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ABSTRACT

Mitigation of Sea Ice Contamination in QuikSCAT Wind Retrieval

Weston Jay Hullinger
Department of Electrical and Computer Engineering

Master of Science

Satellite borne radar scatterometers provide frequent estimates of near surface wind
vectors over the Earth’s oceans. However in the polar oceans, the presence of sea ice in or
near the measurement footprint can adversely affect scatterometer measurements resulting
in inaccurate wind estimates. Currently, such ice contamination is mitigated by discarding
measurements within 50 km of detected sea ice. This approach is imperfect and causes loss of
coverage. This thesis presents a new algorithm which detects ice-contaminated measurements
based on a metric called the Ice Contribution Ratio (ICR) which measures the spatial ice
contribution for each measurement. The ICR calculation is made for each measurement
using a spatial ice probability map which is determined using Bayesian probability theory.
Determined by simulation, the ICR processing thresholds the ICR for each measurement
depending on local wind, ice backscatter, and cross-track location. ICR processing retrieves
winds at a distance of 22.5 km from the ice edge on average, while ensuring wind accuracy.
Retrieved wind distributions using ICR processing more closely resembles uncontaminated
wind distributions than winds retrieved using previous methods. The algorithm is applied to
QuikSCAT in this thesis but could be applied to other scatterometers such as the Oceansat-2
scatterometer.

Keywords: QuikSCAT, sea-ice contamination, wind retrieval, microwave remote sensing
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Chapter 1

Introduction

Knowledge of polar winds is fundamental to understanding Earth’s climate. Such

winds influence atmospheric heat flow, ocean currents, and, possibly, sea-ice formation. Polar

regions are, however, known for their inhospitality due to extreme weather, which makes on-

site wind studies more difficult. Satellite remote sensing enables daily wind observations

over the ocean in these regions.

Ocean wind speeds and directions can be measured using spaceborne radars called

scatterometers. A scatterometer requires no sun illumination, penetrates the clouds, and

can make measurements in the rain.

The Seawinds scatterometer on the QuikSCAT satellite has collected invaluable data

regarding global climate from 1999 to 2009. The term QuikSCAT is commonly used for the

scatterometer, too. QuikSCAT transmitted pulses at the Earth, measured the return power,

and estimated the normalized radar cross section σ0. QuikSCAT measured σ0 from a polar

orbit covering 90% of the Earth’s surface daily. The orbit provided extensive coverage of the

polar regions, enabling improved understanding of Arctic and Antarctic systems. Measured

σ0 values have long been used to estimate ocean wind vectors (wind retrieval). However,

wind retrieval is not accurate if the σ0 measurements are too close to land, icebergs, or sea

ice.

1.1 Problem

Sea ice is a frequent contaminate of wind estimates in polar regions. The ice is con-

stantly moving and typically has a radar signature similar to that of high wind speeds. As

the radar takes measurements, its antenna pattern can illuminate both ocean and ice simul-
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taneously. As a result, the ice’s high radar signature may severely bias the σ0 measurements,

resulting in erroneous wind retrieval.

Previously, ice contaminated winds were eliminated by detecting the sea ice extent

and then only estimating winds beyond a distance of 50 km from the ice. My analysis

suggests that this method can still result in ice contamination and also eliminates many

valid estimates that could be retained.

1.2 Approach

Here I propose a new algorithm for detecting ice contaminated QuikSCAT measure-

ments in order to discard them before wind retrieval. Thus winds are only retrieved from

uncontaminated measurements increasing wind estimate accuracy. In addition, the algorithm

retrieves valid wind estimates closer to the ice edge than before possible.

A successful land contamination mitigation technique has been developed by Owen

and Long [1]. The algorithm measures a ratio of how much of the antenna pattern overlaps

land and equates that to wind error. Land-contaminated measurements that can be expected

to result in high wind error are discarded prior to wind retrieval. The algorithm in this thesis

is inspired by this work with significant modifications to deal with the variability in sea ice

movement from day to day. Sea ice has been known to drift almost 80 km in a single day [2,3].

In this thesis, a metric for ice contamination detection is introduced: the Ice Con-

tribution Ratio (ICR). The ICR calculation depends on the estimated spatial probability of

sea ice. The ICR relates to σ0 measurements through a model developed here. This model is

used to estimate the wind error for different ICR values. ICR thresholds are determined to

achieve acceptable wind error. Measurements are discarded when their ICRs are above the

ICR threshold. Wind retrieval performed using the remaining measurements is ensured to

be more accurate. This algorithm mitigates ice contamination more successfully than pre-

vious methods while retrieving winds 22.5 km from the ice edge on average. The principle

components and results of this thesis have been submitted for publication.

2



1.3 Outline

This thesis presents the ice contamination mitigation algorithm in detail. Chapter 2

is a background which covers scatterometry, QuikSCAT, low and high resolution products,

wind retrieval, and ice contamination. Chapter 3 outlines the Ice Contribution Ratio (ICR)

metric and its algorithm for contaminated measurement detection using Bayesian probability

theory. Chapter 4 presents case study results in the Antarctic and Arctic oceans as well as

long term quantitative algorithm performance analysis. Finally, Chapter 5 concludes with

thesis contributions and future research.
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Chapter 2

Background

2.1 Scatterometry

Scatterometry is a form of active remote sensing which is employed in estimating

wind speeds from a satellite craft. The scatterometer sends out microwave pulses and then

listens for and measures the echo power. A noise measurement is also generally taken and

subtracted from the echo power to estimate the signal power received. Then the normalized

radar cross section (σ0) is calculated using the radar equation

σ0 =
(4π)3R4LPs

PtG2λ2A
, (2.1)

where R is the range to the surface, L is the contribution from known system losses, Ps is the

signal power received, Pt is the transmitted power, G is the antenna gain, λ is the wavelength

at the center frequency of the transmitted signal, and A is the effective illuminated area.

The quantity Ps, and therefore σ0, is a function of measurement geometry and target

surface properties. The radar cross section generally decreases as the incidence angle in-

creases. Different azimuth angles can also change σ0 depending on the surface target shape

and periodicity. Additionally, the dielectric properties of the target contribute because the

incident wave creates surface currents that retransmits the return signal. Finally, surface

roughness also contributes significantly.

A specular surface (smooth) reflects much of the signal at opposite its incidence

angle. However, if the surface is rougher the microwaves scatter in more directions. Most

scatterometers employed in measuring wind vectors have off-nadir orientation, meaning that

they do not point strait down at the earth. In an off-nadir configuration, a specular surface

reflects much of the power away from the radar resulting in a low σ0. As the surface roughness
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increases, more signal scatters in other directions, therefore causing more to return to the

radar antenna. Thus, a rough surface has higher σ0 than a specular surface.

2.2 QuikSCAT

QuikSCAT executed its mission from June 19, 1999 to November 23, 2009. Although

the mission is over, its measurements provided valuable information about Earth’s environ-

ment, so much so, that another, similar scatterometer started its mission aboard Oceansat-2

on November 4, 2009 giving data continuation [4]. While this study is applied to QuikSCAT,

the ICR algorithm can also be applied to Oceansat-2 data.

Measurements from QuikSCAT have been employed to study many of the Earth’s

geophysical systems. The original mission objective was to estimate ocean surface wind

vectors. Additionally QuikSCAT’s polar orbit enables extremely high coverage in polar

regions. This has enabled iceberg tracking, sea ice mapping, and snow studies.

QuikSCAT transmits and receives pulses at 13.4 GHz with a dual polarized pencil

beam antenna system. Its horizontally-polarized (Hppl) inner beam and vertically-polarized

(Vpol) outer beam point at 46 and 54 degree incidence angles respectively as illustrated in

Figure 2.1. The two beams rotate as the satellite moves along its nadir track (or along track)

covering a 1600 km wide swath. The swath direction orthogonal to the nadir track is the

cross track direction. Using this configuration, QuikSCAT collects forward and aft looking

measurements for both polarizations with the exception of the outer edges of the swath in

the cross track direction. This small swath region is called the outer swath and produces

only Vpol measurements.

An observed measurement σ0
Obs can be modeled with noise according to

σo
Obs = σo

True(1 +Kpη), (2.2)

where η ∼ N (0, 1) demonstrates multiplicative noise and Kp depends on measurement pa-

rameters such as SNR and geometry [5]. The quantity σ0
True is the measurement without

noise.
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Figure 2.1: Geometry of the SeaWinds scatterometer aboard the QuikSCAT satellite.

Each σ0
True is a weighted average of a distributed σ0 on the Earth’s surface. The

weighting function is called the spatial response function, R(v), and is due to the antenna

pattern’s normalized projection onto the ground combined with signal processing [6]. The

weighting function R(v) averages the spatially distributed σ0(v) according to

σ0
True =

∫
footprint

σ0(v)R(v)dv

∫
footprint

R(v)dv
, (2.3)

where v is the position vector of the location on the ground.

2.3 Low and High Resolution Products

The measurements which result from the full footprint spatial response are referred

to as “egg” measurements. Egg measurements are used in the conventional 25 km resolution

L2B wind data product reported by the Jet Propulsion Laboratory (JPL) [7].
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Each egg measurement is made up of several smaller “slice” measurements collected

using range/Doppler filtering. Researchers have derived and tabulated the slice spatial re-

sponse function for QuikSCAT as seen in Figure 2.2 [5, 6]. Notice that the function reduces

much more slowly in the direction of the major axis. This non-symmetry illustrates one

reason why a simple distance metric is not sufficient to quantify contamination because the

direction of the major axis varies with the antenna rotation angle. Using this response func-

tion and image reconstruction algorithms, researchers produce high resolution (HR) wind

products [8, 9].
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Figure 2.2: A sample slice spatial response function for QuikSCAT in dB. Contours are
spaced 10 dB apart. The major axis is in the near horizontal direction and the minor axis is
perpendicular.

Both conventional and HR wind products are grided in the along-track/cross-track

directions. Each pixel is termed a wind vector cell (WVC) with 25 km resolution for con-

ventional products and 2.5 km for HR. The WVC index in the direction of flight is termed

the along track index. The index across the flight track is termed the cross track index.
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Before HR wind retrieval is performed, the σ0 measurements are averaged into WVC’s

using the AVE algorithm. The AVE algorithm enhances the data resolution from a single

pass [10]. Azimuth diversity for wind retrieval requires that σ0 measurements are sorted into

4 types: v-pol fore and aft, and h-pol fore and aft. Each WVC contains an average value for

each type. The exception occurs on the swath’s outer edge where only v-pol measurements

are available. Wind is retrieved for each WVC as described in Section 2.4. The trade off for

higher resolution is increased noise. Figure 2.3 shows an example of both the conventional

L2B wind product and the HR wind product.
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(a) Conventional L2B Wind Product
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(b) High Resolution Wind Product

Figure 2.3: QuikSCAT wind speed products (m/s) at the L2B 25 km resolution and the High
Resolution 2.5 km resolution. These products are of the Antarctic Ocean on December 25,
2004. The axis represent distances from 53.3 degrees South and 18.3 degrees East.

Another high resolution product used in this study is the scatterometer image recon-

struction (SIR) image. The SIR algorithm [10,11] creates these images by applying irregular

sampling theory to the plenitude of measurements taken by QuikSCAT from its several daily

revolutions. Using several daily revolutions increases spatial resolution in exchange for loss

of temporal resolution. The SIR algorithm also requires the measurement spatial response

function. This enables production of high resolution σ0 images of sea ice in Arctic and

Antarctic regions from QuikSCAT σ0 measurements. These images are created for Vpol as
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seen in Figure 2.4(a) as well as for Hpol. Using Vpol, Hpol, and other SIR images, diurnal

ice extent products are made by the Remund-Long (RL) algorithm [12, 13]. The RL algo-

rithm uses an iterative maximum likelihood classifier as well as image processing techniques

to produce daily sea ice extent maps. Examples of Antarctic SIR and RL ice map images

are shown in Figure 2.4(b). These ice maps are used in producing the L2B wind product.

The L2B product retrieves winds no closer than 50 km from the RL ice edge. The RL ice

maps are also used as inputs to the ICR algorithm described in this thesis.

(a) QuikSCAT Vpol σ0 SIR (b) QuikSCAT RL Ice Map

Figure 2.4: QuikSCAT Vpol σ0 SIR and RL ice map images for Antarctic on August 30, 2009.
a) The Vpol σ0 SIR image is produced using the Scatterometer Reconstruction Algorithm
developed at BYU. b) The RL ice map takes values of 0 for ocean, 1 for ice, and 2 for land.

2.4 Wind Retrieval

Wind retrieval is the process of transforming σ0 measurements into wind vectors.

Wind retrieval relies on a geophysical model function (GMF) [14–16] relating the near surface

winds and particular observation geometry (incidence and azimuth angles) with σ0. Various

GMFs have been developed for QuikSCAT’s frequency band, one of which is QMOD4 [7]
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which is designed to better represent low and high wind. Figure 2.5 demonstrates the

QMOD4 relationship between wind vectors and σ0 for an incidence angle of 46 degrees. The

relative azimuth angle is the azimuth angle measured from facing directly into the wind.

Since the absolute azimuth angle (with respect to North) is known, the relative azimuth

angle is all that is required to know the wind direction.
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Figure 2.5: Geophysical model function for QuikSCAT at an incidence angle of 46 degrees.
The relative azimuth angle is the measurement angle with respect to facing into the wind. The
black line represents the possible solutions given σ0 is 0.08.

Notice in Figure 2.5 that as the σ0 increases with wind speed. When the wind speeds

are low, the ocean surface is smooth and most microwave energy is reflected away from the

antenna. When the wind speeds are higher, the surface is rougher resulting in more Bragg

scattering back to the radar.

While the GMF computes σ0 for a given azimuth angle and a wind speed, the inverse

problem is less simple. When a measurement is taken, only the absolute azimuth angle is

known. The relative azimuth angle is unknown, meaning that for a single σ0 measurement
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there is an entire curve of solutions for wind speed and direction. For the σ0 measurement

0.08, Figure 2.5 shows the possible speed/direction solutions. Since the curve includes all

relative azimuth angles, there is no information about the wind direction. The distance

from the peak to trough gives only a coarse estimate of the speed. This is overcome by

taking measurements from multiple absolute azimuth directions and finding where the curves

intersect. QuikSCAT’s rotating beams collect measurements from multiple azimuth angles

to solve this problem.

Wind retrieval methods include a maximum likelihood approach [9,17] and alternative

methods such as the manifold approach [18]. In this thesis, wind vectors are estimated using

a Gaussian noise model and maximum likelihood estimator. The probability density function

(PDF) of an observed σ0 given a true surface backscatter σo
t is often modeled as

p(σo|σo
t ) =

1√
2πζ2

exp

(
−(σo − σo

t )
2

2ζ2

)
, (2.4)

where ζ2 is the observation noise variance [19]. The uncorrelated amplifier noise dominates

the observation noise, resulting in independence between the various measurements within

a WVC. With this assumption in place, a likelihood function is derived as

l(σo|w) = −
k∑

i=0

(
ln(ζi) +

1

2

(σo
i −M(w))2

ζ2i

)
, (2.5)

given a vector of observations, σo, where M(w) is the GMF which maps w to σo
t,i given

the geometry for σo
i in the vector σo. The index i indicates the measurement of the total k

measurements contributing to the wind estimate. Therefore ζ2i refers to the noise variance

for the observation σo
i . Wind is retrieved by choosing w to maximize likelihood function

For QuikSCAT wind retrieval, the likelihood function generally has up to four maxi-

mums associated with possible wind solutions, which are called ambiguities. Although these

ambiguities are generally similar in magnitude, they can differ significantly in direction. Al-

though several ambiguity selection methods exist, a reasonably successful method involves

applying an iterative median filter [7, 20, 21]. BYU generates HR wind images which se-
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lects the ambiguity which most closely matches the nearest L2B wind, for which ambiguities

selection is done by median filtering.

This thesis principally concentrates on selecting which measurements are to be used in

wind retrieval and assumes that wind retrieval and ambiguity selection can be performed as

they have in the past. The measurements are selected based on the amount of contamination

caused by sea ice.

2.5 Ice Contamination

Retrieved winds in polar oceans are frequently contaminated by sea ice due to the

radar signature of sea ice being similar to that of high wind speeds. In fact, the σ0 distribu-

tions of wind and ice targets overlap as seen in Figure 2.6. Notice that Vpol σ0 distribution

overlap significantly for ice and ocean and that Hpol σ0 distributions are only marginally

better. This overlap makes ice contamination detection and mitigation non-trivial.

−35 −30 −25 −20 −15 −10 −5 0
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vPol Ice
hPol Ocean
hPol Ice

Figure 2.6: Distributions of σ0 constructed from 2000 data in the Antarctic ocean. These
plots are generated from arbitrarily sampled 2000 data of approximately 130 million WVCs.
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Sea ice is constantly moving, freezing, or melting causing significant uncertainly in ice

location. Sea ice has been known to drift as much as 80 km in a single day [2,3]. Furthermore,

ice often breaks off of the sea-ice main extent causing more variability. Although ice detection

algorithms attempt to eliminate location uncertainty, they still do not solve the problem of

ice contamination in wind retrieval. This is partly due to imperfections in ice detection;

however, even with perfect ice detection, the measurements next to the ice edge may be

ice-contaminated.

Ice contamination can result from various amounts of ice being present within the

spatial response function. Obviously a measurement is contaminated when it is completely

over the ice, but it is not always trivial to detect this case. Additionally, the measurement can

be contaminated if a portion of the main lobe or even side lobes contain ice. Similar land

contamination has been addressed by Owen and Long [1]. The asymmetry of the spatial

response function causes the measurement orientation to effect the contamination. The

contamination caused by these factors is quantified by the Ice Contribution Ratio defined in

the next chapter.

Ice contaminates QuikSCAT measurements in both the Antarctic and Arctic oceans.

Figure 2.7 depicts the 2008 Antarctic pole, the winter and summer ice extents, and two

consecutive QuikSCAT revolution swaths. Figure 2.8 shows the 2008 Arctic pole. Note

that the revolutions significantly overlap, making SIR processing very advantageous in the

regions. The images also demonstrate the variability in ice location throughout the year,

which in turn demands a spatially dynamic contamination mitigation algorithm. Figure 2.8

shows that during the Arctic winter, most opportunity for near ice-edge wind retrieval is

near Greenland, but in the Arctic summer there are regions to retrieve winds on practically

all sides of the sea ice.

2.6 Summary

Scatterometers are used in remote sensing to measure the normalized radar cross-

section σ0 of the Earth’s surface. When taken over the ocean, these measurements can be

used to estimate wind vectors. In polar regions, sea ice can contaminate the measurements,

making some wind estimates inaccurate. The remainder of this thesis presents an algorithm
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Figure 2.7: Consecutive QuikSCAT revs superimposed on an Antarctic SIR resolution image.
White and black represent land and ocean. Light gray represents the sea ice extent during the
2008 summer, while the dark gray is the extent during the 2008 winter. The + indicates the
south pole location.
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Figure 2.8: Two QuikSCAT revs superimposed on an Arctic SIR resolution image. The color
bar is the same as in Figure 2.7. The + indicates the north pole location.
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for detecting measurements which are contaminated be sea ice. These measurements are

discarded before wind retrieval in order to maintain valid wind estimates.
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Chapter 3

Ice Contribution Ratio Algorithm

This chapter presents an algorithm for mitigating sea ice contamination in QuikSCAT

wind retrieval. First the ICR is developed as a σ0 measurement model parameter. The ICR

is estimated using Bayesian probability theory and used as a metric to predict the amount of

ice contamination present in each measurement. The second section of this chapter describes

how ICR thresholds are determined by simulation. Finally the algorithm is summarized.

3.1 ICR Model

The ICR derivation begins with the spatial response function model for σ0
True as seen

in Eq. (2.3), which I restate for convenience here

σ0
True =

∫
footprint

σ0(v)R(v)dv

∫
footprint

R(v)dv
. (3.1)

Recall that this model presents each noise free measurement σ0
True as a weighted average of a

distributed σ0 over the measurement footprint on the Earth’s surface. The spatial response

function, R(v), is the weighting function.

The footprint area can be subdivided into two disjoint components: regions of ice

and regions of ocean. The integral in the numerator of Eq. (3.1) can be subdivided into two

partitions corresponding to these disjoint components. Assuming the surface backscatter of

each partition separately is approximately constant over the integration area, ice and ocean

17



σ0 factor out of the corresponding integrals, and Eq. (3.1) becomes

σ0
True =

σ0
i

∫
ice

R(v)dv∫
footprint

R(v)dv
+

σ0
o

∫
ocean

R(v)dv∫
footprint

R(v)dv

= σ0
i ICR + σ0

o (1− ICR) , (3.2)

where the factored backscatter is σ0
i for ice and σ0

o for ocean and

ICR =

∫
ice

R(v)dv∫
footprint

R(v)dv
(3.3)

is defined as the Ice Contribution Ratio.

The ICR for a given measurement is the fraction of the spatial response that is over

sea ice and ranges from 0 to 1. In ICR processing, this quantity is calculated for each

measurement. If the ICR is greater than a threshold, then the measurement is discarded as

“ice contaminated.” The ICR thresholds are generated with the aid of simulation as described

in Section 3.2. First, however, a method for estimating the ICR for a given measurement is

described.

3.1.1 ICR Estimation

To quantify the amount of ice contribution in each measurement, the ICR expression

in Eq. (3.3) is discretized into the summations

ICR ≈

∑
ice

R[n]∑
footprint

R[n]
=

∑
footprint

I[n]R[n]∑
footprint

R[n]
, (3.4)

where the indicator function I[n] takes the value of 1 if location n corresponds to sea ice and

0 if it corresponds to ocean. To help account for the uncertainty in the movement of the
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ice edge from day to day, I[n] is treated as a binary random variable. As such, I[n] has a

binary probability mass function (PMF) with the probability of ocean for I[n] = 0 and the

probability of sea ice for I[n] = 1. Using this PMF, an estimate for the ICR is chosen by

taking the expected value of Eq. (3.4). The expected value of a binary random variable with

values of 0 and 1 is simply the probability of 1 occurring, or in this case the probability of

sea ice. This leads to the change from I[n] to the probability Pn(ice|σ0
Obs) of ice occurring

in the nth index so that

ICR ≈

∑
footprint

Pn(ice|σ0
Obs)R[n]∑

footprint

R[n]
. (3.5)

This expression suggests a Bayesian approach to calculating the ICR, which is how the

ICR algorithm makes this calculation. As such, Pn(ice|σ0
Obs) is referred to as the posterior

probability of ice.

The formulation in Eq. (3.5) is a new approach to quantifying the amount of spatial

contribution from part of the footprint. The posterior probability makes it possible to

account for the location uncertainty of the sea ice in the footprint. As the notation suggests,

the probability depends on the σ0 measurements taken at that location. However it does

not depend on the measurements taken in nearby locations except for in applying the prior

as discussed in the next section.

The posterior probability of ice given the observed σ0 measurements can be calculated

using Bayes’ rule and the law of total probability resulting the in

Pn(ice|σ0
Obs) =

Pn(ice)Pn(σ0
Obs|ice)

Pn(ice)Pn(σ0
Obs|ice) + Pn(ocean)Pn(σ0

Obs|ocean)
, (3.6)

where Pn(ice) is the prior probability of ice and Pn(ocean) = 1− Pn(ice) is the prior proba-

bility of ocean. The quantities Pn(σ0
Obs|ice) and Pn(σ0

Obs|ocean) are observation probabilities

which are the probabilities of making the measured observations given that the nth pixel is

ice or ocean respectively. Both the prior and observation probabilities are needed to calculate

the posterior.

19



3.1.2 Prior Contribution and Generation

The first step to calculating the posterior is to generate Pn(ice), which is the prior

probability of sea ice for the nth pixel. To construct this prior, I use the sea ice maps created

by the RL algorithm, however other ice detection algorithms could also be used.

To generate the priors, daily binary RL ice maps are averaged over a time window

which is non-causal including previous, current, and subsequent days. This method enables

detection of ice that has disconnected from the main ice extent (disjoint ice). The results

presented in this thesis are based on a time window spanning 23 days. Results for using

other time windows are described in Appendix B using metrics discussed in Section 4.2.1.

It is informative to consider the construction of a prior with disjoint ice regions.

During the summer melt, portions of ice may be isolated from the main ice extent and may

not be mapped by the RL algorithm. Such ice typically melts within a short time, but it still

causes ice contamination during the melt period. An example of this is seen in Figure 3.1,

which is a HR wind estimate image contaminated by ice. The RL edge is also shown for

comparison. Since undetected ice exists for only a short time, the multiple day prior results

in a moderate probability of ice for the region as seen in Figure 3.2. This enables the ICR

algorithm to detect areas of ice contamination even if the RL algorithm does not detect ice

for that particular day.

In order to minimize the probability that disjoint ice is lost, a low but non-zero prior

is assigned to locations that otherwise would be 0. Similarly a probability prior of 100% is

lowered to avoid forcing ice classification.

From observation, the choice of this near-100% probability does not greatly effect

the final wind results. The ICR algorithm generally rejects such regions from wind retrieval

regardless of the choice of the high non-100% prior.

The choice of the non-zero low prior has little apparent effect on the boundary for

which winds are retrieved. However, as the prior increases, high wind speeds in the swath

center or edges appear to become more likely to be discarded from wind retrieval. High wind

speeds with high priors are more likely to have high posterior probabilities because high wind

speeds have similar scattering properties to that of sea ice. Wind retrieval is less accurate

in the swath center and edges due to a lack of measurement azimuth diversity. Section 3.2
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Figure 3.1: Image of wind speed estimates (m/s) for WVCs south of Africa on December 15,
2004 for orbit revolution 28590. The axes represent distances from 61.1 degrees South and 33.4
degrees East. In this image, wind speed is retrieved for all WVCs without regard to sea ice
location. Ice-covered and ice-contaminated areas result in apparent high winds. The dashed
lines show areas of undetected ice, disjoint from the main ice extent. The RL edge is shown as
a solid line.
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Figure 3.2: Image of prior probability of ice made by averaging 23 days of RL ice maps for
the area shown in Figure 3.1.
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Figure 3.3: Antarctic ocean marginal observation probabilities for Hpol and Vpol aft mea-
surements.
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Figure 3.4: Antarctic ice marginal observation probabilities for Hpol and Vpol aft measure-
ments.
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describes how this can penalize measurements in these swath regions. The result is that a

higher prior for ocean winds in the center of the swath can result in unnecessary measurement

rejection. However, it is more acceptable to reject uncontaminated measurements than to

accept contaminated measurements.

In this thesis, the 0% prior is raise to 4.35% which corresponds to the lowest non-zero

prior that can be achieved using a 23 day prior. Similarly the 100% prior is decreased to

95.65% which corresponds to the highest non-100% prior that is achievable using a 23 day

prior.

3.1.3 Observation Probability

The posterior calculation in Eq. (3.6) requires observation probabilities Pn(σ0
Obs|ice)

and Pn(σ0
Obs|ocean). These are estimated using a year-long training set of σ0 observations

from 2004 where ice and ocean are defined by daily RL ice maps. In each region, the 4

observation types (v-pol, h-pol, fore, and aft) are binned into 4 dimensional histograms.

These histograms are made on a monthly basis and are normalized to obtain the observation

probability estimates.

Figure 3.3 and Figure 3.4 show ocean and ice marginal observation probabilities for

2004 as functions of Vpol and Hpol aft σ0 measurements. Features of these distributions

are that ice generally has higher σ0 than ocean and that the ocean distribution has a higher

variance than ice. Notice there is some overlap in the distribution domains.

Finally, the posterior is calculated using the prior and observation probabilities ac-

cording to Eq. (3.6), where the measured σ0
Obs is taken from the AVE processed σ0 field. The

posterior assigns high probabilities over regions of disjoint ice as seen in Figure 3.5. With

this posterior in place, the ICR can be calculated for each measurement.

The ICR algorithm eliminates measurements that have an ICR above a location-

specific threshold to ensure that measurements are not ice contaminated. These ICR thresh-

olds are determined through simulation as described in the next section.
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Figure 3.5: Image of the values of the posterior probability of sea ice for each pixel in the
area shown in Figure 3.1.

3.2 Threshold Determination

ICR processing discards a σ0 measurement if its ICR is greater than an allowable

ICR threshold in order to bound the estimated wind speed error. Unfortunately, wind error

cannot be expressed analytically due to the complexities of the GMF. However, the wind

error can be analyzed using Monte-carlo simulations which enables an evaluation of how the

wind error is affected by different values of ICR, wind speed, direction, σ0
i , and cross track.

The objective of the simulations is to determine which values of ICR result in excessive RMS

wind speed error for given wind, σ0
i , and cross track location. In the ICR algorithm, we use

the wind direction that causes the highest error in order to be conservative [1].

The simulation uses the noisy measurement ICR model obtained by combining Eq. (2.2)

and Eq. (3.2):

σo
Obs =

(
σ0
i ICR + σ0

o (1− ICR)
)

(1 +Kpη). (3.7)
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The wind GMF provides a mapping between the winds and σ0
o . For the simulation, I choose

discrete values of σ0
i ranging from 0.0125 to 0.5, ICR values from 0 to 0.8192, and wind

speeds from 3 to 30 m/s. These ranges are chosen to exhaust the nominal values of the

parameters.

The final simulation parameter is the cross-track swath location. The cross-track

dependence takes into account the scatterometer’s wind retrieval performance which varies

across the swath.

The simulation is performed for each combination of simulation parameters. First it

creates a wind field with uniform wind speed and direction from the simulation parameters.

This wind field is projected through the GMF to obtain the σ0
o values for the slice measure-

ments. The ocean backscatter σ0
o combines with the ICR and σ0

i parameters in Eq. (3.7) to

simulate ice contamination, after which Monte-carlo noise is added to obtain σ0
Obs for each

slice.

The next step is to process simulated observations with the AVE algorithm, followed

by wind retrieval to obtain winds. For each set of parameters (ICR, σ0
i , wind speed, and

cross-track location), I simulate 1500 HR WVCs [1]. The retrieved wind for each WVC is

compared to the original true wind to calculate RMS wind speed error.

Figure 3.6 shows the simulated RMS wind speed error as function of ICR and wind

speed. These particular results occur for σ0
i = 0.0375 at the 7th cross track bin. Note that

the RMS error increases with wind speed for the ice free case (an ICR of -40dB) This results

in part from the multiplicative noise associated with scatterometer measurements as seen in

Eq. (3.7). Also notice that while the RMS error increases as more ice is present (a higher

ICR), there is a drop in error between 10 and 20 m/s. This “trough” in error shifts and

scales in wind speed depending on σ0
i and cross track location demonstrating the importance

of making the simulations dependent on wind speed, σ0
i , and cross track.

To select thresholds, a relative RMS error metric is defined as

εrel =
εIce − εIce Free

εIce Free

, (3.8)
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Figure 3.6: Simulated RMS wind speed error in m/s as function of ICR in dB and wind speed
in m/s. These RMS wind errors are for a 0.0375 σ0

i and the 7th cross track bin.

Figure 3.7: Simulated RMS wind speed error and error thresholds as functions of ICR and
wind speed for the same case as shown in Figure 3.6.
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where εIce is the RMS wind speed error for ice contaminated winds and εIce Free is the RMS

wind speed error for ice free (uncontaminated) winds. The error εIce Free is obtained through

simulation with the same wind and cross track parameter as εIce but with ICR = 0.

The RMS error thresholds are selected by defining a εrel threshold for high wind

speeds and a constant RMS error threshold for low wind speeds. Figure 3.7 demonstrates

the thresholding process by superimposing the RMS error thresholds on top of the simulated

RMS error of Figure 3.6. For high wind speeds, I arbitrarily choose to threshold εrel at 10%.

This results is a wind speed dependent RMS error threshold that is the diagonal plane at

high wind speeds in Figure 3.7.

If the εrel threshold results in an RMS error less than 2 m/s then the threshold is

set to 2 m/s RMS error as seen in the horizontal plane at low wind speeds in Figure 3.7.

This is chosen to comply with QuikSCAT mission objectives which require RMS wind speed

error to be below 2 m/s for low wind speeds [22]. The RMS error thresholds correspond to

the maximum tolerable RMS wind speed error due to ice contamination for each set of σ0
i ,

wind speed, and cross-track location. The corresponding maximum ICR which results in

less than the RMS wind error threshold is termed the ICR threshold. These ICR thresholds

are the points where the horizontal and diagonal plains cross the simulated RMS errors in

Figure 3.7.

Thus the simulations determine an ICR threshold for each σ0
i , wind speed, and cross-

track location. To illustrate typical ICR thresholds, Figure 3.8 shows the thresholds averaged

over all cross-track locations. Low ICR thresholds mean that even small portions of ice in

a measurement significantly impact the winds, while large ICR thresholds suggest the wind

retrieval is less sensitive to ice. For example, low ICR thresholds are associated with low

wind speeds and high σ0
i . This is intuitive because ice with high σ0

i in a low wind (low σ0
o)

environment biases the overall σo
Obs upward away from σ0

o . Inversely, high wind speeds and

higher σ0
i are associated with high ICR thresholds meaning that they are less sensitive to

the ice. In this case the σ0
i and σ0

o are comparable, so that σo
Obs is only minimally affected

by the ice contamination. Note that the threshold actually decreases at the highest wind

speeds and lowest σ0
i . This is a manifestation that simulation predict that hurricane winds
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Figure 3.8: Plot of the ICR threshold in dB as a function of wind speed and ice backscatter.
The value shown is the average taken across all the cross-track locations.

could be biased downward if σ0
i were small enough. This case is not explored in detail here

because its occurrence is very unlikely.

3.3 ICR Algorithm Summary

A summary of the ICR algorithm is given in the following steps:

1. Precompute ICR thresholds by simulation.

2. Precompute observation probability distributions from a training set.

3. Compute prior probability of ice using RL ice maps in a temporal window.

4. For each revolution, use the AVE algorithm to create WVCs in the region of interest

with the 4 azimuth types.

5. Calculate the posterior probability of ice using products of step 2) through 4) and

Eq. (3.6).

6. Calculate the ICR for each slice measurement in the region of interest using Eq. (3.5).

7. Discard slice measurements with ICR above the ICR thresholds computed in step 1).
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8. Using remaining σ0 measurements, apply the AVE algorithm and wind retrieval to

make HR or conventional wind fields.

This results in winds whose RMS error due to ice contamination are assured to be less

than the error thresholds. Note that every ICR wind product employs the same thresholds

and observation probabilities enabling them to be computed in preprocessing. The remainder

of the steps can be executed in real time.
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Chapter 4

ICR Algorithm Validation

This chapter validates and analyzes the performance of the ICR algorithm. The

algorithm’s success is first demonstrated via case studies. Second, in order to validate large

data sets, performance metrics are measured for ICR and L2B retrieved winds. Finally, wind

speed distributions are used to further validate the improved performance of large data sets

of ICR winds compared to L2B winds.

4.1 Case Studies

Three case studies are considered here to demonstrate that ICR processing mitigates

ice contamination and retrieves more WVCs than the L2B product. Case study 1 is from

orbit revolution 28590 during the 2004 Antarctic melting period on December 15 south of

Africa. Case study 2 is from orbit revolution 6367 in the 2000 Antarctic winter on October

8 east of the Drake Passage. Case study 3 is from orbit revolution 3892 in the 2000 Arctic

Ocean around the Savlbard island group on March 18, 2000. The choice of these case studies

is such as to give the reader intuition about how ICR processing effects wind retrieval in

comparision to the L2B product.

Case study 1 demonstrates the ice contamination mitigation capability of the ICR

processing. The case study is selected to demonstrate the utility of the ICR in the melting

period. This day is specifically chosen because it contains large amounts of disjoint ice

that are easily distinguished by the reader. As shown in Figure 4.1, L2B winds are highly

contaminated, while HR ICR processed winds in Figure 4.2 exclude ice contaminated regions.

Agreeing with the HR product, the conventional 25 km ICR product as shown in Figure 4.3

is contamination free. ICR processing effectively removes 573 contaminated conventional

WVCs from the L2B product, while also adding 100 WVCs not retrieved by the L2B product.

31



km

k
m

 

 

−800 −400 0 400 800

750

500

250

0

−250

−500

−750

0

5

10

15

20

Ice Contaminated Winds

Ice Extent Edge

North

Figure 4.1: Image of conventional L2B wind speeds (m/s) produced by discarding all mea-
surements within 50 km from the RL sea ice edge (shown in gray) for the region shown in
Figure 3.1. Wind is not retrieved in black regions.
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Figure 4.2: Image of high-resolution wind speeds (m/s) produced using ICR processing for
the area shown in Figure 3.1. Wind is not retrieved in black regions. The RL ice edge is shown
for comparison.
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Figure 4.3: Image of conventional wind speeds (m/s) produced using ICR processing for the
area shown in Figure 3.1. Wind is not retrieved in black regions. The RL ice edge is shown for
comparison.
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Figure 4.4: Image of high-resolution wind speeds (m/s) retrieved without regard to ice condi-
tions east of the Drake Passage with lines representing the boundary of retrievable winds using
L2B product and the ICR processed product. The data is taken from October 8, 2000 for orbit
revolution 6367. The axes represent distances from 58.0 degrees South and 40.3 degrees West.
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Figure 4.5: Image of wind speed estimates (m/s) for WVCs around the Svalbard island group
in the Arctic ocean on March 18, 2000 for orbit revolution 3892. The axes represent distances
from 78.5 degrees North and 26.5 degrees East. In this image, wind speed is retrieved for all
WVCs without regard to sea ice location. Ice-covered and ice-contaminated areas result in
apparent high winds. Areas of land such as Svalbard are indicated by maroon. A region west
of the Hinolpen Strait is shown by a dashed circle, and the RL edge is shown as a solid line.
Additionally, Bear island is indicated.
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Figure 4.6: Image of conventional L2B wind speeds (m/s) produced by discarding all mea-
surements within 50 km from the RL sea ice edge (shown in gray). The region is the same as
shown in Figure 4.5. Wind is not retrieved in black regions.
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Figure 4.7: Image of high-resolution wind speeds (m/s) produced using ICR processing for
the area shown in Figure 4.5. Wind is not retrieved in black regions. The RL ice edge is shown
for comparison.
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Figure 4.8: Image of conventional wind speeds (m/s) produced using ICR processing for the
area shown in Figure 4.5. Wind is not retrieved in black regions. The RL ice edge is shown for
comparison.
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ICR processing typically retrieves more uncontaminated WVCs than the L2B prod-

uct. Case study 2 is arbitrarily selected to demonstrate this typical outcome of the algorithm.

Figure 4.4 shows wind speeds retrieved for all WVCs without regard to sea ice location. To

illustrate winds retrieved by different methods, the 3 superimposed lines represent the bound-

ary of retrieved winds in the L2B, HR ICR, and conventional ICR products. To the left of

these lines are ice-contaminated winds, while to the right are uncontaminated winds. The

ICR lines are much closer to the sea ice than the L2B line, resulting in 59 more conventional

WVCs in this small region. Furthermore, 308 more conventional WVCs are retrieved over

the entire swath exemplifying that ICR processing can retrieve winds closer to ice than the

conventional 50 km distance.

Case study 3 is chosen to demonstrates that the algorithm can retrieve winds closer

to sea ice than the L2B and that the algorithm can operate in the Arctic ocean. Figure 4.5

is an image of wind speeds estimated without regard to sea ice location near the Svalbard

island group. Figure 4.6 is the L2B product for the same region. Notice that the large region

west of the Hinolpen Strait (shown with a dashed circle) is excluded from wind retrieval.

The small ocean area between Bear island and the ice edge is also excluded. However, in

the Figure 4.7 HR ICR product, winds are retrieved in both of these locations increasing

coverage. This is also seen in the conventional resolution ICR product seen in Figure 4.8.

A total of 100 more conventional WVCs are retrieved in this image compared to the L2B

product while also excluding 26 contaminated WVCs from the L2B product.

These case studies demonstrate that the ICR algorithm both excludes ice contami-

nation and increases the number of uncontaminated WVCs. The large set validation that

follows further demonstrates these points.

4.2 Large Set Validation

This section presents performance analysis for the ICR algorithm for several large

time series in the northern and southern hemispheres for 2000, 2004, and 2008. For this

study the observation probabilities Pn(σ0
Obs|ice) and Pn(σ0

Obs|ocean) are estimated using the

2004 Antarctic as a training set, while the 2000 and 2008 time series are the withheld sets.
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The success in the Arctic, using an Antartic training set, demonstrates that the algorithm

is robust in its training set dependence.

The time series contain a variable number of revolutions. The 2000 and 2004 Antarctic

time series have a combined 553 revolutions sampled arbitrarily throughout the year. The

Arctic 2000 and 2004 time series have a combined 333 revolutions selected arbitrarily within

regions and times for which the metrics can be easily measured. The 2008 time series

contains the much larger sampling of 5133 revolutions for the Antarctic and 3593 for the

Arctic. Validation is performed on all these time series.

To aid in analysis, the following two metrics are defined to measure ice proximity and

wind speed error. The wind speed error metric requires local uncontaminated winds which

are discussed. The metrics are used to measure the algorithm’s success in the 2000 and 2004

time series. Finally, wind distributions are compared as a validation for the 2008 time series.

4.2.1 Validation Metrics

Two metrics measure the ICR algorithm’s success. The first is the standoff distance

(SOD), and the second is relative RMS wind speed error.

The SOD measures the distance from the sea ice edge that wind can be retrieved by

a given algorithm. To calculate this, the ICR-determined WVCs which are closest to the ice

edge are identified. Then the SOD is defined as

SOD = mean(d1, d2, ...dN), (4.1)

where di is the shortest distance to a ice pixel edge center from the center of the ith WVC

as illustrated in Figure 4.9.

The relative RMS wind speed error εrel is the same metric as defined in Eq. (3.8),

except that in this case εIce is the RMS error of ICR-determined winds near the ice edge while

εIce Free is still the RMS wind speed error for ice free (uncontaminated) winds. To calculate

error, I use a wind product from the National Centers for Environmental Prediction (NCEP)

for comparison [23].
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Figure 4.10: RMS wind speed error as a function of distance from the RL ice edge for the
winter and summer 2004 time series using NCEP for comparison. Sets contain more than 8
million WVCs
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4.2.2 Local Ice Free Winds

To approximate εIce Free, I investigate winds found a short distance away from the

ICR-determined winds. In execution, I take care that εIce Free winds are sufficiently far from

sea ice to guarantee no ice contamination. Over the short distances, wind statistics are

assumed to be approximately constant as will be investigated. This is important because I

want any major differences between εIce and εIce Free to be only due to ice contamination.

In order to evaluate how constant the RMS wind error is over short distances, I

measure the RMS wind speed error as a function of distance from the RL ice edge. In using

the RL edge, one must be careful to exclude free floating ice in the analysis since the RL

maps only show ice connected to the main body. Figure 4.10 shows RMS speed errors as a

function of distance from the ice edge for the four time series. The initial drop in RMS error

is due to the drop in ice contamination as one moves away from the edge. After this, the

error reaches a floor related to normal wind retrieval skill, which validates our assumption

of locally constant wind statistics. The changes in error when further than 100 km are

comparatively small and are attributed to changing wind statistics. Based on these results,

I cautiously average the RMS error between 100 and 200 km to use as εIce Free in Eq. (3.8).

4.2.3 ICR Metric Performance Results

The εrel and SOD are measured for the four time series from the HR ICR winds,

conventional ICR winds, and L2B winds as shown in Table 4.1. These results are achieved

using a 23 day prior and are generated from 886 orbit revolutions. For the L2B case,

3 revolutions that otherwise would be used are excluded because of severe and obvious

contaminated wind retrieval performed over ice shelves. This enables a fairer comparison

between the L2B and ICR products. Conventional ICR and L2B products combine more

than 100,000 WVCs to measure each metric. HR ICR SOD uses approximately 0.5 million

WVCs, while εrel uses approximately 1 million WVCs.

The ICR SOD is consistently lower than the L2B SOD in all four time series indicating

that ICR processing retrieves winds closer to the ice edge than the L2B product. In the

Antarctic ocean, HR and conventional ICR winds are retrieved on average 38.4 km closer,
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Table 4.1:

SOD and relative RMS error εrel results for ICR processed winds next to the ice edge.
These results are achieved using a 23 day prior.

Metric Set HR Conventional L2B

S
O

D
(k

m
) Antarctic 2000 22.7 22.8 57.9

Antarctic 2004 22.9 23.1 64.7
Arctic 2000 22.1 22.2 38.7
Arctic 2004 22.0 21.8 37.2

ε r
el

(%
) Antarctic 2000 21.7 18.1 31.6

Antarctic 2004 30.4 27.3 34.3
Arctic 2000 16.5 20.6 31.2
Arctic 2004 21.9 26.7 40.0

while they are 15.9 km closer in the Arctic ocean. Thus the greatest increase in SOD

performance is seen in the Antarctic ocean.

With an average SOD of 22.5 km, HR and Conventional ICR winds have remarkably

little SOD deviation. The consistency of the SOD measurements between years demonstrates

the algorithm’s consistency between the 2000 withheld set and 2004 training set.

The εrel metric is lower for ICR products than for the L2B product, demonstrating

that the WVCs near the ice edge have less ice contamination in ICR winds than in the L2B

winds. Unfortunately, εrel exceeds the 10% target set in Section 3.2 by a factor of 2 to 3

and has more variability than the SOD. In part, this can be attributed to upsampling and

error of the NCEP winds used for comparison. Another possible origin is that the target

relative error is actually larger than 10% for low wind speeds as described in Section 3.2.

Still, ICR products improve upon the L2B product with lower εrel in all cases. In order to

further demonstrate the algorithm’s effectiveness, wind distributions are analyzed.

4.2.4 Wind Distributions

The probability distributions of wind can be used to validate the removal of ice

contamination because wind statistics are approximately constant over short distances in

the open ocean. Thus, wind statistics should be about the same near the ice edge as they
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are a short distance from the edge. If ice contamination is present, wind speeds will be

higher than they otherwise would be.

Wind distributions are used to demonstrate the effectiveness of ICR processing in

2008 for Antarctic and Arctic winds. Figure 4.11 shows wind speed distributions for the

Antarctic ocean and Figure 4.12 for the Arctic ocean, where each figure contains distributions

consisting of the following:

1. Conventional WVCs retrieved using ICR processing, for which the L2B product also

retrieves winds.

2. Conventional WVCs retrieved in L2B product, for which ICR processing also retrieves

winds.

3. Conventional WVCs retrieved using ICR processing, for which the L2B product does

not retrieve winds.

4. Conventional WVCs retrieved in L2B product, for which ICR processing does not

retrieve winds.

Distributions 1) and 2) are from WVCs for which both the L2B and ICR processed

products agree on performing wind retrieval within 100 km. Although the WVC locations

are the same for these distributions, different slices may be used for wind retrieval. Note

that sets 1) and 2) agree well in Figure 4.11 and also separately agree in Figure 4.12. These

distributions are likely ice free since they are constructed using data which both ICR and

L2B agree is uncontaminated. They require that both the ICR and L2B products agree.

Because they are so similar, they are a good target for both ICR and L2B winds to test for

ice contamination.

Distribution 3) closely matches 1) and 2) in both figures. This demonstrates that

ICR processing results in WVCs that are uncontaminated by ice.

Demonstrating contamination, distribution 4) has a mode that occurs at a much

higher wind speed than the uncontaminated distributions as well as a high tail in the highest

wind speeds. This is expected for ice contaminated winds because ice has a similar radar

signature to that of ocean at high wind speeds. One would not expect such a drastic change

in wind statistics given that the WVCs are taken from an area approximately the same as

41



0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

Wind speed (m/s)

 

 

Data set 1
Data set 2
Data set 3
Data set 4

Figure 4.11: Wind speed distributions in the Antarctic ocean taken from 5,133 QuikSCAT
ascending passes during 2008. Winds in the ice edge region are broken into four different sets:
1) WVCs retrieved using ICR processing which are also retrieved by the L2B product; 2) WVCs
retrieved by L2B product which are also retrieved using ICR processing; 3) WVCs retrieved by
ICR processing but considered ice contaminated by the L2B product; and 4) WVCs retrieved
by the L2B product but considered ice contaminated by ICR processing. There are more than
4 million WVCs in the combined data sets.

the other distributions. This leads to the conclusion that the L2B product’s distribution is

contaminated by ice which ICR processing is capable of mitigating.

4.3 Summary

Case study investigation indicates the success of ICR processed winds in both retriev-

ing more WVCs and resulting in less ice contamination than the L2B product. These results

are also seen in performance analysis using the two metrics defined previously. Furthermore,

wind distributions suggest that ICR processing mitigates ice contamination compared to the

L2B product.
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Figure 4.12: Wind speed distributions in the Arctic ocean taken from 3,593 QuikSCAT
descending passes during 2008. The explanations for the four distribution data sets is described
in Figure 4.11. There are more than 6 million WVCs in the combined data sets.
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Chapter 5

Conclusion

In conclusion, by using the Ice Contribution Ratio, wind retrieval can be performed

approximately 22.5 km from the sea ice edge while sustaining wind retrieval integrity. This

is a huge distance improvement over the JPL standard algorithm which merely dilates the

ice edge by 50 km before retrieving winds. Furthermore, ICR processing results in less

RMS wind speed error than the JPL algorithm applied on the current L2B product. ICR

processing can be applied to HR or conventional WVCs for either Arctic or Antarctic oceans

in any year of QuikSCAT’s mission. The principle components and results of this thesis have

been submitted for publication.

The following section summarizes this thesis’ contribution to the remote sensing com-

munity. The succeeding section addresses future possible research avenues.

5.1 Thesis Contributions

This thesis develops an algorithm for mitigating sea ice contamination in QuikSCAT

wind retrieval. To mitigate contamination, each slice measurement is investigated by measur-

ing the Ice Contribution Ratio, which describes the spatial support of ice in the measurement

footprint. The ICR accounts for the uncertainty of the ice location using Bayesian proba-

bility theory which utilizes prior and observed distributions to calculate a posterior. The

posterior, combined with the spatial response function, enable the ICR calculation for each

measurement. Slice measurements are discarded from wind retrieval if their ICRs exceed a

threshold, which depends on swath location, wind conditions, and ice σ0. ICRs thresholds

are determined via simulation using a model which relates ICR to a measured σ0.

In addition to mitigating contamination, the algorithm enables more WVC’s to be

retrieved than previously possible. Accurate winds can now be retrieved as close as 22.5
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km away from the ice edge. ICR processing is operational in both the Antarctic and Arctic

oceans. In addition to and as elements of the ICR algorithm, the following contributions are

also listed in subsequent sections.

5.1.1 Ice Contribution Metric

An ice contamination metric, the ICR, is derived to be used for ice contamination

mitigation. This metric measures how much of the spatial response function is over sea ice,

and is calculated using a Bayesian approach which models the uncertainty in ice location.

Additionally, a model has been derived which relates the ICR, wind speed, and ice σ0 to a

measured σ0.

5.1.2 Prior Probability of Ice Generation

In order to calculate the ICR, a prior probability of sea ice is required which is

generated by averaging daily RL ice maps. I have used the metric from Section 4.2.1 to

determine the effect of different time wind lengths in the prior. Out of those tested, A

23 day prior minimizes the relative error in the Antarctic and is used in ICR processing.

Quantitative results from these tests are available in Appendix B.

5.1.3 Polar Ice/Ocean Observation Distributions

To calculate the ICR, I computed monthly observation probability distributions for

multiple years of QuikSCAT data over ice and ocean. These distributions are four dimen-

sional for the measurement types: Vpol fore and aft, and Hpol fore and aft. These distribu-

tions are the probabilities of taking specific σ0 measurements given that the measurement

are taken over sea ice or ocean.

5.1.4 Posterior Probability of Ice Maps

Using the prior and observation probabilities, I calculate the posterior probability of

sea ice. This image acts as a map of how likely it is for any given WVC to contain sea ice.

This product detects polynias as well as disjoint ice and could be thresholded to make a

single pass ice detection product. In this algorithm, the posterior is used to calculate the
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ICR which is the spatial average of the posterior weighted by the spatial response function

over the footprint.

5.1.5 Monte Carlo Ice-contamination Simulations

Monte Carlo simulations have been conducted to find the RMS error for different sets

of ICR, wind speed, ice σ0, and cross track location. These RMS errors have resulted in an

ICR threshold look-up table which is used to discard contaminated σ0 measurements. As

wind speeds increase, ICR thresholds also increase meaning that more ice can be allowed in

a measurement. As ice σ0 increases, ICR thresholds decrease thereby prohibiting more ice

in the measurement.

5.1.6 Metric Validation

Two metrics have been defined to validate ICR processing. The SOD measures the

distance from the sea ice that winds can be retrieved, while the relative error measures how

much extra error is caused by remaining ice. Methods for measuring these quantities have

also been developed for which the SOD is on average 38.4 km smaller than the L2B for the

Antarctic, and 15.9 km smaller in the Arctic. The relative error, using NCEP for comparison,

also decreases in every case, which further validates the algorithm.

5.1.7 ICR Processed Wind Products

The ICR algorithm has been used to generate wind products for hundreds of revolu-

tions in 2000 and 2004 and thousands of revolutions in 2008. These products contain both

Arctic and Antarctic regions and can be used for climate studies.

5.1.8 Wind Histogram Validation

Wind histograms have been generated for 2008 data in order to compare and con-

trast agreement and disagreement in L2B and ICR processed winds. Histograms composed

of WVCs for which L2B and ICR processing retrieved winds are used as ice-free histograms.
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Histograms for which ICR retrieves winds and L2B does not retrieve winds agree stupen-

dously with the ice-free case which shows that ICR winds are also uncontaminated. His-

tograms for which L2B retrieves winds and ICR does not retrieve winds has a histogram

that is extremely biased from the ice-free case which shows that the discarded measurements

were contaminated. Therefore the algorithm is validated using wind distributions.

5.2 Future Research

There are a number of areas of follow-on research. These areas include ideas for

algorithm improvement, further validation studies, geophysical studies, and additional ap-

plications. These are listed in the following sections:

5.2.1 Experimentation with Priors

The ICR algorithm can be tested using other methods of prior generation. For exam-

ple, one could observe how much ice moves from day to day and calculate a corresponding

bandwidth which could be used in a spatial filter to smooth the current priors. Another

possibility is to use a uniform prior to calculate the posterior which is then used as the prior

in a second iteration. Additionally a causal prior could be developed in order to use ICR

processing in real-time processing.

5.2.2 Measurement Deficiency Performance Analysis

ICR processing has the side effect of having fewer measurements that contribute to

WVCs near the ice edge. Analysis can be done on how wind retrieval statistics are effected

by this deficiency of measurements.

Although this thesis has developed ICR processing for the entire swath, the validation

has only been performed on the inner swath. Similar analysis could be applied to the outer

swath where fewer measurements are present.

5.2.3 Ambiguity Selection Investigation

Wind retrieval results in four or fewer ambiguities (multiple possible solutions). Gen-

erally these ambiguities are similar in magnitude and dissimilar in direction. The current
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method of selecting the ambiguity is to use the wind which most closely matches L2B wind.

However, ICR wind retrieval is not always performed near L2B winds. Methods for ambiguity

selection for these cases should be investigated.

5.2.4 Wind Speed Dependent Relative Error

In the ICR algorithm, a 10% relative error threshold is applied for high wind speeds.

However, for low wind speeds a threshold of 2 m/s RMS error is applied. In this thesis an

overall relative error has been measured, but a wind speed dependent relative error could be

used.

5.2.5 Polar Ocean Wind Studies

This thesis directly enables future studies of polar ocean winds. It may be feasible

to study Katabatic winds that blow off the Antarctic continent. Another intriguing study is

that of interactions between ocean winds and sea ice formation. Furthermore, the longevity

of the QuikSCAT mission enables temporally long studies of polar wind trends. Such winds

can also be applied to global climate models.

5.2.6 Implement for Iceberg Studies

Wind is important to understanding iceberg movement. Iceberg contamination is

not explicitly mitigated using the current algorithm. However, a simple technique could

extend ICR processing to do this. Currently, BYU tracks icebergs and keeps a record of

their coordinates. In creating the prior, a constant probability of ice can be applied to a

small region around the iceberg. Then a posterior can be calculated for the region using the

sea-ice observation probabilities. This can enable the ICR to be calculated for the iceberg

region.

5.2.7 Implementation for the Oceansat-2 Scatterometer

To continue polar wind coverage, ICR processing can be applied to the Oceansat-2

Scatterometer (OSCAT) [4], which is currently operational (as of March 15, 2012). The
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OSCAT mission began on November 4, 2009, just as QuikSCAT ended its mission. De-

signed similarly to QuikSCAT, OSCAT utilizes a rotating pencil beam antenna system with

horizontally and vertically polarizated beams.

The OSCAT spatial response function is not currently known. Since ICR processing

requires the function, it must be estimated prior to implementing the ICR algorithm for

OSCAT.

The algorithm’s histograms and priors require sea-ice extent maps. Fortunately, BYU

already produces OSCAT RL ice maps.

5.2.8 Implementation for the Advanced Scatterometer

The algorithm potentially can be applied to the Advanced Scatterometer (ASCAT).

ASCAT was launched aboard the Metop-2 satellite in 2006 and is currently operational (as

of March 15, 2012). ASCAT operates using 6 vertically polarized fan-beam antennas with 3

on each side of its track.

Like that of OSCAT, ASCAT’s spatial response function must be estimated. The

algorithm must be adapted to use a different set of observation types. For QuikSCAT four

observations types are used: v-pol fore and aft, and h-pol for and aft. ASCAT only has v-pol

measurements and additionally has an incidence angle dependence across the swath.
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Appendix A

List of Acronyms

ASCAT - Advanced Scatterometer
GMF - Geophysical Model Function
HR - High Resolution
ICR - Ice Contribution Ratio
JPL - Jet Propulsion Laboratory
L2B - JPL 25 km Resolution Wind Product
NCEP - National Center for Environmental Prediction
OSCAT - Oceansat-2 Scatterometer
PMF - Probability Mass Function
RL - Remund-Long - algorithm for sea ice detection
RMS - Root-Mean-Squared
SIR - Scatterometer Image Reconstruction
SOD - Standoff distance
WVC - Wind Vector Cell
QMOD4 - GMF developed for QuikSCAT to better represent low and high wind
QuikSCAT - Quick Scatterometer
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Appendix B

Performance Analysis for Various Priors

The ICR algorithm is implemented with a prior that is generated by averaging daily
sea-ice maps taken from both previous and subsequent days in a time window. Here, the
SOD and relative RMS error εrel as defined in Section 4.2.1 are used to measure how different
time windows affects algorithm performance. The metrics are measured for both HR and
conventional ICR processed winds using 5, 11, 17, and 23 day time windows. The sets
on which the metrics are measured are the Antarctic and Arctic oceans for 2000 and 2004
and the L2B product for comparison. The SOD and εrel for each prior time window are
displayed in Table B.1 and Table B.2 respectively. In each table, the metric is displayed for
the 2.5 km HR and 25 km conventional products with the addition of the 25 km L2B product
for comparison. The metrics are measured using 886 orbit revolutions. The Conventional
ICR and L2B products combine more than 100,000 WVCs to measure the SOD, while HR
ICR SOD uses approximately 0.5 million WVCs. Conventional ICR and L2B products
combine more than 100,000 WVCs to measure εrel, while HR ICR εrel uses approximately 1
million WVCs. For the L2B case, 3 revolutions are excluded because of severe and obvious
ice contamination enabling a fairer comparison between the relative errors. Note that the
Arctic results are obtained using the Antarctic observation probabilities. Performance could
be improved by using Arctic observation probabilities for the Arctic region rather than the
Antarctic.

Notice that in Table B.1 that the SOD goes up very consistently as the number of
days in the prior increases. This may be attributed to a spatially larger transition band from
low to high probability of ice due to more ice change that occurs within a larger time window.
However, the standard deviation of the SOD for any given set and resolution is not much
greater than 1 km. This demonstrates algorithm robustness in that the SOD is relatively
insensitive to the prior. With a 23 day prior, the Antarctic SOD, averaged over 2000 and
2004, is 38.4 km lower than the L2B product’s SOD. This means that winds are retrieved
38.4 km closer to the ice edge using ICR processing compared to the L2B product. ICR
processing retrieves Arctic winds 16.0 km closer to the ice compared to the L2B product.

Table B.2 demonstrates that Antarctic εrel decreases consistently as time window
increases. This makes sense because one would expect the error to decrease as the distance
from the ice increases as demonstrated in Table B.1. However, the Arctic εrel increases as the
time window increases. Still, the standard deviations of the Arctic winds across the 4 time
windows are under 1.6%. In all cases the relative error is much less than the L2B product.
The ICR retrieved winds demonstrated throughout this thesis are generated using a 23 day
prior which has the minimum εrel for the Antarctic out of the 4 time windows considered.
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Table B.1:

SOD in km for ICR processed winds next to the ice edge using various lengths of time
windows to generate the prior.

Res. Set 5 day 11 day 17 day 23 day L2B

2.
5

k
m

Antarctic 2000 20.1 21.5 22.3 22.7 -
Antarctic 2004 19.7 21.1 22.3 22.9 -
Arctic 2000 19.6 21.0 21.6 22.1 -
Arctic 2004 20.1 21.0 21.8 22.0 -

25
k
m

Antarctic 2000 20.5 21.9 22.6 22.8 57.9
Antarctic 2004 20.4 21.5 22.7 23.1 64.7
Arctic 2000 19.9 21.1 21.6 22.2 38.7
Arctic 2004 19.9 20.9 21.7 21.8 37.2

Table B.2:

Relative RMS error εrel in % for ICR processed winds next to the ice edge using various
lengths of time windows to generate the prior.

Res. Set 5 day 11 day 17 day 23 day L2B

2.
5

k
m

Antarctic 2000 27.1 26.0 24.7 23.7 -
Antarctic 2004 36.9 34.0 31.4 30.4 -
Arctic 2000 15.1 15.3 15.6 16.5 -
Arctic 2004 21.7 22.6 21.8 21.9 -

25
k
m

Antarctic 2000 19.7 18.1 18.4 18.1 31.6
Antarctic 2004 30.0 30.0 27.5 27.3 34.3
Arctic 2000 17.3 17.3 19.0 20.6 31.2
Arctic 2004 24.6 24.8 25.2 26.7 40.0
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