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Abstract

The Field-wise Objective Function is an important concept in �eld-

wise wind retrieval. A discussion on the purpose of the �eld-wise objec-

tive function is presented. Several variations of the �eld-wise objective

function are compared. The gradient vectors and Hessian matrices are

derived for each variation.

1 An Overview of Field-wise Objective Functions

An objective function is an error metric, providing a scalar value quantifying
the distance between an estimate and the observed measurements. Thus,
the estimate that minimizes the objective function is considered \closest"
to the observed measurements. The well-known \least-squares" problem is
an implementation of a minimized objective function.

In the case of �eld-wise wind retrieval, the error metric is a function of
the model parameters. A model parameter vector x parameterizes an M�N
wind �eld w through the linear model w = Fx. An objective function
J(x) measures the di�erence between the wind �eld w and the observed
measurements.

A direct error metric between the wind �eld w and the observed radar
backscatter (�o) is meaningless, because w is not in the �o measurement
space. To create a metric between w and �o, they must be transformed into
the same space. As there is no model to transorm �o into the wind vector
space, all of the objective functions employ a metric in the �o measurement
space.

The Geophysical Model Function (GMF) enables w to be transformed
into the �o measurement space. The GMF returns the �o value that would
result from examining a wind vector under a given set of measurement con-
ditions (i.e., instrument azimuth and incidence angles,  and �). The trans-
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formation from the wind �eld space into the �o measurement space is called
the forward projection.

To mathematically represent the measurements in a region, let Z be a
three-dimensional array containing the observed values (�o) for each mea-
surement. The �rst two dimensions index the measurement location (along-
track and cross-track position) of a wind �eld region. The third dimension
indexes the measurement number in each cell. Thus Zijk is the k

th measure-
ment of the ijth cell in the region. (Note that the number of measurements
may vary at each swath location).

To represent the forward projection of one wind vector measurement,
let M(U; � �; �) be the GMF, where � is the wind direction and U is
the wind speed. As x parameterizes every wind vector in the region, the
forward projection of the kth measurement of the ijth cell can be denoted
Mijk(x) where the measurement geometry is implied by k.

1.1 The Squared Error (SE) Objective Function

Perhaps the simplest and most common objective function is the squared
error objective function. This error metric can be described as the Euclidean
distance or the L2 norm, which gives rise to the \least squares" solution.
Thus, the objective function can be written as

JSE(x) =

NX
i=1

MX
j=1

KijX
k=1

(Zijk �Mijk(x))
2; (1)

where Kij is the number of measurements per cross-track cell, ij.

1.2 The Weighted Squared Error (WSE) Objective Function

While certainly the simplest option, the squared error objective function
fails to make use of all available information, and, as a result, can be overly
sensitive to noise. The measuring instrument introduces noise that has been
well studied. The noise is represented by a zero-mean, Gaussian random
variable �, with variance (K2

PC) given by

&2 = �(�oT )
2 + ��oT + : (2)

The parameters �, �, and  are functions of the instrument design and signal
to noise ratio (SNR), and �oT is the \true" �o measurement (i.e. the �o that
would be observed in the absence of measurement noise). Thus, �o is a

2



realization of the random variable equation

�o = �oT + �: (3)

Using the variance estimate from Eq. (2), instrument noise can be ac-
counted for, by dividing each term in the squared error sum by the mea-
surement variance. Thus,

JWSE(x) =
NX
i=1

MX
j=1

KijX
k=1

�
Zijk �Mijk(x)

&ijk

�2

; (4)

represents an objective function that can be classi�ed as a \weighted squared
error." It may be valuable to note that minimizing this objective function
can be considered a maximum likelihood estimator, assuming that the vari-
ance of each measurement is constant with respect to x. This assumption
will be examined in greater detail in the following section. JWSE(x) is also
a quantity known as a \chi-square" (�2).

1.3 Maximum Likelihood (ML) Estimation

In the preceding section, the weighted squared error objective function was
casually mentioned to be a maximum likelihood (ML) estimator given a
constant measurement variance. The ML estimator is explicitly derived in
this section.

The ML estimator calculates the model parameters most likely to give
rise to the observed measurements. For a given x, the estimator evaluates the
probability that the observed measurements Z would occur. The estimated
quantity x̂ML is the x that maximizes this probability. Thus,

x̂ML = argmax
x

pZ(Zjx): (5)

If the measurements are assumed to be independently Gaussian, with vari-
ance &2 de�ned above, then

pZ(Zjx) =
NY
i=1

MY
j=1

KijY
k=1

1q
2�&2ijk

exp

(
�1

2

�
Zijk �Mijk(x)

&ijk

�2
)
: (6)

Computing the maximum of pZ(Zjx) is equivalent to computing the min-
imum of the negative log-likelihood function L(x) = � lnpZ(Zjx), which
is

L(x) =
NX
i=1

MX
j=1

KijX
k=1

(
1

2
ln 2� +

1

2
ln &2ijk +

1

2

�
Zijk �Mijk(x)

&ijk

�2
)
: (7)

3



Note that the �rst two terms in the sum are constant with respect to x, so
they may be disregarded when calculating the argmin. The common scale
factor of 1

2 may also be ignored. Therefore,

x̂ML = argmin
x

pZ(Zjx)

= argmin
x

8<
:

NX
i=1

MX
j=1

KijX
k=1

�
Zijk �Mijk(x)

&ijk

�2
9=
;

= argmin
x

fJSE(x)g; (8)

the weighted squared error objective function.
Before declaring the weighted squared error a maximum likelihood esti-

mator, the constant variance assumption needs to be examined in greater
detail. Recall from Eq. (2) that &2 depends upon the value of �oT . Also re-
call that in computing pZ(Zjx), we estimate the probability of the observed
measurements under the assumption that the true wind �eld is represented
by x. Under this assumption, �oT =M(x). Thus, &2 is a function of x:

&2ijk(x) = �M2
ijk(x) + �Mijk(x) + : (9)

This dependence on x changes the simpli�cation of L(x); the 1
2 ln &

2 term
must be retained the minimization. Thus the objective function for maxi-
mum likelihood estimation is

JML(x) =

NX
i=1

MX
j=1

KijX
k=1

(�
Zijk �Mijk(x)

&ijk(x)

�2

+ ln &2ijk(x)

)
: (10)

While both Eqs. (4) and (10) can be said to represent objective functions
of maximum likelihood estimation, the constant variance assumption in Eq.
(4) is inconsistent with the probability model pZ(Zjx). Therefore, for the
duration of this paper \maximum likelihood" will refer exclusively to Eq.
(10).

1.4 The Reduced Maximum Likelihood (RML) Objective
Function

While a theoretically sound objective function, in practice Eq. (10) presents
some diÆculties. Examining the scale of the terms in the summation re-
veals one reason. The �rst term is the square of a zero-mean, unit-variance
Gaussian random variable, thus a �2 random variable with one degree of
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freedom, which has mean value of 1. &2 is on the order of 10�5, so ln &2 is on
the order of -11.5, so summed over all of the measurements, the ln &2 domi-
nates. The parameters �, �, and  are only rough approximations, though,
so the dominant term is not as accurate as the �2 term.

For this reason, the �nal objective function analyzed here is the reduced
maximum likelihood objective function:

JRML(x) =

NX
i=1

MX
j=1

KijX
k=1

�
Zijk �Mijk(x)

&ijk(x)

�2

: (11)

2 Objective Function Gradients

As mentioned before, to be useful as an estimation tool, the objective func-
tion minima must be obtained. Many minimization routines require the
calculation of the objective function gradient. Below, the gradient is ana-
lytically derived for the four cited objective functions.

2.1 SE Objective Function Gradient

Evaluation of the gradient requires a straightforward application of the chain
rule, di�erentiating with respect to each model parameter. With respect to
the pth model parameter, the partial derivative of Eq. (1) is:

@

@xp
JSE(x) = �2

NX
i=1

MX
j=1

KijX
k=1

(Zijk �Mijk(x))
@

@xp
Mijk(x) (12)

where

@

@xp
Mijk(x) =

@M(uij ; vij)

@uij

@uij

@xp
+
@M(uij ; vij)

@vij

@vij

@xp
: (13)

The terms uij and vij represent the rectangular components of the wind
�eld at the ijth wvc. Note that these may be represented in terms of the F
matrix representing any linear wind �eld model:

uij = F T
l x; (14)

vij = F T
l+MNx; (15)

l = N(i� 1) + j; (16)
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where l is the index into the column scanned representation of the wind
region and F T

l is the lth row of the wind �eld model transform matrix.
Therefore,

@uij

@Xp
= Fl;p (17)

@vij

@Xp
= Fl+MN;p: (18)

The Geophysical Model Function is an empirically derived table of values
with no closed form solution. The table has three dimensions: wind speed U ,
relative azimuth � (instrument azimuth  - wind direction �), and incidence
angle �. In order to evaluate the function, an interpolation routine must be
used. In the MERS lab, a bspline function is used, interpolating in all three
directions. Through this function, partial derivatives can be easily obtained
with respect to wind speed and relative azimuth, i.e. @M

@s and @M
@� . These

are related to the rectangular components by

s =
p
u2 + v2; (19)

� =  � �; (20)

� = tan�1(
v

u
): (21)

Thus,

@M
@v

=
@M
@s

@s

@v
+
@M
@�

@�

@v
(22)

@M
@u

=
@M
@s

@s

@u
+
@M
@�

@�

@u
(23)

@s

@u
=

up
u2 + v2

(24)

@s

@v
=

vp
u2 + v2

(25)

@M
@�

=
@M
@�

@�

@�

= �@M
@�

: (26)

The partials of � with respect to u and v require more careful attention. The
inverse tangent with only one argument, de�ned on the interval [��

2 ;
�
2 ], has
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a well known derivative:

d

dx
tan�1(x) =

1

1 + x2
: (27)

For purposes in wind retrieval, the four quadrant inverse tangent (de�ned
on the interval [��; �], and denoted tan�14 ) is necessary. This can be de�ned
in the following way:

tan�14 (
v

u
) =

8><
>:
tan�1( vu ) Quadrants I and IV;

tan�1( vu ) + � Quadrant II;

tan�1( vu )� � Quadrant III

(28)

Thus the partial derivatives will be the same in all quadrants, i.e.

@�

@u
=

@

@u
tan�14 (

v

u
) =

1

1 + v2

u2

�v
u2

=
�v

u2 + v2
: (29)

@�

@v
=

@

@v
tan�14 (

v

u
) =

1

1 + v2

u2

1

u

=
u

u2 + v2
: (30)

Therefore,

@M
@v

=
@M
@s

vp
u2 + v2

+
@M
@�

u

u2 + v2
; (31)

@M
@u

=
@M
@s

up
u2 + v2

� @M
@�

v

u2 + v2
: (32)

2.2 WSE Objective Function Gradient

The WSE objective function di�ers from the SE objective function by only
the & term which is constant with respect to x. Thus, the gradient di�ers
from Eq. (12) by the same term:

@

@xp
JWSE(x) = �2

NX
i=1

MX
j=1

KijX
k=1

"
(Zijk �Mijk(x))

&2ijk

#
@

@xp
Mijk(x): (33)
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2.3 RML Objective Function Gradient

The RML objective function di�ers from the WSE objective function only
in that &2 depends upon x. Computation of the gradient requires use of the
derivative quotient rule:

@

@xp
JRML(x) = �

NX
i=1

MX
j=1

KijX
k=1

(
2(Zijk �Mijk(x))

@
@xp

Mijk(xp)

&2ijk
+

(Zijk �Mijk(x))
2 @&

2

ijk

@xp

(&2ijk)
2

9=
; ; (34)

where

@&2ijk

@xp
= 2�Mijk(x)

@Mijk(x)

@xp
+ �

@Mijk(x)

@xp
: (35)

2.4 ML Objective Function Gradient

Di�erentiaing Eq. (10) requires only the addition of one term to Eq. (34):

@

@xp
JML(x) =

@

@xp
JRML(x) +

NX
i=1

MX
j=1

KijX
k=1

1

&2ijk(x)

@&2ijk(x)

@xp
: (36)

3 Objective Function Hessian Matrices

Several minimization algorithms for the objective function require a realiza-
tion of the Hessian matrix, or the matrix of double partials. Although the
derivation is involved, like the gradient, it is a straightforward implementa-
tion of the chain rule.

3.1 SE Objective Function Hessian

To completely specify the derivation, it is suÆcient to derive expressions for
the following:

(37)

@2JSE

@x2p
= �2

NX
i=1

MX
j=1

KijX
k=1

"
(Zijk �Mijk(x))

@Mijk(x)

@x2p
�
�
@Mijk(x)

@xp

�2
#
;
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and

@2JSE

@xp@xq
= �2

NX
i=1

MX
j=1

KijX
k=1

�
(Zijk �Mijk(x))

@2Mijk(x)

@xp@xq

�@Mijk(x)

@xp

@Mijk(x)

@xq

�
: (38)

where p 6= q. By the chain rule,

@2M
@x2p

=
@

@xp

�
@M
@u

@u

@xp
+
@M
@v

@v

@xp

�

=
@

@xp

�
@M
@u

�
@u

@xp
+
@M
@u

@2u

@x2p
+

@

@xp

�
@M
@v

�
@v

@xp
+
@M
@v

@2v

@x2p

=
@

@xp

�
@M
@u

�
@u

@xp
+

@

@xp

�
@M
@v

�
@v

@xp
; (39)

@2M
@xq@xp

=
@

@xq

�
@M
@u

�
@u

@xp
+

@

@xq

�
@M
@v

�
@v

@xp
: (40)

Note that the double partials, @2v
@x2p

and @2u
@x2p

are both 0. The mixed partials

of the model function are further developed as

@

@xp

�
@M
@u

�
=

@2M
@u2

@u

@xp
+
@2M
@u@v

@v

@xp
; (41)

@

@xp

�
@M
@v

�
=

@2M
@u@v

@u

@xp
+
@2M
@v2

@v

@xp
; (42)

and thus, the above simpli�es to

@2M
@x2p

=
@2M
@u2

�
@u

@xp

�2

+ 2
@2M
@u@v

@v

@xp

@u

@xp
+
@2M
@v2

�
@v

@xp

�2

; (43)

@2M
@xq@xp

=
@2M
@u2

@u

@xq

@u

@xp
+
@2M
@u@v

@v

@xq

@u

@xp

+
@2M
@u@v

@u

@xq

@v

@xp
+
@2M
@v2

@v

@xq

@v

@xp
: (44)

When using the bspline version of the Geophysical Model Function, the
double partials @2M

@u2
,@

2M

@v2
, and @2M

@u@v are not directly available, as the model
function is splined with respect to s and �. Thus, expressions for these
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partials must also be derived to implement the Hessian matrix.

@2M
@u2

=
@

@u

�
@M
@u

�

=
@

@u

�
up

u2 + v2

@M
@s

� v

u2 + v2
@M
@�

�

=
up

u2 + v2

@

@u

�
@M
@s

�
+

v2

(u2 + v2)3=2
@M
@s

� v

(u2 + v2)

@

@u

�
@M
@�

�
+

2uv

(u2 + v2)2
@M
@�

(45)

@2M
@v2

=
@

@v

�
@M
@v

�

=
@

@v

�
vp

u2 + v2

@M
@s

+
u

u2 + v2
@M
@�

�

=
vp

u2 + v2

@

@v

�
@M
@s

�
+

u2

(u2 + v2)3=2
@M
@s

� 2uv

(u2 + v2)2
@M
@�

+
u

u2 + v2
@

@v

�
@M
@�

�
; (46)

where

@

@u

�
@M
@s

�
=

@2M
@s2

@s

@u
+
@2M
@�@s

@�

@u

=
up

u2 + v2

@2M
@s2

� v

u2 + v2
@2M
@�@s

; (47)

@

@u

�
@M
@�

�
=

@2M
@�@s

@s

@u
+
@2M
@�2

@�

@u

=
up

u2 + v2

@2M
@�@s

� v

u2 + v2
@2M
@�2

; (48)

@

@v

�
@M
@s

�
=

@2M
@s2

@s

@v
+
@2M
@�@s

@�

@v

=
vp

u2 + v2

@2M
@s2

+
u

u2 + v2
@2M
@�@s

; (49)

@

@v

�
@M
@�

�
=

@2M
@�@s

@s

@v
+
@2M
@�2

@�

@v

=
vp

u2 + v2

@2M
@�@s

+
u

u2 + v2
@2M
@�2

: (50)
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Thus,

@2M
@u2

=
u2

u2 + v2
@2M
@s2

� uv

(u2 + v2)3=2
@2M
@�@s

+
v2

(u2 + v2)3=2
@M
@s

� uv

(u2 + v2)3=2
@2M
@�@s

+
v2

(u2 + v2)2
@2M
@�2

+
2uv

(u2 + v2)2
@M
@�

=
u2

u2 + v2
@2M
@s2

+
v2

(u2 + v2)3=2
@M
@s

� 2uv

(u2 + v2)3=2
@2M
@�@s

+
v2

(u2 + v2)2
@2M
@�2

+
2uv

(u2 + v2)2
@M
@�

; (51)

@2M
@v2

=
v2

u2 + v2
@2M
@s2

+
2uv

(u2 + v2)3=2
@2M
@�@s

+
u2

(u2 + v2)3=2
@M
@s

� 2uv

(u2 + v2)2
@M
@�

+
u2

(u2 + v2)2
@2M
@�2

: (52)

The mixed partial is found to be

@2M
@u@v

=
@

@u

�
vp

u2 + v2

@M
@s

+
u

u2 + v2
@M
@�

�

=
vp

u2 + v2

@

@u

�
@M
@s

�
� uv

(u2 + v2)3=2
@M
@s

+
u

u2 + v2
@

@u

�
@M
@�

�
+

v2 � u2

(u2 + v2)2
@M
@�

=
uv

u2 + v2
@2M
@s2

� v2

(u2 + v2)3=2
@2M
@�@s

� uv

(u2 + v2)3=2
@M
@s

� 2u2

(u2 + v2)2
@M
@�

+
u2

(u2 + v2)3=2
@2M
@�@s

� uv

(u2 + v2)2
@2M
@�2

=
uv

u2 + v2
@2M
@s2

+
u2 � v2

(u2 + v2)3=2
@2M
@�@s

� uv

(u2 + v2)3=2
@M
@s

+
v2 � u2

(u2 + v2)2
@M
@�

� uv

(u2 + v2)2
@2M
@�2

: (53)

Obtaining @2M
@�2

and @2M
@�@s from the model function requires only a simple

application of the chain rule. Recall that

� =  � �; (54)

@M
@�

= �@M
@�

: (55)
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Therefore,

@2M
@�2

=
@

@�

�
@M
@�

�

=
@

@�

�
�@M
@�

�

= �@
2M
@�2

@�

@�

=
@2M
@�2

; (56)

@2M
@�@s

=
@

@�

�
@M
@s

�

=
@2M
@�@s

@�

@�

= �@
2M
@�@s

: (57)

3.2 The WSE Hessian Matrix

As with the gradient of JWSE, the hessian requires only the addition of the
constant &2 term to the JSE hessian matrix:

(58)

@2JWSE

@x2p
= �2

NX
i=1

MX
j=1

KijX
k=1

2
4(Zijk �Mijk(x))

@2Mijk(x)
@x2p

&2ijk
�
0
@ @Mijk(x)

@xp

&2ijk

1
A

23
5 ;
(59)

@2JWSE

@xp@xq
= �2

NX
i=1

MX
j=1

KijX
k=1

2
4(Zijk �Mijk(x))

@2Mijk(x)
@xp@xq

&2ijk
�

@Mijk(x)
@xp

@Mijk(x)
@xq

&2ijk

3
5 :

4 Conclusion

While four objective functions have been derived, in general, only theWeighted
Squared Error objective function and the Reduced Maximum Likelihood
Objective function are used in �eld-wise wind retrieval. The Squared Er-
ror objective function can be overly sensitive to noise, while the Maximum
Likelihood objective function is dominated by less accurate estimates.
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