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1. INTRODUCTION

The conjugate gradient method (CG) for solution of large linear systems enjoys widespread
use as a numerical technique in computational electromagnetics, acoustics, fluid dynam-
ics, signal processing, statistics, and many other fields. Despite the development of more
advanced iterative algorithms which overcome breakdown problems and exhibit superior
convergence properties, CG remains important due to ease of application and well under-
stood behavior. A large body of literature quantifies the convergence rate of the algorithm
in terms of properties of the spectrum of the linear operator, such as the condition num-
ber, eigenvalue clustering, isolated large or small eigenvalues, or gaps between eigenvalues
8, 6, 14, 1, 4, 7, 10, 12, 9]. The bounds developed in these and other papers allow the con-
jugate gradient algorithm to be terminated when the error grows acceptably small. In many
applications, however, detailed knowledge of the structure of the eigenvalues is not readily

available, and obtaining such information leads to additional computational burden. This
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paper presents a new method for determining the error at each step of the conjugate gradient
algorithm. An error bound is developed which can be computed efficiently from quantities
available at each iteration of the algorithm and requires minimal information about the
spectrum of the linear operator.

This error bound arises from the relationship between the conjugate gradient method
for solution of a linear system Ax = b, where A is symmetric and positive definite, and a
corresponding continued fraction from the theory of the classical problem of moments [11].
The connection between CG and continued fractions involves the natural Hankel structure
of the algorithm in terms of moments of the linear operator. Using this Hankel structure,
the A-norm of the error x —x;, where x;, is the approximate solution to the linear system at
the kth step of the algorithm, can be expressed directly [2], but the exact expression depends
on the unknown quantity b - x. Most convergence theories are based on estimates of this
error in terms of the spectrum of the linear operator. This paper develops a method for
computing a bound on this error at each step of the algorithm using the approximants of a
particular continued fraction. The even approximants of this continued fraction are equal to
b-x;. These quantities are lower bounds for b - x. The odd approximants are monotonically
converging upper bounds for b-x;. The difference between the odd and even approximants
therefore provides a nonincreasing bound for the A-norm ||x — x||, of the error at each
iteration of the algorithm. Evaluation of the odd approximants requires only a lower bound
on the eigenvalues of the matrix of the linear system. The computational burden required to
compute this error bound is trivial, since it can be determined without direct evaluation of
high order Hankel determinants and only O(1) additional scalar multiplications are required
per iteration of the algorithm.

2. NOTATION

Let A be an N by N symmetric, positive definite matrix, and b be a real vector of length
N. We define the n + 1 by m + 1 Hankel matrix H"™ of moments of A to be

Hp Hp+1 * Hptm
M Hp+2 R/

H]r;,m — P.+1 P.+ p.—l—m+1 (1)
Hp+n  HMHpint+1 *°° Hpintm

where p1; = b-A¥b. A square Hankel matrix is denoted H} = Hp". The Hankel determinants
An, AP, and AV are defined by

A, = |Hy| (2a)
AP = [HP| (2b)
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[C> ) Ip— n
A = |H"

(2c)

where p_; = 0 in the definition of A§Y.
The conjugate gradient algorithm for solution of Ax = b is initialized by setting

rg = b — AX() (3&)
do = Ty (3b
and proceeds via the iteration

Ty Tk ‘
= — 4a

T | Adk (
Xpp1 = X+ vdk (4b
Trr1 = Ty — YAdg (4c
e = Tr41 Thtl (4d)
T Ty ;
diy1 = Tryr + meds (49?

where ry is equal to the residual b — Ax; and dj represents the kth search direction aloné

which the objective function f(y) = (1/2)y-Ay — b-y is minimized. In the following, W¢

assume that the initial guess xq is equal to the zero vector. |
From a result of Brezinski (2], we have that

ALY
b‘Xk+1 = — Ag—)l (5
By repeated application of the determinant identity
aip’ N |
qFM = |M|(a —p"M'q) (6
and the block matrix inverse formula
A B]"' _[A'+EAT'F —EA™! (7‘
c p| T| -atF A
where A = B—CA™'D, E = A"'D, and F = CA™!, the recursive determinant identity
eip || Mig | |@iM|\pib
alp*b M t:d| |cit ||M: q
M. .q |= ' ' ' ' (8
CETE |M]
can be proved. In this expression, M is an n by n matrix, p, q, r, and t are vectors of length
n, and a, b, ¢, and d are scalars. By taking the left hand side of Eq. (8) to be AY;, we have
that (-1) -1) 2
A _ A A ' (9D
AP AR APAY, |

The first term on the right is equal to —b-x, so that the iterative nature of the algorithm

is explicit in this expression.
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3. CONTINUED FRACTION ERROR BOUND

Using the Hankel structure of the conjugate gradient method, we define a continued fraction
which is closely related to CG through the values of its approximants. This continued
fraction is similar in form to other continued fractions which arise in connection with CG
and iterative solution algorithms of the same family [2, 3], but contains a parameter which
is initially arbitrary and will later be specified such that the even and odd approximants
become an error bound for the algorithm. |
Consider the power series expansion
_bb b-(A—sI)b N b-(A - sI)*b

b- — . 10)

x s s2 53 (10)

Denoting by ji; the moments b-(A — sI)¥b, the series can be written in the form
I(s)=t AL H2 (11)

s st s
Such a power series can be transformed into a corresponding continued fraction [5, 11]
Cls)=——5— (12)

1_}__6‘2_
s+-1T‘&

where the coefficients of the continued fraction are ratios of Hankel determinants of the
coefficients of the power series,

~ A(;;)_ An—2 ;
Qop = A(l)_:An_l (133’)
) ALA,
Gomit = Fa R (130)

A tilde denote the appearance of the moments jix of A — sI rather than moments of A in the
Hankel determinates. The even and odd approximants to this continued fraction are Padé
approximants for b - x, since the power series expansion of C(s) is precisely Eq. (10).

In the remainder of this section, we relate the coefficients «,, to the values vy and 7y
produced by the continued fraction algorithm, show that the approximants to C(s) are
upper and lower bounds for b-x, and develop a result on the dependence on s of the &,
which will be employed in the next section to show that the error bound can be computed
efficiently without direct evaluation of the Hankel determinants or moments of A — sI.

Even approximants Cy,(s) to the continued fraction C(s) are defined by setting Gon1;
Qon+2, - - - to zero in Eq. (12). The odd approximants Cy, 4 (s) are defined analogously. From
Eq. (12), we have that

_ o mag  agcOgnog

CQn (O) -

(14)
(2%] QpCey Qo0y - - - Qigp
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Using the definition of the ay, this can be rewritten as

C?n(o) — ﬁO + ﬂl + ﬁn~1 (15)
where A
b= Foaw (16)

By comparison of this expression with Eq. (9), we can see that 8x = b- (X441 — Xx). This
demonstrates that the even approximants Ca(0) are equal to b-xy.

We now relate the coefficients «;,, of the continued fraction to v, and n;. The coeflicient
of the vector A*b in the Krylov subspace expansion for x, implied by the algorithm (4) is
equal to (—=1)%ypy1 - - -y This coefficient can also be written as [2]

A
k k
Cp = (_—1) A;:)' (17)
Since (—1) vov1 - - - Y% = —Ck_17, We have that
AfclilAk
= '——1_——. 18
’yk A;{:)Ak_l ( )
By comparison with Eq. (13a), we obtain the result
Qop = 1/')%—1 (19)

for the even coefficients of the continued fraction.
It can be shown by making use of properties of the conjugate gradient algorithm that
ri-ry = b-di. From the CG algorithm and Eq. (9), we have that

b-d; = B/ (20)

The definition of 7 together with Eq. (18) then yields

A;cl_)_lekH—l
= —f= 77 21
Nk A;:)ZA]C_1 ( )
Using Eq. (19) and the definition of the «,, we obtain for k& > 0,
Otok41 = Ne—1/Vk-1- (22)

For k = 0, oy = b-b. With this expression and Eq. (19), we have established relationships
between the 7 and -y, produced by the conjugate gradient method and the coefficients oy
of the corresponding continued fraction C(s) evaluated at s = 0.

We now employ the relationship between the conjugate gradient method and the Lanczos

algorithm to obtain a result on the dependence of the &, on s, in order to show that the even
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approximants of C(s) are independent of s. This result will also allow us in the following
section to obtain the &, from the quantities 7, and 7. Each step in the iteration of the
Lanczos algorithm produces a tridiagonalization of the form Qf AQx = Ti, where Qy is
orthogonal and has as its first column the vector b normalized to unit magnitude. The

matrix T} has components equal to [4]

i 1
[Tiis = =2 (23a)
Yi-2  Yi-1
Ni—1
Tiliior = [Thlivi=-"—— (23b)
Yi-1
where 7_; = 0. Using the relationships (19) and (22), this can be transformed into

[ [65) £/ o X3 ]
VOt a3+ ay  \/as05
VOagos o5+ g /005

V2K -2k 1
L \/Qog_2Qiok 1  Qigg—1 + Qiok

The columns of @, are an orthonormal basis for the Krylov subspace span{b, Ab, ..., A*~'b}.
This is equal to the jth Krylov subspace span{b, (A — sI)b,..., (A — sI)*~'b}. Since Q is

constructed iteratively, the Lanczos algorithm produces the same orthogonal matrix when

applied to the matrix A — sI. Let T} denote the tridiagonal matrix produced for A — sI, so
that T} is related to (24) by replacement of the coefficients o, with é,. We then have that

QF (A—sDQg =Ty (25)
Since @y is orthogonal, this becomes
Ty =Ty + sl. (26)

From the well known continued fraction form for components of the inverse of a tridiagonal

matrix [5], the even approximants of C(s) are equal to
CQk(S) = eTl(sI + T~k)_1e1 (27)

where €; = [1 0...0[". This expression, together with Eq. (26), shows that the even approx-
imants are independent of s. Note that Eq. (26) also implies that the odd approximants
can be viewed as generalized approximants [11] for C'(0), since only the final denominator of
each odd approximant depends on the parameter s.

The series (11) can be recast as a classical moment problem involving an unknown dis-

tribution function which must be determined from its moments. The weights of the discrete
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distribution function are given by the projections of b onto the eigenvectors of A and the
locations are given by the eigenvalues of A — sI. As long as A — s/ is positive definite and
b is real, the corresponding distribution function is positive, nondecreasing, and confined to
the positive real axis. A result from the theory of the classical problem of moments [5, 11]
then shows that if s is positive and smaller than the minimal eigenvalue of A, the even ap-
poximants are nondecreasing lower bounds and the odd approximants nonincreasing upper
bounds for b-x. We have established above that Ca(s) = b - x,. Since the error ||x — x|

is equal to b - (x — x), we thus have that
lIx = %]l < Cakra(s) — Cax(s) (28)

so that the approximants of C'(s) provide a bound for the error at each step of the conjugate
gradient algorithm. It is straightforward to demonstrate that the bound Cay1(s) — Cor(s)
satisfies the same finite termination property as the CG algorithm, so that if the solution x

lies in an invariant subspace of A of dimension M, the bound vanishes for £k > M.
4. IMPLEMENTATION

Direct computation of the approximants of C(s) would require additional matrix-vector
multiplications to obtain the moments fiy = b-(A — sI)*b and the use of a numerically
unstable algorithm [5] for evaluating the G;. Equation (26) provides a much more efficient

method, since we must have that

Q2kQ2k41 = COokOiok+l (29a)

Qokq1 + Oogyo = Qg1 + Qgggp + 8 (29b)

for k > 0. For k=0, & =b-b and ay = &, + s. Together with Egs. (19) and (22), these
relationships allow the coefficients @&;, for arbitrary s to be computed from the values of ; and
n; produced by the conjugate gradient algorithm. The even and odd approximants C, are
then given by Eq. (12) with &,11, Gnyoe, - - - set to zero. The approximants can be evaluated
using a well known recursive procedure [13] so that only a few scalar multiplications are
required per iteration.

The remaining problem is the specification of the parameter s. As demonstrated in the
previous section, the odd approximants yield upper bounds for b-x if s is smaller than
the minimal eigenvalue of A. Regardless of the value of s, the odd approximants must
converge to b-x in at most [V iterations of the algorithm. The further s is from the minimal
eigenvalue, however, the slower the convergence. Depending on the particular application
of the conjugate gradient algorithm, one of several techniques might be employed to choose

the parameter s. Gershgorin—type theorems could be employed to estimate the minimal
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eigenvalue of A; this would be suited to the diagonally dominant case. Since the eigenvalues
of the tridiagonal Lanczos matrices Ty approximate those of A, s could be taken to be smaller
than the minimal eigenvalue of T;. Finally, the small computational cost involved in finding
the odd approximants allows their determination for many values of s and implementation

of a search strategy to identify the best monotonically decreasing bound.
5. CONCLUSION

We have exploited the connection between the conjugate gradient method for solution of the
linear system Ax = b and a corresponding continued fraction constructed from moments of
the matrix A to develop a method for computing the error at each iteration of the algorithm.
Using the approximants of the continued fraction, a nonincreasing bound on the A-norm of
the error x — x; can be obtained if a lower bound on the minimal eigenvalue of the matrix
of the linear system is available. Computation of the bound requires only a few scalar
multiplications at each interation of the algorithm.
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