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ABSTRACT

ALGEBRAIC RECONSTRUCTION ALGORITHMS FOR REMOTE SENSING

IMAGE ENHANCEMENT

Matthew Willis

Department of Electrical and Computer Engineering

Master of Science

This thesis explores algorithms used for satellite remote sensing image recon-

struction. The primary aim is to develop and study algorithms for high resolution

image reconstruction from orbital radiometer and scatterometer data. The discus-

sion �rst focuses on the MART Maximum Entropy (ME) reconstruction algorithm

and then extends the MART algorithm to include other forms of ME algorithms.

These several ME algorithm forms are studied to compare stable convergence rates

and performance in the presence of noise. Column normalized methods, a class of

algorithms with good artifact suppression, are then introduced. The convergence

properties of the Simultaneous Algebraic Reconstruction Technique (SART) algo-

rithm are studied to understand the behavior of this class of algorithms. Structural

comparisons of SART with the SIR algorithm give insight into the success of the

SIR algorithm in remote sensing image reconstruction. This thesis concludes with

experimental performance comparisons of several di�erent algorithms for both real

and simulated data.
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Chapter 1

Introduction

With humankind's recent interest in global climatology and the impact that

we have made on our environment, there is a pressing need for fast, accurate mea-

surements of key global parameters such as ocean wind speed, ocean height, and

land and ice characteristics. Some of the land and ice characteristics that are of in-

terest include snow-cover classi�cation, plant and soil moisture content, vegetation

classi�cation, and polar ice-extent mapping.

Microwave satellite instruments, such as radiometers and scatterometers, play

an important role in helping determine these key global parameters. The advantage of

microwave instruments is that they can take measurements of the earth's surface day

or night, and are not a�ected by cloud cover. Another advantage of these instruments

is their rapid repeat coverage. For example, the recent QuickScat scatterometer is

able to cover almost the entire earth in one day.

The tradeo� for the fast coverage of radiometers and scatterometers is their

low spatial resolution. Radiometer and scatterometer measurements over the ocean

have been successfully used to provide data for numerical weather-prediction models

and to measure ocean wind speed, but low resolution has limited their use in land

and ice studies. However, by applying resolution enhancement algorithms to the data,

images with su�cient detail for land and ice studies can be obtained.

1



1.1 Problem Description

Figure 1.1 illustrates the remote sensing imaging problem. First, the observed

image is discretized into pixels. Each distinct measurement corresponds to the re-

ceived microwave signal from an area on the ground, multiplied by the antenna aper-

ture function. This single measurement ground area/aperture footprint usually covers

a number of image pixels at the desired resolution for the restored image. In the case

of a radiometer, this observation is the weighted average of the radiometric bright-

ness temperature of the pixels in the aperture multiplied by the antenna response

at each pixel. For a scatterometer, a weighted average over the illuminated region

is observed as the microwave backscatter. The value of the i'th measurement, yi,

then, is yi = h~x;~hii where h�; �i denotes the standard vector inner product, ~x is the

row-scanned image vector, and ~hi contains information about the value and location

of the antenna footprint, such that hij represents the contribution of the j'th pixel to

the i'th measurement.

The measurements are stacked to yield the vector-matrix observation model

~y = H~x (1.1)

where y : Rm is the measurement vector, and H : Rm�n is the point spread matrix,

or transfer matrix formed from the antenna footprint. The remote sensing imaging

problem, then, is to estimate ~x, given observations ~y and prior knowledge of H.
For the remainder of this thesis the vector symbol notation is dropped, with

the understanding that variables without subscripts are understood to be vectors.

The single exception to this rule is that hi represents the i'th row of H.
Methods used to solve the remote sensing imaging problem were originally

developed for image reconstruction in Computerized Tomography (CT) and electron

microscopy. Figure 1.2 shows the geometry for image reconstruction in absorption

tomography medical imaging for non di�racting ray propagation. This problem has

many structural similarities to our remote sensing problem. The observed object (it

could be a ribosome for electron microscopy, or a human head for X-ray C.T.) is

discretized into pixels, and then an electromagnetic ray is sent through the object.
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yi = ~hT
i
~x = h~hi; ~xi

Figure 1.1: Geometry of image reconstruction in remote sensing

The measurement corresponding to the i'th ray, yi, is the attenuation of the ray. In

the discretized image the attenuation is just the sum of the attenuation of the pixels

transversed by the ray. As for remote sensing, yi = h~x;~hii where ~x is the row-scanned

image and ~hi contains the information about which pixels intersected the ray. Again,

the measurements can be stacked to give Eq. (1.1).

Reconstructing an image from a set of measurements, as is done in medical

imaging and remote sensing, is called image reconstruction from projections. There

are several known approaches for reconstructing an image from projections. Some

of the earliest methods were Transform Based, where the problem is worked in the

Fourier domain. More recently, Alvarez-Perez et. al. used a transform based Weiner

�lter approach to improve resolution for ERS scatterometer data [1]. Some of the

weaknesses of the Fourier methods is that they require regular (i.e., uniform) spatial

sampling of the object and are computationally intensive [2],[3],[4]. Also, it must

usually be assumed that the antenna aperture is spatially invariant. All of these

restrictions are problematic in earth remote sensing reconstruction, where sampling

3



i'th ray

detector

source

Figure 1.2: Geometry of image reconstruction in medical imaging

is irregular and the antenna aperture response is spatially varying. These di�culties

motivate our interest in the algebraic methods discussed in the next section.

1.2 Algebraic Reconstruction Techniques

Another promising family of algorithms are the algebraic reconstruction tech-

niques. These methods are iterative and can be used to reconstruct an image that is

arbitrarily sampled with a spatially varying aperture. Two of the most well-known

algorithms are the Algebraic Reconstruction Technique (ART) and the Multiplica-

tive ART (MART), which appeared in [5] and [6] respectively for use in CT scanning

reconstruction. The ART algorithm produces a least-squares solution satisfying the

constrained minimization

min
x
k x k22 such that Hx = y: (1.2)

4



MART is a Maximum Entropy (ME) algorithm, with a solution satisfying

min
x

X
x

x lnx such that Hx = y: (1.3)

The ART and MART algorithms will be discussed in more detail in Chapter 3.

There are important di�erences between medical imaging and remote sensing.

Usually in medical imaging the observations are made at somewhat regular sample

angles, and the image is oversampled. Remote sensing sampling, however, is irreg-

ular and, although sometimes oversampled, can also be undersampled. Because of

these characteristics, there are shortcomings in the conventional algorithms (ART

and MART) when applied to remote sensing reconstruction. These shortcomings led

the Brigham Young University Microwave Earth Remote Sensing (BYU MERS) Lab

to develop a new algebraic reconstruction technique, the Scatterometer Image Re-

construction algorithm (SIR) [7], for image reconstruction from remote sensing data.

SIR not only gave superior results with fewer reconstruction artifacts than ART and

MART, but it has been shown to actually increase resolution by enhancing the high

frequency data contained in the side lobes of the antenna aperture response [8], [9].

Because of the success of SIR, there has been signi�cant interest in understanding

algebraic reconstruction algorithms in general and to understand and explain the

success of SIR.

This thesis discusses and compares some of the algebraic techniques useful for

creating enhanced resolution reconstructed images. Speci�cally, column-normalized

algorithms, a new class of algorithms which includes SIR, is introduced. The char-

acteristics of this class of algorithms that make them especially suited for microwave

remote sensing image reconstruction are explored and evaluated.

1.3 Research Contributions

This thesis provides a �rmer theoretical and practical understanding of al-

gebraic reconstruction algorithms, speci�cally their properties as applied to remote

sensing problems. Prior to this work there was little knowledge about why some

algorithms performed better than others for this class of problems. Further, while

5



pursuing these goals, signi�cant theoretical and algorithmic advances in the related

ME problem were developed.

The research contributions presented here include several investigations into

the theory and performance of iterative reconstruction methods. A new look at the

convergence of Maximum Entropy (ME) iterative algorithms is developed in the con-

text of a general primal-dual algorithm given by Lent in [10]. The proof of convergence

given by Lent is expanded to include di�erent forms of iterative update corrections.

Di�erent ME algorithms with several distinct update terms are then examined to see

if any form has better performance in the presence of noise. Also, a fast, closed form

algorithm that approximates the ME solution is derived and presented.

A new class of algorithms, called column-normalized algorithms, is then de-

�ned. As an example of a column-normalized algorithm, the Simultaneous ART

(SART) algorithm, suggested by Andersen in [11] for CT scanning, is studied. It

is found, and proved, that SART converges to a weighted minimum norm solution,

where the weighting depends on the pixel sampling. While the precise type of solu-

tion to which SIR converges is unknown, the SART analysis gives some insight into

why the SIR algorithm, as a column-normalized algorithm, performs better than the

standard algorithms (ART and MART).

Several di�erent column-normalized algorithms are compared experimentally

to show that they give similar results and that SART is a viable algorithm for remote

sensing reconstruction.

1.4 Thesis Outline

Chapter 2 gives a brief introduction to microwave scatterometers and radiome-

ters. The chapter speci�cally treats the aspects of the systems that are important to

imaging.

Chapter 3 discusses row-action method algorithms, the class of algorithms to

which ART and MART belong. In this chapter the convergence proof of MART is

expanded to include several forms of ME algorithms, and the di�erent algorithms will

be compared to see if any of them performs best in the presence of noise. A closed

6



form approximation to the MART algorithm is also presented. At the end of the

chapter, some of the weaknesses of row-action algorithms are shown.

Chapter 4 introduces column-normalized algorithms as a way of compensating

for the problems with row-action methods mentioned in Chapter 3. The convergence

properties of the SART algorithm are explored, and its results are related to other

column-normalized algorithms, such as SIR.

Chapters 5 and 6 compare the di�erent algorithms for simulated and real

data, respectively, and in Chapter 7 important conclusions are given and the original

contributions reiterated.
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Chapter 2

Imaging with Remote Sensing Instruments

Microwave instruments such as Synthetic Aperture Radar (SAR) are radars de-

signed to image the earth's surface. This thesis is motivated by the desire to generate

images from microwave scatterometer and radiometer data, which were not originally

designed for imaging. Scatterometers and radiometers were designed mostly for indi-

rect ocean and climatological measurements, where high resolution isn't necessary. In

exchange for lower resolution (as compared to SAR) they provide much more rapid,

full coverage of the earth.

For the image reconstruction experiments presented in Chapters 5 and 6, sam-

pling geometry from the SSM/I radiometer and NSCAT scatterometer is used. To

help explain the results from the di�erent instruments, this chapter discusses the ba-

sic operation and characteristics of microwave radiometers and scatterometers that

a�ect the quality of image reconstruction. A very high level discussion of instrument

operation will be presented to explain how instrument operation a�ects the quality

of the reconstructed image. For more details on radiometers and scatterometers the

reader is referred to [12].

2.1 Radiometers

A radiometer is a passive microwave instrument that detects incoherent radio-

metric energy at a given frequency. To ensure that a radiometer receives signals only

from the area of interest, radiometer antennas are designed to have a very tapered

aperture amplitude spatial response, or footprint, to keep the antenna sidelobes low.

9
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Figure 2.1: Fourier transform of a typical SSM/I footprint (left), and a one-
dimensional slice through the center (right).

The frequency response of the antenna footprint on the ground is important

in resolution enhancement. As was mentioned in Chapter 1, algebraic reconstruc-

tion algorithms create enhanced resolution images by emphasizing higher frequency

information in the sidelobes of the footprint response.

Figure 2.1 shows the frequency response of a typical SSM/I footprint. Notice

that the response is in units of spatial frequency, cycles per unit kilometer. A conven-

tional reconstruction may only recover those frequencies within the 3-dB bandwidth

of the aperture response [9]. The goal of the resolution enhancement algorithm is to

increase the high frequency signal power contained in the sidelobes. To understand

how an image reconstruction algorithm works, consider the ideal case of an image

being fully sampled (that is, as many independent samples as pixels in the recon-

structed image) with a spatially invariant footprint. In this case the transfer matrix

H in Eq. (1.1) is a linear convolution matrix. The image reconstruction algorithm

iteratively inverts the matrix H, deconvolving the image and recovering all the fre-

quencies up to the Nyquist frequency, with the exception of those frequencies in the

10



null space of the aperture. The Nyquist frequency is inversely proportional to the

sample grid spacing.

In practice, the range of recoverable frequency content is limited by the sam-

pling pattern and noise. Because the image is generally irregularly and not fully

sampled, the highest recoverable frequency decreases (see [8]). Also, any higher fre-

quency contained in sidelobes below the noise 
oor will also be unrecoverable, further

decreasing the range of attainable spatial frequencies.

2.2 Scatterometers

Scatterometers are active instruments, transmitting a coherent pulse and then

measuring the normalized electromagnetic backscatter according to the monostatic

radar equation [12]. Because a scatterometer is a coherent detector, the properties

of its footprint are di�erent than for radiometers. First, techniques such as Doppler

range gating can be used to increase the resolution (decrease the size) of the footprint,

which will increase the width of the main lobe in the frequency domain. Doppler

range gating also increases the number of measurements the instrument can take on

a given pass. Secondly, the scatterometer's antenna footprint is not as tapered as a

radiometer's. Such a footprint leads to higher sidelobes in the footprint frequency

response, which facilitates reconstructing higher spatial frequencies.

Figure 2.2 shows the Fourier transform for a typical NSCAT scatterometer

footprint. NSCAT's footprints are narrow and elongated, giving very good resolu-

tion in one direction. Good resolution in all directions is achieved by overlapping

measurements which have di�erent orientations due to orbital ground path variations

from di�erent passes of the satellite. This suggests that NSCAT should give better

resolution reconstructions than SSM/I. Chapters 5 and 6 con�rm this.

Thus, an important issue when designing a microwave instrument to be used

for imaging is the size and shape of the sensor antenna footprint. It is desirable

to increase the spatial sampling, that is, obtain as many measurements per pass

of the instrument as possible. However, there is a tradeo� between the number of

measurements and the signal-to-noise ratio. Increasing the number of measurements

11
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Figure 2.2: Fourier transform of a typical NSCAT footprint (top), and one-
dimensional slices taken diagonally through the center (bottom).
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by decreasing the size of the footprint via techniques such as Doppler range gating

decreases the time-bandwidth product of the instrument, e�ectively decreasing the

signal-to-noise ratio (SNR). Hence, when designing a system for imaging, there is

a compromise between collecting more measurements to obtain a higher Nyquist

frequency and corrupting the signal in the sidelobes with noise.
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Chapter 3

Row-Action Techniques

3.1 Introduction

A common and successful class of iterative algorithms used for image recon-

struction is row-action methods (RA-methods), which were de�ned by Censor in [13].

De�nition 1 (Row-action Method)

A row-action method is an iterative algorithm which has the following properties:

1. No changes are made to the original matrix, H,

2. No operations are performed on the matrix as a whole,

3. In a single iterative step, access is required to only one row of the matrix,

4. In a single iterative step, say when xk+1 is calculated, the only iterate needed

is the immediate predecessor, xk.

Because of the third de�nition constraint there is no need to store the entire

matrixH in the computer's memory. This is of practical importance in remote sensing

where there are millions of pixels in the image (n � 1e6) and hundreds of thousands

of measurements (m � 1e5), with a resulting H that may be much too big to �t

in computer memory. This chapter will discuss in detail the properties of some row

action algorithms.

Two very common row-action algorithms are the Algebraic Reconstruction

Technique (ART) and the Multiplicative ART (MART) algorithms.
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The ART algorithm was suggested for medical CT reconstruction in 1970 by

Gordon et al [5], and was later proved to converge to the minimum norm solution

[14], satisfying the constrained minimization problem

min
x
k x k22 such that Hx = y: (3.1)

The algorithm update is

Algorithm 1 (ART)

Initialization: x� = 0

Iterative step:

xk+1
j = xkj +

yi � hhi; xki
k hi k hij (3.2)

where xkj is the jth element of the vector x at the kth iteration, hi is the ith row of

H, and hij is the (i,j)th element of H.

ART is a simple, intuitive algorithm. If the current guess xk is too large, then the

�delity term, dki = yi � hhi; xki will be negative and will drive down the value of the

pixel. ART is a Projection Onto Convex Sets (POCS) algorithm, where the iterations

project the solution on the hyperplanes de�ned by the rows of H and observations y.

Minimum norm regularization, although common, is not the only possible reg-

ularization that can be used to �nd a unique solution to 1.1. Another regularization,

maximum entropy, was suggested for use in radio astronomy image reconstruction by

Gull in 1978 [15] . Before that, in 1970, Gordon et al. suggested using a Multiplica-

tive ART (MART) algorithm for CT image reconstruction. The MART algorithm

was later proved to be a maximum entropy algorithm, satisfying the constrained

optimization

min
x

X
i

xi lnxi such that Hx = y: (3.3)
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The algorithm update is

Algorithm 2 (MART)

Initialization: x� = exp(�1)
Iterative step:

xk+1
j = xkj

�
yi

hhi; xki
��1hij

(3.4)

where �1 is a relaxation parameter.

The maximum entropy solution is often favored for being the \least committal" so-

lution. Maximum entropy reconstruction is an information theoretic method which

treats the image itself as a probability density function, or pdf. Since maximum

entropy distributions are often uniform intensity, maximum entropy reconstructions

tend to have uniform areas. This explains why maximum entropy reconstruction has

been so successful in radio astronomy with its uniform bright and dark areas.

An area of important research, when studying iterative algorithms, is con-

vergence properties. The following section will introduce the general primal-dual

algorithm, which will aid in understanding the convergence properties for some of the

algorithms presented in this thesis.

3.2 Primal-dual Algorithms

This section relies on the work of Lent and Censor ([10]) who proved conver-

gence for a general primal-dual algorithm.

Primal-dual algorithms can be used to solve the optimization problem

arg min
x2Rn

+

f(x) such that y = Hx (3.5)

where f : Rn
+ ! R is a real-valued, continuous, convex function that maps an n

dimensional vector to a scalar, and the constraint on x is just the equality constraint

from Eq. (1.1). The constraint that x � 0 is necessary for maximum entropy algo-

rithms, since entropy is de�ned only for positive values.

The �rst step in a primal-dual algorithm is to de�ne a dual functional, g :

R
m ! R, which is the minimum with respect to x of the Lagrangian:

g(u) = min
x2Rn

(f(x) + hu; y �Hxi): (3.6)
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Note that the dual function, g, is a function of the dual variable u only, which is

actually the vector of Lagrange multipliers.

A useful result, which is important to show convergence of primal-dual algo-

rithm, is the weak Lagrange duality theorem [16], which guarantees that

min
x
(f(x)jfx : Hx = y; x � 0g) � sup

u

(g(u)ju 2 Rm): (3.7)

In an iterative primal-dual algorithm, primal iterates fxkg and dual iterates

fukg are simultaneously generated, which in the limit as k goes to in�nity converge

to the solution of Eq. (3.5). Lent and Censor consider primal-dual algorithms of the

following form:

Algorithm 3 (primal-dual algorithm)

Initialization: u� 2 U .

Iterative step. Given uk, solve the minimization problem (3.6) to �nd a minimizer ~xk,

i.e.,

g(uk) = f(~xk) + huk; y �H~xki: (3.8)

Then, calculate uk+1 from

uk+1 = D(uk): (3.9)

U � R
m is the permissible initialization set for the dual iterates, and D is a dual

algorithmic operator, which maps

D : Rm ! R
m : (3.10)

To continue we need a de�nition:

De�nition 2 (AF)

(i) A sequence fxkg1k=0 will be called asymptotically feasible (AF, for short) with

respect to H 2 Rm�n and y 2 Rm , if

lim
k!1

Hxk = y: (3.11)

(ii) A dual algorithmic operator D will be called implying asymptotic feasibility (IAF,

for short) with respect to H, y, and f(x) of problem (3.5), if any sequence fxkg1k=0

generated by Algorithm (3) with D is AF w.r.t. H and y.
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The workhorse theorem in this thesis used to show convergence of primal-dual

algorithms is Theorem (12) from [10], which will be restated here.

Theorem 1

De�ne fx�g to be

arg min
x2Rn

+

f(x) such that y = Hx (3.12)

and if D is IAF w.r.t. H, y, and f of problem (3.5), then any sequence fxkg1k=0

generated by Algorithm (3) (the primal-dual algorithm), converges to fx�g.

The reader is referred to [10] for the proof of Theorem (1) and other corresponding

theorems and corollaries.

Given Theorem (1), to show convergence to the unique global minimum it is

necessary that:

1. The function f(x) be convex, and

2. The dual algorithmic operator D be IAF w.r.t. H, y, and f .

The following sections demonstrate how the convergence of maximum entropy algo-

rithms, including but not limited to MART, can be proved using Theorem (1).

3.3 Maximum Entropy Algorithm Convergence

As stated in Section 3.1, iterative maximum entropy (ME) algorithms solve

the constrained minimization problem

min
x

X
i

xi lnxi such that Hx = y; (3.13)

where X
i

xi lnxi (3.14)

is the negative of the information theoretic entropy1. The dual functional g(u) is now

g(u) = min
x2Rn

+

 X
i

xi lnxi + hu; y �Hxi
!
: (3.15)

1To properly form an entropy measure, x must be a probability density function. Here, x is an

image intensity, so the interpretation as entropy is by analogy only.
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The following sections show how Theorem 1 can be used to prove convergence of

ME algorithms. Convergence is discussed for two algorithmic implementations: nor-

mal implementation, where each iteration uses only a single measurement, and block

implementation, where every measurement is used for each iterative update. This

development follows Lent and Censor closely (with a correction) [10], and will be

extended in Sections 3.4 and 4.2.2 to prove convergence of alternative form ME algo-

rithms and SART, respectively.

3.3.1 Normal Implementation

A normal implementation is where the estimate is a�ected by only one mea-

surement per iteration. Thus, if k is the iteration and i is the measurement, then i is

updated as i = k(mod(m)) + 1. Direct minimization of Eq. (3.15) with respect to x

yields a minimizer ~xj:

~xj = exp(�1) exp
 

mX
i=1

uihij

!
; j = 1; 2; : : : ; n: (3.16)

Putting this minimizing ~xj into Eq. (3.15) gives the minimized form of the dual

functional as

g(u) = �
nX

j=1

~xj + hu; yi: (3.17)

Written in iterative form (i.e., as a function of the iteration k), Eqs. (3.16) and (3.17)

become

~xkj = exp(�1) exp
 

mX
i=1

uki hij

!
; j = 1; 2; : : : ; n: (3.18)

and

g(uk) = �
nX

j=1

~xkj + huk; yi: (3.19)

Now de�ne the dual algorithmic operator D as

uk+1 = uk + �dkei (3.20)

where ei is a vector of zeros with one at the i'th place, � is a relaxation parameter,

and dk is the �delity term after the kth iteration. Using Eq. (3.20) in Eq. (3.18) gives
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the algorithm update

~xk+1
j = ~xkj exp

�
�dki hij

�
(3.21)

where � is a relaxation parameter.

Since entropy is convex, to prove convergence it is necessary only to show that

D is IAF w.r.t. H, y, and f . The �rst step taken in [10] to show that D is IAF is to

show that the dual functional is monotonically increasing. The following proof closely

follows the proof of Proposition 16 in [10], with one modi�cation for completeness.

Proposition 2

g(uk) is monotonically increasing in k.

Proof : For convenience, the tilde notation has been dropped from x. Consider the

di�erence:

g(uk+1)� g(uk) =
nX

j=1

�
xkj � xk+1

j

�
+


uk+1 � uk; y

�

=
nX

j=1

xkj
�
1� exp

�
dki �hij

��
+


dk�ei; y

�

=
nX

j=1

xkj
�
1� exp

�
dki �hij

��
+ dki �yi: (3.22)

We now employ the inequality

1� w� � �(1� w) for w � 0; 0 � � � 1: (3.23)

Employing this relation gives

g(uk+1)� g(uk) =
nX

j=1

xkj
�
1� exp

�
dki �hij

��
+ dki �yi

�
nX

j=1

xkj
���hij �1� exp(�dki )

��
+ dki �yi

= ��(yi + �i)
�
1� exp(�dki )

�
+ dki �yi

= �yi
�
exp

��dki �� 1 + dki
�| {z }

s(dk)

+ �ki �
�
exp(�dki )� 1

�| {z }
t(dk ;�k)

(3.24)
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where the error term, �ki = hix
k � yi. The �rst additive term in Eq. (3.24), s(dk), is

easily shown to be a non-negative convex function in d. Therefore

g(uk+1)� g(uk) � t(dk; �k): (3.25)

It is also easily demonstrated that when the signs of �ki and d
k
i are opposite, t(d

k; �k) �
0, so Eq. (3.25) becomes

g(uk+1)� g(uk) � 0 (3.26)

for

sgnf�kg = �sgnfdkg (3.27)

Thus we conclude that g(uk) is monotonically increasing if dki is chosen to have op-

posite sign from hhi; xki � yi.

q.e.d

The proof in [10] failed to include the second additive term of Eq. (3.24), t(dk; �k),

which contains critical information about the form that d must have for convergence,

and which will be used to develop alternative forms of the ME iteration. One �delity

term d that satis�es the condition necessary for convergence is

di = log

�
yi

hhi; xi
�

(3.28)

which, when substituted into Eq. (3.21) gives the MART algorithm:

xk+1
j = xkj

�
yi

hhi; xki
��hij

(3.29)

More about the variety of forms that maximum entropy algorithms can have are

discussed in Section 3.4.

With Prop 2 proved (which corresponds to Prop. 16 in [10]), Propositions 17

and 18 in [10] directly follow, proving D to be IAF. Thus, by Theorem 1 (Theorem

12 in [10]) the algorithm is guaranteed to converge to the maximum entropy solution.

3.3.2 Block Implementation

The block implementation algorithm is similar to the non-block implementa-

tion, except that in the block form every measurement is used in computing each
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update. The minimizing ~xk and dual function g(uk) are the same as in the normal

implementation, given by Eqs. (3.18) and (3.19).

Now the update term for the dual variable is

uk+1 = uk + �� dk; (3.30)

where � represents the Schur matrix product, i.e. element by element multiplication.

Notice how Eq. (3.30) di�ers from Eq. (3.20): every measurement is included in each

update.

Substituting Eq. (3.30) into Eq. (3.18) gives the algorithm update

~xk+1
j = ~xkj exp

 
mX
i=1

�id
k
i hij

!

= ~xkj

mY
i=1

exp
�
�id

k
i hij

�
: (3.31)

As in the normal implementation case, the �rst step in demonstrating that D is IAF

is to show that g(uk) is monotonically increasing.

Proposition 3

g(uk) is monotonically increasing in k.

Proof :

This proof closely follows the proof given by Segman and Censor in [17], with

some minor changes for completeness, similar as to what was done in Section 3.3.1.

Once again the tilde notation has been dropped for convenience.

To show that the dual variable g(u) is monotonically increasing we need ad-

ditional inequalities. Taking Eq. (3.23) with w = exp(�vi), multiplying by �i and

summing gives

1�
X
i

�i exp
��vki hij� � �

X
i

�ihij(1� exp(vi)) (3.32)

where we assume that �i sums to one. The other relation is

X
i

zrii �
X
i

rizi if
X
i

ri = 1: (3.33)
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Now consider the di�erence

g(uk+1)� g(uk) =
nX

j+1

xkj

"
1�

mY
i=1

exp (�idihij)

#
+

mX
i=1

yi�idi

�
nX

j+1

xkj

"
1�

mX
i=1

�i exp(dihij)

#
+

mX
i=1

yi�idi

=
nX

j+1

xkj

"
1�

mX
i=1

�i exp(dihij)

#
+

mX
i=1

yi�idi

�
nX

j+1

xkj

mX
i=1

��ihij (1� exp(�di)) +
mX
i=1

yi�idi

=
mX
i=1

�i
�
yi (exp(�di)� 1 + di) + �ki

�
exp(�dk)� 1

��
� 0 (3.34)

where �ki is de�ned as before, and we have to assume that
P

i �i = 1.

q.e.d

The only di�erence between this proof and the proof given in [17] is the second

additive term in Eq. (3.34), �ki
�
exp(�dk)� 1

�
which again gives information about

the form of d necessary for convergence. Once again, this will be used to develop

other forms of the ME algorithm. One can follow the rest of the convergence proof

given in [17] to see that D is IAF and that the block algorithm also converges to the

maximum entropy solution.

3.4 Maximum Entropy Algorithm Forms

As noted in Sections 3.3.2 and 3.3.1, there are constraints on the form of the

�delity term d for the algorithm to converge. Namely, if �ki = hix
k � yi < 0, which

implies that yi > hhi; xki, then the �delity term d has to be greater than zero.

This suggests that there are many possible di�erent �delity terms that can be

used in conjunction with the general maximum entropy algorithm. While these dif-

ferent algorithms converge to the same solution for a noiseless and consistent system,

it is possible that some forms of d may perform better than others in the presence

of noise, or that faster convergence could be achieved. The following sections explore
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the behavior of the general maximum entropy with three di�erent �delity terms and

present a comparative evaluation of each of these algorithms to determine if any such

advantages can be identi�ed.

3.4.1 ME Algorithm De�nitions

One form for d already suggested is

dki = log

�
yi

hhi; xki
�

(3.35)

which results in the well-known MART algorithm, repeated here:

Algorithm 4 (MART)

Initialization: x� = exp(�1)
Iterative step:

xk+1
j = xkj

�
yi

hhi; xki
��1hij

(3.36)

Two other possible forms of d are

dki = yi � hhi; xki (3.37)

and

dki =

�
yi

hhi; xki
��

� 1: (3.38)

Equation (3.37) was suggested by Elfving in [18] as a possible �delity term, and

Eq. (3.38) is original. The algorithms corresponding to these two �delity terms are

Algorithm 5 (Elfving MART)

Initialization: x� = exp(�1)
Iterative step:

xk+1
j = xkj exp

�
�2(yi � hhi; xki)hij

�
(3.39)

and
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Algorithm 6 (Willis MART)

Initialization: x� = exp(�1)
Iterative step:

xk+1
j = xkj exp

�
�3

��
yi

hhi; xki
��

� 1

�
hij

�
: (3.40)

The forms of d in Eqs. (3.37) and (3.38) both satisfy the conditions necessary for

convergence as explained in Section 3.3. Hence, the ME proof of convergence in

Section 3.3 is su�cient to prove that Elfving MART and Willis MART converge to

the ME solution.

3.4.2 Relaxation Factors

While any algorithm that uses a �delity term d with the necessary form should,

in theory, converge, it was found that in practice not every form of d results in the

algorithm convergence for all possible values of y and H. The reason some forms do

not work is because of the exponentiation in the update. For example, using

dki = log

�
yi

hhi; xki
�

(3.41)

results in an update that is linear with respect to the ratio y

hhi;xi (since the exponential

and logarithm are inverse operations) and is perfectly antisymmetric about one (i.e.,

f(1+x) = �f(1�x). These properties (linear and antisymmetric) make the algorithm
robust.

The forms of d given by Eqs. (3.37) and (3.38) are not linear when put in the

exponential. Figure 3.1 shows a plot of exp(d) over a range of d. Notice how non-

linear the update is. In running experiments with dki = yi � hhi; xki, the algorithm
often \got stuck" at either very high or very low values (depending on the data range

and initial condition) and not converge.

Some experimenting was required with the relaxation factors �2 and � to get

Algorithms 5 and 6 (Elfving MART and Willis MART) to converge consistently over

a wide range of data values. The exponentiation of the �delity terms of the second

two algorithms with �2 = 0:05 and � = 0:4 is plotted in Figure 3.2 . With these
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Figure 3.1: Plot of exp(yi � hhi; xki) for 10 < yi � hhi; xki < 10 (left) and

exp
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yi
hhi;xki

�
� 1
�
for 0 <

�
yi

hhi;xki

�
� 1 < 10 (left).

relaxation factors the exponentiation of the �delity terms are more linear over a

larger range of d. In the actual simulation each of the updates are again multiplied

by an additional relaxation factor � = 0:5, such that the e�ective relaxation factors

used in the following examples, unless stated otherwise, are �1 = 0:5, �2 = 0:025,

�3 = 0:5, and � = 0:4.

3.5 Comparison of the Di�erent ME Algorithms

The properties of Algorithms 4, 5, and 6 (MART, Elfving MART, and Willis

MART, respectively) are explored in the following sections to evaluate the algorithms'

performance in a noisy system.

3.5.1 Fully Determined System

In a consistent, fully determined system (i.e. H is square and full rank) all

three algorithms converge to the unique, correct solution.
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Figure 3.3 shows plots of the trajectories of the three algorithms for three-

dimensional fully determined noiseless and noisy cases. For this experiment

H =

2
6664
0:5 0:5 0

0 0:5 0:5

0:5 0 0:5

3
7775 and x = [0:2 0:4 0:5]T : (3.42)

As expected, in the noise-free case all of the algorithms converge to the correct solu-

tion.

The more interesting case is where noise has been added to the measurements.

For the noisy, consistent case (i.e. when the noise lies in the column space of H),
the algorithm will converge, but not to the true solution. In this case, the solution

at convergence (i.e. with in�nite solutions) is usually not the closest iterate in the

sequence to the desired solution. A better solution can often be formed by truncat-

ing the iterations prior to convergence. This truncation can actually regularize the

solution to reduce noise ampli�cation e�ects in the inverse problem, and is used com-

monly in iterative restoration [19]. For the fully determined case the \best" result is

the iteration which is closest to the true solution in a squared error sense. Though
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Figure 3.3: Convergence of the three algorithms with a fully determined system|no
noise (top) and noisy (bottom) with SNR = 22.2 dB. The actual trajectories are
in solid lines (MART|blue, Elfving MART|green, Willis MART|red) and their
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it is impossible to know which iterate represents the \best" solution without having

the true solution to compare with, we present an analysis here based on this distance

measure to quantify the best possible performance achievable by each candidate algo-

rithm to make comparative evaluations. In practice, operators commonly intervene

and stop the iterations at the image deemed to be of highest perceived quality. This

is usually very close to the \best" solution. Geometrically, in terms of Figure 3.3, it

is the point on the trajectory of solutions that is closest (in Euclidean distance) to

the true solution.

There are actually two errors of interest in these experiments:

Solution Error The error that has just been described|the distance between the

current estimate and the true solution.

Forward Projection Error The squared error between the forward projectionHxk

and the actual measurements y.

The solution error as a function of iteration is plotted for the three algorithms

in Figure 3.4, and the results of the noisy experiment are summarized in Table 3.1.

Because of its small relaxation parameter, Elfving MART converges much slower than

the other algorithms. Interestingly, although the three algorithms reach the minimum

solution error at di�erent numbers of iterations, the minimum solution error is very

similar for the three algorithms. The forward projection errors at the iteration which

minimizes the solution error is also very close for the three algorithms.

Higher-Dimensional Examples

For the higher-dimensional cases H was chosen to be a circular convolution

matrix. Because circular convolution is a shift invariant linear operation, it can be

expressed in matrix form, where the rows of the circular convolution matrix are made

up of shifted versions of a blurring function. In this case, the blurring function, or

footprint, was chosen so that H is full rank. Figure 3.5 shows a synthetic image

example used to compare algorithm performance. The results for higher-dimensional

simulations using images are similar to the three-dimensional case. Like before, the
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Figure 3.4: Solution error, shown at two di�erent scales for clarity, of the various ME
algorithms as a function of iteration for the fully determined, noisy case, SNR=22.2
dB. (top) Detail scale, 0{60 iterations, shows minimum error point is the same for both
MART and Willis MART. (bottom) large scale, 0{1500 iterations|shows minimum
error point for Elfving MART.
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minimum solution errors are the same, and there is little di�erence between the

forward projection errors. Referring to Figure 3.5, there seems to be little qualitative

di�erence between the algorithms as well. Hence we conclude that, at least for the

consistent, fully determined case, all of the algorithms have similar \best" solutions.

3.5.2 Underdetermined System

It is sometimes more realistic to model the remote sensing problem as an

underdetermined system, since there are generally fewer measurements than pixels.

For the three-dimensional case used in the following examples the parameters of the

system are

H =

2
4 0:5 0:5 0

0 0:5 0:5

3
5 and x = [0:2 0:4 0:5]T : (3.43)

Since the system is underdetermined there is no unique solution, making the

concept of a \solution error" a bit more nebulous. The forward projection error is

de�ned as before, while the \maximum entropy error" takes the place of the solution

error. The maximum entropy error is the squared error between the current estimate

and the true maximum entropy solution which would have been found in the absence

of observation noise.

Figure 3.6 shows the convergence of the three algorithms for the three-dimensional

noiseless case. Because there are three pixels in the solution and only two measure-

ments, there is one degree of freedom which forms a one-dimensional solution space,

represented by the solid black line. Any solution along this line will satisfy the con-

straint y = Hx. Adding the maximum entropy criterion results in the unique solution,

represented by the black asterisk. To aid in visualizing the algorithms' progress in

three-space the trajectories and solution space have been projected onto the (x; y),

(y; z), and (x; z) planes, represented by the dots.

Although the three algorithms take di�erent paths, they all arrive at the max-

imum entropy solution. The biggest di�erence between the algorithms, as before, is

the rate of convergence, with Algorithm 4 (MART) converging the fastest.
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Figure 3.5: Reconstruction of the noisy, fully determined system: (a) Synthetic origi-
nal image (b) Blurred image with 22.5 dB SNR noise added to the measurements (c)
Algorithm 4 (MART) reconstruction (d) Algorithm 5 (Elfving MART) reconstruction
(e) Algorithm 6 (Willis MART) reconstruction (f) The blurring function used to build
the circular convolution matrix H
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Table 3.1: Results of the noisy fully determined case, SNR=22.2 dB, where kmin is
the iteration at which the solution error is minimized.

Algorithm Minimum Solution Error kmin Forward Projection Error at kmin

MART .011 14 3.014e-4
Elfving MART .012 897 2.736e-4
Willis MART .012 40 2.659e-4

Table 3.2: Results of the higher-dimensional noisy fully determined case, SNR=22.5
dB, where kmin is the iteration at which the solution error is minimized.

Algorithm Minimum Solution Error kmin Forward Projection Error at kmin

MART .0239 104 7.217e-4
Elfving MART .0239 3000 7.336e-4
Willis MART .0239 261 7.208e-4
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Figure 3.6: Trajectories of the three algorithms for a noiseless, underdetermined case.
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Typical results for the three-dimensional experiments with additive white noise

to give 11.4 dB and 14.5 dB SNR measurements are shown in Figure 3.7 and sum-

marized in Table 3.3.

Table 3.3: Typical Results for underdetermined, noisy reconstruction at 11.4 dB and
14.5 dB SNR.

Algorithm Minimum Solution Error kmin Forward Projection Error at kmin

11.4 dB SNR
MART 6.53e-4 3 .0153

Elfving MART 1.12e-4 207 .0138
Willis MART 2.84e-4 9 .0140

14.5 dB SNR
MART 5.42e-4 N/A N/A

Elfving MART 6.62e-4 N/A N/A
Willis MART 7.14e-4 N/A N/A

The graphs and table indicate that all three algorithms follow similar trajecto-

ries, and have comparable errors. As in the three-dimensional fully determined case,

no algorithm is more desirable as far as noise suppression.

There is an important caveat when using this three-dimensional example to

study the e�ect of noise in image reconstruction. Figure 3.8 plots the singular val-

ues for the three dimensional H in Eq. (3.43) and also the H used for the higher-

dimensional decimated experiments. The ratio of the smallest to largest singular

values for H in the three-dimensional experiment is 1.73, while the ratio of the small-

est to largest singular values for the higher-dimensional case is 40.5, 23 times bigger.

In an iterative reconstruction algorithm, the amount of noise ampli�cation is a func-

tion of the range of singular values, with a larger span of singular values giving greater

noise ampli�cation [19]. A remote sensing application is likely to have a singular value

span larger than the span of singular values for the three-dimensional case, so noise

ampli�cation will likely be more severe.
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Figure 3.7: Results of noisy underdetermined system at 14.5 dB SNR (top) and 11.4
dB SNR (bottom).
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Figure 3.8: Singular values for the three-dimensional H (left) and the higher-
dimensional H (right).

Table 3.4: Results of the higher-dimensional underdetermined case with 26.9 dB SNR,
where kmin is the iteration at which the solution error is minimized.

Algorithm Minimum Solution Error kmin Forward Projection Error at kmin

MART .0378 177 5.24e-4
Elfving MART .0381 495 5.22e-4
Willis MART .0385 5915 5.07e-4

Because of noise ampli�cation, at some point it is necessary to truncate iter-

ations before convergence. In [19], it is proved that truncating iterations is a valid

regularization for suppressing noise ampli�cation, the point at which to truncate the

iterations depending on the singular values of H.

Higher-Dimensional Underdetermined System

The results of the higher-dimensional underdetermined case with white noise

added to give a 26.9 dB SNR is shown in Figure 3.9 and summarized in Table 3.4.

37



0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) (b)

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

Figure 3.9: Underdetermined 26.9 dB SNR noisy reconstructions of the synthetic
truth image (d) for Algorithms (a) 4 (MART), (b) 5 (Elfving MART), and (c) 6
(Willis MART).
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The results are similar to the previous cases, with no one algorithm showing

much better noise suppression performance than any other, but with MART having

faster convergence.

3.5.3 Inconsistent and Overdetermined Systems

So far we have considered only the case where H has been full row rank, so

that adding noise to the measurements does not make the system inconsistent. Two

other important cases are when H is not full row rank and when H is overdetermined

but full column rank, both of which are possible remote sensing situations.

One di�erence between the behavior of the algorithms with an inconsistent

system is the asymptotic behavior for many iterations. A consistent system will have

all non-zero left singular values, and since the noise ampli�cation is a function of

the singular value spread there will be some bound on the noise ampli�cation. An

inconsistent system, however, will have singular values that are zero, creating an

in�nite singular value spread. Thus the iterative algorithms will in�nitely amplify

the noise in the limit. In practice, an underdetermined inconsistent system results

when there are fewer measurements than pixels and some measurements are linear

combinations of other measurements.

An overdetermined system, which is becoming more the case with the new

scatterometers, such as QSCAT, has all non-zero left singular values, so it will con-

verge to a �nite solution in the limit of iterations. In either case, when there is

measurement noise, the iterations can be interrupted before convergence to avoid

noise ampli�cation.

We are interested in the behavior of the algorithms when the maximum en-

tropy error is minimized. The results of a typical simulation with an inconsistent,

overdetermined system are shown in Table 3.5 and Fig. 3.10. As with the underde-

termined and consistent cases, the only marked di�erence between the algorithms is

the convergence rate.
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Table 3.5: Results of the higher-dimensional noisy over determined, inconsistent case,
SNR=22.5 dB, where kmin is the iteration at which the solution error is minimized.

Algorithm Minimum Solution Error kmin Forward Projection Error at kmin

MART 0.0107 541 8.17e-5
Elfving MART 0.0107 11000 8.17e-5
Willis MART 0.0106 1356 8.17e-5
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Figure 3.10: Overdetermined 22.5 dB SNR noisy reconstructions of the synthetic
truth image (d) for Algorithms (a) 4 (MART), (b) 5 (Elfving MART), and (c) 6
(Willis MART).
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The �nal conclusion, then, is that while no algorithm appears to perform better

in the presence of noise, Algorithm 4 (MART), is the best algorithm to use, since it

has the fastest stable convergence over a wider range of data.

3.6 A Closed-form ME Approximation Algorithm

An advantage of minimum norm reconstruction is the existence of a closed-

form solution, the Moore-Penrose pseudo-inverse. One of our research goals was

to �nd a closed-form ME solution that could be faster than iterative techniques.

While our study into closed-form ME algorithms did not yield an exact ME solution

algorithm, it did lead to a fast, closed-form approximation of the ME algorithm. The

closed-form ME approximation is derived by projecting the solution onto the null

space of H to formulate an unconstrained optimization problem of lower dimension.

A �nite series expansion of the entropy expression leads to an algebraic solution to

Eq. (3.3). This approach will be useful in theoretical analysis of the ME problem and

is dramatically faster than MART.

All inverse problems with linear equality constraints y = Hx have admissible

solutions of the form x = xo + xe, where xo belongs to the row space of H, (i.e.

xo 2 <fHTg) and xe is drawn from the right null space of H, (i.e. xe 2 NfHTg). xo
is the unique minimum norm solution (known as the minimum norm solution in the

presence of measurement error) given by

xo = Hyy (3.44)

where y indicates pseudo inverse. On the other hand, xe is di�erent for each optimiza-

tion criterion that may be chosen, for example maximum entropy, minimum norm,

minimum lp norm, etc. xe is typically a small perturbation from xo, but as long

as xe 2 NfHTg, x will satisfy the constraint equation. Selecting an optimization

criterion in e�ect determines xe and thus determines a particular unique solution for

x.

The approach of the proposed algorithm is to �rst �nd xo and then to perturb

this solution in the direction of the xe given by the entropy criterion. xo may be
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computed using one of several standard algorithms. We can decompose H into its

range and null spaces using the SVD,

H = [URjUN ] � [VRjVN ]H (3.45)

where superscript H denotes conjugate transpose and � is the diagonal matrix of

singular values. UR and VR are partitions of left and right singular matrices U and

V respectively, which correspond to the non-zero singular values of H. Likewise, UN

and VN contain the singular vectors corresponding to the zero singular values. UN

and VN span the left and right null spaces of H respectively.

By construction, NfHTg = VN . Therefore xe = VN z for some z. The vector

z that leads to a maximum entropy solution of Eq. (3.3) is

z = argmax
z

(
�

MX
i=1

(xoi + [VN z]i) ln(xoi + [VN z]i)

)
; (3.46)

and the ME solution for x is simply

xME1 = xo + VN z: (3.47)

Note that this optimization is unconstrained in z. Also, z is length p = N �
rankfHg < N , so expressing xME1 in terms of z dramatically reduces both the

complexity of the minimization and the number of parameters to be estimated. Con-

sider the entropy expression from the right hand side of equation (3.46). Using a

�nite series expansion approximation yields

E(x) = �
X
i

(xoi + xei) ln(xoi + xei)

� �
X
i

�
xoi lnxoi + (1 + lnxoi)xei +

x2ei
xoi

�
� �(c+ rHxe + xHe Bxe)

� �(c+ rHVNz + zHV H
N BVNz): (3.48)

where the approximation comes from taking the �rst term of the Taylor series expan-

sion of ln(1 + xei
xoi
). r = [1 + lnxo1; � � � ; 1 + lnxon]

T , B = Diagf[x�1o1 ; � � � ; x�1on ]g, and
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scalar c =
P

i xoi lnxoi. To maximize entropy we take the derivative with respect to

z and set it to zero, which yields

V H
N r + 2V H

N BVN z = 0: (3.49)

Therefore, noting that V H
N BVN is a full rank square matrix, equations (3.49) may be

solved algebraicly for z, which is substituted into equation (3.47) to yield our �nal

closed form approximation

xME1 � Hyy � 1

2
VN(V

H
N BVN)

�1V H
N r: (3.50)

We note that B and r are direct functions of y through xo, and VN is a direct function

of H. The required matrix inverse is on a relatively small p � p matrix. The most

signi�cant computation is the singular value decomposition used to form VN .

3.6.1 A Fast Closed Form Implementation

If the blur represented by H is due to circular convolution, the singular value

decomposition of H becomes trivial using the 2-D FFT, and an extremely fast im-

plementation of equation (3.50) is possible. For non-circular FIR convolutional blur,

the image frame can be extended using a zero �ll border with a width equal to the

psf region of support. The conventional convolution can then be exactly embedded

in a slightly larger circular convolution representation. In this way, some practical

restoration problems can use the following fast implementation. However, this re-

striction to regular sampling and shift invariant psf does not make it useful in many

earth remote sensing problems.

For 2-D circular convolution,H isN�N doubly block circulant and is therefore

diagonalized by the 2-D unitary DFT. Thus the SVD of equation (3.45) is given by

H = FH�F , where F = 1
4
p
N
F 
 F , F is the 1-D DFT unitary transform matrix,


 indicates Kronecker matrix product, and � = DiagfvecfFFT2Dfh[m;n]ggg [20].

Here the elements of � are not ordered by magnitude. Subspace partitioning of H as

in (3.45) yields

VN = FP T ; VR = FQT ;
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P =

2
6666666666664

1 0 � � � 0

0
. . .

...

1 0 0

� � � 0 0 1 0 � � �
...

. . . 0

0 � � � 0 1

3
7777777777775
: (3.51)

P is a p�N selection matrix formed by deleting all rows from I which correspond to

non-zero singular values in �. Q is (N � p)�N and contains the rows of I not in P ,

such that P TP + QTQ = I. Equation (3.51) alone yields tremendous e�ciencies in

computing VN and xo. F is known, P and Q are constructed easily by thresholding

frequency bin magnitudes in FFT2Dfh[m;n]g to identify zero singular values, and

xo = FHQT (Q�QT )�1QF y.

Additional computational savings come from recognizing that all products in-

volving V H
N in equation (3.50) are simply 2-D FFTs followed by masking out frequency

bins corresponding to non-zero singular values. Thus for an arbitrary vector g =

vecfg[m;n]g, PFg can be interpreted as operator notation for MASKPfFFT2Dfg[m;n]gg.
Likewise, FHPHg 
 IFFT2DfMASKPfg[m;n]gg. Using FFTs also eliminates the

need to store huge N � N matrices by operating directly on the original
p
N �pN

images. Without this reduction, the problem is completely intractable for even mod-

est sized images of 256� 256 pixels.

The only remaining computational di�culty in equation (3.50) is the matrix

inverse, (V H
N BVN)

�1, which cannot be computed directly in the frequency domain.

Instead, we �nd z with a steepest descent least-squares solution to equation (3.49).

The following algorithm e�ciently approximates z in about �ve iterations using FFTs

and no matrices larger than the original images.

1. xo = FHQT (Q�QT )�1QF y

2. zk=0 = �1
2
PF [Diagfxog]FHP TPFr

3. zk+1 = zk � �PFBFHP TPF(2BFHP T zk + r)
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4. k = k + 1. If k � K go to 3

5. xME1 = xo + FHP Tzk

where � is the iteration step size, and K � 5 is the desired number of iterations.

3.6.2 Experimental Results

Figure 3.11 illustrates an example using the closed-from ME approximation.

The original Hubbel Space Telescope image of planetary nebula NGC 6543 was cir-

cularly convolved with a low pass �lter to produce the output image. Comparing

the true maximum entropy solution as produced by MART with the closed form ap-

proximation shows striking similarity. The only apparent di�erence is an increased

low level ringing in Figure 3.11d, which is di�cult to see in this reproduction. This

suggests the algorithm will be promising for a variety of ME image restoration appli-

cations. It is noteworthy that the closed form result was computed on a 400 MHz PC

in approximately 40 seconds, while the MART computation required 24 hours and is

still not fully converged.

3.7 Problems with ART and MART

One problem with row-action algorithms like ART and MART is manifest in

Figure 3.9. The dark criss crossing reconstruction artifacts are a result of under-

sampling. ART and MART don't appear to suppress sampling artifacts well when

the image is undersampled. Artifact noise can be severe in some remote sensing

applications where the sampling is neither very dense nor uniform, such as with SSM/I

radiometer data. This problem has led to the use of column normalized algorithms

in remote sensing reconstruction. Column normalized algorithms will be discussed in

Chapter 4.
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Figure 3.11: Example results from the closed form maximum entropy algorithm. a)
Original 256� 256 pixel true image. b) Observed image, blurred with a circular psf
low pass �lter with cuto� frequency less than Nyquist / 4. No noise was added.
c) Maximum entropy reconstruction using MART. d) Closed form approximation of
maximum entropy.
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Chapter 4

Column-normalized Algorithms

Chapter 3 studied row action algorithms, with an emphasis on the MART

algorithm. Section 3.7 discussed some of the weaknesses of row action algorithms for

an underdetermined system. This chapter will discuss column-normalized algorithms,

which have good sampling artifact suppression.

4.1 Column-normalized Algorithms

A column-normalized algorithm normalizes each update xj by the sum of the

elements in the jth column of H. The jth column of H contains important sampling

information, including the number of observation samples yi in
uenced by the jth

pixel in x, and the relative weighting given to that pixel in the ith sample. Column-

normalized algorithms di�er from row-action algorithms in that a single pixel update

needs information from every measurement. However, implementation of column-

normalized algorithms require memory access to only one row of H at a time, mak-

ing it practical for remote sensing reconstruction where very large transfer matrices

cannot be loaded into memory in their entirety. Section 3.7 pointed out some of

the di�culties that standard row-action methods have with reconstruction artifacts.

The following section studies in detail the SART algorithm, giving insight into how

column-normalized algorithms can reduce reconstruction artifacts.

4.2 Simultaneous Algebraic Reconstruction Technique (SART)

The Simultaneous Algebraic Reconstruction Technique (SART) algorithm was

proposed for Computerized Tomography reconstruction by Andersen and Kak in 1984
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(see [11], [21]) and was found to be useful in reducing imaging artifacts. The form of

SART is similar to ART and can be considered a block ART algorithm. The iteration

is as follows:

Algorithm 7 (SART)

Initialization: x� = 0.

Iterative step

xk+1
j = xkj +

Pm

i=1 hijd
k
iPm

i=1 hij
(4.1)

where

dki = yi � hhi; xki: (4.2)

It is sometimes more helpful for analysis to put the algorithm in matrix form,

thus Eq. (4.1) becomes

xk+1
j = xkj +

HT
j d

k

HT
j 1

: (4.3)

where Hj is the jth column of H, and 1 is a vector of ones. The HT
j 1 term serves to

normalize the update relative to the total weighting from all the observations.

An important aspect of an iterative algorithm is its convergence properties.

To the author's knowledge, no work has been published that has shown SART's

convergence properties|neither a proof of convergence nor what type of solution it

converges to. One way to show convergence is to cast the algorithm as a primal-

dual algorithm as was done for ME algorithms in Section 3.3 and apply Theorem 1.

However, to use this approach it is �rst necessary to know what type of solution the

algorithm converges to.

4.2.1 Finding the Solution

To determine the solution to which an algorithm converges we must return to

the constrained optimization problem

min
x

f(x) such that Hx = y: (4.4)
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The �rst step in solving the constrained optimization problem is to �nd the minimum

of the Lagrangian,

g(u) = min
x2Rn

(f(x) + hu; y �Hxi): (4.5)

Setting the derivative of the Lagrangian to zero and keeping the equality constraint

results in the Kuhn-Tucker conditions:

rf(xj) = HT
j u and Hx = y: (4.6)

The derivative relation in Eq. (4.6) can be used to \work backwards" from the algo-

rithm to �nd the f(x) that is being minimized.

The MART Solution

As an example of how one can \work backwards" to �nd the minimizing func-

tion, we will show how one can start at the block MART algorithm and work back

to the maximum entropy constraint. The block MART is updated as

xk+1
j = xkj

mY
i=1

�
yi

hhi; xki
�hi;j�

(4.7)

where each iteration calculates the update due every measurement. The � term is

simply an arbitrary relaxation factor and will be set to � = 1 for the rest of the

analysis without loss of generality. MART can more generally be expressed in matrix

form as

xk+1
j = xkj exp

�HT
j d

k
�

(4.8)

where

dki = log

�
yi

hhi; xki
�

(4.9)

and Hj is the jth column of H.
Now some assumption must be made regarding the form of the dual algebraic

operator D(uk), D : Rm ! R
m . For MART, it is assumed that the dual variable is

updated by

uk+1 = uk + dk: (4.10)
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Equation (4.10) is not an unreasonable assumption, since it satis�es the condition that

if dk goes to zero, then u goes to zero, and the x updates stop changing. Substituting

Eq. (4.10) into Eq. (4.8) gives

xk+1
j = xkj exp

�
HT

j (u
k+1 � uk)

�
(4.11)

= exp
�
HT

j u
k+1
�
xkj exp

��HT
j u

k
�

(4.12)

= exp
�
HT

j u
k+1
� �
xk�1j exp

�
HT

j (u
k � uk�1)

�
exp

��HT
j u

k
��

(4.13)

= exp
�
HT

j u
k+1
� �
xk�1j exp

��HT
j u

k�1�� (4.14)

)
xk+1
j = exp

�
HT

j u
k+1
� �
x0 exp

��HT
j u

0
��

(4.15)

= x0j exp
�
HT

j u
k+1
�

(4.16)

where we have assumed that u0 is zero. Dropping the iteration notation and solving

Eq. (4.16) for HT
j u gives

lnxj � lnx0 = HT
j u (4.17)

Comparing Eq. (4.17) to Eq. (4.6) shows that

rf(xj) = lnxj � lnx0: (4.18)

Integrating to �nd f(x) gives

f(xj) = xj lnxj � xj � xj lnx
0 (4.19)

= xj lnxj � xj(1 + lnx0j) (4.20)

(4.21)

which equals xj lnxj if x
0 = exp(�1). So, if we assume that u0 = 0, setting x0 =

exp(�1) yields the maximum entropy solution.

The SART Solution

Now the goal is to \work backwards" from the SART algorithm to �nd what

kind of solution it converges to, as we have done for MART.
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First, we assume that the dual variable, u, is updated the same as for MART,

uk+1 = uk + dk: (4.22)

Once again, this is a reasonable assumption, since when dk = 0 both the primal and

the dual variables will converge. Substituting Eq. (4.22) into Eq. (4.3) gives

xk+1
j = xkj +

HT
j

�
uk+1 � uk

�
HT

j 1

= x + jk +
HT

j u
k+1

HT
j 1

� HT
j u

k

HT
j 1

= xk�1j +
HT

j u
k

HT
j 1

� HT
j u

k�1

HT
j 1

+
HT

j u
k+1

HT
j 1

� HT
j u

k

HT
j 1

= xk�1j � HT
j u

k�1

HT
j 1

+
HT

j u
k+1

HT
j 1

)
xk+1
j = x0j �

HT
j u

0

HT
j 1

+
HT

j u
k+1

HT
j 1

: (4.23)

If u0 is set to zero, then Eq. (4.23) reduces to

(xj � x0j)H
T
j 1 = HT

j u (4.24)

Comparing Eq. (4.24) to Eq. (4.6) shows that SART minimizes the function

f(xj) =
x2jH

T
j 1

2
+ xjx

0
jH

T
j 1 (4.25)

which reduces to

f(xj) =
x2jH

T
j 1

2
(4.26)

if x0 is set to zero. SART, then, minimizes a weighted minimum norm function, where

the weighting accounts for the pixel sampling.

For the sequel it will be convenient to write Eq. (4.26) as

f(xj) =
x2jH

T
j 1

�
; (4.27)

which is allowable because a multiplicative constant does not change the minimization

solution.
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4.2.2 SART Convergence

In Section 4.2.1 it was shown that the SART algorithm solves the constrained

minimization problem

min
x

1

�

nX
j=1

x2jHT
j 1 such that y = Hx: (4.28)

To prove convergence to this solution the techniques of Section 3.2 are em-

ployed. Again, Theorem 1 is used, and since the function f(x) is convex, all that

is necessary to show convergence is to demonstrate that the SART iteration is IAF

with respect to H, y, and the minimizing function. The following proof is analo-

gous to proving Propositions 16 and 17 in [10]. Because SART is a block algorithm,

Proposition 18 in [10] is not necessary to show convergence (see [17]).

To set up the problem, �rst de�ne the Lagrangian minimum,

g(u) = min
x2Rn

(f(x) + hu; y �Hxi) (4.29)

= min
x2Rn

 
1

�

nX
j=1

x2j�j + hu; y �Hxi
!

(4.30)

where �j � HT
j 1. Setting the derivative of the Lagrangian to zero (the Kuhn-Tucker

condition) gives the minimizing ~x as

~xj =
HT

j u�

2�j
: (4.31)

Setting � = 2 as in Eq. (4.26) and using the dual variable update suggested in

Eq. (4.22), Eq. (4.31), written in iteration notation, becomes

~xk+1
j =

HT
j

�
uk + dk

�
�j

= ~xkj +
HT

j d
k

�j
; (4.32)

which is the SART iteration.

With the minimizing ~x, g(u) can be written as

g(u) =
1

�

nX
j=1

~x2j�j + hu; yi �
nX

j=1

mX
i=1

uihij~xj: (4.33)
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The �rst step in proving convergence is to show that g(uk) is monotonically

increasing in k:

Proposition 4

g(uk) is monotonically increasing in k.

Proof : For convenience, the tilde notation is dropped from x. Consider the di�erence:

g(uk+1)� g(uk) =
1

�

nX
j=1

�
(xk+1

j )2 � (xkj )
2
�
�j + huk+1 � uk; yi

+
mX
i=1

nX
j=1

�
uki hijx

k
j � uk+1

i hijx
k+1
j

�
(4.34)

=
1

�

nX
j=1

2
4 xkj + HT

j d
k

�j

!2

� (xkj )
2

3
5 �j + huk+1 � uk; yi

+
mX
i=1

nX
j=1

"
uki hijx

k
j � uk+1

i hij

 
xkj +

HT
j d

k

�j

!#
(4.35)

where we used Eq. (4.3). This yields

g(uk+1)� g(uk) =
1

�

nX
j=1

2
4(xkj )2 + 2xkj

HT
j d

k

�j
+

 
HT

j d
k

�j

!2

� (xkj )
2

3
5 �j

+huk+1 � uk; yi+
mX
i=1

nX
j=1

uki hijx
k
j �

mX
i=1

nX
j=1

uk+1
i hijx

k
j

�
mX
i=1

nX
j=1

uk+1
i hij

HT
j d

k

�j
(4.36)

=
1

�

nX
j=1

2
42xkj HT

j d
k

�j
+

 
HT

j d
k

�j

!2
3
5 �j + huk+1 � uk; yi

+huk � uk+1; yi+ huk � uk+1;�dki

�
mX
i=1

nX
j=1

uk+1
i hij

HT
j d

k

�j
: (4.37)

Continuing to simplify,

g(uk+1)� g(uk) =
1

�

nX
j=1

2
42xkj HT

j d
k

�j
+

 
HT

j d
k

�j

!2
3
5 �j + huk+1 � uk; yi
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+huk � uk+1; yi+ ����dk����2
2
�

mX
i=1

nX
j=1

uk+1
i hij

HT
j d

k

�j
(4.38)

=
nX

j=1

2
4
0
@ 2

�
xkj
HT

j d
k

�j
+

1

�

 
HT

j d
k

�j

!2
1
A �j

� HT
j d

k

�j

mX
i=1

uk+1
i hij

#
+
����dk����2

2
(4.39)

=
nX

j=1

2
4
0
@ 2

�
xkj
HT

j d
k

�j
+

1

�

 
HT

j d
k

�j

!2
1
A �j

� 2

�

HT
j d

k

�j
xk+1
j �j

#
+ jjdkjj22 (4.40)

=
nX

j=1

"
2

�
HT

j d
k(�xk+1

j + xkj ) +
1

�

 
(HT

j d
k)2

�j

!#

+
����dk����2

2
(4.41)

=
nX

j=1

"
2

�
HT

j dk

 
�HT

j d
k

�j

!
+

1

�

 
(HT

j d
k)2

�j

!#
+
����dk����2

2
(4.42)

= � 1

�

nX
j=1

 
(HT

j d
k)2

�j

!
+
����dk����2

2
: (4.43)

Equation (4.43) can be written in matrix notation as

� 1

�

�
dk
�T HKKTHT

�
dk
�
+
�
dk
�T �

dk
�

(4.44)

where

K = diagfHT1g� 1

2 : (4.45)

For g(u) to be monotonically increasing the variable � must be picked so that Eq.

(4.44) is strictly non-negative. This is guaranteed for � greater than or equal to the

largest singular value of HK. Thus, an � which depends only on H can be picked

such that g(u) is monotonically increasing.

q.e.d
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Proposition 5 shows that the algorithm is IAF.

Proposition 5

If fxkg1k=0 and fukg1k=0 are generated by SART then

(i) lim
k!1

[g(uk+1)� g(uk)] = 0; (4.46)

(ii) lim
k!1

(hhki ; xki � yi) = 0; (4.47)

(iii) lim
k!1

(uk+1 � uk) = 0; (4.48)

(iv) lim
k!1

hhki ; xk+1i � yi) = 0: (4.49)

Proof

(i) fg(uk)g1k=0 is monotonically increasing by Proposition 4, and by Eq. (3.7) is

bounded from above.

(ii) Proportion 4 and Eq. (4.46) imply that

lim
k!1

dk = 0: (4.50)

(iii) Follows from Eqs. (4.22) and (4.50).

(iv) Use (4.22) to write

hhki ; xk+1i � yi =
nX

j=1

hij

�
xkj +

(uk+1 � uk)

HT
j 1

�
� yi

= hhi; xki � yi +
nX
j=1

(uk+1 � uk)

HT
j 1

(4.51)

which goes to zero by Eqs. (4.47) and (4.48).

q.e.d

Because the algorithm is IAF as per Proposition 5, by Theorem 1 it converges

to the solution Eq. (4.28). In summary, we have proven that the SART iteration

converges to the weighed minimum norm solution in Eq. (4.27).
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4.2.3 Advantages of the Column Normalization

The advantages of using a column-normalized algorithm, like SART, are shown

in Figures 4.1 and 4.2. The weighting in the minimization function, which is a result

of the column normalization, appears to help reduce sampling artifacts. For the

randomly decimated case (Figure 4.1) the �gure arguably appears less \noisy," and

the dark cross-hatch marks are not as pronounced in the case where the image was

regularly decimated by 2 in the x and y directions (Figure 4.2). This characteristic is

very important when using the images for land-type classi�cation, since reconstruction

artifacts can lead to erroneous classi�cations.

4.3 BYU MART and SIR

The BYU MERS lab has been using column-normalized algorithms for several

years. In his thesis, Peter Whiting suggested using an algorithm that he called \Block

ART" (which I have renamed \BYUMART") for remote sensing image reconstruction

[7]. Note the characteristic update column normalization by HT
j 1.

Algorithm 8 (BYU MART)

Initialization: x� = arbitrary.

Iterative step

xk+1
j = xkj

MX
i=1

�
yi

hhi; xki
��

hij

MX
i=1

hij

; (4.52)

or

xk+1
j = xkj

HT
j d

k
i

HT
j 1

(4.53)

in matrix form, where

dki =

�
yi

hhi; xki
��

: (4.54)

The reason the algorithm was originally called Block ART is because the update

term from each measurement is added to give the �nal update term for the iteration.
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Figure 4.1: Reconstruction from noiseless, randomly sampled data: a) ART b) MART
c) SART d) Original Image
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Figure 4.2: Reconstruction from noiseless, regularly decimated sampling: a) ART b)
MART c) SART d)Original Image
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However, I feel that BYU MART is a more appropriate name since the the current

estimate is multiplied by the update term to get a new estimate, and the �delity term

d is the same form as in MART.

However, it should be noted that, despite its name, BYU MART does not

converge to a maximum entropy solution as MART does. Currently, it is not known

what solution BYU MART converges to, but we have experimentally demonstrated

by comparison with MART that it is not a maximum entropy algorithm. Since most

algorithms in this algebraic class yield solutions which depend on initialization, x�,

the arbitrary initialization speci�ed for BYU MART suggests the solution form is

indeterminate. It is probable that changing the initial condition will change the

solution, but since the solution is not known there is no reason to use any particular

initial condition.

4.3.1 SIR

The Scatterometer Image Reconstruction (SIR) algorithm, which was also de-

veloped at BYU for remote sensing reconstruction, is closely related to MART (See

[22],[23],[8]).

Algorithm 9 (SIR)

Initialization: x� = arbitrary.

Iterative step

xk+1
j =

MX
i=1

ukijhij

MX
i=1

hij

; (4.55)

or

xk+1
j =

HT
j uij

HT
j 1

(4.56)

in matrix form. The nonlinear update term uij is given by

ukij =

8<
:
h

1
2fki

�
1� 1

dk
k

�
+ 1

xkj d
k
i

i�1
dki � 1�

1
2
fki (1� dki ) + xkjd

k
i

�
dki < 1:

(4.57)
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where dki is the �delity term

dki =

�
yi

hhi; xki
�

and fki is the forward projection hhi; xki.

The purpose of the nonlinear update uij is to limit the amount that the es-

timate can change at each iteration. This limit helps smooth inconsistent data and

has been found in practice to reduce noise more e�ectively than BYU MART (see

[7]). SIR's good performance in noise has made it the algorithm of choice for image

reconstruction at the BYU MERS lab.

Figures 4.3 and 4.4 compare the performance of BYU MART and SIR against

standard MART. Notice that, like SART, they do a better job of suppressing sam-

pling artifacts than MART, especially in the regularly decimated case. Even though

the type of solution is unknown, it is now believed that this artifact suppression is

at least partly due to the normalization by the columns of H in the iterative update.

This understanding of the functioning of SIR is only now being realized by structural

comparisons we have made with the SART algorithm based on our convergence anal-

ysis. By using appropriate parameter settings, SART and SIR can be demonstrated

to yield remarkably similar results.

4.3.2 BYU MART and SIR Convergence

Speci�c convergence properties of BYU MART and SIR are still unknown.

Experimental evidence indicates that they converge to di�erent solutions, but what

form of solution they converge to is unknown. Appendix A, however, shows an

analysis by David Long which sheds light on some of the convergence properties of

these two algorithms.

4.4 Additive SIR

The fact that adding a nonlinear update term to BYU MART creates a more

robust algorithm in the presence of noise gives motivation to modify the SART algo-

rithm in a similar way. Thus I have added a nonlinear update to SART and called the
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Figure 4.3: Reconstruction from noiseless random sampling: a) SIR b) BYU MART
c) MART d) Original Image
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algorithm Additive SIR. The form of the Additive SIR algorithm is similar to that of

SART, except with a non linear function of the �delity term d.

Algorithm 10 (Additive SIR)

Initialization: x� = 0.

Iterative step

xk+1
j = xkj +

Pm

i=1 hijd
k
iPm

i=1 hij
; (4.58)

or

xk+1
j = xkj +

HT
j d

k

HT
j 1

(4.59)

in matrix form, where

fki = hhi; xki; (4.60)

�ki = (yi � fki ) (4.61)

and

dki =

8<
: fki (1� exp(���ki )) + ��ki exp(���ki ) dki � 0

�fki (1� exp(��ki )) + ��ki exp(��
k
i ) dki < 0

(4.62)

where � and � are other relaxation factors that are determined empirically to give

the best results in the presence of noise. The values of � and � need to be deter-

mined experimentally and optimized for each particular instrument. For the SSM/I

radiometer, I found � = :001 and � = :1 to give stable convergence, while � = :025

and � = 1 worked well for NSCAT.

Figures 4.5 and 4.6 compare the Additive SIR algorithm to ART and MART for

decimated data. Once again, especially for the regularly decimated case, Additive

SIR is much better than MART or ART at reducing sampling artifacts.

4.4.1 Additive SIR Convergence

In Section 4.3.2 it was shown that although BYU MART and SIR have similar

forms they converge to di�erent solutions. It is fair to ask, then, whether Additive

SIR, with its nonlinear update, converges to a di�erent solution than SART.

Figure 4.7 shows the convergence trajectories for the SART and Additive SIR

algorithms for the three-dimensional system de�ned in (3.43). The two algorithms
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follow very similar trajectories and converge to the same solution. Numerically, there-

fore, they appear to be equivalent in convergence. This may make sense in the light

of the proof of convergence of SART in Section 4.2.2, since there no restrictions are

placed on the form of d needed for convergence.

However, as stated Section 3.5.2, care should be taken when using the three-

dimensional examples. While the trajectories of the two algorithms appear to be the

same for this three-dimensional case, they may not be the same for higher dimensional

cases. Since with real, noisy data the algorithms are usually stopped well before

convergence, the convergence path is important in determining the �nal image.

4.5 Conclusion

This chapter introduced column-normalized algorithms. The convergence prop-

erties of the SART algorithm indicate that column normalization helps reduce sam-

pling artifacts. Chapters 5 and 6 will show how several column-normalized algorithms,

as well as ART and MART, compare in reconstructing simulated and real data.
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Figure 4.7: Convergence trajectories for the SART and Additive SIR algorithms
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Chapter 5

Algorithm Performance Comparison Using Simulated Data

This chapter compares the performance of the several previously described

reconstruction algorithms using simulated data. Remote sensing observations of the

image in Figure 5.1 are simulated, and the image is reconstructed using actual sam-

pling geometries and antenna response patterns from the SSM/I and NSCAT satel-

lites. The sample patterns used are the same as those for an actual data set of an area

over the Amazon, pictured in Figure 5.2. The sampled region covers from �58� to
�54� longitude, and �6� latitude to the equator. The simulated ground truth image

is used with realistic sensor system modeling so that reconstruction performance can

be evaluated against a known true reference.

When considering the reconstruction results which are presented in the sequel,

we emphasize the following issues:

1. This is not meant to be a comprehensive comparison of the di�erent algorithms.

It would be irresponsible to look at the results of the following two chapters and

try to make overly speci�c conclusions. Rather, the point of these simulations

is to see generally how the algorithms perform.

2. This is not meant to be a comparison of the two instruments. Chapter 2 was

provided to give an introduction to some of the issues involved in reconstruction

from radiometer and scatterometer data sets. This is not a complete treatment

on the tradeo�s between using the two di�erent instruments. The purpose of

this simulation is to compare how the di�erent algorithms perform for each

instrument separately.
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Figure 5.1: The original synthetic \truth image" used for simulations

5.1 The Modi�ed Median Filter

When the SIR algorithm was initially developed, it was observed that using a

modi�ed median �lter helped control the noise level in the image [7]. This �lter selects

the median intensity when there is a wide range of pixel values in the window, and

computes an average when there is a narrow range of values. The modi�ed median

�lter used in this simulation has a 3 pixel by 3 pixel window, and computes an average

value if the di�erence between the second lowest and second highest intensity values

is less than 9.8e-4. Because of the complexity of analyzing such a nonlinear and non-

stationary �lter, we have not presented a theoretical development discussion on the

modi�ed median �lter as used in image reconstruction. Algorithms with this �lter

are included in the sequel for performance comparison purposes. The algorithms

compared in this section are Algebraic Reconstruction Technique (ART), ART with

the modi�ed median �lter (ARTF), Multiplicative ART (MART), MART with �lter

(MARTF), Simultaneous ART (SART), SART with �lter (SARTF), Additive SIR
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Figure 5.2: The area in the black rectangle represents the region in the Amazon
basin from which the measurement geometries are taken (the area is magni�ed at the
bottom right hand corner of the image).
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(AddSIR), AddSIR with �lter (AddSIRF), the Scatterometer Image Reconstruction

Technique (SIR), and SIR with �lter (SIRF).

5.2 SSM/I Geometry Simulations

The �rst set of simulations uses a sampling grid matched to an SSM/I sampling

over the Amazon region from Julian day 190 to 194 in 1999, corresponding to 2604

measurements. Figure 5.3 shows the instrument sampling over the region of interest

for the speci�ed day range.

Figure 5.3: SSM/I sampling geometry|The dots in the left �gure indicate the center
of each footprint. The right �gure shows a decimated version of the sampling to give
a view of some representative footprints (both �gures are on the same scale).
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5.2.1 Noiseless Simulations

Although unrealistic as a model of actual sensor signals, noiseless simulations

can provide insight into the strengths and weaknesses of the di�erent algorithms. Fig-

ures 5.4 and 5.5 show the results of applying reconstruction algorithms to simulated

data.

The column-normalized algorithms all seem to behave well, but there are dif-

ferences between the algorithms: for example, the SIR algorithm does a better job

of picking out edges than the other algorithms, but the tradeo� is that it has more

ringing, as can be seen in the reconstruction of the two gradients in the upper left

hand corner of the image.

When conducting these simulation experiments, we found the convergence

of MART to be strongly dependent upon the initial condition. When MART was

introduced in Chapter 3, the initial estimate x� was given as x� = exp(�1). Other

initial conditions also guarantee ME convergence for MART, namely any x� satisfying

1 + x�j = �HT
j u

� (5.1)

where u� 2 R
m is arbitrary [10]. An obvious choice for u� is zero, which gives the

familiar initial condition x� = exp(�1). Experimental evidence shows, however, that
picking an initial condition close to the expected mean value of the image greatly

increases MART's convergence rate. As long as the the initial condition satis�es

Eq. (5.1), ME convergence is guaranteed. In Chapter 6 we will show an example

of image reconstruction from real data which emphasizes the importance of picking

good initial conditions when using MART.

It is also important to remember that when using MART it is assumed that

all of the pixel intensity values sum to 1, i.e.
P

j xj = 1. Since this condition is not

realistically satis�ed in remote sensing, MART reconstructions are not scale invariant,

i.e., a measurement scaling does not imply the same reconstructed pixel scaling.
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Figure 5.4: Noiseless reconstructions for SSM/I geometry using (a) MART (b) MART
with �lter (MARTF) (c) ART (d) ART with �lter (ARTF) (e) SART (f) SART with
�lter (SARTF)
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Figure 5.5: Noiseless reconstructions for SSM/I geometry using (a) SIR (b) SIR with
�lter (SIRF) (c) AddSIR (d) AddSIR with �lter (AddSIRF)
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5.2.2 Noisy Simulation

For the noisy SSM/I simulations, noise characteristics modeled after the in-

strument noise parameters are used. One model for SSM/I's noise is 1 Kelvin for

a maximum ground radiometric brightness temperature of 280 Kelvin. Because the

synthetic truth image is normalized such that its highest value is 1, the noise is nor-

malized to 1=280 = :0036. For this simulation, adding i.i.d, white, Gaussian noise

with � = :0036 to the measurements to simulate measurement noise results in a signal

to noise ratio of 45.0 dB. To aid in comparing the di�erent algorithms in the presence

of noise, Figures 5.6 and 5.7 show the resulting image at the iteration with the lowest

solution error, as was done in Chapter 3.

Figures 5.6 and 5.7 suggest that ART and MART do not perform as well as

the column-normalized algorithms in the presence of noise. This attribute lessens

their utility for remote sensing reconstruction.

5.3 NSCAT Geometry Simulations

This section compares the various algorithms using the NSCAT sampling ge-

ometry. Figure 5.8 shows the measurement locations for NSCAT over the region of

interest for the 8-day period between Julian day 156 and Julian day 164, 1997. Note

that, while still undersampled relative to the reconstruction image pixel grid, the data

set is more densely sampled than SSM/I data. Because of the denser sampling and

smaller footprint, one would expect better reconstructions.

Figures 5.9 and 5.10 show the noiseless reconstructions, while Figures 5.11 and

5.12 show noisy reconstructions. The noise model for NSCAT is a standard deviation

of 1% of the backscatter. Given the maximum backscatter intensity of 1 for the

simulations, the additive noise would have a standard deviation of 0.01. However, to

compare the e�ect of noise more easily, i.i.d, white, Gaussian noise with � = 0:07 was

instead added to the measurements, resulting in a 19.7 dB SNR. For the noiseless

simulations, all of the algorithms performed very well, which is expected for a highly

sampled system, while the column-normalized algorithms appear to have better noise

suppression properties than ART and MART.
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Figure 5.6: 45.0 dB SNR SSM/I reconstruction using (a) MART|398 iterations
(b) MART with �lter (MARTF)|42 iterations (c) ART|20 iterations (d) ART
with �lter (ARTF)|12 iterations (e) SART|1058 iterations (f) SART with �lter
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Figure 5.7: 45.0 dB SNR SSM/I reconstruction using (a) SIR|694 iterations (b) SIR
with �lter (SIRF)|27 iterations (c) AddSIR|2098 iterations (d) AddSIR with �lter
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Figure 5.8: NSCAT sampling geometry|The dots in the left �gure indicate the center
of each footprint. The right �gure shows a decimated version of the sampling to give
a view of some representative footprints (both �gures are on the same scale.
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Figure 5.9: Noiseless NSCAT reconstruction using (a) MART (b) MARTF (c) ART
(d) ARTF (e) SART (f) SARTF
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Figure 5.10: Noiseless NSCAT reconstructions using (a) SIR (b) SIRF (c) AddSIR
(d) AddSIRF
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Figure 5.11: 19.7 dB SNR NSCAT reconstruction using (a) MART (b) MARTF (c)
ART (d) ARTF (e) SART (f) SARTF
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Figure 5.12: 19.7 dB SNR reconstruction using (a) SIR (b) SIRF (c) AddSIR (d)
AddSIRF
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5.4 Conclusions

The simulations in this chapter show how well the various algorithms recon-

struct data from actual remote sensing measurement geometries. While all of the

algorithms perform well, the column-normalized algorithms suppress artifacts and

noise most e�ectively. The similarities between the SART and SIR reconstructions

suggest that the primary advantage of SIR, as it has been used over several years, is

the column normalization.
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Chapter 6

Algorithm Performance Comparison Using Real Data

In this chapter, the various reconstruction algorithms are compared using ac-

tual SSM/I and NSCAT data. The measurements for the real data are taken from the

same area (shown in Figure 5.2) and day range as for the simulated data in Chapter

5.

When reconstructing noisy data there is a tradeo� between resolution enhance-

ment and noise ampli�cation. Because the \truth" image is not known for real data,

the iteration at which to stop for best results is somewhat subjective. Usually the

algorithm cannot be left to iterate until convergence because of noise ampli�cation,

but stopping too early will result in a lower resolution image. The images in the

following sections are those that the author considers \best," so there is subjectivity

in the choice.

6.1 SSM/I Reconstructions

Figures 6.2 and 6.3 show the reconstruction results for real SSM/I data. As

in Chapter 5, all of the algorithms perform reasonably well. MART and ART seem

to have the noisiest reconstructions, ART appearing to be the worse of the two. The

elliptical pattern of the noise for ART and MART suggest the need for the sampling

artifact suppression that the column-normalized algorithms provide.

Figure 6.1 shows reconstruction for MART using the initial condition x� = 1=e.

While for the noiseless case this initial condition will lead to the maximum entropy

solution, because of how the convergence properties depend on the initial condition,

using this initial condition for SSM/I data leads to unacceptable results. Thus, a
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uniform image at the expected mean value of the �nal image was used as the starting

value to obtain the images shown in Fig. 6.2. This strong dependence on the starting

point may be a disadvantage to using MART for remote sensing reconstruction.
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Figure 6.1: The result of using x� = 1=e for SSM/I data for MART after 15 iterations
(left), and MARTF after 50 iterations (right).

6.2 NSCAT Reconstructions

Scatterometers, unlike radiometers, have an incidence angle dependence, that

is, the measurement depends on the angle at which the instrument looks at the ground.

This incidence angle dependence is generally nonlinear, but over a certain range of

incidence angles a linear model can be used for the backscatter measurements:

�� = A+ B(� � �) (6.1)

where A represents the incidence angle-normalized backscatter coe�cient, and B
represents the dependence of the backscatter on the incidence angle �. � is the

angle to which � is normalized [7]. NSCAT reconstruction can be called dual-variable

reconstruction because there are two parameters to estimate, A and B. More details
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Figure 6.2: SSM/I reconstruction of real data using (a) MART|30 iterations (b)
MARTF|40 iterations (c) ART|5 iterations (d) ARTF|15 iterations (e) SART|
30 iterations (f) SARTF|30 iterations
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Figure 6.3: SSM/I reconstruction of real data using (a) SIR|10 iterations (b) SIRF|
10 iterations (c) AddSIR|10 iterations (d) AddSIRF|15 iterations
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on how to estimate B are given in [7]. While there is information contained in the B
image, the primary resolution enhancement potential is in the A image, so only these

images are shown in the following comparisons.

Figures 6.4 and 6.5 show the results of using the several algorithms. As ex-

plained in Section 6.1, the choice of which iteration to use is subjective. Notice how

much better ART and MART perform for the NSCAT data, as compared to the

SSM/I data. One reason why ART and MART may perform better is that the sam-

pling is denser (see Fig. 5.8) and the footprint is smaller. ART and MART may

also perform better with NSCAT data is because of the shape of the footprint: The

tapered SSM/I footprint has lower sidelobes, placing high frequency content closer to

the noise 
oor and making it more di�cult for ART and MART, which don't perform

well in noise, to reconstruct.

6.3 Conclusions

This section compared the reconstruction results for di�erent row action and

column-normalized algorithms using real SSM/I and NSCAT data. While all of the

algorithms performed well with the NSCAT data, the artifact suppression qualities

of the column-normalized algorithms are necessary for good SSM/I reconstruction.

It should be remembered that this chapter is not meant to be an exhaus-

tive comparison of the di�erent algorithms. It remains as future research to do a

more comprehensive comparison of the several algorithms, including optimizing the

algorithms for di�erent instruments.
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Figure 6.4: NSCAT reconstruction of real data using (a) MART|60 iterations (b)
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Figure 6.5: NSCAT reconstruction of real data using (a) SIR|30 iterations (b)
SIRF|45 iterations (c) AddSIR|25 iterations (d) AddSIRF|30 iterations
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Chapter 7

Conclusions

Image reconstruction algorithms have been used for several years to create

enhanced resolution images of the earth's surface from radiometer and scatterometer

data. These images have helped researchers monitor the planet's health. The BYU

MERS lab has implemented the SIR algorithm with good results to create these

enhanced resolution images. The SIR algorithm appeared to give better results than

standard reconstruction algorithms like ART and MART, but it was not previously

understood why.

This thesis has closely examined and compared several image reconstruction

algorithms, with the goal of gaining more insight into the SIR algorithm. As part of

this examination, convergence properties of Maximum Entropy (ME) algorithms were

studied, and the convergence proof for the MART algorithm given by Lent and Cen-

sor in [10] was expanded to include varying forms of ME algorithms. Because ME

algorithms are an important class of reconstruction methods, several di�erent ME

algorithms were studied to compare both performance in the presence of noise and

convergence rates. It was found that the three ME forms considered all had compa-

rable noise performance, but the MART algorithm has the fastest stable convergence

over the widest range of values, suggesting that it is a good and viable algorithm

for ME reconstruction. A fast algorithm for ME approximation was also introduced.

None of the forms of MART, old or new, were found to compare favorably with SIR,

or SART, or other column-normalized algorithms when used with NSCAT or SSM/I

data.
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The study of various reconstruction algorithms led to de�ning a new class

of algorithms termed column-normalized algorithms, in which the iterative update

is normalized by the columns of the transfer matrix H. The SART algorithm was

studied as an example of a column-normalized algorithm and was found and proved to

converge to a weighed minimum norm solution where the weighting is the sum of the

columns of H, which contain sampling information for each pixel. This normalization

appears to reduce the artifacts resultant from irregularly sampled and undersampled

data. While the speci�c solution to which the SIR algorithm theoretically converges

to has not been found, SIR is a column-normalized algorithm, and the normalization

makes the algorithm robust for remote sensing reconstruction.

Chapters 5 and 6 presented a short comparison of the algorithms for simulated

and real data, respectively. From the results, it appears that column-normalized algo-

rithms are more robust than ART and MART for highly underdetermined and noisy

systems. While ART and MART appear to be viable remote sensing reconstruction

algorithms for highly sampled and low noise systems, column-normalized algorithms

o�er a better, more robust, option for a wider range of systems. Further, the now

well-understood SART algorithm yielded results very similar to those from SIR.

7.1 Future Research

Although the introduction of column-normalized algorithms gives more insight

into the nature of SIR, and Appendix A shows some convergence properties of SIR,

it still is unknown what solution SIR converges to, nor is there a formal proof of

convergence. The step-size nonlinearity in SIR makes it di�cult to analyze, and

perhaps a more fruitful course is to study the convergence properties of the BYU

MART algorithm �rst, and then apply those results to SIR.

Chapters 5 and 6 provide only a brief comparison of the di�erent algorithms,

and more research is required for a better comparison. Further research into using

the SART algorithm for remote sensing image reconstruction is also needed. To date,

only the SIR algorithm has been generally used for image reconstruction in the BYU

MERS Lab. There are, however, advantages to using SART, including the fact that
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the solution is known, and, it is computationally less demanding because of being an

additive algorithm. Research will be required to optimize the SART algorithm for

di�erent microwave instruments and to compare its results with SIR to see if using

SART is warranted.
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Appendix A

BYU MART and SIR Convergence Properties

A.1 Convergence Properties

While no formal proof of the convergence of SIR exists, empirical evidence

suggests that SIR converges to a unique value [8]. We note that at the point of

convergence xk+1 = xk = x. We assume that x is unipolar, that is, either xj > 0 8j
or xj < 0 8j. We note that in the noise-free case, with convergence to the true value

for all j,

yi = hhi; xi =
NX
n=1

xnhin

when H is normalized.

A.1.1 Linear Case: BYU MART

Assuming convergence of xk to x has occurred for the linearized SIR or BYU

MART algorithm, we obtain the following:

xj = xj

MX
i=1

�
yi

hhi; xi
��

hij

MX
i=1

hij

: (A.1)

Then,

xj

0
BBBB@1�

MX
i=1

�
yi

hhi; xi
��

hij

MX
i=1

hij

1
CCCCA = 0; (A.2)
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which we can write as

xjAj = 0 (A.3)

where

Aj = 1�

MX
i=1

�
yi

hhi; xi
��

hij

MX
i=1

hij

= 1�

MX
i=1

2
66664

yi
NX
n=1

xnhin

3
77775
�

hij

MX
i=1

hij

: (A.4)

Since x 6= 0, for Eq. (A.3) to hold we must have Aj = 0 8j which implies that

MX
i=1

2
66664

yi
NX
n=1

xnhin

3
77775
�

hij

MX
i=1

hij

= 1 8j: (A.5)

This is equivalent to
MX
i=1

�
yi

hhi; xi
��

hij =
MX
i=1

hij 8j; (A.6)

or
MX
i=1

d�i hij =
MX
i=1

hij 8j (A.7)

if we substitute

di =
yi

hhi; xi : (A.8)

Making � = 1 and writing (A.7) in matrix form gives

HTd = HT1: (A.9)

Because H is generally underdetermined, then HT will be overdetermined, so that

the only way Eq. (A.9) will be satis�ed is if

di = 18i; (A.10)

which implies that hhi; xi = yi8i, which is the desired convergence result.
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A.1.2 Non-Linear Case

The nonlinear case is much more di�cult to analyze than the linear case

because of the duo-case de�nition of the scale factor in Eq. (4.57). To analyze the

non-linear case, we will make some simplifying assumptions that � = 1 (no damping).

With this simpli�cation, Eq. (4.57) can be written as

ukij =

8<
:
h
1
2

�
1
fki
� 1

yi

�
+

fki
xkj yi

i�1
yi
fki
� 1h

1
2
(fki � yi) +

xkj yi

fki

i
yi
fki

< 1:
(A.11)

Note that both cases give the same result for yi=f
k
i = 1 so the equality case split can

be adapted to have equality for either case. Assuming convergence, xk+1 = xk = x,

we can write,

uij =

8<
:
h
1
2

�
1
fi
� 1

yi

�
+ fi

xjyi

i�1
yi
fi
> 1h

1
2
(fi � yi) +

xjyi
fi

i
yi
fi
� 1:

(A.12)

Lower Branch

In order to have a tractable problem to analyze, we now assume that all

yi=fi � 1 for all j so that only the lower case occurs:

uij =
1

2
(fi � yi) +

xjyi
fi

: (A.13)

Putting this into Eq. (4.55) at convergence we obtain

xj =

MX
i=1

�
1

2
(fi � yi) +

xjyi
fi

�
hij

MX
i=1

hij

(A.14)

=

1

2

MX
i=1

(fi � yi)hij

MX
i=1

hij

+ xj

MX
i=1

yi
fi
hij

MX
i=1

hij

: (A.15)
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Thus,

xj

0
BBBB@1�

MX
i=1

yi
fi
hij

MX
i=1

hij

1
CCCCA =

1

2

MX
i=1

(fi � yi)hij

MX
i=1

hij

(A.16)

which we can express as

xjAj = Bj (A.17)

where

Aj = 1�

MX
i=1

yi
fi
hij

MX
i=1

hij

(A.18)

Bj =

1

2

MX
i=1

(fi � yi)hij

MX
i=1

hij

: (A.19)

Keeping the � it can be shown that

Aj = 1�

MX
i=1

�
yi
fi

��
hij

MX
i=1

hij

(A.20)

=

MX
i=1

 
1�

�
yi
fi

��!
hij

MX
i=1

hij

(A.21)

Bj =

1

2

MX
i=1

fi

 
1�

�
yi
fi

��!
hij

MX
i=1

hij

: (A.22)

We note that in the linear SIR case, we obtained the solution equation xjAj = 0

[Eq. (A.3)] while in the non-linear SIR we have xjAj = Bj [Eq. (A.17)]. This linear
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case requires that Aj = 0 8j. A similar condition for the non-linear case is more

di�cult to arrive at.

First, we note that in the noise-free (desired) case, fi = yi. Then, Bj = 0 and

Aj = 0, satisfying Eq. (A.3). Thus, non-linear SIR has a solution point at the desired

solution which matches linear SIR. However, a solution at xj = Bj=Aj may also be

possible. Note that (for � = 1)

xj =
Bj

Aj

=

1

2

MX
i=1

(fi � yi)hij

MX
i=1

hij �
MX
i=1

yi
fi
hij

(A.23)

=
1

2

MX
i=1

(fi � yi)hij

MX
i=1

�
fi � yi
fi

�
hij

; (A.24)

i.e., Bj=Aj is the ratio of the point spread weighted normalized projection di�erence

and the point spread weighted projection di�erence. For a general �

Bj

Aj

=
1

2

MX
i=1

fi

 
1�

�
yi
fi

��!
hij

MX
i=1

 
1�

�
yi
fi

��!
hij

: (A.25)

In the ideal, noise-free case, both Aj and Bj are zero, so the ratio is unde�ned.

Using L'Hospital's rule we can compute the ratio in the limit. Note that to do this

yi and hij are �xed and that fi (= hhi; xi) is converging to yi. We thus take the

derivatives with respect to fi. The algebra can be simpli�ed by de�ning a vector F

with elements fi. Then

dAj

dF
=

MX
i=1

�y�i fi
�(�+1)hij (A.26)

=
MX
i=1

Dij (A.27)

dBj

dF
=

MX
i=1

 
1�

�
yi
fi

��
+ fi�y

�
i fi

�(�+1)

!
hij (A.28)
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=
MX
i=1

fiDij +
MX
i=1

 
1�

�
yi
fi

��!
hij (A.29)

=
MX
i=1

fiDij + Aj (A.30)

where

Dij = �y�i fi
�(�+1)hij: (A.31)

The solution for xj = Bj=Aj when fi = yi is then

xj =
Bj

Aj

=

MX
i=1

fiDij + Aj

dAj

dF

(A.32)

=
1

2

MX
i=1

�

�
yi
fi

��
hij +

MX
i=1

 
1�

�
yi
fi

��!
hij

MX
i=1

�
1

fi

�
yi
fi

��
hij

: (A.33)

Letting fi = yi in this expression and simplifying, we obtain

xj =
1

2

MX
i=1

�hij

MX
i=1

�

fi
hij

(A.34)

=
1

2

MX
i=1

�hij

MX
i=1

�

yi
hij

(A.35)

=
1

2

MX
i=1

hij

MX
i=1

hij
yi

: (A.36)

This is a key result. While it initially may suggest that it may be able to compute

the converged solution without iteration, in fact this result suggests that the solution

must take this form. Since, in general, it will not, the solution may be biased or the
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analysis may be 
awed. We also note that the value of � does not a�ect the �nal

solution.

Upper Branch

We considered the lowercase for uij in Eq. (A.12). We now consider the other

case, that is, when yi=fi � 0 for all j. In this case (using � = 1)

uij =

�
1

2

�
1

fi
� 1

yi

�
+

fi
xjyi

��1
(A.37)

which can be written as

uij =
xjyi

fi +
1
2

xjyi
fi
� 1

2
xj

(A.38)

=
xjyi

fi + Cixj
(A.39)

where

Ci =
1

2

�
yi
fi
� 1

�
=

1

2

yi � fi
fi

: (A.40)

In the ideal normalized case, yi = fi so Ci = 0. We can then write

uij =
xjyi
fi

= xjdi: (A.41)

The analysis from this point is identical to the linearized SIR equation. It follows

that the non-linear case has a solution at the desired point.

If we plug Eq. (A.39) into Eq. (4.55) we obtain at convergence

xj = xj

MX
i=1

yi
fi + Cixj

hij

MX
i=1

hij

(A.42)

which implies that convergence occurs at

MX
i=1

yi
fi + Cixj

hij

MX
i=1

hij

= 1 8j (A.43)
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which we can write as

MX
i=1

�
1� yi

fi + Cixj

�
hij = 0 8j: (A.44)

In the ideal normalized case Ci = 0 so this becomes

MX
i=1

�
1� yi

fi

�
hij = 0 8j: (A.45)

We note that this is the same condition at convergence that BYU MART meets.

A.2 Conclusions

Using simple analysis techniques, we have shown that

1. The BYU MART algorithm has a convergent point at a solution compatible

with the constraint y = Hx.

2. The damping factor � used in the algorithm does not a�ect the ideal solution.

3. The SIR algorithm has a solution point compatible with the constraint y = Hx.

4. Other convergent but biased solutions may be possible.

A.3 Post Script

In Section 4.2 it was shown how one could \work backwards" from an algorithm

to �nd what kind of solution it converges to. The following paragraphs show how this

was tried without success:

Remember that the update in matrix form is

xk+1
j = xkj

�
(HTdk)j
HT

j 1

�
where dki =

�
yi

hhi; xki
��

: (A.46)

We need an assumption about the dual variable update. Here we notice one of the

di�erences between MART and SART, and BYU MART. One way for BYU MART

to converge would be for dk to go to one, not zero like MART. Thus the dual variable
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update would be

uk+1 = uk � dk (A.47)

where � denotes an element-by-element Schur product.

Substituting A.47 into A.46 gives

xk+1
j = xkj

 
HT

j (u
k+1:=uk)

HT
j 1

!
(A.48)

)
= x0j

kY
l=0

 
HT

j (u
l+1:=ul)

HT
j 1

!
(A.49)

where := denotes element-by-element division. There does not appear to be a way (to

the author) to reduce this to be just in terms of x0 and u0 like with MART. The di�-

culty lies in the summation over all of the measurements, which above is represented

by matrix multiplication. Several other forms of Eq. (A.47) were examined, but to

no avail. It still remains an area of future research to see what kind of solutions the

BYU MART and SIR algorithms converge to.
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