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Abstract
The spatial response function (SRF) for ASCAT is required for land fraction

computation and enhanced resolution image reconstruction. In this report we
develop an estimate of the SRF. The estimate includes the nominal antenna
response, the frequency response of the FFT bins, along-track pulse averaging,
and rotation induced by Doppler.

To speed up SRF computation, a parameterized SRF is also developed. This
models the SRF as separable in orthogonal components, with the response in each
direction modeled by a polynomial response. This approximation is two orders
of magnitude faster to compute and the approximation error is negligible for the
required SRF applications.

1 Introduction
The ASCAT spatial response function (SRF) is computed in the ASCAT ground
processing to develop the raw data to a level 1B product. However, the SRF is also
required after L1B processing in order to compute the measurement land fraction or to
enable enhanced resolution processing. This motivates developing an estimate of the
SRF that uses only L1B quantities (reported measurement center, incidence angle, etc)
rather than raw quantities (reported ground and slant range, orbit state vectors, etc).

This report develops an estimate of the SRF based on L1B inputs. The estimate
includes the antenna response, the response due to the on-board FFT processing, and the
along-track pulse averaging. Additionally, a parameterized SRF estimate is developed
that models the SRF rather than fully computing it for each measurement. This
parameterized estimate is much faster to compute than the full estimate and is preferred
for enhanced resolution processing at the MERS Lab. A background on ASCAT and its
on-board processing is presented in Section 2. The full SRF estimate is developed in
Section 3 and the parameterized version in Section 4. Some examples and comparisons
of the resulting SRF estimates are illustrated in Section 5. Section 6 concludes.

2 Background
ASCAT (Advanced Scatterometer) is a C-band fan beam scatterometer [1]. An ASCAT
is hosted on each of the MetOp satellites. MetOp-A launched in 2006, MetOp-B in 2012,
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Figure 1: The ASCAT ground geometry. Each swath is sampled at a range of incidence
angles at azimuth angles fore, mid, and aft. Antenna beamwidth is exaggerated for
illustrative purposes.

and MetOp-C is scheduled for 2018.
ASCAT has two swaths, one on each side, with three beams in each swath. The

beams are aligned in fore, mid, and aft azimuth angles. The ground geometry is shown
in Fig. 1. Range-Doppler processing subdivides each beam into 256 locations, although
only 192 of these values are reported in the current data format [2].

The measurement values (radar backscatter, incidence angle, azimuth angle) and
location (in latitude and longitude) are reported for each measurement node for each
beam. This is the “full resolution” (SZF) L1B product. Spatially averaged products
(SZO, SZR) are also produced where a swath-oriented grid is defined and the value at
each grid point is the combination of all nearby full-resolution measurements, spatially
weighted with a Hamming window. This report does not consider the spatially averaged
products.

The measurement spatial response function (SRF) or measurement footprint is the
weighting each location on the Earth surface contributes to the measurement:

zi =
∫∫

σ◦(x, y)hi(x, y) dx dy (1)

where zi is the noisefree measurement, σ◦(x, y) the true Earth surface radar backscatter,
and hi(x, y) the SRF associated with measurement zi. The SRF is effectively a function
of the antenna pattern and the on-board processing. The nominal beam antenna
patterns are shown in Fig. 2. The on-board processing has two major components: the
range-Doppler processing, discussed in Section 2.1, and the along-track pulse averaging,
discussed in Section 2.2.
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Figure 2: The cross-beam or azimuthal nominal antenna patterns. The mid (solid)
and side (dashed) beams are shown together. The upper subplot is in linear space, the
lower subplot in dB space. The values shown are for the magnitude-squared normalized
antenna gain pattern.

2.1 Range-Doppler processing
ASCAT is a pulsed radar, with each pulse a linear FM chirp. The received signal—
multiple time-delayed and attenuated copies of the transmit chirp—is dechirped to
baseband. This baseband signal is also termed the discriminator signal and is sampled
at 412.5 kHz. The power spectrum of the discriminator signal is estimated using Welch’s
method (multiple overlapping segments of the sampled time-domain data are taken,
separately FFT-ed, magnitude-squared, then averaged together). Each overlapping
segment is termed a range look, and a 512-point FFT is used [3]. We denote the discretely
sampled power spectrum estimate here as P [f ].

The center frequency of each discriminator frequency FFT bin is given by [3]

foffset −
4αs
c︸ ︷︷ ︸
fr

− 2vr
λ︸︷︷︸
fd

= iδf (2)

where foffset is a beam-dependent frequency offset, α is the beam-dependent chirp rate,
s the slant range from ASCAT to the Earth surface, c the speed of light, vr the radial
velocity between ASCAT and the Earth surface, λ the radar wavelength, i the FFT bin
number, and δf the frequency bin width. Values for some of these parameters are given
in Table 1.

Equation (2) is solved for slant range s to map power as a function of frequency to
power as a function of slant range. Using the radar equation, power is normalized to σ◦,
so that P [f ] transforms to σ◦[s]. With a known slant range and antenna azimuth angle,
the σ◦ measurements are geolocated on the Earth reference ellipsoid.
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Table 1: Discriminator frequency parameters for Eq. (2).

Term Value
foffset(fore) −189.0× 103 Hz
foffset(mid) −286.2× 103 Hz
foffset(aft) 400.6× 103 Hz
α(fore) −1.03× 107 Hz/s
α(mid) −2.69× 107 Hz/s
α(aft) +1.03× 107 Hz/s

λ c
f

= 5.71 cm
i 0, 1, . . . , 255
δf

412.5 kHz
512 = 805.7 Hz

As noted by the underbraces in Eq. (2), the discriminator frequency has components
due to a range frequency, fr, and a Doppler frequency, fd. Thus, all locations on the
Earth that have (continuous) frequencies foffset− (fr +fd) within an FFT bin1 contribute
to the measurement.

An illustration of how fr and fd contribute to the measurement SRF is shown in
Fig. 3. Lines of constant range, isoranges, and lines of constant Doppler frequency,
isodops, are shown. A zoomed illustration of a mid-looking ASCAT beam is shown in
Fig. 4. Isoranges and isodops are again illustrated. Since the discriminator frequency is
the combination of fr and fd, a line of constant discriminator frequency does not follow
an isorange—range and Doppler couple together into the discriminator frequency.

2.2 Along-track pulse averaging
In addition to the range-Doppler processing described above, along-track averaging is
performed [4, Appendix]. Each reported measurement is the weighted average of eight
pulses. The weights are: {0.05, 0.10, 0.15, 0.20, 0.20, 0.15, 0.10, 0.05} and a measurement
is saved every four pulses. The radar itself has a pulse repetition frequency (PRF) of
approximately 28.26 Hz [5]. This is divided among the six beams, which are pulsed in
sequence (left fore, left mid, left aft, right fore, right mid, right aft). Thus the PRF
for each beam is 28.26/6 = 4.71 Hz. Every four beam pulses, a row of measurements is
saved, so the measurements are stored at a PRF of 4.71/4 = 1.1775 Hz, or about every
5.6 km along-track.

3 Full SRF Estimate
The full SRF estimate is performed on a per-measurement basis with inputs: beam
number, incidence angle, azimuth angle, latitude, longitude, ascending/descending pass,

1More accurately, due to the frequency response of an FFT bin, each FFT bin is the weighted
combination of all frequencies. However, the frequency response mainlobe is approximately as wide as
the bin edges so for this discussion we are treating the FFT frequency response as a rect with width
equal to the bin width.
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Figure 3: An illustration of lines of constant range, isoranges, and lines of constant
Doppler, isodops. Isoranges are circles centered at nadir. Isodops are hyperbolic. The
exact isoranges and isodops are complicated by the fact that they are projected on a
ellipsoidal Earth. The relative motion between the orbiting satellite and the rotating
Earth further complicates the isodops.

cross-track

along-track

f(x, y) = fr(x, y) + fd(x, y)

fr(x, y) = Kr

fd(x, y) = Kd

f(x, y) = K

Figure 4: An illustration of a portion from a mid beam. Any point on the ground in
(x, y) has a discriminator frequency f(x, y) (ignoring foffset). Isoranges and isodops are
plotted, along with measurement centers indicated with the dark squares. A line of
constant discriminator frequency is also denoted and is roughly a tilted isorange line.
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and node index. These are all reported in the ASCAT L1B data. The measurement
SRF is computed on a locally tangent plane centered on the reported location. Details
on transforming between latitude/longitude and tangent plane coordinates are found
in [6]. Due to the tangent plane breaking down near the poles2, measurements with
extreme latitudes (> |89.5◦|) are not used.

We note that the geometry below at times uses an ellipsoidal Earth, following the
WGS-84 definition, and at other times a spherical Earth model. A spherical Earth
permits simplifying to spherical trigonometry. This approximation error is deemed to
be negligible but is non-zero.

First the “pulse SRF” is computed. This is the SRF for a single ASCAT pulse. Due
to the on-board pulse averaging, the cumulative response, or “measurement SRF” is
the weighted combination of several pulse SRFs. The creation of both SRFs is detailed
below.

3.1 Pulse SRF
On the locally tangent plane, we define a grid centered on the measurement. The
tangent plane and the grid are aligned with North and East rather than with along-
track/cross-track. At each grid point, several quantities are computed:

1. The ground range between the grid point and the nadir location

2. The slant range between the grid point and the satellite

3. The range frequency fr

4. The ground and slant ranges after a time differential δt

5. The radial velocity

6. The Doppler frequency fd

7. The discriminator signal frequency

8. The distance in antenna azimuth from the center

9. The antenna response value

10. The FFT response value

These quantities are computed below and shown for a sample measurement.
Figure 5 illustrates the geometry. ASCAT is at an altitude h above the nadir point

n. The measurement center c has a slant range r and ground range g. Due to the Earth
curvature, the local incidence angle θ is not exactly equal to the nadir angle ψ. The
ground range lies along the great circle connecting n and c. RE is the local Earth radius.
In order to easily convert between r and g, the local radius RE is assumed to be the
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Figure 5: The geometry of the curved Earth model. A spherical Earth is used here. An
ellipsoidal model would have slightly different RE lengths to locations n and c. See text
for definitions.

same at n and c, but a marginally more accurate computation models the Earth as an
ellipsoid and uses different radii at these locations.

Of these quantities, only the center location c in latitude and longitude and the local
incidence angle θ is reported in the L1B data. A nominal altitude of h = 820 km is
assumed. The local Earth radius is defined as

RE = RM(1− ε sin2 l), (3)

where RM = 6378.1363 km is the mean Earth equatorial radius, ε = 1/298.257 is the
flattening constant, and l is the reported latitude. The nadir angle ψ is

ψ = sin−1
[
RE

Rsat

sin θ
]
, (4)

where Rsat = RE + h is the radius to the satellite. Then the slant range r is

r = Rsat

cosψ −

√√√√( RE

Rsat

)2
− sin2 ψ

 . (5)

The ground range g may be found either through a great-circle distance between n and
c or by first finding the central angle α:

α = sin−1
[
r

RE

sinψ
]
, (6)

and then the arc length is g (with α in radians):

g = REα. (7)
2An arcsin with argument > 1 is computed since the requested location “wraps over” the pole.

This gives a non-real result.
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Figure 6: The geometry to find the angles from the ground range line and the track
direction to North. This case is for an ascending pass, right aft beam. Here, φ is roughly
−60◦, with the negative angle indicating clockwise. Thus ϕ is roughly −15◦.

The final unknown quantity from Fig. 5 is the nadir location n. The reported azimuth
angle φ gives the angle clockwise from the ground range line g to North. Thus the nadir
location is found3 by starting at the center c and moving a distance g in bearing φ.

Figure 6 shows the ground geometry to find the ground velocity. The nadir and
measurement center points n and c are labeled. The track direction is labeled as t, as is
the direction to North. The reported measurement azimuth angle φ is the angle from
the ground range line to North. From φ and the beam layout we compute ϕ, the angle
from the track direction to North. By some geometry this can be shown to be

ϕ =



φ− 135◦ beam 1
φ− 90◦ beam 2
φ− 45◦ beam 3
φ+ 135◦ beam 4
φ+ 90◦ beam 5
φ+ 45◦ beam 6

. (8)

Figure 6 illustrates beam 6. A positive angle rotates in the counter-clockwise direction.
For each grid point (x, y) on the tangent plane, the grid coordinate is converted

from northing/easting to latitude and longitude using [6]. The great circle distance
between that location and nadir is computed to find g(x, y). The central angle α(x, y)
is computed using Eq. (7). The Law of Cosines is used to find the slant range distance
r(x, y) for every point on the tangent plane:

r(x, y)2 = R2
sat +R2

E − 2RERsat cosα(x, y). (9)

Orbital motion is simulated by shifting the tangent plane coordinates after a time
increment δt. The ground-track velocity is v ≈ 6.7 km in the along-track direction. This
is converted to the northing/easting coordinate system by rotating the track velocity by
−ϕ: [

dx
dy

]
=
[
cos(−ϕ) − sin(−ϕ)
sin(−ϕ) cos(−ϕ)

] [
0
vδt

]
(10)

=
[
vδt sinϕ
vδt cosϕ

]
. (11)

3One formula for this is found on http://www.movable-type.co.uk/scripts/latlong.html
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Figure 7: The grid point values for a measurement from a mid beam. Clockwise from
upper left: distance from grid center, change in ground range after a time differential,
slant range, and ground range.

Earth rotation is simulated by incrementing the x (easting) coordinate:

dx′ = dx+Rlat ω δt, (12)

where Rlat = RE cos(lat) is the radius of the local latitude line and the rotation rate of
the Earth is ω = 7.292 115 0× 10−5 rad/s.

The ground and slant ranges are recomputed after the time increment δt. A value
of 1 µs is used for δt. To find the Doppler frequency requires computing the velocity of
each grid point in the slant range direction. This is given as

vr(x, y) = r′d(x, y)− rd(x, y)
δt

, (13)

where vr is the slant range velocity, rd the slant range, and r′d the slant range after the
time differential δt. The range, Doppler, and discriminator frequencies are computed
using Eq. (2).

The quantities computed above are shown in the following figures for an actual
measurement. The measurement is from the right mid beam, ascending pass, 38.24◦
incidence angle, 66.52 ◦N 299.67 ◦E, at 2011-10-26 01:00:01.254Z. The distance from grid
center, slant range, and ground range are shown in Fig. 7. The range and Doppler
frequencies are shown in Fig. 8, and the discriminator frequencies in Fig. 9.

The SRF due to only the on-board processing is dictated by the discriminator
frequency and the windowed FFT bin response. The windowed FFT bin response for
ASCAT is detailed in Appendix A and is stored in normalized units of FFT bins. The
discriminator frequency at each grid point, which is in units of Hz, is converted to units

9



Figure 8: The grid point values for a measurement from a mid beam. The range and
Doppler frequencies are shown.

Figure 9: The grid point values for a measurement from a mid beam. The discriminator
frequencies are shown.
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Figure 10: The pulse SRF value due to only the FFT response.

of FFT bins:

fdisc,norm = (fdisc − fcen)Hz
412.5× 103 Hz/512 bins , (14)

where fcen is the discriminator frequency at the grid center. The offset and scaled
discriminator frequency grid is input to the ASCAT windowed FFT bin response
from Appendix A.3 to find the processing-only pulse SRF. For the measurement used
in Fig. 9, the corresponding FFT response is shown in Fig. 10.

To find the response due to the antenna pattern, only the antenna patterns in the
cross-beam direction are used. This assumes that over the SRF the along-beam antenna
pattern is constant. To incorporate the two-way gain, the magnitude-square of the
normalized antenna gain pattern is used. The patterns differ for the mid and side beams
and are shown in Fig. 2. The nominal antenna patterns are provided by [7]. For each
grid point, the cross-beam distance from the along-beam line, db, is computed. The
distance in antenna azimuth from the pattern center, ∆φ, is computed using some
trigonometry:

sin(∆φ) = db/s. (15)

Figure 11 shows db and ∆φ. The ∆φ values are input to the antenna pattern to find
the SRF response due to the antenna, shown in Fig. 12.

The pulse SRF is the multiplication of the antenna pattern (Fig. 12) and the FFT
response (Fig. 10), shown in Fig. 13.
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Figure 11: The cross-beam distance (left) and antenna azimuth angle (right).

Figure 12: The pulse SRF value due to only the antenna response.
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Figure 13: The pulse SRF value. The along-track (“at”) and along-beam (“ab”)
directions are indicated.

3.2 Measurement SRF
Each reported measurement is the weighted combination of eight pulses or echoes. Thus,
the SRF of a reported measurement is the weighted combination of the SRFs for the
pulses. Because of platform motion, the individual pulse SRFs are offset from each
other, so the measurement SRF is a “smeared” pulse SRF.

To compute the measurement SRF, the pulse SRF is first estimated. In order for the
eight pulse SRFs to be correctly offset (i.e., not limited by the grid spacing), a bivariate
spline is fit to the pulse SRF grid point values. The spline is appropriately offset in the
along-track direction for each of the eight pulses. The pulse locations are not reported,
but are estimated based on the measurement center, the along-track direction, and
the ground track velocity of 6.7 km/s. Each measurement SRF grid point value is the
weighted combination of the eight pulse SRFs at that grid point.

After combination of eight pulse SRFs, the measurement SRF is illustrated in Fig. 14.
Another bivariate spline is fit to the measurement SRF. When the SRF value for an
(x, y) location on the tangent plane is requested, the spline is used to evaluate the SRF
value at that location.

4 Parameterized SRF Estimate
Computing the SRF estimate and evaluating it for several points for each measurement
is a time-consuming process. In order to speed up the SRF estimate, a parameterized
version is developed. This both speeds up the processing and simplifies the code required
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Figure 14: The measurement SRF value.

to implement it.
The parameterization is based on the observation that the measurement SRF estimate

is generally an ellipse, rotated such that the semi-minor axis is aligned with the gradient
of the discriminator frequency. The rotation angle between the along-beam axis and the
discriminator frequency gradient is termed α.

The cumulative rotation angle between northing and the discriminator frequency
gradient is:

θ = α + β + (−ϕ) (16)

where β is the rotation angle between along-beam and cross-track and ϕ is the rotation
angle from along-track to northing. The angle ϕ is defined in Eq. (8) and β is:

β =



45◦ beam 1
90◦ beam 2
135◦ beam 3
−45◦ beam 4
−90◦ beam 5
−135◦ beam 6

. (17)

The geometry for these rotation angles is shown in Fig. 15, illustrating the case for
beam 1. The cumulative angle θ describes the rotation from northing to the semi-minor
ellipse axis. The ellipse axes are labeled x and y, with angle α describing the rotation
between the ellipse and the along-beam direction.

14
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Figure 15: Left: the rotation angles ϕ and β for beam 1. Right: the rotation angles α
and θ for beam 1.

The SRF is treated as separable in the x and y directions aligned with the ellipse.
With the above geometry, three parameters are modeled: (1) the rotation angle θ, (2)
the SRF response along the x axis, and (3) the SRF response along the y axis. To
compute the SRF value for a location near a measurement, the following high-level
algorithm is used:

1. Define a location on the locally tangent plane centered on the measurement

2. Convert from tangent plane coordinates (xtp, ytp) to coordinates with respect to
the SRF ellipse (xd, yd) using the rotation angle θ

3. Look up the SRF response in the x direction

4. Look up the SRF response in the y direction

5. Multiply the x and y response values together to obtain the SRF value

The angle θ is found directly in the full estimate by finding the gradient of the
computed discriminator frequencies on the tangent plane grid. However, rather than
parameterizing the angle θ, the angle α is parameterized instead. This is due to the
difficulty in fitting θ at high latitudes due to the rapidly varying azimuth angle. The
remaining components of θ—β and ϕ—are only a function of the beam number and
azimuth angle so are not parameterized.

The angle α is found to follow a surface as a function of measurement node and
latitude. An example is shown in Fig. 16. A fourth-order polynomial surface is fit
separately for the six beams, also separated into ascending and descending passes. Thus
the α parameterization is:

α(n, l; b, a) = c00 + c01n+ c02n
2 + · · ·+ c10l + c11nl + · · ·+ c44n

4l4 (18)

where n is the node number, l the latitude, b the beam number and a is ascending or
descending. For each combination of b and a, (4 + 1)2 = 25 coefficients are found. With
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Figure 16: The angle α, in radians, is shown as a function of node and latitude for beam
6 for both ascending and descending passes. The points are a random sample chosen
from 5 days of ASCAT data. The surface, a fourth-order polynomial, is fit to the points.

six beams (b ∈ {1, . . . , 6}) and two cases for ascending/descending (a ∈ {0, 1}), there
are twelve sets of coefficients.

The coefficients are determined by computing the full SRF estimate for a large
number of ASCAT measurements, randomly distributed in latitude and node. For
about 190 000 measurements per combination of beam and ascending/descending, the
R2 coefficient of determination is above 0.99 in all cases. R2 is a metric that describes
the goodness of fit and ranges between 0 and 1. Such a high value indicates that the
polynomial model chosen nearly perfectly describes the data.

For the SRF response values, the approximation chosen here models the SRF mainlobe
using a polynomial fit. In dB space, a polynomial fits better to the response without
requiring a high-order polynomial. This is due to the “tail” in linear space that is
difficult to fit to a low-order polynomial. A sample SRF response and the polynomial fit
are shown in Fig. 17.

The polynomial fit is constrained so it only fits the mainlobe down to −15 dB. This
is to avoid fitting the “ripples” in the mainlobe (which would require a higher-order
polynomial) and because the SRF estimate is only needed for the mainlobe down to
about −10 dB. A biquadratic fit is applied, or a fourth-order polynomial fit with the
odd terms set to 0:

SRFx(x; . . . ) = a0 + a2x
2 + a4x

4 (19)
SRFy(y; . . . ) = b0 + b2y

2 + b4y
4 (20)

This odd terms are set to 0 to enforce symmetry. x and y are in units of km from the
center of the locally tangent plane.

Equations (19) and (20) are for a specific SRF. To cover the general case, the
coefficients are, as with the angle α, functions of node, latitude, beam, and ascend-
ing/descending pass. A polynomial surface is fit to each coefficients as a function of
node and latitude. However, unlike for α, only a second-order polynomial surface is

16



Figure 17: The SRF values along the x axis for a measurement from beam 3. The upper
subplot shows the values in linear space, the lower subplot shows the values in dB space.
A biquadratic fit in dB space is applied to the data down to −15 dB.

required. For example, for the a0 coefficient from Eq. (19):

a0(n, l; b, a) = a00 + a01n+ a02n
2 + a10l + a11nl + · · ·+ a22n

2l2 (21)

For each of the six coefficients from Eqs. (19) and (20), there are (2 + 1)2 = 9 coefficients.
As with α, the fits are separately performed by beam and ascending/descending pass,
for twelve cases. Thus 6× 9× 12 = 648 coefficients are used to parameterize the SRF
response.

5 Results
Both the full and parameterized SRF estimates are implemented in C. The spline fitting
portions of the full estimate use the DFITPACK4 Fortran library. Both implementations
contain the same public function names. On the same computer, these functions are
benchmarked, with the mean and standard deviation timing per function call shown
in Table 2.

The srf_init and srf_done functions are called once each before and after using
the SRF library. The srf_meas and srf_free functions are called once per measure-
ment. The srf_latlon_extent function is optional but would be called only once
per measurement. The srf_eval_ll and srf_eval_xy functions are typically called
many times per measurement. In order to estimate the expected SRF computation time
per measurement, the timings for one call each of srf_meas, srf_latlon_extent, and
srf_free are added together. A conservative estimate is 102 = 100 calls of srf_eval_ll
per measurement, so this is also added to the measurement time.

4http://www.netlib.org/dierckx/
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Table 2: The mean and standard deviation function timing per run for the full and
parameterized SRF estimate implementations. The expected measurement time is based
on 100 calls to srf_eval_ll and one call each to srf_latlon_extent, srf_meas, and
srf_free.

Function Full, µs Parameterized, µs
srf_init/srf_done 388.10± 42.04 0.5562± 0.9708
srf_meas/srf_free 19 430± 3353 5.776± 9.747
srf_latlon_extent 130.700± 4.305 2.5240± 0.9347
srf_eval_ll 0.5547± 0.2692 0.9651± 0.5879
srf_eval_xy 0.3850± 0.2308 0.1954± 0.3068
Expected meas time 19.61 ms 0.1048 ms

From examining the function timings in Table 2, the parameterized estimate is two
orders of magnitude faster to complete than the full estimate. Most of the slowdown
in the full estimate is in the srf_meas function, which creates the grid on the locally
tangent plane and computes the discriminator frequency and eventually the SRF value
for each grid point. Since the parameterized version merely performs a few polynomial
evaluations, it is much faster to complete.

Comparison plots for the full and parameterized SRF estimates are shown in Figs. 18
and 19 for a side and mid beam, respectively. The estimated SRF values are very similar
for the two estimates. The largest differences are for measurements with low incidence
angles in the mid beams. In these cases, the full SRF curves slightly, deviating from the
ellipse model. The parameterized SRF does not account for the curvature. Since the
difference is small, and in the interest of a simple and quick parameterized estimate, the
curvature is not accounted for.

6 Conclusion
Two estimates of the spatial response function for each ASCAT measurement are
developed in this report. The full estimate defines a grid of points on a locally tangent
plane to the measurement center and computes intermediate SRF quantities such as
the discriminator frequency. The nominal antenna pattern and the windowed FFT bin
response are used to compute the SRF for each pulse. Along-track pulse averaging is
accounted for, resulting in a bivariate spline that is fit to the measurement SRF.

Since this is a computationally intensive process, a parameterized SRF is also devel-
oped. The SRF is modeled as separable and a two-layer polynomial fit is used to compute
the SRF values. The appropriate rotation angle is also modeled. The parameterized
SRF takes as input the node number, beam, latitude, and the ascending/descending
pass indicator.

The two SRF estimates are benchmarked and the parameterized SRF is found to
be two orders of magnitude faster to compute per measurement. While it does not
exactly represent the full estimate, it is a close approximation, more than necessary for
enhanced resolution processing or to compute the measurement land fraction (either
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Figure 18: The full (left) and parameterized (right) SRF estimates for beam 6.

Figure 19: The full (left) and parameterized (right) SRF estimates for beam 2.
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case requires a spatial resolution of only a few km). Thus the parameterized estimate is
preferred for operational purposes, but the full estimate is useful for research purposes.
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A ASCAT FFT Bin Response
The FFT (fast Fourier transform), being a DFT (discrete Fourier transform), is the
sampled version of the DTFT (discrete-time Fourier transform). The number of FFT
bins is the number of samples from the DTFT. The frequency response of an FFT bin
is computed in Appendix A.1. This uses a rectangular window. The ASCAT window is
described in Appendix A.2 and the corresponding FFT bin response in Appendix A.3.

A.1 Rect window response
For the discrete-time signal5 x[n] with length N (and assumed to be periodic with period
N), the DTFT is expressed as

X(ejω) =
N−1∑
n=0

x[n]e−jωn. (22)

The DFT is

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N (23)

= X(ejω)|ω=2πk/N . (24)

Implicit in these definitions is a window function, w[n], so that x[n] is replaced with
x[n]w[n]. The response of an FFT bin depends on the window used. Due to the
convolution theorem,

DTFT{x[n]w[n]} = X(ejω) ∗W (ejω). (25)

We evaluate W (ejω) for a rect6 window (or, an implicit window), so that w[n] = 1
for all n. The DTFT of w[n] is then

W (ejω) =
N−1∑
n=0

e−jωn = 1− e−jωN
1− e−jω . (26)

Making use of the following expansions:

1− e−jω = e−jω/2(ejω/2 − e−jω/2) (27)
1− e−jωN = e−jωN/2(ejωN/2 − e−jωN/2), (28)

then the DTFT of a rect can be written as:

W (ejω) = 1− e−jωN
1− e−jω = e−jωN/2

e−jω/2

(
ejωN/2 − e−jωN/2

ejω/2 − e−jω/2

)
2j
2j (29)

= e−jω(N−1)/2 sin(ωN/2)
sin(ω/2) . (30)

5This is using notation from [8].
6A rect window is the rectangular window, or a window with a value of 1 for some domain, and 0

elsewhere.
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Recalling that one definition of the Dirichlet kernel (or “periodic sinc” function) is

Dn(x) = sin(nx/2)
sin(x/2) , (31)

then the DTFT is expressed in terms of the Dirichlet kernel,
W (ejω) = e−jω(N−1)/2DN(ω). (32)

Since we are interested in the power spectrum, the magnitude-squared response is
|W (ejω)|2 = |DN(ω)|2. (33)

This result is the continuous-valued frequency response of a rect window function,
using a DTFT. In practice, a DTFT is approximated by a DFT with sufficiently many
samples. Thus, while Eq. (33) gives the analytic frequency response of an FFT bin, it
could also be computed by zero-padding the rect window w[n] by some amount and
then computing the FFT.

Since the signal spectrum X(ejω) is convolved with the window spectrumW (ejω), the
value of a given FFT bin is not the sample of only the signal, but the linear combination
of all signal frequencies weighted by the window spectrum.

Some examples are shown in Fig. 20. The frequency response for a 16-point FFT is
shown. The frequencies for FFT bin centers are indicated with the stem plots. Note
that the response follows a Dirichlet kernel. Additionally, the frequency response of any
given bin is the weighted combination of all other frequencies except for the frequencies
at the centers of the other bins.

A.2 ASCAT on-board processing
ASCAT transmits linear FM pulses7. The received signal is dechirped and sampled at
412.5 kHz. The sampled mid and side beams contain 2252 and 3193 samples, respectively.
These samples are then divided into overlapping chunks of 512 samples. Each FFT
chunk is referred to as a range look.

The window applied to each chunk is specified in [3], Eq. 6.2.7-8. The number of
chunks and the window parameters are shown in Table 3. Each chunk is windowed,
then a 512 point FFT is performed. Half of the samples are discarded (the negative
frequencies are redundant in a real-valued signal) and the magnitude-square is taken.
All the transformed chunks are averaged together to give the final power spectrum
estimate, power vs frequency, which maps to σ◦ vs range.

The window function is described as

w(t) =
c 0 ≤ |t| ≤ pTrl/2
c
2

[
1 + cos

(
2π(|t|−pTrl/2)
Trl(1−p)

)]
pTrl/2 ≤ |t| ≤ Trl/2

, (34)

where Trl is the “range look duration” and is 1.241 212 ms. Note that c and p differ for
mid and side beams. The sampled window function w[n] is w(t) where t ∈ [−Trl/2, Trl/2]
and N = 512 samples are taken. The window function is plotted in Fig. 21 for the mid
and side beams. The window is a tapered rect, similar to a Tukey window.

7Most of the information in this section comes from from [7], an email from Julian Wilson on
2009-01-23.

23



0.6 0.4 0.2 0.0 0.2 0.4 0.6
Normalized frequency [cycles/sample]

0

2

4

6

8

10

12

14

16
Amplitude spectrum

DTFT
DFT

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Normalized frequency [cycles/sample]

10-4

10-3

10-2

10-1

100

101

102

103 Power spectrum

DFT
DTFT

4 3 2 1 0 1 2 3 4
Frequency [rad/sample]

0.0

0.2

0.4

0.6

0.8

1.0

1
7

Figure 20: The magnitude (top) and magnitude-squared (middle) frequency response of
an FFT bin. The frequency response (bottom) for two sample bins in a 16-point FFT.
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Figure 21: The window function applied to each 512-sample chunk.

Table 3: FFT chunk parameters

Beam FFT chunks Chunk window parameters
Mid 5 c=1.521 45, p=0.75
Side 8 c=1.685 56, p=0.5
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Figure 22: The magnitude of the Fourier transform of the chunk window for side beams,
along with the response from a rect window. The rect response has been renormalized
to match the peak level of the side range look window response. This plot is horizontally
zoomed in order to show more detail near the mainlobe (the full domain is -0.5 to
0.5 cycles/sample).

A.3 Windowed FFT bin response
The magnitude of the Fourier transform for one of the windows is shown in Fig. 22,
with the response from a rect window, for comparison. While the peak sidelobe level
and mainlobe width are not drastically different from the rect response, the sidelobes
taper off more quickly. As shown in Fig. 23, the mainlobe width for the windows is only
slightly wider than the rect window.
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Figure 23: The magnitude-squared of the Fourier transform of the chunk windows, along
with a rect window for comparison. This plot is horizontally zoomed in order to show
more detail near the mainlobe. The 3 dB width of the windows is estimated to be 0.88,
1.0, and 1.125 FFT bins for the rect, mid, and side windows, respectively.
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