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ABSTRACT

A WIND AND RAIN BACKSCATTER MODEL DERIVED FROM

AMSR AND SEAWINDS DATA

Seth N. Nielsen

Department of Electrical and Computer Engineering

Master of Science

The SeaWinds scatterometers aboard the QuikSCAT and ADEOS II satellites were

originally designed to measure wind vectors over the ocean by exploiting the relation-

ship between wind-induced surface roughening and the normalized radar backscatter

cross-section. Recently, an algorithm for simultaneously retrieving wind and rain

(SWR) from scatterometer measurements was developed that enables SeaWinds to

correct rain-corrupted wind measurements and retrieve rain rate data. This algo-

rithm is based on co-locating Tropical Rainfall Measuring Mission Precipitation Radar

(TRMM PR) and SeaWinds on QuikSCAT data. In this thesis, a new wind and rain

radar backscatter model is developed for the SWR algorithm using a global co-located

data set with rain data from the Advanced Microwave Scanning Radiometer (AMSR)

and backscatter data from the SeaWinds scatterometer aboard the Advanced Earth

Observing Satellite 2 (ADEOS II). The model includes the effects of phenomena such

as backscatter due to wind stress, atmospheric rain attenuation, and effective rain

backscatter. Rain effect parameters of the model vary with integrated rain rate,





which is defined as the product of rain height and rain rate. This study accounts for

rain height in the model in order to calculate surface rain rate from the integrated

rain rate. A simple model for the mean rain height versus latitude and longitude

is proposed based on AMSR data and methods of incorporating this model into the

SWR retrieval process are developed. The performance of the new SWR algorithm

is measured by comparison of wind vectors and rain rates to the previous SWR

algorithm, AMSR rain rates, and NCEP numerical weather prediction winds. The

new SWR algorithm produces accurate rain estimates and detects rain with a low

false alarm rate. The wind correction capabilities of the SWR algorithm are effective

at correcting rain-induced inaccuracies. A qualitative comparison of the wind and

rain retrieval for Hurricane Isabel demonstrates these capabilities.
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Chapter 1

Introduction

The oceans distribute the energy of the sun globally to make the Earth inhab-

itable. In order to understand and effectively predict climate world wide, scientists

study the Earth’s oceans to observe the interaction between these massive bodies of

water and the atmosphere. Wind and rain are two phenomena that arise from this

interaction and the accurate measurement of both has long been a pursuit of the

scientific community. One of the most effective means of measuring wind and rain

frequently and on a global scale is satellite-based remote sensing and more specifically,

microwave wind scatterometry and radiometry [1].

A scatterometer is an active remote sensing device or radar that measures the

radar backscatter cross-section, σo, of the ocean’s surface. Ocean wind speed and

direction can be retrieved by relating these σo measurements to the surface roughness

of the ocean caused by wind stress. A radiometer is a passive remote sensor that

measures the electromagnetic energy, also called brightness temperature, radiated

by warm objects. Radiometers have many applications in remote sensing and the

measurement of rain is one for which they are particularly effective. Rain is retrieved

from radiometer brightness temperature measurements at various frequencies and

polarizations. Water vapor, cloud water, and rain water are estimated by means

of the physical relationship between them and the various brightness temperature

measurements [2].

Rain has been a source of error in scatterometer-based wind retrieval because

of the way it interferes with the radar beam. Rain-contaminated scatterometer mea-

surements have generally been flagged and discarded in the past. However, given a
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suitable backscatter model of the wind and rain, rain rate information can be re-

trieved while simultaneously improving the wind estimates of scatterometer wind

retrieval [3]. This procedure is known as the simultaneous wind and rain retrieval

and it has important implications for the utility of scatterometers.

The Advanced Earth Observing Satellite II (ADEOS II), launched in late 2002,

carried both a SeaWinds scatterometer and a rain-measuring Advanced Microwave

Scanning Radiometer (AMSR). The ADEOS II, shown in Figure 1.1, covered the

entire globe and took co-located scatterometer and radiometer measurements for a

little over six months before the satellite critically failed in October of 2003. This

large set of co-located measurements provides an ideal means of studying the effect

rain has on scatterometer measurements on a global scale.

Figure 1.1: The ADEOS II satellite.
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1.1 Previous Work

The SeaWinds scatterometers on both ADEOS II and QuikSCAT have been

shown to retrieve highly accurate wind vectors for most conditions over the Earth’s

oceans [4, 5]; however, the performance of the wind retrieval is severely degraded

when rain is present [6, 7]. Many studies have been conducted on the effects of rain

on radar backscatter especially as it applies to scatterometer-based wind retrieval,

e.g. [7, 8, 9, 10]. The effect rain has on the observed backscatter is complicated and

depends on the rain rate and wind speed among other factors, but in general, rain

tends to increase the backscatter causing the retrieved wind speed to appear greater

than the true wind speed [11]. Rain-corrupted wind tends to point orthogonal to

the satellite track or cross swath regardless of the true wind direction [12]. Rain-

contaminated scatterometer measurements are generally discarded when determining

the accuracy of SeaWinds’ retrieved wind vectors. Algorithms have been developed

to flag scatterometer data for rain by thresholding a modified objective function

of the σo observations [13, 14] or by using a multidimensional histogram involving

several rain-sensitive parameters [12]. Some studies have developed wind and rain

backscatter models in order to improve wind retrieval by separating the rain-induced

backscatter from wind-induced backscatter. Stiles and Yueh developed a backscatter

model by determining an affine relationship between the measured σo and the wind-

only σo. The slope and intercept of the relationship were related to Special Sensor

Microwave/Imager (SSM/I) integrated rain rates via linear regression [15]. Hilburn et

al derived a wind and rain backscatter model using co-located data from AMSR and

SeaWinds data on ADEOS II. Their synergistic model combines active and passive

remote sensor data to correct scatterometer wind estimates in the presence of rain

[16].

Draper and Long also incorporated such a model [7] into a simultaneous wind

and rain retrieval (SWR) algorithm [3], which is capable of extracting wind and rain

data from scatterometer measurements alone; however, the algorithm does not per-

form as well in latitudes outside the tropical region (between 35◦N and 35◦S latitude).

The original model which Draper and Long developed for the SWR algorithm used
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co-located data from the SeaWinds scatterometer on QuikSCAT and the Precipita-

tion Radar on the Tropical Rainfall Measuring Mission (TRMM PR), which only

covered the tropical region [7]. Thus, since rain parameters vary with latitude, the

accuracy of the model decreases outside of this region.

1.2 Proposed Work

The purpose of this thesis is to develop a wind and rain backscatter model

derived from the data of SeaWinds and AMSR on ADEOS II, incorporate this model

into the SWR algorithm, and validate the model and algorithm. This new model is

based on the same phenomenological backscatter model used by Draper and Long

to represent the effects of rain on SeaWinds backscatter with two major differences:

the rain data for this study is provided by AMSR, a radiometer, as opposed to the

TRMM PR and the rain height is considered. By using data from SeaWinds and

AMSR on the same platform, a larger co-located data set and and a broader range

of latitudes are included in the derivation of the model parameters. The model’s

rain parameters are a function of integrated rain rate; however, rain storm height is

estimated as well in order to provide the surface rain rate. The backscatter model is a

closed form function of wind-only backscatter, rain rate, and rain height. The wind-

only backscatter is derived from interpolating and projecting winds from the National

Center for Environmental Prediction (NCEP) through the geophysical model function

(GMF). The rain rate and the rain-induced parameters are derived from the co-located

measurements of SeaWinds and AMSR aboard ADEOS II. The purpose of developing

a new wind/rain backscatter model based on AMSR-derived rain data is to calibrate

the SWR algorithm to retrieve rain rates comparable to those of AMSR. This will

allow SeaWinds on QuikSCAT to measure rain rates on a global scale, thus extending

the usefulness of the QuikSCAT mission which has no rain-measuring device.

1.3 Thesis Outline

This thesis is organized into six chapters. Chapter 2 gives a brief background

on wind scatterometry and simultaneous wind/rain scatterometry. A more detailed
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description of the remote sensing instruments and their corresponding data sets is

also included.

Chapter 3 describes the method of deriving the new wind and rain backscatter

model. Some of the limitations of the model and the data sets used are discussed and

some techniques to mitigate these limitations are presented as well.

Chapter 4 is a discussion of rain storm height and its relevance to the SWR

algorithm. The statistics of rain height are presented along with various methods of

incorporating this data into the SWR algorithm.

Chapter 5 shows how well the updated SWR algorithm performs compared

to other data sets. Its rain retrieval capabilities are compared to AMSR and its

wind retrieval capabilities are compared to NCEP winds and the non-SWR SeaWinds

retrieved winds. The performance of the new SWR algorithm is compared to the

previous SWR algorithm in nearly all cases. A qualitative example of Hurricane

Isabel is presented and examined.

Chapter 6 summarizes the key results of this study, discusses contributions,

and potential research topics for future studies.

5



6



Chapter 2

Background, Instruments, and Data

This chapter provides background on scatterometry as it applies to wind and si-

multaneous wind/rain retrieval. The SeaWinds and AMSR instruments are described

in terms of their basic operation aboard the ADEOS II. The data sets generated by

SeaWinds, AMSR, and NCEP are also presented.

2.1 Wind Scatterometry

A scatterometer is a radar that sends pulses of electromagnetic energy at its

target and then measures the return power in order infer some quality of the target.

The amount of received power, Pr, is governed by the radar equation [17]

Pr =
PtG

2λ2Aeff

(4π)3R4
σo (2.1)

where Pt is the transmitted power, G is the antenna gain, λ is the operating wave-

length, Aeff is the effective area of the target (essentially the area of the SeaWinds

footprint), and R is the slant range from the radar to the target. Note that Equation

2.1 is idealized in that it assumes 100% radiation efficiency and the atmosphere does

not attenuate the pulse. The only unknown in this equation is σo which is what a

scatterometer measures very precisely when all the other quantities are known and

the assumptions just mentioned are valid. σo depends on many factors such as the

incidence angle of the beam, the orientation and roughness of the target with respect

to the wavelength, as well as its dielectric properties.

Bragg resonance explains much of the interaction between the ocean surface

and the scatterometer beam [17]. When wind blows over the surface of the ocean,
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its momentum is transferred to the water, creating centimeter-scaled capillary waves.

The spacing of these capillary waves is roughly the same as the Bragg wavelength

causing the signal scattered off neighboring crests to add in phase, thus enhancing

the return power and backscatter. As the surface becomes rougher, the backscatter

increases. The roughness of the ocean’s surface is directly proportional to the wind

speed, thus σo increases with wind speed. The wind direction relative to the azimuth

or look angle of the radar also modulates the values of σo and this dependence is sym-

metric about 180◦ relative azimuth angle. Figure 2.1 demonstrates the backscatter’s

dependence on wind speed and direction for the SeaWinds scatterometer.

0 50 100 150 200 250 300 3500

0.01

0.02

0.03

0.04

0.05

Relative Azimuth Angle (deg)

σo

 

 

15 m/s
10 m/s
5 m/s

Figure 2.1: SeaWinds σo as a function of relative azimuth angle for wind speeds of 5,
10, and 15 m/s. The incidence angle in all cases is 46◦.

Scatterometer-based wind retrieval over the ocean is made possible by the

relationship between σo and the surface roughening caused by wind stress; this rela-

tionship is known as the geophysical model function (GMF) [17, 18]. The GMF, M,

is an empirical function that relates σo to the wind speed, s, relative azimuth angle,
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χ, incidence angle, θ, and the frequency, f , and polarization of the SeaWinds beam,

pol, [18]

σo = M(s, χ, θ, f, pol)

= M(u, θ). (2.2)

The shorter notation of (2.2) is used throughout the thesis for brevity. u = (s, χ) is a

common notation for the wind vector and for SeaWinds, there is only one operating

frequency and the incidence angle implies the polarization of the σo measurement.

The wind is retrieved by inverting the GMF through the use of maximum likelihood

estimation (MLE).

Several σo measurements are made in a given scatterometer resolution element

known as a wind vector cell (WVC). If the measurements are assumed to be indepen-

dent and Gaussian-distributed, then the joint conditional probability function (pdf)

of the σo measurements is

p(z|u) =
∏

k

1
√

2πς2
k(u)

exp

{

−
1

2

(zk −Mk(u))2

ς2
k(u)

}

(2.3)

where z is a vector of the σo observations, k is an index over all the observations in

the WVC, Mk(u) = M(u, θk) is the model backscatter corresponding to the specific

geometry of the kth observation, and ς2
k is the variance of the kth measurement. The

SeaWinds likelihood function is derived by negating the log of (2.3) and ignoring

additive and multiplicative constants,

l(z|u) =
∑

k

(zk −Mk(u))2

ς2
k(u)

. (2.4)

For standard SeaWinds processing, the log of the variance term is ignored [19]. The

MLE of the wind vector is obtained by finding u that minimizes (2.4) (equivalent to

maximizing (2.3)),

ûMLE = arg min
u

{l(z|u)} . (2.5)

Due to the symmetry of the GMF and measurement noise, the likelihood function is

non-linear and has multiple local minima or wind vector ambiguities that represent
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possible wind vector solutions. Ambiguity selection is a process by which the ambi-

guities in neighboring WVCs are chosen to give an overall wind vector field closest to

the true wind field. The first step in ambiguity selection uses an external reference

wind field to pick the wind vector ambiguities closest to the reference field; this step

is known as nudging [20]. Once the wind field has been nudged, a median filter is

applied to the selected wind field in order to make its flow more consistent with itself

[21].

2.2 Simultaneous Wind/Rain Scatterometry

Simultaneous wind and rain retrieval is a relatively recent development in the

field of scatterometry [3]. It extends the wind-only GMF to include backscatter and

attenuation effects of rain. The wind/rain GMF is

zk = Mk(u)αr(Rir) + σe(Rir)

= Mrk(u, Rir) (2.6)

where zk is the kth σo measurement and Mrk is the model backscatter corresponding

to the viewing geometry of the kth measurement. The model parameters αr and

σe represent the rain attenuation and effective rain backscatter respectively and are

functions of the integrated rain rate, Rir. When there is no rain present in the WVC,

then αr = 1 and σe = 0. The significance of these parameters is explained in more

detail in Chapter 3.

Simultaneous wind and rain retrieval is performed in a similar manner to wind-

only retrieval except a third parameter, the integrated rain rate (Rir), is estimated.

The conditional pdf of the observations is

pr(z|u, Rir) =
∏

k

1
√

2πς2
rk(u, Rir)

exp

{

−
1

2

(zk −Mrk(u, Rir))
2

ς2
rk(u, Rir)

}

(2.7)

and the likelihood function is

lr(z|u, Rir) =
∑

k

(zk −Mrk(u, Rir))
2

ς2
rk(u, Rir)

. (2.8)
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The estimation procedure for u and Rir is the same as in (2.5). However, estimating

a third parameter increases the complexity of searching for local minima as well as

computation time. Estimating a third parameter also increases the noisiness of the

estimates, especially when it is not raining; however, simultaneous wind and rain

retrieval has been shown to be sufficiently accurate in many wind and rain rate

regimes [3, 22].

2.3 Instruments and Data Sets

The ADEOS II satellite, which carried SeaWinds and AMSR, had a sun-

synchronous, near-polar orbit with an equatorial local crossing time of 10:30 AM.

The satellite completed one revolution (rev) in 101 minutes with a repeat period of

4 days. The measurements of the two sensors are co-located in space except for the

outermost portion of AMSR’s swath and there is no more than 2.5 minutes between

co-located measurements [16].

2.3.1 SeaWinds Scatterometer

The SeaWinds scatterometer is the most recent space-borne scatterometer de-

signed by the National Aeronautics and Space Administration (NASA) and represents

a significant departure from its predecessors, the SEASAT Active Scatterometer Sys-

tem of 1978 and the NASA scatterometer of 1996-1997. SeaWinds features circularly

scanning pencil beams at fixed incidence angles; whereas, the previous scatterom-

eters employed fixed fan beams. SeaWinds is a Ku-band scatterometer operating

at a frequency of 13.4 GHz and employs two beams of different polarizations. The

outer beam is vertically polarized (v-pol) with an incidence angle of 54◦ and the inner

beam is horizontally polarized (h-pol) with an incidence angle of 46◦. With a swath

width of 1800 km, SeaWinds was able to cover about 90% of the Earth’s surface daily

aboard ADEOS II. The design of SeaWinds affords it unique benefits and challenges

[23], especially in terms of its sensitivity to rain. A SeaWinds scatterometer was

first launched on the QuikSCAT satellite in June 1999 and a second SeaWinds was
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launched on ADEOS II in December 2002. The ADEOS II experienced an operation

anomaly that subsequently caused the critical failure of the satellite in October 2003.

The resolution element of the standard SeaWinds processing is a 25 km × 25

km WVC. The σo measurements are stored in the level 2A data structure (L2A files).

The L2A measurements are processed to produce the wind vectors which are stored

in the level 2B data structure (L2B files). The L2B processed wind vector data for

one rev is laid out in a grid of 76 × 1624 WVCs.

2.3.2 AMSR

The AMSR, designed by the Japan Aerospace Exploration Agency (JAXA),

measures brightness temperatures at eight distinct frequencies in order to measure

precipitation, sea surface temperature (SST), and water vapor among other geophys-

ical parameters. The AMSR was another remote sensing instrument on board the

ADEOS II during its brief period of operation. AMSR takes both v-pol and h-pol

measurements for all frequencies except two. The antenna scans a semicircular pat-

tern in front of the spacecraft at a fixed incidence angle of 55◦ giving AMSR a slightly

wider swath (1900 km) than SeaWinds. Figure 2.2 illustrates the viewing geometries

of SeaWinds and AMSR aboard ADEOS II.

The AMSR level 2A overlay (L2Ao files) report parameters such as rain rate

and SST on a grid designed to overlay the SeaWinds L2B product. Due to its higher

frequencies, AMSR products have a higher resolution than the SeaWinds L2B prod-

ucts. The AMSR overlay data is divided into 12.5 km × 12.5 km squares or wind

vector cell quadrants (WVCQ), with four quadrants inside each L2B WVC. AMSR

data is also used to empirically calculate the rain attenuation at SeaWinds’ operating

frequency. This rain attenuation measurement is contained in the SeaWinds L2A

data structure for each σo measurement.

2.3.3 NCEP Numerical Weather Prediction Winds

This study also makes use of the NCEP model winds which are numerically

predicted winds that are calculated every six hours with a very course resolution
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Figure 2.2: SeaWinds and AMSR measurement geometry aboard ADEOS II.

(2.5◦ × 2.5◦). Because of this coarse resolution, small scale wind features and rain

effects are not included in the prediction process, allowing us to obtain a rough es-

timate of the rain-free wind. These predicted winds are interpolated in space and

time to each SeaWinds WVC; however, the NCEP winds are biased high when com-

pared to the winds retrieved by SeaWinds [24]. The method for correcting this bias

is presented in section 3.3.
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Chapter 3

Wind and Rain Backscatter Model

Rain has three major effects on radar backscatter: raindrops roughen the

ocean’s surface, which tends to augment the surface backscatter, the raindrops falling

in the atmosphere attenuate the radar signal as it travels to and from the ocean’s

surface, and atmospheric rain also scatters the signal. We model these rain-induced

effects with a simple phenomenological model [3],

σm = (σw + σsr)αr + σr (3.1)

where σm is the backscatter measured by SeaWinds, σw is the surface backscatter

from wind-induced capillary waves, σsr is the surface backscatter due to raindrop

splash products, αr is the two-way atmospheric rain attenuation, and σr is the volume

scattering due to atmospheric rain.

The three rain-effect parameters, σsr, αr, and σr are functions of the rain

rate and rain height. The σsr term is a simplified model for the average rain-induced

surface perturbation effect which ignores the interaction between wind and rain. Since

we are only interested in the bulk effect of surface perturbation due to rain, an additive

parameter is sufficient. The atmospheric rain parameters (αr and σr) ignore certain

sources of variability such as drop size distribution and vertical profile. These effects

are small, and so they are not explicitly included in the model for the sake of simplicity.

To further simplify the backscatter model of (3.1), we combine the rain effects into a

more compact model,

σm = σwαr + σe (3.2)
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where σe = σsrαr + σr is the effective rain backscatter. This model is useful for

studying the bulk effect of rain on backscatter, because it combines three sources of

uncertainty into two.

3.1 Rain Model Parameter Extraction

We use data in the AMSR L2Ao files and the SeaWinds L2A files to compute

rain model parameters. As indicated before, AMSR rain rate data in the L2Ao files

is reported on a grid; and therefore, must be interpolated to the center latitude and

longitude of each SeaWinds σo observation in order to observe the effect rain has

on backscatter. The rain rate for a given σo measurement is set to the value of

the nearest neighboring AMSR WVCQ. Nearest-neighbor interpolation is done for

simplicity, while a more rigorous method could use a weighted average of nearby cells

based on the gain pattern of the antenna.

The viewing geometries of SeaWinds and AMSR are different in several ways

and these differences affect the perceived rain attenuation of each instrument. The

v-pol measurement of SeaWinds has an incidence angle of 54◦ which is similar to

AMSR’s 55◦ incidence angle; however, SeaWinds’ h-pol measurement has an inci-

dence angle of 46◦. The AMSR signal is subject to more attenuation compared to the

h-pol measurement because AMSR detects a given point on the ground from farther

away than the SeaWinds h-pol beam. SeaWinds’ observations can be fore or aft with

respect to the orientation of the spacecraft; whereas, AMSR only looks forward. Due

to these discrepancies in viewing geometry, AMSR and SeaWinds observe somewhat

different scenes when rain is present. The AMSR rain attenuation is computed em-

pirically for each σo observation and so the difference in incidence angles is implicitly

taken into account [25]. The difference in azimuth observation angle relative to the

spacecraft is not addressed in computing the rain attenuation.

Partial beam-filling is not explicitly accounted for in estimating the model

parameters. Partial beam-filling occurs when the horizontal extent of a rain storm is

smaller than the width of the radar beam passing through it. It is intuitive that the

rain attenuation of the beam is greater if the beam is completely filled by a rain storm
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as opposed to being only partially filled by a smaller storm where both storms have

the same rain rate. Correcting for partial beam-filling from SeaWinds data alone is

difficult. Hilburn et al. account for partial beam-filling in their ocean wind correction

algorithm by means of an effective temperature depression, which is calculated from

AMSR brightness temperatures [16]. Draper and Long discuss the problem of partial

beam-filling in [7]; however, it is not explicitly included in their approach. They

instead demonstrate that the worst case difference in σe due to partial beam-filling is

4 dB. Such a case is extremely rare and the difference is generally much smaller. This

suggests that good results can be obtained without explicitly correcting for partial

beam-filling.

3.2 Relating Rain Parameters to Integrated Rain Rate

Using AMSR-derived measurements of the surface rain rate and rain attenua-

tion for each σo observation, a relationship between the two can be established. Figure

3.1 shows a plot of atmospheric rain attenuation versus rain rate. While a relationship

between rain rate and attenuation is apparent some other factor is modulating this

dependence, which explains the multiple linear populations and spreading. The total

atmospheric attenuation (i.e. from all sources), τ , of the scatterometer signal can be

expressed as

τ = 2

∫ ro

0

(κg + κec + κer)dr, (3.3)

where the factor of 2 indicates a two-way attenuation, ro is the distance from the

observation point to the scatterometer and κg, κec, and κer are the extinction coef-

ficients of atmospheric gases, clouds, and rain respectively expressed in dB/m [17].

During a rain event, we assume that κer is much larger than the other terms in (3.3)

so that τ is roughly equal to αr in dB. For simplicity, we assume that κer is uniform

from the surface up to the rain height, hr, since we are interested only in the net rain

effects. Based on these assumptions,

τ ≈

∫ hr

0

κerdr = hrκer (3.4)
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Figure 3.1: Atmospheric rain attenuation (dB) versus rain rate (mm/hr) for the h-pol
beam.

where the factor of 2 in Equation(3.3) is absorbed in κer. This approximation of the

atmospheric attenuation is related to rain rate by

κer = κ1R
b
r (3.5)

where Rr is the rain rate and κ1 and b are wavelength-dependent constants [17]. For

Ku band, b ≈ 1, yielding a simple approximation for τ in terms of the rain rate,

τ ≈ κ1hrRr, (3.6)

i.e. the rain attenuation is proportional to the product of rain rate and rain height.

Equation (3.6) is modified for an off-nadir-looking radar by multiplying by the secant

of the incidence angle.

The product of rain rate and rain height is related to the integrated rain rate

under a simple assumption. Integrated rain rate, measured in units of km mm/hr, is

defined as

Rir =

∫ hr

0

Rr(z)dz (3.7)

where Rr is the rain rate as a function of distance. For the remainder of the paper,

the rain rate is assumed to be constant throughout the height of the storm for all
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σo measurements in the same WVC, so that the integrated rain rate is the simple

product of rain rate and rain height,

Rir ≈

∫ hr

0

Rrdz = hrRr. (3.8)

By substituting (3.8) into (3.6), the atmospheric attenuation is

τ ≈ κ1Rir, (3.9)

indicating that attenuation is a function of integrated rain rate.
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Figure 3.2: Scatter density plot of atmospheric rain attenuation (dB) versus inte-
grated rain rate (km mm/hr) for the h-pol beam.

In order to compute the integrated rain rate, we must have estimates of the rain

height for each σo observation. Using a technique similar to that of [2], data from

the AMSR L2Ao files is used to estimate the rain height [26]. We determine rain

height for each σo observation by assigning it the rain height of the nearest WVCQ.

We multiply the AMSR-derived rain rate and rain height to obtain the integrated

rain rate and plot the rain attenuation versus integrated rain rate, shown in Figure

3.2. Although there is much variability in the attenuation at lower rain rates, there is
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significantly less spreading of the data in this plot. The correlation coefficient of the

data in Figure 3.1 is 0.71 while the correlation coefficient of the data in Figure 3.2

is 0.83. The AMSR rain attenuation was estimated based on columnar liquid, water

vapor, and sea surface temperature and not directly from rain rate, which explains

the spread in the data at low rain rates. The correlation between integrated rain rate

and rain attenuation is much clearer at high rain rates, so we conclude that rain rate

and rain height are the most significant sources of variability in the rain attenuation.

3.3 Estimation of Wind-only Backscatter and Bias Correction

The wind-only backscatter term, σw, of Equation (3.2) represents the backscat-

ter due to wind if no rain were present. In order to derive the model parameters, σw is

estimated from the NCEP model winds contained in the SeaWinds L2B product. The

NCEP winds are interpolated to the center latitude and longitude of each SeaWinds

σo measurement by performing a cubic spline interpolation of the orthogonal wind

vector components separately. The interpolated vector components are recombined to

obtain the speed and direction of the wind vectors, which are then projected through

the GMF in order to estimate the wind-only backscatter at each σo egg location,

σw(NCEP ) = M(s(NCEP ), χ(NCEP ), θ, pol), (3.10)

where M represents the GMF, s(NCEP ) is the interpolated NCEP wind speed, χ(NCEP )

is the relative azimuth angle of the interpolated NCEP wind vector, θ is the incidence

angle, and pol is the beam polarization.

σw(NCEP ) is a biased estimate of the actual σw because the NCEP winds them-

selves are biased relative to SeaWinds winds as mentioned previously. Due to the low

resolution of NCEP winds, we assume the bias is spatially correlated. We estimate

the bias, ε, for each σo observation as a weighted average of the difference between σm

and σw for all rain-free observations in the same look direction, either fore or aft. We

define rain-free observations as those whose rain rate is less than 0.01 mm/hr because

0.01 mm/hr is the lowest rain rate reported in the AMSR data. The bias error of the
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jth observation is

εj =

∑

i W
ij

(

σi
m(SW ) − σi

w(NCEP )

)

∑

i W
ij

(3.11)

where the index i sums over all rain-free observations of the same look direction as

the jth observation and σi
m(SW ) is the backscatter measured by SeaWinds. W ij is the

Epanechnikov weighting function for the ith and jth observations, which is calculated

by,

W ij =







1 −
(

d(i,j)
r

)2

, d(i, j) ≤ r

0, otherwise
(3.12)

where r is a radius in km around the jth observation and d(i, j) is the distance

between the ith and jth observations in km. Nominally, r is 20 km unless there are

less than two observations within 20 km, in which case, the radius is dilated by adding

10 km at a time until at least two observations are found within the radius. σw can

now be written as the sum of the backscatter predicted from the NCEP winds and

the bias error,

σw = σw(NCEP ) + ε. (3.13)

The mean bias is -0.0021 with a standard deviation of 0.0052 which is con-

sistent with the observation that NCEP winds are biased slightly high compared to

SeaWinds winds. These values are comparable to a mean of -0.0025 and standard

deviation of 0.0064 observed in [7] for QuikSCAT data.

3.4 Relating Rain Model Parameters to Integrated Rain Rate

Estimates of the effective rain backscatter can be computed using the estimates

of wind-only backscatter and rain attenuation by rearranging the terms in Equation

(3.2),

σe = σm − (σw(NCEP ) + ε)αr(AMSR). (3.14)

The rain model parameters of Equation (3.2) are calculated and related to integrated

rain rate for each σo measurement. We model atmospheric rain attenuation and
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effective rain backscatter as quadratic polynomials of integrated rain rate:

10 log10(−(αr(AMSR))dB) ≈ fa(Rir) =

2
∑

n=0

ca(n)Rn
ir, (3.15)

(σe)dB ≈ fe(Rir) =

2
∑

n=0

ce(n)Rn
ir, (3.16)

where Rir is the integrated rain rate in dB. αr is converted to dB twice in (3.15) in

order to facilitate fitting the data with a quadratic polynomial, similar to [7].

The training data set used to calculate the model parameters include data

from the L2A, L2Ao, and L2B files and is composed of one rev selected randomly

from each day of the ADEOS II mission. In order to avoid sea-ice contamination near

the poles, only data found in regions between 60◦ S and 60◦ N latitude are included.

Rir is calculated from the AMSR L2Ao files, the αr(AMSR) term is taken from the

SeaWinds L2A file (note that it is calculated based on AMSR data even though it is

found in the SeaWinds data set [25]), and the σw(NCEP ) and ε terms are derived from

the NCEP winds found in the SeaWinds L2B files. Roughly 5 million co-located data

points are used to calculate the h-pol parameter coefficients and 3 million are used

to calculate the v-pol coefficients. We solve for the quadratic polynomial coefficients

ca and cr by casting Equations (3.15) and (3.16) into matrix form and using a least-

squares pseudo-inverse. These coefficients are recorded in Table 3.1 for both h-pol

and v-pol observations. These attenuation and effective rain backscatter models are

valid for integrated rain rates between 0.01 km mm/hr and 100 km mm/hr. The full

wind and rain backscatter model is

σm(s, d, Rir) = σw(s, d)αr(Rir) + σe(Rir)

= σw(s, d)10−10fa(Rir)/10/10 + 10fe(Rir)/10, (3.17)

where s and d are the wind speed and direction.

Figures 3.3 and 3.4 show plots comparing the rain model parameters to those

of Draper and Long [7]. For the remainder of the paper we refer to the model in [7]

as the DL SWR model and our model is referred to as the AMSR SWR model. The

range of values are comparable for both parameters and both polarizations; however,
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Table 3.1: Coefficients of the quadratic fits to the parameters αr and σe in
Equations (3.15) and (3.16) respectively.

ca(0) ca(1) ca(2)

h-pol -9.2879 1.0379 -0.0151

v-pol -9.0998 1.1747 -0.022

ce(0) ce(1) ce(2)

h-pol -28.69 1.0817 -0.0197

v-pol -27.3168 0.7168 -0.0106

the behavior of the two models is slightly different. For the scales shown in the plot

of Figure 3.3, the DL SWR attenuation model appears nearly linear; whereas, the

AMSR SWR attenuation model appears somewhat parabolic. The attenuation values

for the AMSR SWR model are lower than those of the DL SWR model for the lowest

and the highest integrated rain rates. The fact that the attenuation values of the

AMSR SWR model appear to level off at higher rain rates is probably due to the

effect of partial beam-filling for the empirically calculated attenuation values. Higher

rain rates tend to represent convective storm systems [25, 27] whose physical scale is

between 5 and 10 km [28]; therefore, they only partially fill the SeaWinds’ footprint,

which is 24 km × 31 km for the smaller inner beam [29]. This suggests that on

average the partial beam-filling effect is accounted for by the empirical calculation

of the attenuation. A similar trend is also seen in the σe models where the effective

rain backscatter tends to level off at higher rain rates for the AMSR SWR model

suggesting that the partial beam-filling effect is accounted for in σe. For increasing

integrated rain rates, σe is larger for the h-pol beam than it is for the v-pol beam,

which has been noted in previous investigations [15, 7].
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Figure 3.3: Model atmospheric rain attenuation versus integrated rain rate for the a)
h-pol and b) v-pol beams.
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Figure 3.4: Model effective rain backscatter versus integrated rain rate for the a)
h-pol and b) v-pol beams.
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Chapter 4

Rain Height

The SWR algorithm estimates an irregularly weighted spatial average inte-

grated rain rate for each WVC [3]. AMSR estimates rain rate, so in order to compare

the two methods of rain retrieval, an estimate of the rain height is necessary to con-

vert integrated rain rate to surface rain rate. SeaWinds was designed to measure the

normalized radar backscatter cross-section, so it has no range resolution and therefore

cannot measure rain height from the time of flight of the first radar return. Since

the rain height cannot be directly estimated by SeaWinds, it must be provided by a

climatological model. The following sections examine the statistics of the rain height

and the different methods of incorporating rain height into the SWR algorithm.

4.1 Rain Height Statistics

Studies have shown that rain height is a function of latitude, longitude, and

season [30, 31] and the AMSR-derived rain heights demonstrate these dependences.

Figure 4.1a shows a plot of rain height versus latitude. The bands that occur at

discrete rain heights are due to the quantization of the AMSR data used to calculate

the rain heights. This figure demonstrates a strong connection between rain height

and latitude; however, there is a great deal of spread in the rain heights for a given

latitude bin. The non-parametric fit to the data represents the mean rain height of

each latitude bin. The mean rain height is small in the higher latitudes and reaches

a peak near the equator. This trend can be modeled using a polynomial in latitude.

Figure 4.1b shows that the variance of the rain height also depends on latitude. It
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is worth noting that the variance of the rain height increases with distance from the

equator, a phenomenon that has been observed in previous studies [30, 31].

Figure 4.1: a) Rain height versus latitude and a non-parametric approximation of the
mean rain height. b) Rain height variance versus latitude. Rain heights are derived
from AMSR SST data. Bin centers are spaced 0.5◦ apart.

Rain height also varies with time and longitude. Figure 4.2 demonstrates the

time dependence of rain height by showing mean rain height with respect to latitude

for two days representing two different seasons. The two plots show that the mean

rain height shifts in latitude over time with an especially large shift in the northern
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latitudes. Figure 4.3 is a map of average global rain heights for the entire ADEOS II

mission, which demonstrates how the rain height varies with longitude.
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Figure 4.2: Non-parametric approximation of rain height versus latitude for different
seasons.

Mean rain height tables based on different combinations of latitude, longitude,

and Julian day are created and compared based on how much they account for the

variance of the rain height. Let σ2
h be the variance of the rain height for the entire

ADEOS II mission and let σ2
i be the variance of the height difference, which is the

rain height minus the rain height estimated from the ith table. The fraction of the

variance that the ith table accounts for is simply 1 − σ2
i /σ

2
h. A summary of these

statistics for the different tables is presented in Table 4.1. Latitude is the largest

factor for determining rain height, accounting for nearly 90% of the variance in the

rain height by itself. The most complete model includes all three index parameters

and accounts for 97% of the variance. The combination of latitude and longitude

marginally outperforms the combination of latitude and day, both accounting for

roughly 92% of the variance.
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Figure 4.3: Global average rain heights for the ADEOS II mission.

Since the ADEOS II failed before a full year’s worth of data could be acquired,

the rain height statistics are limited to the months between April and October. Be-

cause of this temporal gap in the rain height data, we cannot form a rain height table

that is indexed by day for use outside of these months. Thus, we ignore seasonal

dependence for the remainder of the study and use the table based only on latitude

and longitude. We note that the gap in temporal rain height data limits the accuracy

of the latitude and longitude rain height maps because the mean rain height is biased

towards the values of the summer months. Future work to improve the rain height

table should use a larger data set of rain heights to generate the climatological rain

height maps.

4.2 Incorporating Rain Height into the SWR Algorithm

The SWR algorithm uses maximum likelihood estimation (MLE) to retrieve

wind vector and integrated rain rate ambiguities from the σo observations [3]. In order

to retrieve the surface rain rate, rain height must be incorporated into the estimation

process. Three similar simultaneous wind/rain estimation techniques to do this are

presented in the sections that follow. All three techniques are based on maximum a

30



Table 4.1: Variance of the rain height differences for the
various mean rain height tables.

Table No. Index Variance % of variance
Parameters accounted for

h - 2.08 0%

1 Lat. 0.23 88.9%

Lat.
2 Day 0.17 91.8%

Lat.
3 Lon. 0.16 92.1%

Lat.
4 Lon. 0.06 97.3%

Day

posteriori (MAP) estimation and differ only in the assumptions made about the prior

distributions. The first method is the most general and the second and third methods

are simplifications of the first method based on certain assumptions. The advantages

and disadvantages of these methods are discussed and the third method is selected

for use in the AMSR SWR algorithm.

4.2.1 Method 1: Rain Rate and Rain Height MAP Estimation

One method of retrieving rain rate is to use MLE to simultaneously estimate

rain rate and rain height instead of the integrated rain rate, thus making the objective

function a function of wind speed and direction (u), rain rate (Rr), and rain height

(hr):

lr(z|u, Rr, hr) =
∑

k

(zk −Mrk(u, Rr, hr))
2

ς2
rk(u, Rr, hr)

, (4.1)

31



Table 4.2: Correlation coefficients of various combinations of the
estimation parameters of Equation (4.3). s and d are the wind

speed and direction respectively.

(Rr)dB hr s d
(Rr)dB - -0.39 0.28 -0.13

hr -0.39 - -0.49 0.35
s 0.28 -0.49 - -0.15
d -0.13 0.35 -0.15 -

where z is a vector of the σo measurements. The disadvantage of using an MLE in

this case is that there are nearly infinite combinations of rain rate and rain height

that yield the same integrated rain rate. Without some method of selecting the

appropriate rain height, there would be countless solutions that minimize the MLE

objective function; MAP estimation provides a solution to this problem. Based on

the discussion of Section 4.1, prior distributions of the rain height for a given latitude,

longitude, and day can be calculated. These prior distributions of the rain height can

be used in a MAP estimator of u, Rr, and hr. The posterior distribution of u, Rr,

and hr given z is

p(u, Rr, hr|z) =
p(z|u, Rr, hr)p(u, Rr, hr)

p(z)
(4.2)

and the MAP estimator of the parameters u, Rr, and hr is

(û, R̂r, ĥr)MAP = arg max
(u,Rr,hr)

{p(u, Rr, hr|z)}

= arg max
(u,Rr,hr)

{p(z|u, Rr, hr)p(u, Rr, hr)} (4.3)

where the term p(z) is discarded since it is constant with respect to the arguments

u, Rr, and hr.

The joint distribution p(u, Rr, hr) in Equation (4.3) can be computed empiri-

cally; however, in order to take advantage of the prior distribution of the rain height

without unnecessarily constraining the wind vector or rain rate, two assumptions are

made. First, u, Rr, and hr are assumed to be mutually independent, so that the

joint distribution of these parameters is a product of the individual distributions,
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p(u, Rr, hr) = p(u)p(Rr)p(hr). The assumption of independence cannot be proved

without knowing the true probability densities, but we can compute the correlation

coefficients of the different combinations of u, Rr, and hr, as shown in Table 4.2. The

largest correlation coefficient (in magnitude) is only 0.49, so there does not appear

to be any appreciable correlation between any of the estimation parameters. We

note that one study found a positive correlation between rain rate and rain height in

TRMM PR data [32]; however, this does not appear to be the case for AMSR data.

Although such low correlation does not prove statistical independence, it suggests

that the assumption is reasonable. The second assumption is that the prior distribu-

tions of u and Rr are uniform over their range of possible values. This assumption is

made in order to simplify the estimation procedure because we do not need to provide

prior distributions for u or Rr.

These assumptions are applied to equation (4.3):

(û, R̂r, ĥr)MAP = arg max
(u,Rr,hr)

{p(z|u, Rr, hr)p(u)p(Rr)p(hr)}

= arg max
(u,Rr,hr)

{p(z|u, Rr, hr)p(hr)}. (4.4)

Maximizing the log of (4.4) is equivalent to minimizing its negative,

(û, R̂r, ĥr)MAP = arg min
(u,Rr ,hr)

{− log(p(z|u, Rr, hr)) − log(p(hr))}. (4.5)

For the sake of simplicity, if hr is assumed to be Gaussian-distributed with known

mean and variance, its log-distribution can be written as

log(p(hr)) = −
1

2
log(2πσ2

h) −
1

2

(hr − µh)
2

σ2
h

. (4.6)

Substituting (4.6) and (4.1) into (4.5) and discarding the additive constants and com-

mon multiplicative constant terms, we obtain the final form of the MAP estimator,

(û, R̂r, ĥr)MAP = arg min
(u,Rr,hr)

{

lr(z|u, Rr, hr) +
(hr − µh)

2

σ2
h

}

, (4.7)

where lr is the MLE objective function of Equation (4.1).

The assumption that hr is Gaussian-distributed leads to an elegant solution;

nevertheless, it is not completely accurate. Figure 4.4 shows three AMSR rain height
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histograms at different latitudes (0◦, 30◦ N, and 50◦ N), each accompanied by a

Gaussian pdf fit. The histograms at 30◦ N and 50◦ N have roughly a Gaussian shape;

however, the histogram at 0◦ latitude has a large concentration of rain heights near

4.8 km, which is the maximum rain height. In this case the Gaussian approximation

is not as reasonable. If more accuracy is required for the distribution of hr, then

empirical pdfs can be used instead of applying the Gaussian assumption.

4.2.2 Method 2: Mean Height as a Fixed MLE Parameter

In order to simplify the estimator of Equation (4.7), we assume hr is a degen-

erate random variable with a delta function distribution centered at the mean rain

height, µh, such that p(hr) = δ(hr − µh). Under this assumption,

(û, R̂r, ĥr) = arg max
(u,Rr,hr)

{p(z|u, Rr, hr)p(hr)}

= arg max
(u,Rr,hr)

{p(z|u, Rr, hr)δ(hr − µh)} (4.8)

and

(û, R̂r, ĥr = µh) = arg max
(u,Rr)

{p(z|u, Rr, µh)}, (4.9)

which after some manipulation becomes

(û, R̂r)MLE = arg min
(u,Rr)

{lr(z|u, Rr, hr = µh)}. (4.10)

This is essentially a MLE of u and Rr using the mean rain height as a fixed parameter.

In this case, the rain height is a constant used to compute the integrated rain rate

that is an input to the combined wind and rain GMF, Mrk(u, Rir = µhRr). This

simplification of the estimation problem does not require much modification of the

SWR algorithm; instead of searching for integrated rain rate, we search for rain rate.

4.2.3 Method 3: Mean Height as a Scale Factor

The second method can be simplified further by using the SWR algorithm to

estimate Rir using Equation (2.8) as the objective function. Based on (3.8), the rain

rate is the integrated rain rate divided by the mean rain height, or Rr = Rir/µh.
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4.2.4 Comparison of Methods

The MAP estimator presented as method 1 represents the full wind vector,

rain rate, and rain height estimator; however, it has some drawbacks that limit its

utility. This estimator requires searching for the local minima of a function of four

variables which adds complexity to the original SWR algorithm and greatly increases

the computation time required to search for the local minima. For these reasons,

simulation of this method in order to compare its performance against the other two

methods was impractical. Such a comparison is reserved for future investigation (see

Section 6.1).

Simulations were performed on SeaWinds data using methods 2 and 3. These

simulations revealed that the second and third method yield the same wind speed

and direction ambiguities. The rain rate ambiguities of the two methods are not

significantly different with the largest observed difference being about 0.0075 mm/hr.

Essentially, methods 2 and 3 yield the same results; however, method 3 requires less

modification of the SWR algorithm and is slightly faster to compute than method 2.

These advantages make method 3 the preferred method of the two for incorporating

rain height into the SWR algorithm. The algorithm is slightly modified to use the

AMSR SWR wind/rain model and the latitude- and longitude-based table of mean

rain heights discussed in Section 4.1. The validation of the AMSR SWR algorithm is

presented in Chapter 5.

35



3.5 4 4.5 5

2

4

6

8

10

Rain height (km)

De
ns

ity

 

 

Histogram
Gaussian fit

a)

1 2 3 4 50

0.5

1

1.5

2

Rain height (km)

De
ns

ity

 

 

Histogram
Gaussian fit

b)

0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rain height (km)

De
ns

ity

 

 

Histogram
Gaussian fit

c)

Figure 4.4: AMSR rain height histograms and Gaussian pdf fit for a) 0◦, b) 30◦ N,
and c) 50◦ N latitude. Latitude bins are 1◦ wide.
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Chapter 5

Validation Results

To validate the performance of the AMSR SWR algorithm, data from the en-

tire SeaWinds on ADEOS II mission are processed using the AMSR SWR algorithm.

Results and statistics presented in this section are for the entire mission unless oth-

erwise stated. The rain rates of the AMSR SWR algorithm are compared to AMSR

rain rates and the wind vectors are compared to NCEP winds only in locations where

AMSR, DL SWR, or AMSR SWR detects rain. In order to convert the DL SWR’s in-

tegrated rain rates to surface rain rates, they are divided by the rain heights provided

by the same rain height table used by AMSR SWR.

5.1 Rain Rate Comparison

This section compares AMSR SWR and DL SWR rain retrieval to that of

AMSR rain estimates. Figure 5.1 shows a scatter density plot of AMSR rain rates

versus AMSR SWR rain rates for May 2003. The rain rate thresholds discussed in [22]

are used to discard rain rates that are deemed spurious. The data points of this scatter

plot are concentrated above the equality line, indicating that the AMSR SWR rain

rates are biased high compared to AMSR. The bias can be corrected by adjusting the

rain model parameter coefficients of Table 3.1 according to the technique presented

in [33]. The bias-corrected model coefficients are used for the rest of the thesis.

The ADEOS II mission is reprocessed using the bias-corrected rain model and

the scatter density plots of DL SWR and AMSR SWR rain rates versus AMSR rain

rates for May 2003 are presented in Figure 5.2. By comparing Figures 5.1 and 5.2b,

the bias in the AMSR SWR rain rates is noticeably improved. For the data presented
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Figure 5.1: Scatter density plots of AMSR rain rates versus AMSR SWR rain rates
for the month of May 2003. Rain rates are expressed in dB. The equality line is shown
for comparison.

in Figure 5.2, the correlation coefficient of DL SWR with AMSR rain rates is 0.64 and

the correlation coefficient of AMSR SWR with AMSR rain rates is 0.61. For the entire

mission, the mean bias of DL SWR relative to AMSR rain rates is -0.86 mm/hr and

the mean bias of AMSR SWR relative to AMSR rain rates is -0.55 mm/hr. Overall,

the DL SWR rain rates have a higher correlation with AMSR’s, but the AMSR SWR

rain rates are less biased.

To demonstrate the SWR algorithm’s ability to separate wind and rain effects

on backscatter, each WVC is classified by backscatter regime, which is determined by

the rain fraction defined as the ratio of effective rain backscatter to the total measured

backscatter, F = σe/σm. Table 5.1 contains a summary of these backscatter regimes.

The rain rate data sets are binned by backscatter regime and the correlation coefficient

and the mean and RMS difference (in linear scale, not dB scale) are calculated for

all regimes. These statistics are summarized in Table 5.2. The data in regime 2 have

the highest correlation coefficients because rain dominates the backscatter and the

rain estimates have a higher quality than the other regimes. The data in regime 0

has the lowest correlation coefficients because wind dominates the backscatter and
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Figure 5.2: Scatter density plots from May 2003 of: a) AMSR rain rates versus DL
SWR rain rates and b) AMSR rain rates versus AMSR SWR rain rates. Rain rates
are expressed in dB. The equality line is shown for comparison.

degrades the quality of rain estimation. Essentially, rain estimation in this regime is

unreliable. Overall, the AMSR SWR has lower mean and RMS differences relative

to AMSR rain rates than the DL SWR. When the data is binned by regime, the

DL SWR has the smallest mean and RMS differences in regime 0 and the differences

increases with increasing regime. This trend goes against the intuition that suggests

the precision and accuracy should be highest for regime 2 where rain dominates. The

AMSR SWR follows this intuition more closely although regime 1 is somewhat more

accurate than regime 2.

Figure 5.3 shows the average rain rate versus latitude for the month of June

2003. The AMSR SWR average rain rates resemble the AMSR rain rates more than
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Table 5.1: Summary of backscatter regimes.

Regime No. Rain Fraction Description
F = σe/σm

0 F < 0.25 Wind dominates backscatter

1 0.25 ≤ F ≤ 0.75 Wind and rain backscatter
are comparable

2 0.75 < F Rain dominates backscatter

the DL SWR rain rates except in the southernmost latitudes (between 40◦ and 60◦

S latitude) where the AMSR SWR rain rates become larger than AMSR’s. The DL

SWR average rain rates are larger than AMSR’s and they become increasingly larger

at 20◦ S latitude and below. This suggests that AMSR SWR has improved rain

retrieval performance over a broader range of latitudes, even though it needs further

improvement in latitudes south of 40◦ S.

−60 −40 −20 0 20 40 600

1

2

3

4

5
June

Latitude

Av
er

ag
e 

ra
in

 ra
te

 (m
m

/h
r)

 

 

AMSR
DL SWR
AMSR SWR

Figure 5.3: Average rain rates binned by latitude for AMSR, DL SWR, and AMSR
SWR for June 2003.
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Table 5.2: Correlation coefficients and mean and RMS differences for DL SWR and
the AMSR SWR rain rates compared to AMSR rain rates. Correlation coefficients

are computed for the dB rain rates while the mean and RMS differences are
computed for linear scale rain rates. A negative difference indicates the

SWR rain rates are larger than the AMSR rain rates on average.

Correlation Mean RMS
Regime coefficient difference difference

(mm/hr) (mm/hr)
DL AMSR DL AMSR DL AMSR

SWR SWR SWR SWR SWR SWR

all 0.64 0.61 -0.86 -0.55 3.89 2.96

0 0.27 0.20 -0.1127 -1.08 1.953 3.613

1 0.57 0.54 -0.6098 -0.4465 3.564 3.165

2 0.81 0.74 -1.694 -0.6443 4.979 2.573

Overall, the AMSR SWR has improved rain retrieval capabilities compared to

the DL SWR. Despite DL SWR’s higher correlation with AMSR rain rates, AMSR

SWR’s rain rates are generally more accurate and precise. The accuracy of AMSR

SWR rain estimates improves as the rain contributes significantly to the backscatter

(regimes 1 and 2). The monthly average rain rates of AMSR SWR and AMSR are

comparable for a broad range of latitudes; whereas, DL SWR’s average rain rates

are larger than AMSR’s across all latitudes. The comparisons made in this section

were primarily in areas where AMSR and AMSR SWR or AMSR and DL SWR both

detected non-zero rain. The next section compares the ability of the DL and AMSR

SWR algorithms to detect true rain in the same regions as AMSR.
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Table 5.3: Comparison of three rain flags: DL SWR rain rate, AMSR SWR rain
rate, and the SeaWinds L2B rain impact flag.

Rain Flag False alarm rate Missed detection rate
DL SWR 6.82% 41.9%

AMSR SWR 5.7% 42.9%

L2B rain 0.2% 47%
impact flag

5.2 Rain Flag Comparison

The SWR algorithms’ rain rates can be used to flag wind-only retrievals for

rain contamination. This section compares the rain flagging ability of AMSR SWR

to the rain impact flag in the SeaWinds L2B file and to the DL SWR rain rates. The

two metrics of flagging ability are false alarm rate and missed detection rate. A false

alarm occurs when the WVC is flagged for rain but the AMSR rain rate is zero. A

missed detection occurs when the WVC is not flagged and AMSR shows a non-zero

rain rate. For this comparison rain is detected by a particular algorithm if the rain

rate is greater than 0.01 mm/hr.

Table 5.3 contains a summary of the false alarm and missed detection rates for

the three rain flags under consideration. The AMSR SWR has a smaller false alarm

rate than the DL SWR but has a higher missed detection rate. The difference in both

cases is about 1%, indicating that the performance of both algorithms is comparable.

The L2B rain impact flag has the lowest false alarm rate and the highest missed

detection rate. The L2B flag, which is derived from AMSR data, is asserted when

rain has an appreciable impact on the accuracy of wind retrieval. This suggests that

the rain rate thresholds of [22] can be updated and calibrated with the L2B rain

impact flag to lower the false alarm rate by increasing the missed detection rate (see

Section 6.1).
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Table 5.4: Comparison of wind retrieval performance of the L2B, DL SWR, and
AMSR SWR algorithms against NCEP winds. NCEP

wind speeds are multiplied by 0.83.

Speed (m/s) Direction (◦)
Corr. Mean RMS Corr. Mean RMS
coeff. diff. diff. coeff. diff. diff.

L2B 0.78 -1.29 2.81 0.95 0.98 32

DL 0.85 -0.84 2.21 0.96 0.69 29.1
SWR

AMSR 0.83 -0.64 2.26 0.96 1.03 29.4
SWR

5.3 Wind Vector Comparison

This section compares the performance of the AMSR SWR wind retrieval to

that of the DL SWR using the NCEP winds as a comparison data set. Although

NCEP winds have coarse resolution both temporally and spatially, they are not af-

fected by rain. The original SeaWinds wind vectors (“L2B winds”) are also included

in this analysis to serve as a point of reference. Correlation coefficient, mean differ-

ence, and RMS difference of speed and direction with respect to NCEP wind vectors

are computed for all three wind vector data sets. To account for the bias between

NCEP and SeaWinds wind vectors, NCEP winds are multiplied by 0.83 [3, 7]. Table

5.4 summarizes the comparison. Overall, the performance of both SWR algorithms

is comparable. Both SWR algorithms are an improvement over the L2B processing

and have comparable performance. The DL SWR performs slightly better than the

AMSR SWR in all categories but wind speed bias.

To demonstrate the AMSR SWR’s ability to correct rain contamination of

wind retrieval, Figure 5.4 shows normalized histograms of the wind speed for AMSR

SWR, L2B, and NCEP winds. In regime 0, the three wind data sets have very similar
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distributions. In regimes 1 and 2, the AMSR SWR winds are more concentrated

around lower wind speeds, indicating that the augmented wind speeds in the L2B

winds due to rain contamination are being reduced by the AMSR SWR.

Figure 5.5 shows normalized histograms of the wind direction relative to the

satellite track for AMSR SWR, L2B, and NCEP winds. Figure 5.5a represents data

in backscatter regime 0 and the distribution of wind speeds is relatively uniform in

all directions. Figure 5.5b represents data in regimes 1 and Figure 5.5c represents

data in regime 2. There are very large peaks in the L2B histograms at 90◦ and 270◦

for regimes 1 and 2, indicating that the retrieved wind has a directional bias in the

cross track direction. The NCEP winds also have a directional bias, though not as

severe as that of the L2B winds, which is likely due to the fact that NCEP winds

are somewhat dependent on L2B winds. The AMSR SWR algorithm corrects this

directional bias and reduces it for wind vectors of regimes 1 and 2.

5.4 Qualitative Example: Hurricane Isabel

Hurricane Isabel achieved hurricane status on September 7, 2003 and was a

category 5 storm at its strongest intensity. ADEOS II made several passes over the

storm before it made landfall on September 18. The intense wind speeds and rain

rates present in the storm system allow us to qualitatively assess the performance

of the SWR algorithm. Figure 5.6 shows rain rates retrieved by AMSR and AMSR

SWR around Isabel on September 16 when it had reduced to a category 3 storm.

Although the AMSR SWR measurements are noisy, much of the structure of the rain

storm is apparent. The rain bands in the top right corner of the images as well as

the area with zero rain rate in the bottom right portion of the storm are captured

by the AMSR SWR processing. Certain features are not visible in the AMSR SWR

image due to the low resolution and other errors. Though not as accurate as AMSR,

the AMSR SWR’s rain estimates are useful for observing the structure and extent of

rain storms.

Figure 5.7 shows the wind vector fields retrieved by NCEP, AMSR SWR, and

L2B processing for the same view of Isabel. Rain contamination is very noticeable
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in the L2B wind field (Figure 5.7c), especially above and to the left of the storm

center, where many of the wind vectors point across the satellite track. The change

in direction of these winds is abrupt at the edges of these rain-contaminated cells.

The AMSR SWR winds (Figure 5.7b) have a more continuous, circular flow around

the storm center that more closely matches the flow of the NCEP winds (Figure 5.7a).

The rain-contaminated cells in the top right corner of the L2B field are also corrected

by AMSR SWR processing, resulting in lower wind speeds that are more consistent

with the wind speeds of neighboring WVCs and vectors that no longer point across

the track.

5.5 Summary

After applying bias correction methods to the AMSR SWR rain model, AMSR

SWR rain estimates have a smaller bias than the DL SWR, even though they are

less correlated with AMSR rain rates. AMSR SWR rain rates are generally more

accurate and precise than those of the DL SWR. The AMSR SWR has a fewer

false rain rates than the DL SWR, but it misses more true rain rates. The rain

flagging capability of the DL and AMSR SWR algorithms are comparable; however,

comparison to the AMSR-derived rain impact flag suggests that the flagging capability

can be improved if the SWR rain rate thresholds are properly calibrated. Both SWR

algorithms improve the accuracy of wind estimates relative to NCEP winds. DL

SWR performs marginally better than the AMSR SWR in all categories except speed

bias. The AMSR SWR algorithm corrects the typical effects of rain contamination

by lowering artificially high wind speed estimates and by correcting wind vectors

that point cross-track due to rain contamination. These corrections were verified by

comparing wind speed and direction histograms and were observed qualitatively in

the wind fields of Hurricane Isabel.
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Figure 5.4: Normalized histograms of wind speed of AMSR SWR, L2B, and NCEP
winds for a) regime 0, b) regime 1, and c) regime 2. Regime 0 - wind dominates;
regime 1 - wind and rain are comparable; regime 2 - rain dominates. Data is from
May 2003.
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Figure 5.5: Normalized histograms of wind direction of AMSR SWR, L2B, and NCEP
winds for a) backscatter regime 0, b) regime 1, and c) regime 2. The direction is
relative to the forward satellite track. Regime 0 - wind dominates; regime 1 - wind
and rain are comparable; regime 2 - rain dominates. Data is from May 2003.
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Figure 5.6: Hurricane Isabel rain rates retrieved by a) AMSR and b) AMSR SWR on
September 16, 2003 (SeaWinds rev number 3941, JD 259) centered at 27◦ N latitude
and 70◦ W longitude. Rain rates units are mm/hr.
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Figure 5.7: Hurricane Isabel wind vectors retrieved by a) NCEP, b) AMSR SWR, and
c) SeaWinds L2B processing on September 16, 2003 (SeaWinds rev number 3941, JD
259) centered at 27◦ N latitude and 70◦ W longitude. Wind speed units are m/s.
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Chapter 6

Conclusion

A wind and rain backscatter model derived from AMSR and SeaWinds on

ADEOS II has been implemented in the SWR algorithm. A climatological map of

the mean rain height derived from AMSR data is used by the SWR algorithm to

produce surface rain rate estimates comparable to those of AMSR. The AMSR SWR

rain estimates are an improvement compared to DL SWR rain estimation. They are

generally more accurate and precise and have a low false alarm rate. The AMSR

SWR also corrects much of the latitude-based errors in rain rate estimates to which

the DL SWR was subject. The wind vector correction capability of the algorithm is

effective at reducing artificially high wind speeds caused by rain-induced backscatter

augmentation. The cross-track wind direction bias caused by rain contamination is

significantly reduced and in qualitative comparisons of Hurricane Isabel, the wind field

has a more self-consistent flow. Overall, the SWR algorithm is an effective method of

improving the accuracy of SeaWinds scatterometer wind retrieval and has the added

benefit of retrieving rain rates when radiometer data is not available.

6.1 Recommendations for Future Studies

This thesis represents the first attempt to update the SWR algorithm and

calibrate it with AMSR rain data. There are many improvements that can be made

to the AMSR SWR algorithm before using it to process SeaWinds on QuikSCAT data.

The four parameter MAP estimator presented in Section 4.2.1 was not simulated due

to the difficulty of resolving minima in four dimensions and due to the length of time

required to compute the objective function. A future study might attempt to simulate
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the MAP estimator to compare its performance to the more simplified method chosen

for this study. Even though rain height is now accounted for in the rain estimation

process, there still appears to be a latitude-based dependence on the AMSR SWR

rain rate bias. The model parameter coefficients could be calculated for various

latitudes, to make a latitude dependent rain model. The rain height maps developed

for this study are limited temporally to only six months worth of data. The AMSR-E,

AMSR’s successor aboard the NASA Aqua satellite, has been in operation since 2002

and can be used to make more comprehensive climate maps of the rain height. An

alternative to this is to create an effective rain height map, where rain heights are

determined by the ratio of AMSR SWR integrated rain rate to AMSR surface rain

rate. The rain flagging skill of AMSR SWR can be improved by improving the rain

rate thresholds and spatial filtering. The rain rate thresholds developed in [22] were

based on simulated data. The ADEOS II mission provides a large comparison data

set that can be used to develop thresholds based on real scatterometer data.
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Appendix A

Notes on Rain Model Parameter Calculation

This appendix explains some of the details in calculating the parameters of

the rain model discussed in Sections 3.4 and 5.1 of this thesis.

A.1 Adjustment of Atmospheric Rain Attenuation

The empirical attenuation provided in the AMSR L2Ao files includes atten-

uation due to other atmospheric sources such as water vapor and clouds. Using a

simple method, we estimate the attenuation from these other sources and subtract it

from the empirical attenuation.

Figure A.1 shows a scatter density plot of the AMSR empirical attenuation

versus integrated rain rate (see Figure 3.2) with a 100-point non-parametric fit of the

mean attenuation superimposed. The non-rain atmospheric attenuation is estimated

to be the value of the attenuation when the integrated rain rate is zero. In order to

extrapolate this value, a line is fit to the five points of the non-parametric fit closest

to zero rain rate. The constant term of this affine relationship is the average non-rain

atmospheric attenuation and is subtracted to obtain the rain-only attenuation. For

h-pol the value is 0.29 dB and for v-pol the value is 0.34 dB.
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Figure A.1: Scatter density plot of atmospheric rain attenuation (dB) versus inte-
grated rain rate (km mm/hr) for the h-pol beam. The red line represents the mean
attenuation for different rain rates.

A.2 Rain Rate Threshold

The AMSR attenuation values are noisy for small integrated rain rates. These

data are excluded by means of a rain rate threshold. For this study, the threshold

of 1 km mm/hr is used to generate the coefficients of Table 3.1. The coefficients

derived from this threshold yield the best rain rate estimates when used in the SWR

algorithm compared to other arbitrarily chosen thresholds.

A.3 Bias-corrected Model Coefficients

Section 5.1 indicates that a bias exists in the rain rate estimates when the

coefficients of Table 3.1 are used in the SWR algorithm. The bias is corrected using

the method discussed in [33] and the bias-corrected coefficients are presented in Table

A.1.
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Table A.1: Bias-corrected coefficients of the quadratic fits to the parameters αr and
σe in Equations (3.15) and (3.16) respectively.

ca(0) ca(1) ca(2)

h-pol -5.2410 0.4076 0.0167

v-pol -4.6036 0.4432 0.0171

ce(0) ce(1) ce(2)

h-pol -24.6335 0.4108 0.0160

v-pol -24.5579 0.2802 0.0115
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