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ABSTRACT

MELT DETECTION AND ESTIMATION IN GREENLAND

USING TANDEM SEAWINDS AND QUIKSCAT SCATTEROMETERS

Brandon R. Hicks

Department of Electrical and Computer Engineering

Master of Science

Ku-band dual-polarization radar backscatter measurements from the SeaWinds

on QuikScat (QuikScat) and SeaWinds on ADEOS-2 (SeaWinds) scatterometers are

used to classify the melt state and estimate melt severity in Greenland. Backscatter

measurements are organized into high temporal and high spatial resolution images

created using the Scatterometer Image Reconstruction (SIR) algorithm and a new

temporal data segmentation technique. Melt detection is performed using a layered

electromagnetic model combined with a Markov chain model. The new melt detection

method allows classification of the snow-pack into three states: melt, refreeze, and

frozen. Melt severity and refreeze severity indexes are also developed.

The melt detection methods developed in this thesis are verified by using

a one-dimensional geophysical/electromagnetic model simulation of the snow-pack

under melting conditions and by comparison with in situ weather station data at the

ETH Camp in western Greenland. The diurnal cycle of backscatter measurements is

also analyzed at this location. The melt detection and estimation method is applied

to the entire Greenland ice-sheet. The resulting melt classifications and melt severity

indexes are used to generate a number of maps outlining the features of the 2003 melt

season. Good agreement of the melt severity and a 1978 SASS Greenland ice facies

map is observed.
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Chapter 1

Introduction

The Greenland ice-sheet profoundly influences Earth’s climate. Greenland,

the largest island on the planet, is approximately 81% covered by ice. Greenland’s

ice-sheet accounts for approximately 8% of Earth’s ice volume, and 11% of the Earth’s

fresh water. Many of our planet’s climatic elements, including the radiation budget

and sea level, are strongly influenced by changes in this island’s ice-sheet.

Recent global trends have raised concerns of global warming and climate

change. Global warming is threatening to raise ocean levels and change climates

world-wide. Understanding changes in Greenland’s ice-sheet is critical to under-

standing these climatic trends. An estimated 7% of the current rise in sea level

can be attributed to increased ablation of the Greenland ice-sheet [1]. The planet’s

solar radiation budget is also directly affected by the Greenland ice-sheet. Because

the surface albedo of the Greenland ice-sheet is strongly affected by the liquid water

content in the snow—nearly 45% more incoming solar radiation is absorbed by wet

snow than dry snow [2]—understanding the processes that drive melt in Greenland is

becoming increasingly important. Higher temperatures in Greenland cause increased

duration and areal extent of the melt season, increasing the amount of the Sun’s

radiation that is absorbed, which in turn increases temperatures and melt. This pos-

itive feedback mechanism makes Greenland sensitive to subtle climate changes and

an early indicator of greater global climate change.

Unfortunately, Greenland’s harsh environment and remote location make reli-

able measurements of Greenland’s ice-sheet difficult. Even as interest in understand-

ing Greenland’s ice-sheet increases, the ability to collect data remains limited. Only
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several weather stations are in operation, and the data they collect is limited, leaving

a vast expanse of ice and snow where there is no consistent reliable information. In-

deed, many areas of Greenland have never been physically visited, let alone measured

for factors influencing local and global climates.

Until the past few decades, the only way to collect the valuable information

needed to detect climate change in Greenland was to directly record the weather

and collect samples of the ice-sheet. Fortunately, the launching of the first satellites

ushered in a new era where the remote measuring of physical parameters from space is

possible. Particularly, microwave-sensor bearing satellites in polar orbits have made

possible the measuring of important parameters affecting the climate of the Greenland

ice-sheet.

Microwave sensors, with wavelengths much longer than their optical and in-

frared counterparts, are capable of penetrating cloud, rain, and snow. These sensors

observe the Earth’s surface, without regard for time of day or prevailing atmospheric

weather conditions. Moreover, these longer microwave sensor wavelengths facilitate

the detection of minute amounts of liquid water in snow, making these sensors crucial

to the measurement of Greenland’s ice-sheet and other facets of Earth’s climate.

There are two primary types of microwave sensors: scatterometers and ra-

diometers. Scatterometers, active radar systems, send energy pulses to desired tar-

gets and measure the reflected power. Radiometers are passive systems that mea-

sure the microwave emissions detected by the sensor. Both active and passive sen-

sors provide information about the surface, although the mechanism by which they

measure is quite different. Both microwave radiometers [3, 4, 5] and scatterometers

[6, 7, 8, 9], have been widely used in studies of the Greenland ice-sheet. Areas stud-

ied using microwave instruments include accumulation [4, 8, 9] and melt detection

[3, 10, 11, 12, 13] among others.

While many melt detection studies of Greenland’s ice sheet have used active

and passive microwave sensors, these studies have focused on limited aspects of melt

detection. Previous studies have focused on whether or not liquid water is present

as the primary melt detection methodology. Other melt factors, e.g. the amount or
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vertical distribution of melt, have not been considered. For the first time, this thesis

uses scatterometery to estimate melt severity and melt refreeze, adding significantly

to the understanding of melt processes in Greenland.

This thesis studies a new method of using active microwave scatterometer

data to classify the snow-pack in three possible states: frozen, melting and refreezing.

The method described in this thesis combines a parameterized layered melt model

with a one-step Markov state detection model to classify the ice in these three possible

states. This method also estimates the severity of melt and refreeze by estimating the

parameters that are used to discern each state. Data collected by the tandem mission

of QuikSCAT and SeaWinds are utilized in this new melt detection and estimation

method.

The new melt detection and estimation method is made possible by the devel-

opment of a new method of processing the tandem mission data into images. While

polar images with temporal sampling frequencies higher than one sample per day

have been previously attempted, the resulting ascending/descending imageset suffers

from poor temporal resolution due to complications arising from the measurement

geometry of these satellites. The new processing method uses the time-of-day of indi-

vidual measurements to separate the backscatter data into images, greatly improving

the temporal sampling of the polar regions. The processing of backscatter data into

images is performed using the Scatterometer Image Reconstruction (SIR) algorithm,

resulting in an imageset with high temporal as well as high spatial resolution. This

new processing method results in three nearly uniformly spaced temporal samples per

day when applied to tandem SeaWinds and QuikSCAT mission data, providing the

ability to resolve the diurnal cycle.

The new melt detection and estimation method is tested using a one-dimen-

sional model of the snow-pack and verified using in situ automatic weather station

(AWS) data. Validated at the location of AWS data, the melt detection and esti-

mation method provides seasonal estimates of melt onset, refreeze onset, melt season

length, and seasonal melt severity across the ice sheet.

3



The organization of this thesis is as follows. Chapter 2 provides background

information concerning the study of Greenland’s ice-sheet and the theory of radiation

transfer and scatterometery as it is applied to the ice sheet. Chapter 3 discusses the

new processing method and the temporal sampling of the QuikSCAT and SeaWinds

in the polar regions. This chapter also includes background on the QuikSCAT and

SeaWinds satellites and the SIR algorithm. Chapter 4 describes the theory and ap-

plication of the new melt detection and estimation method. Chapter 5 analyzes the

application of this new melt detection and estimation method on the Greenland ice-

sheet. Chapter 6 concludes, giving summary of the results obtained, contributions

made, and directions for further research. Finally, the Appendix contains some ex-

tended information regarding the application of the methods described in this thesis.
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Chapter 2

Background

This chapter contains background information useful for understanding the re-

search described by this thesis. First, this chapter provides background information

concerning the Greenland ice sheet. Then, this chapter gives a brief introduction to

scatterometery and remote sensing. Last, this chapter discusses radiation transfer the-

ory. Chapter 3 provides additional background on the tandem QuikSCAT/SeaWinds

mission and the data obtained by these satellites.

2.1 Greenland Ice Sheet

The Greenland ice sheet is the second largest glacier on the planet, covering

1,755,637 km2. With an average depth of over 1.5 km, the Greenland ice sheet con-

stitutes a massive volume of glacial ice. Though the ice-sheet varies in thickness from

the outer edge to the interior, Greenland’s ice-sheet is relatively flat—most of the

ice sheet surface is between 2000m and 3000m in elevation. The highest point of the

ice sheet, located in Eastern Greenland, reaches 3278 m above sea level. A separate

summit of 2850 m is located in the Southern part of the island. The gently increas-

ing slope causes average air temperatures to drop toward the interior of the island;

however, the temperatures drop very gradually. The gradual change in temperature

with the slope makes the ice sheet very sensitive to changing melt conditions.

While sensitivity of Greenland to changing climatic conditions makes the study

of this island’s glacial ice sheet of utmost importance, the cost and difficulty of col-

lecting in situ data makes this type of data scarce compared to the size of the ice
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sheet. Though further exploration of Greenland is possible with the help of mod-

ern technology, extensive measurements of the ice sheet are still economically and

logistically infeasible. Fortunately, the sensitivity of microwave sensors to parameters

related to the growth and ablation of the ice sheet makes remote sensing of the island

an attractive way to study the large scale climatic changes that affect this ice sheet.

Perhaps the most extensive study of the Greenland ice sheet was performed

from 1952 to 1955 by the United States SIPRE project [15]. This study includes

extensive snow pit data, giving insight into the accumulation and melt processes that

occur in the ice sheet. The data is still commonly used today to further understand

the ice sheet’s properties. In Benson’s report [15] for the SIPRE project, a number

of different ice facies are identified. Benson described four ice facies critical to the

understanding Greenland’s ice-sheet, including ablation facies, soaked or wet snow

facies, percolation facies, and dry snow facies.

Ablation facies – The area near the edge of the ice sheet where the snow accumu-

lated during the previous year is completely melted away, exposing glacial ice

beneath.

Soaked or wet snow facies – The areas further upslope from the ablation facies,

where the snow accumulated during the past year is not completely melted away,

but becomes completely saturated with melt water before refreezing. The wet

snow facies are separated from the ablation facies by a boundary termed the

firn line.

Percolation facies – The area where some melting occurs, but the snow accumu-

lated during the previous year does not become completely saturated with melt

water. The percolation facies are delineated from the wet snow facies by the

boundary termed the saturation line.

Dry snow facies – The area in the interior of the ice sheet high enough that the

temperatures do not allow significant summer melt to occur. The line separating

the percolation facies and the dry snow facies is termed the dry snow line.
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The location of the ice facies according to Benson’s study is shown in Figure 2.1.

Since the SIPRE project, many other studies have been completed, which add

understanding to the nature of the ice sheet, the location of the ice facies, and the

amount of annual accumulation [2, 4, 6, 8, 9, 16, 17, 18, 19]. Long and Drinkwater

[6] used σo measurements from the Seasat-A Scatterometer (SASS) satellite to map

the Greenland snow zones, based on a physical scattering model. The resulting SASS

map of the Greenland ice-sheet, created of data from July to October of 1978, marks

the first facies map generated from remote sensing data, and is of particular interest

because, like SeaWinds and QuikSCAT, SASS is a Ku-Band scatterometer. The

SASS map is shown in Figure 2.2. Others have used SAR measurements to map σo

to the ice facies [19, 20, 21]. Accumulation estimates have been made by both active

[8, 9, 22] and passive [4] microwave instruments.

Ablation and melt are also commonly studied using microwave instruments.

To detect melt, Abdalati and Steffen used a threshold on the normalized difference

between the 37 GHz vertical channel and 37 GHz horizontal channel of brightness

temperature data collected by the SSM/I radiometer [2, 3, 18]. Simple data thresh-

olding has been widely used as a method of detecting melt using scatterometers as

well [11, 13]. More complex thresholding schemes using multiple sensors have also

been used with some success [25, 26]. Diurnal variation of backscatter has been shown

to also correlate with melt [10]. The separation of melt from refreeze, which is impor-

tant to ablation has been suggested by Ashcraft and Long [12]. This thesis adds to

the work previously performed by creating a working detection model that separates

melt from refreeze and estimates melt and refreeze severity using backscatter data.

2.2 Scatterometery

The basis of scatterometery is in the radar equation,

Pr =
PtG

4πR2
σ

1

4πR2

λ2G

4π
, (2.1)

where PtG
4πR2 is the power density incident on the target, 1

4πR2 is the spreading loss

to/from the target, λ2G
4π

is the effective area of the receiver, σ is the effective size of
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Dry snow

Percolation

Soaked

Ablation

Figure 2.1: The Benson ice facie map [15].
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Dry Snow II

Dry Snow I

Percolation
Wet Snow

Ablation

Figure 2.2: The 1978 SASS derived ice facie map (Long and Drinkwater) [6]. Two
areas of dry snow are distinguished by annual accumulation. The dry snow I region
receives more accumulation than the dry snow II region.
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the target, G is the gain of the antenna in the direction of the target, Pt is the power

transmitted, R is the distance from the transmitter/receiver to the target, and λ the

wavelength of the scattered pulse. In scatterometery, all the parameters except σ are

known to the receiver. A scatterometer sends a pulse to the target and measures the

return power. Since all the parameters are known except the target’s backscatter,

the scatterometer essentially measures the effective target size, σ, called the radar

cross-section. The normalized radar cross-section, σo, is the cross section normalized

to the actual area of the target,

σo =
σ

At

. (2.2)

For distributed targets, the area of the target is effectively the area of the antenna

footprint. Thus in remote sensing, the power measured by the scatterometer can be

translated to σo, telling how effectively the ground reflects the incident pulse back to

the radar.

Measurements of σo depend on both the physical properties such as shape,

roughness and orientation, as well as electrical properties such as dialectic constant

and conductivity of the target. Variations in the roughness of the surface, for example,

can change the amount of energy reflected back to the radar, as can changes in the

dielectric constant. Because the measurements are affected by both physical and

electrical target properties, the measured backscatter depends on both the incidence

and azimuth angles of the scatterometer relative to the target.

Figure 2.3 illustrates the basic mechanisms that affect the backscatter re-

turn: surface scattering, volume scattering, and absorption. One way to analyze the

backscatter is to look at individual scatterers. A scatterer can transmit or reflect

the incident radar pulse in any number of directions depending on its orientation,

as well as absorb a portion of the radar pulse. Unfortunately, when the number of

scatterers becomes large the complexity of determining the backscattered return be-

comes intractable. The interaction of the incident pulse with all the scatterers—the

coherent scattering and absorbing of the pulse—is quite complicated. Since the num-

ber of individual scatterers in the field of a scatterometer is very large, analyzing the

10



backscatter of the combined return from all the scatterers is intractable. Fortunately,

there are methods of dealing with targets consisting of a large number of scatter-

ers statistically. In conditions where volume scattering dominates the return signal,

radiation transfer theory can be used.

Figure 2.3: Diagram illustrating the scattering of an incident electromagnetic pulse.
The scattering depends on the incidence and azimuth angles as well as the surface
roughness, and material composition.

Many regions of the snow-pack in Greenland are well modeled by volume

scattering, and hence by radiation transfer theory, which is explained later. Snow

consists mostly of air and water in both solid and liquid forms. The effective dielectric

constant of snow and firn is roughly 1.3–2.0. This low dialectic constant viewed from

the incidence angles where QuikSCAT and SeaWinds measure backscatter, combined

with the relative smoothness of the snow-air surface, makes the surface contribution to

backscatter very small. On the other hand, the snow itself is heterogeneous—distinct

snow grains are surrounded by air and/or liquid water—which results in significant

volume scattering of the incident radar pulse. Thus, Greenland snow is primarily a

volume scattering medium. Moreover, the addition of liquid water content as melt
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occurs, increases the imaginary part of the dielectric constant dramatically, increasing

absorption loss. The application of radiation transfer theory to the Greenland snow-

pack is therefore a useful tool in understanding the mechanisms that affect the radar

cross-section of the snow.

2.3 Radiation Transfer

In radiation transfer theory, radiation transfered through a material is continu-

ously absorbed and scattered by the material. This attenuation is obtained by solving

a simple linear differential equation, known as the equation of transfer. Consider a

small cylinder (see Figure 2.4) with volume dV . Radiated power, P , is incident nor-

mally on the face of the cylinder. The radiation lost in the process of being transfered

through this infinitesimal volume is,

dP = −κePdz, (2.3)

where κe is the coefficient of extinction and z is the direction of incident radiation.

The extinction coefficient, which describes the rate of radiation power loss, is the sum

of absorption described by the absorption coefficient, κa, and scattering described by

the scattering coefficient, κs,

κe = κa + κs. (2.4)

Letting dτ = κedz, where τ is called the optical depth. Thus, Equation 2.3 becomes

dP

dτ
+ P = 0, (2.5)

which is the transfer equation. Radiation transfer theory, which is traditionally used

for both extinction and emission, usually includes a source term on the right-hand

side of Equation 2.5. However, for scatterometery this source term is small enough to

be considered negligible. Solving Equation 2.5 for P , the power transmitted through

the material from depth z1 to z2 becomes,

P (z2) = P (z1)e
−τ(z1,z2), (2.6)
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Figure 2.4: Diagram illustrating radiation transfer across an infinitesimal cylinder.

where, τ(z1, z2) is the optical length, τ(z1, z2) =
∫ z2
z1
κe(z)dz.

Equation 2.6 can now be applied to scatterometery. For the moment, consider

a single scatterer at some depth, d, beneath the surface embedded in an absorbing

material, where κe = κa. As an incident pulse penetrates the material, the power is

attenuated due to absorption as described in Equation 2.6. Once the pulse reaches

the scatterer a portion of the energy is scattered back. This backscattered pulse

then travels back through the absorbing material. The apparent cross-section of the

scatterer is then,

σ = σ′e−2τ(0,d), (2.7)

where σ′ is the cross-section of the scatterer when not beneath the surface of the

absorbing material. The volume scattering from an infinitesimal volume behaves much

the same as a single scatterer. However, volume scattering typically is a result of many

scatterers. The scattering coefficient, κs, is used to describe the effective scattering

loss, and thus in volume scattering materials κs is non-zero. Therefore, generalizing

the effects of back-scattering to volume scattering, the normalized backscatter from

a single infinitesimal volume is

dσo = γ(d)e−2τ(0,d), (2.8)
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where γ(d) is the total backscatter contribution from the infinitesimal volume at

depth d. The total backscatter is then,

σo =
∫ ∞

0
γ(z)e−2τ(0,z)dz. (2.9)

This equation describes the backscatter from a distributed volume target when the

number of scatterers is very large.

2.4 Summary

By applying radiation transfer to scatterometery, we can gain further insight

into the mechanisms that affect backscatter in the Greenland ice-sheet. Particularly,

applying scatterometery and radiation transfer to snow melt allows models to be

generated and the effects of melt quantified. The foregoing discussion of these topics

is only a brief outline of the material. An inquiring reader should review the vast

amount of literature to gain further insight.
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Chapter 3

Improving Temporal Sampling

The tandem mission of QuikSCAT and SeaWinds marks the first time in his-

tory that two identical Ku-band scatterometer instruments have been in orbit around

the earth simultaneously. The combination of data from these two satellites provides

an unprecedented sampling of the earth’s surface, allowing the detection of short-

lived and diurnal processes. Backscatter from millions of individual radar pulses are

recorded in this tandem dataset daily. While individual backscatter measurements

can be used, the generation of images combines measurements into a compact dataset

that allows easier processing and intuitive interpretation. Moreover, by generating

images from many individual measurements, information gained from overlapping

measurements gives insight into the spatial response. The resulting images, while

having reduced temporal sampling diversity, enjoy improved spatial resolution.

However, in generating images care must be taken to insure that temporal

resolution is not unreasonably lost. This chapter describes some of the temporal

shortcomings of the currently produced polar ascending and descending images, and

how these shortcomings can be belayed. First, Section 3.1, provides background into

the SeaWinds instrument aboard the QuikSCAT and ADEOS II satellites, as well

as a discussion on the Scatterometer Image Reconstruction (SIR) algorithm, and

the images currently produced. Next, Section 3.2 describes the sources of temporal

resolution degradation in polar ascending and descending images. Then, Section

3.3 discusses a new method of producing images that improves the image temporal

resolution in the polar regions. Lastly, Section 3.4 summarizes the results of the new

processing method.
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3.1 Background

This section gives background information on the SeaWinds instrument aboard

the QuikSCAT and ADEOS II satellites. In addition, this section describes the SIR

algorithm.

3.1.1 SeaWinds instrument

The SeaWinds instrument was designed to measure vector winds over the

ocean. Transmitting electromagnetic pulses at 13.6 GHz, this instrument is sensitive

to scattering on the ocean from centimeter wavelength ripples caused by shear-stress

from near-surface winds. Though this instrument was designed primarily for measur-

ing ocean wind vectors, the principles of scatterometery are also applicable to land

studies. This instrument uses a conically scanning parabolic reflector with two feeds,

for measurements of both horizontal- and vertical-polarized backscatter. The use of

two feeds results in two pencil-beam antenna patterns at ' 46◦ incidence for h-pol

measurements, and ' 54◦ incidence for v-pol measurements.

The SeaWinds instrument has been flown on two different satellites. The first

instrument was flown on the QuikSCAT satellite, which instrument is referred to by

the platform name, QuikSCAT. QuikSCAT was launched in June of 1999 and contin-

ues to be operational. The SeaWinds instrument was also launched aboard ADEOS

II. This satellite and instrument together are referred to as SeaWinds. SeaWinds

was launched in December of 2002. The SeaWinds mission ended prematurely due

to a power system failure. During the length of the SeaWinds mission, from Julian

Day (JD) 100 to JD 297 of 2003, both SeaWinds and QuikSCAT were operational.

Because these two satellites carry identical sensors, the data of these missions can

be combined. The combined mission of the SeaWinds and QuikSCAT missions is

referred to as the tandem mission.

Although the sensors aboard SeaWinds and QuikSCAT are identical, their

platforms are slightly different. Perhaps the most notable difference, especially con-

cerning temporal sampling, is the difference in the local time-of-day when the satellites

cross the equator. Both satellites fly in a sun-synchronized retrograde polar orbit.
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Sun-synchronized orbits are unique because the orbital plane maintains a constant

angle to the sun. Thus, the local time-of-day beneath a sun-synchronous satellite

at the equator is always the same. QuikSCAT crosses the equator northbound, the

point called the ascending node, at roughly 6:00 AM local time, whereas SeaWinds

has its ascending node at roughly 10:00 PM local time. The descending node, the

southbound equator crossing point, occurs for QuikSCAT at 6:00PM local time, and

for SeaWinds at 10:00 AM local time. Other differences between the satellite plat-

forms also exist. For example the orbital stability is slightly better on the QuikSCAT

instrument due to it being placed in a geodetic orbit where the SeaWinds instrument

is placed in a geocentric orbit. Though additional differences exist, both sensors’ mea-

surements are closely cross-calibrated, allowing their measurements to be considered

essentially identical.

3.1.2 Scatterometer Image Reconstruction

Tandem SeaWinds and QuikSCAT measurements are used to make images

of the polar regions. These images are processed using the Scatterometer Image

Reconstruction (SIR) technique. The SIR algorithm is based on a multivariate form

of block multiplicative algebraic reconstruction. By combining multiple overlapping

passes, each with several measurements near the same area, this method provides

enhanced resolution measurements of the surface [27]. A short description follows

(more detailed discussions are found in [27, 28]).

Let f(x, y) be a function describing the surface σo at the point (x, y). The

measurements can be modeled by [27],

z = Hf + noise, (3.1)

whereH is an operator that describes the measurement system, i.e. the sample spacing

and aperture filtering, and z is the measurement recorded by the instrument. In effect,

to find an estimate of the surface f(x, y), the inverse problem is solved,

f̂ = Ĥ−1z, (3.2)
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where f̂ is the surface estimate, and Ĥ−1 is the effective inverse operator of H. The

inverse operator of H, Ĥ−1, is exact only if H is invertible and the measurements

are noise free, in which case f̂ = f . Effectively, the SIR image algorithm improves

the resolution by using information contained in the sidelobes of the spatial response.

The resulting images have finer resolution than the main beamwidth of the inherent

aperture spatial response of the instrument. In the process of inverting the aperture

response, the noise level is increased somewhat due to the noise being amplified in

regions where the aperture response is near zero.

The instrument on SeaWinds and QuikSCAT has two measurement types:

“eggs” and “slices”. The “egg” measurement type refers to the elliptical spatial

response on the ground of the pencil beam aperture which has dimensions of approx-

imately 25 km by 36 km. “Slices” are range/doppler processed apertures that slice

the elliptical footprint almost perpendicular to the semi-major axis. These “slices”

have different shapes depending on their orientation, but have nearly rectangular

apertures approximately 6 km by 25 km. SIR images using the full antenna aperture

produce “egg” images with approximately 9 km spatial resolution, where SIR images

using the range-doppler processed footprints produce “slice” images with effective

resolution between 3–6 km.

In the production of SIR images, many auxiliary images are also produced.

However, this chapter focuses on the image type produced by the SIR algorithm that

estimate the time that each pixel was measured. This “time” image is referred to as

the p image [29].

3.2 Temporal Resolution: Ascending and Descending Image Drawbacks

In currently available products, daily data is temporally separated into three

images: daily, ascending pass-only, and descending pass-only. Ascending- and des-

cending-only images are created to increase the temporal sampling and resolution

in order to study diurnal processes and short-lived natural phenomena. Because

ascending and descending images contain only half of the available data, they have

reduced spatial coverage in lower latitudes. In higher latitudes however, ascending and
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descending images suffer from poor temporal resolution due to inadequate temporal

separation. The root causes of temporal-resolution degradation—swath overlap and

day boundary effects—and their effect on the available ascending/descending images

are discussed in detail in the following subsections.

3.2.1 Swath Overlap Effects

The temporal resolution shortcomings of the current ascending and descending

product is, in part, a result of ascending and descending pass overlap. In order to un-

derstand the effect of ascending and descending pass overlap on the available images,

the satellites’ orbital and instrument geometry near the poles must be understood.

QuikSCAT and SeaWinds satellites are sun-synchronous. At lower latitudes

this essentially means that the measurements of each satellite occurs at roughly the

same local time of day for each ascending and descending pass. Near the poles,

however, this concept of constant local time inadequately describes the sampling.

The local time of ascending node (6:00 AM for QuikSCAT, 10:00 PM for SeaWinds)

is 12 hours different from the local time of the descending node local time (6:00 PM for

QuikSCAT, 10:00 AM for SeaWinds). In the transition from ascending to descending

each satellite crosses 12 local time zones. In the polar regions, lines of longitude, and

thus the local time zone boundaries, are close together. It is at these high latitudes

that QuikSCAT and SeaWinds transition most of the 12 time zones. This local time

transition is common to all sun-synchronous satellite orbits, and does not directly

affect the temporal resolution of the images produced. However, QuikSCAT and

SeaWinds images produced by separating by only ascending and descending passes

suffer from a loss of temporal resolution due to the conically scanning pencil beam

system employed by the SeaWinds instruments.

Figure 3.1a shows an Arctic QuikSCAT SIR image created from one day of

data, and Figure 3.1b is the same image masked to exclude all but one pass of the

satellite. The north pole is in the center of the image. Because the transition from

ascending to descending occurs at the northern-most point in the satellites’ travel,

roughly half of the pass shown in Figure 3.1b is ascending and half descending. Figure
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Figure 3.1: Image shows a) a typical one-day v-pol QuikSCAT SIR image of the Arctic
which includes multiple passes, b) the same image masked to show the coverage of a
single pass, and c) the same image masked to show the coverage of two consecutive
passes.

3.1c shows the same SIR image masked to exclude all but two consecutive passes. The

second pass is much like the first, but rotated about the pole by some angle due to

the rotation of the Earth under the satellite.

Because QuikSCAT uses a conically scanning pencil beam, every rotation of its

parabolic reflector sweeps out a circle on the earth’s surface centered around the nadir

point of the satellite. This circle of measurements can be divided into two groups,

forward-looking and aft-looking. When the satellite reaches its most northern point,

it transitions from ascending to descending. Before this occurs the satellite measures

forward from that transition point, and after the transition the satellite continues

to measure aft of that transition point. This causes a circular region where the

forward-looking measurements are still ascending, but the aft-looking measurements

are descending. Figure 3.2 contains a diagram showing how the measurements of

a single pass are divided into ascending and descending passes. This region of pass

overlap is a primary cause for temporal resolution loss in ascending/descending images

because the data collected each pass has data in ascending images that is separated

by only a few minutes from similar data in descending images.
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Figure 3.2: Diagram illustrating a QuikSCAT transition from ascending pass to de-
scending pass in the Arctic. The lines radiating out from the center depict the local
time zone boundaries. There is significant overlap of the ascending and descending
data. The SeaWinds ascending-to-descending transition occurs at roughly 4PM local
time, 8 hours before QuikSCAT.
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Figure 3.2 illustrates the local time transition that occurs in the Arctic region.

Note that the northern most point in the satellites travel the local time of day is

12:00 AM at nadir, halfway between 6:00 AM and 6:00 PM. Because the disk-shaped

region of overlap for each pass is closely located to the poles, it covers many lines of

longitude and thus many local time zones. Since each pass suffers from this overlap,

and as many as 8 consecutive passes cover a particular area on the ground, the regions

north of ∼ 73◦N and south of ∼ 73◦S suffer from the effects of this overlap.

Figure 3.3a shows a count of the number of observations over each pixel made

by nine consecutive orbits in a typical daily SIR image. Because each satellite orbits

the earth every 100 minutes, the daily averaged σ0 SIR images include data from

roughly 14.25 consecutive passes, repeating the same coverage pattern every 4 days.

Figure 3.3a also shows another interesting feature: after only nine orbits the first and

the last passes are already starting to overlap, seen on the right side of the image. The

overlap shown is a result of the satellite passing through roughly the same location

twice a day, and is what makes twice-daily full coverage images of the Arctic and

Antarctic possible for each satellite in isolation.

Figures 3.3b and 3.3c are images showing the number of passes over each pixel

that nine consecutive orbits make when separated into ascending and descending pass

images respectively. The rounded edges on each of the ascending and descending

passes are a direct result of the circular overlap region illustrated in Figure 3.2.

In the creation of p images, the effective pixel time is estimated using a non-

linear averaging technique. The pixel time is found by weighting each sample’s time

by its backscatter measurement value before being averaged together. This non-

linear method of averaging is used to counteract an inherent time bias due to the SIR

process [29]. This weighted time average becomes the value of that pixel in the p

image. Since each of the passes have an ascending/descending pass overlap region, the

separation between the ascending and descending p images is much less than the ten

to twelve hours desired. Figure 3.4 shows the time separation between the ascending

and descending images over a small region corresponding to the region left of the north

pole in Figures 3.1a, 3.3a, 3.3b, and 3.3c. As expected, the areas of high latitude where
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Figure 3.3: Images show how nine consecutive passes of QuikSCAT overlap in the
Arctic for a) full passes (daily images), b) ascending passes, and c) descending passes.
Pixel color shows the number of swaths that passed over each pixel. Note the emerging
pattern on left of the center. Note that at high latitudes only one or two passes are
exclusive to each ascending and descending image.

the ascending and descending images share temporally similar data have very little

time separation. The small separation time between the ascending and descending

images confirms the temporal resolution loss, as well as showing quantitatively the

temporal limitations of these images.

In general, overlapping satellite passes tends to suppress transients, and in

most cases also decreases temporal resolution. On the other hand, averaging multiple

consecutive passes can lessen the effect of noise and other anomalies on the output

images. Because of the factors involved, there is a compromise made when one choses

temporal resolution over spatial resolution. Maximizing temporal resolution while

maintaining high spatial resolution is a strong motivator for improving the current

method of image separation. By eliminating the overlap between ascending and

descending passes temporal resolution is significantly improved with minimal change

in spatial resolution. Section 3.3 describes this method.
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Figure 3.4: Image showing the time separation in minutes between the same-day
descending and ascending pass images. Note that the north pole is located in the
upper right.

3.2.2 Day Boundary Effects

Perhaps the greatest limitation of using separate ascending and descending

images to provide temporal resolution in the polar regions is the effect of day bound-

aries. The day boundary-affected region (seen as the region between the red and

blue regions where the color varies in Figures 3.5 and 3.6) is especially damaging to

temporal resolution, because data separated by nearly twenty-four hours is averaged

together. Current polar QuikSCAT SIR images are created from one twenty-four

hour time period. All valid data taken during that twenty-four hour period is used to

create the images. There are significant portions of the Arctic and Antarctic where

the first several passes and the last several passes of each day cover the same area

for ascending and descending images, due to the wide swath. Figures 3.5 and 3.6 are

QuikSCAT and SeaWinds p images, respectively, from JD 258 2003. Figures 3.5a,

and 3.6a are ascending images, and 3.5b, and 3.6b are descending images. These p

images show the areas where the first and last passes overlap.

The effects of the day boundary swath overlap are even more apparent in

Figure 3.7. This image shows the time between the ascending and descending images.

This difference image shows both positive and negative time separation, because the

ascending image precedes the descending image in some regions, while in others the
24
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Figure 3.5: Ascending (a), and descending (b) QuikSCAT effective pixel time images
(p images) from JD 258 2003. Note the area to the right of center in (a), and below
center in (b), where the first several passes and the last several passes overlap.
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Figure 3.6: Ascending (a), and descending (b) SeaWinds p images from JD 258 2003.
Note the area to the left of center in (a), and below center in (b), where the first
several passes and the last several passes overlap.
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Figure 3.7: Image showing the differ-
ence in time of day of the ascending
passes shown in Figure 3.5a and the de-
scending passes shown in Figure 3.5b.
Time separation in minutes – descend-
ing first is positive.
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Figure 3.8: Same image as Figure 3.7
only with a different color scheme to em-
phasize the variance in the day bound-
ary affected region.

descending image precedes the ascending image. The day boundary is the region of

the image that separates the ascending-first region with the descending-first region. In

general, the apparent (average) time separation is low across the entire day boundary

affected region. In the day boundary affected region, the variance of time separation

is also much larger than in the zones unaffected by day boundaries, shown in Figure

3.8. The high variance makes useful data extraction of time of day at any given

location depend on the day in question. Conversely, the time of day for any given

image is highly dependent on the exact pixel location.

The p image values in the day-boundary affected region also suffer from an-

other problem: the reported time does not correspond to when any of the measure-

ments are actually taken. Therefore, the p pixel values may be misleading when

studying diurnal variations in this region. For any application of the images requiring

time of day measurements or better than daily temporal resolution, using ascending

and descending images in the polar regions is difficult at best.
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Figure 3.9: Chronological order of the four QuikSCAT/SeaWinds ascending and de-
scending images, by pixel. Sequential order varies significantly based on the pixel,
making proper chronological sequencing of the images difficult. The pixel color de-
scribes which image type is first, second, third, or fourth. The labels used include
QASV – QuikSCAT Ascending Slice V-pol, QDSV – QuikSCAT Descending Slice
V-pol, SASV – SeaWinds Ascending Slice V-pol, and SDSV – SeaWinds Descending
Slice V-pol.

The problems associated with the day boundary effect become more poignant

when the ascending/descending images from SeaWinds and QuikSCAT are used in

tandem. Conceptually, the combination of the QuikSCAT and SeaWinds imageset

should provide higher temporal sampling frequencies than with either one separately.

In practice, however, the usefulness of these images as independent samples, and the

resulting temporal resolution, is not nearly as good as would be expected for the

polar regions. Because the day boundary location is different for each image type

(QuikSCAT ascending, SeaWinds descending, etc.), the chronological order in which

the images should be placed varies from location to location. Figure 3.9 illustrates

the problem with chronological sequencing of the images. As a result of the unclear

chronological sequencing, using the four images in studies over large areas of the polar

regions becomes complicated.

If we restrict the area of study to a single pixel, chronological ordering of the

image pixels is simplified. However, the information provided may not be very useful.

Figure 3.10 shows the individual measurements of QuikSCAT and SeaWinds, and

how their image values are arranged chronologically. Largely due to day boundary

affects on the SeaWinds data, the image values shown in Figure 3.10b do not represent
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the measured data very well. This causes all four QuikSCAT/SeaWinds images to

be closely grouped temporally in Figure 3.10c—often within 4–6 hours of each other.

Note from Figure 3.10c that the samples do not accurately follow the data, and do

not exhibit temporal resolution better than that of each satellite separately.

The effects of a day boundary are unavoidable in images made with shorter

than daily temporal resolution because the satellites’ sun-synchronous near polar orbit

and wide swath. In the ascending and descending images, these day boundaries affect

a large portion of the Arctic and Antarctic images. Because this effect is inevitable,

efforts to lessen the affected area motivates us to improve on the current images.

In conclusion, using the QuikSCAT/SeaWinds ascending and descending polar

images as unique samples does not accurately portray the underlying data. Because of

the effects outlined in this section, namely swath overlap and day boundary effects, the

resulting images have excess temporal variability, and degraded temporal resolution,

making the images too closely correlated to be used independently. Thus, a new

approach is needed.

3.3 Improving Temporal Resolution: Time-of-Day Images

Because there is wide variation in local sample times across the wide swath of

QuikSCAT and SeaWinds in the polar regions, a new method of separating the daily

data can be accomplished by using the local times of the samples themselves rather

than the direction of the spacecraft’s motion. In this method, a particular local time

of day is used as a decision boundary. This boundary determines whether to include

any given datum into a image. Thus, a particular local time of day is used to separate

the data into distinct images. By separating the data according to local time of day,

all temporally similar samples are grouped into the same image.

Because QuikSCAT has a 6:00 AM ascending node and a 6:00 PM descending

node, a logically intuitive approach is to set the time boundaries for QuikSCAT-

only images at 12:00 AM and 12:00 PM. As shown previously in Figure 3.2, these

boundaries correspond to a line perpendicular to the spacecraft’s travel, almost ex-

actly through the transition point where the spacecraft transitions from ascending
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Figure 3.10: Graph showing individual measurements and image values for
a particular pixel (84.0 N 135.4 W from JD 163 to JD 167 2003) for a)
QuikSCAT ascending/descending, b) SeaWinds ascending/descending, and c) Com-
bined QuikSCAT/SeaWinds. Note that at this location, SeaWinds suffers from day
boundary effects, making its image values appear between groupings of data. The
usefulness of the ascending/descending images at this pixel are questionable: all the
samples are grouped within 6–10 hours of the day, and when chronologically ordered
they do not follow the raw data well.
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Figure 3.11: Diagram illustrating the transition from morning pass to evening pass
in the Arctic. The lines radiating out from the center depict the local time zone
boundaries. Note in contrast to Figure 3.2 that there is no overlap of the morning
and evening data.
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to descending and visa versa. Figure 3.11 shows a diagram similar to Figure 3.2

which illustrates the new time-of-day method of separating the images. Similarly

for SeaWinds-only images, an intuitive time boundary that divides the swath nearly

perpendicular to the spacecraft’s travel is achieved at 4:00PM and 4:00AM.

Taking a similar approach for tandem images in the Arctic polar regions, time

boundaries are placed at 12:00AM dividing QuikSCAT passes in half, at 4:00 PM,

dividing SeaWinds passes in half, and at 8:00 AM, a time when no measurements are

recorded. These time boundaries result in three 8-hour images in the Arctic: morning

(12:00 AM to 8:00 AM), midday (8:00 AM to 4:00 PM), and evening (4:00 PM to

12:00 AM). Antarctic tandem images use time boundaries 12 hours different from the

Arctic images to achieve the same effect, dividing the swath near the southern most

point in the spacecrafts’ travel. Antarctic 8-hour images, therefore are of three types:

morning (4:00 AM to 12:00 PM), midday (12:00 PM to 8:00 PM), and evening (8:00

PM to 4:00 AM). Figure 3.12 shows the image time boundaries, and the chronological

order of the images for a single day’s worth of images. Note that the images’ local time

is restricted to a narrow 8-hour period. However, the universal time (UTC) of data

in these images extend 12 hours before and after this 8 hour window. Because the

filenames associated with the images use UTC extensions, they are labeled indicating

a two day image, even though they contain only 8 hours (local time) of data. Only one

of the three images (evening in the northern hemisphere and morning in the southern

hemisphere) contain data from both satellites. Only three images, rather than four,

are created for this reason: measurements from both satellites are taken at similar

times during one 8 hour portion of the day.

The placement of the time boundaries, although apparently placed somewhat

arbitrarily, have implications if they are moved from these values. Because of the

way local time boundaries slice through the swath data, improper placement of the

boundary may cause visible anomalies along the temporal decision boundaries of each

pass. The time boundaries used here insure that the swaths are sliced in a way that

minimizes the potential for such anomalies. This also reinforces the justification for

creating three images a day instead of four.
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Figure 3.12: Diagram illustrating the time boundaries used in the creation of tandem
morning, evening, and midday images, for both the Arctic, and Antarctic. Though
the local time-of-day is restricted to an eight hour period, the UTC window extends
up to 12 hours before and after the local-time window. Only one of the three images
(evening in the northern hemisphere, morning in the southern hemisphere) contain
data from both satellites.

The day boundary sequencing problem described previously in Section 3.2.2

and illustrated by Figure 3.9, is also eliminated by the new method. The day bound-

ary problem is eliminated because the day boundary-affected region on the images is

moved to the same small location in all the images. As a result, the image time for

each pixel, regardless of its location in the image, is assured to follow a well defined

chronological order.

Figure 3.13 shows three consecutive days of raw QuikSCAT and SeaWinds

data samples at a particular location (84.0 N 135.4 W), and the resulting morning,

midday, and evening values. Individual passes are seen as vertical columns of data

because the measurements are separated at most by a few minutes. Contrast this

figure with Figure 3.10, which shows the combined QuikSCAT/SeaWinds ascending

and descending image dataset. This method, which uses the local time of day instead

of satellite motion to define the images, exhibits dramatically improved sampling. The

actual time separation between images does not deviate far from 8-hours, resulting

in a near uniform sampling of the surface with three samples per day. This raises

the upper bound on signal frequencies that can accurately be represented without
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Figure 3.13: Graph showing individual measurements for a particular pixel (84.0
N 135.4 W from JD 163 to JD 167, 2003) for QuikSCAT and SeaWinds and the
resulting morning, midday, and evening image values that result from applying the
new time-of-day method to the tandem data. Contrast with Figure 3.10. Note the
near uniform, three daily samples that this method provides.

aliasing to those with periods shorter than 24 hours, making diurnal variations of

the signal much more distinguishable. Note from Figure 3.13, that only the evening

image contains data from both satellites.

The resulting improvement of temporal resolution in morning/midday/evening

images using the time-of-day method is due to the temporal grouping of data. As

mentioned previously, Figure 3.11 shows how the swath is divided in the new method.

Contrast this diagram with Figure 3.2, which shows how the swath was separated for

the ascending/descending method. The sharp division in the new method results

in a pattern illustrated by Figures 3.14a and 3.14b, which shows the geometry of

several consecutive passes separated by local time into morning and evening images

respectively. In contrast to the swath geometry shown in Figures 3.3b and 3.3c, the

number of swath observations in the high latitude region is 3 to 4 for the morning and

evening images, and the sum of the two images never exceeds the total swath count

shown in Figure 3.3a. The temporal sampling variability of the data in the ascending

and descending images has been drastically reduced, resulting in temporally distinct

images with more uniformly spaced samples.
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Figure 3.14: Images show how seven consecutive passes overlap in a a) morning
QuikSCAT image and b) evening QuikSCAT image in the Arctic. Pixel color shows
the number of swaths that passed over each pixel. Contrast with Figures 3.3b and
3.3c showing similar patterns for ascending/descending images.

Using the local time of day as the decision rule for separating the data and cre-

ating SIR images has the added benefit of controlling and relegating the day boundary

affected region to a small portion of the image. Intuitively, the local time of day filter

used by the time-of-day method places this region precisely over 180 degrees longi-

tude, at or near the international date line. The day boundary affected region is only

as wide as the antenna footprint coverage area, an area several pixels in width.

The morning/evening images have a clear line visible along the 180◦ longitude

line, as a result of the day boundary affected region being concentrated at this loca-

tion. This does have some negative repercussions. For one, the line clearly appears as

an anomaly as the data transitions a twenty-four hour temporal discontinuity. This

anomaly may negatively affect certain studies of ice movement in this portion of the

world, making it more difficult to track the ice’s movement across this day boundary

without taking this into account.
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3.4 Summary

A new time-of-day method, wherein polar images are created by separating

the data according to the local time of the measurements, improves the temporal

sampling of QuikSCAT and SeaWinds SIR images by forcing only temporally similar

measurements from both satellites to be used in the same image. As a result the effect

of swath overlap is eliminated, and the day boundary placed in the same location for

each image. This drastically decreases temporal variability of pixel times in the region

previously affected under the current method, increasing temporal resolution. In this

new method, three images a day were chosen because of a several hour long period of

time each day when both satellites swaths cover the same regions, making full coverage

images possible for only three images a day. The resulting imageset provides three

nearly uniform samples daily of the polar regions.

35



Chapter 4

Melt Detection Model

As discussed earlier, understanding the melting processes in Greenland is im-

portant to the study of the world’s climate. However, direct measurement of the

ice-sheet in Greenland is difficult without remote sensing. Scatterometers provide

a practical and feasible means to frequently measure the ice-sheet backscatter from

which melt conditions can be monitored. Hence, this chapter discusses a new, yet

simple backscatter model for melting and refreezing snow and describes how the pa-

rameters of this model can be used to estimate melt. This new method is used to

classify the snow-pack into three states: melting, refreezing, and frozen. The model

parameters are also used to estimate the severity of both melt and refreeze. Fur-

ther, this melt model is tested with a one-dimensional geophysical/electromagnetic

model simulation, which verifies some of the key features of the melt model, and melt

estimation technique.

This chapter is organized as follows. First, Section 4.1 discusses the theory

and development of the parameterized melt model and its limitations. Section 4.2

combines the new melt model with a Markov chain model. The combined model

is then used to detect and estimate melt. Section 4.3 describes a one-dimensional

geophysical/electromagnetic model, to which the melt detection and estimation tech-

nique is applied and evaluated. Lastly, Section 4.4 summarizes the melt model and

melt estimation technique.
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4.1 Theoretical Melt Model

The ability to detect and separate melt from refreeze is important to the

study of many ice-sheet parameters including ablation. Ablation occurs as liquid

water leaves the ice-sheet, either by runoff, evaporation or sublimation. Ablation by

runoff is expected to occur only when heat is flowing into the snow, i.e. only when it

is melting. Ablation by evaporation is accelerated when liquid water is present near

the surface, as the presence of liquid water near the surface increases vapor pressure

which can then be removed by convection. Thus, both runoff and evaporation caused

by melt near the surface have the potential to decrease the mass of the ice-sheet.

Ablation is greatest when the flow of heat continues to melt water near the surface,

producing more runoff, and maintaining liquid and vapor water near the surface.

When melting stops, the water lost by runoff is not replenished, and less vapor is

available near the surface, slowing ablation and signaling the beginning of refreeze.

Runoff ablation that continues to occur after new melt has stopped is limited by the

available liquid water. Ablation by evaporation further speeds the refreezing process,

driving the liquid water to further depths and further decreasing in vapor pressure.

Ablation, therefore, is limited during refreeze. Since ablation slows following the

transition from melt to refreeze, the distinction of these two states is important to

estimating ablation. The distinction of melt and refreeze is also important to other

processes that are driven by the availability of liquid water near the surface.

Distinguishing melting snow from frozen snow is a difficult task due to the

gradual nature of melting. Melt occurs as liquid water becomes present in the snow.

As the liquid content in the snow increases, the physical and electrical properties

change. However, the line distinguishing melt from frozen snow is complicated by the

gradual change in these properties.

Typically, a threshold of the snow’s properties is set to define the difference

between melt and refreeze. The most distinguishing parameter of melting snow is

the liquid water content, mv, the percent of liquid water by volume present in the

snow. This parameter has a dramatic effect on the electrical properties of the snow

that makes this property change detectable by microwave sensors. Intrinsically, mv
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at any particular location is a function of depth. Thus, this section discusses the

effect that mv and other snow parameters have on the normalized backscatter, σo,

observed by QuikSCAT and SeaWinds. From the understanding of the effects of melt

on backscatter a layered model is developed, parameterizing the melt with depth.

As discussed in Chapter 2, the backscatter of snow is complex due to the

combined scattering of all the snow grains mixed with melt water and air. Since

radar pulses from scatterometers cover a very large area compared to the size of

individual snow grains and water droplets, statistical approaches work well when the

properties of the snow are well known. Unfortunately, the mapping of backscatter

to the snow properties is many-to-one, as various combinations of grain sizes, liquid

water content, density, and other snow parameters can result in the same backscatter.

While the mapping of backscatter to the snow properties is possible with some a priori

information about the snow, this is often not available in the Greenland snow-pack.

Though a priori information on the snow parameters is not available, statis-

tical models and supporting empirical evidence are useful in predicting and under-

standing the effects of changing conditions on the radar response to the snow-pack.

For example, we know from models and empirical evidence that when snow melts, the

imaginary part of the effective dielectric constant ε′′ increases very rapidly. With the

addition of liquid water resulting in an mv of only 0.5%, ε′′ increases sharply—over an

order magnitude of change [31]. This drastic increase makes the snow change rapidly

from a strong scattering, weakly absorbing material to a material that is dominated

by absorption. Because of the electrical changes of the snow, melting decreases the

backscatter contribution from wet snow, and attenuates the contribution of snow be-

neath. The resulting wet snow backscatter is considerably less than the backscatter

of dry snow.

The wetness of the snow and its effect on the backscatter depend on the con-

centration and depth of the melt. The effect of concentration and depth of melt can

be addressed using a simple layered model originally developed by Ashcraft and Long

in [11]. This simple layered model ignores surface effects (i.e. assumes perfect trans-

mission at the surface). This is reasonable for QuikSCAT because the ' 54◦ incidence
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Figure 4.1: Diagram describing the backscatter from the two layer model.

angle of the 13.4 GHz vertically polarized waves are near the Brewster angle of the

snow. Thus, this model assumes the snow is a volume scattering material. Therefore,

radiation transfer theory can be used. Equation 2.9, which describes volume scatter-

ing using radiation transfer theory, is restated here and includes a term to handle an

oblique incidence angle,

σo =
∫ ∞

0
γ(z)e−2τ(0,z) sec θ(z)dz, (4.1)

where

κa – absorption loss coefficient

κs – scattering loss coefficient

κe – extinction coefficient (κa + κs)

γ(z) – normalized volume backscatter at depth z

θ(z) – transmission angle at depth z, and

τ(z1, z2) – optical length
∫ z2
z1
κe(z) sec(θ(z))dz.

The loss coefficients κa and κs are functions of frequency, grain size, density, temper-

ature, and water content, as well as other physical characteristics of the snow. The

layered model used by [11] separates the snow into two layers as shown in Figure 4.1.

The melting snow, the top layer in this two-layer model, has uniform properties and

extends from the air-snow surface to depth d. Below the wet snow, an infinite layer of

dry snow, also having uniform properties, is found. Using this model the backscatter
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in Equation 4.1 is simplified into separate contributions from wet snow and dry snow,

σo = σo
w + σo

d. (4.2)

The wet snow backscatter contribution is

σo
w =

∫ d

0
γwete

−2κe,wetz sec θw sec θwdz

=
γwet

2κe,wet

(1− e−2κe,wet sec θwd)

= (1− α2)σo
wet, (4.3)

where α = e−κe,wet sec θwd, σo
wet = γwet

2κe,wet
, κe,wet is the extinction coefficient of the snow

when wet, and γwet is the normalized volume backscatter of the wet snow. The

remaining backscatter contribution from the dry snow is

σo
d = α2

∫ ∞

d
γ(z)e−2τ(d,z) sec θ(z)dz

= α2σo
dry. (4.4)

By using a layered model described by only volume scattering, the surface reflec-

tions at the air/snow boundary, as well as the reflection from the wet snow/dry snow

boundary are ignored. Because the incidence angle of SeaWinds v-pol is near the

Brewster angle of snow, reflectivity at these interfaces is very small. Moreover, reflec-

tions between the wet and dry snow layers are minimal due to the magnitude of the

dielectric constant varying only slightly between wet and dry snow. The subsurface

scattering that does exist (which may be significant due to bulk ice formations such

as ice lenses, glands and pipes) is included in the bulk scattering coefficient σo
dry, the

backscatter that is observed when the ice completely refreezes. [11]

This model is a very simple, but reasonable, model of the ice pack in melt

conditions. While the melt concentration in real snow is not uniform, a uniform

equivalent melt can be defined that results in the same attenuation. The parameters

of this model are σo
dry, σ

o
wet, and α. By allowing these parameters to be functions of

position, the model remains flexible with regard to changing snow types that exist

across the ice-sheet. When σo
dry and σo

wet are known, the backscatter can be used to
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obtain the attenuation parameter α. This parameter α is a measure of the attenuation

due to melt, and a potential measure of melt severity.

Like the snow parameters during melt, the physical and electrical properties of

the snow during the refreezing process are also complicated by their gradual change.

The refreeze process, however, is further complicated by the thermodynamic condi-

tions that drive the refreeze. For this reason, using the two-layer model may not

accurately describe the changes in backscatter contribution during refreeze. In par-

ticular, the propagation of refreeze may occur from the surface downward, as well as

beneath the wet layer upward.

Consider the thermodynamics of the snow-pack: the melt process begins as

sufficient heat is added to the air-snow surface causing the liquid water concentration

to increase. This heat melts the top layers of the snow causing the liquid water to

percolate downward as the liquid concentration increases. Thus, heat is delivered into

the snow. Deep sub-surface temperatures remain well below freezing, counteracting

percolation by slowly refreezing the deeper melt water. Thus for two-layer melt, the

thermodynamic behavior of the melting snow is consistent with the model: a layer of

partially melted snow exists on top of dry snow.

During the refreeze process, heat continues to be drawn deeper into the snow-

pack by conduction as before, refreezing the snow from beneath. At the surface

however, the direction of heat flow is not defined explicitly; heat may continue to be

delivered into the snow at a slower rate, may be negligible, or may be drawn out of

the snow by convection and radiation. If heat is being drawn out of the snow at the

surface during refreeze, a layer of refrozen snow will form at the surface. The presence

of a frozen layer at the surface has a considerable effect on the backscatter. Thus,

the two-layer model for the snow during refreeze may be inadequate. Accordingly, a

three-layer model is proposed for refreeze.

Figure 4.2 shows a diagram of the proposed three-layer model. This model

allows the refreeze of the center layer to propagate both from the surface downward

and from beneath the wet-snow layer upward. The existence of subsurface wet snow

is consistent with passive radiometer observations [33], and SSM/I channel ratios
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Figure 4.2: Diagram describing the backscatter from the three layer model.

[12]. Under this model, the equation for the total backscatter can be separated into

contributions from each of the three layers. The total backscatter can be described

by

σo = (1− β2)σo
dry + β2(1− ψ2)σo

wet + ψ2β2σo
dry, (4.5)

where β = e−κe,dry sec θddr , ψ = e−κe,wet sec θw(dm−dr), κe,dry is the extinction coefficient of

dry snow, dr is the depth of the top layer of refreeze, and dm − dr is the thickness

of the remaining wet snow layer. It is impossible to uniquely recover the depths dm

and dr simultaneously for a single σo measurement. Thus, additional information

is needed about either dm or dr. Since refreeze follows melt, more is known about

dm, the melt depth, than dr. Because the propagation of refreeze from beneath the

partially melted later is caused by a relatively constant flow of heat downward, one

possible treatment is to make dm change linearly with time. While this may be a

good approximation, it adds another unknown parameter to the model, the rate of

melt depth change—a parameter that is certain to be a function of position on the

ice-sheet. A simpler approximation, one that does not require additional parameters,

is to assume that dm is constant. When the melt depth is large, changes in dm have

relatively little change in the backscatter due to the attenuation through the wet

layer, as shown by simulation in Section 4.3.4. Therefore, holding dm constant during

refreeze is a reasonable compromise. Section 4.3.4 further addresses the validity of

this assumption for the Greenland ice-sheet. Note however, that this assumption
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requires that refreeze propagates from the surface downward—a good approximation

given that this appears to be the dominant refreezing mechanism in the Greenland

ice sheet as evidenced by the rapid increase in backscatter observations following a

prolonged period of melt.

Using the theoretical framework of the two-layer melt and three-layer refreeze

models it is possible to infer the depth of the melt and refreeze, and thus the severity

of such events. With this framework defined, the implementation of this theory

toward detecting and estimating these processes under realistic constraints can now

be considered.

4.2 Melt Detection and Estimation

Classification of the melt state of the snow-pack requires that distinctive cri-

teria be established for each state. As stated in the previous section, there is no

clear distinction between melting and frozen states because the change of physical

properties occurs gradually. Even less clear is the distinction between melting and

refreezing. For realistic detection and classification of the melt state, a threshold of

the snow parameters must be set which allows proper identification. The threshold

needs to be chosen with the limitations of the model and the sensor systems in mind

to reduce the potential for classification error.

The threshold for determining the states must depend on measurable parame-

ters. Most past studies have focused solely on the presence of liquid water, and have

labeled such as melt. The presence of liquid water is clearly seen as a drop in the

backscatter. The distinction of melting from refreezing has received little attention.

While a simple drop in the backscatter from a normal “dry” value is adequate for the

distinction of melt from frozen states, it does not directly handle refreezing. However,

by following the change in backscatter with time, and using the previously discussed

time-of-day processing method, which increases temporal sampling of images created

from tandem QuikSCAT/SeaWinds data, distinguishing melt from refreeze becomes

possible. Thus, the change in backscatter over a short time period can be used to

separate melt from refreeze. When the surface heat flows into the snow-pack, the
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Figure 4.3: Diagram illustrating the three states for an area of snow-pack, and the
transitions that can occur.

snow melts, increasing the amount of liquid water present. The increase of liquid

water decreases the backscatter of the snow. Likewise, when the surface heat flows

out of the snow-pack, the snow refreezes, and the amount liquid water present de-

creases. Provided the wet snow layer is close enough to the surface to be detected,

the backscatter from the snow notably increases. When insufficient liquid water is

detected to classify the snow as either melting or refreezing, the snow-pack is frozen.

With the melt, refreeze and frozen states defined, specific criteria for distin-

guishing between them is needed. A constrained one-step Markov chain model is

proposed. The constrained model allows current state knowledge to influence the

decision rule used rather than assuming independent samples as is typical for melt

detection. Clearly, refreeze cannot be considered unless melt is previously detected.

Thus, a Markov chain model, combined with the high sampling frequency make re-

freeze detection possible. Figure 4.3 shows a diagram expressing the three states and

transitions between them. The remainder of this section discusses the decision rules

used to determine the ice state and the estimation of melt and refreeze during their

respective states.
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4.2.1 Frozen State

First, consider the frozen state. There is only one possible transition from this

state, from frozen to melting. A threshold is set that is a function of σo allowing the

separation of the frozen state from melt state. Let S(tn) represent the state of the

ice at time tn, i.e.

S(tn) =


0 : frozen

1 : melting

2 : refreezing

. (4.6)

Each state has its own decision rule for determining the next state. The decision rule

for determining the state at the next time step, tn+1, is Si(tn+1), where i = 0, 1, 2 is

the current state: frozen, melting and refreezing respectively. The decision rule when

the current state is frozen is

S0(tn+1) =

 0 : q(t) < q0

1 : q(t) ≥ q0
, (4.7)

where q(t), and q0 are the metric and threshold, respectively, and have yet to be

defined.

In the previous section we outlined the two-layer model, from which the metric

and threshold are determined. The method is a modified form of the Q-α method

developed by [11]. Melt detection from the frozen state is treated exactly as was done

previously by [11], where this method was analyzed and compared to other known

melt detection methods. Though there are differences in the dataset between the tan-

dem time-of-day filtered SIR images, and the non-parametric estimate of backscatter

using QuikSCAT-only L1B data, similar ability to detect melt is expected. A brief

comparison of the new method using tandem data to the Q-α method is given in

Section ??. An overview of the derivation follows.

The two-layer model described in the previous section is used to produce a

function q(t) and threshold q0 that are related to σo. Combining Equations 4.2, 4.3,

and 4.4,

σo = α2σo
dry + (1− α2)σo

wet. (4.8)
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wet to the total backscatter. For small σo

wet the effect
of assuming σo
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Because the wet snow is weakly scattering and the backscatter is known to drop by

more than 10dB for melting snow, σo
wet can be considered negligible. Figure 4.4 shows

the relative percentage of total backscatter due to σo
wet 6= 0, giving the relative error

induced in σo by this assumption for three values of σo
wet. For small σo

wet, the induced

error is very small. Using this assumption, Equation 4.8 is reduced to σo = α2σo
dry,

which in dB is written,

σo = 20 log10(α) + σo
dry. (4.9)

Rearranging gives −20 log10(α) = σo
dry − σo. By setting a threshold value for α, the

metric, q(t) = σo
dry−σo and threshold, q0 = −20 log10(α0), is obtained. The threshold,

q0 = 3 dB is used, as used by [11], which corresponds to a depth of 2.4 cm for snow

with a mv of 1.0%, grain size of 0.75 mm, ρs = 0.4 g/cm3—snow properties that are

consistent with observations of Greenland snow [15].
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4.2.2 Melt State

The melt state has two transitions: one to the refreeze state, the other to the

frozen state. While transition directly from melt to frozen is not strictly necessary,

the roughly eight hours of time elapsed between samples in the tandem image data

time series makes complete refreeze plausible, especially for short melt events. The

decision rule for the melt state is,

S1(tn+1) =


0 : q(t) < q1

1 : r(t) ≤ r0, q(t) ≥ q1

2 : r(t) > r0, q(t) ≥ q1

(4.10)

where q(t) is as defined previously, q1 is a threshold of this metric, and r(t) and r0 are

a second metric and threshold that are used to distinguish between melt and refreeze.

Since the transition from melt to frozen is a special case of the refreeze to frozen

transition, q1 is determined in the next subsection, where the transition to frozen is

covered in greater detail.

For the melt state, r(t) and r0 need to be determined. The difference between

the melt and refreeze states is defined by the change of liquid water in the snow.

Melt is characterized by increasing liquid water, while refreeze is characterized by

decreasing liquid. Since the attenuation in σo is related to the amount of liquid water

in the snow, the change in backscatter, the sign of ∂σo

∂t
, can be used to determine if

melt or refreeze is occurring. Hence, changes in σo from sample to sample are used to

determine r(t) and r0. r(tn) = σo(tn)− σo(tn−1) is used as the melt-to-refreeze met-

ric. Were noise not an issue, the simple threshold, r0 = 0 would perfectly distinguish

between these two states according to their definitions. In practice, however, noise

is a concern. For example, consider a melt event that has reached an equilibrium,

i.e. melt concentration and percolation depth is constant. According to the model

definition, backscatter in this case is also constant. Noise corrupted σo, whether due

to noise in the receiver or by unmodeled physical processes, causes the backscatter to

vary from sample to sample, introducing possible misidentification. As shown in the

next subsection, the formation of frozen snow at the surface occurring during refreeze
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causes a rapid increase in backscatter. Since refreeze is more readily apparent than

melt in this case, letting r0 = k where k is some positive constant, increases the

probability that continued melt is detected and less likely that refreeze is identified.

Therefore, some small k is used to balance the difference in sensitivity between re-

freeze and continued melt. This constant is chosen in the next subsection where the

sensitivity to refreeze is discussed in greater detail.

In Section 4.1, the two layer electromagnetic model for melt is defined by three

parameters: σo
wet, σ

o
dry, and α. The first two of these parameters, σo

wet and σo
dry, are

defined by the properties of the snow when completely wet and dry, respectively. The

parameter α is a variable that depends on the depth of the wet snow. This parameter

can theoretically be used to infer melt severity. Returning to Equation 4.8, we solve

for α2,

α2 =
σo − σo

wet

σo
dry − σo

wet

. (4.11)

Expressed in dB, this becomes

20 log10(α) = [σo − σo
wet]dB − [σo

dry − σo
wet]dB. (4.12)

Since α = e−κe,wet sec θwd, 20 log10(α) = −20 κe,wetd (log10 e) sec θw, Equation 4.12 be-

comes,

κe,wetd =
cos θw

20 log10 e

(
[σo

dry − σo
wet]dB − [σo − σo

wet]dB

)
. (4.13)

Let χ = κe,wetd, which has units of neper (Np). No attempt is made to infer the actual

melt depth d, because the extinction coefficient for the wet snow κe,wet is an unknown

parameter that depends on the physical properties, especially mv, a parameter which

depends on the spatial location and on the severity of melt itself. Together, κe,wetd,

and thus χ, capture all the parameters of the two-layer model that are affected by the

severity of melt, except perhaps σo
wet. Because of the relationship of χ to the severity

of melt, χ is referred to as the melt severity index (MSI). This index depends only

on the relationship of σo to σo
dry and σo

wet.

Since σo
wet is unknown and σo is corrupted by noise, σo

wet is assumed equal to

zero in the computation of χ.
48



0 1 2 3 4 5
−30

−25

−20

−15

−10

−5

0

χ, Np

σo , d
B

 

 
χ
σo

wet

χ est

χ for σo
wet

=−10dB

χ for σo
wet

=−20dB

χ for σo
wet

=−30dB

Figure 4.5: The relationship between the MSI, χ, and σo, when the value of σo
wet

is modeled, as well as the MSI when σo
wet = 0. Note that χ when σo

wet = 0 is
underestimated, especially for small σo.

From Equation 4.13, it is noted that for σo = σo
wet results in a division by

zero. This causes several problems. First, σo
wet limits the minimum backscatter, and

increases the sensitivity of χ to noise as σo → σo
wet. Second, σo

wet depends on unknown

snow parameters. Lastly, σo
wet has some dependence on the melt concentration mv,

and therefore is dependent on melt severity. Rather than attempt to model this

parameter, σo
wet can be assumed equal to zero. This makes χ saturate as σo → σo

wet.

Thus for heavy melt, χ depends on the unmodeled σo
wet. This limits and compresses

the MSI at high melt, though MSI still follows changes in the snow parameters that

are indicative of melt severity. Setting σo
wet = 0, Equation 4.13 becomes

χ(t) =
cos θw

20 log10 e

(
σo

dry − σo(t)
)
. (4.14)

Several issues exist that make the MSI imperfect. First, noise corrupts σo

and thus χ. Second, the model does not account for snow stratification, lumping

the backscatter contribution from all these layers into a single parameter σo
dry. This

parameter may vary during the course of the season, because the stratified layers of
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snow are altered most significantly during the melt season. Many layers are completely

changed or disappear as melt and vapor transport occurs. Heterogeneity of the snow

may therefore introduce a bias. Third, choosing to not model σo
wet, clearly makes

χ non-linear with respect to melt severity, as well as variable across snow types.

MSI, however, represents a good indicator of melt severity, without requiring a priori

information about the snow and melt. Of course, improvements can be made to the

MSI if further information about the snow can be obtained, especially if σo
wet can be

better modeled.

4.2.3 Refreeze State

Next, the refreeze state is considered. This state is perhaps the most com-

plicated of the three states, since the three layer model is used. The decision rule

is

S2(tn+1) =


0 : q(t) < q1

1 : r(t) ≤ r0, q(t) ≥ q1

2 : r(t) > r0, q(t) ≥ q1

. (4.15)

Since r(t) and q(t) are already defined, all that is left to do is determine q1 and r0.

Before these parameters are defined, how the parameters of the three-layer model are

affected by σo need to be discussed, from which both metrics q(t) and r(t) are defined.

The equation for backscatter in the three-layer model using the assumption

that σo
wet = 0 is

σo =
[
1− β2(1− ψ2)

]
σo

dry. (4.16)

Using χ = κe,wetdm, ξ = κe,wetdr, γ = κe,dry/κe,wet and sec θd = sec θw = ν, we can

write β and ψ as functions of χ, ξ, γ and ν:

β = e−γνξ, (4.17)

ψ = e−ν(χ−ξ), (4.18)

where χ is the MSI estimated during the last melt state, ξ is a parameter similar to

χ, and a theoretical measure of the thickness of frozen snow above the wet subsurface
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layer, while γ, and ν are constants. The parameter, ξ, is referred to as the refreeze

severity index (RSI).

Like the MSI, the RSI suffers from several problems that make it difficult to

obtain. First, when γ, χ, and ν are held constant, both β and ψ are dependent on

ξ; thus, this index is not explicitly invertible. It is one-to-one, however, and can

easily be inverted numerically, using the well-known Newton-Raphson method, which

is known to converge quadratically, when it converges. Although a more sophisticated

technique could be used, adequate results are obtained when a near-zero χ/2 is used,

as long as γ is sufficiently greater than zero. For realistic values of γ, i.e. γ > 10−8

and a near-zero of χ/2, no convergence problems are observed.

Second, the RSI depends on the knowledge of γ and ν. While ν is practically

constant regardless of the type of snow, γ depends on the snow parameters. Figure

4.6 shows the refreeze index ξ vs σo − σo
dry for various initial values of χmelt. As the

initial melt increases ξ becomes increasingly non-linear, particularly for large χmelt

and small ξ where large changes in σo drive small changes in ξ. The degree of non-

linearity is largely dictated by the extinction ratio γ. For small γ, the nonlinear effect

appears only for large χmelt, and the onset of this non-linear behavior is less severe.

Large γ causes the nonlinearity to be much more severe, and appear at smaller initial

melt values. Since the extinction coefficients are dependent on the parameters of the

snow, explicitly setting γ makes this model suffer from additional error over snow

types where γ is different than the model.

Despite the inconsistency of non-linear effects in ξ across varying snow types,

the RSI is not overly sensitive to the exact snow parameters. Figures 4.7, 4.8, and

4.9 show how grain-size, r, water concentration, mv, and snow density, ρs, affect

the response of ξ with respect to the observed σo. Snow grain size has the largest

effect, followed by moisture concentration and snow density respectively. Since snow

grain size is quite variable across the snow-pack, the exact response of ξ to refreeze

suffers from modeling error. However, qualitative behavior between σo and ξ is similar

regardless of the exact choice for γ. In warmer, more frequently melting regions the

snow has larger grains, larger γ, and thus more non-linearity in the refreeze index.
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Figure 4.6: The relationship between RSI, ξ, and σo−σo
dry for various initial values of

χmelt. The dry snow has a grain size, r = 0.75mm, density ρs = 0.4 g/cm3, resulting
in a relative permittivity of εr,dry = 1.53, and extinction coefficient of κe,dry = 1.20.
The wet snow has the same grain size, and density with moisture content, mv =
1%, resulting in εr,wet = 1.57 − j3.35 × 10−2, and κe,wet = 12.12. Permittivity is
estimated using a modified Debye-like model [32]. Scattering coefficients are estimated
using a method involving spherical ice inclusions in an air/water background where
permittivity is determined by the Polder-Van Santen mixing formula [32]. Note that
as the initial melt depth, χmelt, increases, ξ becomes increasingly non-linear.

In these regions the effective refreeze depth is likely overestimated. In drier, cooler

regions, the grain size is smaller, causing the refreeze index to be underestimated.

However, cooler regions are also less likely to experience severe melt; thus, melt in

these regions remains within the more linear region of the response curves.

With the effect of the three-layer model on backscatter described, the threshold

values of q1 and r0 can be defined. A second threshold for the metric measuring water

content, q1, is used for the transition back to the frozen state, rater than reusing q0.

The second threshold, q1 is used because continuation of melt or beginning of refreeze

is probable following the detection of melt. Allowing q1 to be less than q0 takes the
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Figure 4.7: The RSI, ξ, verses σo − σo
dry with initial values of χmelt = 0.33, 1.33, and

2.33, and with changing grain sizes at 20% increments. Grain size has a considerable
effect on κe,dry most significantly increasing γ as r becomes larger.

increased probability of these occurring into account. Moreover, from the behavior

shown in Figures 4.6, 4.7, 4.8, and 4.9, setting q1 = q0 would significantly limit the

maximum observable ξ. Thus, the model sets q1 = 1dB to insure that most of the

refreeze process is accounted for, while also keeping the threshold far enough away

from σo
dry to keep misclassification due to noise under control. Figure 4.10 shows the

maximum percent of total refreeze that is observable using q1 = 1dB with the various

grain sizes. Naturally, the maximum observable ξ depends on other snow parameters,

such as moisture content in the wet layer, and density; however, the small effect

that grain size has on the maximum observable ξ suggests that these have negligible

impact. None of the snow parameters has much effect on the maximum observable ξ

for small initial χ, where the percent of observable melt is at a minimum.

The value of r0 is chosen with several aspects in mind. As mentioned in Section

4.2.2, making r0 = k where k is some positive constant, increases the probability that

continued melt is detected and less likely that refreeze is identified. For long periods

53



0 0.5 1 1.5 2
−20

−15

−10

−5

0

ξ, refreeze index

σo
−

σo d
ry

, 
d
B

 

 

ξ
1
, r=0.75mm, ρ

s
=0.4g/cm3, m

v
=3.6%

ξ
2
, r=0.75mm, ρ

s
=0.4g/cm3, m

v
=3%

ξ
3
, r=0.75mm, ρ

s
=0.4g/cm3, m

v
=2.5%

χ
melt

 =2.33

χ
melt

 =1.33
χ

melt
 =0.33

Figure 4.8: The RSI, ξ, vs. σo − σo
dry with initial values of χmelt = 0.33, 1.33, and

2.33, and with changing melt concentrations at 20% increments. Melt concentration
has a small effect on κe,dry decreasing γ as mv becomes larger.

0 0.5 1 1.5 2
−20

−15

−10

−5

0

ξ, refreeze index

σo
−

σo d
ry

, 
d
B

 

 

ξ
1
, r=0.75mm, ρ

s
=0.48g/cm3, m

v
=3%

ξ
2
, r=0.75mm, ρ

s
=0.4g/cm3, m

v
=3%

ξ
3
, r=0.75mm, ρ

s
=0.33g/cm3, m

v
=3%

χ
melt

 = 2.33

χ
melt

 = 1.33χ
melt

 = 0.33
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q1=1dB for various χmelt, and for grain sizes at 20% increments. Grain size has a
small effect on the maximum percent of observable refreeze. Melt concentration and
snow density changes have negligible effect on observable refreeze.

of nearly constant melt, the liquid water in the snow reaches an equilibrium, and as

a result, σo does as well. Thus in periods of constant melt, the change in σo will be

entirely due to noise. Making r0 = 0 would cause frequent identification of refreeze

when melt should have been detected. As shown in the behavior of ξ with σo in Figures

4.6, 4.7, 4.8, and 4.9, small changes in the RSI at the onset of refreeze require large

increases in σo. Because σo is very sensitive to refreeze onset, changing k > 0 allows

improved identification of melt during periods of continual melt without significant

adverse effect on the ability to properly identify refreeze when it occurs. Figure 4.11

shows the minimum percentage of refreeze that can be observed for various values of

k and χmelt. This percentage is greatest for small χ, and is practically independent of

the snow parameters. We let k = 0.5dB, which appears to be an acceptable threshold

in the simulation experiments described in Section 4.3.

To summarize, the final decision rule for governing state change is shown in

Table 4.2.3.
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Table 4.1: The decision rule for state change, from current state S(tn) to next state
S(tn+1), written in terms of σo(tn), and σo(tn+1).

S(tn)
S(tn+1)

Frozen Melting Refreezing

F
ro

ze
n

σo(tn+1) > σo
dry − 3dB σo(tn+1) > σo

dry − 1dB σo(tn+1) > σo
dry − 1dB

M
el

ti
n
g

σo(tn+1) ≤ σo
dry − 3dB

σo(tn+1) ≤ σo
dry − 1dB

σo(tn+1) < σo(tn) + 0.5dB
σo(tn+1) ≤ σo

dry − 1dB
σo(tn+1) < σo(tn) + 0.5dB

R
ef

re
ez

in
g

—
σo(tn+1) ≤ σo

dry − 1dB
σo(tn+1) ≥ σo(tn) + 0.5dB

σo(tn+1) ≤ σo
dry − 1dB

σo(tn+1) ≥ σo(tn) + 0.5dB

4.3 Geophysical/Electromagnetic Model Simulation

In order to illustrate the use of the proposed detection and estimation method,

a simple geophysical/electromagnetic model is developed next. There are many ex-

amples of geophysical models in the literature [34, 35, 36, 37]. These models vary in

their purpose: energy and mass balance are typical applications. In this section, a

simplified geophysical model is developed based on these previous works, to which a

model for electromagnetic backscatter is added. This geophysical model is initialized

using typical snow parameters, and driven with a realistic heat input to determine

the effect of melt on backscatter. The resulting backscatter model supports testing

and verification of the new melt detection and estimation method.

4.3.1 Geophysical Model

The geophysical snow-ice model is a multi-layered one-dimensional model that

handles the thermodynamic properties, water percolation, and to a limited extent the

metamorphism and settling of the snow-pack. A one-dimensional equivalent model is

considered reasonable in this application because the area footprint of a single pixel
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Figure 4.11: The minimum percent of refreeze that is observable with various amounts
of r0, plotted against χmelt.

is very large compared to the vertical extent of the model. The layers of the model,

which are control volumes with constant properties, are illustrated in Figure 4.12.

The physical properties of the control volumes obey the law of conservation of energy

and mass, which governs the temperature as well as the formation and flow of liquid

water. For each time step in the model, the model algorithm has several steps. A

block diagram of the algorithm is shown in Figure 4.13. Each step consists of,

1. Thermodynamic diffusion governed by the heat diffusion equation and driven

by a surface heat source,

2. Melt determined by the energy required to heat each control layer above 0 C,

3. Settling,

4. Percolation,

5. Combining small control volumes, and creating new volumes to maintain model

depth,

6. Re-evaluation of snow properties such as thermal conductivity, fluid permeabil-

ity, etc., and
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7. Application of the electromagnetic model.

The thermodynamic portion of the model is governed by the heat diffusion

equation1

∂T (z, t)

∂t
= − 1

ρ(z)Cp

∂

∂z

(
λ(z)

∂T (z, t)

∂z

)
, (4.19)

where T (z, t) is temperature at depth z and time t, Cp = 0.21 J/g K, is the specific

heat of snow, and λ(z), ρ(z) are, respectively, the thermal conductivity of snow and

the snow density at depth z. This equation is discretized and solved iteratively using

the widely known Crank-Nicholson implicit method2. A Dirichlet boundary is used

on the bottom layer, holding the temperature at that node constant. A time-varying

heat source is applied at the surface. This heat source is a combination of all the heat

transport to and from the atmosphere: convection, radiation, sensible and latent heat

flux. While this is an oversimplification—significant heat leaves by vapor transport

and forced convection from beneath the surface—this has little effect on backscatter

as long as all heat is accounted for.

Next, melt and refreeze are determined. Temperatures greater than 0 C are

reduced to 0 C, and the excess heat is used to convert the snow to liquid water. The

temperature in excess of 0 C has energy density, Qe = ρCP (T − T0C). This energy

density results in an increase in the fraction of liquid water. The density of newly

melted liquid water is Ml = Qe/Lf where Lf is the latent heat of fusion, which for

water is 334 J/g. For refreeze, layers that have liquid water where the heat diffusion

computes temperatures below 0 C, like melt, return the temperature to zero until the

layers’ water is refrozen.

Percolation is computed by assuming that percolation does not occur until a

certain fraction of the snow has melted [38]. Above this saturation concentration, wa-

ter begins to percolate downward. Percolation obeys conservation of mass, requiring

∂(ρ dV mv)

∂t
= −[Ul]

i+1
i +Mli, (4.20)

1This equation is derived in the Appendix, Section A.1
2This method, as it is used to solve the heat diffusion equation, Equation 4.19, is described in

detail in the Appendix, Section A.2.
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Figure 4.12: Diagram of the geophysical/electromagnetic model layers.

Figure 4.13: Diagram showing the geophysical/electromagnetic model algorithm.
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where −[Ul]
i+1
i is the vertical water flux evaluated at the control volume surfaces, Mli

is the liquid-to-ice flux, with

Ul =
ρw

µw

gKmax

[
s− sr

1− sr

]3
, (4.21)

where ρw = 1.0g/cm3 is the density of pure water; µw = 10−6 m2/s is the kinematic

viscosity of water, g is the gravity acceleration; Kmax = 0.077d2 exp (−7.8 ρs

ρw
) is the

intrinsic snow permeability; d is the grain size; s = vl

1−vs
is the water saturation;

vl = ρl/ρw is the specific volume of liquid water; vs = ρs/ρi is the specific volume of

ice; ρi = .917 g/cm3 is the density of pure ice; and sr is the residual water saturation

[38].

The downward flow of water in this model is spatially uniform, which for

the purpose of bulk modeling is adequate. It is noted, however, that the actual

flow pattern is quite irregular, forming fingers and channels which cause the leading

edge of melt to disperse. It is also conceivable that variable densities typical in a

realistic snow pack may lead to horizontal flow. A model would be drastically more

complicated to handle such behavior and requires more a priori information than is

available, thus fingering is ignored. Because of the scale of the measurement footprint,

a statistical equivalent model is used; thus, the percolation and resulting effect on σo

is considered in the average sense.

The residual water saturation, sr, is a critical parameter which determines the

minimum water saturation that must be present for percolation to occur. Different

values are found throughout the literature, generally between 0.02 and 0.1 [34, 36, 37].

The model sets sr = 0.065—though other values are considered—which results in a

mv between 3–5% for typical melt conditions and firn densities. The residual water

saturation and thereby the liquid water content of the snow, has a profound effect on

the absorption coefficient, κa, during melting conditions. The effect of sr parameter

on the backscatter is discussed further in section 4.3.3.

The algorithm used for settling, densification, and snow metamorphism is very

simple. When a portion of the snow melts in a control volume, the layer thickness

is decreased so the snow fraction density stays the same. Thus, melting causes the
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snow to settle. Densification occurs as the melt refreezes, where the liquid fraction is

added to the snow fraction. This is the only mechanism for densification. Grain size

is held constant. Choosing to not model grain growth because of the complexity of

current state-of-the-art models, simplifies the model. While grain size has an effect

on the backscatter, during a short melt event this effect is only expected to increase

the final backscatter by some several tenths of a dB. While the exact backscatter will

be somewhat different than what the model predicts due to this simplification, the

overall behavior of the backscatter given by the model is relatively unaffected.

Layers that have become too thin due to melt, are combined. The three nearest

layers including the thin layer being deleted are combined into two equal layers, each

taking half of the thin layer. The combination of three layers into two is done because

the sensitivity of the backscatter model to the combination of these layers. Small

discontinuities in the backscatter are seen before and after the combination of these

layers. However, the discontinuity of combining three layers into two is much less

than combining two into one. Layers near the surface—within the top 30 cm—are

initially 0.2 cm thick. When a layer becomes thinner than 0.1 cm thick, layers are

combined. These layers are much thinner than typically used in one-dimensional snow

models [36, 37]; however, σo is very sensitive to the electrical properties in the top

several centimeters of wet snow, requiring thin layers be used. Layers below 30 cm

increase in thickness at each step. The bottom-most layer is 1 m thick. When the

model depth decreases 0.5 m, a new 1 m layer is added to the bottom.

4.3.2 Model Simulation Initialization

Before the model can be used, a number of initial conditions are needed. The

thermodynamic diffusion portion of the model requires specification of the snow den-

sity, ρs(z), the temperature, T (z, 0), the thermal conductivity, λ(z), and the surface

heat flux. Typical snow-pack densities are known to increase with depth due to over-

burden densification [15]. An initial density at the surface of 0.36 g/cm3 is assumed

and the density increases with depth [15]. Figure 4.14a shows the initial density as

a function of depth. Thermal conductivity of snow depends on a number of physical
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Figure 4.14: Initial geophysical model parameters
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properties of the snow. For simplicity, a quadratic regression model derived by [39] is

used where, λ = 0.138− 1.010ρs + 3.233ρ2
s W/mK. Using the snow density shown in

Figure 4.14a, the thermal conductivity is computed and shown in Figure 4.14b. The

temperature profile is initialized according to,

T (z, 0) = T∞ + (T∞ − T ′)

√
z + z′

Z + z′
, (4.22)

where T∞ = −35 C is the temperature at ultimate model depth Z, T ′ is chosen so

the top layer is 0 C, and z′ = 1 m is used to insure that the gradient ∂T
∂z

is bounded

at z = 0 and the solution remains smooth for t > 0. Figure 4.14c shows the initial

temperature profile as a function of depth. All model parameters are constant across

each control volume.

The thermal model requires a heat input to drive the melting process. This

model uses a single heat source applied at the upper surface of the model. This
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source is a combined heat source representing all the heat flux exchanged with the

atmosphere (e.g. solar, IR, sensible and latent heat flux, etc.). In the experiments

that follow two heat sources are used, a constant heat flux, and an offset sinusoidally

varying heat flux. The sinusoidally varying heat flux is ΦQ = 0.75+5 sin π
7
t+7 sin 2πt,

W/m2, where t is in days. The offset is needed to maintain the average temperature

of the snow near the surface. Without the 0.75 W/m2 offset, heat transfer to the

depths of the model would cause the surface temperature to drift away from 0 C.

Thus, the offset helps maintain the model near melting conditions. The sinusoidal

input of heat flux consists of two sinusoids with different periods, a high amplitude

sinusoid with a period of one day representing diurnal heat fluxes, and a medium

amplitude sinusoid with a period of 14 days representing change in heat flux due

to large scale weather patterns. This simulates a 14 day long period with diurnal

variation and a major storm front in the summer months similar to that seen in

tandem QuikSCAT/Seawinds and AWS data from JD 152 to JD 170, 2003 at the

ETH Swiss camp shown later in Figures 5.1 and 5.4.

4.3.3 Electromagnetic Model

The electromagnetic backscatter model uses the snow state to estimate the

vertically-polarized normalized radar cross-section of the snow viewed at or near the

Brewster angle, as assumed in Section 4.1. This is done so surface and inter-layer

reflections are negligible. The model attempts to estimate the backscatter using

Equation 4.1, restated here for convenience,

σo =
∫ ∞

0
γ(z)e−2τ(0,z) sec θ(z)dz. (4.23)

Since the magnitude of the permeability is relatively constant with depth, the term

sec θ(z) = sec θ ≈ 1.1656 can be moved out of the integral. This leaves two unknowns,

the volume contribution γ(z) and the attenuation e−2τ(0,z).

Attenuation is estimated using a radiative transfer model. Using a radiative

transfer model, the optical depth of the snow-pack is

τ(0, z) = sec(θ)
∫ z

0
κe(z

′)dz′. (4.24)
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The extinction coefficient κe is a function of the physical parameters of the snow.

The extinction coefficient is the sum of the scattering coefficient and the absorption

coefficient, κe = κs + κa. Absorption coefficients are estimated using a modified

Debye-like model [32] to obtain the complex permittivity of the snow, εr. Thus,

absorption is related to permittivity by

κa = 2
2πf

c
={
√
εr}, (4.25)

where f is the frequency, c the speed of light in a vacuum, and ={·} denotes the

imaginary part. The scattering coefficient is found by modeling the snow grains

using independent mie-scattering of spherical ice inclusions in an air background.

While better scattering models, which incorporate the interaction of scattered waves

between scatterers, exist, these models require additional information such as surface

correlation length, which is unknown at most locations. The scattering coefficient

is assumed constant with water content. The snow density ρs, the grain size r, and

the liquid concentration mv are inputs to the model. The extinction coefficient for

various snow densities and grain sizes are plotted against mv in Figure 4.15. Since the

extinction is dominated by the absorption as mv gets large, the other snow parameters

affect the optical depth at only small mv. Once the extinction coefficient is known

for each control volume, the integral of the equation is estimated using the extended

Simpson’s rule for each depth. Once τ is determined, the attenuation follows.

The remaining unknown in Equation 4.23 is the volume backscatter contribu-

tion, γ(z). For dry snow, the volume contribution is assumed to be proportional to

the scattering coefficient κs. The volume contribution to backscatter is much more

difficult to determine when the volume contains liquid water. For the sake of simplic-

ity, wet snow volume backscatter is assumed independent of water content. While

water concentration has an effect on the overall scattering efficiency, absorption is

assumed to dominate the backscatter, thus the liquid water fraction is modeled as

an absorbing medium in an otherwise unchanged scattering medium. The effect on

the grain shape that adding liquid water has on the backscatter is ignored, treating

it negligible.
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Figure 4.15: Extinction coefficient κe as a function of mv for various snow parameters.

In Section 4.2 the backscatter contribution from the wet snow is modeled as

zero, i.e. σo
wet = 0. In this geophysical model, the volume scattering contribution,

γ(z), is assumed to be the same for wet as for dry snow. This clearly contradicts

the σo
wet = 0 assumption used for the melt and refreeze severity indexes. However, in

Section 4.2 the contribution from the wet snow is ignored because this parameter is

unknown. Since σo
wet is a function of snow parameters that change with time, ignoring

σo
wet in the two and three layer models was a compromise to make computation of the

MSI and RSI parameters tractable. Since the simulation controls many of the snow

parameters that affect σo
wet, this simplification is unnecessary here.

While this geophysical/electromagnetic model is very simple, it produces rea-

sonable results. The experiments explained in the next subsection show good agree-

ment with tandem QuikSCAT/SeaWinds backscatter measurements taken at the

ETH Swiss Camp shown later in Figures 5.1 and 5.4, and seen in σo images across

the ice-sheet. While clearly the exact results—backscatter, moisture content, melt

depth, heat flux, etc.—are inexact due to the simplifications employed, the qualitative

behavior of the model follows the observed measurements quite well.
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4.3.4 Simulation Results

With groundwork for the simulation model complete, two experiments are

conducted and their results discussed. The goal of the first experiment is to test

the assumption stated in Section 4.1 that the melt depth dm during the refreeze has

only a relatively small effect on the backscatter, and thus χ can be assumed constant

during refreeze. The second experiment is conducted to see how the MSI and RSI,

using the model setup described, follow the melt through a simulated melt event in

the percolation zone in Greenland.

The first model experiment tests the assumption that χ changes slowly for

large melt events. To conduct this experiment, a constant heat flux of 5 W/m2 into

the surface is imposed on the model with initial parameters stated above, using an

ultimate depth of the model Z = 20 m. The heat is allowed to penetrate the surface

for 6 days, causing melt and percolation to occur. The depth of this melt depends

on the residual water saturation, sr. Though the mass of water melted is the same,

sr determines how concentrated the water is in the wet snow layer. To evaluate the

effect that the residual water saturation, sr, has on the backscatter and the time to

refreeze, two values are considered, sr = 6.5% and 3%. After applying the constant

5 W/m2 heat flux to the surface of the modeled snow for six days, the heat flux is

changed to 0 W/m2 and a day is allowed to permit the percolation process to complete

before backscatter measurement begins. Heat flux at the surface remains at 0 W/m2

for the duration of the backscatter measurement. By setting the heat flux at ΦQ = 0

W/m2, the refreezing of the wet snow is forced to propagate from beneath the wet

snow layer upward, with no refreeze occurring at the surface.

Figure 4.16 shows the outcome of the first experiment. The integrated amount

of liquid water beneath the surface at t = 0 when the backscatter measurement begins

is 0.49 cm w.e. Note that the water in the snow is modest, resulting in melt depths

of 23.7 cm and 12.2 cm for sr = 0.03 and sr = 0.065, respectively, yet it takes 8 to

12 days for a measurable change in backscatter to occur when refreeze is propagating

only from the beneath the wet snow. Since the time to refreeze observed in backscatter

measurements of Greenland are much shorter than this, most of the refreeze must be
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Figure 4.16: Outcome of the first experiment. The heat input at the surface is held
at zero, while refreeze of the 4.90 km/m2 of liquid water is refrozen by heat transfer
deeper into the snow. The ultimate depth of the model is Z = 20m.

originating at, and propagating from, the surface. This makes the assumption that

χ is constant during refreeze is quite reasonable.

The temperature profile and the melt depth and mass are chosen to be con-

sistent with expected conditions in the percolation zone, where melt is moderate.

The temperature gradient in the wet snow zone is considerably more shallow. At

the location of the ETH Swiss camp where the AWS data is taken in Chapter 5, the

temperature below 10m is approximately constant at -8.5 C [40], producing a tem-

perature gradient much more shallow than the one used in the experiment. Moreover,

the depth and quantity of melted water in this zone is much greater. Were this exper-

iment repeated with melt and temperatures more consistent with those of the ETH

camp, the time elapsed before a notable change in backscatter would be considerably

longer than 8–12 days. This is not observed in σo data, therefore surface refreeze

propagation must dominate.

Note a second observation made during the first experiment: σo, and thereby

χ, saturates at relatively small melt depths. While the first experiment validates the

assumption that χ is constant during refreeze by this observation, it is not clear from
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this experiment if χ is a useful MSI for any more than light melt. To understand the

effect that changing melt conditions have on χ, a second experiment is conducted.

The second experiment attempts to simulate a melt event using a realistic heat

input. The heat input used is the offset sinusoidally varying heat flux described in

Section 4.3.2. The residual water content is set to sr = 0.065 and the ultimate depth

of the model to Z = 20 m and again to Z = 7 m to show the effect of increasing the

temperature gradient. This experiment is run for 14 days, the fundamental period of

the time-varying heat flux. Figures 4.17 and 4.18 show the outcome of this experiment

for Z = 20 m and Z = 7 m respectively. Figures 4.17a and 4.18a show the backscatter

with time; Figures 4.17b and 4.18b show the progression of melt into the snow-pack;

and Figures 4.17c and 4.18c show the melt concentration in the top 2.5cm of the snow

pack.

Several observations are gained by the second experiment. First, note that

σo saturates during the day when the melt is at its peak. However, the backscatter

still varies from day to night during these days, despite the fact that the surface

never completely refreezes. Second, note that σo closely follows changes in mv in the

top several centimeters of melt. Thus, for light melt, backscatter closely follows the

melt depth; but for moderate-to-heavy melt, backscatter follows liquid concentration

near the surface. In terms of the model developed in this paper, the MSI follows

attenuation due to increasing melt depth for light melt, while for heavier melt is

more closely follows σo
wet, which is a function of mv and not the melt depth. As a

result, the MSI follows the melt severity, though with decreasing sensitivity as the

melt becomes more severe. Note also from this experiment that σo is very sensitive

to refreeze, even for very thin surface refreeze layers.

To show how the MSI and RSI are expected to respond on the tandem QuikSCAT

and SeaWinds dataset, σo is sampled three times a day, corresponding to the tandem

observation sample times, and the new Markov melt detection technique combined

with χ and ξ, the MSI and RSI, described in Section 4.2 is used. Figures 4.19 and

4.20 show the χ and ξ for the Z = 20 m and Z = 7 m respectively. As these figures

show, χ increases as the snow pack melts, but saturates. As χ saturates, however,
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Figure 4.17: Experiment 2, Z = 20 m. a) backscatter with time; b) mean melt
concentration of the top 2.5 cm with time; c) and depth and melt concentration with
time.
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Figure 4.18: Experiment 2, Z = 7 m. a) backscatter with time; b) mean melt
concentration of the top 2.5 cm with time; c) and depth and melt concentration with
time.
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Figure 4.19: The MSI, χ, and RSI, ξ for experiment 2: Z = 20 m, as well as the heat
flux, ΦQ, scaled for clarity.

it follows the melt concentration in the top several centimeters, indicating that the

MSI is following changes in σo
wet. Note that the difference between the peak melt and

peak refreeze for each day is well correlated to the thickness of the wet snow layer.

4.4 Summary

In this chapter a new melt detection and estimation model is developed. This

new model uses two layers during melt and three layers during refreeze. The new

model is combined with a one-step Markov chain model and the rules of state change

between the melt, refreeze, and frozen states are defined. The new melt detection

and estimation method classifies snow into one of three melt states and provides two

severity indexes, the melt severity index (MSI) and the refreeze severity index (RSI).

These indexes are shown to follow the melting behavior of snow simulated by a one-

dimensional geophysical/electromagnetic model. In the next chapter, this new melt

detection and estimation technique is applied to the Greenland ice-sheet.
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Chapter 5

Greenland Melt Classification and Estimation

This chapter covers the application of the melt detection and estimation model

described in Chapter 4 to the tandem morning/midday/evening QuikSCAT and

SeaWinds imageset described in Chapter 3. To further verify the melt detection

and estimation method, the tandem QuikSCAT/SeaWinds time-of-day filtered image

time series is combined with automatic weather station (AWS) data collected as a

part of the Greenland Climate Network (GC-NET) [41]. The AWS data is taken at

the location of the ETH Swiss Camp, located at 69.57 N 49.30 W at approximately

1155 m above sea level. By comparing the tandem image set with the AWS data,

the effectiveness of the melt detection method, as well as the MSI and RSI can be

verified. Once verified by the AWS data, the melt detection and estimation technique

is applied to the entire ice-sheet for the course of the entire tandem dataset, from

JD 100 to JD 297, 2003. The resulting melt state classifications and estimates are

analyzed.

This chapter is organized as follows. Section 5.1 compares the AWS data

at the ETH Camp directly with the backscatter measurements from the tandem

dataset, where the diurnal variation in the data is studied. Section 5.2 describes the

comparison and analysis of the Markov chain-based layered model melt classification

and estimation technique to the AWS data. In Section 5.3 the ice classification and

estimation technique is applied to the entire ice sheet and an analysis of the resulting

melt estimates is given. A summary of the results is found in the following chapter,

Chapter 6.
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5.1 Diurnal Variation

In this section, the time series of AWS and tandem QuikSCAT/SeaWinds data

is analyzed. The Swiss Base AWS station is located in western Greenland, in the wet

snow region of the ice-sheet. This region is characterized by frequent melt, making

this station ideal for the application and verification of the new melt detection and

estimation model described in this thesis. Figure 5.1 shows the entire tandem σo time

series as well as the Swiss Camp AWS temperatures. Several interesting features are

seen in this figure. First, the amount of diurnal variation in σo can be considerable;

a cycle peak-to-peak amplitude of 3–6dB is seen for many days from the first major

melt event at JD 153 until JD 200. Good correlation is seen between the diurnal

cycle of air temperatures near the 0 C isotherm and σo. It is also observed that the

amplitude of the diurnal cycle in both air temperature and σo becomes more sporadic

after JD 200, and is much smaller from JD 220 on. Particularly during the heat wave

from JD 236 to JD 246, σo remains low, with very little diurnal variation.

In order to better quantify the strength of the diurnal cycle, a matched filter

is used. Match-filtering essentially measures the correlation between a signal and a

reference. In this case, the reference is a sinusoidally varying complex exponential

with a period of one day. By making the matched filter a complex exponential both

the magnitude and phase of the diurnal cycle can be measured. Backscatter that

varies daily has high correlation with the sinusoidal matched filter and thus the filter

output has a high output amplitude. To allow for fast transients from melt to refreeze,

a short 3 tap filter is used,

h[n] =
1

N
e−j 2π

3
n, (5.1)

where N is 3, and n = [−1, 0, 1]. This short filter has some tendency to smear the

sharp transitions but effectively captures the transient behavior of the cycle variation.

The filter output is the diurnal variation,

DV [n] = h[n] ∗ σo[n]. (5.2)

Figure 5.2 shows the magnitude of the diurnal variation, |DV |. Again, note the

high consistent diurnal cycle for JD 153 until JD 200, and sporadic amplitude after
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Figure 5.1: AWS Temp and σo time series of the entire tandem mission for the pixel
at the location of Swiss Camp AWS, 69.57 N 49.30 W.

JD 200. The heat wave beginning JD 236 is characterized by low diurnal variation,

as does several other periods where low σo are observed, e.g. JD 154, 178, and 198

among others. A scatter-plot of the σo and |DV |, shown in Figure 5.3, also identifies

this interesting behavior: low diurnal cycle variation can occur for periods of intense

melt, when σo is very low. This type of behavior is observed during intense melt

across the wet snow and percolation zones of the ice-sheet.

Figure 5.4 presents a closer look a the time series from JD 145 to JD 168. A

period of low backscatter, as well as other interesting features, are observed in this

short time series. When the snow-pack is frozen, diurnal variation is small and σo

high. As the temperature climbs and remains consistently above zero, σo remains

low, with very little diurnal variation. As temperatures drop and begin cycling above

and below the 0 C isotherm, the daily mean of σo rises slightly, and a large diurnal

cycle is observed. Especially interesting is the time period from JD 163 to JD 166.

During this time period the average air temperature is dropping, and the portion of

the day above 0 C is also decreasing. During this period the average σo increases,

while still maintaining a strong diurnal cycle. The σo peaks during this time period
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Figure 5.2: a) Backscatter, σo, and b) the diurnal cycle amplitude, |DV |, measured
by a 3 tap complex exponential matched filter. Backscatter data is taken from the
pixel at the location of Swiss Camp AWS, 69.57 N 49.30 W.

are still well below their winter value, suggesting that subsurface water is persistent,

while the surface cycles from melt to freeze. Such behavior gives credence to the

three-layer model developed in this thesis.

Since melt is observed in many instances where the diurnal cycle amplitude is

small, it appears that the diurnal cycle amplitude alone is insufficient for identifying

melt. This result may in part, explain some of the performance issues related to

previous work [10]. It is conceivable that strong melt events, especially melt created

by latent and specific heat input by convection from warm air masses, can continue

during the night hours when solar radiation is negligible. Note also that the period

of strong diurnal variation of σo occurs at times near the summer solstice (JD 173),

when solar radiation is at its peak and the diurnal variation of solar radiation is

large, suggesting that melt during this period of time is driven primarily by solar

heating. Likewise, late season melt appears to be driven primarily by warm air masses,

explaining the resulting decrease in diurnal cycle amplitude. The air temperature
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Figure 5.5: Top: AWS air temperature. Bottom: χ(thick) and ξ(thin). Estimators
use backscatter data taken at pixel located at Swiss Camp AWS, 69.57 N 49.30 W.

during the late season appears to vary more slowly, suggesting perhaps, an increase

in cloud cover insulating the ground from space.

5.2 ETH Camp Ice State Estimates

In this section the melt detection and estimation technique described in Chap-

ter 4, is applied to the ETH Camp backscatter data. Figure 5.5 shows the MSI, χ, and

RSI, ξ, at the ETH Swiss camp location, as well as the air temperature for reference.

At first glance, the behavior of the MSI and RSI correlates well with the temperature

at this location. Because this method of melt detection distinguishes separate melt

events delimited by samples where the ice is frozen, a more detailed analysis of the

behavior of individual melt events is possible.

The first and longest melt event during the 2003 melt season at the ETH

Camp (JD 152–183) shows some interesting features and is helpful in illustrating the

effectiveness of the MSI and RSI. The MSI, RSI, air temperature, and up- and down-

welling shortwave radiation (SW), are shown in Figure 5.6. The beginning of the

melt event on day JD 152, as identified by the Markov melt detector, is consistent
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Figure 5.6: The estimators MSI and RSI of the longest melt event of 2003 at Swiss
Camp AWS, 69.57 N 49.30 W. Top: AWS air temperature. Middle: χ and ξ. Bottom:
Short wave radiation upwelling and downwelling.

with a peak in the net SW radiation, and a rise in air temperature above the 0 C

isotherm. The beginning of melt is followed by several days (JD 152–154) where the

air temperature remains above 0 C. The MSI and RSI correspondingly show heavy

melt and little refreeze during this time period. During the mornings of JD 155–157,

the air temperature drops well below 0 C, which should result in surface refreeze; the

drop in MSI and strong cycling in the RSI clearly shows this trend. In the mornings

between JD 157 and 158, and again between JD 159 and 160, the temperature drops

below 0 C only for a short time. The RSI during these morning is notably less

than mornings before and after, mimicking the air temperature. A trend of dropping

temperature and net SW radiation is seen during JD 160–165; the MSI and RSI

capture this behavior as MSI gradually decreases and RSI increases. Similar to JD

152–154, the temperature rises above 0 C during JD 172–175, though the net SW

radiation is fairly low. During this time period, a constant melt is recorded by the

MSI and RSI, though not nearly as strong as during JD 152–154, as expected by the

high air temperature and low SW radiation. Days 175 to 180 show air temperatures
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constantly above 0 C; however, the RSI continues to show significant refreeze during

this time. The net SW radiation during this time period is fairly low, conceivably

creating a net loss in total radiation, and leading to refreeze in the mornings despite

higher air temperatures.

The analysis of the longest melt event at the ETH/CU Swiss Camp shows

that the MSI and RSI reasonably follow the behavior expected from air temperature

and SW radiation data. While these indexes behave as expected, they do not di-

rectly translate into physical melt quantities. However, their behavior suggests that

they may be a useful tool in deriving quantitative data at some point in the future.

Particularly, improvements in surface property inversion techniques [42] may provide

much needed a priori information, making the direct inference of melt quantities

possible. Therefore, the estimates provided by χ and ξ may be used as model inputs

from which better melt estimates may be obtained. Despite their indirect relation to

melt, some interesting behavior can be seen using these indexes. For example, the

integrated melt severity index, Iχ (IMSI), defined by,

Iχ =
N(t)∑
k=1

χk∆t, (5.3)

where N(t) is the number of samples where melt is detected and ∆t = 8 hours, is

useful for looking at seasonal melt strength (see Figure 5.7). The difference between

the MSI and RSI, refered to as the melt envelope (ME) ψ = χ−ξ, is a useful indication

of the thickness of wet snow, especially the daily minimum ME, defined as

ψd
j = min

i={1,2,3}
(χj,i − ξj,i), (5.4)

where j is the day of the year, and i is the ith sample of the day (shown in Figure

5.8). The integrated melt envelope (IME), defined by

Iχ−ξ =
M(t)∑
k=1

(χk − ξk)∆t, (5.5)

where M(t) is the number of samples where liquid water is present, is shown in Figure

5.7. Since the amount of liquid water—and its proximity to the surface—drives vapor

transport, grain growth, and other parameters that affect mass balance, the ME and
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related indexes may prove useful. Table 5.1 summarizes the statistics for the pixel

located at the ETH camp.

Table 5.1: 2003 Melt statistics for the ETH/CU Swiss Camp AWS located at 69.57
N 49.30 W.

Statistic Value Description

Tb 142.1775 Beginning time of first melt, decimal JD
Te 275.8400 Ending time of last melt event, decimal JD

Tlength 133.6625 Melt season length, days
TM 1202.6 Total time melting, h
TL 2307.8 Total time wet snow is present, h

tl,longest 760.2 Longest melt event, h
t̄l 85.4753 Mean melt event length, h

median(tl) 16.4167 Median melt event length, h
std tl 183.676 Standard Deviation of melt event length, h
Nl 27 Number of melt events

maxχ 1.6821 Maximum melt severity, Np
χ̄melt 0.8474 Mean melt severity during melt, Np
Iχmelt

1020.3 Integrated melt severity, Np·h
Iχ−ξ 1652.0 Integrated melt envelope, Np·h

The new method performs similar to the Q-α method employed in [11]. This

is expected, as the two-layer model and the 3 dB threshold is the same as that used

by Ashcraft and Long. For comparison, Figure 5.9 shows the metric function q(t)

for both the new method used in this paper and the standard q(t) described in [11].

The metric function used by the new method employs data from both SeaWinds

and QuikSCAT, which yields better temporal sampling than QuikSCAT alone. Melt

detection using the Q-α method estimates the first day of melt occurs on JD 142,

as does the new melt detection method. The last day of melt detected by the Q-α

method is on JD 275. The last day of melt detected by the new melt occurs one

day earlier on JD 274; however, refreeze is detected until JD 275, producing identical

season lengths at this location. There are some differences in the number of days
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Figure 5.7: The IMSI and the IME. Data is for 2003, Swiss Camp AWS, 69.57 N
49.30 W.
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Figure 5.8: Daily ME at Swiss Camp AWS, 69.57 N 49.30 W. The time period
coincides with the longest melt event, JD 150-185 2003, shown in Figure 5.6.
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Figure 5.9: Comparison of the metric q(t) = σo
dry − σo using the High-res data em-

ployed in this thesis and using the standard data used by the Q-α method described
in [11].

where melt is detected—the new method detects melt at least once a day for 100

days of 2003, where the Q-α method detects melt for only 92 days. The differences

in the melt classifications are mostly due to the new method using SeaWinds data,

which measures earlier in the day when melting is more likely to occur. The ability of

the new method to use the high temporal sampling to distinguish melt from refreeze

and the ability to estimate the melt severity are the primary improvements the new

method adds.

5.3 Ice-sheet Melt Estimation

Next, the new melt detection and estimation model is used to obtain a melt

estimate of the entire ice sheet. The melt model scales very easily to the entire ice

sheet because the dataset itself is comprised of images. First, the model is limited

to include only glaciated regions of Greenland using an image mask, shown in Figure
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5.10. Second, σo
dry is determined using a least squares estimator and images of the

winter months before and after the melt season. A least squares estimator is used to

compensate for the slow variation in σo
dry that occurs from season to season. Since the

dataset is short, consisting of mainly summer months, the daily winter QuikSCAT-

only images of Greenland from JD 001–061 and 305–365 are used to estimate σo
dry.

The resulting least squares estimate provides σo
dry at JD 001 and the slope of σo

dry

with time. Figures 5.11 and 5.12 show images for σo
dry on JD 001 and the slope of

σo
dry over the year 2003, respectively. The estimation of the ice-sheet melt produces

a number of images of the ice state, the MSI, RSI, and other indexes.

Using the Markov melt detector, the melt season of 2003 is characterized.

Figure 5.13 shows the first day of seasonal melt, the last day that liquid water was

detected in the snow-pack, and the length of the melt season. Small melt artifacts

are seen in the dry snow zone, a result of additional noise introduced by SeaWinds

images on JD 226 and 262, which contain regions of missing data.

First, the beginning of the melt season (Figure 5.13a) is considered. Most of

the melt season is captured by this dataset; however, there are several patches along

the south-eastern coast near 65.0 N 42.0 W and 65.5 N 40.5 W, as well as slightly

inland near 62.5 N 44 W, where melt is detected during the first day. These regions

may actually be melting sooner than the start of the dataset. Progression of the melt

season across the island appears to occur regionally, and in discrete increments. For

example, most of the snow-pack near the western coast begins its melt season on JD

140 and reaches far inland on the following day JD 141, bridging the west and east

sides of the southern tip of the island near the saddle separating the summit from

South-Dome. The northern and north-eastern coastal areas begin melt slightly later,

near JD 155. Melt progresses up-slope in western Greenland into the percolation

zone in several increments, JD 177, 197, 219, and 236–238. The progression of melt

across South-Dome in southern Greenland occurs in two increments: JD 151 and 197.

Several pockets of melt along the eastern coast begin early, on JD 135, and progress

up-slope incrementally on JD 141, 143, 159, and 173.
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Figure 5.10: Image mask for the ice-sheet used in melt estimator. The cross in this
and subsequent images shows the location of the ETH/CU Swiss Camp. The box is
the region is used to present the time series in Figures 5.16 and 5.17.
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backscatter over JD 001 to 061 and JD 305 to 365 of 2003. σo
dry is shown in dB.
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Figure 5.13: From left to right: the first day of the year 2003 melt is detected, the
last day of the year 2003 liquid water is detected (melt or refreeze) and the length of
the melt season. The length of the season is in days.
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Like melt, seasonal refreeze shown in Figure 5.13b occurs regionally and in

discrete increments; however, refreeze spreads much more quickly and uniformly than

melt. The higher elevation percolation regions of southern and western Greenland

finish refreezing on JD 239. Refreeze progresses nearly to the edge of the ice sheet

along the western coast by JD 250. A late season melt event caused by the remnants

of Hurricane Juan leaves the snow pack wet in southern Greenland until JD 276–

278. Northern and northeastern Greenland refreeze much sooner, beginning along

the coastal region near 76.5 N 23.5 W on JD 157. Refreeze occurs in the north and

northeastern percolation zones starting JD 180 and progresses completely to the edge

of the ice-sheet by JD 222. A very small region near the southern tip of the island

shows continued melt up to the last day in the dataset, JD 297. Thus, the last day

of melt may be later than shown at this location.

The season length shown in Figure 5.13c shows how season length is regionally

correlated and how it varies from region to region. The longest melt season occurs

where the first melt is detected in pockets along the southeastern coast and the

southern tip of the island. Because of the limited number of days in the dataset,

some of these areas have longer seasons than indicated since melting starts before

the beginning of the dataset. Besides these pockets along the southeastern coast, the

snow-pack east of Jakobshavn (roughly 69.2 N 50.0 W) has the longest melt season

of 179 days, followed by a strip of snow along the northern end of the Melville Bugt

(around 76 N 65 W) with a season of 144 days. The vast majority of the southern and

western parts of Greenland have a melt season 135–136 days long. Further north along

the western coast, the season becomes shorter: 108 days. Northern and Northeastern

Greenland have relatively short melt seasons ranging from 60–90 days. Naturally, the

shortest seasons are located at higher elevations, as short as a single day near the dry

snow line separating the percolation and dry snow zones.

The IMSI and IME for the ice sheet are shown in Figure 5.14 and 5.15, re-

spectively. It is clear from these figures that the dynamic range of melt severity is

quite large—over three orders of magnitude from the edge of dry snow to the edge

of the wet-snow zones. Melt is greatest along the southeastern coast, in the same
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region where the melt season is longest. The southern and western sides of the is-

land experience greater melt than the northern and northeastern sides—typically the

IMSI is three to five times higher in southern Greenland than northern Greenland.

It is interesting to note, however, that there is much greater contrast between the

percolation and wet-snow regions than the melt along the edge of the ice-sheet from

region-to-region across the island.

While melt state detection using the Markov detector appears to work well

across the entire ice sheet, the MSI and RSI and other severity indexes are only

applicable in regions where the snow-pack resembles the layered melt model. In the

lower edges of ablation zone, snow from the previous year’s accumulation completely

melts away, exposing the dense glacial ice beneath. Exposed glacial ice behaves

markedly different in melting conditions than iced-firn or snow. Melting glacial ice

results in water pools at first; however, these water pools eventually percolate deep

into the ice. The remaining nearly liquid-free ice is nearly impermeable to water,

except along channels where the liquid may be quickly removed beyond the reach of

the radar signal. Melt quantity in these regions, though significant, is quickly removed

from view, and thus may not attenuate the backscatter as much as it would have in

iced-firn.

The change in behavior of snow is seen in the IMSI shown in Figure 5.14. In

western Greenland there is a ridge of maximum melt severity that occurs well within

the edge of the ice-sheet. This peaked region likely occurs near the equilibrium line,

where the previous season’s melt is entirely melted away, showing a stark change in

the structure of the snow-pack, from iced-firn to glacial ice. The ridge of high IMSI

appears to be near the equilibrium line due to its position relative to the ETH/CU

Swiss camp, which is near this line (see Figures 5.14 and 5.15). A change in the snow

characteristics, evidence for the IMSI ridge, is also seen in the backscatter at the ETH

Camp shown in Figure 5.2; past JD 200, the backscatter is never as low as before JD

200, even during the heat wave starting on JD 235, when the highest temperatures

of the season are observed.
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To gain further insight into the ridge of maximum IMSI observed in western

Greenland seen in Figures 5.14 and 5.15, the MSI and RSI time series are analyzed.

Figures 5.16 and 5.17 show a series of morning ME, χ − ξ, images of a section of

Greenland. Only morning images are shown for reasons of brevity. Days not shown

in these figures do not have significant persistent melt and are omitted. The morning

images, which observe persistent melt, show some interesting behavior. A strip of

persistent melt appears in these image some distance from the western edge of the

ice-sheet. Moreover, this strip slowly moves eastward as the melt season progresses.

From this it can be postulated that this persistent melt strip identifies saturated wet

snow. Furthermore, the western edge of this strip identifies where the wet snow ends

and the exposed glacial ice begins.

In order to properly deal with the change from firn to glacial ice a different

model needs to be developed and applied to the glacial ice. A new model is needed

primarily due to differences in the percolation mechanism. However, dealing with

rapid percolation of water along small channels in the glacial ice, rather than the

more diffuse percolation assumed by the two and three layer models, is not easy. The

problem is due to the nature of localized flow, and the lack of information of its effects

on backscatter. On the other hand, the identification of glacial ice, and other snow

types, may be improved by using information gained by the MSI and RSI developed

in this thesis.

The classification of the snow types in Greenland may be aided by the MSI and

RSI. It has been shown that the identification of exposed glacial ice may be possible.

The identification of snow types in other regions of Greenland may also be possible.

Figure 5.18 shows the IMSI with a Long-Drinkwater facies map overlay on the image,

which shows the boundary of the snow zones in the fall of 1978 [6]. This map was

created by identifying differences in the backscatter across the various regions of

Greenland using fall SASS data. First, it is clear that there is strong correlation

between the map and the IMSI. While the metric used to distinguish the snow zones

in the 1978 map is very different from the method used to create the IMSI image, the

similarities suggest that the IMSI could reasonably be used to classify the ice facies.
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Moreover, the IMSI is a more objective classifier of snow types since it attempts to

measure melt directly rather than classifying snow types indirectly through changes

in dry snow backscatter which may be affected by other factors.

The differences between the 1978 map and the IMSI image shown in Figure

5.18 are also interesting and noteworthy. The most apparent difference is the line

separating the percolation zone and dry snow in the 1978 map, and the location of

no-melt line in the IMSI image. Differences in the metric used to create these two

maps may explain some of the differences; however, the IMSI along the 1978 dry snow

line is typically 100 Np·h, a considerable amount. This amount cannot be observed

by a solitary melt event, most of boundary pixels experienced 5–20 days of melt.

Since so many days of melt are observed, it is apparent that the dry-snow is further

up-slope. The moving of the dry-snow line further up-slope is consistent with local

warming of the climate in western Greenland.
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Figure 5.18: The IMSI shown in Figure 5.14, with the SASS (Long-Drinkwater) map
[6] also shown.
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Chapter 6

Summary and Conclusions

In this thesis a new method of melt detection and estimation is developed.

This new method combines a simple layered electromagnetic model with a Markov

chain detection algorithm to identify the melt state of snow. This method is used to

classify the snow-pack into three states: melting, refreezing, and frozen. The param-

eters of the layered electromagnetic model are also used to estimate the severity of

melt and refreeze. This new melt model is tested and validated by a simple geophysi-

cal/electromagnetic model simulation of the snow-pack under melting conditions and

by in situ weather station data.

This new melt method is applied to a newly developed tandem QuikSCAT

and SeaWinds image set. This new dataset is created by separating backscatter

measurements by their local time-of-day, rather than the direction of the spacecraft’s

orbital motion. The resulting images have much greater temporal separation and

resolution than those previously available. The tandem morning, midday, and evening

SIR image set provides three nearly uniformly spaced temporal samples per day,

allowing the resolution of the diurnal cycle.

Using the new tandem image dataset, the diurnal variation of the backscatter

at the location of the ETH Camp is studied along side air temperature data from

Swiss Camp AWS in western Greenland. The diurnal cycle magnitude, measured

using a matched filter, is measured and analyzed. The diurnal cycle magnitude alone

is not a sufficient indicator of melt—periods of intense melt may show little diurnal

variation. The diurnal variation of backscatter, however, does lead to some interesting

observations. First, the backscatter correlates well with air temperature crossings of
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the 0 C isotherm, showing the sensitivity of backscatter to snow melt. Second, the

diurnal variation is highest at the beginning of the 2003 melt season at the ETH

Camp, during the time period when the sun is near its solstice and the variation of

solar insolation is at its peak. Third, the daily normalized radar cross-section often

does not return to its winter value, suggesting that subsurface water is often persistent

between melting.

Applying the melt detection and estimation method to the backscatter of the

entire ice-sheet, including the location of the ETH Camp, results in a reasonable

estimate of the melt state. Seasonal melt maps are generated, which show the be-

ginning, ending, and length of the melt season. Additionally, the melt and refreeze

severity indexes, MSI and RSI, are analyzed on the ice sheet. While the melt model

used is very simple, it provides reasonable estimates of relative melt severity across

the ice sheet. The integrated melt severity index, IMSI, shows good agreement with

the map of ice facies generated using SASS scatterometer data by [6]. Discrepancies

between the dry snow line given by the SASS map and the melt estimated by the

IMSI map are consistent with local warming in western Greenland indicated by an

up-slope movement of the dry-snow line between 1978 and 2003.

6.1 Contributions

This thesis makes several contributions to the field of remote sensing. New

models and methods are developed and used in Greenland. In particular, these con-

tributions are important steps toward remote measuring of Greenland melt. The

following list outlines these contributions.

• The temporal sampling of the SeaWinds instruments aboard the QuikSCAT

and ADEOS II space craft have been carefully considered. Problems with the

current ascending/descending method of SIR image generation in the polar

regions have been identified.
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• A new method of temporally separating QuikSCAT and SeaWinds backscatter

measurements into images has been described and imagesets have been gen-

erated. These new images have been shown to exhibit much better temporal

resolution than the previous ascending and descending images.

• A new dataset of QuikSCAT, SeaWinds, and tandem QuikSCAT/SeaWinds

time-of-day filtered images has been generated. This new dataset is scheduled

to replace the ascending/descending images as a standard image set in the polar

regions.

• A new melt model is created, based on work performed by [11], which handles

both melting and refreezing snow conditions.

• Melt classification is performed using a Markov chain model, allowing relative

changes in σo to be reflected in the decision process.

• The combination of the Markov chain model with the layered melt model pro-

vides means to classify the snow-pack into three states: melting, refreezing, and

frozen.

• The new melt model provides not only means of melt classification, but also the

ability to estimate the melt and refreeze severity. While the resulting MSI and

RSI may not directly translate to physical melt quantities, they are a first step

toward obtaining such quantities from microwave measurements.

• The new melt model and melt classification and estimation technique are eval-

uated using a geophysical/electromagnetic model simulation of the snow-pack.

This model simulation incorporates heat transfer, melt, percolation, settling

and densification of the snow, in addition to modeling the backscatter using a

radiation transfer model.

• This is the first time scatterometers have been used to separate melt from

refreeze, and the first time scatterometers have been used to estimate melt

severity.
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• Melt season maps have been generated, which identify the beginning, ending,

and length of the melt season in 2003.

• The IMSI is used to identify relative melt severity across the Greenland ice

sheet. Notable differences and similarities are identified in the comparison of a

map of the ice facies with the IMSI.

• A time series analysis is performed on MSI and RSI images in western Greenland

that suggests the line demarcating the iced-firn from bare glacial ice may be

inferred using the MSI and RSI developed in this thesis.

6.2 Future Work

Because the methods used in this thesis are new, many of the aspects of the

work described in this thesis warrant further investigation. Future work may be

broken down into two general categories: melt model improvement and sensor fusion.

The layered melt model used in this thesis is very simple, requiring very lit-

tle a priori information. While this model is designed to work best in percolation

facies where the model best describes underlying physical processes, it is clear that

improvements to the model are needed in other regions. In particular, the model

needs to be modified to properly estimate melt severity in regions where the glacial

ice becomes bare. Additional information about the melt process and its effects on

backscatter would also be useful. While the MSI and RSI do not measure the quan-

tity of melted snow, additional work toward estimating the melted snow volume using

these indicators is warranted.

The Ku-band scatterometer sensors used in this study provide only a glimpse

at the processes that affect backscatter. The SeaWinds instrument only measures

backscatter at two distinct incidence angles. These two incidence angles measure the

backscatter using different polarizations. This limits our knowledge of the effects of

the air-snow surface on backscatter. However, if multiple sensors with broader inci-

dence angle, different frequencies, and polarizations observations could be combined,

further information about the severity and depth of the melt may be obtainable. For
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example, the ERS-2 C-band scatterometer, which was also in limited operation in

2003, may be used with the tandem QuikSCAT/SeaWinds data to better infer both

the liquid concentration mv, as well as the depth of melt, due to the deeper pene-

tration depths of C-band waves. Further information may be gained by applying the

layered melt model outlined in this thesis to radiometry and using data from SSM/I

and other radiometers to gain insight into the severity of Greenland melt.
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Appendix A

Additional Model Simulation Information

This section provides additional derivation and background information used

in the implementation of the geophysical model simulation conducted in Section 4.3

of this thesis.

A.1 Thermal Diffusion Derivation

Heat flux is related to the gradient of the temperature according to Fourier’s

Law [43],

ΦQ(r̄, t) = −λ(r̄)∇T (r̄, t), (A.1)

where λ(r̄) is the thermal conductivity, T (r̄, t) is the temperature, t is the time, and r̄

is the position vector. The rate of change of thermal energy density, Q, at any given

point is proportional to how quickly heat is flowing into or out of that point. In other

words the heat density rate, ∂Q
∂t

, is proportional to the divergence of the heat flux,

∂Q(r̄, t)

∂t
= ∇ · ΦQ(r̄, t). (A.2)

Since Q(r̄, t) = ρCPT (r̄, t), where ρ is the density and CP the specific heat, the rate

of temperature change is

∂T (r̄, t)

∂t
= − 1

ρCp

∇ · [λ(r̄)∇T (r̄, t)] , (A.3)
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which is the general form of the thermal diffusion equation. Reducing Equation A.3

to one-dimension,

∂T (z, t)

∂t
= − 1

ρ(z)Cp

∂

∂z

(
λ(z)

∂T (z, t)

∂z

)
, (A.4)

results in Equation 4.19.
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A.2 The Implicit Crank-Nicholson Method Applied to Thermal Diffusion

While using an explicit finite difference method to solve parabolic PDE’s like

Equations 4.19 and A.4 is possible, the solution is only stable for small time steps,

similar to the hyperbolic PDE FDTD solution of the wave equation used in electro-

magnetic simulation [44]. Unfortunately, the time step required for the time scale of

the simulation experiments used in this thesis is prohibitively small, even when the

solution is smooth. A simple implicit method, the Crank-Nicholson method, employs

the same finite difference equations for the explicit method, but rather than simply

using a forward difference in time, performs an average of the current time step with

the future time step. This results in a set of linear equations that is solved at each

time step. Using this method, the solution to the thermal equation remains stable

regardless of the time step size. The derivation of the set of linear equations using a

variable spatial discretization step size follows.

First, the outer derivative of the thermal diffusion equation, Equations 4.19

and A.4, is moved through the parenthesis,

∂T (z, t)

∂t
= − 1

ρCp

dλ

dx

∂T (x, t)

∂x
− λ

ρCp

∂2T (x, t)

∂x2 . (A.5)

To approximate ∂2T
∂x2 , ∂T

∂x
is first made discrete. The step size of the ith control volume

is ∆xi = xi − xi−1. Using this, ∂T
∂x

at i− 1
2

and i+ 1
2

is approximately,

∂Ti− 1
2

∂x
≈ Ti − Ti−1

∆xi−1

, (A.6)

∂Ti+ 1
2

∂x
≈ Ti+1 − Ti

∆xi

. (A.7)

The approximate second derivative is then,

∂2Ti

∂x2 ≈
∂T

i+1
2

∂x
−

∂T
i− 1

2

∂x
∆xi−1+∆xi

2

(A.8)

≈
Ti+1−Ti

∆xi
− Ti−Ti−1

∆xi−1

∆xi−1+∆xi

2

(A.9)

≈ 2

∆xi

∆xi−1+∆xi
Ti−1 − Ti + ∆xi−1

∆xi−1+∆xi
Ti+1

∆xi−1∆xi

. (A.10)
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The Crank-Nicholson method centers the time around tj+
1
2 , thus,

T j+1
i − T j

i

∆t
≈ (κj

i+1 − κj
i−1)(T

j
i+1 − T j

i−1)

2(∆xj
i−1 + ∆xj

i )
2

+ κj
i

∆xj
i

∆xj
i−1+∆xj

i

T j
i−1 − T j

i +
∆xj

i−1

∆xj
i−1+∆xj

i

T j
i+1

∆xj
i−1∆x

j
i

+

(κj+1
i+1 − κj+1

i−1 )(T j+1
i+1 − T j+1

i−1 )

2(∆xj
i−1 + ∆xj

i )
2

+

κj+1
i

∆xj+1
i

∆xj+1
i−1+∆xj+1

i

T j+1
i−1 − T j+1

i +
∆xj+1

i−1

∆xj+1
i−1+∆xj+1

i

T j+1
i+1

∆xj+1
i−1∆xj+1

i

, (A.11)

where the superscript j denotes the time-step index and κ = λ
ρCP

. To simplify the

equations it is assumed that κi and ∆zi change negligibly during a single time-step,

i.e., κj+1
i ≈ κj

i and ∆zj+1
i ≈ ∆zj

i . While this is not strictly true, the percent change

per time step is very small, and has negligible effect on the heat transfer in the

simulations. The following are defined:

kj
i =

κj
i∆t

∆xj
i−1∆x

j
i

(A.12)

αj
i = kj

i

∆xj
i

∆xj
i + ∆xj

i+1

− κj
i+2 − κj

i

2(∆xj
i+1 + ∆xj

i+2)
2

(A.13)

βj
i = kj

i

∆xj
i+1

∆xj
i + ∆xj

i+1

+
κj

i+2 − κj
i

2(∆xj
i+1 + ∆xj

i+2)
2

(A.14)

(A.15)

Moving all terms containing T j+1 to the right side and all terms containing T j to the

left side of Equation A.11, the equation becomes,

− βj
i−1T

j+1
i−1 + (1 + kj

i−1)T
j+1
i − αj

i−1T
j+1
i+1 =

βj
i−1T

j
i−1 + (1− kj

i−1)T
j
i + αj

i−1T
j
i+1, (A.16)

which forms a basis for creating a matrix of linear equations.

The boundaries, however, must be handled differently. For the boundary at

the Nth node, the temperature is held constant, which eliminates the Nth equation

and makes the (N-1)th equation,

− βj
N−2T

j+1
N−2 + (1 + kj

N−2)T
j+1
N−1 = βj

N−2T
j
N−2 + (1− kj

N−2)T
j
N−1 + 2αj

N−2TN .(A.17)
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The temperature at the first node is influenced by heat transfer to and from

the atmosphere. The rate of heat density change at this node is approximately,

∂Q(0, t)

∂t
≈ ΦQin

− ΦQ(x+ ∆x1)

∆x1

. (A.18)

Then
∂2T1

∂x2 ≈
ΦQin

∆x1

ρ1CP
− κ1(T1 + T2)

∆x2
1

. (A.19)

Replacing Equation A.19 with Equation A.10 in Equation A.11 and neglecting the

gradient of λ term results in,

T j+1
1 − T j

1

∆t
≈ κj

1

Φj
Qin

∆xj
1

ρj
1CP

− T j
1 + T j

2

(∆xj
1)

2
+

κj+1
1

Φj+1
Qin

∆xj+1
1

ρj+1
1 CP

− T j+1
1 + T j+1

2

(∆xj+1
1 )2

. (A.20)

The assumption stated above that κj
i ≈ κj+1

i and ∆zj+1
i ≈ ∆zj

i is again used. Letting

kj
0 =

∆tκj
1

(∆xj
1)2

, αj
0 = βj

0 = kj
0/2, the 1st equation in the linear system becomes,

(1 +
kj

0

2
)T j+1

1 − αj
0T

j+1
2 =

kj
0

λj
1

∆xj
1(Φ

j
Qin

+ Φj+1
Qin

) + (1− kj
0

2
)T j

1 + αj
0T

j
2 . (A.21)

The resulting matrix equation that solves for the temperatures at time j + 1

is then, 

1 +
kj
0

2
−αj

0 0 0 · · · 0

−βj
1 1 + kj

1 −αj
1 0 · · · 0

0 −βj
2 1 + kj

2 −αj
2

. . .
...

...
. . . . . . . . . . . . 0

... −βj
N−3 1 + kj

N−3 −αj
N−3

0 · · · 0 −βj
N−2 1 + kj

N−2





T j+1
1

T j+1
2

T j+1
3

...

T j+1
N−2

T j+1
N−1


=



kj
0

λj
1

∆xj
1(Φ

j
Qin

+ Φj+1
Qin

) + (1− kj
0

2
)T j

1 + αj
0T

j
2

βj
1T

j
1 + (1− kj

1)T
j
2 + αj

1T
j
3

βj
2T

j
2 + (1− kj

2)T
j
3 + αj

2T
j
4

...

βj
N−3T

j
N−3 + (1− kj

N−3)T
j
N−2 + αj

N−3T
j
N−2

βj
N−2T

j
N−2 + (1− kj

N−2)T
j
N−1 + 2αj

N−2TN


. (A.22)
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