THE PHASE GRADIENT AUTOFOCUS ALGORITHM WITH

RANGE DEPENDENT STRIPMAP SAR

by

James S. Bates

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
Brigham Young University

December 1998




Copyright (© 1998 James S. Bates

All Rights Reserved




BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

James S. Bates

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

/7 Oct. /978

Sl bres

Date

/6 e (7587

David Arnold, Ch

Date

il long/

/7 ot 1375 P, £ ﬁ/

Date

Brian Jeffs




BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of James S.
Bates in its final form and have found that (1) its format, citations, and bibliograph-
ical style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is
ready for submission to the university library.

19 oek. 1999 O\ Y A=

Date David Arnold
Chair, Graduate Committee

Accepted for the Department

Michbel D. Rice \
Graduate Coordinator

Accepted for the College

Mw m Cha b —
Douglas’M. Chabries
Dean, College of Engineering and Technology




ABSTRACT

THE PHASE GRADIENT AUTOFOCUS ALGORITHM WITH RANGE

DEPENDENT STRIPMAP SAR

James S. Bates
Department of Electrical and Computer Engineering

Master of Science

The Phase Gradient Autofocus (PGA) algorithm is widely used in spotlight
mode SAR for motion compensation. The Maximum Likelihood PGA (ML PGA)
algorithm has been shown to be a superior autofocus method. The PGA is restricted
to high altitude aircraft. Since lower altitude SARs have significant range depen-
dencies that cannot be ignored, the PGA could not be used. This thesis eliminates
the high altitude restriction and extends the PGA for use with all spotlight SARs.
The new algorithm is tested with three images. Each image has a unique quality.
A desert image provides a low signal to clutter ratio with no distinct targets. An

urban image tests the ability to focus bright close proximity targets and the moun-

tain image has ares with high signal-to-clutter and areas with low signal-to-clutter.

Each image was corrupted with a low frequency and high frequency motion induced
low altitude phase error. The new Phase Weighted Estimation (PWE) low altitude
autofocus method converged to a lower standard deviation than the ML PGA, but

required more iterations.




Another limitation of the PGA is that it will only work for spotlight SAR. In
this thesis, the spotlight PGA is extended to stripmap by using a conversion similar
to spotlight mode. With the space frequency relationship an altered PGA is used
to extend the PGA to stripmap mode SAR. The stripmap SAR, range dependant
PGA allows for focusing of low altitude low cost stripmap SARs. The phase weighted
estimation method is extended to raﬁge dependent stripmap. The stripmap mode

estimator is most successful with high signal-to-noise images.
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Chapter 1

Introduction

Movement in aircraft has been a major cause of phase errors in radar images
since the introduction of Synthetic Aperture Radar (SAR) more than thirty years
ago. The history of SAR is discussed in detail in two books written by Walter G.
Carrara and Ron S. Goodman and Ronald M. Majewski [1], and Charles V. Jakowatz
and Daniel E. Wahl and Paul H. Eichel and Dennis C. Ghiglia and Paul A. Thompson
[2]. The Phase Gradient Autofucus (PGA) helps correct phase errors. This paper
expands the PGA algorithm originally developed by P. H. Eichel and C. V. Jakowatz,
Jr. [3] [4] from its restriction to high altitude spotlight SARs, to low altitude stripmap
SAR. This expansion is made in two steps.

The first step introduces range dependent phase errors into spotlight SAR.
When SARs are flown at low altitudes, the change in look angles from the farthest
range point to the nearest range point becomes significant. The assumption of having
constant phase errors in all range bins [3] [4] used in the PGA becomes invalid. A new
estimation step produces an algorithm capable of estimating a range dependent, two
parameter phase error. This algorithm is introduced as Phase Weighted Estimation
(PWE).

The next step is extending the algorithm to stripmap data. This step has
been attempted once before by C. V Jakowatz, Jr. [5]. Dr. Jakowatz did not attempt
range dependent images. A different approach, with a new stripmap to spotlight
converter and altered PGA, produces an estimator that is capable of estimating phase
error functions in stripmap, and spotlight SAR. This estimator is easily extended to

low and high altitude phase errors. In the following sections I will present tutorial




information and giva an outline of this thesis.

1.1 Stripmap and Spotlight SAR

Chapter 2 discusses the basics of stripmap and spotlight SAR. Synthetic Aper-
ture Radar (SAR) has become a widely used remote imaging technique. Recent ad-
vances in radio frequency devices, analog to digital converters, computers and digital
signal processors have made high resolution SAR possible at a lower cost. SARs do
not need optical illumination and have the unique ability to penetrate foliage, sand
or soil as demenstrated by D. W. Holcomb [6]. Using the advantages of SAR, many
useful applications have been developed in many research areas. These applications
generally require very high resolution.

SARs are carried aboard constant velocity moving transport vehicles. SARs
use the induced phase change from the radar back scatter, to compress, or create
an image by signal processing methods as discussed in detail by David C. Munson,
JR. and Robert L. Visentin [7]. Much like a blurred photogragh to moving a camera
while taking a picture, the resultant SAR image is blurred by unknown movements
of the carryving device, known as the radar platform. When a unknown phase change
caused by non-uniform platform motion, is present in the collected data, the image is
not created properly and is de-focused. Movements in the SAR platform create phase
errors in the image [1]. These phase errors limit the resolution.

Spotlight and stripmap SAR are similar in that they both use a known phase
history to create images. However, the acquisition and processing of the data are quite
different for these two modes. Spotlight SAR uses a movable antenna that is steered
to illuminate a single stationary spot on the ground for the entire acquisition time.
The known phase change chirp, caused by the moving antenna, usually contains a
bandwidth that is too wide to be sampled directly because of the long exposure time.
In this case the azimuth chirp is frequently removed with high frequency hardware.
The cost of the steerable antenna and dechirp hardware make the spotlight SAR quite

expensive and difficult to implement in low cost systems. The processing required

to create the spotlight image is the Fourier transform of the received dechirped data




[1]. Thus. the phase history of the spotlight image is contained in the inverse Fourier

transform of the image. This relationship between the image and the phase historv

is key to the application of the PGA.

Strip-map Mode
Phasc History Divided Throughout Image

Spot-light Mode
Phasc History Complete Throughout Image

Figure 1.1: SAR Geometry Phase History Comparison

Stripmap SAR does not have a movable antenna [7], and the illuminated area
changes during acquisition as shown in Fig. 1.1. With a shorter illumination time
the stripmap SAR generally has a narrower bandwidth. Additionally, the chirp is not
centered on a stationary point, making it difficult to remove the chirp in hardware.
For these reasons the data is generally sampled directly. Stripmap SAR systems
have been shown to create reasonable images at low cost by D. G. Thompson and D.
V. Arnold [8]. Stripmap SAR is mechanically and electronically easier to configure,
maintain and use than spotlight SAR [1]. The image formation processing consists of
a calculated expected chirp convolved with each range line of data to compress and
create an image. With the fully compressed image data and the range compressed data

both referenced to the time domain, (as opposed to the fully compressed image data




in Frequency domain as in the spotlight case) the PGA cannot be applied directly.

1.2 Spotlight Autofocus Algorithms

To obtain high resolution images, the effects due to vibrations and movements
of the radar platform must be removed. In most systems an inertial navigational
unit (INU) is used to measure the movement of the platform [1]. Although these
devices measure the general motions of the radar platform (generally an aircraft),
thev do not account for all of the movement and vibration that takes place at the
antenna. Other phase errors, including electromagnetic propagation and atmospheric
effects that are unmeasurable with an INU also degrade the resolution. To obtain
the highest resolution, all movement and other phase errors must be compensated
for in the final image. Three main algorithms have been developed to remove these
phase. The first algorithm is referred to as inverse filtering [2] and uses bright known
targets to sharpen the whole image using the bright target as a reference. The second
algorithm is called map drift [2] and models the phase errors as being a low order
polynomial. This method restricts the errors that may be compensated. Both of
these methods have met with limited success, due mainly to the limited images and
SAR types that may be used with them.

The third method is image-independent, and is called the Phase Gradient
Autofocus (PGA) Algorithm [4]. The term autofocus refers to the ability of the
algorithm to focus the image using only the data itself. The PGA has been shown
to be a very robust algorithm that can estimate errors found in urban images with
bright close targets, or an image with no bright targets such as a desert. The PGA
does not use a phase error model so both high and low order phase errors may be
estimated accurately. The PGA was originally developed for spotlight SAR and has
been very successful.

In this thesis the four main steps in the PGA algorithm are all used in the

range dependent stripmap model [4][3]. The four steps defined in this thesis are center

shifting, windowing, phase estimation and iteration.




1.3 Range Dependent Errors: Phase Weighted Estimation

The PGA has also been used extensively in high flyving aircraft. but never in
low altitude systems because the PGA makes the narrow beam assumption. This
approximation assumes that the range look angle does not change significantlv over
the image. Low altitude spotlight or stripmap SARs can not use this algorithm. The
contribution of this thesis is the development of a more general PGA that may be
used with all images regardless of the SAR system and altitude used. The Phase
Weighted Estimation PGA (PWE PGA) proposed here differs from the original PGA

primarily in the phase estimation step.

1.4 Stripmap SAR Phase Error Estimation

The PGA has never (until now) successfully been ported to range dependent or
stripmap SAR. Stripmap to spotlight converters have been developed in the past by
Yeo TS, Tan NL, Lu YH and Zhang CB [9] and M. Soumekh [10]. These algorithms
are complicated and can not be easily used with range dependent data. A new
compression algorithm will compress stripmap SAR images to give a spotlight like
frequency-space relationship. With this compression used, the stripmap image data
may used with an altered PWE PGA autofocus algorithm. The altered PWE PGA
differs only in the circular shift step. The results for the derivation of the range
dependent stripmap PGA are shown and compared with those of the conventional
PGA. The results show that the phase error is estimated comparably to spotlight

non-range systems.

1.5 Contributions

The contributions of this thesis include; the derivation of the low altiude SAR
model, deriving the phase error estimator at low range called Phase Weighted Estima-
tion, expanding the PGA to stripmap, and expanding the Phase Weighted Estimation
to low altitude stripmap. These contributions are discussed more in the conclusion

section.




Chapter 2

Stripmap and Spotlight SARs

Since the early 1930’s, radar has been used to find a target’s location, speed
and heading. The resolution of a radar system is defined in the azimuth and range
directions. In the early 1950’s Carl Wiley first developed the concept of processing
normal radar data to achieve high resolution at the, Goodyear Aircraft Corporation
[2]. Wiley called these resolution enhancement techniques ”Doppler beam sharpen-
ing”. Today these ideas are called Synthetic Aperture Radar (SAR).

Since it’s conception, many uses for SAR have been found. Much of the
funding for SAR research is found in three areas. These three areas are military,
environmental and topographical. SAR was originally developed as an all-weather,
day or night imaging system. The military originally funded development of SAR
imaging systems for the reconnaissance, surveillance and targeting of enemy weapons.
Throughout this development, different types of SAR were developed, each with its
own advantages and disadvantages. The two types that will be discussed here are
stripmap and spotlight. Stripmap was introduced in the early 1950’s by Wiley and
spotlight was first introduced by Walker in 1980 [2]. In the 1980’s, environmental
uses of SAR systems started to expand. Uses such as finding oil spills, measuring rain
forest acreage, and other measuring of changing environmental effects have become
widespread. Using two receiving antennae, the z-axis can be resolved by comparing
the phase of both images. The resulting images can have sub-meter resolution in all

three dimensions making very accurate topographical maps. SAR also has the ability

to see through foliage and dry sand. Archaeologists have found it to be a very useful

tool [8].




2.1 Real Aperture Radar:

Real Aperture Radar (RAR) is the precessor to SAR. RARs range realization
generally use a Linear Frequency Modulated (LFM) chirp to increase the bandwidth.

The definition of the LEFM chirp, with the mathematical model [11] is given below.

2.1.1 LFM Chirp

A pulsed LFM signal sent from the RADAR is called a chirp. The

frequency / time relationship of a LFM chirp is shown in Fig. 2.1 and is described by
LFM(t) = cos(Bt?) 0<t<T. (2.1)

[ is the ‘chirp rate’ and is defined as the rate at which the frequency increases. From

TCBW ....................................... :

T

Figure 2.1: LFM Chirp. S is the slope of the line.

Eq. (2.1) it can be seen that the phase of the chirp is given by 6 = 8t2. The frequency
is determined by 6" = 2(3t. The LFM chirp bandwidth, BW, is determined by the
maximum ¢, which occurs at t = T, to give BW = 24t. Solving for 8 in radians
where BW is in Hz yields

BWr

f=—%

: (2.2)

B is graphically illustrated in Fig. 2.1 where £ is the slope of the line.

8




2.1.2 Using the LFM Chirp in Real Aperture Radar with Range Com-

pression

The LFM chirp is mixed with the RF signal and then sent. The received
signal can be modeled as a time delayed, attenuated signal of the original chirp. Let
the range distance and amplitude of a given return be represented by the distance
Ry = ¢ and amplitude A;. The received signal is then

1
r(t) = Ak—2- (cos [we(t — to) — B(t — t,)?] + cos [we(t — t,) + B(t — t)]).  (23)
The return signal is then base banded, filtered and the real and imaginarv parts are

extracted using a Hilbert transform. The resulting equation is

~— o/
— —

A B

1 , , . .
ZAk (exp [Fwot — 7B(t —t,)% — Jweto] +exp [Jwot + 7 B(t — t,)? — ]wcto]>

- %(A +B). (2.4)

Range is resolved using a matched filter approach. The received signal is correlated
with the original LFM chirp. Fast Fourier transform techniques are usually used to
reduce computations in this process. The correlation is the same as the convolution
function with the time of one of the terms negated. The results give a sinc function

centered at t = to. The derivation is seen below (for details see [11]).

h(t) = exp(jwot — jBt*) +exp(jwot + jB2) (2.5)
C D
= C+D (2.6)
g(t) = s(t)®h*(t) (2.7)
F9(t)) = G(w)=S(w)H(-w) (2.8)
g(t) = /— s(t+ 7)h*(1)dr (2.9)
g(t) =~ /AC + BD (2.10)
= Ak2T exp(—jwet, + jwot)sinc[BT(t — to)lcos[BT(t — t,) — B(t — to)?]
5 = TT_ﬁ (2.11)



This process is called compression. In the range direction the sinc function in Eq.

(2.11) shows that the resolution is inversely proportional to the chirp’s bandwidth.

The range resolution Ay is given by

_ C
T 9BW’

Ay (2.12)

Where c is the speed of light and BW is the bandwidth of the system. An optional
view is that the range resolution is determined by the bandwidth of the chirp. This
is because as the frequencies in the time domain widen the sinc becomes narrower

in the frequency domain. In Fig. 2.2, a plane at height H, above the earth’s surface v

Figure 2.2: SAR Geometry

has a resolution of Az in the azimuth direction and a resolution of Ay in the range
direction. As the plane travels higher into the sky, the height of the aircraft H
widens the beamwidths area of effect has on the ground. The wavelength X affects
the beamwidth because an antenna’s electrical size is proportional to the wavelength
associated with it. Therefore, as the wavelength gets smaller the antenna’s electrical

size relative to its wavelength gets bigger. It can then be shown that the resolution

1s inversely related to the size of the antenna, the height of the platform, and the
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wavelength as described by

H\
= — 9
Az 7 (2.13)

This principle is illustrated using the actual specifications of the NASA Seasat
satellite [2]. Using Eq. (2.13) for the azimuth resolution, the following parameters
are set for the NASA Seasat satellite: H = 800 kilometers, A =0.235m and Az = 5.5.
Solving for the length of the antenna L, the result is an unrealizable 34 kilometers.
This style of radar is named real aperture radar (RAR) because the calculated antenna

size is the actual size needed to achieve the desired resolution.

2.2 Synthetic Aperture Radar

As a solution to the problem of antenna size, Synthetic Aperture Radar (SAR)
was developed in the late 1960’s. Synthetic Aperture Radar (SAR) describes a radar
imaging system that uses motion and signal processing to achieve high resolution in
the azimuth direction. By mounting a SAR antenna on a moving object (land vehicle,
aircraft or satellite), high resolution images may be taken with a relatively small
antenna. Synthetic Aperture refers to the equivalent size of the antenna required to
achieve the same resolution without the combination of motion and data processing.

Two different modes of SAR have been developed. Each uses a combination
of hardware and signal processing to obtain high resolution images. These two SAR
modes ”stripmap” and ”spotlight” will be discussed hereafter. Stripmap and spotlight
modes each have their advantages and disadvantages.

Stripmap has the ability to take long constant image strips. With this ability,
SAR can be used for navigation systems regardless of weather or lighting conditions
with a real time processor. Examples of applications that use this type of radar
include missile guidance systems, auto-pilot and large-area surveys [12].

Spotlight illuminates only one spot during the whole data collection time.
Spotlight has superior resolution and noise suppression. Image processing and aut-
ofocus algorithms are also computational easier to implement. For a finite circular

spot on the ground, relatively high resolution is obtained.
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spot on the ground, relatively high resolution is obtained.
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2.3 Stripmap SAR

The hardware in stripmap SAR is similar to the real aperture radar men-
tioned earlier, except for the storage devices used to store the parameters needed
for azimuth compression. The needed parameters are platform velocity, position, an-
tenna beamwidth, sample rate and the phase and amplitude of each return. Figure
2.3 shows the geometry for stripmap SAR. The range compression is the same as
for the case of the real aperture radar using a matched filter technique. The range
resolution for stripmap SAR is

(&

2= 5w

(2.14)

Figure 2.3: SAR Geometry for a Stripmap SAR

Azimuth compression was implemented by using the same type of matched
filter processing in the azimuth direction that is used in the range direction. This
was accomplished by forming a motion related function that is strongly correlated

at only one point. One useful property of the LFM chirp introduced earlier is that
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its autocorrelation function is a verv narrow sinc as can be seen in Eq. (2.11). A

function similar to the LFM chirp is found in the Doppler frequency of a target

referenced to the movement of the platform. The range compressed data is correlated
in the azimuth direction with the derived azimuth chirp. Therefore, compression in
the azimuth direction becomes similar to compression in the range direction. The
range data in Eq. (2.11) is compressed when ¢ = to- The range compressed data is

then expressed by
9(to) = Ar2T exp(—jwet, + jw,t,) rect(~T/2 <t <T/2). (2.15)

Where w, is the carrier and w, is the modulation. The rect represents the window of

the antenna pattern on the ground.

Let the range distance for a given return be represented by the distance R(t,) =
(toc)/(2). Since w. >> w,, the w,t, term can be neglected —wt, + wot, ~ —w,t,.
Now a change of variables from ¢, to ¢ sets t to the time measured in terms of the
azimuth sample rate or PRF (pulse repetition frequency). The coefficients of R(t)

are dependent on the location of the target. Equation (2.15) may be represented as

g(t) =~ Ax2T exp(—jwet,)rect(~T/2 < t < T/2)
= A 2T exp (ﬁrf_(tl) rect(=T/2 <t < T/2). (2.16)

Derivation of the Quadratic Phase Term

The range to the target in Fig. 2.2 is found by geometry to be,

| R(t) = Vz(t)2 + y(t)2 + H(2)? -T/2<t<T/2 (2.17)

Where ¢ is the azimuth sample time, z(t) , y(t) and H(t), are the distances to the
| target in the x, y, and z planes respectively. T is determined by azimuth antenna
beamwidth. In the motionless ideal case, y(t) and H(t) are constants, and z(t) =

Z, — vt, where v is the velocity of the aircraft, to give:

R(t) = \/(z, — vt)? + Y2+ H2. (2.18)

13

h—




—

Let R, = y/22+ y? + H? be the nominal minimum distance to the target. Solving

for z, and substituting into R(t) gives:

R(t) = /R2 — 2z,vt + (vt)2. (2.19)

Expanding the above equation by a Taylor series expansion about t = 0 gives,

Tut v2 x? zvd x?
=R,— = —(1— 292+ (1= 22\ + ... )
R(t) =R, R + 2Ro( Rﬁ) + 2R3( Rg)t + (2.20)

Expanding around zero sets z, = 0 and causes R(t) to simplify to

vi? ot
t)=R,+ — — —. .
R(t) + 2R,  SR2 (2.21)
Inserting the first two terms of Eq. (2.21) into Eq. (2.16) gives the phase ¥
U(t) = 47r@
47R, 2mv*t?

~ MR | 2MVE —Ti2 <t <T)2). (2.22)

A AR,

Equation (2.22) represents the azimuth chirp for each range bin. This azimuth chirp
is the quaaratic phase response for movement in the azimuth direction for a given
constant range target. The normalized phase response of Eq. (2.22) is shown in Fig.
2.4.

Since the frequency is the derivative of the phase, an intuitive way to under-
stand azimuth compression is to look for positive and negative Doppler frequencies
in the received signal.

it
AR,

Doppler Frequency = rect(-T/2 <t <T/2) (2.23)

An azimuth chirp is composed of the Doppler frequency for each scatterer.
When the scatterer is in front of the plane the Doppler frequency is positive and
when the scatter is behind the plane the Doppler frequency is negative. This steady
change of the Doppler frequency from high positive frequency to zero and then to
high negative frequency creates a chirp similar to the LEM chirp used in the range

direction. The point where the Doppler frequency is zero corresponds to the point
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Figure 2.4: The normalized phase change of a target, referenced to a constant velocity
moving vehicle for stripmap SAR. The range change causes a quadratic phase pattern.

where the azimuthal blurred image should be compressed. This azimuth chirp is then
used with a matched filter in the azimuth direction to produce high resolution.

The improvement in the azimuth resolution is considerable. Using the Syn-
thetic Aperture increases the resolution significantly when compared to the real aper-
ture case. In the example of the Seasat satellite, using the azimuth compression, the
azimuth resolution is 5.5 meters, while the antenna is only 11 meters long. Comparing
this to a real aperture with the same resolution, an antenna of over 34 kilometers is
needed. The tradeoffs are the required storage and processing.

Stripmap mode requires the derivation of the azimuth chirp or quadratic phase
expected for each range bin in the image. This chirp is then correlated with each
corresponding range bin. This difficulty in azimuth resolution is the hinderance for

Stripmap auto-focusing techniques.
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Figure 2.5: Azimuth Chirp of target located at the 270%" pixel

2.4 Spotlight Synthetic Aperture Radar

Spotlight SAR (SSAR) is motivated by the same desire for high azimuth res-
olution as stripmap SAR. A comparison between the spotlight and stripmap data
collection methods is shown in Fig. 2.6. SSAR uses the same range compression
techniques used in stripmap SAR. SSAR uses a steerable antenna to focus on one
spot on the ground like a spotlight.

In stripmap mode, the antenna is stationary and the length of the azimuth
chirp varies with different range lines. In the spotlight mode, the antenna is connected
to a gimble which steers its to illuminate a stationary spot on the ground as shown
in Fig. 2.7. As the plane moves, the spotlight is maintained on the same spot. This
gives almost a 180 degree view- of the same spot on the ground. The steering of the
antenna provides a longer exposure time, thus providing many samples of the same
area. With the antenna constantly changing direction to focus on the same spot, the
resulting antenna pattern is very large. Equation (2.23) shows that the maximum

chirp frequency is restricted by the rect created by the antenna beamwidth. In
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Figure 2.6: (top) Stripmap SAR has a constantly changing coverage area. The
stripmap range swath is restricted by the range gateing of the system. The stripmap
azimuth swath is restricted by antenna beamwidth and the desired bandwidth of the
system. (bottom) Spotlight SAR uses a spotlight like antenna to focus on one spot

continually requiring a gimble to continually move the antenna to the focus center.
The size of the spot is restricted by the antenna pattern. (1]

spotlight mode the rect spans the whole data, collection time. Consequently the rect

may be dropped from the equation to yield

4Tvt

AR,

The maximum Doppler frequency is now dependant on the length of the col-

Doppler Frequency = (2.24)

lection time. This gives extremely high bandwidths that have the ability to produce
very high resolution images. Therefore, the obtainable resolution in the spotlight

images is higher than in the stripmap images. Because of the high bandwidth of the
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Figure 2.7: Example Antenna hardware

chirps produced in spotlight data, the data usually cannot be sampled directly. The :
rotating antenna allows the center of the image to be stationary. By centering the )
conjugate of the chirp in the middle of the image and mixing it with each received
signal, the high bandwidth chirp may be removed in hardware easing the sampling
frequency requirements. A chirp is still present at every point in the image. By cen-
tering the conjugate of the chirp in the middle of the image and multiplying the range
compressed image, an azimuth position dependent frequency remains for each pixel.
To show this development, an image with two pixels A and B will be introduced. One

pixel will be located at the center of the image and the other pixel will be located at

azimuth time (corresponding to position) t,.

2‘ir'u2t2 b
c(t) = e *Ro
Im(t) = And(t)e’®4 + B 6(t — ty)e?®® (2.25) ’

The azimuth chirp‘is c(t), and 04 and Op correspond to the inherent phase of each
target A and B respectively. If we start with the initial range compressed data, the
return for each pixel r(t) is represented by its amplitude, phase and azimuth chirp
as, ’ '

r(t) = gm(t) ® c(2). (2.26) :
To show the hardware dechirp step, r(t) is multiplied by c*(t) centered in the image
to yield a new 7'(t),

r'(t) = [(A6(2)e?®4 + Bo(t — t2)e’%8) ® c(t)]c* (¢). (2.27)
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Implementing the convolution steps, the above equation reduces to:

r'(t) = [Ac(t)e’® + Be(t — ta)e?®2)c* (1)

Tl(t) [ =5 (t) o4 4 BeJ'Lv,\(Rt;tz)_z+03] (1)

P (1) = [T TSR 400y por TS jog j2m

r'(t) = [Ae?4 + Be’Lﬂ,\(fz——tz)—ﬂo 5 oJ jle?

r'(t) = [Aei®4 4+ Bel =¥~ =zm? (2tzt+t2)+93] 225
r'(t)=[A Aedf4 4+ Bej——%+036j LIk (2t2t)]

Observing the above equation, it is seen that the only ¢t dependant phase term
is a linear term of the B scatterer. From basic Fourier transform theory, we see that
the e =3#=(2121) torm will result in a shift in the frequency domain. This property is
used for azimuth compression. Each azimuth pixel will be shifted in proportion to its

distance from center. The Fourier transform results in

alt) = F{Aes + Bejc1t§+josej(c12tzt)} (2.29)

a(t) = Ael?4 4 Beiarti+ids o(juwtz)

Where a(t) is the azimuth compressed or the image domain. SSAR has a very simple
compression algorithm when compared to the stripmap mode SAR. This advantage

reduces computation and allows easy access to the important phase history.
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Chapter 3

Spotlight Autofocus Algorithms and Phase Gradient Autofo-

cus

In the previous chapter, the derivation of ideal spotlight and stripmap com-
pression was presented. Many factors inhibit the actual image from being ideal. The
main problem is unknown phase variations in the scattered return. The causes of this
phase error is mainly from movements in the radar platform, but other interferences
in the propagation of the electromagnetic waves also cause errors. In both the spot-
light and stripmap modes the compression algorithms use the phase changes created
from the movement of the radar to compress the images as seen in Eqgs. (2.4) and
(2.30). In Eq. (2.18), H(t) and y(t) are assumed to be constants. In low resolution
radar these assumptions will hold. However, in high resolution images, with the res-
olution on the order of 1m or less, vibrations and movements of the radar platform
cause significant blurring. If the movements in those two directions are included in
Eq. (2.18) then the resulting azimuth chirp could be substantially different. Even
when using a motion measuring device like an IMU, the vibrations of the antenna
and the propagation effects are unknown. These random movements make the direct
compensation impossible. These movements and phase disturbances will be referred
to as phase errors. The phase errors treated in this chapter will be restricted to high
altitude spotlight SAR system phase errors described next..

If the H in Fig. 3.1 is much greater than the Ry — R, (swath width) when the

changes in look angle Af may be neglected

Af = tan™! % ~tan™! = ~ 0. (3.1)

=1
H
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Figure 3.1: Range Dependent SAR Geometry

Most spotlight systems satisfy the height restraint given above. In high altitude
spotlight systems the phase error can be approximated as being the same for all range
lines. Several phase error estimators have been developed, but only one has shown
exceptional results on all types of images and phase errors. This phase estimator is
called Phase Gradient Autofocus (PGA). Two other algorithms were used before the
PGA. The first is called inverse filtering [2]. Inverse filtering uses bright known targets
and finds the transform function which transforms it into a delta function. This
algorithm may only be used with images that have bight point targets. The second
algorithm called map drift [2] models the errors as being a low order polynomial.
This method limits the errors that may be compensated. Both of these methods have
had limited success, due to the limited images and SAR types that may be used with

them.
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estimator for the PGA model is Maximum Likelihood.
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The PGA was first introduced by Charles \". Jakowatz in 1988 [4]. The PGA

has four major steps. The four steps are: center shifting, windowing, phase gradient
estimation and iteration. A flow chart of this is presented in Fig. 3.2. Several different

estimators have been developed for the phase gradient estimator step. The optimal

Maximum Likelihood PGA assumes that the phase error is constant with range
and estimates the error in the azimuth direction. Therefore, it cannot be used with
low altitude systems. A more complete approach to this problem is developed in

Chapter 4.

Figure 3.2: PGA Steps'The PGA has four main steps. The first shifting step is to
remove the phase modulation used in compression, the second is to window out phase
noise from far scatterers, the third is to estimate the phase gradient, and the last step
is iteration.




—

The PGA will be presented with a point target in range bin n placed in the )
compressed image at azimuth point wy. The spotlight compression is the same as was '
derived in the previous chapter, except that a unknown phase error is introduced. In

the spotlight image domain a scatterer is represented by
Gn(w) = Apb(w — wp)]e’®* ® E(w), (3.2) '

where F(w) is the Fourier transform of the phase error function, G,(w) is the image
domain of the ny, range bin, A, is the amplitude of the scatterer, and 6, is the phase
of the scatterer. The range compressed image is achieved by taking the inverse Fourier
transform of Eq. (3.2). The point target is represented in the range compressed time '

domain by o
gn(t) = Apedlwottoe(®)+6a) (3.3)

where A;, wp and 64 are the magnitude, frequency and phase of the signal respectively,

and ¢g(t) is the phase error from the motion of the platform.

3.1 Complex Shift

In the image domain, the important phase history is evident in all pixels
because spotlight mode focuses on one spot during the whole data acquisition. This
constant focusing removes the band limitation.

The purpose of phase shifting is to remove the modulation out of the signal and ;
to use the brightest signal on each constant range line. The brightest point contains
the least clutter noise shown in Chapter least phase variance as shown in Chapter
4. The equation is discretized with N range lines and M azimuth lines. When each
maximum amplitude A,, in each constant range line is shifted to zero frequency, then

the e*°! phase term is eliminated to give
gn(m) = A,e 7(#e(m)+0a) (3.4)

The ¢.(m) term in Eq. (3.4), which is the phase error from the movement of the

aircraft, is the only function dependent on azimuth (time) remaining.
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Figure 3.3: Example of the steps of the PGA: (a)Blurred image, (b)Circular Phase
Shift, (c)Restored Image, (d)Window size 2]

3.2 Windowing

The next step is to window around the shifted brighter points in each range
line. After shifting the brightest point on each constant range line to zero frequency,
the rest of the points on each range line are modeled as Gaussian white noise. This
model is almost accurate, but not completely because of possible correlation of the
targets on the ground. However, this model works very well for most cases. All other
targets left in the image create noise in the phase when the inverse Fourier transform

is taken. With the position-frequency relationship of the scatterers, the scatterers
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that are farthest from the brightest shifted point create the highest frequency noise.
The windowing filters out the high frequency noise. Care must be taken as the window
size is chosen, to not window out some of the phase error frequencies.

This step of windowing can be represented by a weighting function of W (w).
Wheh this function is multiplied then the unwanted high frequency noise is zeroed
out. As the window length decreases, the high frequency components are decreased
creating a more accurate phase estimation. The inverse Fourier transform of the

shifted windowed image domain is

g(t) = Ae?Cate®) @ w(t) + n(t). (3.5)

where w(t) represents the inverse Fourier transform of the window function. If the
window size is chosen accurately then w(t) can be dropped without loss of accuracy

to vield,
g(t) = AedCate®) 4 p(y). (3.6)

The function g(t) represents a magnitude multiplied by a complex exponential.
This complex exponential contains the motion phase error ¢.(¢) which is a function ,

of time and an inherent phase constant 64.

3.3 Phase Gradient Estimation

There are two main options for phase estimation. The phase estimation is
done in the range compressed domain. The most common method, Maximum likeli-
hood (ML), will be discussed. Equation 3.6 shows that the phase error and a phase
constant remain in each pixel. ML isolates the phase error, takes the derivative, and
then integrates it. Maximum likelihood is derived from a special case of the eigen- )
vector method. The eigenvector method will be introduced, along with the ML, and

examples will be used to demonstrate its success.

3.3.1 Eigenvector Method

The eigenvector method [4] is the basis for the maximum likelihood method

discussed in the next section. Using the model introduced earlier, each point in the
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image is modeled as a scatterer with Gaussian white noise created from the mutuallv

independent, identically distributed targets spread in both the range and azimuth

directions:
gn(m) = Aped@atetm) L pin m). (3.7)
These points are then included in vectors that expand in the azimuth direction,
Data vector: X2 = [gn1, ..., gnn]. (3.8)

The logarithm of the conditional probability density can be taken because the samples

are i.i.d, to simplify the problem as,

N
In p(X|®) = =N In[7y|C] - foC‘lxn. (3.9)

n=1
C is the covarience matrix for each range line of data and ¥ is a vector of phase errors

represented as

® =0, e, ..., bem. (3.10)

The general definition of the covarience is used with the model to find the covarience

matrix,
C =21+ o2vv, (3.11)
I is the identity vector and v is the phase only vector described below,
Phase estimate vector: v7 = [1,e/¥2, ... e/¥e], (3.12)

The maximum likelihood estimator for the phase error vector ® is based on
finding the value of ® that maximizes Eq. (3.9). The result of the maximization can
be found in detail in [4]. The solution to maximize Eq. (3.9) is found to be the same

as maximizing

Qs = viCv. (3.13)
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3.3.2 Maximum Likelihood ,

In 1993 a method for maximum likelihood estimation of phase errors was
published [4]. This process is superior because it does not assume a high signal to '
clutter ratio, and eliminates the bias problem. The Maximum likelihood is a special »
case of the eigenvector method.

The SAR image is again constructed of N range lines and M azimuth columns.

After center shifting and windowing the same model used previous gives
gn(m) = Ape?®ate(m) 4 nin m). (3.14) )

The ML derivation is found by taking the special case of the eigenvector method with
M=2. This case of the eigenvector method estimates the phase gradient with two

pixels. In this case Eq. 3.13 is represented as

N N
Zn=1 |9n.m |2 Zn=1 gn,mg:;,m+1

N A‘V .
Zn=1 g:z,mgn,m-i-l Zn=1 |Gn,m+1 |2 el%e

Qs = —[1 )

3= % (3.15)

The maximum likelihood is solved by finding the values of % that maximizes Qg.

Multiplying the matrices results in

N
Qs = Z(gn,mg:t,m-{—lew+g;,m9n,m+le_jw) ‘
n=1
N N '
= Zgn’mgmmﬂ cos [Aw -/ (Z g;,mgn,m_H)} . (3.16)
n=1 n=1 ;

Setting Ay = / (211:;1 g:l,mgn,m+1) creates a maximum of cos(0) = 1. Thus the

maximum likelihood solution is

N
Aw = L (Z g;,mgn,m+1) . (317)
n=1

An intuitive approach follows:
The maximum likelihood results in finding the averaging of all the lines then s
taking the phase difference. The phase difference may be found by multiplying the )

current pixel with the conjugate of the neighboring pixel, N

28




AS = LGnm-10p m], (3.18)
which gives,

gn,mgfl,(mq )y =

(Anej(0A+d>e m) + nn,m)((A:le-j(aA“f‘d’em—l) + n;n,m—l))' (3.19)

Averaging all the constant range lines reduces the noise because each of these lines
are uncorrelated with all other lines and also uncorrelated with the phase error. Thus,
the phase error is estimated. The cross correlation of the noise with the scatterer is
calculated by the expectation of the scatterer by the expectation of the noise. The
auto correlation of the noise is a delta function since it is assumed that the noise can
be modeled as white Gaussian. This is useful because the only variable left will be

the phase difference, weighted by its magnitude. The result is
< lAnlzej(¢e(n,m)_¢e(n.m—l)) > . (320)

To derive the phase function the above equation can be written as
. N
DS =1 [Gnm-13sm] (3.21)
n=1
The entire aperture phase error is then estimated by integrating the Aqb(m)

N
S =D Ay i Ay =0 (3.22)

n=2

This result is the same as the special case of the eigenvector method.

3.4 Iteration

The last step is-iteration. The windowing function of step 2 produces an
iterative step. The wider the window, the higher frequency noise that is entered
into the phase. As one estimate of the phase is made and corrected, the phase error
frequency content decreases. The window is narrowed to lower the noise in the phase
estimation step and a better phase estimate is obtained. This process is repeated

until the estimated phase error difference between steps reaches a lower threshold.
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3.5 Maximum Likelihood Results

To demestrate the versatility of the Maximum Likelihood PGA, three types
of images have been chosen. The three images are a desert image with no distinct
targets Figs. 3.4 through 3.8, a mountain scene with distributed targets Figs. 3.9
through 3.13, and an urban image with bright targets in close proximity Figs. 3.14
through 3.20. The ML PGA showed excellent results in all types of images and phase
errors. A high frequency phase error was applied to the urban image in Figs. 3.19
3.20, to simulate high frequency vibrations at the antenna or trigger jitter in the A/D
converter. The high frequency errors were estimated and compensated comparébly

to the low frequency errors. The results are seen in the following figures.
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3.5.1 Desert Image: No Significant Scatterers

a. Originat tmage

Range (km)
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Azimuth position (km)

Figure 3.4: The original, focused SAR image of the desert.

b. Blurred image
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1 2 3 4 5 (=3 7 8
Azimuth position (km)

Figure 3.5: The phase corrupted desert image.
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c. Restored Image
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Figure 3.6: The restored desert image using the ML PGA algorithm.
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Figure 3.7: The maximum likelihood Figure 3.8: The Standard Deviation
autofocus algorithm shows excellent from the true phase error for the
results within the first couple of it- desert image shows excellent results.

erations. This desert image has no
significant targets.
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3.5.2 Mountain Image: Some Significant Scatterers
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Figure 3.9: The original, focused SAR image of a mountain.
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Figure 3.10: The phase corrupted mountain image.
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Figure 3.11: The restored mountain image using the ML PGA algorithm.
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Figure 3.12: The maximum likeli- Figure 3.13: The Standard Devia-
hood autofocus algorithm shows ex- tion from the true phase error. This
cellent results within the first couple mountain image has distributed tar-
of iterations. This mountain image gets.

has distributed targets.
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3.5.3 Urban Image: Many Significant Scatterers
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Figure 3.14: Urban image.
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Figure 3.15: Blurred spotlight non-range dependent urban image.
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Figure 3.16: The restored urban image using the ML PGA algorithm.

Urban ML NRD Spothght Phase Companson

]
| ——  Onginal
| --- Estimated
10~

Radians

Figure 3.17: The maximum likeli-
hood autofocus algorithm shows ex-
cellent results within the first couple
of iterations. This urban image has
bright targets in close proximity.
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Radtans

Figure 3.18: The Standard Devia-
tion from the true phase error. This
urban image has bright targets in
close proximity.
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Figure 3.19: The maximum likeli-
hood autofocus algorithm shows ex-
cellent results even with a high fre-
quency phase error within the first
couple of iterations. This urban im-
age has bright targets in close prox-
imity.

Urban NRD ML Spotight Siandard Deviation High Frequancy (minsid=0.15851,10)

Figure 3.20: The Standard Devia-
tion for the high frequency phase er-
ror. This urban image has bright
targets in close proximity.
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Chapter 4

Range Dependent Error and Phase Weighted Estimation

Range dependent phase errors can not be estimated with the PGA introduced
in Chapter 3. ML PGA assumes that the phase error is constant along the range
direction and varies in the azimuth direction. If a high altitude narrow beam as-
sumption can not be made, then the averaging step of the ML PGA Eq. (3.21) will
not estimate the gradient phase error accurately. The algorithm will not average
correctly giving erroneous results. A new phase estimation step was developed using
the derived phase change caused by the low altitude geometry of the system. This

method is called Phase Weighted Estimation (PWE).

4.1 Range Dependent Geometry and Motion

Figure 4.1 shows an airplane as the radar platform, flying at altitude H, in the
z direction, with the closest range as RO and the farthest range as R1. If H is much
larger than the closest range distance subtracted from the farthest range distance
Ry — R,, then the changes in look angle Af may be neglected:

Af = tan~! By _ tan™? B

T 7= 0. (4.1)

Most SAR systems satisfy the height restraint given above. However, a low-
altitude SAR system like YSAR (8] with highly varying incidence angles will exhibit
range-dependent effects in the phase errors. This section describes the cause of these
range dependent effects.

The angle § may be derived from the change in the range from the closest

range to the farthest range. Using the geometry in Fig. 4.1, the incidence angle is

39



Figure 4.1: An airplane as the radar platform, flying at altitude H, in the z direction,
with the closest range as R0 and the farthest range as R1 is shown. If H is much
larger than the closest range distance subtracted from the farthest range distance
Ry — Ry, then the changes in look angle Af may be neglected

written for the ny, range bin as

H
6, =cost [ ————— | . 4.2

" (RO + AR> (42)
Assume the instrument platform is flying with constant velocity in the direction of
increasing z, with the nominal trajectory following z = y = 0, as shown in Fig. 4.1.

Then the phase error due to the trajectory variance is written by

47

#(t,6) = 5

(Ro — Ry). (4.3)
Using basic trigonometry Ry is rewritten in terms of H and D as

R, = VH? + D2. (4.4)
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D

Figure 4.2: A Transverse Motion Geometry for the Range Dependent SAR shown in
Fig. 4.1

R, is written, expanded and factored giving

Ry = /(H+y()*+ (D - z(t))?
VH? + 2Hy(t) + y2(t) + D? — 2Dz(t) + z(t)2

VI 1+ PO 0D a2

Assuming H >> y(t) and D >> z(t) allows two approximations. The fist ap-

proximates sz’(i);y and H"’z(fr); ~ 0, and the second states that if a << 1 then

V1+a=x 1+ 3 by a two term Taylor expansion. Thus, R; can be approximated as,

2Hy(t) — 2Dz(t)
VH? 2
R, H?2+ D \/1 + 0 D2

7z (1 . Hy(t) = De(t)
VBT D? (1+ L s )




Then by using the definition of cos and sin, R, may be written as

R, = R;+y(t)cos(f) — z(t) sin(f) (4.7)
o(t,0) = %(-—x(t) sin(f) + y(tj cos(6)). (4.8)

Now we have two parameters of phase error to estimate for each azimuth position:

¢r = —%(t) and ¢y = Fy(2).

4.2 Phase Weighted Estimation

The maximum likelihood method is known to be optimal for the noise model
used [4]. Thus, a logical first approach would be to apply this method to the range-
dependent problem. In the ML approach, the argument of the summed target re-
sponses across all range bins is used as the estimated angle of the phase error, as
shown in Eq. (3.17). The sum located inside the angle in Eq. (3.17) inhibits direct
implementation the range dependence found in Eq. (4.8). The ML range dependent
derivation does not seem to have a closed solution.

To overcome this problem, a new algorithm which allows a simple closed form
solution to estimate the phase gradient for a range-dependent version was found.
The phase error of the image is convolved with phase noise from two different sources
from the movement of the platform. The first source is thermal noise, and the second
source is phase errors created from nearby scatterers that is treated as noise. The

' thermal phase noise may be found by representing two azimuth adjacent responses,
modeled with independent phase noise. The relationship between the SNR and the
standard deviation of the phase noise between two pixels is shown in Fig. 4.3. The
standard deviation derived from the PDF, which is a function of the correlation
of the two responses, is a function of the SNR. The PDF was originally developed
for application in interferometry, but may be used with any two returns that have

independent noise and a spatial relationship. For a detailed development, see [13].
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Figure 4.3: The relationship between the SNR and standard deviation between two
independent returns is seen to be nearly linear for an SNR above 30dB.

Figure 4.3 was computed numerically by using thermal phase correlation y

given by,
S 1.9)
=TT SNRT .
in the PDF [13] given by,
1—|y? 1
P = e TP
|7l cos(¢ — @) cos™ || cos(¢ — ¢,)]
{1 + [T = |y[2cos?( — PN . (4.10)
¢ is the phase difference of the two pixels and ¢, is defined by
¢o = arg{v}. (4.11)

Observing Fig. 4.3 reveals that the variance of ¢ is inversely related to the SN R, for

SNR values more than 30db. The approximation for phase variance is given by,

k

Where £ is an arbitrary constant.
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The second source of phase variance is due to close proximity scatterers. These
scatterers are often modeled as white noise. A relationship of the scatterers is intro-

duced below.

The data model used in the ML PGA, models all scatterers, except the center

shifted largest magnitude pixel, as white noise. This model when used in the ML
PGA provides a good phase estimation for the 1st derivative,

0L(6:(t)) _ 0L(r(t))

ot ot (4.13)

An example of the non-white scatterers can be seen when two prominent scatterers,

A and B, are seen in the spotlight case shown below:

. —2mv2t

2
r(t) = [AejOA + Bel 3= 2+aeej‘§’;;'2 (2t2t)]ej¢e(t)_ (4.14)

The response of two targets located within the same azimuth line in the spot-
light case is represented in Eq. (4.14). A is the first scatterer which has been center
shifted to remove the linear phase term and B is second with 6,4 and 6 as the inher-
ent phase of A and B respectively, and ¢, is the phase error. The first derivative is
taken to show the resulting relation for the phase noise introduced.

The total angle of the scatter;ar is found by taking the arctan of the imaginary

over the real parts of Eq. (4.14),

[r(t) = tan™! (imag)

real
_1, (Asin(04 + ¢.(t)) + Bsin(fp + a1t3 + citat + ¢e(t)))

t . (4.1
an (Acos(04 + ¢e(t)) + Bcos(fp + c1t2 + citot + ¢e(t)))) (4.15)
The first derivative of the phase is taken to give
aL(r(t)) BeityAcos(04 — ¢; + 0p — c12t2t) + Bty
bl S St t . .
ot 6¢( ) + 2AB COS(HA —C + 93 - Cl2t2t) + A2 + B? (4 16)

The first derivative shows that the dominant term will be Bd(;_(tt) only if A >> B and
to is small. In this case the A? term will dominate when the phase is estimated.
With the model of two adjacent pixels given above, the term t, is forced to be small,

thus the equation reduces to the estimate of the derivative of the phase error. The
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majority of the noise may be modeled as the thermal noise discussed above. Using
the model of the thermal noise the model given is.

, 1
940 = SNER’

Accordingly, the new method weights the phase measurements by the magni-

(4.17)

tude of the corresponding pixel. This construction avoids the problems of the angle
taken after the sum in Eq. (3.17) and is easily extended to the range dependent case.
This method is called Phase Weighted Estimation (PWE). The PWE is optimal in

the weighted least squares sense. The least squares data model is
Y = XAdP, + e, (4.18)

where Y is the column vector with the measured angle differences, X is a column of
ones, Ag. is the phase estimate and € is a column of phase noise. Let gy,,, denote
the image in the range-compressed domain, with n indicating the range bin and m

the azimuth bin. The phase gradient, denoted A¢, ., is

A¢nm = L[Gnm-1Tp m] (4.19)

With Y, X, and A®, given by

Y =[A¢) Ay ... Agn]T (4.20)
X=[11..1" (4.21)
A®, = [Aferm Aderm ... Adenm]”. (4.22)

The matrix L consists of the weights. L is a linear transformation such that

¢ = Le

V(e*) = LVeLT = k%L (4.23)

If




Ly O 0
0 I 0
0 0 ... Inx

o 0
0 o}
0 0

0 L, 0
0 0 I
ox | {00

In

Multiplying the above equation and equating vectors gives,

Solving for [ gives,

212 __ 1.2
o212 = k2.

”{;2

Q

Substituting the model in Eq. (4.17) gives,

l=vSNR.

(4.24)

(4.25)

(4.26)

If the gradient of the phase is found using the ML technique used in the

previous chapter, then the resultant pixel g4, with the phase as the first difference, is

given by,

Gdnm =

Ap =

* VA 19>
lgﬂ,m—lgn,mle (9n.m lgn.m)

L [gn,m—lg:;,m]

(4.27)

Assuming the magnitude of neighboring pixels is approximately the same, the power

measurement SN R is proportional to g4, m and gives,

vV lgd 1,m|

0

0

L

0

V lgd 2,m!

0

Implementing the linear transformation gives

Y* = X", + ¢,
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where Y* = LY and X* = LX. The least-squares estimators of the parameters are

given by
XTLTLX6 = XTLTLY. (4.30)

If the data set is nonzero then XTLTLX is nonzero. The inverse is guaranteed exist

because XTLTLX is non-zero scaler. The estimated parameter A, is given by
A%, = {XTLTLX}'XTLTLY. (4.31)

Substituting the variables in this equation gives the solution for A/qﬁ\n as

N * *
&b _ D k=1 (I(gn,mgn,m—l)|4(9n,m9n,m—1))
em ~ N . .
k=1 |(gn,m9n,-1)|

(4.32)

This algorithm is easily extended to the range-dependent case by curve fitting X to
the range dependent model derived in Eq. (4.8). The phase weighting of the inverse
of the SNR remains the same. Range curve fitting is added, and a system of equations
indexed by range bin n models the phase curve of the image. Let &bm be the 2 x 1
vector of phase estimates, and X be the Nx2 matrix made up of the sine values in

the first column and the cosine values in the second:

—~ ~  ~ 1T
Apm = [cbx,n ¢y,n] , (4.33)
[ sin(fp) cos(fy) ]

X — sinFOl) COS_(QI) . (4.34)

I sin(fn) cos(Oy) |

Following the same steps as before, the weighted phase gradient is represented by
- A%, = {XTLTLX} 'XTLTLY. (4.35)

If the data set is nonzero then XTLTLX is nonzero, and a solution exists. The
solution is not unique, but it is not required to be. Any solution that estimates the
phase error gradient at all range bins is sufficient. This gradient is then integrated

and applied in the same way as in the original PGA algorithm in chapter 3.
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4.3 Phase Weighted Estimation Results

The new PWE range dependant PGA algorithm was tested using synthetic
phase errors on three different images. Each image has unique characteristics to
thoroughly test the new algorithm. The three images are a desert image with no
prominent scatterers Figs. 4.4 through 4.15, a mountain image with distributed
targets of varying amplitudes Figs. 4.16 through 4.27, and an urban scene with many
bright scatterers in close proximity Figs. 4.28 through 4.51. The spotlight PGA was
shown to give good results with all three images. The non-range dependent PWE is
compared to the ML for comparison.

The original, corrupted and restored images are all similar to those presented
in Chapter 3 because of the accuracy with which the algorithm estimated the phase.
To compare the results to the ML, the original images were first blurred with the non-
range dependent phase error and then restored with the ML PGA and PWE PGA.
In Figs. 4.16, 4.17, 4.28, 4.29, 4.4, 4.5 the applied phase error is compared with the
maximum likelihood and the phase weighted estimation. For these tests, the PWE
has a final better convergence than the ML algorithm, but has a significantly slower
convergence rate, requiring more iterations. The three images are blurred with the
range dependent phase error model derived in Eq. (4.8). Using the range dependent
PWE, the errors are removed with the same accuracy as the non-range dependent
maximum likelihood PGA. The estimated and applied phase errors for ¢, and ¢, are
shown in Figs. 4.18 through 4.15. The ¢, and ¢, sometimes vary from the original
‘error, but the combinations in the different range lines are accurate below one radian
standard deviation.

A high frequency phase error was applied to the urban image to test the high
frequency estimation of the algorithm. The high frequency was estimated to the same

accuracy of the low frequency phase errors as shown in Figs. 4.40 through 4.51.
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4.3.1 Desert Image: No Significant Scatterers
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Figure 4.4: Phase error comparison.
Non-range dependent PWE, ML spot-

light desert image.
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Figure 4.6: Phase error comparison.
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Figure 4.5: The standard deviation.
Non-range dependent PWE, ML spot-
light desert image.
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Figure 4.7: The standard deviation.
Range dependent PWE X spotlight
desert image.
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Figure 4.8: Phase error comparison
Y. Range dependent PWE spotlight
desert image.
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Figure 4.10: Phase error compari-
son. Range dependent PWE spotlight
desert image. (Range Bin 1)
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Figure 4.9: Phase standard deviation
Y. Range dependent PWE spotlight
desert image.
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Figure 4.11: The standard devia-
tion. Range dependent PWE spotlight
desert image. (Range Bin 1)
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Figure 4.12: Phase error compari-
son. Range dependent PWE spotlight
desert image. (Range Bin 300)
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Figure 4.14: Phase error compari-
son.Range dependent PWE spotlight
desert image. (Range Bin 500)
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Figure 4.13: The standard devia-
tion. Range dependent PWE spotlight
desert image. (Range Bin 300)
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Figure 4.15: The standard deviation
X. Range dependent PWE spotlight
desert image. (Range Bin 500)



4.3.2 Mountain Image: Some Significant Scatterers
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Figure 4.16: Phase error comparison.
Non-range dependent PWE, ML spot-
light mountain image.
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Figure 4.18: Phase error X compari-
son. Range dependent PWE spotlight
mountain image.
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Figure 4.17: The standard deviation.
Non-range dependent PWE, ML spot-
light mountain image.
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Figure 4.19: The standard deviation X
comparison. Range dependent PWE
spotlight mountain image.
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Figure 4.20: Phase error Y compari-
son. Range dependent PWE spotlight
mountain image.

Mouniain PWE HD Spotiight Phase Errors at Range 1 (lleration 22)

———  Original Range Bin (1) j
--- Estimated Range Bin {1)
1
|
2, 200 ) 600 800 000 1200
Figure 4.22: Phase error compari-

son. Range dependent PWE spotlight
mountain image. (Range Bin 1)
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Figure 4.21: The standard deviation Y
comparison. Range dependent PWE
spotlight mountain image.
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Figure 4.23: The standard devia-
tion. Range dependent PWE spotlight
mountain image. (Range Bin 1)
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Figure 4.24: Phase error compari-
son. Range dependent PWE spotlight
mountain image. (Range Bin 300)
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Figure 4.26: Phase error compari-
son. Range dependent PWE spotlight
mountain image. (Range Bin 500)
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Figure 4.25: The standard devia-
tion. Range dependent PWE spotlight
mountain image. (Range Bin 300)
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Figure 4.27: The standard devia-
tion. Range dependent PWE spotlight
mountain image. (Range Bin 500)
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4.3.3 Urban Image: Many Significant Scatterers
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Figure 4.28: Phase error comparison.
Non-range dependent PWE, ML spot-
light Urban image.
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Figure 4.30: Phase error comparison X.
Range dependent PWE spotlight urban
image.
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Figure 4.29: The standard deviation.
Non-range dependent PWE, ML spot-
lightUrban image.
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Figure 4.31: The standard deviation X.
Range dependent PWE spotlight urban
image.
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Figure 4.32: Phase error comparison Y.
Range dependent PWE spotlight urban
lmage.
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Figure 4.34: Phase error comparison.
Range dependent PWE spotlight urban
image. (Range Bin 1)
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Figure 4.33: The standard deviation Y.
Range dependent PWE spotlight urban
image.
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Figure 4.35: The standard deviation.
Range dependent PWE spotlight urban
image. (Range Bin 1)
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Figure 4.36: Phase error comparison.
Range dependent PWE spotlight urban
image. (Range Bin 300)
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Figure 4.38: Phase error comparison.
Range dependent PWE spotlight urban
image. (Range Bin 500)
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Figure 4.37: The standard deviation.
Range dependent PWE spotlight urban
image. (Range Bin 300)
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Figure 4.39: The standard deviation.
Range dependent PWE spotlighturban
image. (Range Bin 500)
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Figure 4.42: Phase error comparison X.
Range dependent high frequency error
PWE spotlight urban image.
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Figure 4.41: The standard deviation.
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Figure 4.43: The standard deviation X.
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Figure 4.44: Phase error comparison Y.
Range dependent high frequency error
PWE spotlight urban image.
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Figure 4.46: Phase error comparison.
Range dependent high frequency error
PWE spotlight urban image. (Range
Bin 1)
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Figure 4.45: The standard deviation Y.
Range dependent high frequency error
PWE spotlight urban image.
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Figure 4.47: The standard deviation.
Range dependent high frequency error
PWE spotlight urban image. (Range
Bin 1)
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Figure 4.48: Phase error comparison.
Range dependent high frequency error
PWE spotlight urban image. (Range
Bin 300)
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Figure 4.50: Phase error comparison.
Range dependent high frequency error

PWE spotlight urban image. (Range

Bin 500)
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Chapter 5

Stripmap Phase Estimation

The autofocus algorithms discussed in Chapters 3 and 4 cannot be used with
stripmap SAR. Stripmap SAR has a fixed antenna which allows for much simpler
and cheaper operation. Specifically, the spotlight algorithms use a Fourier trans-
form method to compress images and stripmap SAR uses correlation compression. In
stripmap, both the fully compressed image and range compressed image are in the
time domain. Therefore, the window filtering step can not be used. Other problems
include the phase history. Each pixel in a spotlight image contains the phase his-
tory for the whole image, but in stripmap the phase history is only as wide as the
beam width in the azimuth direction. A possible solution is to convert the data to
spotlight data. Two stripmap to spotlight converters have been introduced [9] [10].
These algorithms both make a narrow beam assumption and attempt to massage the
stripmap data to be used with algorithms such as the range migration algorithm and
the spotlight image formation algorithm [1] [2]. These algorithms cannot be easily
converted to the range dependent problem. An alternative compression algorithm will
be introduced to allow an altered PWE PGA algorithm to be used to estimate and
correct the phase errors for non-range or range dependent stripmap systems. This
method creates a Fourier transform relationship between the fully compressed image

domain and the range compressed domain similar to that of a spotlight mode SAR.

5.1 Alternative Stripmap Azimuth Compression Method

To obtain the same relationship for the stripmap case, the SSC follows four

steps. The four main steps for stripmap phase estimation are: (1) Windowing the
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Figure 5.1: SAR Geometry Phase history Comparison

long stripmap data to smaller data chunks; (2) Multiplication by the conjugate of the
chirp; (3) Fourier transform; (4) and Apply the Stripmap PWE PGA. The alterna-
tive compression method will be called the Stripmap Spotlight Compression method
(SSC) because of the similarities with the general spotlight compression method. The

spotlight mode range compressed data is described by

Ta(t) = [gn(t)]e?? ). (5.1)

The azimuth compressed image domain is formed by taking the Fourier transform of

r(t) to yield,

an(t) = f([gn(t)]ej"’e“)) = Fgn(w) ® Feltw) (5.2)

where g, (t) is the range compressed scatterer, a,(t) is the azimuth compressed domain
or the image domain. The Fourier transform relationship between the two domains

is very important to the windowing step in the PGA as discussed in Chapter 3.
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5.1.1 Create Sections (Step 1)

In contrast to the spotlight case, the stripmap mode SAR does not illuminate

one spot continuously. Rather the illumination changes continuously as can be seen

in Fig. 5.1. The phase history in the traditionally generated fully compressed image
is limited to the phase history that each pixel contains from its short illumination
time. The main advantage of spotlight processing is the frequency-space relationship
between the image domain and the range compressed, phase history domain. This
relationship also causes the phase error to be convolved with the whole image. To
achieve the same type of relationship for the stripmap case, a transform felationship
between the phase history domain and the fully compressed domain must be made.
Recall from Chapter 3 that the bandwidth of the spotlight SAR is much greater than
that of stripmap SAR due to the immobile antenna. The measurable frequency is also
limited by the sample rate in the azimuth direction of the radar. If a frequency-space
relationship is made with the stripmap SAR, the size of the image is restricted by
the maximum measurable frequency of the system. Starting with the model of the

stripmap SAR range compressed data

Tstrip(t) = [ge(t) ® c(t)rect(t)]ej“’e“), (5.3)
;= wtvztz
c(t) = ePemirr = ¢’ P (5.4)

As an example, the maximum window size will be calculated for the YSAR

Israel Data case [8], i.e.,

samplerate = sr =400Hz

v = 60m/s
A = .15m
azimuth spacing = v/sr = .15m/sample. (5.5)

The frequency content of the chirp is the first derivative of the phase, given by

¢2 S 47'["02 (t)
chirp = RO )

< sr. (5.8)
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The maximum allowable frequency is the Nvquist frequency which is determined by
the sample rate. The data collected is complex so that the Nyquist frequency 1s equal

to the sample rate. Solving for ¢ and converting from radians to pixels gives

¢chirp S ST
Ro/\ 31”2

2

t < samples = 1000 pizels. (5.7)

This shows that for the YSAR Israel data, the maximum allowable image size is 1000

pixels.

5.1.2 Chirp Multiplication (Step 2)

Chapter 2 showed the spotlight and stripmap processing data models. The
main difference between the stripmap and spotlight models is the band limiting in
the stripmap equation caused by the antenna pattern. Using the same method as
spotlight, the stripmap data may be compressed. The image vector consists of delta
functions located at each scatterer’s center point. Thus, the motion induced convo-
lution between the delta functions and the chirp produces a chirp centered at each
delta function. The compression method dechirps the image by correlating the chirp
with the image. Let g(t) = A6(t)e?®4 + BS(t — t2)e?®? represent two scatterers, one
at the origin and one at t,. The length of the rect(t) is not included in the derivation

because it is a constant in each range line with the only phase introduction given by

its ‘location.
tstrip(t) = [(AS(t)e?* + Bo(t — t2)e?%7) ® c(t)rect(t)]e’® ) @ ¢*(t)rect  (5.8)

A similar compression is achieved by selecting a section of range compressed data the
length found in Eq. (5.7) and multiplying it by a chirp that is centered on the image.
A derivation is as follows for the case of two scatterers A and B.

If we start with the initial range compressed data, each pixel is represented by

the azimuth chirp associated with it and the phase error as,

r(t) = [ga(t) ® c(t)rect]e?®®). (5.9)
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Using the new SSC processing, a chirp the length derived in step 1 is multiplied point

by point with range compressed data. t
r(t) = [(Ad(t)e’®4 + Bi(t — t,)e"?) ® c(t)rect(t)]e’® e (t) (5.10)

Implementing the convolution and multiplication steps, the above equation reduces

to

7(t) = [Ac(t)e™rect(t) + Be(t — ta)eBrect(t — t)]ei)ce (1)
r(t) = [Aed 3R 400 rect () 4 Bed
r(t) =

. . ~2xy? (t—t ) . ()
r(t) = [Ae’aArect(t) + Bel ™ xR 2 +i0s o Tt rect(t — t,)]e?%®

J21rv (t t )

5 rect(t — t2)]e?®(cx(t)

—2nv? (t=t9)? Ty
[AeJ_J')"'”a"rect(t) + Bej_*z_'”earect(t - tg)]e’¢°(t)632 2o

. —21rv

r(t) = [Ae’®Arect(t) + Be! ™

(2t2t+t2)+]03,,.ect(t - tz)]e.7¢e(t)
r(t) = [Aej""rect( t) + Be] +Jas e’ =2n? (2t2t)7.ect(t - t2)]6j¢°(t). (5.11)

The above equation shows that the quadratic chirp has been replaced with a linear

phase term with the accompanying constant corresponding to an azimuth position.

5.1.3 Fourier Transform (Step 3)

Equation (5.11) shows that the only ¢ dependant phase terms are a linear term

of the B scatterer and the pha.se error ¢(t). From basic Fourier transform theory it

—21r

can be seen that the e/=x > (2t21) term will result in a shift in the frequency domain.

Taking the Fourier transform of Eq. (5.11) results in,

a(t) = F{Ae e Orect(t) + Belrtittnei2ateiterect(t — 1)} (5.12)

a(t) = Ae4sinc(w) ® /) 4 Bejclt%"'a‘?sinc(w — 2¢,ty)elvt2) @ eT%e(w)
—27v?

“ AR

(5.13)

The SSC compressed image will not necessarily map to the same pixel position as the

stripmap compression. The mapping from the time domain to the frequency domain
is dependent on many factors. The main determining factor is the constant ¢ which

contains all the parameters of the SAR. The second factor is the size of the azimuth
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section used. The discrete Fourier transform has a time frequency scale factor given

by.

Sample Rate _ sr

Total Length ~ tl (5.14)

Frequency Scaling = FS =
The mapping from 2c¢;t, to pixel number in the frequency domain is

2
t, seconds = — samples
ST

202ty tl

201ty = AR sr?

pizels. (5.15)

Figure 5.3 shows the non-range dependant SSC steps. The original Fig. 5.2 image is
reconstructed flawlessly with the non-range dependent chirp in Fig. 5.3. When the
narrow beam assumption is not made, the image is distorted by the frequency scaling

changing with range as seen in Fig. 5.4.

Original Urban image
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Figure 5.2: Original urban image with traditional stripmap compression method.

Using the SSC method with range dependent images creates a linearly de-

creasing mapping as can be observed in Eq. (5.15). This chirp distorts the image
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Figure 5.3: Non-range dependent chirp used in the stripmap SAR compressed with
Strip-spot compression method.

as can be seen in Fig. 5.4. This distortion does not effect the PGA algorithm if
the circular shift is adjusted to remove empty space. The distortion does cause a
lower signal to clutter ratio, causing results to deteriorate slightly. Thus, the points,
though compressed differently for different range lines, contain the same unaffected

phase error.

5.2 Applying the PWE PGA

The PWE PGA may be applied to the range dependent, non-range dependent
SSC compressed stripmap images by compensating for the changed space-frequency
relationship of the farthest azimuth position. The total length of each azimuth line
is shortened to its calculated size, and the circular shift is preformed. Zeros are then
inserted in the high frequency sections to return the image to its original azimuth
size. Figure 5.5 depicts the steps described above. The phase error estimation step is
similar to the spotlight case, except that the mean is removed from the first derivative

before integration to remove the linear term. The linear term causes discontinuities
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Range Dependent Urban image: No Compensation for Range Dependent Mapping
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Figure 5.4: Range Dependent Chirp used in the Stripmap SAR compressed with
Strip-spot compression method.

between the divided sections of the image. Figure 5.6 shows the effect of the removed

mearn.

5.3 Stripmap Results

The same images that were used in the Spotlight ML testing were used with
the new strip-spot method. All three images were restored to their near original qual-
itv. The urban image had the highest signal to clutter ratio which gave the slightly
better results then the other two images. The non-range dependent simulations com-
pare the maximum likelihood estimation method with the PWE in stripmap images.
These results are comparable with the results of the spotlight mode SAR. The PWE
produced a lower standard deviation than the ML, but the ML converged faster.

In Figs. 5.9-5.12, 5.23-5.26, 5.37-5.40, and 5.49-5.52 the applied phase error
is compared with the maximum likelihood and the phase weighted estimation. For
these tests, the PWE has a final better convergence than the ML algorithm, but has

a significantly slower convergence rate, requiring more iterations. The three images
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are blurred with the range dependent phase error model derived in Eq. (4.8). Using
the range dependent PWE, the errors are removed with the same accuracy as the
non-range dependent spotlight maximum likelihood PGA. The estimated and applied
phase errors for ¢, and ¢y are shown for the stripmap desert images in Figs. 5.13
through 5.20, the mountain images in 5.27 through 5.34 and for the urban images
in 5.41 through 5.60. The ¢, and ¢y sometimes vary from the original error, but
the combinations in the different range lines are accurate below one radian standard
deviation.

The X and Y values in the range dependent cases were sometimes different
then the respective error introduced because the pseudo inverse taken in the range
dependent PWE does not give a unique solution. Three different range lines are
presented as examples of the success of the algorithm. The three range lines are the
closest distance, the middle distance and the farthest distance from the platform.
The starting size of the window was determined by finding the calculated length of
the shortest azimuth line in the image.

A high frequency phase error was applied to the urban image to test the high
frequency estimation of the algorithm. The high frequency was estimated to the same

accuracy as the low frequency phase errors shown in F igs. 5.49 through 5.60.
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Data Preperation Steps
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Figure 5.5: The steps of phase estimation. The PWE PGA may be applied to the
range dependent or non-range dependent SSC compressed stripmap images by cal-
culating the space-frequency relationship of the farthest azimuth position from the
center for each range bin in the image. The total length of each azimuth line is short-
ened to its calculated size, and the circular shift is preformed. Zeros are then inserted
in the high frequency sections to return the image to the original azimuth size. The
first derivative estimation is take as discussed in the PWE or ML derivations with

the mean removed before integration.
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Figure 5.6: The discontinuities in the first derivative without removing the mean.
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5.3.1 Desert Image: No Significant Scatterers

b. Blurred Image
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Figure 5.7: The phase corrupted desert image.

c. Restored image
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Figure 5.8: The restored desert image using the stripmap RD PWE PGA algorithm.
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Figure 5.9: Phase error comparison.
Non-range dependent ML stripmap
desert image.
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Figure 5.11: Phase error comparison.
Non-range dependent PWE stripmap
desert image.
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Figure 5.10: The standard deviation.
Non-range dependent ML stripmap
desert image.
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Figure 5.12: The standard deviation.
Non-range dependent PWE stripmap
desert image.
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Figure 5.13: Phase error comparison
X. Range dependent PWE stripmap
desert image.
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Figure 5.15: Phase error compari-
son. Range dependent PWE stripmap
desert image. (Range Bin 1)
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Figure 5.14: Phase error comparison
Y. Range dependent PWE stripmap
desert image.
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Figure 5.16: The standard devia-

tion. Range dependent PWE stripmap
desert image. (Range Bin 1)
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Figure 5.17: Phase error compari-
son. Range dependent PWE stripmap
desert image. (Range Bin 300)
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Figure 5.19: Phase error compari-
son. Range dependent PWE stripmap
desert image. (Range Bin 500)
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Figure 5.18: The standard devia-

tion. Range dependent PWE stripmap
desert image. (Range Bin 300)
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Figure 5.20: The standard devia-
tion. Range dependent PWE stripmap
desert image. (Range Bin 500)




5.3.2 Mountain Image: Some Significant Scatterers
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Figure 5.21: The phase corrupted mountain image.
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Figure 5.22: The restored mountain image using the Stripmap Range Dependent !
PWE PGA algorithm. ‘
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Figure 5.23: Phase error comparison.
Non-range dependent ML stripmap
mountain image.
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Figure 5.25: Phase error comparison.
Non-range dependent PWE stripmap
mountain image.
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Figure 5.24: The standard deviation.
Non-range dependent ML stripmap
mountain image.
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Figure 5.26: The standard deviation.
Non-range dependent PWE stripmap
mountain image.
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Figure 5.27: Phase error X compari-
son. Range dependent PWE stripmap
mountain image.
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Figure 5.29: Phase error compari-
son. Range dependent PWE stripmap
mountain image. (Range Bin 1)
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Figure 5.28: The error Y compari-
son. Range dependent PWE stripmap
mountainimage.
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Figure 5.30: The standard devia-
tion. Range dependent PWE stripmap
mountain image. (Range Bin 1)
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Figure 5.31: Phase error compari-

son. Range dependent PWE stripmap
mountain image. (Range Bin 300)
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Figure 5.33: Phase error compari-

son. Range dependent PWE stripmap
mountain image. (Range Bin 500)
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Figure 5.32: The sténda,rd devia-
tion. Range dependent PWE stripmap
mountain image. (Range Bin 300)
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Figure 5.34: The standard devia-
tion. Range dependent PWE stripmap
mountain image. (Range Bin 500)




5.3.3 Urban Image: Many Significant Scatterers
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Figure 5.35: Blurred stripmap range dependent urban image.

100

200

300

400

500

600

700

800 IS

900

1000

100

Figure 5.36: The restored urban image using the Stripmap Range Dependent PWE

PGA algorithm.
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Figure 5.37: Phase error comparison.
Non-range dependent ML stripmap Ur-
ban image.
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Figure 5.39: Phase error comparison.
Non-range dependent PWE stripmap
urban image.
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Figure 5.38: The standard deviation.
Non-range dependent ML stripmap Ur-
ban image.
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Figure 5.40: The standard deviation.

Non-range dependent PWE stripmap
urban image.
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Figure 5.41: Phase error comparison X.
Range dependent PWE stripmap ur-
ban image.
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Figure 5.43: Phase error comparison.
Range dependent PWE stripmap ur-
ban image. (Range Bin 1)
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Figure 5.42: The error comparison Y.
Range dependent PWE stripmap ur-
ban image.
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Figure 5.44: The standard deviation.
Range dependent PWE stripmap ur-
ban image. (Range Bin 1)
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Figure 5.45: Phase error comparison.
Range dependent PWE stripmap ur-
ban image. (Range Bin 300)
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Figure 5.47: Phase error comparison.
Range dependent PWE stripmap ur-
ban image. (Range Bin 500)
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Figure 5.46: The standard deviation.
Range dependent PWE stripmap ur-
ban image. (Range Bin 300)
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Figure 5.48: The standard deviation.
Range dependent PWE stripmap ur-
ban image. (Range Bin 500)
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Figure 5.49: High frequency phase er-
ror comparison. Non-range dependent
ML stripmap Urban image.
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Figure 5.51: High frequency phase er-
ror comparison. Non-range dependent
PWE stripmap urban image.

84

Urban NRD ML Stnpmap High F requency Standard Deviaion (mnsii=0.495585.17;

8
heratons

Figure 5.50: The standard deviation.
Non-range dependent high frequency
phase error ML stripmap Urban image.
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Figure 5.52: The standard deviation.
Non-range dependent high frequency
phase error PWE stripmap urban im-
age.
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Figure 5.53: High frequency phase er-
ror comparison X. Range dependent
PWE stripmap urban image.
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Figure 5.55: High frequency phase
error comparison. Range dependent
PWE stripmap urban image. (Range
Bin 1)
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Figure 5.54: The error comparison Y.
Range dependent high frequency phase
error PWE stripmap urban image.
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Figure 5.56: The standard deviation.
Range dependent high frequency phase
error PWE stripmap urban image.
(Range Bin 1)
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Figure 5.57: Phase error compari-
son. Range dependent high frequency
phase error PWE stripmap urban im-
age. (Range Bin 300)
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Figure 5.59: Phase error compari-

son. Range dependent high frequency
phase error PWE stripmap urban im-
age. (Range Bin 500)
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Figure 5.58: The standard deviation.
Range dependent high frequency phase
error PWE stripmap urban image.
(Range Bin 300)
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Figure 5.60: The standard deviation.
Range dependent high frequency phase
error PWE stripmap urban image.
(Range Bin 500)




Chapter 6

Conclusions

"The most successful spotlight SAR autofucus method is called the Phase Gra-
dient Autofocus (PGA) Algorithm [4]. The term autofocus refers to the algorithms
ability to focus the image with only the data itself. The Maximum Likelihood PGA
( ML PGA) has been shown to be a very robust algorithm that works with both im-
ages having bright targets such as an urban setting and images such as a desert that
has no significantly bright targets. The PGA does not require a phase error model
estimation; therefore both high order and low order phase errors may be estimated
accurately.

The four main steps in the PGA algorithm are all used in the range dependent
stripmap model. The four steps defined are center shifting, windowing, phase esti-
mation and iteration. The best known phase estimator for the noise model used in
the PGA, is the Maximum Likelihood (ML) method [4]. The PGA assumes all phase
and clutter noise as white Gaussian noise. This assumption seem seems to work well
for most phase errors and ifnages. The ML-PGA estimates the first difference of the

phase.

6.1 Summary of Contributions

The PGA was designed for and has been used extensively in high flying spot-
light aircraft. The PGA was not designed for low altitude systems because it makes a
narrow beam assumption. The PGA was extended to range dependent systems by de-
riving a different phase gradient estimator called Phase Weighted Estimation-Phase

Gradient Autofocus (PWE PGA). The gradient estimator named Phase Weighted
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Estimation (PWE) surpasses the ML in the final standard deviation sense. In three
different images. each testing the versatility of the algorithm through different image
types. the PWE surpasses the ML in ten iterations. The ML converges, on the av-
erage, twice as fast as the PWE, but leveled out after 5 iterations. The PWE has
been extended to the range dependent case. The results mentioned above have been

repeated in this case. The PWE has worked extreamely well and has shown to be

verv versatile.

Stripmap images were compressed with a new strip-spot (SSC) algorithm tech- 1'
nique. This processing creates a frequency-space relationship much like the original ‘
spotlight SAR processing. The new processing technique was successful for estimat-
ing phase errors in the stripmap images. When this algorithm was extended to range

dependent stripmap, it was comparable to the earlier results only with high signal to

clutter ratio images like the urban image. The PWE is capable of estimating high

frequency and low frequency errors in both stripmap and spotlight mode.

6.2 Future Research

Israel images taken by YSAR [8] contain many problems for the PGA. These
images need to be processed so that the new PWE stripmap PGA can be used with
them. YSAR images were taken with the aircraft squinted. Compensation and effects
of the squint on the YSAR data must be inspected. A detailed analysis of the edges
of the images produces with the SSC algorithm is needed to know the exact effect
of the blur caused by chirps cut short by the edge of the images. The bandlimited
stripmap images contain an extra phase term. What effect do these phase terms have
on the PGA. than the spotlight mode. An analysis on the best step size and starting

and stopping points for maximum convergence in all images is needed.
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