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Abstract

The utility of scatterometer data is increased by the scatterometer image re-
construction with �lter (SIRF) algorithm. This method uses several passes of the
satellite to e�ectively enhance the spatial resolution of the data. Three parameters
of SIRF in
uence its ability to converge to the true values and must be tuned when
SIRF is applied to data from di�erent instruments. Initialization values, number of
iterations, and B update weighting all a�ect the performance of SIRF. Originally
developed for Seasat-A scatterometer (SASS) data, the algorithm was re�ned for
NSCAT and ERS-1/2 AMI scatterometers. With the new knowledge gained from
these studies, this report addresses the re�nement of SIRF across the three param-
eters for SASS data. Synthetic truth images are constructed. SASS measurement
data is simulated using actual SASS data in conjunction with the truth images. The
convergence properties of SIRF are examined using several statistical measures of
error and correlation. The results indicate that initialization values of Ainit=-8.4
dB and Binit=-0.14 dB/deg, 50 iterations, and bacc values of 15 to 20 should be
used.

1 Introduction

Remote sensing of the earth's surface from space has proven invaluable in many scienti�c
disciplines. In particular, scatterometers such as the Seasat-A Scatterometer System
(SASS) and the NASA Scatterometer (NSCAT) are sensitive to surface parameters.
However, the low resolution of these instruments has limited their utility. Recently a
new method called the scatterometer image reconstruction with �lter (SIRF) algorithm
has been developed to increase the resolution of the data by using multiple passes of the
satellite over a target region [1]. SIRF is basically a bivariate, nonlinear version of the
multiplicative algebraic reconstruction technique. This method produces a maximum
entropy solution which is desirable for edge reconstruction in the imagery.

For a limited range of incidence angles, �o is approximately a linear function of �,

10 log10 �
o(�) = A+ B(� � 40�) (1)

where A and B are functions of surface characteristics, azimuth angle, and polarization.
A is the �o value at 40� incidence and B describes the dependence of �o on �. A and B
provide valuable information about the surface. SIRF produces images of both A and
B.

Several parameters in the SIRF algorithm a�ect its convergence characteristics. The
number of iterations, initialization values, and B weighting all in
uence the performance
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of SIRF. The iteration parameter determines how long SIRF iterates to achieve a �nal
estimate of the image. Initialization values for both A and B are used to give SIRF
a starting estimate of A and B. The SIRF algorithm contains heavy update damping
to avoid noise ampli�cation. This works well in high noise scenarios, but may limit
the ability of the algorithm to converge to the true values in a reasonable number of
iterations when noise levels are lower. For this reason, the B updates are often weighted
by a factor (bacc) to accelerate the convergence of SIRF. The original SASS SIRF uses
bacc=1.

The algorithm was optimized for NSCAT across all of these parameters by observing
the error and correlation statistics of simulated SIRF images and their ground truth
counterparts [2]. One of the conclusions of this study was to use the global average A
and B values for the initialization. This was chosen to minimize expected convergence
time. Since NSCAT (13.995 GHz) and SASS (14.6 GHz) are both Ku-band instruments,
the surface responses should be very similar. For this reason, the same initialization
values are used for SASS as for NSCAT, namely A=-8.4 dB and B=-0.14 dB/deg.

This report describes a study that re�nes SIRF for SASS data by adjusting the
iteration and B weighting parameters. Section 2 discusses the generation of simulated
SASS imagery. Section 3 describes the statistical analysis of these images as compared
with the truth images. In section 4, the conclusions of the study are given.

2 Generating Simulation Data

To examine the e�ects of the SIRF parameters, synthetic A and B truth images are
created. The images are created at higher resolution (4.45 km per pixel) than the
nominal resolution of the satellite (25 km) with dimensions of approximately 8��8�. The
images use a rectangular latitude/longitude projection. Two simulations are performed
using the data. The �rst has homogeneous constant truth values A=-10.0 and B=-0.1.
The second is a heterogeneous image that illustrates features that are similar to those
seen in real scatterometer imagery. Figure 1 shows the four truth images used in this
study.

SASS L1.5 data records contain geolocation, azimuth angle, incidence angle, and �o

information for each measurement cell. Simulated data is generated using 60 days of
actual SASS data (1978 JD 188-248) taken from the Amazon Basin (latitude range of
0.0�S to 8.0�S, longitude range of 55.0�W to 63.0�W) combined with the truth images.
The actual data provides geolocation and incidence angle information and the truth
images are used to create synthetic �o values. �o is computed from e�ective A and B
values in the measurement footprint (see Figure 2),

Aeff =
RkX

c=Lk

TkX

a=Bk

h(x; y; k)Atruth(x; y; k) (2)

Beff =
RkX

c=Lk

TkX

a=Bk

h(x; y; k)Btruth(x; y; k) (3)

where Lk, Rk, Tk, and Bk de�ne a bounding rectangle for the kth hexagonal �o mea-
surement cell, h(x; y; k) is the weighting function for the (x; y)th resolution element

2



(h(x; y; k)=0 or 1 for NSCAT), Atruth(x; y; k) is the A value for the (x; y)th resolution
element, and Btruth(x; y; k) is the corresponding B value. The noiseless �o then becomes

�onl = Aeff +Beff (� � 40�): (4)

Realistic noise is added to �onl by using theoretical values of the noise variance. The
simulated �o is given by

�o = �onl(1 + kp�) (5)

where and � is a zero-mean Gaussian random variable with unity variance. Since no
SASS Kp data was available, typical NSCAT Kp values were observed. Figure 3 shows
histograms of Kp for several diverse regions throughout the earth. This �gure shows
that Kp rarely exceeds 0.10. Assuming that SASS �o measurements are at most twice as
noisy as NSCAT, four values are used: Kp=0.0 (noiseless),Kp=0.05, Kp=0.10, Kp=0.15,
and Kp=0.20. Each of these values is used in simulation for both ground truth scenes.

3 Statistical Analysis of Simulated Images

SIRF was run using the simulated data for all ground truths and all of the selected
Kp levels. At each iteration, the resulting reconstructed image was compared with the
truth image. A simple statistical analysis was performed to provide metrics for the
performance of SIRF in all the test scenarios. Several statistical measures were used.
In the constant truth simulation, the mean as well as the standard deviation were used
to monitor convergence to the true A and B values. For the heterogeneous case, the
mean error, error standard deviation, RMS error, and the correlation coe�cient were
used. Each of these provide information about the ability of SIRF to reconstruct the
true image as a function of iteration number (N) and bacc.

3.1 Constant Truth

For the constant truth simulation, the initialization values used were Ainit=-20.0 and
Binit={0.2 to simulate a near worst case situation where the algorithm had a signi�cant
distance to converge. The means and standard deviations were computed after each
iteration for all Kp values. The results are plotted in Figures 4-13.

Figures 4-5 illustrate the noiseless simulation results. The A values converge to the
true value by the 25th iteration regardless of the bacc value although the bacc=1 plot is
biased a little high. The A standard deviation shows the noise level in the reconstructed
image. This metric converges to a �nal low value. Higher bacc means quicker noise level
reduction. The e�ects of B update weighting are more pronounced in the B error plots.
Without B acceleration, SIRF was unable to converge to the true value even after 50
iterations. Again, higher bacc means quicker convergence and lower noise level.

As Kp rises, some interesting things begin to happen. First, we observe that regard-
less of Kp level, the A mean seems to converge in a very similar manner. The A error
noise level has an increasing noise 
oor as Kp increases. When Kp=0.05, the standard
deviation appears to converge to this noise 
oor. However, for higher Kp's the noise
in the image is ampli�ed at each iteration diverging from the theoretical 
oor. For the
A statistics, more B weighting yields better results. While B weighting enhances the
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ability to reconstruct the images according to the A constant truth statistics, the noise
ampli�cation indicates that iterations may need to be limited.

Like A, the B mean converges in a similar manner across all observed values of Kp.
Again, more bacc results in quicker convergence. The B standard deviation converges to
higher and higher noise 
oors asKp is increased. In contrast to theA standard deviation,
the B noise level does not increase signi�cantly with iteration number. Also, in noisy
scenarios (kp >0.05) B standard deviation is an increasing function of bacc. While the
A statistics provide an argument for using arbitrarily high bacc, the B statistics indicate
that excessively high bacc may degrade the quality of the �nal B image.

3.2 Heterogeneous Truth

The heterogeneous truth simulation provides a feel for the performance of SIRF on
actual SASS data since features in the truth image are similar to features that may
actually be observed. For these simulations, the NSCAT optimized initialization values
of Ainit=-8.4 and Binit=-0.14 are used. Several statistics were computed at after each
iteration: mean error, error standard deviation, RMS error, and correlation coe�cient.
Figures 14-23 show these statistics as a function of iteration for all of the Kp values.

The A plots show that when bacc is greater than about 10, all statistics converge
to the same value. The bacc=1 curves are biased to slightly poorer values. Hence, at
least bacc=10 is desirable. Also, all of the statistics continue to improve with iteration
number (at least up to 50 iterations) for kp � 0:15. When the extreme case of Kp =0.20
is encountered, each statistic improves for a time, then begins to degrade. However, the
level of degradation is not very signi�cant. For correlation coe�cient, the maximum
value is 0.9145 and the value after 50 iterations is 0.9122.

It is clear from the B plots that some B weighting is de�nitely needed since bacc=1
has the poorest statistics for all Kp. When kp � 0:10 we �nd that more B update
weighting results in lower error and higher correlation. After 30 iterations, all bacc � 20
yield very similar results for these noise levels. In contrast when Kp rises above 0.10,
bacc=10 gives the best results and bacc=50 the poorest. This suggests that for excessively
noisy measurements, too much B update weighting can amplify the noise and degrade
the images.

A visual analysis of the reconstruction properties of SIRF for SASS data can be
obtained by observing Figures 24-29. Figures 24-25 illustrate the A and B images as
a function of iteration number and bacc with Kp �xed at 0.10. Figures 26-27 show the
images at di�erent Kp and bacc values with iteration number set at 50. Finally, Figures
28-29 display the images over several Kp and iteration number values for bacc �xed at
30.

4 Conclusion

The SIRF algorithm is an e�ective tool in enhancing the resolution of SASS radar im-
agery. Several parameters in
uence its ability to properly estimate the original image.
Initialization values, number of iterations, and B update weighting all in
uence the con-
vergence characteristics of SIRF. The initialization values are chosen to be the same
as those used for NSCAT since both are Ku-band instruments, namely Ainit=-8.4 and
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Binit=-0.14. Iteration number is also chosen to be the same as NSCAT since the corre-
lation coe�cient and error statistics continue to improve even at the 50th iteration for
most cases. The only exception is when Kp=0.20. At this noise level the correlation
coe�cient reaches a maximum then decreases, but only slightly.

The major parameter in need of tuning for SASS is the B update weighting (bacc).
It is not clear that the SASS measurement noise is the same as for NSCAT. For this
reason, this study used values that were more than twice as big as typical NSCAT Kp

values. The simulations showed that there is a de�nite need to accelerate the B updates
regardless of noise level since the bacc=1 simulation did not converge to the correct A or
B values after 50 iterations. For the A images, increasing bacc only improves the statistics
to a certain point. For example, if bacc� 10 is used, the A error and correlation statistics
are very similar. However, the B statistics tell a di�erent story. WhenKp is low all bacc�
20 give similar results. In contrast, when kp � 0.15, more B update weighting means
lower correlation coe�cient. For this reason, it is recommended that an intermediate
bacc=15 to 20 be used to balance this trade-o�.
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5 Figures

Figure 1: Truth images used in the SASS SIRF simulations. Top left: constant A
image (A= -10.0 dB). Top right: constant B image (B= -0.1 dB/deg). Lower left:
heterogeneous A image. Lower right: heterogeneous B image.
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Figure 2: An integrated NSCAT �o cell overlaying the high resolution grid. Only the
shaded square grid elements have nonzero h(x;y). The bounding rectangle is also indi-
cated.
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Figure 3: Histograms of Kp for several sample regions over the earth. For each region,
both V-pol and H-pol measurements are represented.
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Figure 4: Simulated SIRF A mean and standard deviations as a function of iteration
number and bacc for Kp=0.0.
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Figure 5: Simulated SIRF B mean and standard deviations as a function of iteration
number and bacc for Kp=0.0.
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Figure 6: Simulated SIRF A mean and standard deviations as a function of iteration
number and bacc for Kp=0.05.
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Figure 7: Simulated SIRF B mean and standard deviations as a function of iteration
number and bacc for Kp=0.05.
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Figure 8: Simulated SIRF A mean and standard deviations as a function of iteration
number and bacc for Kp=0.10.
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Figure 9: Simulated SIRF B mean and standard deviations as a function of iteration
number and bacc for Kp=0.10.
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Figure 10: Simulated SIRF A mean and standard deviations as a function of iteration
number and bacc for Kp=0.15.
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Figure 11: Simulated SIRF B mean and standard deviations as a function of iteration
number and bacc for Kp=0.15.
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Figure 12: Simulated SIRF A mean and standard deviations as a function of iteration
number and bacc for Kp=0.20.
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Figure 13: Simulated SIRF B mean and standard deviations as a function of iteration
number and bacc for Kp=0.20.
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Figure 14: Simulated SIRF A error and correlation statistics as a function of iteration
number and bacc for Kp=0.0.
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Figure 15: Simulated SIRF B error and correlation statistics as a function of iteration
number and bacc for Kp=0.0.
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Figure 16: Simulated SIRF A error and correlation statistics as a function of iteration
number and bacc for Kp=0.05.
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Figure 17: Simulated SIRF B error and correlation statistics as a function of iteration
number and bacc for Kp=0.05.
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Figure 18: Simulated SIRF A error and correlation statistics as a function of iteration
number and bacc for Kp=0.10.
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Figure 19: Simulated SIRF B error and correlation statistics as a function of iteration
number and bacc for Kp=0.10.
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Figure 20: Simulated SIRF A error and correlation statistics as a function of iteration
number and bacc for Kp=0.15.
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Figure 21: Simulated SIRF B error and correlation statistics as a function of iteration
number and bacc for Kp=0.15.
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Figure 22: Simulated SIRF A error and correlation statistics as a function of iteration
number and bacc for Kp=0.20.

27



Figure 23: Simulated SIRF B error and correlation statistics as a function of iteration
number and bacc for Kp=0.20.
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Figure 24: SIRF A simulation images as a function of iteration number and bacc.
Kp=0.10 for all images.
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Figure 25: SIRF B simulation images as a function of iteration number and bacc.
Kp=0.10 for all images.
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Figure 26: SIRF A simulation images as a function of Kp and bacc. 50 iterations were
used for all images.
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Figure 27: SIRF B simulation images as a function of Kp and bacc. 50 iterations were
used for all images.
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Figure 28: SIRF A simulation images as a function of Kp and iteration number. bacc=30
for all images.
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Figure 29: SIRF B simulation images as a function of Kp and iteration number. bacc=30
for all images.
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