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1.

In this paper, Ma#well’s laws for the fields due to charged sources in a flat, two-dimensional
world are determine{?d from the assumptions that a Coloumb force between charged sources

exists and that Maxwell’s laws written using differential forms have the same form in two

and three dimensions.

Maxwell’s laws 1 three dimensions are

dE

dH
dD
dB
D
B

where E is the electric field intensity 1-form, B is the magnetic field intensity 1-form, D [is
the electric flux density 2-form, B is the magnetic flux density 2-form, J,, and J. are the

magnetic and electric current density 2-forms and p,, and p. are the magnetic and electric

charge density 3-forms. * is the Hodge star operator and d is the exterior derivative. We
show below that by %hanging only the degrees of the forms in these equations, we can arriye
at a self-consistent s%et of equations for electromagnetics in two dimensions.

Once this result i achieved, we treat wave propagation in two dimensions and show that
Maxwell’s laws in thiree dimensions for sources isotropic in one direction reduce to the same

two-dimensional lawf. Finally, we discuss Maxwell’s laws in a curved two-dimensional space.
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2. MAXWELL’S LAWS IN TWO-DIMENSIONAL SPACE FOR ELECTRIC SOURCES

We postulate the existence of electric charges that exert force on each other that goes as
the product of the ¢harges and inverse distance. We can define a 1-form E such that if a

test charge ¢ is displaced by an infinitesimal amount x,
W = —g¢xlE (2)

where E is arbitrary and depends on the configuration of all other charges.
We can define electric flux D using the 2-dimensional star operator, which is defined for

1-forms by
*dz = dy

*dy = —dz.

We make the definition D = xE (where units are normalized such that ¢ = g = 1) so that
D is a 1-form. Using the form of Gauss’s law for electric flux density in three dimensions,
we can write
dD = p (3)
where p is a 2-form specifying the density of charges in 2-space.
By analogy with fhree dimensions, we write Faraday’s law by setting the exterior deriva-

tive of the 1-form E?equal to the time derivative of some form B,

0
dE = —=.B (4)

which shows that Bis a 2-form, representing a surface density in 2-space. Writing B = «H

shows that H is a 0—1&orm7 or scalar. We can write Ampere’s law,

0
dH = aD +J (5)
where J is a 1-form specifying the density of charge flow, J = —vlp where v is the velocity

field of the charge density p. The final equation is trivial, dB = 0, since the exterior derivative
of any 2-form in twol dimensions is zero.

We now have all of Maxwell’s laws, as well as the constitutive relationships:

9]
dEe = — e
dtB
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where the subscript idenotes electric sources and fields due to electric sources and units are

normalized as described above. H is a 0-form, F,, D, and J. are 1-forms and B, and p. are

2-forms,

3. MAXWELL’S LAWS FOR MAGNETIC SOURCES

If we postulate magnetic charge rather than electric charge, we find that B,, and H,, now

become 1-forms, while £, becomes a 0-form and D,, becomes a 2-form, where the subscript

m indicates that these are fields due to magnetic charges, rather than electric charges as fin

the previous section. We arrive at an independent set of equations,

db,,

dH,,
dD,,
dB,
D,
B,

where p,, is a two-form giving the density of magnetic charge and J,, is the current density

1-form due to moving magnetic charge.

A simple proof that magnetic and electric charge cannot affect each other follows from

inspection of the forms of the Lorentz force laws for the two systems:

Fclectric = QE(E + V_]B) (7)

Fmagnetic = QM(H + V—ID) (8)
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where v is the velocity of the charge ¢. or ¢, respectively. If a magnetic charge is placed

in fields due to electric charges, it may possibly be influenced by a scalar magnetic fie
or a l-form electric field. The only way to combine the magnetic charge ¢,, and veloci

v with the fields £, D, H, B to produce a force 1-form is ¢, F or ¢, vlB. Both of the

terms are present in the first of the Lorentz force laws. If these interactions were found by

experiment to give the correct force law, we would be forced to conclude that the test charge

was identical with an electric charge. A similar argument holds for an electric test charge

a system of magnetic charges.

4. WAVE PROPAGATION

We now derive the wave equation for the electric charge case in 2-space. Applying d*

both sides of Faraday’s law,

dxdE = - —a—d * B
ot
0
= —p—dH.
ot
Substituting for H using Ampere’s law with J = 0,
92
d«dE = —u—D
" “on
Starring both sides and using the constitutive relation for D,
1 9
dxdF = ———
e c? Ot?

The wave operator A satisfies the following identity,
A=—xd*xd+d*xdx.

Using this identity,

1 9?
—AE+dxd*E = ———
Haxax c? ot?
But dxd+ F = d*:d%D =dx* %p. If there are no sources, p = 0, and we have the waj
equation,
1 92

which is in exactly the same form as the wave equation in three dimensions.
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In rectangular coordinates, Eq. (9) becomes

0? 0? 1 0?
aa Y gt = agaE™
0? 0? 1 0%

9t 5" = apa ™
We know the solutions to an equation of this form. The simplest case is a time and spatially

harmonic electric field,
E = Ee*® dy

where the time variation is suppressed and there is no component in the y direction. Hope-
fully, this will represent a plane wave. To be sure, we need to compute the magnetic field

and see if it is propagating along with the electric field. Using Faraday’s law,

B — 1ag

w
= EEe“”” dx dy.
w
This tells us that the magnetic field intensity goes up and down with the same time and
spatially harmonic variation as the electric field. While the electric field vector is moving

back and forth in the 2-space, the scalar magnetic field is becoming alternately positive and

negative.

5. TWO:DIMENSIONAL SPACE AS A SLICE OF THREE-SPACE

Consider a configuration of electrically charged sources in three-dimensional space with
translational symmetry in the z direction. All charges must be line charges and by symmetry
all fields must be independent of 2.

By the symmetrylof the sources, £ and D can have no component in the z direction, and

can be written
= Didydz+ Dydzdx
E = FEjdz+ Eydy

where the coefficients are functions of 2 and y only. Ampere’s law dH = %D + J becomes

0 9 L0 B, ] 0
g2 _Z Z . =z
(551; 9 By Hy)dx dg‘y 8xH3 dz d:c—l—ayHg dy dz atDl dy dz+8tD2 dzdx+J, dy dz+J5 dzdx



which shows that the z and y components of H must vanish. Maxwell’s laws for sources

the given symmetry then become,

0
d(Eidz + E,dy) = —5232 dz dy
dH,dz = 2(Dl dydz + Dy dzdz) + Jy dy dz + J dz dz)

ot
d(Dydydz + Dydzdx) = 0

d(B.dydz) = p
Didydz+ Dydzdz = *(Fyde+ Eydy)
B,drxdy = xH,dz

The d operator can be rewritten as (a%« dr + a%dy)/\ since the field components are inde-
pendent of z. The factor of dz can then be removed from Faraday’s law. dz can also be

removed from the constitutive relations if the star operator becomes the two dimensionjal

star operator given above. These equations then reduce to those found in Sec. 2.

6. ELECTRODYNAMICS IN A CURVED TWO-DIMENSIONAL SPACE

It is easy to write Maxwell’s equations for the case of a curved two-dimensional spade.

In fact, the equations remain identical in form to those in Eq. 6. Only the star operat

changes, since the star operator for a space depends on the metric of space, and the mettic

defines the curvature of the space. The behavior of the fields in a curved space is idential

to the behavior of fields in an anisotropic medium where the permitivity and permeabili

tensors are both proportional to the metric of the curved space.

The question is, ito what three-dimensional, isotropic situation does the curved, twpo-

dimensional case correspond, in the manner of Sec. 57
7. CONCLUSION

We have seen that it is easy to move from three- to two-dimensional electromagneti
using differential forins and the exterior derivative. The vector calculus can also be used

go the same route, hut by contrast the derivation is not as clear and obvious as that aboy
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