TOPEX/Poseidon satellite

mission includes the leading linear dependence of the significant wave height and an

additional factor that is quadratic in wind speed. Other satellite-based models have

included second-order terms in the significant wave height as well [6, 7]. Airplane and

buoy data have also been used to develop models based on significant wave height,

wind speed, and a derived value related to wave development [28].

Most existing empirical models are least squares fits of parametric models

to wind and sea parameters. Due to the unequal distribution of data points collected

in experimental studies, least squares models are biased in regions of low data density

by parameter regions with large amounts of data. Nonparametric estimators have

been suggested as a remedy [8]. The aim of this study is to evaluate the effectiveness

of models based on nonparametric estimation techniques for tower and satellite-based

data sets. These models are compared to parametric models to determine the degree

of improvement of nonparametric estimation over traditional techniques.

The data sets employed in this study were obtained from tower experi-

ments conducted by Arnold, et al. [12] in the Gulf of Mexico (GME) and Melville,
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et al. [13] in the Bass Strait, Australia (BSE) [31, 32]. Wave gauges and a Ku-band

altimeter provided measurements of the sea surface height. By subtracting height

measurements from the altimeter measurements, ground truth data of the EM bias

was available for study. Simultaneous measurements of the wind speed were also

collected.

3.2 Nonparametric Regression

Commonly, the relationship between the EM bias and wind and ocean

parameters has been estimated by a polynomial that minimizes the discrepancy be-

tween modeled and measured bias values. To leading order, the EM bias is linearly

related to significant wave height. Theoretical studies have not yet yielded conclu-

sively a form for the remaining dependence of EM bias on sea state. Because of this,

there may be no strong motivation for the use of any particular polynomial form to

relate normalized EM bias to sea state parameters. This motivates the technique

of nonparametric estimation, which replaces a global polynomial estimate with lo-

cal piecewise polynomial approximations. A smoothing function or kernel is used so

that local polynomials do not depend on data outside their interval of support, and

smoother models are obtained. Due to the increased number of degrees of freedom of

nonparametric models, unexpected structure of data may be representable [35], with-

out incurring the instability of high order global polynomial approximations, which

exhibit phenomena such as ringing near sharp jumps or changes in slope.

Nonparametric estimators solve the conditional expectation

β̂(~x) = E [β|~x] (3.1)

where ~x is the vector of known parameters and β̂ is the value to be estimated. The

class of nonparametric estimators that I am interested in are local polynomial approx-

imations of the function β. Nonparametric estimators of this type require a choice of

kernel, kernel bandwidth, which determines the spread of the kernel, and degree of

the local polynomial approximation.
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3.2.1 Kernel

Since most kernels used for nonparametric estimation have similar form,

the choice of kernel tends not to have a significant impact on the effectiveness of the

estimator. For this study the kernel used is Gaussian,

W (x) = C exp

[

−1

2

(

x− x0

hx

)2
]

, (3.2)

where C is a normalizing constant, x is a given parameter, hx is the kernel band-

width for that parameter, and x0 is the point around which the local polynomial

approximation is made.

3.2.2 Kernel Bandwidth

In general, determination of an optimal kernel bandwidth is an open ques-

tion in nonparametric estimation. Fan and Gijbels [36] obtain an optimal bandwidth,

hx =

[

C(K)
σ2(x)

nf(x)r′′(x)

]1/(2p+3)

, (3.3)

where σ2(x) is the variance of the data, f(x) is the data density function, r′′(x) is the

second derivative of the regression function, n is the number of data points, p is the

order of the local polynomial being used in the estimate, and

C(W ) =

+∞
∫

−∞

W 2(x)dx

(

+∞
∫

−∞

x2K(x)dx

)2 . (3.4)

For a Gaussian kernel, C(K) is 0.281. The values for σ2(x) and n are readily available

and are shown in Table 3.1. It can be seen from equation (3.3) that the bandwidth

varies locally according to the data density and the concavity of the regression func-

tion. The difficulty in using this equation for the bandwidth is in determining good

values for the data density function and the second derivative of the regression func-

tion. Since the estimator used is a local estimator, the local data density is sufficient

to estimate the density function. For the models in this work it is approximated by

the number of measurements in the desired grid box normalized by the mean number

of data points in each of the boxes.

29



Values for r′′(x) are dependent on the function being estimated, which is

a priori unknown. To calculate r′′(x) an iterative method is used. First, r′′(x) is

set equal to 1, then the local bandwidths are calculated and the model is created.

From the model, the second derivative are computed by matching a second-order

polynomial at each grid point. A new value for r′′(x) is calculated, and the process is

repeated. The large amount of scatter in the data for significant wave height values

lower than 1 m, causes the bias estimates to vary widely, as seen in Figure 3.2
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Figure 3.1: Iterative and approximate bandwidths computed as a function of signifi-
cant wave height.

Due to the complexity of the iterative method for computing equation (3.3)

another approach is investigated. It can be seen in Figure 3.3 that in areas where

there is sufficient data, second order polynomial models show strong similarities to

the nonparametric models in the given data sets. In place of the iterative approach a

second order polynomial is matched to the entire data set. The second derivative of

this function gives a constant r′′(x), which is used in the calculation of the bandwidth.

RMS error values from this method yield results at least as good as the results from

the iterative method, and due to the simplicity of implementation, this is the method
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Figure 3.2: Comparison of EM bias models using the iterative and approximate band-
widths.

used throughout. A comparison of the different bandwidth values can be seen in

Figure 3.1.

Using multiple parameters increases the difficulty in calculating the optimal

bandwidth. For multiple dimensions a Hessian matrix is required in place of r′′(x).

Fan and Gijbels [36] state that a unique solution for the optimal bandwidth is only

available for positive definite Hessian matrices. The data from the two experiments

cited does not meet this criterion. Instead a product of univariate kernels is used for

the multivariate cases [36].

Table 3.1: Variances for Gulf of Mexico and Bass Strait, Australia data sets.

Data Sets GME BSE TOT
Data Points 1063 1539 2602
Parameters U H S U H S U H S
Variance 5.7 0.25 5.26∗ 11.1 0.30 8.22∗ 8.9 0.29 7.60∗

* The variances for S are *104.
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3.2.3 Regression Estimator

The third component in a nonparametric estimator is the type of regression

estimator used. For the case of local polynomial estimators, the degree of the local

polynomial must be determined. Due to its simplicity of implementation and lack of

bias due to variation in the data density, the estimator used in this study is a local

linear regressor [36]. Local linear regression is a system of linear estimates of the

desired data set for given grid points. Let K be the number of grid points at which

we create the linear estimates, M be the number of parameters used in the estimate,

and N be the number of data points. The local linear regression estimator is then

arg min
ak(0)...ak(M)

N
∑

i=1

wkn

[(

βn − ak(0) −
M
∑

m=1

ak(m)(xk(m) − xn(m))

)]2

(3.5)

where xk(m) is the value of parameter m at grid point k and xn(m) are the N data

points of parameter m, wkn is the kernel function, ak(0) is a constant offset, and

ak(1) . . . ak(M) are the slopes for each of the parameters at grid point k. If I let β be

a vector of data measurements, the solution matrix is

A = (X TWX )−1X TWβ (3.6)

where

A =

















ak(0)

ak(1)
...

ak(M)

















, X =

















1 yk1(1) . . . yk1(M)

1 yk2(1) . . . yk2(M)
...

...
. . .

...

1 ykN(1) . . . ykN(M)

















, (3.7)

W = diag{w(ykn(m))} (3.8)

and

ykn(m) = xk(m) − xn(m). (3.9)

Additional information on applying nonparametric techniques to the EM bias problem

can be found in [8] and [9].
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3.3 Results

Due to the strong linear correlation of the EM bias with the significant

wave height, H, it is useful to define the non-dimensional value of normalized EM

bias as

β =
ε

H
(3.10)

where β is expressed as a percentage of H. Throughout this section, the parameter

being estimated is the normalized bias.

The results for the study are divided into sections for one, two, and three

dimensional models. The first section uses each of the parameters wind speed, U ,

significant wave height, H, and RMS wave slope, S individually to estimate the EM

bias. The second section discusses the three combinations where two parameters are

used in the estimates, (U,H), (U, S), and (H,S). The last section shows the results

of bias models based on all three parameters, (U,H, S). As a control group to the

nonparametric models, a set of second-order least squares polynomial estimates are

also shown. These models are collectively referred to as parametric models.

As stated earlier, the major emphasis of this study is to investigate the

bias estimation improvements that can be gained by using nonparametric models.

Comparison of the parametric and nonparametric models are made for the one, two,

and three parameter cases. Graphic representations of the parametric and nonpara-

metric models are shown and analyzed. Using the truth data provided by the tower

experiments, a quantitative analysis is also presented.

The differences between the measured EM bias values and the estimated

values from the models are referred to as residual errors. The RMS values for these

residual errors are shown for the application of the various models to each of the data

sets. Since the error is computed at the measurement points of the tower experiment

data set, the RMS errors are non-uniformly weighted by the histogram of the data

density of the various parameters.

A secondary emphasis of this study is to investigate the improvement that

the wave slope parameter contributes to EM bias estimation [18]. The improvement
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Figure 3.3: Parametric and nonparametric estimates of the normalized bias using
significant wave height, wind speed, and wave slope. The shaded regions indicate
areas of low data density (< 3 data points/division).

caused by the addition of the RMS slope parameter is included in the analysis of the

models in each section.

In reference to the figures in this section, it should be pointed out that

although one of the advantages of nonparametric estimation is improved modeling of

low data density regions, if the data density is too low, results become spurious. To

indicate regions of validity, model plots are shaded in areas where the data density is

below a fixed threshold (< 3 data points/division).
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Figure 3.4: Normalized bias RMS errors for the one parameter models. Each graph
represents a different training set. The data set indicated near the top of the graph
is the data against which the model is used. The parameters used are indicated at
the bottom.

3.3.1 One Term

Figure 3.3 presents the parametric and nonparametric one-dimensional bias

models. Qualitatively, the difference between the parametric and nonparametric mod-

els for the one-dimensional case is quite small. The nonparametric models show

adjustments to the data which the parametric models do not exhibit, but the adjust-

ments are slight. Not surprisingly, these adjustments have very little effect on the

calculated RMS values seen in Figure 3.4.

When comparing the effectiveness of the parameters individually, it is clear

that the the bias model derived from wave slope values consistently provides better
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models than the wind speed and significant wave height. This result is expected

since the relatively small amount of scatter seen in Figure 3.3 indicates a stronger

correlation of the wave slope parameter and the EM bias. The similarities in the

slope-based models from the different data sets also cause these models to be more

generally applicable, leading to less error when cross-estimating.
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Figure 3.5: Parametric and nonparametric GME models of the normalized bias using
wind speed and the significant wave height. The units of the bias are percentage of
the significant wave height.

3.3.2 Two Terms

Graphical representations of the two-dimensional models can be seen in

Figure 3.5–3.10. The two dimensional cases show more clearly the differences be-

tween parametric and nonparametric estimates. The graphs show similarities, but

the adjustments made by the local weighting functions are clearly evident.
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Figure 3.6: Parametric and nonparametric BSE models of the normalized bias using
wind speed and the significant wave height. The units of the bias are percentage of
the significant wave height.
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Figure 3.7: Parametric and nonparametric GME models of the normalized bias using
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Figure 3.8: Parametric and nonparametric BSE models of the normalized bias using
wind speed and the RMS wave slope. The units of the bias are percentage of the
significant wave height.
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Figure 3.9: Parametric and nonparametric GME models of the normalized bias using
significant wave height and the RMS wave slope. The units of the bias are percentage
of the significant wave height.
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Figure 3.10: Parametric and nonparametric BSE models of the normalized bias using
significant wave height and the RMS wave slope. The units of the bias are percentage
of the significant wave height.

The results of the adjustments can be seen in the RMS error values for

the different models, shown in Figure 3.11. The models are more closely tuned to

the local conditions from which they are calculated. When the models are used to

estimate the training set from which they came, e.g. the GME model estimating

the GME data set, there is notable improvement. It is significant that the TOT two

parameter models show improvement using the nonparametric model over all data

sets and all parameters.

It is expected that the bias models from distinct regions should be similar

once all relevant physical parameters are taken into account. A comparison of the

bias models based on wind speed and significant wave height from the BSE and GME

data sets, in Figure 3.5 and 3.6, shows significant differences. These differences are

largely corrected in Figure 3.9 and 3.10, where the bias is estimated using the wave

slope and significant wave height. The effect of these similarities is reflected in the

RMS error values shown in Figure 3.11. The addition of the wave slope reduces the

error values by over 50% in most cases. This improvement is evident when estimating
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Figure 3.11: Normalized bias RMS errors for the two parameter models. Each graph
represents a different training set. The data sets indicated near the top of the graph
are the data against which the model is used. The parameters used are indicated at
the bottom.

the original training set, as well as when models are used to cross-estimate other data

sets.

3.3.3 Three Terms

The quantitative analysis in Figure 3.12 for three parameter models shows

similar results as the one and two dimensional models. In most cases, the nonpara-

metric models show some improvement. The effects of local wind and sea conditions

are more evident in the three parameter models. The cross-estimates are all degraded

by the local conditions of the training sets to which the nonparametric models are fit.
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However, the TOT models created from the combined data set show improvement

over all cases. This emphasizes the improvements that can be made using nonpara-

metric methods.
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Figure 3.12: Normalized bias RMS errors for the three parameter models. The data
sets indicated near the top of the graph are the data against which the model is used.
The training data sets are indicated at the bottom.

Another attribute of the nonparametric methods that can be seen in the

three parameter models is improvement using all available data. Millet, et al. [18]

showed that the best parametric models are created using only the significant wave

height and the RMS wave slope. Parametric models that include the wind speed along

with the significant wave height and the wave slope cause the model performance to

deteriorate. Figure 3.12 shows that nonparametric models are able to effectively apply
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new information included in the wind speed to improve the three dimensional models.

Because of the greater number of degrees of freedom in the model, the nonparametric

technique appears to better identify the unique information from each parameter that

can improve the overall estimate.

3.4 Satellite Modeling

Using satellite data to estimate the EM bias is somewhat more complicated

than using tower data since altimeters are unable to measure the EM bias directly. A

general method used to estimate the bias using satellite technology is described here.

For a more detailed explanation see [8] and [9].

To create a bias model, sea surface height differences between the ascend-

ing and descending passes of a satellite are measured. The differences in the sea

surface heights are modeled as changes in EM bias values plus other factors, which

are assumed to be zero mean. In equation form this is

SSH2 − SSH1 = y = φ( ~x2) − φ( ~x1) + ε (3.11)

where ~x is a vector of sea-state related variables, in this case (U,H), SSHi are sea

surface height measurements at crossover points, φ are the EM bias values, and the

indices 1 and 2 refer to measurements made on the ascending and descending arcs,

respectively. The conditional expectation of equation (3.11) can then be written as

E[y| ~x2 = ~x] = φ(~x) − E[φ( ~x1)| ~x2 = ~x]. (3.12)

Similar to the NPR technique explained previously, a nonparametric esti-

mator is chosen and equation (3.12) becomes a system of equations of the form

(I − A)φ1 = Ay. (3.13)

This system of equations is singular, requiring a constraint value. This occurs because

the estimate is obtained from crossover difference values, so that the absolute bias is

not known. The method described by Gaspar, et al. [9] is to chose a data point of

wind speed and wave height which is near the center of the data values and impose a
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reasonable value for the bias at that point. After imposing this constraint the system

can solved.

As opposed to the limited data sets collected by the two tower experi-

ments, there are vast amounts of data collected from TOPEX/Poseidon. This yields

smoother models than those created from the tower experiments. It should be noted

that the models created by Gaspar, et al. [9] are models of the EM bias, not the

normalized bias, for convenience in allowing differences between satellite and tower

models to be evaluated visually in units of lengths.
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3.4.1 Satellite and Tower Models

Previous satellite and tower EM bias models have had unexplained dis-

crepancies on the order of several centimeters. Figure 3.4 shows that using nonpara-

metric methods have greatly reduced this discrepancy. The difference plots between

the TOPEX/Poseidon satellite model and each of the tower data sets, shown in

Figure 3.13, show that the latest nonparametric tower and satellite models have dif-

ferences under 2.5 cm for all values and a large portion of the tower estimates are

within 1.0 cm of the satellite model values. The similarity between the satellite and

tower models allow the TOPEX/Poseidon model to be applied to the GME, BSE,

and TOT data sets.
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Figure 3.13: Difference plots between the satellite model and each of the data sets.
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3.4.2 Residual Errors

Different than other remote sensing experiments, tower experiments pro-

vide a method to directly measure EM bias values. Figure 3.14 shows the differences

between measured EM bias values and estimated model values, or residual errors.

The x-axis is a chronological ordering of values, with each point representing a one-

hour average. Due to spurious data points in the two experiments there are jumps in

the data sequence, so the horizontal axis is pseudo-time.

The application of nonparametric estimation techniques provide some im-

provement in the RMS error values. Figure 3.14 is a summary of the improvements

from nonparametric modeling and use of the slope parameter. Even with these im-

provements there is still significant variance in the residual errors. Some of this error

can be seen to be the result of regional differences in wind and wave conditions.

Though the TOT model, created from the combined data sets, is generally effective,

an offset can be seen for each set of residual values. The satellite is also relatively

effective, but is limited in its effectiveness by other regional conditions not included in

the specific tower data sets. These models are all limited by the variance of the wind

speed and significant wave height in estimating the bias. The TOT nonparametric

model using wave slope shows the largest improvement, in reducing the RMS error to

under 50% of the error realized with the TOT model using wind speed and significant

wave height.

3.5 Conclusion

The results of this study indicate that nonparametric estimates of EM

bias consistently provide more accurate models than similar parametric models, al-

though in some cases the improvement is slight. Nonparametric models using only

one parameter show little improvement. Two and three parameter models show that

nonparametric techniques reduced the normalized bias RMS error by up to 0.03%

and 0.07% of the significant wave height, respectively.

The improvement of EM bias models with the inclusion of the RMS long

wave slope parameter is also demonstrated. For the two parameter least squares TOT
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Figure 3.14: RMS error bounds for the EM bias of satellite data applied to each of
the data sets.

model, the best normalized bias RMS error using the wind speed and significant wave

height is 0.82%. The RMS error for a similar two parameter using the wave slope

and significant wave height is reduced to 0.34%. The addition of a third parameter,

the wind speed, in the parametric models created negligible improvements. Nonpara-

metric modeling extracts more bias information to reduce the normalized bias RMS

error to 0.31% of the significant wave height.

Though models using the wave slope parameter are greatly improved over

previous models, there still remains some variance when applied to the data. The

variance can be accounted for by a correlation in time of the residual errors. This

correlation indicates the possible existence of further sea state parameters that contain

information on the EM bias.
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The models presented in this study also reduce the historical differences

between satellite and tower EM bias estimates. The nonparametric estimation tech-

niques support the reliability of both satellite and tower data sets in estimating the

EM bias. Due to this correlation, the in situ data is able to provide quality assurance

values for the satellite estimates. Applying the satellite model to the TOT data set

gives an EM bias RMS error value of 1.41 cm. This is larger than the 0.80 cm error

for the combined tower data model, but much smaller than the 5 − 6 cm differences

in past studies. In areas of sufficient data density the differences between the TOT

and satellite models are under 2 cm, and usually less than 1.5 cm.
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Chapter 4

Rough Surface Scattering

4.1 Introduction

Modeling the interaction between electromagnetic waves and random rough

surfaces is a problem of great importance in many applications. Due to the difficulty

of obtaining exact scattering solutions, simplifying approximations are made to model

the fields scattered by rough surfaces. Application of approximate scattering models

requires an understanding of the regime of accuracy of the model in terms of the

electromagnetic frequency, incidence angle, and statistical properties of the rough

surface. Although a number of theoretical and empirical studies have been performed,

the ranges of validity of many existing models have not been fully characterized, and

the determination of validity criteria for rough surface scattering models continues to

be an active area of research.

Early rough surface scattering models include the physical optics (PO)

approximation, which is valid in the limit of large electromagnetic frequency, and the

small perturbation method (SPM) in the low frequency limit. The geometrical optics

model (GO) can be obtained as the infinite frequency limit of the PO model. These

classical models continue to be used in many applications due to their robustness and

simplicity of use.

More recently, as the importance and variety of applications of rough sur-

face scattering have grown, new scattering models have been developed. Many of

these models are based on perturbation expansions, and are typically named for the

small parameter about which field quantities are expanded. These include higher

order small perturbation methods, small slope approximation (SSA) [37, 38], phase

perturbation [39], momentum transfer expansion [40], operator expansion [41, 42],
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and the unified perturbation expansion [43]. Iterated physical optics (ITPO) or the

second-order Kirchhoff approximation [44] consists of the first two terms of a Neu-

mann expansion of the magnetic field integral equation.

Because many of these scattering models reduce to PO at the lowest or-

der, a thorough understanding of the PO approximation can provide insight into the

accuracy of more sophisticated models. For this reason, I focus particular attention

in this study on the PO model. The validity criterion [45],

krc cos
3 θ � 1, (4.1)

where rc is the radius of curvature, k is the electromagnetic wavenumber and θ is

the incidence angle, can be derived from the geometry of the interaction between the

incident wave and the scattering surface. Ulaby et al. [1] refine the criterion to

kl > 6 (4.2)

krc > 2.5, (4.3)

where l is the surface correlation length, for bistatic scattering.

Numerical studies have been conducted to further refine the limits of va-

lidity of the PO model. A study by Thorsos [2] of surfaces with a Gaussian power

spectral density (PSD) supports the theoretical validity condition, kl > 6, for sur-

faces with small slope values and incidence angles away from grazing. Later results

by Thorsos and Jackson [46] give

kl > 6 (4.4)

kh ≤ 1, (4.5)

where h2 is the surface height variance, as bounds on the validity of the PO model

for bistatic scattering, but note that near the specular direction the model remains

accurate for much smaller kl values. This increased accuracy for near-nadir incidence

angles has been observed by Chen and Fung [3].

Significantly fewer studies have been conducted for surfaces with a power

law PSD. For such surfaces Rodriguez et al. [27] show that for kh ≤ 1 the PO model
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is accurate at incidence angles less than 15◦. Theoretical studies have shown that the

PO model is accurate for backscattering at nadir incidence from power law surfaces

with significant slope less than 0.03 [47, 48]. The numerical experiments reported in

this study corroborate this result. Further discussion of previous work on PO validity

criteria can be found in Section 4.5 of this chapter.

Studies have also provided validity criteria for the SPM, SSA, and ITPO

models. From the derivation of SPM, the validity criterion kh � 1 is obtained.

Other refinements on the basic validity criterion include limits on kl [46, 3, 49] and

variation with incidence angle [27]. Studies of the SSA model have shown that for

Gaussian surfaces the fourth-order SSA model is accurate for surfaces with RMS slope

values less than 0.5, and that for power law surfaces the higher-order SSA models are

consistently more accurate than PO [38, 50]. The ITPO model has been shown to

be accurate over a large range of surface profiles, with limitations at small grazing

angles [46].

The primary result of this chapter is a more precise determination of the

accuracy and ranges of validity of the PO, SSA, ITPO, and SPM models for backscat-

tered fields. An exact formulation of electromagnetic scattering is used to compute

backscatter values for a highly populated parameter space of surfaces with Gaussian

and power law PSDs. Differences between the reference solution and the model val-

ues are used to define the accuracy of the models and to determine empirical validity

criteria for the two surface types.

Using this approach the ranges of accuracy of the PO, SPM, GO, ITPO,

and SSA models are determined for surfaces with Gaussian and power law power

spectra. For Gaussian surfaces the range of validity of the PO model is shown to be a

function of the RMS surface slope. Similar behavior is found for the GO, ITPO, and

SSA models. The validity criterion for power law surfaces is shown to be a function

of the significant slope (RMS surface height divided by the wavelength of the spectral

peak of the PSD). The PO validity criteria for both surface types are also shown to

have a cos3 θ angular dependence.
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The study begins by defining the scattering problem and providing a sta-

tistical description of the surfaces. This is followed by a brief review of the derivation

of the models in the study. The next section includes the technical details of surface

generation and the method of moments reference solution. Following is an investiga-

tion of the region of validity of the PO model for Gaussian and power law surfaces.

Included in this section is a discussion of the accuracy of the curvature validity cri-

terion and the formulation of improved validity criteria based on the RMS surface

slope and the significant slope. The next section discusses the accuracy, angular de-

pendence, and validity criteria of the SPM, GO, ITPO, and SSA scattering models.

The last section summarizes the results of the numerical study and draws conclusions

about the validity criteria for the models in this study.

4.2 Rough Surface Scattering

I investigate the scattering of a horizontally polarized, or transverse mag-

netic, plane wave from a perfectly conducting one-dimensional surface into two-

dimensional space, Figure 4.2. The incident wave is time harmonic and traveling

in the x-z plane. The electromagnetic wavenumber is defined as k = 2π/λ and the

incident electric field as

~Ei = −ŷEoeikxx−ikzz, (4.6)

where θ is the incidence angle, kx=k sin θ is the x-component of the incident wavevec-

tor, and

kz =
√

k2 − k2
x. (4.7)

The convention used throughout this study is that k refers to the electromagnetic

wavenumber and K refers to the surface wavenumber. All surfaces in this study

have a Gaussian height distribution, and I consider two surface height power spectral

densities: Gaussian and power law.
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Figure 4.1: Scattering geometry for this study.

4.2.1 Gaussian Surfaces

Gaussian surfaces are defined statistically by the correlation length, l, and

the surface height variance, h2. The surface height PSD is described by

W (K) =
lh2

(2
√
π)
e(−K

2l2/4). (4.8)

Because the PSD is band-limited to lower wavenumbers, these surfaces are single-

scale. The parameter space for the Gaussian surfaces is described by the dimensionless

quantities kh and kl.

4.2.2 Power Law Surfaces

Surfaces described by a power law PSD,

W (K) =







h2(p− 1)K
(p−1)
min K−p K ≥ Kmin

0 K < Kmin,
(4.9)

are characterized by the surface height variance, h2, the lower cutoff wavenumber,

Kmin, and the exponent of the spectrum, p. This type of surface is multi-scale and is

representative of many surfaces found in nature, such as ocean surfaces.

The multi-scale nature of power law surfaces is due to the slowly decaying

tail of the PSD. As a result of this slow decay, surfaces with an exponent p ≤ 3 have

a mathematically infinite slope variance. The exponent p = 3 has been chosen as a

typical value for ocean surfaces [51, 52], and discuss the implications of the infinite

slope variance in a later section.
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For a fixed exponent, the power law parameter space is defined by the

dimensionless variables kh and kL, where L = 2π/Kmin is the dominant wavelength.

4.2.3 Deterministic Scattering Coefficient

Deterministic scattering methods return the complete, coherent and inco-

herent, scattering field for each surface instantiation. For a single surface the 2D

scattering coefficient can be computed from the scattered fields as

σ◦ = lim
ρ→∞

2πρ

L

∣

∣

∣

∣

Es
z

Eo

∣

∣

∣

∣

2

. (4.10)

To compute the average incoherent 2D scattering coefficient, the coherent scattering

is subtracted from the total power, so that

σ◦

inc = lim
ρ→∞

2πρ

L

(〈

|(Es
z)|2
〉

− |〈Es
z〉|2
)

(4.11)

=
kη2

0

4L

(∣

∣

〈

(Es
z)

2
〉∣

∣−
∣

∣〈Es
z〉2
∣

∣

)

(4.12)

where <> indicates the ensemble average.

4.3 Models

The scattering models in this study are divided into two general types.

Stochastic models use formulae derived from the statistical properties of the surface

to calculate the average backscattered power from the surface. Deterministic models

compute backscatter values for a single surface and are averaged, using the Monte

Carlo approach, over many realizations to approximate stochastic results. One of

the limiting factors of deterministic models is a much larger computational cost than

stochastic models.

The stochastic models in this study are physical optics (PO), geometrical

optics (GO), the small perturbation method (SPM), and the fourth order small slope

approximation (SSA). The deterministic methods are Monte Carlo physical optics

(MCPO) and iterated physical optics (ITPO).

4.3.1 Physical Optics

Physical optics (PO) is the oldest and most well-known rough surface scat-

tering model. It is based on the premise that the surface can be modeled as a series
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of tangent planes which approximate the actual surface. Using the tangent plane

approximation, so that ~Hs = ~H i, the scattered electric field can be written as

Es
z =

kη0

4

∫

S

Jsz (ρ
′)g(ρ, ρ′)dS ′ (4.13)

where

~Js = n̂× ( ~H i + ~Hs)

≈ 2n̂× ~H i, (4.14)

g(ρ, ρ′) is the Green’s function for the appropriate geometry and J sz (ρ
′) is the surface

current.

The Monte Carlo physical optics (MCPO) model computes the scattered

electric field by application of equation (4.13) and equation (4.14) to a deterministic

surface. Averaging over many surface realizations leads to statistical moments of the

scattered field.

For the stochastic PO model, the 2D scattering coefficient can be calculated

from

σ◦ = lim
ρ→∞

2πρ

L

〈

Es
zE

s∗
z

E2
0

〉

=
k cos2 θ

L

∫∫

dxdx′eikbx
〈

ei2kz [η(x)−η(x′)]
〉

(4.15)

where kb = 2k sin θ is the Bragg wavenumber and η(x) is the surface profile. Further

simplifications and algebra lead to [53]

σ◦ = k cos2 θ

∫ L

−L

dx

(

1 − |x|
L

)

eikbxe−χ
2[1−C(x)] (4.16)

where C(x) is the correlation coefficient, χ = 2hkz, h
2 is the surface height variance,

and the scattering coefficient is expressed in terms of the known stochastic properties

of the surface, C(x) and h2. It should be noted that equation (4.16) is the total

backscatter coefficient of the surface. For incoherent backscatter equation (4.16) is

modified to be

σ◦

inc = k cos2 θ

∫ L

−L

dx

(

1 − |x|
L

)

eikbx
(

e−χ
2[1−C(x)] − e−χ

2

)

(4.17)

where e−χ
2

, which represents the coherent scattering, is subtracted from the kernel.
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4.3.2 Geometrical Optics

Geometrical optics (GO) is the infinite frequency limit of the PO approxi-

mation. If the slope variance of the surface is finite the correlation function C(x) can

be approximated as 1 − C
′′

(0)x2/2, and equation (4.16) reduces to

σ◦ = k cos2 θ exp

[ −k2
b

2χ2|C ′′(0)|

]

(4.18)

where |C ′′

(0)| is the normalized slope variance. For power law surfaces with p ≤ 3,

|C ′′

(0)| = ∞ if there is not a finite upper frequency cutoff. I have chosen Kmax = 7k

for the cutoff wavenumber of the power law surfaces.

4.3.3 Iterated Physical Optics

Iterated physical optics (ITPO), also known as the second-order Kirchhoff

approximation, is based on the magnetic field integral equation

n̂× ~H i(ρ) =

(

2I −∇×
∫

g(ρ, ρ′)

)

~Js(ρ′)

= (I −M) ~Js (4.19)

where M denotes the integral operator in equation (4.19). The ITPO model uses a

power series expansion of (I −M)−1,

(I −M)−1 = I +M +M 2 +M3 + . . . (4.20)

Assuming that M is small in some sense, the first two terms are sufficient to approx-

imate the series and the surface current becomes

~Js ≈ (I +M)(2n̂× ~H i). (4.21)

From the surface current the scattered fields can be computed using equation (4.13). I

note that this model has been shown to have a non-physical growth in the normalized

backscattering coefficient with increasing surface length [46].

4.3.4 Small Perturbation Method

While PO is a high frequency asymptotic approximation, the small per-

turbation method (SPM) is the classical low frequency approximation. The small
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perturbation method can be derived from equation (4.13) where g(ρ, ρ′) is expressed

as the Weyl plane-wave expansion of the Green’s function and the surface current is

written as

Js = Ceikxxf(x). (4.22)

From this expression, f(x) and eikxx are expanded in a power series, like terms are

collected, and the scattered field is calculated. The zeroth order term,

σ◦ =
4k4

z

k
W (2kx), (4.23)

is the classic formulation of the SPM model.

4.3.5 Small Slope Approximation

The small slope approximation describes the scattered electric field as

Es =

∫

dkx expi(kxx+kzz) T (kx), (4.24)

where the T matrix is

T = − 1

2π

∫

dxΦei2(kxx+kzz)

∣

∣

∣

∣

z=η(x)

. (4.25)

The perturbation term, Φ, is expanded in a power series about a generalized surface

slope, and terms of a similar order of the slope term are grouped. The inclusion of

each successive order of slope provides a more accurate result. The first expansion

term of the SSA model, which is second-order in slope, is identical to the PO model

in equation (4.16). The formulation of the fourth order approximation of the SSA

model is

σ◦

4 = σ00 + σ01 + σ11 (4.26)
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where σ00 is the PO model in equation (4.16) and σ01 and σ11 are defined by

σ01 =
k3
z

πk
e−χ

2

Re

{

−J∗

∫

dx eikbxB(x)

+

∫

dx I(x)

∫

dK eiKxW (K)g∗(K)

}

(4.27)

σ11 =
k4
z

2πk
e−χ

2

{

|J |2
∫

dx eikbxB(x)

+

∫

dx I(x)

∫

dK eiKxW (K)

×
{

1

(2kz)2
|g(K)|2 − 2Re [Jg∗(K)] + g(K)

×
∫

dK ′ eiK
′xW (K ′)g∗(K ′)

}}

(4.28)

with

I(x) = eikbxeχ
2C(x)

B(x) = eχ
2C(x) − 1

J =

∫

dK W (K)g(K)

g(K) = k
(

√

k2 − (K − kx)2

+
√

k2 − (kx −K)2
)

− 2kz.

Due to the complexity of the model, higher order SSA approximations require more

computational time than the other stochastic models. The third order small slope

approximation is not included in this study, but full details can be found in [37] and

[38].

4.4 Numerical Implementation

The models studied are compared against an exact method of moments

(MOM) solution of the scattering problem [54]. Here I describe the implementation

details used to generate the reference scattering solutions.

4.4.1 Surface Generation

The random rough surfaces are generated from Gaussian and power law

PSDs, using a spectral method described by Fung and Chen [55]. Surfaces are created
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with surface length Ls≈80λem, and sample distance dx=λem/10, with an incident

wavenumber k=100 rad/m.

For Gaussian surfaces, h and l range from 0.01-0.2 m and 0.01-0.1 m,

respectively, with increments of dh=0.01 m and dl=1/300 m. Power law surfaces

have the same range of surface heights and L ranges from 0.1-3 m with increments of

dL=0.1 m.

The Gaussian and power law parameter spaces are presented with kh values

on the horizontal-axis and kl or kL on the vertical-axis. In this format the smoothest

surfaces occupy the upper left corner of the parameter space. Conversely, the roughest

surfaces have large kh values and small correlation lengths and are found in the lower

right corner.

4.4.2 Method of Moments Reference Solution

The method of moments formalism for scattering from a rough surface for

a TM wave provides an approximate solution to the electric field integral equation

Ei
z =

kη0

4

∫

S

Jsz (ρ
′)H

(2)
0 (k|ρ− ρ′|)dS ′. (4.29)

Discretizing this equation leads to

















Ei(ρ1)

Ei(ρ2)
...

Ei(ρN)

















= (4.30)

















A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN

































Jz(ρ1)

Jz(ρ2)
...

Jz(ρN)

















(4.31)

where

Amn ≈







kη0
4

∆SH
(2)
0 (k|pn − pm|) m 6= n

kη0
4

∆S
[

1 − j 2
π

ln
(

γk∆S
4e

)]

m = n
, (4.32)
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γ ' 1.781, and η is the intrinsic impedance of free space. The surface current,

Jz, is then computed from A−1E. Using equation (4.13) the scattered fields can be

calculated from the results for Jz.

4.4.3 Electric Field Tapering

To eliminate edge effects that accompany finite length surfaces, a Gaussian

windowing function, G(x), has been applied to the incident electric field. Acceptable

angular resolution and stability can be obtained with the taper function

G(x) = exp

[

−
(

x− Ls/2

g

)2
]

(4.33)

where g = Ls/12 [56].

4.4.4 Monte Carlo Convergence Study

The use of Monte Carlo averaging to approximate stochastic quantities

introduces an inherent variance in the results. Because the reference solution is de-

terministic, the accuracy of the error values will be limited by the variance of the

Monte Carlo average. Figure 4.2 shows some typical PO and MOM backscatter val-

ues for power law surfaces with kL = 150 and several kh values. The variation in the

MOM solutions, as compared with the stochastic PO model, is evident.

To determine the convergence rate of the reference solution, 7500 realiza-

tions of a power law surface with kh = 10 and kL = 150 are created to calculate

backscatter values. The results, seen in Figure 4.3, show that Monte Carlo errors

decrease as the square-root of the number of realizations. As a trade-off between

computational time and accuracy 50 surfaces are used for the Monte Carlo simula-

tions, corresponding to an RMS error of 0.35 dB. The convergence rates for surfaces

with different kh and kL values give similar results.

4.4.5 Incidence Angles

Backscatter values for the reference solution and the models are computed

at angles between 0◦ and 60◦ with an angular increment of dθ = 0.25◦. I define
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Figure 4.2: Typical PO and MOM backscatter values for power law surfaces with
kL = 150 showing the variation inherent in the Monte Carlo averaging. The MOM
reference solution is shown in black with the PO model shown in gray.

σ◦

MODEL and σ◦

MOM as the backscatter values in dB for the model and reference

solution, respectively, and compute error values as

E(θ0) =

(

1

5

n=2
∑

n=−2

[σ◦

MODEL(θ0 + ndθ) − σ◦

MOM(θ0 + ndθ)]2
)1/2

, (4.34)

where error values are averaged over 1◦ increments to reduce noise in the reported

values.

4.5 Physical Optics

Since the development of the PO model, a number of different validity

criteria have been presented. Methods to determine the region of validity of the PO

model have included theoretical studies, empirical and numerical results, and physical
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Figure 4.3: The RMS error values for successive numbers of surface instantiations with
Monte Carlo averaging of the scattering coefficient. In this study N = 50 surfaces
have been used for an error of 0.35 dB

reasoning. I give special attention to the PO model because many recent models have

been shown to reduce to PO at lowest order.

In this section I review various PO validity criteria, and compare numerical

results to the classic curvature validity criterion. I develop a validity criterion based

on the RMS slope for surfaces with a Gaussian PSD, and present a similar validity

criterion for the surfaces with a power law PSD based on the significant slope. Both

validity criteria include a term related to the angular dependence.

4.5.1 Previous Studies

Theoretical studies of the limits of validity of the PO model have resulted

in many different validity criteria. The most commonly used criterion for the accuracy

of the PO model is equation (4.1). This result can be derived from the geometry of
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the rough surface scattering problem. Another criterion that has been derived from

the geometry [57],

rc cos θ � λem, (4.35)

shows a similar dependence on the surface curvature, but has a different angular

dependence. From integral equation techniques Meecham [58] requires that the max-

imum value of the surface slope be less than unity and that krc � 1. For a sinusoidal

surface McCammon and McDaniel [59] limit the accuracy of the model to surfaces

with small heights, long correlation lengths, low frequencies and incidence angles less

than 60◦, while Ogilvy states that the ratio of the electromagnetic wavenumber to

the largest surface wavenumber is the most important parameter in determining the

accuracy of the PO model [60].

Other studies have used computer simulations to numerically model the

wave-surface interaction of rough surfaces. Commonly, surfaces used in such studies

have a Gaussian PSD. As noted in the introduction, limits on the validity of the PO

model have been proposed in many studies [2, 3, 38, 46]. Validity criteria and specific

data points from a number of studies are reproduced in Figure 4.4. I note that the

lower bound on kl obtained by several researchers is required for accuracy over a large

range of bistatic scattering angles. As indicated by the results of Chen and Fung [3],

PO can be accurate for values of kl below the limits observed in the bistatic studies

if attention is restricted to near-nadir incidence angles.

4.5.2 Curvature Criterion - Gaussian Surfaces

The validity criterion, equation (4.1), for rough surface scattering is easily

applied to surfaces with a Gaussian power spectrum. Because such surfaces are

bandlimited, the integrated curvature of a surface, defined as the fourth moment

of the power spectrum [1], can be computed analytically as

c =

√

∫

K4W (K)dK (4.36)

= 2
√

3
h

l2
, (4.37)
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Figure 4.4: Numerical results of PO validity studies for bistatic scattering from sur-
faces with a Gaussian PSD. The region of validity for each of the studies is to the left
and above the lines shown for Ulaby [1], Thorsos [2], and Chen and Fung [3]. Data
points are reproduced from the study by Chen and Fung [3] for near-nadir incidence
angles, where each o indicates a valid data point, and + indicates an invalid data
point.

where W (K) is the surface height power spectrum. From equation (4.1) and the

definition of the integrated radius of curvature as rc = 1/c, the curvature criterion

for Gaussian surfaces becomes

kl2

2
√

3h
cos3 θ � 1. (4.38)

To apply this criterion to numerical results equation (4.38) can be rewritten as

kl2

2
√

3h
cos3 θ > A2

c

kl > Ac

(

2
√

3

cos3 θ

) 1

2 √
kh (4.39)

64



where the validity condition, expressed as a function of the surface parameters kh

and kl, describes a curve in a two dimensional parameter space. The electromagnetic

curvature, krc, is shown in Figure 4.5, along with lines of constant curvature for

Ac = 1, 2, and 3.

4.5.3 Numerical Results - Gaussian Surfaces

To evaluate the accuracy of the curvature validity criterion, the curve de-

scribed in equation (4.39) is compared with the results of the numerical study. The

plots in Figure 4.6 show the error values of the PO model with respect to the refer-

ence in gray-scale at incidence angles of 0◦, 5◦, 20◦ and 45◦. A lower cutoff of 2 dB is

imposed as the limit on the accuracy of the PO model.

The comparison of the error values with the curvature validity criterion,

shows a qualitative difference between the numerical error values and the limit de-

scribed by the classic curvature criterion, equation (4.1). At all incidence angles, the

range of validity of the PO model is more accurately modeled by a straight line in

the (kh,kl) parameter space. Included in each of the plots in Figure 4.6 is a solid line

that corresponds to the curvature criterion in equation (4.39), where Ac = 2.2 is the

empirical best fit to an error threshold of 2 dB.

Other observations that can be drawn from Figure 4.6 include the valid-

ity of the PO model restricted to the region of the parameter space with smoother

surfaces. Additionally, the error values can be seen to increase quickly through a

fairly narrow transition region, after which the error values reach a plateau over the

remainder of the space.

4.5.4 RMS Slope Validity Criterion

The region of validity of the PO model is seen in Figure 4.6 to be most

accurately delineated by a straight line. For Gaussian surfaces, a straight line in the

(kh,kl) plane is a line of constant RMS slope. The RMS slope, SRMS, of a random

rough surface can be computed from the second moment of the surface PSD. For
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Figure 4.5: Electromagnetic radius of curvature, krc, for Gaussian surfaces over the
(kh, kl) parameter space. Lines of constant curvature are shown for Ac = 1, 2, and 3.

surfaces with a Gaussian PSD,

SRMS =

√

∫

K2W (K)dK (4.40)

=
√

2
h

l
. (4.41)

Using the RMS slope, a validity criterion similar to equation (4.1) can be expressed

as

SRMS � cos3 θ. (4.42)

For a more quantitative validity criterion, I include an empirical threshold constant

and reformulate the criterion as a relationship between kh and kl:

SRMS < As cos3 θ

kh <

(

As√
2

cos3 θ

)

kl. (4.43)
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Figure 4.6: dB RMS error values of the PO model for backscatter from surfaces with a
Gaussian PSD. The error values are shown for incidence angles of 0◦, 5◦, 20◦ and 45◦.
The dashed line is the curvature validity condition in equation (4.39) with Ac = 2.2,
and the solid line shows the slope validity condition in equation (4.43) with As = 0.59.

A least-squares fit to the straight line that delineates the 2 dB error values at nadir is

computed as As = 0.59. This value is used in conjunction with an angular dependence

of cos3 θ to compute the SRMS limits at the other incidence angles shown in Figure 4.6.

A comparison of the theoretical cos3 θ dependence of the PO model and

the actual RMS slope cutoff values at various incidence angles is shown in Figure 4.7.

The same 2 dB cutoff value described previously is used as the accuracy limit for

the PO model. At each integer incidence angle, an empirical fit to the 2 dB error

threshold is calculated and converted to a slope value. For incidence angles up to

approximately 30◦, the cos3 θ dependence is a good approximation to the empirical

limits. For incidence angles greater than 30◦, this approximation becomes increasingly

inaccurate.
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Support for the RMS slope validity requirement can be found in the ap-

proximations made during the formulation of the PO model. The PO model ap-

proximations exclude effects from multiple reflections and shadowing. To fulfill these

conditions there must be a combination of sufficiently small surface slopes as well as

a grazing angle which exceeds the surface slope [57]. Other indications of the effec-

tiveness of the slope validity criterion are seen in the derivation of the SSA model.

As a perturbation expansion about the surface slope such expansions require small

slopes as a validity criterion. Because the second order SSA model and PO model are

identical formulations, the validity conditions for the two models can be expected to

have the same validity criterion with a dependence on slope.
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Figure 4.7: RMS slope limits for Gaussian surfaces at which the backscatter error
exceeds 2 dB. The theoretical cos3 θ angular dependence term is shown as a dashed
line.
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4.5.5 Numerical Results - Power Law Surfaces

From a mathematical perspective, application of the analytic definitions

of curvature and surface slope to power law surfaces with p ≤ 3 results in infinite

curvature and infinite surface slope variance, thus violating the validity criterion in

equation (4.1). However, it has been observed empirically that the PO approximation

remains valid for many surfaces that violate the curvature criterion [47, 61], including

power law surfaces. Warnick, et al. [48] have shown that for near-nadir backscattering

from power law surfaces with p = 3, a validity condition for the PO model can be

obtained in terms of the significant slope,

§ =
h

L
, (4.44)

of the surface. At nadir incidence the validity condition becomes § < 0.03. The

analysis of [48] provides no quantitative information about actual error when this

criterion is violated. Because of this, I consider here a condition of the same form as

that obtained in [48], but with the upper limit on significant slope to be determined

empirically as a function of incidence angle, so that

§ < Bf(θ), (4.45)

where B is the significant slope value at nadir and the angular dependence is described

by f(θ), f(0) = 1.

Physical optics model error values for power law surfaces are presented in

Figure 4.8 for incidence angles of 0◦, 5◦, 20◦ and 45◦ where it can be seen that PO

validity criterion is well modeled by a straight line in the (kh, kL) parameter space.

From equation (4.44) it can be seen that this a representation of constant significant

slope values. As with the Gaussian surfaces, a cutoff value for the accuracy of the

PO model is set at 2 dB. A least-squares fit to this error cutoff leads to B = 0.037 in

(4.45) at nadir incidence.

It can be seen in Figure 4.8 that the significant slope cutoff decreases

as the incidence angle moves away from nadir. Empirically, this variation can be

modeled using the same angular dependence as for Gaussian surfaces, so that using
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Figure 4.8: dB RMS error values of the PO model for surfaces with a power law PSD.
The error values are shown for incidence angles of 0◦, 5◦, 20◦ and 45◦. The solid line
shows the slope validity condition from equation (4.46).

f(θ) = cos3 θ in equation (4.45), the validity condition becomes

§ < 0.037 cos3 θ. (4.46)

To compare this validity criterion with numerical results, values of the upper bound,

Bf(θ), are computed by a least squares fit of (4.45) to the 2 dB error contour in the

kh-kL plane at incidence angles from 0-60◦. It can be seen in Figure 4.9 that the

condition in equation (4.46) matches numerical results well for incidence angles less

than 30◦.

I note that both (4.46) and the condition (4.43) for Gaussian surfaces in-

volve slope-related quantities and appear as straight lines in the respective parameter

spaces. It is important not to read too much into this apparent similarity, because

the correlation length l of a Gaussian surface has a very different meaning from the
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Figure 4.9: Significant slope values for power law surfaces at which the backscatter
error exceeds 2 dB. The cutoff values are computed at integer incidence angles. The
theoretical cos3 θ angular dependence term is shown as a solid line.

dominant wavelength L of a power law surface. For a Gaussian surface, l is on the

order of an upper bound on the scale of variation of the surface, whereas L is a lower

bound on the spectral content of a power law surface. Similar considerations apply

to the difference between RMS slope and significant slope.

4.6 Numerical Results - Other Models

In addition to the PO model, I have investigated the accuracy of other

rough surface scattering models. In this section a description of the general accuracy

and the region of validity of each model is presented. We show that the validity criteria

for many of these models have similar trends to that of the PO approximation due to

their relationship with the PO model. Figures 4.10-4.17 are error plots for Gaussian
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and power law surfaces at 0◦, 20◦, 45◦, and 60◦ incidence angles of each model. The

PO model is included as a reference against which the other models can be compared.

4.6.1 Small Perturbation Method

The accuracy of the SPM model is commonly described by

kh� 1. (4.47)

Because the expansion term of the SPM model includes an angular dependence, an-

other validity criterion of SPM that has been developed requires that [62]

kh cos θ � 1. (4.48)

Due to the angular dependence of this term, the region of validity might be expected

to increase at larger incidence angles. When applied to Gaussian surfaces, the SPM

model shows an accuracy that is limited by the validity criterion in equation (4.47).

However, an increase in the region of validity, similar to that described by equa-

tion (4.48), can be seen at larger incidence angles when the SPM model is applied to

power law surfaces.

I note that the increase in the region of validity is limited to the smaller

valid region along the left edge of the plots. A secondary region that can bee seen for

rougher power law surfaces is caused by a cross-over between the backscatter values

of the SPM model and those of the reference solution and cannot be considered to be

a true region of accuracy.

4.6.2 Geometrical Optics

The region of validity of the GO model is strongly influenced by incidence

angle. For both surface types, the range of accuracy of the GO model is almost

entirely limited to angles less than 20◦. This occurs because of the non-physically

rapid decrease in the magnitude of (4.18) for large incidence angles. The difference in

behavior between GO and the reference solution is most evident in figures 4.14-4.17,

where the GO model is inaccurate across the entire parameter space for both surface

types.
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Figure 4.10: dB RMS error values for Gaussian surfaces at 0◦ incidence angle.

Due to the inseparability of the coherent and incoherent scattering contri-

butions, the GO model shows significant error for values of kh�1 in the near-nadir

range where the coherent component is large relative to the incoherent component.

This effect is most evident in the Figure 4.13.

4.6.3 Monte Carlo Physical Optics

The accuracy of the MCPO model is similar to that of the stochastic PO

model. The validity criterion expressed in equation (4.42) and equation (4.46) for

the stochastic PO model describes the accuracy of MCPO up to an incidence angle

of approximately 20◦. As the incidence angle increases the MCPO backscatter values

become larger than the reference solution for smoother surfaces.

As with SPM, the accuracy of the MCPO model appears to have a second

band of increased accuracy for rougher surfaces. The second band, which is evident
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Figure 4.11: dB RMS error values for power law surfaces at 0◦ incidence angle.

for both surface types, is anomalous, and the MCPO model should not be construed

as truly accurate in these regions. These regions of apparent accuracy are especially

misleading for the power law surfaces at large incidence angles in Figure 4.15 and

Figure 4.17, where the accuracy is no better than the stochastic PO model.

4.6.4 Iterated Physical Optics

ITPO is the most accurate model in the study. The region of validity

is large for both power law and Gaussian surfaces and demonstrates little variation

across the angular range. Application of a 2 dB threshold results in the validity

criterion

SRMS < 2.2 − .02θ, (4.49)
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Figure 4.12: dB RMS error values for Gaussian surfaces at 20◦ incidence angle.

for Gaussian surfaces, where θ is the incidence angle in degrees and

§ < .25 − .002θ, (4.50)

for power law surfaces. The limit of the region of validity is sharply defined by a steep

decline in accuracy outside the valid region. I note that part of the improved accuracy

may be due to use of the same deterministic surfaces as that of the reference solution.

However, this effect is probably minor, as indicated by the limited improvement of

the deterministic MCPO model over the stochastic PO model.

4.6.5 Small Slope Approximation

The fourth order SSA model is the most accurate stochastic model in the

study. Because the range of validity of SSA is constant across the angular range of

the study, the empirical validity criterion does not include an angular term. The 2 dB
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Figure 4.13: dB RMS error values for power law surfaces at 20◦ incidence angle.

validity criteria for the SSA model are

SRMS < 0.5 (4.51)

for Gaussian surfaces and

§ < .05 (4.52)

for power law surfaces. Though the PO and second order SSA model are identical, the

inclusion of higher order terms in the SSA model increases its range of validity. The

increase in accuracy is accompanied by a more sharply defined transition between the

accurate and inaccurate regions, and larger error values in the inaccurate region.

4.7 Conclusion

I have studied the regions of validity of various rough surface scattering

models for surfaces with Gaussian and power law power spectra. Because most of
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Figure 4.14: dB RMS error values for Gaussian surfaces at 45◦ incidence angle.

the models in the study are related to the Kirchhoff approximation, a major focus is

placed on the region of validity of the PO approximation.

Existing criteria for the region of validity of the PO model are commonly

given in terms of a bound on the curvature of the scattering surface. We found that

for backscattering, the range of validity of the PO model for Gaussian surfaces is

better described by a bound on the RMS surface slope. Similarly, the validity of the

PO model for power law surfaces is accurately modeled by a bound on the significant

slope of the surface. Numerical results for both surface types also showed that the

region of validity has an angular dependence approximated by cos3 θ for incidence

angles less than 30◦ and 40◦ for Gaussian and power law surfaces, respectively.

An important difference between the curvature-based PO validity criterion

in equation (4.1) and the significant slope validity criterion developed here is the

frequency dependence of the validity criteria. The empirical results indicate that the
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Figure 4.15: dB RMS error values for power law surfaces at 45◦ incidence angle.

surface slope validity criterion is independent of the frequency of the incident wave.

It is possible that for larger frequencies than those considered, the region of validity

could diverge from equation (4.46) and equation (4.43), although theoretical results

in [48] are asymptotic as k → ∞.

In addition to the PO model, other models in the study show a correlation

between the region of validity and the appropriate surface slope parameter. I note

that the deterministic ITPO model is the most accurate model in the study and that

the most accurate stochastic model is the fourth order SSA model. A summary of

the validity criteria for each model is shown in Table 4.7. From the table, it can be

seen that the region of validity of most models is influenced by the incidence angle.
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Figure 4.16: dB RMS error values for Gaussian surfaces at 60◦ incidence angle.

Table 4.1: Validity criteria with a 2dB threshold for PO-based backscattering models
in the study. The variables SRMS and § refer to the Gaussian RMS surface slope and
the power law significant slope.

PO Based Model Validity Criteria
Model Gaussian Surfaces Power Law Surfaces
PO SRMS < 0.59 cos3 θ § < 0.037 cos3 θ
GO∗ SRMS < 0.59 cos3 θ § < 0.055, θ < 25◦

MCPO SRMS < 0.59 cos3 θ § < 0.037 cos3 θ
ITPO SRMS < 2.2 − .02 θ § < .25 − .002 θ, θ < 45◦

SSA SRMS < .5 § < .05
∗The GO model includes both coherent and incoherent scattering
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Figure 4.17: dB RMS error values for power law surfaces at 60◦ incidence angle.
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Chapter 5

EM Bias Model

5.1 Introduction

Operational EM bias models for satellite based altimeters are limited to em-

pirically modeling the bias with parameters that can be estimated from the backscat-

ter characteristics of the surface [6, 7, 8, 9, 10]. These models include the current

operational models for the TOPEX/Poseidon and Jason-1 altimeter missions that

estimate the bias from significant wave height and wind speed values. Though bias

estimates using these parameters are accurate in the mean, a significant amount of

variance remains [19].

Theoretical studies of the EM bias have shown that the bias is a composite

of two underlying physical mechanisms: non-Gaussian long wave surface statistics

and hydrodynamic modulation. The first EM bias model was developed from non-

Gaussian ocean surface statistics. Using the weakly non-linear (WNL) theory by

Longuet-Higgins [14], the EM bias for a one dimensional surface was described as a

function of the skewness and tilt modulation (height-slope cross correlation) of the

ocean surface [15]. The contribution of the non-Gaussian statistics was extended

to a two-dimensional surface by Srokosz [5]. Further developments were made by

Elfouhaily, et al. [16] by rederiving the contributions of the WNL theory when applied

only to the long wave components of the surface.

The second contributing factor to the EM bias is hydrodynamic modula-

tion. Motivated by a nonlinear surface model of Longuet-Higgins et al. [17] which

relates the strength of the small wave height modulation to long wave slope, empirical

relationships between the slope and the bias have been developed [13, 18, 23]. This

approach has been expanded recently by a pair of theoretical models. The first, by
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Elfouhaily, et al., develops a bias theory that describes the hydrodynamic modulation

using the modulation transfer function (MTF) of Alpers and Hasselmann [63]. The

second, by Warnick, et al. [64], introduces hydrodynamic modulation through the

physical optics (PO) scattering approximation. This theory describes the EM bias as

a linear function of the RMS wave slope.

The only study to combined non-Gaussian surface statistics and hydrody-

namic modulation was a numerical investigation by Rodriguez, et al. [27]. In this

study, the joint height-slope PDF by Longuet-Higgins [14] and modulation trans-

fer function (MTF) by Alpers and Hasselmann [63] were used to estimate the bias

for a one-dimensional surface. The results showed that contributions from the non-

Gaussian surface statistics and hydrodynamic modulation are of the same order of

magnitude.

In this chapter an EM bias model is developed that includes both non-

Gaussian long wave statistics and hydrodynamic modulation. Scattering from small

wave surface facets is modeled by the PO scattering approximation. Using the WNL

theory, local tilt angles are included in PO-based bias model by Warnick, et al. [64].

The result is a bias model that describes the relative EM bias as a sum of contributions

from skewness, tilt modulation, and RMS wave slope.

A number of features of the derivation are worth noting. First, an analyti-

cal relationship between the MTF and the RMS wave slope is developed that linearly

relates the hydrodynamic modulation to the RMS slope. Second, dependencies on

small wave roughness and wind speed are included in the EM bias model through the

PO model.

The accuracy of the bias estimates is analyzed by a comparison with mea-

sured EM bias value from the Gulf of Mexico Experiment (GME). From a model

surface spectrum, estimated and measured bias values are compared as a function

of wind speed. The EM bias is also evaluated by using measured surface statistics

from the GME data set as inputs to the bias theory. Using the measured surface

parameters, the contribution from each of the bias terms, hydrodynamic modulation,
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tilt modulation, and skewness, is investigated. A final analysis shows the residual

errors between the bias theory and the measured values.

5.2 EM Bias Model Derivation

The EM bias is defined as the normalized correlation between the surface

height, ζ, and the backscatter coefficient profile, σ◦(ζ),

ε =
E [ζσ◦(ζ)]

E [σ◦(ζ)]
=

∫ ∫

ζσ◦(ζ, θ)P(ζ, θ)dζdθ
∫ ∫

σ◦(ζ, θ)P(ζ, θ)dζdθ
. (5.1)

This formulation describes the bias as a function of the scattering from small wave

surface facets with local incidence angles and heights described by the long wave joint

height-slope PDF, P(ζ, θ).

EM bias measurements by remote sensing instruments are typically divided

into three contributing components: skewness bias, EM bias, and tracker bias. The

tracker bias is a significant wave height dependent instrumental error that is neglected

in this discussion. The remaining biases are inherent in the interaction between the

EM signal and the ocean surface, and are often combined as the sea state bias.

In the derivation presented here, the bias seen by the altimeter instrument

is shown to be a combination of three bias terms. The skewness bias is related to the

skewness of the ocean surface. The tilt modulation is caused by a non-Gaussian distri-

bution of surface slopes along the ocean surface. Last, the hydrodynamic modulation

bias created by the modulation of short wave heights with surface displacement. For

convenience, since I compute a combination of the skewness and sea state biases, the

sum of the three is referred to as the EM bias.

5.2.1 Separation Wavenumber

Because the integral form of the bias in Eq (5.1) includes components

of short wave scattering, σ◦, and long wave statistics, P (ζ, θ), the division of the

ocean surface into long and short wave components is required. The division between

the long and short wave components of the ocean spectrum is identified using the

separation wavelength, λsep = 2π/ksep such that

[λ◦ = O(10m)] � λsep �
[

λem = O(10−2m)
]

(5.2)
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at microwave frequencies where λem is the electromagnetic wavelength and λ◦ is the

dominant wavelength of the surface spectrum. We note that ksep influences both the

small and long wave portions of the spectrum, and investigate its effect on EM bias

estimates in Sec. 5.6.

5.2.2 Long Wave Surface Statistics

The joint height-slope distribution of the long wave portion of the ocean

surface is derived from the weakly non-linear theory (WNL) [14]. WNL theory de-

scribes the surface statistics as a Gram-Charlier expansion in terms of the skewness,

λ30, and tilt modulation, λ12, of the ocean surface [5, 16]. The tilt modulation, as

used in this work, refers to the cross-correlation of surface height and slope. The

long waves are modeled using the long crested assumption so that the slope in one

direction is set equal to zero, ζy = 0. With this approximation the three dimensional

joint-height slope PDF is reduced to a two dimensional expression,

P (ζ, ζx) =
e−

1

2
(η2+η2

x)

2πhlsl

×
[

1 +
λ30

6
H30(η, ηx) +

λ12

2
H12(η, ηx)

]

, (5.3)

where the normalized height and slope are defined as

η = ζ/hl (5.4)

ηx = ζx/sl, (5.5)

and the height and slope variances are h2
l and s2

l , respectively. The Hermite polyno-

mials, Hij(η, ηx), used in this paper are

H30(η, ηx) = η3 − η (5.6)

H12(η, ηx) = η(η2
x − 1), (5.7)

and the explicit dependencies on height and slope are dropped in the remainder of

the paper.
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5.2.3 Short Wave Surface Spectrum

The short wave surface power spectrum is defined by

Ws(k) =







W (k) k ≥ ksep

0 k < ksep
(5.8)

where W (k) is the full surface spectrum, and the related correlation function,

C(x, y) =
1

h2

∫

Ws(k)eik·rdk (5.9)

is defined as the Fourier transform of the short wave PSD normalized by the surface

height variance, h−2
s W (k).

With the division of the surface spectrum into long and short wave por-

tions, the small wave power spectrum can be well approximated as a two-dimensional,

isotropic power law PSD. By integrating the two-dimensional PSD in angle, the small

wave power spectrum can be expressed as

Ws(k) =







h2
s(p− 2)kp−2

sep k
1−p k ≥ ksep

0 k < ksep,
(5.10)

where p is the exponent of the power law spectrum. Because the small wave PSD is

isotropic, the two-dimensional correlation function can be expressed as a function of

distance, ρ = (x2 + y2), such that

C(z) = (p− 2)zp−221−pΓ
(

1 − p
2

)

Γ
(

p
2

)

+ 1F2

(

[

1 − p

2

]

,
[

1, 2 − p

2

]

,−z
2

4

)

(5.11)

where p 6= 3. The symbol 1F2 refers to the hypergeometric function and the substi-

tution z = ksepρ is used to obtain the final expression. A similar correlation function

can be developed for p = 3. For the remainder of the paper, the explicit dependencies

of the correlation function are dropped so that C = C(z).

Note that the approximation of the surface spectrum as a pure power law

form is used only for the small wave portion of the spectrum. This allows the bias

model to encompass realistic sea surface states which can deviate significantly from
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an averaged model that constrains the form of the spectrum over the full range of long

and short waves. The description of the small wave spectrum as a two-dimensional,

isotropic PSD creates an effective surface model that is composed of two-dimensional

small wave surface facets on a corrugated, or one-dimensional, long wave surface.

5.2.4 Hydrodynamic Modulation

The modulation of short wave heights as a function of surface displacement

causes a differential in surface roughness between the crests and troughs of the ocean

surface. This results in larger specular returns from the troughs, contributing to a

differential in returned power that is a source of the EM bias. This contribution to

the EM bias is referred to as the hydrodynamic bias.

Modeling the hydrodynamic modulation of the ocean surface is commonly

accomplished by using a modulation transfer function, such as that developed by

Alpers and Hasselmann [63]. The MTF describes the modulation of the surface by

an interaction of the long and short wave surface components. An example of the

change in the small wave height variance, ∆h2
s, is shown in Figure 5.1 for a typical

ocean surface. It is apparent that the dependence of ∆h2
s is approximately linear

with surface displacement. Similar results have been reported in numerical studies

and experimental measurements [27, 64]. Approximating the small wave height as a

linear function of surface displacement results in the expression

h(ζ) = h◦

(

1 +m
ζ

hl

)

(5.12)

where m is a modulation coefficient. By using this expression in the EM bias model,

the effects of hydrodynamic modulation are included. In Sec. 5.3.1 the MTF is used

to relate m to long wave statistics.

5.2.5 Physical Optics Scattering Model

The most common scattering model used in EM bias theories is the geo-

metrical optics (GO) model. Geometrical optics uses the infinite frequency, or ray

tracing, approximation to model scattering from a rough surface. With this approxi-

mation, surfaces are considered smooth with respect to the incident EM wavenumber,
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Figure 5.1: Application of the modulation transfer function (MTF) to surface de-
scribed by the unified ocean spectrum by Elfouhaily, et al. [4] shows a linear correla-
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thus applying an inherent high wavenumber cutoff to the surface spectrum. Because

the modulated small wave heights are on the same order of magnitude as the incident

wavenumber, the GO approximation does not accurately model small wave effects

such as hydrodynamic modulation.

A more accurate description of rough surface scattering is provided by the

physical optics (PO) scattering model [57, 60]

σ◦(θ) =
k2
em cos2 θ

4π

∫ ∫

eikbxe−λ(1−C(x,y))dxdy, (5.13)

where θ is the incidence angle, the Bragg wavenumber, kb = 2kem sin θ, and λ =

(2kemh cos θ)2. In contrast to the GO approximation, the PO model requires as

inputs the surface height variance, h2, and the correlation function, C(x, y). Because

the PO scattering model is applied to small wave facets of the surface, the height

variance used in the model is the short wave height variance, h2
s.

The accuracy of the PO scattering model for power law surfaces has been

addressed by two recent studies. The first, develops a theoretical validity criterion of

the PO model for two-dimensional power laws surfaces [48]. The numerical scattering

study in Chapter 4 shows that at near-nadir incidence angles, the validity criterion

for the PO model is satisfied for ocean-like surfaces with a power law PSD, as long

as the significant slope is less than 0.03.

5.2.6 Backscatter Coefficient Profile

An analytic expression for the backscatter coefficient profile, σ◦(ζ), is cre-

ated from expressions for the long wave joint height-slope PDF, (5.3), and the radar

cross section, described by the PO model, (5.13). By using the approximations for

the correlation function, (5.11), and hydrodynamic modulation, (5.12), in the PO
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model the resultant expression,

σ◦(ζ) =

∫

d tan θ
k2
em cos2 θ

4π
(5.14)

×
∫ ∫

dx dyei2kem sin θe−λ(η)(1−C)

× 1

2πhlsl
e
−

1

2

[

(

ζ

hl

)

2

−

(

tan θ
sl

)

2
]

×
(

1 +
λ30

6
H30 +

λ12

2
H12

)

,

is a three-dimensional integral that appears in both the numerator and the denomi-

nator of the EM bias definition, (5.1).

To create an analytical solution, small local incidence angles are assumed

such that

sin θ ≈ θ (5.15)

cos θ ≈ 1 (5.16)

tan θ ≈ θ, (5.17)

and the order of integration is changed so that the first integration performed is over

the long wave slopes,

σ◦(ζ) =
k2
eme−η

2/2

4π
√

2π

∫ ∫

dx dye−λ(η)(1−C) (5.18)

×
∫

dηxe
iµηx

e−η
2
x/2

√
2π

(

1 +
λ30

6
H300 +

λ12

2
H120

)

where µ = 2xkemsl. The integral over the local tilt angles can be solved analytically

with the identities
∫

eiµxx2e−x
2/2dx =

√

π

2
e−µ

2/2(1 − µ2) (5.19)
∫

eiµxe−x
2/2dx =

√
2πe−µ

2/2, (5.20)

and a simplified expression for equation (5.19) can be written as

σ◦(ζ) =
k2
eme−η

2/2

4π
√

2π

∫ ∫

dx dy e−λ(η)(1−C)e−µ
2/2

×
(

1 +
λ30

6

(

η3 − η
)

− λ12

2
ηµ2

)

. (5.21)
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The expression for the backscatter coefficient profile is now reduced to a two dimen-

sional integral in the x and y dimensions.

5.2.7 EM Bias

The final expression of the EM bias model is created by expanding the bias

definition in equation (5.1) in a power series about ζ = 0,

ε =
E [ζ (σ◦(0) + ζσ◦′(0) + ...)]

E [σ◦(0) + ζσ◦′(0) + ...]
, (5.22)

where σ◦′(0) refers to the derivative of σ◦(ζ) with respect to ζ. Justified by results

from Warnick, et al. [64], the average backscatter coefficient is approximately linear

with displacement, and the expression in equation (5.22) can be truncated after the

second term. Using this approximation, equation (5.22) reduces to

ε ≈ h2
l

σ◦′(0)

σ◦(0)
, (5.23)

where

σ◦′(0) =
−1√
2π

∫ ∫

dx dye−(2kho)2(1−C)−µ2/2 ×
[

8m(kho)
2 (1 − C) +

λ30

6
+
µ2λ12

2

]

, (5.24)

and

σ◦(0) =
1√
2π

∫ ∫

dx dye−(2kho)2(1−C)e−µ
2/2. (5.25)

The notation can be simplified by writing the bias expression as

ε = −H(γm+ κλ30 + τλ12). (5.26)

where the significant wave height, H = 4hl, and the coefficients γ, κ, and τ are

γ =

∫ ∫

2k2
emh

2
◦
(1 − C)e−(2kemh◦)2(1−C)e−µ

2/2 dx dy
∫ ∫

e−(2kemh◦)2(1−C)e−µ2/2 dx dy
(5.27)

τ =
1

8

∫ ∫

µ2e−(2kemh◦)2(1−C)e−µ
2/2 dx dy

∫ ∫

e−(2kemh◦)2(1−C)e−µ2/2 dx dy
(5.28)

κ =
1

24
. (5.29)
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A review of the final bias model in equation (5.26) shows the leading signif-

icant wave height dependence, common to all bias models, followed by terms relating

the EM bias to the surface skewness, tilt modulation, and hydrodynamic modulation.

It can also be seen that the the dependence of the EM bias on λ12 and λ30 is similar to

the results from models by Elfouhaily, et al. [16] and Srokosz [5]. An analysis of the

terms and coefficients that describe the model is conducted in subsequent sections.

5.3 Bias Coefficients

The dependence of the bias on the short wave spectrum is carried in the

coefficients γ, κ, and τ . As seen in equation (5.26), the short wave coefficients and the

long wave surface parameters combine to create the individual bias terms. It should

be noted that the coefficients τ and κ have been present in previous bias models, but

with modifications in this model due to the PO approximation. The bias coefficient γ

is a result of the inclusion of hydrodynamic modulation and is investigated in Warnick,

et al. [64], but without long wave tilting effects.

5.3.1 Hydrodynamic Modulation Coefficient

In a previous EM bias model by Warnick, et al. [64] the value of the

hydrodynamic modulation coefficient, γ, is shown to asymptotically approach 1/(p−2)

for large values of kemh. Though that model do not include the long wave tilting of

short wave scattering facets, Figure 5.2 shows that the effect of the long wave tilting is

negligible in the asymptotic region. It should also be noted that typical values of the

surface are such that kemh > 1, and γ is well approximated by the asymptotic limit

of 1/(p− 2). Because the value γ is in the asymptotic region, changes in kemh do not

have a significant effect on γ, and the hydrodynamic bias is not strongly frequency

dependent.

5.3.2 Tilt Modulation Coefficient

The inherent peakedness of ocean waves causes fewer horizontal facets to

be present near the crests than the troughs, thus introducing a tilt modulation bias.

For a surface that is smooth on the order of the incident EM wavelength, the tilt
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Figure 5.2: Values of the hydrodynamic modulation coefficient, γ, as a function of
the electromagnetic height of the small waves, kemhs. For realistic ocean surfaces,
kemhs > 1 so that γ is not greatly affected by changes in small wave heights.
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modulation results in a larger specular return from the troughs than the crests. By

using the GO approximation, the model by Srokosz [5] inherently uses the smooth

surface approximation, resulting in a tilt modulation bias described by

βtilt = −1

8
λ12 (5.30)

where the tilt modulation coefficient, τ , is a constant 1/8.

The contribution of the tilt modulation bias is modified with the inclusion

of small scale roughness in the scattering model. Figure 5.3 shows the value of τ as

a function of the electromagnetic height, kemhs. As kemhs approaches 0, the surface

becomes more smooth, and the PO result asymptotically approaches the GO value of

τ = 1/8. For rougher surfaces, the surface scattering becomes more Lambertian, and

the effect of local tilt angles decreases. For an infinitely rough surface (kemhs → ∞)

the scattering is perfectly isotropic, and the tilt modulation bias vanishes.

Changes in the value of τ with respect to kemhs also indicate a frequency

dependence of the tilt modulation bias. An increase in kemhs can also be interpreted

as an increase in the incident EM frequency, so that the tilt modulation bias seen

in Figure 5.3 decreases with incident wavenumber. Because τ is the only term that

changes significantly with kemh, the frequency dependence of the model is wholly

contained in the tilt modulation coefficient.

5.3.3 Skewness Coefficient

From (5.29), the skewness bias coefficient has a constant value of κ = 1/24.

This result is identically equal to results from previous models by Srokosz [5] and

Elfouhaily, et al. [16].

5.4 Hydrodynamic Modulation and Slope

A number of bias models have been developed using an empirical relation-

ship between measured RMS slope values and the EM bias [18, 23]. These models

are implicitly based on the relationship between wave slope and the modulation coef-

ficient developed by Longuet-Higgins [17]. The first bias work to explicitly state this

relationship in the context of the EM bias is by Melville, et al. [13]. By using a two
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Figure 5.3: Values of the tilt modulation coefficient as a function of electromagnetic
height of short ocean waves, kemhs. For smooth surfaces, τ = 1/8, as derived by
Srokosz [5]. An infinitely rough surface would have no tilt modulation bias. Typical
values of kemhs are greater than 1, so that τ < 1/8.
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frequency surface model, the modulation coefficient and RMS wave slope are shown

to be equal to first order. Warnick, et al. [64] uses the same relationship and finds

that the RMS wave slope is strongly correlated to the bias. Here we develop a more

rigorous relationship between the modulation coefficient, m, and the RMS long wave

slope, S.

5.4.1 Modulation Transfer Function

Height modulation of the short waves is described by a modulation transfer

equation (MTF) developed by Alpers and Hasselmann [63]. The MTF describes the

height modulation of the short waves as a function of spectral frequency,

δW (ks) = W (ks)

∫

dkl z(kl)R(ks, kl)e
i(klx−ωlt), (5.31)

where z(kl) is the Fourier transform of the long wave profile, ζ(x, t), and ωl and kl are

the long wave angular frequency and wavenumber, respectively. The one dimensional

form of the modulation transfer function can be written as

R(ks, kl) = −kl
ωl + iµs
ω2
l + µ2

s

cl
cs

[

1

F (k)

∂F (k)

∂k
− γs
ks

]

×
(

csklks −
1

2
klωl

)

(5.32)

where µs is the short wave relaxation rate, cl and cs are the long wave and short wave

phase speeds,

γs =
1

2

1 + 3(τwk
2
s/ρdg)

1 + τwk2
s/ρdg

, (5.33)

and the constants τw = 74× 10−6 m3/s2 and ρd = 1027 kg/m3 are the surface tension

and density of water.

From the MTF, the change in the local small wave height variance can be

described as

∆h2
s =

∫

δW (ks)dks, (5.34)

so that the total small wave height variance is

h2
s = h2

◦
+ ∆h2

s. (5.35)
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With this definition, the surface height variance can be computed from instantiations

of a surface profile. It is shown in Figure 5.1 that hs computed from instantiating

the surface profile is approximately linear with surface displacement, so that hs can

described by equation 5.12.

5.4.2 Modulation Coefficient and RMS Slope

To develop a relationship between m and S, I have approximated the ocean

surface using independently varying long and short wave power law spectra. Devel-

oping the relationship in this way has two important implications. First, by using

simplified power law PSDs to describe the surface, an analytic relationship between

the modulation coefficient and RMS wave slope can be obtained in terms of long

wave surface parameters. We emphasize that this simplified model for the long wave

PSD is used only to develop an analytic equation that approximates the relationship

between m and S. The second important assumption is the description of the surface

as two independent spectra. This separation of long and short wave surface spectra

allows for changes in environmental conditions that may vary widely from average

values described by a surface spectral model. By varying the long and short waves

independently, the first order dependence between the modulation and surface slope

can be more clearly discerned.

The long wave surface PSD is described by

W (k) =







h2
l (p− 1)kp−1

mink
−p k ≥ kmin

0 k < kmin.
(5.36)

and the small wave PSD described in equation (5.10). The exponent p = 3 has been

used as a typical value for the ocean surface, while similar results can be obtained for

other values of the exponent.

Physically, the tilt modulation is described as the normalized correlation

between the wave height squared, h2
s, and surface displacement, ζ. From the MTF,
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Rodriguez et al. [27] shows that the correlation of h2 and ζ can be expressed as

E
[

h2ζ
]

=

∫

∞

ksep

dksW (ks)

×
∫ ks/5

kmin

dk1W (k1)<{R(ks, k1)} . (5.37)

This equation can be reduced to an analytic expression in terms of hl and kmin with a

few simplifying assumptions. First, the modulating wavenumbers are approximated

by the deep wave dispersion relation

kl =
ω2
l

g
. (5.38)

By approximating γ ≈ 1/2 in the MTF in equation (5.33) and noting that 1
2
klωl �

csklks and µs � ωl, the short wave modulation can be expressed as

E
[

h2ζ
]

≈ −7

2

∫

∞

ksep

dksW (ks)

∫ ks/5

0

dkl klW (kl), (5.39)

where W (ks) and W (kl) are defined in equation (5.10) and equation (5.36), respec-

tively. By carrying out the integrations, and using the definition of m in equa-

tion (5.12), an expression for the correlation coefficient can be written as

m =
E [h2ζ]

2hlh2
s

(5.40)

≈ 7

2
hlkmin, (5.41)

with the normalization factor, 1/(2hlh
2
s). The result shows that for a power law

surface the leading dependence of the modulation coefficient is linear with hl and

kmin.

As an aside, it should be noted that hlkmin is the significant slope of a

power law surface and could be used directly for an ocean surface with an ideal power

law surface spectrum. Due to variations from the ideal in ocean surface PSDs, the

RMS wave slope is a more accurate measure of actual ocean conditions. In addition,

the empirical correlation between the bias and RMS slope noted in previous models

motivates its use.
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A relationship between m and S is developed by using the definition of the

RMS surface slope,

S =

√

∫ ksep

kmin

dk k2W (k). (5.42)

By evaluating the integral using the spectrum in equation (5.36), the RMS wave slope

can be expressed as

S = hlkmin

√

2 ln

(

ksep
kmin

)

, (5.43)

where the leading dependencies of S are linear with the standard deviation of the

height, hl, and the minimum wavenumber, kmin. An additional dependence on kmin

can also be seen under the square root. However, this dependence is a slowly varying

function of the minimum wavelength and can be approximated as a constant for

kmin � ksep.

The resulting dependencies of m in equation (5.41) and S in equa-

tion (5.43), on hlkmin are to first order related by a constant multiple. Figure 5.4

shows m and S computed from the analytic solutions along with the value of m

computed from the MTF in equation (5.37).

The results of this numerical study verify the connection between m and S

seen in previous empirical models [18, 13, 23]. By recognizing the linear correlation

between slope and modulation coefficient such that

ν = m/S, (5.44)

the RMS wave slope can be used as a proxy variable for the hydrodynamic modulation

coefficient. By establishing a relationship between the long wave RMS slope and the

modulation coefficient, the EM bias can be rewritten as

ε = −H(γνS + κλ30 + τλ12), (5.45)

where contributions from the long wave parameters, S, λ30, and λ12 and short wave

coefficients γ, τ , and λ are identifiable.

From the near linear relationship of m and S seen in Figure 5.4, it is

apparent that ν is, to a large degree, independent of the long wave statistics, and that
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Figure 5.4: The near linear relationship between the modulation coefficient, m, and
the RMS wave slope, S. This relationship is used to approximate ν = m/S as a
constant when computing bias values from the GME data set in Sec. 5.7.

changes in swell or other long wave effects impact S and m equally. This description

of the value for ν is used to compute the bias model with the GME data set.

The value of ν can also be computed directly from a surface spectral model

by using equation (5.42) to compute the RMS slope and the MTF to compute m.

Computing ν from a model spectrum includes the effects of changing short and long

wave spectra together and an additional weak dependence on the wind speed through

the frictional velocity. The results of this method are seen in Figure 5.5.

5.5 Long Wave Parameters

The three contributing factors to the EM bias are dependent on the long

wave parameters S, λ12, and λ30. In this section I describe the methods to compute

these values from the surface PSDs.
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to both the long and short wave portions of the spectra.
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Using the WNL theory, previous studies have derived expressions for λ12

and λ30 as integrals of the surface PSD. By applying these expression to a model

surface spectrum, values of S, λ12, and λ30 can be computed as a function of wind

speed. These expressions are also applied to measured surface spectra from the GME

data set to compute the long wave parameters.

5.5.1 RMS Wave Slope

Values of the RMS wave slope are computed from measured surface profiles

using the statistical definition of the RMS wave slope in equation (5.42). Applying this

method to the GME data results in the slope values shown in Figure 5.6, where slope

is plotted against measured wind speeds. Using the same computational method,

the slope as a function of wind speed is shown as computed from the unified surface

spectral model.

Due to averaging across the footprint, slope measurements profiles from

the GME data underestimate the RMS slope. A comparison of slope measurements

relates radar and laser slope measurements as

SLaser = 1.11SRadar + 0.014. (5.46)

To compensate, slope measurements from GME data set are scaled to reflect this

relationship.

5.5.2 Tilt Modulation

The tilt modulation is a measure of the correlation between height and

local tilt angle defined by

λ12 =
E [ζζ2

x]

E [ζ]1/2 [Eζx]
. (5.47)

From the WNL theory, Jackson [15] derives an expression for the total tilt modulation

as a function of the surface PSD such that

λ12 =
4

hls2
l

∫

∞

0

dkW (k)

∫ k

0

dl
(

2k2l + l3
)

W (l). (5.48)

Because the value of interest for the EM bias model is the long wave tilt modulation,

the upper limits of integration in equation (5.48) are changed to ksep to include only

101



0 5 10 15 20
0

0.05

0.1

0.15

0.2

Wind Speed, U, (m/s)

R
M

S 
W

av
e 

Sl
op

e

Slope from Unified Spectrum

Ω = .84
Ω = 1.0
Ω = 1.5
GME−Measured

Figure 5.6: Long wave RMS slope values as a function of wind speed. The lines show
slope values computed from the unified surface spectrum by Elfouhaily, et al. [4].
The scatter plots show RMS slope values of the GME data set computed from the
surface PSD and equation (5.42)
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Figure 5.7: Long wave tilt modulation values as a function of wind speed.The
lines show tilt modulation values computed from the unified surface spectrum by
Elfouhaily, et al. [4]. The scatter plot shows tilt modulation values of the GME data
set computed from the surface PSD and equation (5.48).

the long surface waves when computing values for λ12. After changing the limits of

integration, values of the long wave portion of the unified spectrum are shown in

Figure 5.7. Values of the tilt modulation from the GME data set are shown in the

same figure.

5.5.3 Skewness

The long wave skewness is defined by

λ30 =
E [ζ3]

E [ζ]3/2
. (5.49)

From WNL theory the full wave skewness is described by Jackson [15] and Longuet-

Higgins [14] as the integral equation

λ30 =
12

h3
l

∫

∞

0

dkW (k)

[∫ k

0

dl lW (l)

]

. (5.50)
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Figure 5.8: Long wave skewness values as a function of wind speed.The lines show
skewness values computed from the unified surface spectrum by Elfouhaily, et al.

[4]. The scatter plot shows skewness values of the GME data set computed from the
surface PSD and equation (5.50).

Skewness values computed from surface PSDs of the unified spectrum and GME data

are shown in Figure 5.8.

By assuming ergodicity of the surface profile, the surface skewness can be

computed directly from the measured surface profiles. As seen in Figure 5.8, values

of the skewness coefficient computed directly from the GME profiles are significantly

different from measurements made from the PSDs. Because direct measurements of

the skewness values are small, the skewness bias will be neglected when computing

bias values.

5.6 EM Bias Using Spectral Model for Long Wave Parameters

In this section estimates of the EM bias are computed as a function of wind

speed and compare the estimated values with measurements from the GME data set.
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Figure 5.9: Description of the parameters and coefficients used to compute the esti-
mated EM bias values from the unified surface spectrum [4].

Following the diagram in Figure 5.9, long wave parameters and bias coefficients are

computed from the unified surface spectrum as a function of wind speed and inverse

wave age. The short wave surface spectrum used to compute the bias coefficients

is approximated by fitting a power law spectrum to the tail of the unified surface

spectrum.
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Figure 5.10: Effect of the separation wavenumber, ksep, on EM bias values for ksep =
π/2, π, 3π/2, and 2π.

5.6.1 Separation Wavenumber

To compute the EM bias, a separation wavenumber between the long and

short wave spectra must be established. From equation (5.2), the separation wave-

length, λsep, is typically on the order of one meter. Variations in the EM bias model,

(5.45), as a function of ksep are shown in Figure 5.10 for separation wavelengths

between λsep = 1 m and λsep = 4 m.

For in situ measurements the separation wavelength is constrained to be

greater than the spatial resolution, or spot size, of the radar. Calculations of the long

wave parameters for the GME data are done for separation wavelength of 2.5 m to

avoid high frequency distortion in the surface profiles. I use the same value when

computing bias values in the theory so that ksep = 4π/5.
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Figure 5.11: The magnitude of the EM bias decreases as a function of the incident
wavenumber showing the frequency dependence of the EM bias. The frequency de-
pendence is almost entirely due to the change in the tilt modulation coefficient with
kem.

5.6.2 Frequency Dependence

Variation of the EM bias with electromagnetic frequency has been noted

in a number of experiments. It is seen in Figure 5.3, that the frequency dependence

is primarily due to changes in the tilt modulation bias with incident wavenumber. A

typical example of this frequency dependence is shown in Figure 5.11 where values of

the bias are calculated from the spectral model using U = 7 m/s and Ω = 1. In the

following sections, estimated bias values are computed for an incident wavenumber of

kem = 100 rad/m.
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Figure 5.12: EM bias values computed using a spectral model to get long wave
parameters as a function of wind speed and inverse wave age. The points are in situ

EM bias measurements from the GME data set.

5.6.3 Wind Speed Dependence

Estimates of the EM bias using a surface spectral model are shown in

Figure 5.12 as a function of the wind speed. On the same plot are measured bias

values from the GME data set. Differences between the estimated and measured bias

values are partly due to differences between the measured PSDs and the spectral

model. Using the spectral model to estimate surface parameters results in significant

wave heights that increase exponentially with wind speed. This growth is reflected

in the exponential growth of the bias estimates. Measured significant wave height

values from the GME data set do not reflect this same relationship. Instead it can

be seen that swell is present at low wind speeds, and the growth of measured wave

heights is smaller for the measured values than predicted by the spectral model. These

differences in H are cause of the primary difference in bias estimates seen in the figure.
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Figure 5.13: Relative EM bias, β, values computed with long wave parameters ob-
tained from the unified surface spectrum of Elfouhaily, et al. [4] as a function of wind
speed and inverse wave age. The points are in situ relative bias measurements from
the GME data set.

Figure 5.13 shows estimated and measured values of the relative bias as

a function of wind speed. The large discrepancies in relative bias values that are

apparent in the plot are caused by differences in the PSDs. Differences between

the value are reflected in larger values of significant wave height, slope, and tilt

modulation, than measured values at the same wind speed. Of particular note are the

tilt modulation values that estimated from WNL theory, but have not been measured

directly to verify the accuracy of such estimates.

It can be seen that estimates of the EM bias are not shown in Figures 5.12

and 5.13 for wind speeds less than 2 m/s. Because the dominant wavelength of the

unified surface spectrum is dependent on wind speed, at small wind speeds the value

of the separation wavelength is less than the dominant wavelength. When this occurs
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the long wave height variance, hl, approaches zero, and the results of the model are

non-physical, and are therefore not shown.

5.7 EM Bias Using Measured Long Wave Parameters

To assess the validity of the bias theory, estimated C-band bias values

computed using measured long wave surface parameters are compared with measured

bias values. The contribution of the individual bias terms is also described.

5.7.1 Estimating the Bias

In addition to the long wave surface parameters, computed from the GME

data set, the short wave coefficients must be approximated to estimate the bias.

Coefficient values for each data point are computed from the wind speed measurement

and the spectral model, assuming a value of Ω = 1. A constant value of the coefficients

is assumed such that γ = 0.42 and τ = 0.08. The value of ν is also set to a constant

value of 0.79, reflective of the relationship between m and S in Figure (5.4).

A time series of the bias terms, shown in Figure 5.14, shows that the

EM bias is composed of almost equal contributions from the hydrodynamic bias,

βhydro = −γνS and βtilt = −τλ12. Because the skewness bias, βskew = −κλ30, is

limited to values of small magnitude with an average close to zero, its contribution to

the bias can be neglected. It is also apparent that RMS wave slope and tilt modulation

are strongly correlated so that a two dimensional model of the bias as a function of

S and λ12 is unstable. The instability can be seen when comparing the contour plot

of the bias theory, seen in Figure 5.15, and the least-squares model computed from

the GME data set, in Figure 5.16. Because of the instability, inherent in the data,

the values in the unshaded region are similar, but values in the shaded region can be

seen to have significant differences. It is assumed from the form of the model that the

contribution of the RMS slope and tilt modulation should be complimentary, but not

identical. To develop a better understanding of the EM bias direct measurements of

λ12 are needed.

A direct comparison of the measured and estimated bias values is shown in

Figure 5.17, with the measured values shown as a solid line. The difference between
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measured and estimated bias values is shown in Figure 5.18 where the estimated bias

shown in the top axis is βhydro and the bias in the lower axis is βhydro + βtilt. RMS

error values between the estimated and measured values are σhydro = 2.09 (%H) and

σhydro+tilt = 0.78 (%H).

5.8 Discussion

This paper discusses the derivation and validity of an EM bias model de-

veloped using the physical optics scattering model, hydrodynamic modulation, and

non-Gaussian long wave statistics. The final form of the model expresses the relative

bias as a function of long wave surface parameters. Coefficients of the long wave pa-

rameters are computed from the short wave surface spectrum so that effects of both

long and short ocean waves are included in the EM bias theory.
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The relative bias is shown to be a sum of three bias values, the hydrody-

namic bias, the tilt modulation bias, and the skewness bias, that are each described

as the product of a long wave surface parameter and a short wave coefficient. Expres-

sions for the tilt modulation coefficient and skewness coefficient have been described

in previous models and are similar to expressions derived here. Differences in the ex-

pressions between this model and previous models are due to the use of the physical

optics (PO) scattering approximation, as opposed to the more common geometrical

optics (GO) approximation. By using the PO approximation, changes in the EM bias

as a function of the small wave spectrum can be explained in terms of the physics

related to rough surface scattering from small wave facets. The inclusion of the PO

approximation also emphasizes the influence of scattering from ocean waves that are

of the same order of magnitude as the incidence EM wavenumber, where variations

in these waves are shown to cause of the frequency dependence of the bias.

Using a numerical study of the modulation transfer function, the hydro-

dynamic modulation of short wave heights is shown to be linearly related to surface

displacement through the modulation coefficient, m. By including the modulation co-

efficient in the derivation of the bias theory, the effects of hydrodynamic modulation

are included.

The relationship of m with the RMS wave slope, S, is also investigated.

Using a simplified spectral model for the ocean surface, m and S are shown to be

nearly linearly related. This relationship has been used implicitly in previous models

that have described the bias as a function of wave slope, and provides a physical

mechanism to describe the relationship between the bias and the RMS wave slope.

As a function of wind speed, the validity of the model is examined by

comparison of measured EM bias values and estimated bias values computed from a

surface spectral model of the ocean. Differences in the estimated values are attributed

to differences in the spectral properties between measured surfaces and model surface

spectra. The largest differences are seen between measured and estimated values of

the tilt modulation and surface skewness.
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Measured bias values are also compared with estimated bias values com-

puted from wind and surface profile measurements of the GME data set. Estimated

and measured values from the GME experiment exhibit a strong correlation over the

complete data set.

In summary, the EM bias model derived here combines the contributions

of previous models in a complete and simple description of the bias. Three physical

mechanisms are shown to contribute to the bias, and are each related to the long

wave surface statistics. The contribution of the short wave spectrum is included in

the modulation coefficients, and enter the bias theory as a result of the PO scattering

approximation. Using the bias theory, estimated bias values appear to more closely

approximate measured bias values than previous bias models.
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Chapter 6

Y-ONE Experiment

6.1 Introduction

The error budget for satellite-based mean sea level (MSL) measurements

is dominated by the variance in EM bias estimates. Due to the variance inherent

in the correlation between the EM bias and remotely measurable parameters, new

methodologies are required to improve EM bias estimates. A proposed method to

increase the resolution of MSL measurements is through the used of a wide swath

altimeter to take off-nadir measurements of the ocean surface. A byproduct of this

method is the inclusion of EM bias measurements at off-nadir incidence angles. Using

the angular dependence of the EM bias, the Wide-Swath Ocean altimeter provides a

means of improving EM bias estimates.

The first studies to report off-nadir measurements of the bias were by

Walsh, et al. [65] and Hevizi, et al. [28]. Using airplane mounted radar instruments,

the frequency dependence of the EM bias was reported at C-band and Ku-band

frequencies. Due to changes in the attitude of the airplane, measurements of the EM

bias were also made at off-nadir incidence angles. From these measurements, the

magnitude of the EM bias was shown to decrease with incidence angle.

In this chapter data from the BYU Off-Nadir Experiment (Y-ONE) in situ

study is presented. Using C-band and Ku-band altimeters off-nadir measurements of

the bias were made at incidence angles from −3◦ to 17◦. Descriptions of the collection

procedures, processing, and final data are included.
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6.2 Experiment Description

Measurements in the Y-ONE study were made from the Brazos A-19 nat-

ural gas platform of the Shell Exploration and Petroleum Company in the Gulf of

Mexico from March 16 to April 30, 2003. The platform is located south of Houston,

Texas at 28o 10′ N and 95o 35′ W with a minimum fetch of 58 km to the north. The

depth of water at the Brazos A-19 platform is 40 m.

The Brazos A-19 platform complex consists of three rectangular platforms,

designated B, C, and D, that are each 20 m by 50 m. Walkways of 50 m and 60 m

connect platforms B and D and platforms B and C, respectively, so that the platform

complex is in the shape of an L, as seen in Figure 6.1.

The Y-ONE radar and laser systems were deployed in the middle of the

60 m walkway between platforms B and C, approximately 18 m above the ocean sur-

face. A photograph of the walkway where the instruments were deployed is shown in

Figure 6.2. Ocean surface measurements were made using continuous wave Doppler

radar systems with center frequencies at 5.2 and 14 GHz. Antennas for the 5.2 GHz

system were dish antennas with a 60 cm diameter, corresponding to a spot size of

approximately 1.8 m in diameter. The 14 GHz system employed horn antennas that

were 20 cm on a side corresponding to a spot size approximately 1.7 m across. The

radar systems were rotated through an angular range from 0◦ to 17◦ with measure-

ments taken at −3◦, −2◦, −1◦, 0◦, 1◦, 2◦, 3◦, 5◦, 8◦, 11◦, 14◦, and 17◦.

Simultaneous surface measurements were made with a system of three

Optech Sentinel 3100 laser rangefinders. The rangefinders were mounted in an equi-

lateral triangle, 1 m on a side, with one laser footprint co-located inside the footprints

of both radar systems. The footprints of the laser rangefinders were approximately

13 cm in diameter, with an height measurements accurate to within 2 cm. A diagram

of the configuration of the radar and laser systems in shown in the inset of Figure 6.1,

and a photograph of the mounted system including the radar and laser instruments

is shown in Figure 6.3.

Environmental data was collected using a Vantage Pro weather station

mounted on the northwest corner of platform C at a height of 44 m. Measured wind
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Figure 6.2: View of Brazos-A19 from platform D. The 60 m walkway between plat-
forms B and C where the radar and laser instruments are mounted is shown in the
upper part of the photograph.
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Figure 6.3: Deployment of the Y-ONE experiment on the walkway between Platform
B and Platform C on Brazos A-19.

speeds were converted to an equivalent wind speed at 10 m by assuming a logarithmic

wind velocity profile and a neutral atmosphere. This adjustment reduced measured

wind speed values by approximately 15%.

6.3 Data Processing

Five minute records of the Y-ONE experiment include one minute samples

of the local wind and weather conditions, distance measurements from each of the

rangefinders at 8 Hz, and in-phase and quadrature channels of each of the radar

systems sampled at 3 kHz.

6.3.1 EM Bias Calculations

The EM bias is defined as the normalized correlation between the surface

height of the ocean, ζ, and the backscatter coefficient profile, σ(ζ),

ε =
E [σ◦(ζ)ζ]

E [σ◦(ζ)]
. (6.1)
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Using sampled measurements of the surface profile and backscattered power, the EM

bias is computed from Y-ONE measurements as

ε =

∑

i σ
◦

i ζi
∑

i σ
◦

i

. (6.2)

To normalize the returned power measurements, σ◦

m, as a function of height, correc-

tions are made to account for changes in the spot size and the free space dispersion

of electromagnetic power. By combining the R2 relationship of spot size to distance,

R, and the R−4 dependence of the backscattered power, the normalized backscatter

coefficient profile, σ◦(ζ), can be expressed as

σ◦(ζ) =
Kc(R◦ − ζ)2

R2
◦

σ◦

m(ζ) (6.3)

where Kc is a calibration constant, R◦ ≈ 18 is the mean distance to the ocean surface,

and ζ is the surface profile [12, 13].

6.3.2 Data Editing

Editing of the Y-ONE data is conducted to eliminate times of instrument

malfunction and spurious data values. The principle cause of instrument malfunction

was traced to temporary failures of the oscillators or power supplies in the Ku-band

system. These interruptions reduce the number of valid records from 11700 to a total

of 9245 usable 5 minute records at C-band and 4291 records at Ku-band. From these

records there are 845 and 391 nadir pointing values for the C-band and Ku-band

systems, respectively.

6.3.3 Power Measurements

To compute the EM bias from tower data accurate measurements of the

backscattered power are required. In the Y-ONE experiment, the backscatter power

measurements are computed as

σ◦ = Kc

√

I2 + Q2 (6.4)

where I and Q refer to the in-phase and quadrature channels, respectively. The

correlation between the power and surface profile measurements are then combined,

as described in equation (6.1), to compute the bias.
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Figure 6.4: Typical power values for a 5 minute record are plotted against surface
displacement for nadir measurements of the surface. The abrupt limit on the higher
power values is most likely a result of the saturation of the amplifiers in the receiver.
Power levels were adjusted to restore the expected distribution in Figure 6.3.3.

During the acquisition process of the Y-ONE experiment, the backscattered

power measurements of many five minute records were distorted by a nonlinearity

effect. An example of the recorded power measurements can be seen in Figure 6.3.3,

in black, where a cutoff for large power signals can be seen near 3 dB. This soft

limit was likely caused by saturation of an amplifier in the radar instruments, where

for input power levels that are too large, the signal amplification enters a non-linear

region.

Because the saturation characteristics of an amplifier are one-to-one, the

non-linearities introduced into the power measurements can be inverted. Inverting

the saturation effects is done by fitting the average power histogram at nadir from

the Y-ONE data to a similar histogram from the Gulf of Mexico (GME) data set,

a previous tower experiment conducted at the same location [12]. Using a simple
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polynomial fit the power histogram is made to approximate the Rayleigh distribution

described by Warnick, et al. [64]. The polynomial used to remove the saturation

effects is a power series expansion about the peak, p◦ = 0.8, such that

σ◦ =







σ◦ p ≤ p◦

σ◦(1 + 0.45δ3
p − 0.15δ4

p + .04δ6
p) p > p◦







(6.5)

where σ◦ is the recorded Y-ONE power measurement and δp is the expansion term

(σ◦ − p◦). Power histograms for the Y-ONE data set, corrected and uncorrected,

are shown in Figure 6.3.3 with a similar plot from the GME data set. Applying the

correction factor, restores the linear dependence of the backscattered power on surface

displacement as seen in Figure 6.3.3, where the corrected values are shown in gray.
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Figure 6.5: Histograms of backscattered power values as a function of surface displace-
ment. The clipping effect can be seen in the original Y-ONE data as an upper limit
of power values. By applying the correction factor in equation (6.5), the corrected
data had a distribution similar to that seen in the GME data set.

126



Two important points should be noted about the power correction. First,

this nonlinear power scaling is displacement independent, and therefore does not

add any displacement-dependent information to the data set. Rather, it makes a

corrective increase to the effective weight in EM bias of high return powers, which

naturally tend to correlate with negative displacements. Second, the corrupted power

signals do not affect the surface profiles, so that the surface profiles used to compute

the bias measurements are not changed by the power correction.

6.3.4 Surface Profile Verification

Direct measurements of the ocean surface displacement are made using the

laser rangefinder nearest the radar systems. Due to the proximity of the laser and

radar systems, the footprints of the three systems overlap when the radars were at

nadir.

An oversight in data collection causes surface measurements for the laser

rangefinders to begin prior to the collection of radar samples with an unknown tem-

poral offset. This temporal offset is estimated by shifting the starting time of the laser

instruments to maximize the correlation between the laser and radar surface profiles.

This method ensures that the ocean surface measured by the co-located laser and

radar footprints are the same.

Because Doppler radar systems do not provide absolute distance measure-

ments, surface profiles are computed from phase angles for the radar measurements.

After decimating the signal to 300 Hz, the instantaneous phase angle, θp was com-

puted as

θp = tan−1

(Q
I

)

, (6.6)

and unwrapped to compute the surface profile, ζ, as

ζ =

(

θ

2π

)(

λem
2

)

(6.7)

where λem is the electromagnetic wavelength. The covariance processing technique

used by Arnold, et al. [12] and Melville, et al. [13] in previous tower experiments was

also implemented and gave identical results.
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Figure 6.6: Typical surface profile from C-band, Ku-band, and laser rangefinder
measurements.

Previous EM bias tower experiments have noted that surface profiles com-

puted from Doppler radar systems tend to underestimate the extrema of ocean surface

profiles as a result of averaging over the radar footprint [12]. The averaging is most

notable near the troughs and crests of the surface. At these times, the velocities

of different parts of the footprint have different signs, so that the average velocity

across the footprint is near 0, and the heights of the surface peaks and troughs are

underestimated. A comparison of typical surface profiles created from the radar and

laser systems can be seen in Figure 6.3.4.

Differences in the Doppler and radar measurements of the surface become

more apparent when computing statistical properties of the surface, such as the sig-

nificant wave height,

H = 4hl, (6.8)
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Figure 6.7: Significant wave height values computed from the laser measurements are
almost a constant 10 cm larger than values computed from measurements made with
the C-band radar.

where h2
l is the surface height variance. Using a Thorn infrared wave gauge and

Doppler measurements of the surface profile, Arnold, et al. [12] show that the Doppler

measurements underestimate significant wave heights in the GME data set by a con-

stant 10 cm Arnold, et al. [12]. A similar relationship can be seen for Y-ONE mea-

surements in Figure 6.3.4, where the least-squares linear fit between the significant

wave height values from the two different systems is described by

HLaser = 1.03HRadar + .09, (6.9)

in units of meters.

To compensate for the inaccuracies inherent in the Doppler surface mea-

surements, ocean surface statistics presented in this paper are computed from the

laser rangefinder profiles. These include significant wave height, RMS wave slope, tilt

modulation and surface skewness. We note that surface profiles from the laser are not
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used to compute bias values. Because EM bias calculations are strongly dependent

on the temporal correlation of power and surface profile, the temporal shifts of the

rangefinder measurements are not sufficiently accurate to compute the bias. To adjust

for the height differences between the laser and radar measurements, the magnitude

of the radar surface profiles are scaled according to equation 6.9 to compute the bias.

An important feature of the Y-ONE data is the presentation of another

set of EM bias measurements at nadir. In support of previous data sets by Arnold,

et al. [12] and Melville, et al. [13], I describe empirical relationships between the

bias and sea state parameters. Previously, empirical model have been developed from

tower data that describe the EM bias as a function of wind speed, significant wave

height, H, and RMS wave slope, S. Other bias theories, developed from mathematical

descriptions of the ocean surface, have described the bias as a function of higher order

moments of the surface, such as skewness, λ30, and tilt modulation, λ12 [5, 16, 27]

6.3.5 Long Wave Parameter Definitions

Values of the RMS wave slope are computed by discretizing the statistical

definition of the RMS slope,

S2 =

∫

k2W (k)dk, (6.10)

where W (k) is the long wave surface PSD [13, 64]. By making use of the deep wave

dispersion relation,

k =
ω2

g
, (6.11)

the RMS slope can be computed using the relation between the temporal PSD,WT (ω),

and the spatial PSD, W (k),
∫ (

ω2

g

)2

WT (ω)dω =

∫

k2W (k)dk, (6.12)

developed by [34].

The long wave skewness parameter is defined as the third central moment

of the surface profile normalized by the cube of the standard deviation, and can be

computed as

λ30 =
E [ζ3]

E [ζ]3/2
. (6.13)
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Figure 6.8: The relationship between the EM bias values and significant wave height
from the Y-ONE data set.

where ζ is the long wave surface profile.

The long wave tilt modulation combines measurements of the surface dis-

placement and slope as a measure of the correlation between wave height and surface

tilt. Defined as,

λ12 =
E [ζζ2

x]

E [ζ]1/2E [ζx]
, (6.14)

the tilt modulation is computed using principles of the weakly nonlinear theory, so

that

λ12 =
4

hls2
l

∫

∞

ksep

dkW (k)

∫ k

0

dl
(

2k2l + l3
)

W (l), (6.15)

as described by Jackson [15].

6.3.6 EM Bias at Nadir

Values of the EM bias ranged from −10.4 cm to 0.5 cm for the C-band

system and from −8.0 cm to 0.0 cm at Ku-band over the course of the Y-ONE
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Figure 6.9: Correlation of the RMS wave slope, S, with the relative bias, β, at C-band
(+) and Ku-band (o).

experiment. When plotted against significant wave height, in Figure 6.3.5, the first

order, linear relationship with the significant wave height is clearly seen. A least

squares fit of the EM bias to the significant wave height for Y-ONE is

εC(cm) = −3.38H + 1.46 (6.16)

εKu(cm) = −3.04H + 0.7 (6.17)

where the subscripts C and Ku refer to the frequency of the scatterometer. Values

of the normalized bias, defined as

β =
ε

H
, (6.18)

range from −4.3% to 0.7% of the H at 5 GHz and from −3.53% to −0.1% of H at

14 GHz.

Empirical relationships between the RMS slope and relative bias have been

investigated in a number of in situ and laboratory experiments [13, 23, 64, 66]. Fig-

ure 6.3.6 shows the relationship between β and S from the Y-ONE data where the
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Figure 6.10: Correlation of the tilt modulation, λ12, with the relative bias, β at
C-band (+) and Ku-band (o).

linear correlation reported in previous experiments can be clearly seen. Values of the

RMS slope range from .04 to .14 over the course of the experiment.

The relationship of the relative bias with the long wave skewness and tilt

modulation can be seen in Figure 6.3.6 and Figure 6.3.6, where a negative correlation

between the λ12 and λ30 and β is consistent with the bias theory in equation (5.45).

I also note that the relative bias is less correlated with the skewness than with S and

λ12. The tilt modulation ranges from 0.07 to 0.39, and skewness varies from −0.6 to

0.7.

6.3.7 GME and Y-ONE Comparison

The GME and Y-ONE data sets were collected from the same location,

allowing for a comparison of EM bias and surface statistics. With the Y-ONE exper-

iment deployed during March and April, 2003, and the GME experiment deployed
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Figure 6.11: Correlation of the surface skewness, λ30, with the relative bias, β at
C-band (+) and Ku-band (o).

from December to May, 1991-1992, the data also had an overlap with respect to the

time of year.

Because the profile statistics from the Y-ONE data are computed using

the laser rangefinders, they are not directly comparable to the GME data. To make

a direct comparison between bias measurements from the two experiments, GME

values of the significant wave height and RMS slope must be adjusted. For the

significant wave height, the relationship between laser and radar data is addressed in

equation (6.9). Using Y-ONE data, radar and laser measurements of the RMS slope

can be related by

SLaser = 1.11SRadar + 0.014. (6.19)

A plot of the relationship is shown in Figure 6.3.7.

Using these relationships to modify the GME values of S and H allows

a direct comparison of the bias as a function of the significant wave height, seen in
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Figure 6.12: Comparison of RMS slope values computed from the laser and C-band
radar measurements.

Figure 6.3.7. The relationship of ε and H has a similar magnitude and slope in both

data sets.

The relationship of the relative bias with RMS slope for both data sets is

shown in Figure 6.3.7, using the correction factor from equation (6.19).

6.4 Summary

This chapter presents off-nadir EM bias measurements from the BYU Off-

Nadir Experiment (Y-ONE) conducted in the Gulf of Mexico in 2003. Using C-band

and Ku-band radar systems and laser altimeters, the EM bias is calculated directly

from ocean surface profiles and backscattered energy returns. A description of the

processing methods and modeling parameters is followed by a summary of the Y-ONE

data set. Y-ONE measurements are compared with data from a previous experiment

conducted from the same platform. The comparison shows similar values for the bias
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and surface statistics from the two data sets, including the correlation of the bias

with significant wave height and RMS slope.

Using measurements from the Y-ONE experiment, the angular dependence

of the bias is shown to be caused by a phase shift between the surface profile and

backscattered power. The resulting phase shift causes the magnitude of the bias to

decrease at small incidence angles.

Estimated bias values calculated using the off-nadir bias theory show good

agreement with measurements from the Y-ONE data set. The magnitude of estimated

and measured values of the bias are shown to decrease with incidence angles up to

approximately, θ = 15◦, and have increasing positive values for larger incidence angles.

An empirical fit of β(θ) = β(0) cos(θπ/θ◦2) is developed from the measured Y-ONE

bias values.
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Chapter 7

Off-Nadir EM Bias Model

7.1 Introduction

In this chapter the nadir EM bias theory developed in Chapter 5 is gener-

alized to off-nadir incidence angles. The nadir EM bias theory is derived using the

physical optics (PO) scattering approximation, and includes the effects of hydrody-

namic modulation and non-Gaussian long wave statistics. In generalizing to off-nadir

incidence angles, the EM bias is shown to have an angular dependence that is a sum

of the hydrodynamic and tilt modulation biases. The resulting theory shows that the

magnitude of the EM bias decreases with incidence angle.

7.2 Off-Nadir Bias Model

Generalizing the EM bias model in equation (5.45) to off-nadir incidence

angles is accomplished by including angular dependent terms in the PO scattering

model, so that the off-nadir bias theory reflects changes in the short wave scattering

with angle.

7.2.1 Derivation

From the definition in equation (6.1), the EM bias can be rewritten as,

ε =

∫ ∫

ζσ◦(ζ, θ)P(ζ, θ)dζdθ
∫

σ◦(ζ, θ)P(ζ, θ)dζdθ
, (7.1)

where P (ζ, θ) is the joint height-slope distribution determined by the long ocean

waves. This formulation describes the bias as scattering from small wave surface

facets where the local incidence angles and heights are described by P (ζ, θ).

By assuming small local incidence angles such that

θ ≈ tan θ ≈ ζx, (7.2)
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and using the weakly non-linear theory [14] the joint-height distribution of the long

waves can be described as a Gram-Charlier expansion of a Gaussian distribution

[5, 16],

P (ζ, ζx) =
e−

1

2
(η2+η2

x)

2πσσx

×
[

1 +
λ30

6
H30(η, ηx) +

λ12

2
H12(η, ηx)

]

. (7.3)

To simplify notation, the PDF is expressed in terms of the normalized height, η =

ζ/hl, and the normalized surface slope, ηx = ζx/sl, where h2
l and s2

l are surface

height variance and surface slope variance, respectively. The symbols H30(η, ηx) and

H12(η, ηx) refer to Hermite polynomials defined by

H30(η, ηx) = η3 − η (7.4)

H12(η, ηx) = η(η2
x − 1). (7.5)

Scattering by the short ocean waves is modeled using the physical optics

scattering approximation

σ◦(ψ) =
k2
em cos2 ψ

4π

∫ ∫

eikbxe−λ(1−C(x,y))dxdy (7.6)

where ψ is the incidence angle of the electromagnetic wave, kb = 2kem sinψ and

λ = (2kemhs cosψ)2. Note that for ψ = 0, the terms kb = 0 and cos(ψ) = 1 which is

the result used to create the EM bias model at nadir. The correlation function

C(x, y) =
1

h2
s

∫

W (k)eik·rdk (7.7)

is the Fourier transform of the isotropic, normalized short wave PSD, h−2
s W (k) where

h2
s is the small wave height variance. For the remainder of the paper, the explicit

dependencies of the correlation function are dropped so that C = C(x, y).

To include hydrodynamic modulation in the nadir EM bias model, we

approximate the short wave modulation described by the modulation transfer function

of Alpers and Hasselmann [63] as a linear function of the surface displacement,

hs = h◦ (1 +mη) , (7.8)
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where h◦ is the average short wave height, and m is the modulation coefficient. As

part of the analysis of m in Chapter 5, it is shown that the relationship between the

modulation coefficient and RMS wave slope is nearly linear so that m = νS. By

using this relationship and substituting equation (7.8) into the PO scattering model,

equation (7.6), the backscatter profile includes the hydrodynamic modulation in the

EM bias model as a function of the RMS slope.

The final form of the EM bias model is created by substituting the joint

height slope PDF from equation (7.3) and the PO approximation from equation (7.6),

into the EM bias definition, (7.1) and integrating out the slope dependence so that

ε = −H (γνS + τλ12 + κλ30) . (7.9)

This form is identical to the nadir EM bias model in equation (5.45), with the angular

dependence of the model contained in the small wave coefficients

γ =
1

2

∫ ∫

λ◦(1 − C)ei2kemxψe−λ◦(1−C)e−µ
2/2dxdy

∫ ∫

e−λ◦(1−C)e−µ2/2dxdy
(7.10)

τ =
1

8

∫ ∫

ei2kemxψµ2e−λ◦(1−C)e−µ
2/2dxdy

∫ ∫

e−λ◦(1−C)e−µ2/2dxdy
(7.11)

κ =
1

24
, (7.12)

where µ = 2xkemsl, λ◦ = (2kemh◦)
2.

7.2.2 Model Analysis

In equation (7.9), the EM bias is described as a function of long wave

surface statistics, S, λ12, and λ30 modified by the small wave coefficients, γ, τ , and

κ. More accurately, the small wave coefficients are functions of EM scattering from

the small ocean waves. This dependence on EM scattering causes the small wave

coefficients γ and τ to be the source of the angular dependence in the off-nadir EM

bias model.

The small wave coefficients are modeled using a power law PSD computing

numerical values for γ and τ requires the specification of the exponent p, the separa-

tion wavenumber, ksep, and an average small wave surface height variance, h2
◦
. The
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Figure 7.1: Dependence of the hydrodynamic modulation coefficient, γ, with incidence
angle for k = 100 and minimum wavenumber of kmin = 2π. For a separation wave
number of ksep = 2π, typical values of h◦ for an ocean surface are greater than .01 m.

value of the separation wavenumber is fixed at ksep = 4π/5, and I refer the reader to

Chapter 5 for further discussion of the impact of ksep on the estimated EM bias val-

ues. The exponent of the small wave power spectrum is also approximated as p = 3.

With these values, the incidence angle dependence of γ is shown in Figure 7.2.2 for

various values of h◦. For the same short wave PSD values, the angular dependence

of τ is shown in Figure 7.2.2.

The angular dependence of γ, caused by differences in roughness at the

crests and troughs of the waves, creates the hydrodynamic bias. At large incidence

angles the more Lambertian scattering from the wave crests will reverse the bias

effect so that there is a larger return from the crests than from the troughs. At small

incidence angles, shown in Figure 7.2.2, this transition from positive to negative values

can be seen.
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Figure 7.2: Dependence of the tilt modulation coefficient, τ , with incidence angle for
kem = 100. For a separation wave number of ksep = 2π, typical values of h◦ for an
ocean surface are greater than .01 m.
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Changes in the tilt modulation bias with angle are caused by a larger

concentration of horizontal scattering facets near the troughs than the crests of ocean

waves. This results in a larger specular return for nadir pointing instruments. With

increasing incidence angle, the steeper crests create a larger backscatter return than

the flatter troughs, and the bias effect is reversed. It is also of interest to note that

with larger small wave heights the angular dependence of the tilt modulation is greatly

reduced. This effect results from a more Lambertian EM scattering pattern for larger

small waves. For large enough waves this EM scattering becomes isotropic, and the

tilt modulation bias vanishes.

Different from γ and τ , the value of κ in the off-nadir bias model does not

show an angular dependence. In a study on bistatic scattering from an ocean surface

with skewness, Picardi, et al. [67] showed that the backscattered power has a angular

dependence described by cosψ. With the small incidence angle approximation used

in this study, this effect can be neglected so that the skewness coefficient does not

have an angular dependence.

7.3 Off-Nadir Measurements

In this section I describe the angular dependence of the EM bias as seen

in the Y-ONE data set and the off-nadir bias model. As part of this discussion I

analyze the cause of the off-nadir dependence in the Y-ONE measurements. A simple

equation that can be used to describe the off-nadir dependence of the bias is also

developed.

7.3.1 Cause

From equation (7.1), the bias is caused by the negative correlation between

the backscattered power and surface displacement. This relationship is shown in the

upper axis in Figure 7.3.1, where the cross-correlation function between σ◦ and ζ

is shown. At off-nadir incidence angles, a phase shift between σ◦ and ζ is intro-

duced. This shift can be seen in the lower axis of Figure 7.3.1, where an obvious

time shift can be seen in the maximum correlation between σ◦ and ζ. The result is

an effective decorrelation that reduces the magnitude of the bias for small off-nadir
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Figure 7.3: Correlation of backscattered power and surface height at 0◦ and 17◦

incidence angles. The temporal shift in the minimum correlation point causes a
decrease in the magnitude of the EM bias values.

incidence angles. With larger incidence angles, the phase shift becomes larger, until

the backscattered power and surface displacement are in phase, resulting in a positive

correlation and positive bias values.

7.3.2 Theory Estimates

In the development of the off-nadir bias theory, the angular dependence is

shown to be a function of the small wave height, hs, through the bias coefficients,

γ and τ . Examples of the angular dependence of the bias are shown in Figure 7.3.4

for different values of S and λ12. The bias coefficients, γ and τ , are computed by

approximating the short wave height as a constant hs = .02 m. Using this constant

value and setting ν = .6, as a typical value from general ocean surface conditions.

Because γ and τ are dependent on the small wave surface height, the constant value

of hs leads to example curves with the same incidence angle for β = 0. This effect

145



can be seen in Figure 7.3.4 where example curves show β = 0 near θ = 16◦. For

different small wave conditions the intersect angle can change such that larger values

of hs result in a larger intersect angle.

7.3.3 Y-ONE Measurements

Average relative bias measurements as a function of angle are shown in

Figure 7.3.4 with error bars indicating one standard deviation of the data. As antic-

ipated, measured bias values increase from a minimum value at θ = 0, to β = 0 near

15◦. For incidence angle larger than 15◦, the average bias value is positive.

7.3.4 Empirical Fit

To simplify the relationship of the bias with incidence angle, a fit to the

model can be developed from the Y-ONE measurements. Using the value of the bias

at nadir, β(0), and the angle, θ◦, at which β = 0 a cosine curve is fit to the average

bias values so that,

β(θ) = β(0) cos

(

π

2

θ

θ◦

)

. (7.13)

With average values from the Y-ONE data of β(0) = −2.58 and θ◦ = 15◦, an empirical

fit to the average Y-ONE data is shown in Figure 7.3.4. The result is an empirical fit

to the data that requires only the normalized bias at zero and the estimated zero-bias

intersect angle.

7.4 Summary

To estimate the angular dependence of the bias, an off-nadir bias model

is developed by generalizing a recently developed PO-based EM bias model to off-

nadir incidence angles. The resulting model describes the bias as function of long

wave surface parameters, with coefficients that are functions of EM scattering from

short ocean waves. Changes in the distribution of backscattered power with incidence

angle are reflected in the hydrodynamic modulation coefficient and tilt modulation

coefficient, leading to a decrease in magnitude of the bias as a function of incidence

angle.
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Chapter 8

Conclusion

In July, 1991 scientists gave the first public predictions of the upcoming

El Niño event. With the months of warning, governments and relief agencies were

able to implement plans to cope with the incipient flooding, hurricanes, and drought

that accompany the El Niño event. These preparations are estimated to have saved

hundreds of lives and millions of dollars worth of damage [68].

Advanced preparation for El Niño is one of many results of an improved

understanding of the forces of nature. By increasing our knowledge of the geophysical

forces of the planet we have also created better local weather prediction, safer shipping

channels, and improved fishing yields. These, and many other, advances create a

better life for the human race.

8.1 Contributions

The research contributions in this dissertation are part of the effort to

improve our measurements of the mean sea level. More specifically, I focus on im-

proving EM bias estimates. As the largest source of error in altimeter measurements,

improvements in this area can lead to better understanding in other areas. Specific

contributions in this dissertation include improved empirical modeling, the develop-

ment of a theoretical bias model, and an in situ EM bias experiment.

8.1.1 Model Analysis

Empirical EM bias models are limited by the correlation of the bias with

the estimation parameters. For operational models, the parameters that are most

commonly used are the wind speed and significant wave height. By analyzing bias
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models created from these parameters I show that the accuracy of current operational

bias models is limited by the inherent variability between the estimation parameters

and the bias.

With these inherent limitations, the accuracy of empirical models can only

be improved by using other estimation parameters. The estimation parameter used

in this study is the RMS wave slope. A study of the dependence of the relative EM

bias as a function of the slope, wind speed, and significant wave height, shows that

the EM bias is most strongly correlated with the RMS wave slope. In addition, the

information in the significant wave height is complementary to the RMS wave slope so

that by combining the two parameters, the variance in EM bias estimates is reduced

to less than 1 cm.

8.1.2 Nonparametric Regression

Efforts to improve operational EM bias models also include modeling

schemes beyond the normal least squares estimates. One modeling technique known

as nonparametric regression (NPR) creates local polynomial estimates of the bias,

rather than a global fit from the entire data set. The result is a model that can more

accurately model the bias value in data poor regions of the of the parameter space,

reducing the overall estimation errors.

In applying nonparametric modeling techniques to the GME data set, the

resulting bias models shows slight improvement over models created using the least

squares method. Of more importance is the increased similarities between the satel-

lite and tower based models. In using the nonparametric estimation techniques the

historical offset between the models is significantly reduced. I also show that using

NPR in conjunction with the RMS wave slope creates models with an error variance

near 0.33 cm.

8.1.3 Rough Surface Scattering

The next area of research is a study of the validity of rough surface scat-

tering models. Of primary interest is the physical optics (PO) scattering approxi-

mation, and its application to surfaces described by power law and Gaussian power
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spectral densities. Using numerical simulations of electromagnetic scattering from

a one-dimensional surfaces, the validity and angular dependence of the scattering

models is determined. Results from the study show that the classic PO validity crite-

rion, based on surface curvature, does not accurately describe the region of validity.

Instead, a new validity criterion is developed that is a function of the surface slope.

Validity criteria for the other PO-based models are also developed, and show a similar

dependence on the surface slope parameter.

8.1.4 EM Bias Model

A central contribution of this dissertation is the development of an EM bias

theory using the PO approximation. By combining hydrodynamic modulation, tilt

modulation, and skewness into a single bias theory, a comprehensive EM bias model

is developed. The bias theory includes contributions from previous bias models in a

form that is easier to compute, and more descriptive of the physical mechanisms that

create the bias. A comparison of estimated bias values with in situ measurements

also shows that the bias theory is more representative of measured bias values.

A significant development in this model is the inclusion of the PO approx-

imation to model the bias. Because most previous models have been developed using

the simpler GO approximation, the EM scattering from centimeter scale waves is

neglected. In the analysis of the bias theory, I show that scattering from the small

scales waves has a major impact on the final bias value. This understanding of the

physical causes of the bias is an important contribution to the EM bias community.

8.1.5 BYU Off-Nadir Experiment

The design, deployment, and analysis of the Brigham Young University Off-

Nadir Experiment (Y-ONE) resulted in three important contributions to the study of

the EM bias. First, the Y-ONE study provided another set of in situ measurements

of the EM bias in continuation of the GME data set. Second, the deployment of

the laser rangefinders confirm measurements of the Doppler radar systems. The final

result is the first extensive study of the angular dependence of the EM bias. Using

measurements from C-band and Ku-band radar systems, measurements of the EM

151



bias are taken at incidence angles from 0◦ to 17◦. These measurements show that the

magnitude of EM bias values decrease with incidence angle up to approximately 17◦

where the bias approaches 0. This experiment is conducted in support of the recently

proposed Wide Swath Ocean Altimeter, that will use the angular dependence of

backscatter measurements to improve estimates of the mean sea level.

8.1.6 Off-Nadir EM Bias Model

The final contribution is the generalization of the EM bias model to off-

nadir incidence angles. Changes in the EM bias with angle are caused by the angular

dependence of the short wave scattering. Because of the inclusion of the PO approx-

imation, the importance of the short wave scattering is better understood, and the

physics that cause the bias are more clearly described. Off-nadir estimates of the bias

are also shown to accurately model the angular dependence of the measured EM bias

values from the Y-ONE experiment.

8.2 Future Research

The contributions in this dissertation have advanced the understanding of

the EM bias in a number of ways. With these advances come the possibility of other

lines of research that can be further investigated.

8.2.1 Two-dimensional Model

The derivation of the bias model described in this dissertation uses the

assumption of long crested, long waves. This assumption explicitly reduces the long

wave surface spectrum to a one-dimensional surface. A further area of research could

use a more complete description of the EM bias that includes two-dimensional long

wave surface statistics. With the two-dimensional model the model will include a

complete description of the ocean surface.

8.2.2 Angular Dependence

Due to the nature of satellite measurements, theoretical models derived

from the surface statistics are not directly applicable. Theoretical models describe
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the bias as function of long wave surface statistics with scattering from the short

wave facets, but large footprints of the satellite based measurements preclude the

measurement of the small scale surface features.

The development of the Wide-Swath Ocean Altimeter, has been proposed

as a method to improve the accuracy of mean sea level measurements. By using

multiple look angles, the angular dependence of the backscattered energy can be

exploited to improve the estimates. Included in the changes of the backscattered

energy are changes in the bias. With the multiple look angles, the changes in bias

measurements can be fit to a curve described by the off-nadir bias model, yielding a

more accurate estimate of the bias at nadir.

8.2.3 Wave Slope Measurements

The dependence of the EM bias on the RMS wave slope has been well

established in this research. However, the measurements that have been reported

from the tower experiments are based on a number of assumptions relating surface

profiles in time to spatial slope values. A check of the validity of the RMS slope

approximation used in this work would be helpful by including spatial measurements

of the ocean surface. The laser rangefinders used in the validation studies of the radar

data can be deployed and more accurately calibrated to attain sufficient accuracy for

these measurements.

8.2.4 Tilt Modulation

A salient feature of the EM bias model is the dependence of the bias on

two long wave statistics, RMS wave slope and tilt modulation. Due to data from in

situ experiments, laboratory measurements, and theoretical studies, knowledge on the

RMS wave slope and its relationship with the bias is fairly extensive. Conversely, little

is known about the tilt modulation. Questions remain about the physical mechanisms

that cause the bias, its relationship with the long and short wave surface spectra, and

its correlation with the RMS slope. Further studies on the tilt modulation and its

relationship with the EM bias could provide significant information to improve the

accuracy of EM bias estimates.
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8.3 Summary

With the contributions made in this dissertation, understanding of the EM

bias has been greatly improved. By including contributions that relate to current

operational models, the development of a more accurate EM bias theory, and the

ground work for future methodologies I have touched on many of the major issues

involved in this area of research.
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Appendix A

Definition of the Electromagnetic Bias

The electromagnetic bias results from a difference between the true mean

sea level (MSL), ζ◦, and the surface height associated with the median backscattered

power measured by the altimeter. By setting the true MSL to zero, the EM bias can

then be expressed as

ε = ζ◦ − ζ̂◦ (A.1)

= −ζ̂◦. (A.2)

From [15], it is noted that for satellite based altimeter applications, the

impulse response, p(x), of the surface is approximately proportional to the scattering

cross-section density, σ◦(z), such that

p(x) =

∫ x

−cτ/2

σ◦(z)dz (A.3)

where c is the speed of light, and τ is the time delay between the MSL and the highest

surface peak. With this definition, the approximated MSL, ζ̂◦, can be computed as

the distance when
∫ x

−∞
σ◦(z)dz

∫

∞

−∞
σ◦(z)dz

=
1

2
. (A.4)

With the assumption of an almost Gaussian distribution of σ◦(z), the lower limit on

the integrals can been changed to ∞ with little effect on the result.

Interpreting equation A.4 as a PDF, the value of ζ̂◦, is seen to be the

median of the returned power. By approximating the median with the mean for the
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near-Gaussian, σ◦(z), the EM bias can be expressed as

ε =

∫

z

(

σ◦(z)dz
∫

σ◦(z)dz

)

. (A.5)

=

∫

zσ◦(z)dz
∫

σ◦(z)dz
. (A.6)

Expressing this in terms of the expected value results in the common expression of

the EM bias,

ε =
E[zσ◦(z)]

E[σ◦(z)]
(A.7)
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