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Extension of the L&M Wind Field Model to
Non-Square Regions: An Improved Formulation

David G. Long
Brigham Young University

July 29, 1994

This report updates the L&M wind field model with an improved method for computing
the curl and divergence. For completeness the entire model development and analysis
is presented. A parametric descriptive model for near-surface mesoscale wind fields over
the ocean, suitable for use in a new estimation-theory-based approach to estimating the
wind vector field from scatterometer measurements, is developed. Two model options are
considered. Finally, the ability of the resulting model to describe “realistic” near-surface
mesoscale wind fields is evaluated.

In developing the model we require that the wind field model must: (1) be capable
of describing near-surface mesoscale wind fields with reasonable accuracy; (2) be based
only on scatterometer data (i.e., no other instrument or in situ data is needed); (3) be
computationally tractable; and (4) lend itself to a model parameter estimation formulation.

The role of the wind field model in model-based wind field estimation is to provide a
description of the wind field over the scatterometer measurement swath at a fixed instant of
time and a resolution of from 25 to 50 km (corresponding to the scatterometer sampling);
hence, our wind field model need only be for a sampled wind field. To simplify matters
we restrict our attention to limited-area regions with a maximum spatial extent of approx-
imately 600 km (corresponding to the maximum scatterometer swath width [10, 11]) in
any direction. The scatterometer swath will be segmented in the along-track direction to
appropriately sized regions.

1 Wind Field Model Assumptions

Denote the near-surface horizontal wind field of interest (e.g., the neutral stability wind
at 19.5 m) by U = (u, v)T . We are interested in a mathematical model that provides a
reasonably accurate description of U over a (limited-area) region L. The vorticity ζ and
divergence δ of U are defined, as

ζ = k · ∇ × U (1)
δ = ∇ · U. (2)
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Using the Helmholtz Theorem, U may be defined by a streamfunction ψ and velocity
potential χ, according to

U = k × ∇ψ + ∇χ (3)

where k × ∇ψ is a nondivergent vector field and ∇χ is a curl-free vector field [2].
Taking the divergence and curl, respectively, of Eq. (3) we obtain Poisson equations for

ψ and χ [14],

∇2ψ = ζ (4)
∇2χ = δ (5)

These equations appear in the classic problems of partitioning a given wind field into
its rotational and non-divergent components and reconstructing a wind field from specified
vorticity and divergence [2, 7, 14, 22]. For this latter problem, Lynch [14] argues that the
reconstruction is not unique over a limited domain; an arbitrary harmonic function may be
added to χ, provided ψ is also altered, to produce the same wind field (see [15]). From this
he concludes that the boundary values of χ may be set arbitrarily. He shows that setting
the boundary values of χ to zero minimizes the divergent component of the kinetic energy.
Choosing χ = 0 on the boundary ensures a unique reconstruction of the wind field.

Following this line of reasoning, our first modeling assumption is to assume that χ = 0
on the boundary of L which corresponds to assuming that the wind field has a minimum
of divergent kinetic energy. Assuming that χ = 0 on the boundary, Eqs. (4) and (5),
the vorticity and divergence fields, and the boundary conditions for ψ, are sufficient for
describing the wind vector field.

To obtain simple boundary conditions we make a second major modeling assumption by
attributing ψ to geostrophic motion. This second assumption is that the streamfunction ψ
is proportional to the geostrophic pressure field p, i.e.,

ψ =
1

ρsf
p (6)

where ρs is the density and f is the Coriolis parameter. This represents a departure from
Lynch’s [14] direct method for reconstructing a wind field from the normal velocity com-
ponent along the boundary and the vorticity and divergence fields. Our approach allows
further simplification of the model at a later step.

Note that in a strictly geostrophic formulation, the wind field would be non-divergent
and χ would be identically zero. Mesoscale winds, however, may exhibit non-zero diver-
gence; hence, we adopt a more general formulation in which χ is not set to zero. Instead,
χ is attributed to the ageostrophic component of the wind. This generalization allows us to
apply the model to mesoscale wind fields which depart from strict geostrophy. Inclusion of
the ageostrophic flow permits the model to span a wider space in describing the wind field.
Note that in applying the wind field model, ψ and χ will be determined from the observed
wind field.

By making our second modeling assumption, we are able to specify the boundary values
for Eqs. (4) and (5) in terms of the geostrophic pressure field. This avoids the difficulties
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of using velocity boundary conditions, which may yield an overdetermined system (see the
discussion in [14]).

Our third modeling assumption is that, over the region of interest, ρsf is essentially
constant (i.e., an f -plane approximation); we do this to simplify the mathematics. We can
then normalize the pressure field by ρsf so that ψ = p (recognizing the limitation at the
equator). Doing this, Eq. (3) can be written in component form, as

u = −
∂p

∂y
+

∂χ

∂x
(7)

v =
∂p

∂x
+

∂χ

∂y
(8)

These two equations, along with Eqs. (4) (in which ψ = p) and (5) form the basis of our
wind field model.

To complete the wind-field model, descriptions of the vorticity and divergence fields are
needed. Our fourth and final modeling assumption is that the vorticity and divergence fields
are continuous, relatively smooth, and vary slowly over the region of interest, L; hence, the
vorticity and divergence fields can be parameterized using only a small number of unknowns.
This is consistent with some of the limited data available [4, 5, 16, 19, 20, 21, 23],

ζ(x, y)
4
=

Mc∑

m=0

Nc∑

n=0
m+n≤max(Mc,Nc)

cm,nxmyn (9)

δ(x, y) 4=
Md∑

m=0

Nd∑

n=0
m+n≤max(Md,Nd)

dm,nxmyn (10)

where Mc, Nc, Md and Nd are the model orders and cm,n and dm,n are vorticity and
divergence coefficients. Note that the coefficients of the polynomials will be derived from
the observed wind fields.

The model orders can be selected arbitrarily (depending on the desired accuracy of the
model); however, we have found, based on the results presented below, that Mc = Nc =
Md = Nd = 2 is adequate for wind estimation.

2 Model Development

To further develop our simple wind field model, for the purposes of wind field estimation
from scatterometer measurements, we discretize Eqs. (4), (5), and (7) - (10), on an M ×N
equally-spaced grid with spacing h over the region L. For our purposes the value of h is
selected to correspond to the 25-50 km sampling resolution of the wind scatterometer. The
swath is segmented into abutting along-track regions (see Figure 1). In the case of NSCAT,
N = 24 and h = 25 km will cover the entire left or right swath width [10, 11]. For SASS
h = 50 km. By further segmenting the swath into adjacent cross-track regions N may
be chosen to be less than 24. In this case, the Mh × Nh dimensions of the region L are
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Figure 1: A diagram showing the region sample grid with boundary conditions and coor-
dinate system. The dark sample points and open circles are the locations of the samples
in the region of interest. The grey samples points indicate the locations of the boundary
conditions for the pressure field (see text).
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reduced. We have found that choosing M = N = 8 or 12 provides a good tradeoff between
the number of unknowns in the model and the model’s accuracy.

The discretization of Eqs. (4), (5), and (7) - (10) is stable and will converge assuming
that the boundary conditions of the pressure fields are bounded and have bounded higher-
order derivatives [17, 18].

We will show below that a simple linear equation can be used to relate the wind vector
field at the sample points to the boundary conditions for ψ (i.e., the geostrophic pressure
field along the region boundary) and the parameters of the vorticity and divergence field
models.

To further develop the model we must discretize the partial differential equations [17].
For the first partial derivative we employ first-order differences. We can apply either a
forward step or an backward step difference approximation. We will find it convenient to
use both when computing the wind components from the pressure and velocity potential
fields. A backward difference will be used on the pressure field while a forward difference
will be used with the velocity potential field. This enables a first-order backward difference
approximation to be used in computing the curl and divergence of the wind field.

Applying the first-order difference approximations,

∂

∂x
a(x)

∣∣
x = ih ≈

1
h

[a(xi) − a(xi−1)] backward difference (11)

∂

∂x
a(x)

∣∣
x = ih ≈ 1

h
[a(xi+1) − a(xi)] forward difference (12)

∂2

∂x2 a(x)
∣∣
x = ih ≈ 1

h2 [a(xi+1) − 2a(xi) + a(xi−1)] (13)

to Eqs. (4), (5), (7), and (8) and scaling by the discretization interval h, we obtain the
following finite-difference equation (FDE) system,

u(xi, yj) = −[p(xi, yj) − p(xi, yj−1)] + [χ(xi+1, yj) − χ(xi, yj)] (14)
v(xi, yj) = [p(xi, yj) − p(xi−1, yj)] + [χ(xi, yj+1) − χ(xi, yj)] (15)
ζ(xi, yj) = p(xi+1, yj) + p(xi, yj+1)

+p(xi−1, yj) + p(xi, yj−1) − 4p(xi, yj) (16)
δ(xi, yj) = χ(xi+1, yj) + χ(xi, yj+1) + χ(xi−1, yj)

+χ(xi, yj−1) − 4χ(xi, yj) (17)

where i = 1, . . . , M and j = 1, . . . , N , and where, for convenience, ζ(xi, yi) and δ(xi, yi)
have been scaled by an additional factor of h. The boundary conditions for the p field are
the geostrophic pressure field p(x0, yj) and p(xM+1, yj) for j = 1, . . . ,N and p(xi, y0) and
p(xi, yN+1) for i = 1, . . . ,M (refer to Fig. 1). The boundary conditions of the χ field are
assumed to be zero.

For notational simplicity we write the discretized streamfunction p(xi, yj) as pi,j , where
xi = ih and yj = jh. A similar notation will be used for the velocity, vorticity, divergence,
and potential velocity fields.

Collecting the finite-difference equations for the streamfunction and potential velocity
fields at each point of the square lattice covering L, Eqs. (16) and (17) can be written as
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two matrix equations, i.e.,

QMP + PQN =
1
4
B +

1
4
C (18)

QMS + SQN =
1
4
D (19)

where P , S, B, C, and D are M × N matrices with elements pi,j, χi,j, bi,j , ζi,j and δi,j ,
respectively; QM and QN are M × M and N × N dimensional, tridiagonal, symmetric,
Toeplitz matricies. QM and QN have similar structure with elements qi,j , where,

qi,j =





1
2 , if i = j

−1
4 , if |i − j| = 1

0, otherwise.
(20)

Note that QM = QT
M and that QN = QT

N . B is a matrix containing only the p field
boundary values (the geostrophic pressure field p along the boundary), i.e., the elements
bi,j of B are,

bi,j =





pi,0 if 2 ≤ i ≤ M − 1 and j = 1
pi,N+1 if 2 ≤ i ≤ M − 1 and j = N
p0,j if i = 1 and 2 ≤ j ≤ N − 1
pM+1,j if i = M and for 2 ≤ j ≤ N − 1
p1,0 + p0,1 if i = 1 and j = 1
p0,N + p1,N+1 if i = 1 and j = N
pM,0 + pM+1,1 if i = M and j = 1
pM,N+1 + pM+1,N if i = M and j = N

0 otherwise.

(21)

For clarity, QM and QN and B are,

QM =
1
4




2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2




(M × M), (22)

QN =
1
4




2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2




(N × N), (23)

6



and

B =




p0,1 + p1,0 p0,2 . . . p0,N−1 p0,N + p1,N+1
p2,0 0 . . . 0 p2,N+1
...

...
. . .

...
...

pM−1,0 0 . . . 0 pM−1,N+1
pM,0 + pM+1,1 pM+1,2 . . . pM+1,N−1 pM,N+1 + pM+1,N




. (24)

We will see that the solution for the p field can be written as the sum of two independent
fields; one which is solely a function of the boundary conditions for p and one which is solely
a function of the ζ field. Given that the boundary conditions for the χ field are zero, the
solution for the χ field depends only on the δ field.

For later convenience we decompose B into 3 M × N matrices,

B = Bv + Bu + Br (25)

where the elements of each matrix are,

bu
i,j =

{
pi,0 if j = 1, i = 1, . . . ,M
0 otherwise

(26)

bv
i,j =

{
p0,j if i = 1, j = 1, . . . , N
0 otherwise

(27)

br
i,j =





pi,N+1 if 1 ≤ i ≤ M − 1 and j = N

pM+1,j if i = M and for 1 ≤ j ≤ N − 1
pM,N+1 + pM+1,N if i = M and j = N
0 otherwise

(28)

For clarity,

Bu =




p1,0 0 . . . 0
...

...
. . .

...
pM,0 0 . . . 0


 , (29)

Bv =




p0,1 . . . p0,N

0 . . . 0
...

. . .
...

0 . . . 0




, (30)

and

Br =




0 . . . 0 p1,N+1
...

. . .
...

...
0 . . . 0 pN−1,N+1

pM+1,1 . . . pM+1,N−1 pM,N+1 + pM+1,N




. (31)

Using an overbar to denote an MN × 1 vector of lexicographic-ordered (row order)
elements of an M × N matrix, Eqs. (18) and (19) can be reexpressed, as

KP =
1
4
B +

1
4
C (32)

KS =
1
4
D (33)
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where K is an MN × MN Toeplitz matrix defined, as

K
4= IM ⊗ QN + QM ⊗ IN (34)

where ⊗ is the Kronecker-product [3, 8] and IM and IN are M ×M and N ×N dimensional
identity matrices, respectively. It can be shown that K is invertible and has a simple closed
form (see Appendix).

Since K is invertible, Eqs. (32) and (33) have the unique solutions,

P =
1
4
K−1[B + C] (35)

=
1
4
K−1(Bu + B

v + B
r) +

1
4
K−1C (36)

S =
1
4
K−1D (37)

Starting with the first two equations of the FDE system, (14) and (15), reexpressed as

ui,j = −(ψi,j − ψi,j−1) + (χi+1,j − χi,j) (38)
vi,j = (ψi,j − ψi−1,j) + (χi,j+1 − χi,j), (39)

where i = 1, . . . , M and j = 1, . . . ,N , we can relate the p and χ fields to the velocity field.
To write Eqs. (38) and (39) in matrix form, let U and V be M ×N matrices with elements
ui,j and vi,j, respectively. These equations can then be written, as

U = [P (Ds
N − IN)T + Bu] − (IM − Ds

M)T S (40)

V = [(IM − Ds
M )P − Bv] + S(Ds

N − IN)T (41)

where Ds
M and Ds

N are an M × M and N × N , respectively, matrices which have unity
sub-diagonal and are zero everywhere else, i.e.,

(Ds
M )i,j = (Ds

N )i,j =
{

1, if j = i − 1
0, else

(42)

For clarity,

Ds
M =




0 . . . . . . 0

1 0
. . .

...

0
. . . . . . . . .

...
. . . . . . . . .

...
0 . . . 0 1 0




(M × M). (43)

Using lexicographic-ordered vectors, Eqs. (40) and (41) can be written, as

U = [GP + B
u] − HTS (44)

V = [HP − B
v] + GTS (45)
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where the MN × MN matrices G, H, GT , HT are defined, as

G
4= IM ⊗ [Ds

N − IN ] (46)

H
4
= [IM − Ds

M ] ⊗ IN (47)

GT
4= IM ⊗ [Ds

N − IN ]T (48)

HT
4
= [IM − Ds

M ]T ⊗ IN . (49)

By using the properties of the Kronecker product and the definition of Ds
N it can be

shown that G is the block Jordan-form matrix,

G =




Ds
N − IN 0 . . . 0

0 Ds
N − IN

. . .
...

...
. . . . . . 0

0 . . . 0 Ds
N − IN




. (50)

H is a block tridiagonal matrix,

H =




IN 0 0 . . . 0
−IN IN 0 . . . 0

0 −IN IN
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −IN IN




(51)

Similarly,

GT =




DsT
N − IN 0 . . . 0

0 DsT
N − IN

. . .
...

...
. . . . . . 0

0 . . . 0 DsT
N − IN




. (52)

HT =




IN −IN 0 . . . 0
0 IN −IN . . . 0

0 0 IN
. . .

...
...

. . . . . . . . . −IN

0 . . . 0 0 IN




(53)

G, H, GT , and HT are full rank and invertible.
Note that B

u and B
v are MN element vectors with a maximum of M and N non-zero

elements, respectively, whereas B
r is an MN element vector with a maximum of M +N −1

non-zero elements. Consequently, there are a maximum of 2M+2N−1 non-zero parameters
in the B vector.

We note that the wind velocity is proportional to the partial derivatives (or, in this
formulation, first-order differences) of the p and χ fields. An arbitrary constant can be
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added or subtracted from the p and χ fields without affecting the results; hence, a constant
can be added to or subtracted from the boundary condition vectors without affecting the
results. Since this additive constant is arbitrary and is unimportant, we can normalize
the boundary condition vectors B

u, B
v, and B

r so that the first element of B
u, p0,1, is

zero. This effectively eliminates one non-zero parameter, reducing the number of non-zero
parameters in B

u, B
v, and B

r from 2M + 2N − 1 to 2M + 2N − 2.
With this normalization accomplished, B

u and B
v will be linearly independent since

they have no corresponding non-zero elements. With the exception of the (n1 = N)th

element, where
B

v
n1

= p0,N (54)

and
B

r
n1

= p1,N+1, (55)

the vectors B
v and B

r have no corresponding non-zero elements. Similarly, With the
exception of the (n2 = MN − N + 1)th element, where

B
u
n2

= pM,0 (56)

and
B

r
n2

= pM+1,1, (57)

the vectors B
u and B

r have no corresponding non-zero elements.
Note, also, that the last element of B

r is the sum of two boundary values, pM,N+1 and
pM+1,N ; hence, we do not need to separately identify these values and so we need only
identify the sum.

Substituting Eqs. (35) and (37) into Eqs. (44) and (45) and remembering that the
boundary conditions of S are zero, we obtain

U =
[
1
4
GK−1(B + C) + B

u
]

− 1
4
HT K−1D (58)

=
1
4

[
GK−1(Br + B

v + C) + (GK−1 + 4IMN)Bu
]
−

1
4
HTK−1D (59)

V =
[
1
4
HK−1(B + C) − B

v
]

+
1
4
GTK−1D (60)

=
1
4

[
HK−1(Br + B

u + C) + (HK−1 − 4IMN)Bv
]
+

1
4
GTK−1D (61)

where IMN is the MN × MN dimensional identity matrix.
To write Eqs. (59) and (61) as a single equation, observe that they have the general

form,

U = 1AB
r + 1AB

v + 2AB
u + 1AC − 6AD (62)

V = 3AB
r + 3AB

u + 4AB
v + 3AC + 5AD (63)
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where the jA matrices are defined, as

1A =
1
4
GK−1 (64)

2A =
1
4

[
GK−1 + 4IMN

]
(65)

3A =
1
4
HK−1 (66)

4A =
1
4

[
HK−1 − 4IMN

]
(67)

5A =
1
4
GTK−1 (68)

6A =
1
4
HTK−1. (69)

(70)

Let X be a 2M + 2N − 2 element vector of the non-zero elements of B
r, B

u, and B
v,

where the nth element, xn, of X is,

xn =





B
v
n+1 1 ≤ n < N

B
u
(n−N)M+1 N ≤ n < M + N

B
r
(n−M+N+1)N M + N ≤ n < M + 2N

B
r
n−M+2N+1 M + 2N ≤ n ≤ 2M + 2N − 2

(71)

For clarity,

X =




x1
x2
...

xN−1
xN

xN+1
xN+2

...
xM+N−1
xM+N

xM+N+1
...

xM+2N−2
xM+2N−1
xM+2N

...
x2M+2N−2




=




p0,2
p0,3
...

p0,N

p1,0
p2,0
p3,0
...

pM,0
p1,N+1
p2,N+1

...
pM−1,N+1

pM,N+1 + ψM+1,N

pM+1,1
...

pM+1,N−1




=




B
v
2

B
v
3
...

B
v
N

B
u
1

B
u
N+1

B
u
2N+1
...

B
u
MN−N+1

B
r
N

B
r
2N
...

B
r
MN−N

B
r
MN

B
r
MN−N+1

...
B

r
MN−1




(72)
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Define the MN element vector W as the concatenation of U and V , i.e.,

W =

[
U
V

]
. (73)

Then, the wind field model, Eqs. (62) and (63), can be expressed as the single equation,

W = FX + RcC + RdD (74)

where F is a 2MN × (2M + 2N − 2) matrix and Rc and Rd are 2MN × MN matrices. F ,
Rc and Rd are composed of columns of the A matrices in Eqs. (64) through (69).

For convenience in defining F , we partition F into 4 rectangular submatrices,

F =
[

F1 F2 F3 F4

]
(75)

where the Fi matrices are defined, as

F1 =

[
1A2 1A3 . . . 1AN

4A2 4A3 . . . 4AN

]
(76)

F2 =

[
2A1 2AN+1 . . . 2AMN−N+1

3A1 3AN+1 . . . 3AMN−N+1

]
(77)

F3 =

[
1AN 1A2N . . . 1AMN

3AN 3A2N . . . 3AMN

]
(78)

F4 =

[
1AMN−N+1 1AMN−N+2 . . . 1AMN−1

3AMN−N+1 3AMN−N+2 . . . 3AMN−1

]
(79)

where jAi is the ith column of the jth A matrix in Eqs. (64) through (69). The matrices F1
and F4 are 2MN × (N − 1) while F2 and F3 are 2MN × M . The matrix Rc is defined, as

Rc =

[
1A

3A

]
(80)

whereas the matrix Rd is defined, as

Rd =

[
−6A

5A

]
(81)

Eq. (74) provides a single matrix-vector equation relating the wind field velocity com-
ponents contained in the 2MN element vector W to the 2M + 2N − 2 element boundary
condition vector X and the MN element vorticity and divergence field vectors C and D,
respectively.

Note that Eq. (74) can be expressed, as

W = W
b + W

c + W
d (82)
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where

W
b 4= FX (83)

W
c 4

= RcC (84)

W
d 4

= RdD (85)

The wind field W can therefore be expressed as the sum of a field W
b which depends only

on the boundary conditions in X , a field W
c which depends only on the vorticity field in

C, and a field W
d which depends only on the divergence field in D.

From our fourth modeling assumption, we assume that the vorticity and divergence
fields can be parameterized (or modeled) by a small number of unknown but deterministic
parameters which are the coefficients of the bivariate polynomials in Eqs. (9) and (10).
Using this parameterization, the wind field model can then be formulated in terms of the
boundary conditions on the p field and the parameters of the vorticity and divergence field
model. For later use we define Υc as the transformation matrix between the parameter
vector X

c and the vorticity field C, i.e.,

C = ΥcX
c (86)

where X
c contains the parameters of the vorticity field model. Υd and X

d are similarily
defined for the divergence field, i.e.,

D = ΥdX
d
. (87)

Using this polynomial parameterization for the vorticity and divergence fields, Eq. (74)
can be written, as

W = FX + Rc
Mc∑

m=0

Mc∑

n=0
m+n≤max(Mc,Nc)

cm,nQm,n + Rd
Md∑

m=0

Md∑

n=0
m+n≤max(Md,Nd)

dm,nQm,n (88)

= FX +
Mc∑

m=0

Mc∑

n=0
m+n≤max(Mc,Nc)

cm,nRcQm,n +
Md∑

m=0

Md∑

n=0
m+n≤max(Mc,Nc)

dm,nRdQm,n (89)

where the kth element kqm,n of the MN element vector Qm,n is,

kqm,n = bkcm + dken (90)

in which bkc 4= int[(k − 1)/N ] + 1 and dke 4= mod(k − 1,N) + 1. The constant vorticity
or divergence case corresponds to Mc = Nc = 0 or Md = Nd = 0, respectively. The
case when the vorticity or divergence is assumed to be identically zero will be denoted by
Mc = Nc = −1 or Md = Nd = −1, respectively.

A simple special case occurs for Mc = Nc = Md = Md = 1; then,

ζi,j = c0,0 + c1,0i + c0,1j (91)
δi,j = d0,0 + d1,0i + d0,1j (92)
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so that Eq. (74) can be written, as

W = FX + c0,0R
c + c1,0R

c
x + c0,1R

c
y + d0,0R

d + d1,0R
d
x + c0,1R

d
y (93)

where R
c, R

d, R
c
x, R

c
y, R

d
x, and R

d
y are 2MN vectors with elements R

c
k, R

d
k, R

c
xk

, R
c
yk

, R
d
xk

and R
d
yk

defined, as

R
c
k =

M∑

i=1

N∑

j=1

rc
k,j+(i−1)N (94)

R
d
k =

M∑

i=1

N∑

j=1

rd
k,j+(i−1)N (95)

R
c
xk

=
M∑

i=1
i

N∑

j=1
rc
k,j+(i−1)N (96)

R
c
yk

=
N∑

j=1

j
M∑

i=1

rc
k,j+(i−1)N (97)

R
d
xk

=
M∑

i=1

i
N∑

j=1

rd
k,j+(i−1)N (98)

R
d
yk

=
N∑

j=1
j

M∑

i=1
rd
k,j+(i−1)N (99)

where rc
k,j and rdk, j are the elements of Rc and Rd, respectively.

To express Eq. (93) in a simple form, we define a new 2M + 2N + 4 parameter vector
Xr by augmenting X with c0,0, c1,0, c0,1, d0,0, d1,0 and d0,1, i.e.,

Xr =




X

c0,0
c1,0
c0,1
d0,0
d1,0
d0,1




=

[
X

c

X
d

]
(100)

and let the 2MN × (2M +2N +4) matrix Fr be the matrix created by column-augmenting
the matrix F with R, R

c
x, etc.; i.e.,

Fr =
[

F R
c

R
c
x R

c
y R

d
R

d
x R

d
y

]
. (101)

Equation (93) can then be written, as

W = FrXr (102)

14



Since G, H and K are invertible, 1A and 3A are full rank (i.e., they have independent
columns) and invertible. It is shown that the columns of F are linearly independent in
the appendix; hence, F is full rank. It follows from the definitions of Rc and Rd that the
columns of Rc and Rd are linearly independent. We note that R

c, R
c, R

c
x R

c
y, R

d
x and

R
d
y are linearly independent of each other (for N > 3) and, further, that these vectors are

independent of the columns of F . It follows that the columns of Fr are linearly independent
so that Fr is full rank; hence, there is a unique relationship between a given W and the
parameters Xr. Given W , a least-squares estimate of Xr is,

Xr = F †
r W (103)

where F †
r is the generalized inverse of Fr. Since the system of equations is overdetermined,

F †
r = (FT

r Fr)−1F T
r .

The extension of this approach of augmenting the parameters of the vorticity and di-
vergence field models to the boundary conditions for higher-order polynomial orders is
straightforward.

3 Parameterizing the Boundary Conditions

For a given choice of Mc, Nc, Md and Nd, the final wind field model has the form of Eq.
(102); the wind field is a simple linear function of the boundary conditions for p and the
parameters of the vorticity and divergence fields. This model is referred to as the normal
boundary (NB) wind field model.

Early in the testing of this wind field model, it became apparent that, since the geostrophic
pressure field tends to be very smooth at the mesoscale, the number of unknown boundary
values can be reduced by parameterizing the geostrophic pressure field around the region’s
boundary. While not a required part of our wind field model, minimizing the number of
unknown parameters in the model significantly reduces the CPU time required to determine
the optimum model parameters, when our model is applied to wind field estimation from
wind scatterometer measurements.

We note that the pressure field around the square region of interest will be continuous.
Since the boundary is closed, the pressure field along the boundary will be periodic. We
now parameterize the pressure p as a one-dimensional function along the boundary of the
region L. We write the pressure field around the boundary as p(l), where l is related to the
discretization grid indexes i and j clockwise around the boundary, according to

l =





j, i = 0, 0 ≤ j ≤ N + 1,
i + N + 1, j = N + 1, 0 < i ≤ M + 1,
2N + M + 3 − j, i = M + 1, 0 ≤ j ≤ N + 1,
2M + 2N − i, j = 0, 0 ≤ i < M + 1.

(104)

This formulation provides a one-to-one mapping from l to the region’s boundary. Observe
that l runs from 0 to 2M + 2N + 4. For notational simplicity, we write p(l) as pl.
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Since pl is “smooth” and must be periodic (that is, p0 = p(2M+2N+4)), a low-order
Fourier series representation is appropriate for it, i.e.,

pl = s0 +
Ml/2∑

k=1

[
sc
k cos

(
klπ

M + N + 2

)
+ ss

k sin
(

klπ

M + N + 2

)]
(105)

where Ml is the order of the pressure boundary condition model. We have already noted
that an arbitrary constant can be added to the pressure field without affecting the model
formulation, so we can ignore the s0 term. This requires that we modify the definition of
F1 slightly to incorporate the boundary value p0,1. Let F ′

1 be the 2MN × N rectangular
matrix defined, as

F ′
1 =

[
1A1 1A2 . . . 1AN

4A1 4A2 . . . 4AN

]
=

[
1A1

4A1
F1

]
. (106)

Let the Ml element vector Y be defined, as

Y
4=




sc
1

ss
1

sc
2

ss
2
...

sc
(Ml−1)/2

ss
(Ml−1)/2




(107)

Equations (62) and (63) can be then be written as,

W = FY + RcC + RdD (108)

where F is a 2MN × Ml rectangular matrix created from the Fj matrices and F ′
1. Let fi,j

be the (i, j)th element of F and (Fk)i,j be the (i, j)th element of the Fk matrix; then,

fi,j =





∑N
k=1(F

′
1)i,k cos π[jk/(M + N + 2) − 1]

+
∑N

k=1(F2)i,k cosπ[j(2n + 2M + 4 − k)/(M + N + 2)]
+

∑N
k=1(F3)i,k cosπ[j(n + 1 + k)/(M + N + 2)]

+
∑N

k=1(F4)i,k cosπ[j(2N + M + 3 − k)/(M + N + 2)]

for j odd

∑N
k=1(F

′
1)i,k sinπ[jk/(M + N + 2)]

+
∑N

k=1(F2)i,k sinπ[j(2 − k)/(M + N + 2)]
+

∑N
k=1(F3)i,k sinπ[j(1 + k)/(M + N + 2)]

+
∑N

k=1(F4)i,k sinπ[j(3 − k)/(M + N + 2)]

for j even.

(109)

The final parameterized boundary condition (PBC) wind field model is created by augment-
ing Y with the parameters of the vorticity and divergence field model, as previously done
for the NB model.
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Alternately, we can use a slightly different boundary polynomial parameterization based
on a polar representation of the boundary positions. In this alternate boundary parame-
terization, the the pressure field around the boundary is expressed as p(θ(l)) where θ(l) is
defined below. p(θ) is then,

p(θ) =
Ml/2∑

k=1

[sc
k cos(kθ/2) + ss

k sin(kθ/2)] . (110)

θ(l) is defined, as

θ(l) =





θN − tan−1
{

(N+1)/2−l
dN

}
0 ≤ l ≤ (N + 2)/2

θN + tan−1
{

l−(N+1)/2
dN

}
(N + 2)/2 < l ≤ N + 1

2θN + θM − tan−1
{

(M+2)/2−l+N+1
dM

}
N + 1 < l ≤ (M + 2)/2 + N + 1

2θN + θM + tan−1
{

l−(M+1)/2−N−1
dM

}
N + 2 + (M + 2)/2 < l ≤ M + N + 2

3θN + 2θM − tan−1
{

(N+1)/2−l+N+2+M
dN

}
M + N + 2 < l ≤ (N + 2)/2 + N + M + 2

3θN + 2θM + tan−1
{

l−(N+1)/2−N−2−M
dN

}
M + N + 2 + (N + 2)/2 < l ≤ 2N + M + 3

4θN + 3θM − tan−1
{

(M+1)/2−l+2N+3+M
dM

}
M + 2N + 3 < l ≤ (M + 2)/2 + 2N + M + 3

4θN + 3θM + tan−1
{

l−(M+1)/2−2N−3−M
dM

}
M + 2N + 3 + (M + 2)/2 < l ≤ 2N + 2M + 4

(111)

where

rMN =
1
2

√
(M + 1)2 + (N + 1)2 (112)

θN = sin−1
{

(N + 1)/2
rMN

}
(113)

θM = sin−1
{

(M + 1)/2
rMN

}
(114)

dN = rMN cos(θN) (115)
dM = rMN cos(θM ). (116)

This approach to parameterizing the boundary conditions insures that the coefficients of
the boundary polynomial correspond to orthongonal polynomil components.

4 Computing the Curl and Divergence from the Wind

One of the reasons for adopting separate difference approximations of the pressure and
velocity potential functions is to simplify the computation of the curl and divergence from
the wind field. For convenience Eqs. (14) - (17) are repeated here in short-hand notation,

ui,j = −[pi,j − pi,j−1] + [χi+1,j − χi,j] (117)
vi,j = [pi,j − pi−1,j] + [χi,j+1 − χi,j)] (118)
ζi,j = pi+1,j + pi,j+1 + pi−1,j + pi,j−1 − 4pi,j (119)
δi,j = χi+1,j + χi,j+1 + χi−1,j + χi,j−1 − 4χi,j. (120)
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The divergence of the vector wind U = (u, v)t is defined as,

Div{U} 4
=

∂

∂x
Ux +

∂

∂y
Uy

=
∂

∂x
u +

∂

∂y
v (121)

while the vorticity is defined as,

Vor{U} 4= − ∂

∂y
Vx +

∂

∂x
Vy

= −
∂

∂y
u +

∂

∂x
v. (122)

The partial derivatives can be approximated by first-order differences. By using a backward
difference for the divergence equation and a forward difference for the vorticity equation,
we can recover the p and χ fields. The first-order difference equations are,

Div{Ui,j} ≈ [ui,j − ui−1,j ] + [vi,j − vi,j−1] (123)
Vor{Ui,j} ≈ −[ui,j+1 − ui,j] + [vi+1,j − vi,j ]. (124)

Substituting Eqs. (117) and (118) we obtain,

Div{Ui,j} ≈ [ui,j − ui−1,j ] + [vi,j − vi,j−1]

= −[pi,j − pi,j−1] + [pi−1,j − pi−1,j−1] + [pi,j − pi−1,j ] − [pi,j−1 − pi−1,j−1]
+[χi+1,j − χi,j] − [χi+1,j−1 − χi,j−1] + [χi,j+1 − χi,j)] − [χi,j − χi,j−1)]

= −4χi,j + χi+1,j + χi−1,j + χi,j+1 + χi,j+1

= δi,j (125)
Vor{Ui,j} ≈ −[ui,j+1 − ui,j ] + [vi+1,j − vi,j]

= −{−[pi,j+1 − pi,j] + [pi,j − pi,j−1] + [pi+1,j − pi,j] − [pi,j − pi−1,j ]}
+[χi+1,j+1 − χi,j+1] − [χi+1,j − χi,j ] + [χi+1,j+1 − χi+1,j)] − [χi,j+1 − χi,j)]

= −4pi,j + pi+1,j + pi−1,j + pi,j+1 + pi,j+1

= ζi,j (126)

Thus, ζ and δ can be directly recovered from u and v.

5 Evaluating the Wind Field Model

Both the NB and PBC wind field model options have the general form,

W = FX (127)

where W contains the components of the sampled wind field over the region L, F is a known
constant matrix, and X is the model parameter vector. We now consider how well these
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Table 1: RMS difference between the true wind field in Fig. 2 and the field in Fig. 3.

Normalized Normalized
Vector Direction (deg) Speed
0.09 4.29 0.06

models can represent realistic wind fields for different orders of the vorticity and divergence
field models and field size N .

To evaluate the modeling error: (1) a least-squares fit of the model parameters to a real
wind field was obtained; (2) the resulting “model” wind field was computed from the model
parameters; and, (3) the root-mean-square (RMS) difference between the true field and the
model field was computed.

The sampled “true” wind field over L is denoted by W t. The least-squares fit X of the
model parameters to W t is

X = F †W t (128)

where F † = (FT F )−1FT is the pseudo-inverse of F [9]. The wind field computed from the
model parameter vector, denoted W , is

W = FX. (129)

The vector error between W t and W is then,

W t − W = (I − FF †)W t = (I − F (FTF )−1F T )W t. (130)

To illustrate the model performance, consider Figs. 2 and 3. A simulated (described
below) mesoscale wind field, sampled at 25 km with M = N = 12, is shown in Fig. 2. A
vector length equal to the distance between samples corresponds to a wind speed of 15 m/s.
The model parameter vector X was computed using Eq. (128). The model wind field W
was then computed using Eq. (129) and is plotted in Fig. 3. For this example, the NB
model was used with Mc = Nc = Md = Nd = 2. The RMS differences between W t and W
are tabulated in Table 21. In this and succeeding tables, the RMS vector error is defined as
the square root of the mean squared magnitude of the vector difference between the true
field and the estimated field. The value shown is normalized by the RMS vector magnitude
of the true wind field. Similarly, the RMS wind speed error has been normalized by the
RMS wind speed of the true wind field. Note the close agreement between the true and
model wind fields.

To evaluate our model formulation we have used simulated mesoscale wind fields, since
little conventional mesoscale wind field data over the ocean is available. A detailed de-
scription of how these fields were created is given in the appendix. A summary is provided
here. The test wind fields were generated by state-of-the-art numerical weather prediction

1Note that this and later tables have NOT been updated to the new formulation with both forward and
backward differences. However, the results are expected to be the same
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Figure 2: An example of a wind field uniformly sampled with h = 50 km over a 600 × 600
km region. A vector length equal to the sample spacing corresponds to 15 m/s.
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Figure 3: The “model” wind field resulting from fitting the NB model with Mc = Nc =
Md = Nd = 4 and M = N = 12 to the wind field shown in Fig. 2. Plotting conventions
and scale are the same as in Fig. 2.
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models at 1.875 deg resolution. The surface wind fields were interpolated to 10 km and
non-divergent small-scale variability with a ak−2 spectrum and random phase [1, 6] added.
For a given 2000 × 2000 km region, the value of a was selected to be consistent with the
spectrum within the region [6]. The wind fields were selected to span a wide range of me-
teorological conditions. An example of a portion of one of the test fields is shown in Fig.
4. Regions of high vorticity and non-zero divergence are readily observable. The sampling
interval is 80 km with a vector length corresponding to the sampling distance equivalent to
15 m/s.

To evaluate the modeling error for a wind field model of size M × N , each wind field
was segmented into M × N regions. For each region segment, the model parameters were
computed using the approach described above, and the model wind field was computed
from the model parameters. The RMS of the error between the true and model fields was
computed over all possible regions within the original true wind field. The results for various
model options are described below.

As a general rule, for fixed M = N , as Mc = Nc and Md = Nd are increased, the
modeling error is reduced. For given values of Mc, Nc, Md, and Nd, as N and M are
increased, the modeling error increases. Since the number of parameters is a function of
Mc, Nc, Md, Nd, M , and N , there is room for tradeoff between the number of model
parameters and the accuracy of the wind field model

5.1 NB Model Error

Let us first consider the performance of the NB model. For the NB model the number of
unknowns, Nu, in each M × N region segment is related to M , N , Mc, Nc, Md, and Nd by
the formula,

Nu = 2M + 2N − 2 + g(Mc,Nc) + g(Md,Nd) (131)

where

g(M, N) =





0, M < 0 & N < 0,
M + 1, N < 0 & M ≥ 0,
N + 1, M < 0 & N ≥ 0,
(max(M, N) + 1)(min(M,N) + 1)−
(max(M, N) − min(M,N) + 1)(max(M, N)− else.
min(M,N) + 2)

(132)

Mc = Nc = −1 is used to denote the case when the vorticity field is identically zero.
Similarly, Md = Nd = −1 denotes the case when the divergence is identically zero.

Table 4.3 shows RMS modeling error versus N for polynomial vorticity and divergence
models with Mc = Md = 2. With the exception of a dip at M = N = 12, the modeling
error increases as M = N increases. Table 4.4 illustrates the effects of varying Mc = Nc

and Md = Nd for M = N = 8. Table 4.5 is similar to Table 4.4, but for M = N = 12. As
Mc = Nc and Md = Nd increase, the modeling error is reduced. To minimize the number
of unknowns in the model, we desire to keep Mc, Nc, Md, and Nd small.
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Figure 4: An example of the mesoscale wind fields used in evaluating the model accuracy.
The field was uniformly sampled with h = 80 km. A vector length equal to the sample
spacing corresponds to 15 m/s.
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Table 2: Wind-field-model error for the NB model, with Mc = Nc = Md = Nd = 2, as a
function of M = N for simulated mesoscale wind fields.

M = N Number of Unknowns Normalized RMS Error
in M × N Region Vector Direction (deg) Speed

4 20 0.043 1.490 0.023
6 28 0.081 3.180 0.046
8 36 0.085 3.758 0.050
10 44 0.105 4.993 0.065
12 54 0.085 4.378 0.053
14 66 0.083 4.582 0.054
16 74 0.157 10.007 0.105

5.2 PBC Model Error

The PBC model has the advantange of using a smaller number of unknowns than the NB
model, but at the expense of a somewhat higher modeling error. For the PBC model the
number of unknowns Nu in each N ×N region is related to Ml, Mc and Md by the formula,

Nu = 2Ml + g(Mc,Nc) + g(Md, Nd). (133)

Next we contrast the performance of the previous NB model results with those obtained
for the PBC model. Table 4.6 illustrates the effect of varying Ml for M = N = 8 and
Mc = Nc = Md = Nd = 2. Table 4.7 presents the RMS errors for Ml = 8 and Mc = Nc =
Md = Nd = 2 versus N . Table 4.7 should be compared to Table 4.3; note that the errors
are only slightly larger for the PBC case as compared to the NB case. Table 4.8 shows the
effects of varying Mc = Nc and Md = Nd for M = N = 8 and Ml = 8, whereas Table 4.9
presents similar results for M + N = 12. Table 4.8 should be compared with Table 4.5,
whereas Table 4.9 should be compared with Table 4.6. Observe that for M = N = 8, setting
Ml = 8 and Mc = Nc = Md = Nd = 1, permits us to meet our desired model accuracy
requirements. For M + N = 12 and Ml = 8, and Mc = Nc = Md = Nd = 2, the desired
accuracy requirements are met. Greater accuracy is achieved for larger Ml and/or larger
Mc = Nc and Md = Nd.
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Table 3: NB-model Error for M = N = 8, versus Mc = Nc and Md = Nd

Field Model Unknowns Normalized RMS Error
Mc = Nc Md = Nd Nu Vector Direction (deg) Speed

-1 -1 30 0.191 8.309 0.115
-1 0 31 0.171 7.218 0.099
-1 1 33 0.165 7.044 0.095
-1 2 36 0.161 6.930 0.092
-1 3 40 0.154 6.626 0.089
-1 4 45 0.148 6.349 0.086
0 -1 31 0.133 6.013 0.084
0 0 32 0.102 4.652 0.063
0 1 34 0.098 4.485 0.060
0 2 37 0.096 4.326 0.059
0 3 41 0.094 4.270 0.058
0 4 46 0.093 4.213 0.057
1 -1 33 0.129 5.797 0.080
1 0 34 0.097 4.355 0.058
1 1 36 0.092 4.176 0.055
1 2 39 0.090 4.008 0.054
1 3 43 0.089 3.934 0.053
1 4 48 0.089 3.921 0.053
2 -1 36 0.124 5.604 0.076
2 0 37 0.092 4.105 0.055
2 1 39 0.087 3.915 0.052
2 2 42 0.085 3.758 0.050
2 3 46 0.085 3.711 0.050
2 4 51 0.084 3.683 0.050
3 -1 40 0.116 5.177 0.073
3 0 41 0.091 4.079 0.054
3 1 43 0.087 3.870 0.052
3 2 46 0.084 3.716 0.050
3 3 50 0.084 3.667 0.049
3 4 55 0.083 3.633 0.049
4 -1 45 0.102 4.557 0.064
4 0 46 0.084 3.783 0.051
4 1 48 0.079 3.576 0.047
4 2 51 0.077 3.410 0.045
4 3 55 0.076 3.360 0.045
4 4 60 0.075 3.310 0.044
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Table 4: NB-model Error for M = N = 12, versus Mc = Nc and Md = Nd

Field Model Unknowns Normalized RMS Error
Mc = Nc Md = Nd Nu Vector Direction (deg) Speed

-1 -1 46 0.234 11.207 0.148
-1 0 47 0.208 9.757 0.127
-1 1 49 0.199 9.304 0.120
-1 2 52 0.196 9.212 0.117
-1 3 56 0.191 8.954 0.115
-1 4 61 0.187 8.822 0.113
0 -1 47 0.163 8.028 0.108
0 0 48 0.123 6.256 0.082
0 1 50 0.111 5.725 0.074
0 2 53 0.107 5.502 0.071
0 3 57 0.105 5.445 0.069
0 4 62 0.105 5.373 0.070
1 -1 49 0.152 7.552 0.098
1 0 50 0.108 5.591 0.070
1 1 52 0.094 4.914 0.060
1 2 55 0.089 4.658 0.057
1 3 59 0.088 4.566 0.056
1 4 64 0.089 4.617 0.057
2 -1 52 0.149 7.449 0.095
2 0 53 0.104 5.397 0.067
2 1 55 0.089 4.666 0.056
2 2 58 0.085 4.378 0.053
2 3 62 0.083 4.289 0.052
2 4 67 0.083 4.277 0.052
3 -1 56 0.145 7.278 0.094
3 0 57 0.103 5.357 0.066
3 1 59 0.088 4.623 0.056
3 2 62 0.084 4.331 0.052
3 3 66 0.083 4.237 0.051
3 4 71 0.082 4.207 0.051
4 -1 61 0.139 6.999 0.091
4 0 62 0.102 5.374 0.066
4 1 64 0.087 4.580 0.056
4 2 67 0.081 4.227 0.051
4 3 71 0.082 4.263 0.052
4 4 76 0.083 4.439 0.053
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Table 5: PBC-model Error for M = N = 8 and Mc = Nc = Md = Nd = 2, versus Ml

Ml Unknowns Normalized RMS Error
Nu Vector Direction (deg) Speed

2 8 0.236 10.793 0.153
4 10 0.162 7.492 0.115
6 12 0.115 5.063 0.075
8 14 0.105 4.728 0.068

Table 6: PBC-model error, with Ml = 8 and Mc = Nc = Md = Nd = 2, as a function of N
for simulated mesoscale wind fields.

M = N Number of Unknowns Normalized RMS Error
in M × N Region Vector Direction (deg) Speed

8 20 0.105 4.728 0.068
10 20 0.107 5.020 0.072
12 20 0.110 5.604 0.076
14 20 0.112 5.889 0.079
16 20 0.117 6.559 0.082
18 20 0.123 7.189 0.087
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Table 7: PBC-model Error for M = N = 8 and Ml = 8, versus Mc = Nc and Md + Nd

Field Model Unknowns Normalized RMS Error
Mc = Nc Md = Nd Nu Vector Direction (deg) Speed

-1 -1 8 0.203 8.965 0.126
-1 0 9 0.185 7.963 0.112
-1 1 11 0.179 7.796 0.108
-1 2 14 0.175 7.611 0.106
-1 3 18 0.168 7.346 0.102
-1 4 23 0.162 7.018 0.099
0 -1 9 0.150 6.860 0.097
0 0 10 0.123 5.684 0.080
0 1 12 0.119 5.545 0.077
0 2 15 0.117 5.315 0.076
0 3 19 0.115 5.220 0.075
0 4 24 0.113 5.110 0.072
1 -1 11 0.146 6.638 0.094
1 0 12 0.118 5.424 0.076
1 1 14 0.114 5.263 0.073
1 2 17 0.111 5.021 0.072
1 3 21 0.110 4.943 0.071
1 4 26 0.108 4.849 0.069
2 -1 14 0.140 6.403 0.090
2 0 15 0.112 5.140 0.072
2 1 17 0.108 4.974 0.069
2 2 20 0.105 4.728 0.068
2 3 24 0.105 4.704 0.067
2 4 29 0.102 4.592 0.064
3 -1 18 0.133 6.033 0.087
3 0 19 0.111 5.106 0.070
3 1 21 0.106 4.960 0.067
3 2 24 0.103 4.721 0.065
3 3 28 0.103 4.693 0.064
3 4 33 0.100 4.537 0.062
4 -1 23 0.121 5.487 0.078
4 0 24 0.104 4.788 0.066
4 1 26 0.099 4.623 0.062
4 2 29 0.096 4.406 0.060
4 3 33 0.095 4.362 0.059
4 4 38 0.093 4.218 0.057
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Table 8: PBC-model error for M = N = 12 and Ml = 8, versus Mc = Nc and Md = Nd

Field Model Unknowns Normalized RMS Error
Mc = Nc Md = Nd Nu Vector Direction (deg) Speed

-1 -1 8 0.247 11.844 0.160
-1 0 9 0.222 10.508 0.141
-1 1 11 0.213 10.043 0.134
-1 2 14 0.210 9.875 0.131
-1 3 18 0.206 9.672 0.129
-1 4 23 0.201 9.444 0.126
0 -1 9 0.181 8.983 0.121
0 0 10 0.145 7.392 0.099
0 1 12 0.134 6.866 0.091
0 2 15 0.130 6.621 0.089
0 3 19 0.128 6.511 0.088
0 4 24 0.126 6.390 0.086
1 -1 11 0.170 8.424 0.114
1 0 12 0.132 6.719 0.089
1 1 14 0.119 6.142 0.081
1 2 17 0.115 5.876 0.079
1 3 21 0.114 5.747 0.078
1 4 26 0.111 5.627 0.076
2 -1 14 0.166 8.277 0.111
2 0 15 0.128 6.507 0.087
2 1 17 0.115 5.912 0.078
2 2 20 0.110 5.604 0.075
2 3 24 0.109 5.505 0.074
2 4 29 0.106 5.347 0.073
3 -1 18 0.163 8.146 0.109
3 0 19 0.126 6.505 0.085
3 1 21 0.113 5.902 0.076
3 2 24 0.109 5.611 0.074
3 3 28 0.108 5.508 0.073
3 4 33 0.104 5.336 0.070
4 -1 23 0.157 7.875 0.105
4 0 24 0.122 6.329 0.082
4 1 26 0.110 5.757 0.073
4 2 29 0.105 5.474 0.071
4 3 33 0.104 5.350 0.070
4 4 38 0.101 5.208 0.068
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6 Conclusion

In this report the development of a model for near-surface mesoscale wind fields which is
suitable for use in model-based estimation of wind fields from wind scatterometer mea-
surements is presented. The modeling error is evaluated by means of simulation. Only a
summary of the modeling error computations has been shown here.

The parameterized boundary condition model with N = M = 8, Ml = 8, and Mc =
Nc = Md = Nd = 1 or M + N = 12, Ml = 8, and Mc = Nc = Md = Nd = 2 provides the
desired model accuracy while minimizing the number of unknowns. Larger values of Ml,
Mc, Nc, Md, and Nd produce more accurate models.

Table 9: PBC-model Error for M = N = 8 and Ml = 8, versus Mc = Nc and Md + Nd.
Circular case.

Field Model Unknowns Normalized RMS Error
Mc = Nc Md = Nd Nu Vector Direction (deg) Speed

-1 -1 8 ∼ 72 0.291 13.810 0.175
0 0 10 ∼ 90 0.170 8.005 0.112
1 1 14 ∼ 126 0.145 6.903 0.099
2 2 20 ∼ 180 0.137 6.575 0.093
3 3 28 ∼ 252 0.124 6.106 0.081
4 4 38 ∼ 342 0.104 5.270 0.063

30



Detailed Derivations for the Wind Field Model
In this appendix, detailed derivations and proofs used in the derivation of the wind

field model are provided. This includes a proof of the invertibility of the K matrix, the
computation of K−1, and a proof of the linear independence of the columns of the F matrix.

A Computation of K−1

The MN × MN matrix K is defined, as

K = IM ⊗ QN + QM ⊗ IN (134)

where QM and QN are M ×M and N ×N , respectively, tridiagonal matrices with elements
qi,j , where

qi,j =





1
2 , if i = j,
−1

4 , if |i − j| = 1,
0, otherwise

(135)

and IM and IN are M × M and N × N dimensional, respectively, identity matrices.
We will exploit the well known fact [8, 17] that the unitary sine transform matrix ΨM

with elements ψM
i,j diagonalizes QM , where

ψM
i,j =

√
2

M + 1
sin

(
ijπ

M + 1

)
(136)

and
ΨMQMΨT

M = ΨMQMΨM = Λq
M (137)

where the off-diagonal elements of Λq
M are zero and the diagonal elements λq

Mi,i

4
= λq

M (i) of
Λq

M are

λq
M (i) =

1
2

[
1 − cos

(
iπ

M + 1

)]
(i = 1, . . . ,M). (138)

Similarily, the unitary sine transform matrix ΨN with elements ψN
i,j diagonalizes QN , where

ψN
i,j =

√
2

N + 1
sin

(
ijπ

N + 1

)
(139)

and
ΨNQNΨT

N = ΨNQNΨN = Λq
N (140)

where the off-diagonal elements of Λq
N are zero and the diagonal elements λq

Ni,i

4= λq
N(i) of

Λq
N are

λq
N (i) =

1
2

[
1 − cos

(
iπ

N + 1

)]
(i = 1, . . . ,N). (141)
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We can explictly compute the elements q−1
Ni,j

of Q−1
N , as

q−1
Ni,j

=
N∑

k=1

ψNi,k
ψNk,j

/λq
N(i)

=
4

N + 1

N∑

k=1

[
sin

(
ikπ

N + 1

)
sin

(
jkπ

N + 1

)]
/

[
1 − cos

(
kπ

N + 1

)]
]

=
2

N + 1

N∑

k=1

[
cos

(
k(i − j)π
N + 1

)
− cos

(
k(i + j)π

N + 1

)]
/

[
1 − cos

(
kπ

N + 1

)]
(142)

and the elements q−1
Mi,j

of Q−1
M , as

q−1
Mi,j

=
M∑

k=1

ψMi,kψMk,j/λq
M (i)

=
4

M + 1

M∑

k=1

[
sin

(
ikπ

M + 1

)
sin

(
jkπ

M + 1

)]
/

[
1 − cos

(
kπ

M + 1

)]
]

=
2

M + 1

M∑

k=1

[
cos

(
k(i − j)π
M + 1

)
− cos

(
k(i + j)π
M + 1

)]
/

[
1 − cos

(
kπ

M + 1

)]
(143)

The ΨM amd ΨN can be used to diagonalize K. Using the elementary properties of the
Kronecker product and noting that ΨT

MΨM = ΨMΨM = IM and ΨT
NΨN = ΨNΨN = IN

we see that,

(ΨM ⊗ ΨN)K(ΨM ⊗ ΨN) = (ΨM ⊗ ΨN)(IM ⊗ QN + QM ⊗ IN )(ΨM ⊗ ΨN)
= (ΨM ⊗ ΨN)(IM ⊗ QN)(ΨM ⊗ ΨN) +

(ΨM ⊗ ΨN )(QM ⊗ IN )(ΨM ⊗ ΨN)
= (ΨM ⊗ ΨM )([IMΨM ] ⊗ [QNΨN ]) +

(ΨM ⊗ ΨN )([QMΨM ] ⊗ [INΨN ])
= ([ΨMIMΨM ] ⊗ [ΨNQNΨN ]) + ([ΨMQMΨM ] ⊗ [ΨN INΨN ])

= IM ⊗ (ΨNQNΨN) + (ΨMQMΨM ) ⊗ IN

= IM ⊗ Λq
N + Λq

M ⊗ IN

4= Λ (144)

Note that the matrices IM ⊗ Λq
N and Λq

M ⊗ IN are diagonal matrices with off-diagonal
elements zero so that Λ is also diagonal. It follows from Eqs. (138) and (138) that the MN
eigenvalues of Λ (which are also the eigenvalues of K) are,

λk,k
4= λ(k) = λq

M (i) + λq
N(j) = 1 − 1

2
cos[iπ/(M + 1)] − 1

2
cos[jπ/(N + 1)] (145)
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where i = mod(k − 1,N) + 1 and j = int((k − 1)/N) + 1. Note that the eigenvalues of K
are strictly positive, i.e.,

0 < λ(k) < 2 for all k (146)

With strictly positive eigenvalues, K is invertible. The eigenvalues of K−1 are the inverse
of the eigenvalues of K, i.e.,

λK−1

k,k
4= λK−1

(k) =
1

λq
M (i) + λq

N (j)
=

2
2 − cos[iπ/(M + 1)] − cos[jπ/(N + 1)]

(147)

We can explictly write the elements k−1
m,n of K−1, as

k−1
m,n =

MN∑

l=1

(ΨM ⊗ ΨN)m,lλ
K−1

(l)(ΨM ⊗ ΨN)l,n

=
MN∑

l=1

ψMbmc,blcψNdme,dleψMbnc,blcψNdne,dle/λ(l)

=
8

(M + 1)(N + 1)

MN∑

l=1

sin
(bmcblcπ

M + 1

)
sin

(dmedleπ
N + 1

)
·

sin
(bncblcπ

M + 1

)
sin

(dnedleπ
N + 1

)
/ (148)

[
2 − cos

(
iπ

M + 1

)
− cos

(
jπ

N + 1

)]

where bic 4= int((i − 1)/N) + 1 and die 4= mod(i − 1, N) + 1.

B Linear Independence of the Columns of F

In this section the linear independence of the columns of the F matrix is shown. For
convenience in defining F , F is partitioned into 4 submatrices,

F =
[

F1 F2 F3 F4

]
(149)

where the Fi matrices are defined, as

F1 =

[
1A2 1A3 . . . 1AN

4A2 4A3 . . . 4AN

]
(150)

F2 =

[
2A1 2AN+1 . . . 2AMN−N+1

3A1 3AN+1 . . . 3AMN−N+1

]
(151)

F3 =

[
1AN 1A2N . . . 1AMN

3AN 3A2N . . . 3AMN

]
(152)

F4 =

[
1AMN−N+1 1AMN−N+2 . . . 1AMN−1

3AMN−N+1 3AMN−N+2 . . . 3AMN−1

]
(153)
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in which jAi is the ith column of the jA matrix,

1A =
1
4
GK−1 (154)

2A =
1
4

[
GK−1 + 4IMN

]
(155)

3A =
1
4
HK−1 (156)

4A =
1
4

[
HK−1 − 4IMN

]
. (157)

where the MN × MN matrices G and H are defined as,

G
4= IM ⊗ [Ds

N − IN ] (158)

H
4
= [IM − Ds

M ] ⊗ IN (159)

in which Ds is an N × N matrix which has a unity sub-diagonal and is zero everywhere
else, i.e., the elements ds

i,j of Ds are

ds
i,j =

{
1, if j = i − 1
0, else

(160)

The matrices F1 and F4 are 2MN × (N − 1) while F2 and F3, are 2MN × N .
Using the properties of the Kronecker product and the definitions of Ds

M and Ds
N , it

can be shown that G is the block Jordan-form matrix,

G =




Ds
N − IN 0 . . . 0

0 Ds
N − IN

. . .
...

...
. . . . . . 0

0 . . . 0 Ds
N − IN




. (161)

H is a block tridiagonal matrix,

H =




IN 0 0 . . . 0
−IN IN 0 . . . 0

0 −IN IN
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −IN IN




(162)

Note that both G and H are full rank and invertible. It can be readily verified that the
M × M dimensional matrix TM with elements ti,j, where

ti,j =
{

1, if j ≤ i

0, otherwise
(163)
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is the inverse of the matrix (IM − Ds
M), i.e., (IM − Ds

M )TM = IM . Similarily, it can be
readily verified that the N × N dimensional matrix TN with elements ti,j , where

ti,j =
{

1, if j ≤ i
0, otherwise

(164)

is the inverse of the matrix (Ds
N − IN ), i.e., (Ds

N − IN)TN = IN . Hence,

G−1 = IM ⊗ TN (165)
H−1 = TM ⊗ IN . (166)

Since G and H are invertible, it follows that 1A = GK−1 and 3A = HK−1 are full rank
with independent columns. From their definition it is readily apparent that the columns of
F3 and F4 are linearly independent since they are composed of different columns of 1A and
3A. In the following section we show that 2A = (GK−1 + 4I)/4 and 3A = (HK−1 − 4I)/4
are full rank. It then follows that the columns of F1 and and F2 are linearly independent.
Since no Fi matrix shares a column from the same jA matrix with any other Fk matrix,
the columns of the Fi matrices are linearly independent.

C Rank of GK−1 + 4IMN and HK−1 − 4IMN

We want to show that GK−1 + 4IMN is full rank. Note that,

GK−1 + 4IMN = GK−1 + 4KK−1 = G(IMN + 4K)K−1 (167)

where IMN is the MN × MN identity matrix. Since both G and K−1 are full rank, the
only question is the rank of (IMN + 4K). Using the definitions,

G = IM ⊗ [Ds
N − IN ] (168)

K = IM ⊗ QN + QM ⊗ IN , (169)

we see that

(IMN + 4K) = (IMN + 4IM ⊗ QN + 4QM ⊗ IN)
= IM ⊗ IN + 4IM ⊗ QN + 4QM ⊗ IN

=
1
2
IM ⊗ IN + 4IM ⊗ QN + 4QM ⊗ IN +

1
2
IM ⊗ IN

=
1
2
IM ⊗ (IN + 8QN) +

1
2
(IM + 8QM ) ⊗ IN

= IM ⊗ QN1 + QM1 ⊗ IN

4
= K1 (170)

35



where QM1 = 1
2(IM + 8QM ) is an M × M tridiagonal, symmetric Toeplitz matrix,

QM1 =
1
2




5 1 0 . . . 0

1 5 1
. . .

...

0 1 5
. . . 0

...
. . . . . . . . . 1

0 . . . 0 1 5




(M × M) (171)

QN1 is similarily defined but has dimension N ×N . QM1 can be readily seen to be full rank
and can be diagonalized using the ΨM matrix. QN1 can be readily seen to be full rank and
can be diagonalized using the ΨN matrix.

For clarity, K1 can be written as,

K1 =




QN1 0 0 . . . 0

0 QN1 0
. . .

...

0 0 QN1
. . . 0

...
. . . . . . . . . 0

0 . . . 0 0 QN1




+
1
2




5IN IN 0 . . . 0

IN 5IN IN
. . .

...

0 IN 5IN
. . . 0

...
. . . . . . . . . IN

0 . . . 0 IN 5IN




(172)

which can be written as,

K1 =
1
2




QN2 IN 0 . . . 0

IN QN2 IN
. . .

...

0 IN QN2
. . . 0

...
. . . . . . . . . IN

0 . . . 0 IN QN2




(173)

where the N × N matrix QN2 is defined,

QN2 =




0 1 0 . . . 0

1 0 1
. . .

...

0 1 0
. . . 0

...
. . . . . . . . . 1

0 . . . 0 1 0




(M × M ) (174)

Some thought reveals that K1 is full rank and therefore GK−1 + 4IMN is full rank.
Using this same procedure it is easy to show that HK−1 − 4IMN is full rank.

D Model Parmeter Extrapolation

From the results presented in Chapter 7 of [13] we can observe that initial values computed
from dealiased point-wise wind estimates are generally of good quality if the wind speed
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is sufficiently high. When a region contains contains an area of low wind speed, dealiasing
errors may result in poor-quality initial values. Adjacent regions, however, are fine. With
this in mind, the following question arises: once we have determined the model parameters
for a given region, can we use this information to estimate the model parameters of an
adjacent or overlapping region? While there are a number of ways to address this question,
we will consider a particular technique which we have termed model extrpolation. In this
approach, the model parameters determined for a given M×N region are extrapolated to an
overlapping region where the overlap is N −1 points in the N dimension (along-track). The
extrapolated model parameter vector can then be used as an initial value for optimization
of the model-based objective function for the new region.

D.1 Preliminaries

Before proceeding, we need to introduce some additional notation to simplify later devel-
opment.

Let the elements bru
i,j of the M × N matrix Bru be defined, as

bru
i,j =

{
pi,N+1 if 1 ≤ i ≤ M and j = N
0 otherwise.

(175)

For clarity,

Bru =




0 . . . 0 p1,N+1
...

. . .
...

...
0 . . . 0 pM,N+1


 . (176)

Let B
ru be the lexicographic-ordered vector corresponding to Bru.

In the PBC model, the pressure field boundary conditions in the vector X are parame-
terized using an Ml-order polynomial [see Eq. (105)] using the Ml element vector Y contain
the coefficients of the boundary polynomial [see Eq. (107)]. Define the MN × Ml matrix
Υ such that,

B = ΥY ; (177)

define the MN × Ml matrix Υu such that,

B
u = ΥuY ; (178)

and define the MN × Ml matrix Υru such that,

B
ru = ΥruY . (179)

General expressions for Υ, Υu, and Υru are complicated and so are not given here.
When the boundary conditions are not parameterized Eqs. (177) though (179) can still

be used. In this case Ml
4= 2M + 2N + 2 and Y is replaced by X.
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D.2 Model Parameter Vector Extrapolation

Consider an M × N region L1 which overlaps a given M × N region L by N − 1 points in
the j index (along-track) and is aligned in the i index (cross-track). This corresponds to
a region shifted just one sample in the j index (see Fig. 5). We will consider both +1 or
−1 shifts. Essentially, we will be extrapolating the wind field along one edge just outside
of the region L from the wind field within the region.

The boundary conditions are the pressure field along the outside edge of the region
L boundary (see Fig. 1). The vector B

u contains the values of the pressure field at
(j = 0, i = 1, . . . ,N). If we examine the region L1 which is one sample in the −j direction
(see Fig. 5), we find that the boundary conditions in B

u contain the values of the pressure
field at the new location L1. Further, the pressure field in L at (i = M, j = 1, . . . ,N)
are the boundary conditions at the new location L1 included in the vector B

r for L1. The
only new boundary conditions needed are at (i = 0, j = 0), (i = 0, j = N + 1), and
(i = −1, j = 1, . . . ,N). These we can compute from the known pressure field values at the
old location and the extropolated the vorticity and divergence fields at (i = 0, j = 1, . . . ,N).

Let us start by assuming that we have the model parameter vector X at the starting
region L. Using the definition of X we can compute B = B

u + B
v + B

r, C , and D. The
pressure field is computed using Eq. (35) (repeated here for clarity of presentation),

P =
1
4
K−1[B + C]. (180)

Quantities for region L1 (the new location) will be identified by an underline while no
underline indicates region L (the old location). The pressure field at the new location, P ,
can be appropriately computed from Bu and P , i.e.,

P = PT T + Bu (181)

where the M × N matrix T with elements ti,j,

ti,j =
{

1, if j ≤ i

0, otherwise.
(182)

Using lexicographic vectors and matrix notation, Eq. (181) can be written, as

P = (I ⊗ T )P + B
u (183)

Note that, I ⊗ T = G + IMN .
The vorticity field at the new location L1, C, is computed by extrapolating the vorticity

bivariate polynomial. Our model for the vorticity field ζi,j may be expressed as

ζi,j =
Mc∑

m=0

Nc∑

n=0
m+n≤max(Mc,Nc)

cm,nimjn. (184)

Let the number of parameters in the vorticity field model be Nv.
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Figure 5: An illustration showing two M ×N regions with N −1 overlap in the −j direction.
Note that the old Bu boundary conditions are now part of the pressure field in the region
of interest. New boundary conditions needed are indicated with open circles (see text).
Compare with Fig. 1
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Table 10: Extrapolated vorticity coefficients for region L1 in terms of the vorticity coeffi-
cients for region L

cm,n ∀m

n (j − 1) case (j + 1) case
0 cm,0 − cm,1 + cm,2 − cm,3 + cm,4 cm,0 + cm,1 + cm,2 + cm,3 + cm,4
1 cm,1 − 2cm,2 + 3cm,3 − 4cm,4 cm,1 + 2cm,2 + 3cm,3 + 4cm,4
2 cm,2 − 3cm,3 + 6cm,4 cm,2 + 3cm,3 + 6cm,4
3 cm,3 − 4cm,4 cm,3 + 4cm,4
4 cm,4 cm,4

The vorticity field ζi,j at the new location will be

ζi,j =
Mc∑

m=0

Nc∑

n=0
m+n≤max(Mc,Nc)

cm,nim(j − 1)n (185)

=
Mc∑

m=0

Nc∑

n=0
m+n≤max(Mc,Nc)

cm,nimjn (186)

Equating powers of j, cm,n can be computed in terms of the coefficients cm,n. Table 10
summaries the results for a given value of m. Results for both j − 1 and j + 1 are shown.

To obtain a matrix equation we note that the vorticity field C can be written, as

C = ΥcX
c (187)

where Υc and X
c are defined in Eq. (86) (Xc contains the lexicographic-order vorticity field

parameters cm,n). The shifted and extrapolated vorticity field, C, can be written, as

C = ΥcT c
−1X

c (188)

where the Nv × Nv matrix T c
−1 contains the transformation of parameter values indicated

above. Due to the complexity of a general definition of T c
−1, we give several numerical

examples of T c
−1. For Mc = Nc = 0,

T c
−1 =

[
1

]
. (189)

For Mc = Nc = 1,

T c
−1 =




1 −1 0
0 1 0
0 0 1


 . (190)
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For Mc = Nc = 2,

T c
−1 =




1 −1 0 1 0 0
0 1 −1 0 0 0
0 0 1 −2 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (191)

For shifts in the positive j direction, the signs of all the negative values in T c
−1 are changed

to positive. For example, T c
+1, for Mc = Nc = 3 is,

T c
+1 =




1 1 0 0 1 0 1 0 0 0
0 1 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 2 0 3 0
0 0 0 0 1 0 0 2 0 0
0 0 0 0 0 1 0 0 3 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




. (192)

The new vorticity field parameters cm,n in X
c can be expressed in terms of the old

vorticity field parameters cm,n in X
c, as

X
c = T c

−1X
c
. (193)

Similarily, the new divergence field parameters dm,n in X
d can be expressed in terms of the

old divergence field parameters dm,n in X
d, as

X
d = T d

−1X
d
. (194)

Having obtained the vorticity field C at the new location, we can compute the new
boundary conditions. Note that we will compute all of the boundary conditions simulta-
neously from the new pressure field and extrapolated vorticity field. The new boundary
condition vector B is,

B = 4KP − C

= 4K [(I ⊗ T )P + B
u] − C

= K[(I ⊗ T )K−1(B + C) + 4B
u] − C (195)

Let the MN × MN matrix K−1 be defined, as

K−1
4= K(I ⊗ T )K−1. (196)
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The boundary condition vector B is,

B = ΥY , (197)

while the boundary condition vector B
u is, the MN × Ml matrix Υu for which

B
u = ΥuY . (198)

Note that a least-squares estimate of Y given B is,

Y = Υ†B = (ΥT Υ)−1ΥTB (199)

where Υ† is the pseudo-inverse of Υ. Note that in the non-parameterized boundary condition
case with M = N , Υ† will be full rank only when M ≥ 6. Using Eq. (199), Eq. (195) can
be written, as

B = K−1(B + C) + 4KB
u − C

= K−1(ΥY + ΥcX
c) + 4KΥuY − ΥcT c

−1X
c

= K−1(Υ + 4KΥu)Y + (K−1Υc − ΥcT c
−1)X

c
. (200)

The least-squares estimate of the shifted boundary parameters Y is then,

Y = Υ†B

= Υ†
{
K−1(Υ + 4KΥu)Y + (K−1Υc − ΥcT c

−1)X
c
}
. (201)

Defining X
b as the concatenation of Y , X

c, and X
d, i.e.,

X
b =




Y

X
c

X
d


 , (202)

the new model parameter vector X
b can be computed from the old parameter vector X

b,
as

X
b = M−1X

b (203)

where the Np × Np matrix M−1 can be partioned as,

M−1 =




M bb
−1 M bc

−1 0
0 M cc

−1 0
0 0 Mdd

−1


 (204)

where each of the partitions of M−1 are defined as follows: the Ml × Ml matrix M bb
−1 is,

M bb
−1 = Υ†(K−1Υ + 4KΥu); (205)

the Ml × Nc matrix M bc
−1 is,

M bc
−1 = Υ†(K−1Υc − ΥcT c

−1); (206)
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the Nc × Nc matrix M cc
−1 is,

M cc
−1 = T c

−1; (207)

and the Nd × Nd matrix Mdd
−1 is,

Mdd
−1 = T d

−1. (208)

The result is the model parameter vector extrapolated to the new region. This can be
used to compute an initial value, which can be updated using the pointwise results for wind
field estimation.

These results can be extended to motion in the +j direction. For +j movement, the
boundary values which become part of the pressure field are at (j = N + 1, i = 1, . . . ,M)
which are contained as part of the B

r vector, B
ru. The derivation of the matrix to ex-

trapolate the model parameter vector to the new location in the +j direction is similar
to the derivation for the −j direction. The pressure field at the new location, P , can be
appropriately computed from Bru and P , i.e.,

P = PT + Bru (209)

(The difference between Eqs. (181) and (209) is the transpose on the T matrix.) Using
lexicographic vectors and matrix notation, Eq. (209) can be written, as

P = (I ⊗ T T )P + B
u (210)

Note that, I ⊗ T T = (G − IMN)T . The shifted and extrapolated vorticity field C is

C = ΥcT c
+1X

c (211)

The new boundary condition vector B can be written, as

B = 4KP − C

= 4K[(I ⊗ T T )P + B
ru] − C

= K[(I ⊗ T T )K−1(B + C) + 4B
ru] − C (212)

Let the MN × MN matrix K+1 be defined, as

K+1
4= K(I ⊗ TT )K−1. (213)

Noting that
B

ru = ΥruY , (214)

a least-squares estimate of Y given B is,

Y = Υ†B = (ΥT Υ)+1ΥTB (215)

where Υ† is the pseudo-inverse of Υ. Then Eq. (212) can be written, as

B = K+1(B + C) + 4KB
ru − C

= K+1(ΥY + ΥcX
c) + 4KΥruY − ΥcT c

+1X
c

= K+1(Υ + 4KΥru)Y + (K+1Υc − ΥcT c
+1)X

c
. (216)
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The least-squares estimate of the shifted boundary parameters Y is then,

Y = Υ†B

= Υ†
{
K+1(Υ + 4KΥru)Y + (K+1Υc − ΥcT c

+1)X
c
}
. (217)

Then the new model parameter vector X
b can be computed from the old parameter

vector X
b, as

X
b = M+1X

b (218)

where the Np × Np matrix M+1 can be partioned as,

M+1 =




M bb
+1 M bc

+1 0
0 M cc

+1 0
0 0 Mdd

+1


 (219)

where each of the partions of M+1 are defined as follows: the Ml × Ml matrix M bb
+1 is,

M bb
+1 = Υ†(KΥ + 4KΥru); (220)

the Ml × Nc matrix M bc
+1 is,

M bc
+1 = Υ†(KΥc − ΥcT c

+1); (221)

the Nc × Nc matrix M cc
+1 is,

M cc
+1 = T c

+1; (222)

and the Nd × Nd matrix Mdd
+1 is,

Mdd
+1 = T d

+1. (223)

The result is the model parameter vector extrapolated to the new region in the positive j
direction.

D.3 Discussion

The matrix M−1 (or M+1) gives us a very simple way of “predicting” (by extrapolation)
what the model parameter vector for an N −1 overlapped region (in the −j or +j direction)
will be from the model parameters of a given region. Using the point-wise wind estimation
and dealiasing procedure described in Chapter 6, we can first select a region which has a
high wind speed using the average wind speeds from the point-wise ambiguity sets. For high
wind speed regions, the dealiased wind fields provide good initial values. Given an initial
wind field, we compute the initial model parameters and optimize the field-wise objective
function. Using the model extrapolation technique described here we can use M−1 (M+1)
to predict the model parameters for an adjoining region containing a large area of low wind
speeds. This approach can give better initial values than the point-wise dealiasing approach.

As with any extrapolation, one must apply the model extrapolation approach with
great care. This is especially true in regions where the wind field model does not fit the
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underlying wind field well. Improved performance for the model extrapolation approach
can be obtained by first computing the extrapolated model parameter vector, computing
the resulting wind field, and then, for each sample point, selecting the ambiguity from the
point-wise wind estimate set which is closest to the predicted wind field. The initial value
is then computed from this closest ambiguity field. The model vector is then optimized and
the process repeated with the region sliding along the measurement swath to cover the low
wind speed area.
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