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Abstract

The use of the Hilbert transform for time/frequency analysis of signals is briefly considered.
While the Hilbert transform is based on arbitrary continuous signals, most practical signals
are digitially sampled and time-limited. To avoid aliasing in the sampling process the signals
must also be bandlimited. It is argued that it is reasonable to consider such sampled signals
as periodic (this is the basis of the Discrete Fourier Transform [DFT]) since any other
interpretation is inconsistent. A simple derivation of the Hilbert transform for a sampled,
periodic is then given. It is shown that the instantaneous frequency can be easily computed
from the Discrete Fourier Series (or, equivalently, the DFT) representation of the signal.
Since this representation is exact, the Hilbert transform representation is also exact.

1 Introduction

While Hilbert transform techniques have existed for some time, S. Long et al. (1995) recently
used the Hilbert transform to analyze water waves. They found that Hilbert transform
techniques are useful for analyzing the instantaneous frequency content of the signal as a
function of time and argued that the instantaneous frequency is a local phenomina. Here
we consider this argument.

To summarize the key ideas in Hilbert transform analysis let x(t) be a real-valued signal.
The Hilbert transform y(t) = H{x(t)} is,

y(t) =
1
π

∫ ∞

−∞

x(τ)
τ − t

dτ (1)

where the principle value of the integral is used. Given x(t) and y(t), a complex analytic
signal z(t) can be defined as, (Cohen, 1995)

z(t) = x(t) + jy(t) (2)

which can be expressed as,

z(t) = x(t) + jy(t) = E(t)ejψ(t) (3)
∗My thanks for Prof. Hannu Olkkonen for his comments on the original draft.
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where E(t) is the envelope of z(t) given as

E(t) = |x(t) + jy(t)| (4)

and ψ(t) is the phase of z(t) given as

ψ(t) = tan−1 y(t)
x(t)

. (5)

The “instanteous frequency” ω(t) of z(t) can be defined as

ω(t) = − d

dt
ψu(t). (6)

where ψu(t) is the continuous, unwrapped phase, i.e.,

ψu(t) = ψ(t) + L(t) (7)

where L(t) is a integer multiple of π-valued function designed to insure a continuous phase
function. Accurately computed, the derivatives of the discontinuties in L(t) and ψ(t) cancel.
Note that if the L(t) is omitted there will be δ functions at various t in ω(t).

Squaring E(t) we obtain a time-dependent expression for the “instantaneous power.”
Thus, Hilbert transform analysis provides a method for determining the “instantaneous”
frequency and power of a signal. This technique is used widely in communications systems
analysis.

While it would appear that ω(t) is a purely local phenomena, computing ω(t) requires
the full signal and so ω(t) is actually a global property [see Cohen (1995), pp. 39-41]. This
is not surprising in light of the uncertainty principle in signal processing: we can either
know the power or frequency of a signal at a moment in time but not both. Further, phase
unwrapping requires global knowledge of the signal.

In the remainder of this report I discuss the properties of signals which are typically
analyzed, concluding that a DFT-based idea of how a “real-world” signal can be modelled
using a Fourier series leads to a simple method for computing the instantaneous phase of
the signal.

2 Signal Analysis

Let us consider some of the properties of typical signals we analyze. We can initially divide
all signals of interest into two classes: those with analytic forms [e.g., x(t) = cos(t)] and
observed or experimental signals. These latter signals represent the real-world signals we
are generally interested in analyzing. For this reason we will concentrate only on these.

Because an observed signal is, by definition, an experimentally observed signal, it rep-
resents a sample of the original underlying process of interest. For practical reasons this
sample must be of finite length. The resulting signal may be continuous (analog) or be
digitally sampled.

Practical hardware limitations for the analog signal suggest that the analog signal must
be low-pass or bandlimited. If the original signal was not bandlimited, the electronic and/or
mechanical components used in collecting the signal sample will impose a low-pass filter on
the signal.
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Similarly, for the case of digital sampling the signal must be bandlimited and sampled
at the Nyquist frequency or twice the highest frequency present to avoid aliasing. Note that
to process a signal on a computer, we must convert it to a digitally sampled form. Thus,
the digitially sampled case is the case of most interest and the one which we will consider
below.

However, note that because the signal sample has finite length, it must (1) either have
an infinite frequency spectrum, or (2) represent a periodic signal. Since the signal is finite
length and, as a result, has an infinite bandwidth unless periodic, a digitally sampled signal is
either (1) undersampled (i.e., sampled below the Nyquist rate) or (2) we must assume that it
actually represents a sample period of a periodic process (which can then be bandlimited).
In either case the sampled signal may not exactly represent the original physical process
being sampled. Note that if we assume that the signal is not periodic (and is therefore
not bandlimited, but undersampled) we can run into theoretical difficulties applying signal
processing algorithms. On the other hand, assuming the signal is periodic can simplify the
analysis and processing. These ideas are the fundamental concepts behind the application
of the Discrete Fourier Transform (DFT) in real-world signal analysis.

While we are ultimately interested in analyzing the underlying process for which our
signal is a sample we must keep in mind the limitations of our observed signal. A sampled
(discrete) signal which is both band- and time-limited must be interpreted as a sample
interval of a periodic signal. Thus, the signal may not represent the underlying process
exactly; however, given the signal we are forced to make this assumption. While this may
have negative conotations for modeling our underlying process, it can also be used to our
advantage in processing the signal. An interesting example arises in applying the Hilbert
Transform technique.

These ideas lead to some insights which can be exploited in signal analysis. For example,
based on the discussion above, a real-world signal should not be expressed as a continuous
function [x(t)] but rather as a discrete-time signal defined over a finite interval

x[n] = xc(nT ) for n ∈ I = [n0, . . . , n1] (8)

where xc(t) is the underlying continuous signal and T is the sample period. For convenience
we will set N0 = 0 and n1 = N − 1 so there are N unique samples in x[n]. As previously
discussed the assumption that x[n] was sampled at the Nyquist rate leads to the requirement
that x[n] be periodic. In effect, we assume the periodic extension of the x[n] define in Eq. (8),
i.e., we assume that x[n + mN ] = X [n] for all integer m.

Since the real x[n] is “now” periodic with period N , we can compute an exact discrete
Fourier series (DFS) representation1 x[n], i.e., (Oppenheim & Shaffer, 1975)

x[n] =
1
N

N−1∑

k=0

X [k]ej2πkn/N

=
1
N

N−1∑

k=0

{Xr[k] cos 2πkn/N − Xi[k] sin 2πkn/N} (9)

where the coefficients Xr[k] and Xi[k] of the expansion are
1Note that the 1/N normalization can be used in either the forward or inverse DFS equation as long

as it is used consistently. Here we follow the convention of (Oppenheim & Shaffer, 1975) and use it in the
forward DFS equation.
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X [k] = DFS{x[n]}

=
N−1∑

n=0
x[n]e−j2πkn/N (10)

where X [k] = Xr[k] + jXi[k] and j =
√

−1. Note that this expression is exact for all n
(including those outside of the the initial period ([0, . . . ,N − 1]) defining x[n]). Based on
the discussion in the previous section, essentially all real-world signals can be expressed this
way.

We note that since X [k] is periodic in N , Eq. (9) can also be written as

x[n] =





1
N

N/2∑

k=1−N/2

X [k]ej2πkn/N N even

1
N

(N−1)/2∑

k=−(N−1)/2

X[k]ej2πkn/N N odd

(11)

where X [k] = X [k + N ] for k < 0.

3 Hilbert Analysis

Let us now consider the impact of our real-world signal model on Hilbert tranform analysis.
It can be shown that the Hilbert transform is linear and that (Benedetto, 1997)

H{sinat} = − cos at (12)
H{cosat} = sin at. (13)

In the frequency domain, the Hilbert transform can be computed by multiplying the Fourier
transform by sign(ω).

Since our real-world signals will be discrete, we need to define a discrete version of the
Hilbert transform. Formally, the discrete Hilbert tranform denoted by Hd{·} is given by
(Benedetto, 1997)

Hd{x[n]} =
1
π

∞∑

m=−∞, m6=n

x[m]
n − m

. (14)

However, rather than develop the full details, we will use just the property of linearity
and the two definitions above to define the discrete Hilbert tranform denoted by Hd{·}, i.e.,
(Hahn, 1996)

Hd{sinan} = − cos an (15)

Hd{cosan} = sin an, (16)

which is valid for |a| < π to avoid aliasing. The value of a and N need to assure that cos an
and sin an are periodic.
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Using linearity and applying these to a signal x[n] represented by its DFS [Eq. (11)] we
obtain the discrete Hilbert transform, y[n] = Hd{x[n]}, of x[n]

y[n] =





1
N

N/2∑

k=1−N/2

sign(k)X [k]ej2πkn/N N even

1
N

(N−1)/2∑

k=−(N−1)/2

sign(k)X[k]ej2πkn/N N odd

(17)

which can be written as

y[n] =
1
N




(N−1)/2∑

k=0

{Xr[k] sin 2πkn/N + Xi[k] cos 2πkn/N}

−
N−1∑

k=(N+1)/2

{Xr[k] sin 2πkn/N + Xi[k] cos 2πkn/N}


 (18)

and for N even,

y[n] =
1
N




N/2−1∑

k=0

{Xr[k] sin 2πkn/N + Xi[k] cos 2πkn/N}

−
N−1∑

k=N/2+1

{Xr[k] sin 2πkn/N + Xi[k] cos 2πkn/N}


 (19)

for N odd. Thus, we see that the Hilbert transform can be easily computed from the DFS
representation of the signal.

The discrete analytic signal z[n] corresponding to x[n] is then

z[n] = x[n] + jy[n] = x[n] + jHd{x[n]}. (20)

The envelope E[n] and phase ψ(n) of z[n] are easily computed. Define φ[n] as

φ[n] =
Imag{z[n]}
Real{z[n]}

. (21)

Then
ψ[n] = tan−1 φ[n]. (22)

Then, the unwrapped phase function is

ψu[n] = ψ[n] + L[n] (23)

where L[n] is a discrete-valued function consisting of multiples of π to ensure the continuity
of ψu[n].

In continuous-time the instantaneous frequency ω[n] is the time derivative of the phase.
In discrete time we use the derivative with respect to n where the n is treated as continuous
when taking the derivative but evaluating the result only at discrete n. We note that when
taking the derivative of Eq. (23) with respect to n that discontinuties in ψ and L both occur
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at the same time. Assuming that there are no multiple poles of φ, the magnitude of the
discontinuties in ψ and L are identical and cancel. Further, if no poles of φ occur at the
discrete n values, the derivatives of φu are equivalent to φ at the discrete n.

The instantaneous frequency is then

ω[n] =
(

1
1 + φ2[n]

)
Real{z[n]}Imag{z′[m]} − Real{z′[n]}Imag{z[m]}

Real2{z[n]}
(24)

where the primes denote the derivatives of the time sequences. Letting

z[n] = x[n] + jy[n] (25)

where y[n] = Hd{x[n]} it follows that

z′[n] = x′[n] + jy′[n]. (26)

Simplifying Eq. (24) and expressing ω[n] in terms of x[n] and y[n] we obtain

ω[n] =
y′[n]x[n] − y[n]x′[n]

x2[n] + y2[n]
(27)

This formula is valid for all n for which x2[n] + y2[n] 6= 0. Note, however, that when the
denominator is zero, the numerator will also be zero. As a practical matter, we can set
ω[n] = 0 (or any convenient value) for these cases.

Writing the derivative with respect to n of Eq. (11), we obtain

d

dn
x[n] =





2πj

N2

N/2∑

k=1−N/2

kX [k]ej2πkn/N N even

2πj

N2

(N−1)/2∑

k=−(N−1)/2

kX[k]ej2πkn/N N odd

(28)

which can be expressed as

x′[n] = − 2π

N2




(N−1)/2∑

k=0

{kXr[k] sin 2πkn/N + kXi[k] cos 2πkn/N} +

N−1∑

k=(N+1)/2

{(k − N)Xr[k] sin 2πkn/N + (k − N)Xi[k] cos 2πkn/N}


 (29)

for N odd and for N even as2

x′[n] = −
2π

N2




N/2−1∑

k=0

{kXr [k] sin 2πkn/N + kXi[k] cos 2πkn/N} +

N−1∑

k=N/2+1

{(k − N)Xr [k] sin 2πkn/N + (k − N)Xi[k] cos 2πkn/N}


 . (30)

2Note that for N even, the k = N/2 term is not included to ensure periodicity.
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Similarly,

d

dn
y[n] =





2πj

N2

N/2∑

k=1−N/2

ksign(k)X[k]ej2πkn/N N even

2πj

N2

(N−1)/2∑

k=−(N−1)/2

ksign(k)X [k]ej2πkn/N N odd

(31)

which can be expressed as

y′[n] =
2π

N2




(N−1)/2∑

k=0

{kXi[k] cos 2πkn/N − kXr[k] sin 2πkn/N}

−
N−1∑

k=(N+1)/2

{(k − N)Xi[k] cos 2πkn/N − (k − N)Xr[k] sin 2πkn/N}


(32)

for N odd and for N even as

y′[n] =
2π

N2




N/2−1∑

k=0

{kXi[k] cos 2πkn/N − kXr[k] sin 2πkn/N}

−
N−1∑

k=N/2+1

{(k − N)Xi[k] cos 2πkn/N − (k − N)Xr[k] sin 2πkn/N}


 (33)

4 Discussion

Equation (27) seems to suggest that the instantaneous frequency can be computed locally,
as a function of x[n] and y[n] = Hd{x[n]}. However, the computation of y[n] requires
knowledge of x[n] for all values of n, i.e., complete knowledge of x[n] is required to compute
the DFS of x[n] and hence y[n] = Hd{x[n]}.

We note that Eq. (27) can be interpreted as a high-order finite-difference approximation
to the derivative. This approximation uses a sinc function kernal and, based on the Nyquist
sampling theorem, the approximation to the derivative is optimal (and in fact, exact). Since
all the data is required to compute the derivative, we can conclude that “local” phase of the
Hilbert transform is really a “global” property of the signal. Cohen (1995) also discusses
this issue and reaches a similar conclusion.
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