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Abstract
This brief report considers the derivation of power series expansions for the

so-called Dirichlet function DM,N (τ) defined as

DM,N (τ) =
sin(πτ(2M + 1)/N)

sin(πτ/N)

=
sinατ
sinβτ

=
sin ax
sinx

,

where N and M are integers with M < N/2, α = π(2M + 1)/N , β = π/N ,
a = 2M+1, and x = πτ/N . DM,N (τ) is the bandlimited discrete version of the
classic sine cardinal or sinc function. The purpose of this report is to provide the
derivation of the Taylor series for the Dirichlet function. This is compared with
a power series derived from a Fourier representation of the Dirichlet function.
The later is found to be easier to compute and is more accurate for a given
number of terms than the Taylor series.

1 Introduction

The Dirichlet function arises in discrete signal processing as the bandlimited
version of the sinc function and is fundamental in bandlimited signal recon-
struction [1]. Computing the Dirichlet function for a given argument requires
the evaluation of two transcendental sine functions. As an alternate, a Taylor
series expansion can be used to evaluate the function at a particular value.
The purpose of this report is to provide the derivation of the Taylor series for
a general Dirichlet function and compare it to a power series derived from a
Fourier representation of the Dirichlet function.

Used in periodic signal processing, the Dirichlet kernel plays an analogous
role with the sinc function in continuous signal processing. A discrete, bounded,
band-limited periodic signal g[n] can be written as [1]

g[n] =
2M∑
k=0

gkDM,N (n− kd) (1)
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where1 gk = g(kdT ) is here termed the ‘equivalent uniform samples’ of the
continuous time signal g(t), d = N/(2M + 1) is the oversampling factor, T is
the sample spacing, and DM,N (·) is the Dirichlet kernel formally defined as

DM,N (τ) =
sin(πτ(2M + 1)/N)

sin(πτ/N)
, (2)

which is N -periodic in τ and M -band-limited (M < N/2). When d is an
integer, gk = g[kd], which can be computed modulo N .

Note that by L’Hospital’s rule, when sin(πτ/N) = 0, DM,N (τ) evaluates to
2M + 1. Thus, we can also write

DM,N (τ) =

 sin(πτ(2M + 1)/N)
sin(πτ/N) , sin(πτ/N) 6= 0

2M + 1, sin(πτ/N) = 0
. (3)

The continuous band-limited, periodic signal g(t) can be computed from its
equivalent uniform samples using

g(t) =
2M∑
k=0

gkDM,N (t/T − kd). (4)

An illustrative plot of DM,N (τ) for a particular M and N is shown in Fig. 1.
The sinc function-like behavior is apparent. However, unlike a sinc function
that rolls off to zero for large arguments, the Dirichlet kernel is periodic with
period N . Over one period, e.g., τ ∈ [0 . . . N ] or τ ∈ [−N/2 . . . N/2], the sine
function in numerator is within the range [−π(2M + 1)/2 . . . π(2M + 1)/2],
while the argument of the sine function in the denominator is within the range
[−π/2 . . . π/2].

The Dirichlet kernel is a special case of the periodic sinc function D(x; a)
defined as

D(x; a)
4
=

sin ax
sinx

. (5)

Note that DM,N (τ) = D(τβ;α) where β = π/N and α = 2M + 1. Figure 2
illustrates D(x; a) for several values of a.

1Following common practice, square brackets are used to denote vaules of a discrete signal while
parenthesis are used for continuous time values
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Figure 1: Plot of a (N = 55, M = 5) Dirichlet kernel evaluated at discrete points.
One period is shown.

Figure 2: Plot of D(x; a) for several values of a. Note that D(x; a) is periodic in x
with period π. Slightly over two periods are shown.
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2 Taylor Series

The Taylor Series expansion for a function f(τ) evaluated at τ relative to the
reference τ0 is

f(τ) = f(τ0) + (τ − τ0)f ′(τ0) +
(τ − τ0)2

2!
f ′′(τ0) +

(τ − τ0)3

3!
f ′′′(τ0) +

· · ·+ (τ − τ0)n

n!
f (n)(τ0) + · · · (6)

= f(τ0) +
∞∑
n=1

(τ − τ0)n

n!
f (n)(τ0). (7)

While any appropriate value of τ0 can be used, we will be interested in the case
when τ0 = 0. This special case of the Taylor series is known as the Maclaurin
series.

2.1 Derivatives of the Dirichlet Function

To compute the Taylor series of DM,N (τ), its derivatives are required. For the
case of the Dirichlet function, computing the derivative is complicated by the
need for repeated application of L’Hospital’s rule, particularly when evaluating
the derivatives at zero.

To begin with, let us simplify the notation by using a substitution of vari-
ables. Let

f(x)
4
= DM,N (x/β) =

sin ax
sinx

(8)

=

{
sin ax
sinx , sinx 6= 0
a, sinx = 0

, (9)

where

a
4
= 2M + 1 (10)

β
4
= π/N (11)

τ = x/β. (12)

Note that one period of the Dirichlet function corresponds to x ∈ [−π/2 . . . π/2]
and that a is a potentially very large integer.

Using the quotient derivative formula,

d

dx

u

v
=
v d
dxu− u

d
dxv

v2
=

1
v

d

dx
u− u

v2

d

dx
v (13)

and noting that

d

dx
sinαx = α cosαx (14)

d

dx
sinβx = β cosβx (15)
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and
sinα cosβ =

1
2

[sin(α+ β) + sin(α− β)] , (16)

the derivative f ′(x) of f(x) is

f ′(x) =
d

dx
f(x) (17)

=
a sinx cos ax− sin ax cosx

sin2 x
(18)

=
a {sin[(a+ 1)x] + sin[(1− a)x]} − {sin[(a+ 1)x] + sin[(a− 1)x]}

2 sin2 x
(19)

=
(a− 1) sin[(a+ 1)x)]− (a+ 1) sin[(a− 1)x]

2 sin2 x
. (20)

When the value of f ′(x = 0) is desired, since the numerator and denominator
of f ′(x) are both zero at x = 0, L’Hospital’s rule must be invoked (twice):

f ′(0) =
d2

dx2 {(a− 1) sin[(a+ 1)x]− (a+ 1) sin[(a− 1)x]}
∣∣∣
x=0

d2

dx2

[
2 sin2 x

]∣∣∣
x=0

(21)

=
d
dx [(a− 1)(a+ 1) {cos[(a+ 1)x]− cos[(a− 1)x]}]

∣∣∣
x=0

d
dx [4 sinx cosx]

∣∣∣
x=0

(22)

= − [(a− 1)(a+ 1) {(a+ 1) sin[(a+ 1)x]− (a− 1) sin[(a− 1)x]}]|x=0[
4
{
cos2(x)− sin2(x)

}]∣∣
x=0

(23)

=
0
4

= 0. (24)

Keeping track of the all the terms quickly becomes tedious as the order of
the derivative increases. To ameliorate this, we turn to symbolic logic com-
puter programs such as Maple. We write a script to symbolically compute the
derivatives and evaluate them at x = 0. These are then plugged into Eq. 7.

It turns out that all the odd derivatives evaluated at zero are zero-valued2,
so only even-order derivatives are required. We can thus write

f(x) = f(0) +
∞∑
k=1

x2k

(2k)!
f2k (25)

where fn = f (n)(0), or, since f(0) = a,

f(x) = a+
∞∑
k=1

x2k

(2k)!
f2k. (26)

The fn are functions of the value of a where fn = 0 for n odd, and f2 = 1
3(a−a3),

f4 = 1
5a

5− 2
3a

3 + 7
15a, f6 = −1

7a
7 +a5− 7

3a
3 + 31

21a, etc. (see Fig. 3). The fn are
sums of odd power of a up to n + 1. While an analytic formula can probably
be derived, in this report numerical techniques are used to compute the fn.

2This is not surprising since f(x) is symmetric about x = 0.

5



Figure 3: Maple script and output to compute the first 20 even terms of fn. In
order to ensure a simple output form (as determined empirically), the Maple script
separately computes the numerator and denominator terms before evaluating them
at x = 0. 6



2.2 Numerically Evaluating the Taylor Series Terms
for the Dirichlet Function

The symbolic algebra program Maple is used to compute fn. The Maple input
and script output is shown in Fig. 3. The values of fn/n! are computed for even
n. Figure 4 plots the normalized fn as a function of n for particular values of
N and M . Note that the coefficients become very large but then decline as a
function of n, and oscillate in sign. In computing the Taylor series (see Eq. 26)
each of the fn terms get multiplied by x2n/(2k)! where |x| ≤ π/2 for one period.
Nonetheless, it can be shown that this Taylor series converges because |fn|/(n!)
rapidly falls off to zero.

Figure 4: (left) Plot of fn/n! versus n for several values of a = 2M + 1. Note the
alternating signs of the terms. (right) Plot of |fn|/n! versus n for several values of
a = 2M + 1. Generally, the value initially grows with n, then rapidly falls off.
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3 Fourier Transform-Based Series

As an alternate approach to deriving a power series expansion, note that the
Dirichlet kernel can be written as [1]

DM,N (τ) =
M∑

k=−M
W−kτN (27)

=
M∑

k=−M
ej2πkτ/N , (28)

where WN is defined as

WN = e−j2π/N . (29)

This is a consequence of the fact that DM,N (τ) is the inverse discrete Fourier
Transform of a periodic “square wave” of period N and pulse length 2M +
1. Figure 5 illustrates a periodic discrete square wave and the corresponding
Dirichlet kernel.

Figure 5: (top) Plot of approximately two periods of a periodic square wave with
period N = 33 and pulse width M = 3. (bottom) Approximately two periods of
corresponding Dirichlet kernel.

Using Euler’s formula ejx = cosx + j sinx, sinx = − sinx, and cosx =
cos(−x), Eq. 28 becomes

DM,N (τ) =
M∑

k=−M
[cos(2πkτ/N) + j sin(2πkτ/N)] (30)
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= 1 + 2
M∑
k=1

cos(2πkτ/N). (31)

Substituting the power series for cosx,

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
, (32)

into Eq. 31 and simplifying,

DM,N (τ) = 1 + 2
M∑
k=1

∞∑
n=0

(−1)n
(2πkτ/N)2n

(2n)!
(33)

= 1 + 2
∞∑
n=0

(
M∑
k=1

k2n

)
(−1)n

(2πτ/N)2n

(2n)!
(34)

= 1 + 2
∞∑
n=0

(−1)n
rn

(2n)!

(
2π
N

)2n

τ2n (35)

= 1 + 2
∞∑
n=0

tnτ
2n, (36)

where

rn =
M∑
k=0

k2n (37)

tn = (−1)n
rn

(2n)!

(
2π
N

)2n

. (38)

With these results, and recalling Eqs. 8 and 11, it follows that

sin ax
sinx

= 1 + 2
∞∑
n=0

(−1)n
rn4n

(2n)!
x2n. (39)

A plot of tn versus n is shown in Fig. 6. Note that compared to the Taylor
series the coefficients are much smaller and with their rapid convergence to
zero, fewer coefficients are required to obtain the same accuracy in the power
series. Hence, this series approach is recommended over the Taylor series.

Equation 37 is an example of a power sum and has the analytic solution [2]

rn =
M∑
k=0

k2n (40)

= ζ(−2n)− ζ(−2n; 1 +M) (41)
= H(−2n)

n (42)

where ζ(z) is the Riemann zeta function, ζ(z; a) is the Hurwitz zeta function
and H(k)

n is the generalized harmonic number. Other possibilities for expressing
rn exist [2]. Plots of rn for various M and n are shown in Fig. 7.
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Figure 6: (left) Plot of tn versus n for several values of a = 2M + 1. Note the
alternating signs of the terms. (right) Plot of |tn| versus n for several values of a.
Generally, the value initially grows with n, then rapidly falls off. Compare Fig. 4. Note
the smaller coefficients and more rapid fall-off of the summed cosine series compared
to the Taylor series.

Figure 7: (left) Plot of log10 rn versus n and a = 2M+1. (right) Plot of log10[rn/(2n)!]
versus n and a = 2M + 1.
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4 Summary

This report has considered the derivation of two power series for the Dirich-
let kernal. The classic Taylor series is difficult to present analytically, but is
summarized as

DM,N (x/β) =
sin ax
sinx

(43)

= a+
∞∑
k=1

x2k

(2k)!
f2k, (44)

where a = 2M + 1, β = π/N , and the first few fn terms are shown in Fig. 3.
An alternate summed-cosine approach that is based on a Fourier series rep-

resentation has also been considered. It is easier to express analytically, and
is more accurate for a given number of terms than the Taylor series. It is
summarized as

DM,N (x/β) =
sin ax
sinx

(45)

= 1 + 2
∞∑
n=0

(−1)n
rn4n

(2n)!
x2n, (46)

where

rn =
M∑
k=0

k2n. (47)
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