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ABSTRACT

Signal Processing Methods for Ultra High Resolution Scatterometry

Brent Allen Williams

Department of Electrical and Computer Engineering

Doctor of Philosophy

This dissertation approaches high resolution scatterometry from a new perspective.
Three related general topics are addressed: high resolution σ0 imaging, wind estimation
from high resolution σ0 images over the ocean, and high resolution wind estimation directly
from the scatterometer measurements. Theories of each topic are developed, and previous
approaches are generalized and formalized. Improved processing algorithms for these theories
are developed, implemented for particular scatterometers, and analyzed. Specific results and
contributions are noted below.

The σ0 imaging problem is approached as the inversion of a noisy aperture-filtered
sampling operation–extending the current theory to deal explicitly with noise. A maximum
aposteriori (MAP) reconstruction estimator is developed to regularize the problem and deal
appropriately with noise. The method is applied to the SeaWinds scatterometer and the
Advanced Scatterometer (ASCAT). The MAP approach produces high resolution σ0 images
without introducing the ad-hoc processing steps employed in previous methods. An ultra
high resolution (UHR) wind product has been previously developed and shown to produce
valuable high resolution information, but the theory has not been formalized. This disserta-
tion develops the UHR sampling model and noise model, and explicitly states the implicit
assumptions involved. Improved UHR wind retrieval methods are also developed. The de-
velopments in the σ0 imaging problem are extended to deal with the nonlinearities involved
in wind field estimation. A MAP wind field reconstruction estimator is developed and im-
plemented for the SeaWinds scatterometer. MAP wind reconstruction produces a wind field
estimate that is consistent with the conventional product, but with higher resolution. The
MAP reconstruction estimates have a resolution similar to the UHR estimates, but with less
noise. A hurricane wind model is applied to obtain an informative prior used in MAP esti-
mation, which reduces noise and ameliorates ambiguity selection and rain contamination.

Keywords: scatterometry, image reconstruction, irregular sampling, aperture-filtered sam-
pling, wind, ambiguity selection, hurricane, maximum aposteriori estimation, inverse prob-
lems
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Chapter 1

Introduction

1.1 Overview

A scatterometer is a radar that measures the normalized radar cross section σ0 of the

surface of the Earth. The σ0 measurements contain information about the condition of the

surface (e.g., the roughness). Scatterometers are principally designed to measure large scale

ocean surface winds. Over the ocean the σ0 measurements are related to the wind velocity

through an empirically derived geophysical model function (GMF). Because the GMF is

nonlinear, multiple different wind vectors can map to the same σ0 value. When estimating

the wind from multiple scatterometer measurements, the nonlinearity results in multiple wind

vector estimates called ambiguities. It is difficult to determine which ambiguity is correct

from the σ0 data alone. The problem of ambiguity selection is often considered separately

from the problem of wind estimation (i.e., finding the multiple ambiguous solutions).

Although scatterometers are designed for large scale wind estimation, other types of

products may be derived from the σ0 measurements. For example, high resolution wind

products and σ0 images can be derived from the raw σ0 measurements. These products

provide valuable additional information for geoscience over land, sea ice, and oceans.

1.2 Motivation

Conventional scatterometry is based on simplified processing methods. Standard

processing employs a drop-in-the-bucket griding technique, which assumes a simplified mea-

surement process. With this griding method, both σ0 imaging and wind vector estimation

can be approached as point-wise parameter estimation problems (i.e., for σ0 imaging, a single

σ0 value is estimated separately for each grid element, while for wind estimation, a single

wind vector is estimated separately for each wind vector cell).

1



Actual σ0 measurements contain information from scatterers distributed over an area,

which generally extend into multiple σ0 griding bins or wind vector cells (WVCs). Each

σ0 measurement represents the superposition of the returns from scatterers over an area

weighted by the spatial response function (or aperture function) of the measurement. The

aperture functions of different measurements overlap irregularly and have different shapes.

Griding methods solve a simplified problem for both σ0 imaging and wind estimation. These

methods ignore the aperture functions entirely. Furthermore, griding methods assume that

the scattering return is uniform over the area of each σ0 bin or WVC. However, within a

particular σ0 bin or WVC there may be a significant variability among the scatterers. Sub-

cell variability that is unaccounted for results in estimation biases. Also, the resolution of

griding methods is limited.

σ0 imaging methods have been developed to exploit the irregular overlap of the spatial

response functions. These methods, classified as reconstruction algorithms, attempt to invert

a more general measurement sampling operation. Several σ0 image reconstruction methods

have been developed, all based on a noise-free linear model. Processing methods have been

developed to ameliorate the effects of scatterometer noise, but these approaches are somewhat

ad-hoc.

An ultra high resolution (UHR) wind product has been produced for the SeaWinds

scatterometer that employs σ0 reconstruction methods to obtain σ0 images from which the

wind is estimated on a point-wise basis (i.e., a single wind vector is estimated separately for

each pixel of the reconstructed σ0 images). In order to estimate the wind point-wise, the

scatterometer noise model is modified in UHR processing. This modification simplifies the

problem, but also changes it. The errors and artifacts introduced by this modification are

difficult to analyze without understanding the more general problem.

1.3 Approach

Although scatterometry is a relatively well-established field, there are several theoret-

ical and practical issues that have not been considered in detail. This dissertation provides

the theoretical framework for solving the scatterometer σ0 imaging and wind estimation

problems in a more general manner, not relying on the approximations conventionally made

2



to simplify the problems. The general σ0 measurement sampling operation is presented and

a more general approach to the inverse problem is developed, which deals with the sampling

operation and the scatterometer noise. Both the scatterometer σ0 imaging problem, and

the wind field estimation problem are addressed. The σ0 imaging problem is approached

as a noisy linear inverse problem, extending previous scatterometer image reconstruction

methods to appropriately account for noise. The wind inversion problem is approached as a

noisy, nonlinear inverse problem. A general method is proposed to estimate the wind field

at high resolution from the σ0 measurements, which appropriately accounts for spatial cor-

relation imposed by the sampling. The new developments unify the various approaches to

wind scatterometry as simplified special cases of the more general solution. The dissertation

also formalizes the UHR wind retrieval theory and develops methods to ameliorate noise and

ambiguity selection.

1.4 Summary of Results

The material in this dissertation is addressed in one published journal article [1], two

submitted journal papers [2] [3], and several conference papers [4] [5] [6] [7]. The contri-

butions include both new theoretical contributions as well as development and analysis of

improved processing algorithms.

The first journal paper [1] develops a method to improve UHR wind estimates in

hurricanes. The material of this paper is presented in Chapter 6. A maximum aposteriori

(MAP) estimation method for point-wise UHR wind retrieval is developed, which improves

ambiguity selection and reduces the variability of the estimates. A hurricane wind field model

is derived from SeaWinds data and this is used to obtain the prior distribution required for

MAP estimation. The MAP approach produces wind field estimates that by design are more

consistent with what is expected for hurricanes, while also providing estimates of useful

hurricane parameters such as the eye center location.

The second journal paper [2] considers the theory of aperture-filtered sampling and

reconstruction, develops a new reconstruction approach, and applies the method to the scat-

terometer image reconstruction problem. The material in [2] is presented in Chapters 3 and

4 of the dissertation. This new approach provides a theoretical way to obtain enhanced pixel
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resolution in image reconstruction. For scatterometry, the σ0 imaging problem is generally

ill-posed (i.e., the sampling operation is underdetermined). This results in an effective resolu-

tion that may differ from the pixel resolution used in reconstruction. The new reconstruction

approach is applied to the SeaWinds scatterometer and the Advanced Scatterometer (AS-

CAT) and the results are compared to previous methods. The new procedure produces

results comparable with the previous methods, but without the ad-hoc processing steps.

The third journal article [3] extends the linear reconstruction approach developed

in [2] to wind field estimation, appropriately handling the nonlinearity introduced by the

GMF. This paper is the subject of Chapter 7. Theoretical issues are explored and a MAP

wind field reconstruction estimator is developed for scatterometry. The method is applied

to the SeaWinds scatterometer and the results are compared to the conventional and UHR

products. The MAP reconstruction method produces a high resolution product that is

consistent with the conventional and UHR products. The MAP estimates have resolution

similar to the UHR estimates, but the variability of the estimates is greatly reduced.

1.5 Outline

The dissertation is organized by topic into two major parts. The first part addresses

scatterometer σ0 imaging. The second part discusses scatterometer wind estimation. Chap-

ter 2 presents scatterometry background and reviews previous approaches to the scatterom-

eter σ0 imaging and wind estimation problems. Chapter 3 presents the theory required to

generalize the σ0 imaging problem as a noisy linear inverse problem. Chapter 4 explores the

application of the inverse problem approach to the scatterometer σ0 imaging or reconstruc-

tion problem, focusing on the SeaWinds and ASCAT scatterometers. Chapter 5 formalizes

the ultra high resolution (UHR) wind estimation approach. Chapter 6 applies a point-wise

MAP estimation approach to improve wind and rain field estimates in hurricanes. Chapter

7 considers the scatterometer wind estimation problem as a noisy, nonlinear inverse problem

and applies a wind field reconstruction approach to the SeaWinds scatterometer. Finally,

Chapter 8 summarizes the results and contributions. For convenience, a list of acronyms is

provided in Appendix A.
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Chapter 2

Background

2.1 Introduction

A scatterometer is a radar that transmits microwave frequency energy at the Earth’s

surface from an aircraft or spacecraft and measures the power of the echo return. Pulse

compression or range/Doppler processing is employed to partition the power measurement of

a single echo into sub-elements called ‘slices’ [8] [9] [10]. These slice measurements represent

the superposition of the echos over an area on the Earth’s surface scaled by the spatial

response function, as well as radiometric emissions and receiver noise. The spatial response

function for a range/Doppler slice is a combination of the antenna gain pattern and signal

processing. Scatterometers also make noise-only measurements. These measurements are

subtracted from the power (signal-plus-noise) measurements and scaled by the parameters

in the radar equation to produce a noisy measurement of the normalized radar cross section

σ0 [11].

The σ0 signal describes the scattering properties of the Earth’s surface, assuming

atmospheric effects are negligible. σ0 varies with the composition, roughness, and state of

the surface. For the same type of material on the surface, a brighter return or higher σ0

value indicates a rougher surface (on the order of the wavelength of the scatterometer) [11].

Since wind roughens the ocean surface (inducing capillary waves), the σ0 measurements are

related to the surface winds [12]. Stronger returns are obtained from looking directly into or

away from the direction of the wind, while weaker returns are obtained for azimuth angles

900 from the wind direction. Thus, the wind vector field (speed and direction) over the ocean

can be estimated from the scatterometer measurements if there is sufficient azimuth diversity

among the measurements. Scatterometers make measurements at different azimuth angles,

incidence angles, and possibly different polarizations and frequencies. Large scale ocean
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vector wind measurement is the principle mission of space-borne scatterometers; however,

high resolution products can be obtained [7].

Other useful information over land and ice can be derived from the scatterometer

measurements. For example, scatterometer data provides valuable information for studies of

vegetation [13] [14], sea ice [15] [16] [17] [18], glacial ice sheets [19] [20] [21], and desert sand

dunes [22] [23]. Investigation of the scatterometer data for these land and ice applications

is based on σ0 image products.

This dissertation considers both σ0 imaging applications over land and ice, and wind

applications over the ocean. This chapter provides an overview of previous approaches to

scatterometry as applied to σ0 imaging and wind estimation. More detailed background is

provided in subsequent chapters as needed.

2.2 σ0 Imaging

Each part of a scatterometer swath is observed multiple times at different geometries

for each σ0 measurement. Since the different scatterometer measurements overlap in space,

they may be combined to produce σ0 images. For land and ice applications, measurements

from multiple passes can be combined assuming that the surface is stationary over the time

spanned by the different passes. Using multiple passes provides a more dense sampling of

the surface, which reduces the effects of noise and allows for a finer resolution than possible

with a single pass. Note that the σ0 measurements vary with azimuth angle, incidence angle,

polarization, and frequency. Since scatterometers make measurements with different geome-

tries and possibly polarizations and frequencies, these measurements of different ‘flavors’

cannot generally be combined directly to produce a single image. Conventional land and

ice σ0 imaging methods assume that azimuth variation is negligible and combine only mea-

surements of a given frequency and polarization. If there is a wide incidence angle variation

among the measurements, the relationship

10 log10 σ = A+ B(θ − θ0) (2.1)
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is assumed. Here, A represents the incidence angle normalized σ0 in dB, θ is the incidence

angle of the measurement, θ0 is the reference incidence angle, and B is a parameter [24].

When this relationship is assumed, two different types of images are created from the scat-

terometer data: an incidence angle normalized σ0 image (or A image), and a B image. Figure

2.1 shows an A image and a B image of Antarctica made from data obtained by the NASA

scatterometer (NSCAT). The A image varies with different types of surfaces (e.g., sea ice or

glacial ice). The B image indicates the slope of σ0 with incidence angle.

Multiple methods of creating σ0 images from scatterometer data have been developed.

The rest of this section overviews the different approaches.

2.2.1 Gridding and AVE

A simple imaging method is to grid up a region on the globe into bins and average

each measurement of a given type whose center falls into a given bin. As stated above,

gridding methods effectively neglect the aperture functions and assume that the scatterers

are uniform over each bin. Furthermore, the spatial resolution is limited.

Another simple method that allows for finer scale details to be resolved is a weighted

average where the weighting functions are the aperture functions (or spatial response func-

tions) of the measurements. This is the basis of the averaging (AVE) algorithm [24]. For

the linear case this method is equivalent the applying a row normalized adjoint as a pseudo-

inverse of the sampling operation. Although this method can produce higher resolution

images than gridding, the resolution enhancement from the AVE method is also limited.

2.2.2 Reconstruction

Reconstruction is an imaging approach that can greatly enhance the resolution of

the σ0 images. This involves inverting the sampling operation. For this method, noise is

neglected and image reconstruction is approached as an operator inverse problem. Con-

strained optimization is employed to minimize a constraint on the σ0 image σ0(x) subject to

a consistent forward projection through the sampling operator. This can be expressed more

precisely as
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Figure 2.1: An A (a) image and B (b) image of Antarctica derived from NSCAT.
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minimize C(σ0(x)),

subject to ~σ0
m = Hσ0(x)

where x represents a two-dimensional spatial variable, ~σ0
m is the vector of scatterometer mea-

surements, H is the sampling operator, and C(σ0(x)) is a constraint. Two particular con-

straints have been discussed in the literature: the minimum norm constraint (i.e., C(σ0(x)) =

||σ0(x)||), and the maximum entropy constraint (i.e., C(σ0(x)) =
∫
σ0(x) log σ0(x)dx). In-

stead of gradient search methods, other iterative methods have been adopted for image

reconstruction purposes [25].

AART, MART, and SIR

The additive algebraic reconstruction technique (AART) is an iterative method that

converges to the minimum norm solution. Although this reconstruction technique is appro-

priate for the noise-free case and for additive white Gaussian noise, for noisy scatterometer

measurements the maximum entropy constraint results in a less noisy σ0 image estimate.

The multiplicative reconstruction technique (MART) is an iterative method that maximizes

the entropy of the σ0 image. For scatterometer applications, the MART algorithm has been

adapted based on simulation and Monte Carlo methods to converge faster with less noise.

These modifications result in the scatterometer image reconstruction (SIR) technique [25].

Figure 2.2 displays a gridded image, an AVE image, and a SIR image of Greenland

derived from h-pol measurements from the SeaWinds instrument on the QuikSCAT platform.

The gridded product is pixelated while the AVE and SIR images are more smooth. The SIR

image shows more detail than the AVE image which is slightly more blurry.

Note that although these methods are appropriate for the noise free-case, the modifi-

cations made to deal with noise in the SIR algorithm are somewhat ad-hoc. A theoretically

more appropriate method for image reconstruction that deals with noise explicitly is pro-

posed in Chapter 4. This method is based on solving the noisy inverse problem.
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Figure 2.2: A gridded (a), AVE (b), and SIR (c) image of Greenland derived from the
SeaWinds scatterometer using h-pol measurements.

2.3 Wind Scatterometry

For wind scatterometry over the ocean, the σ0 fields (images) are related to the surface

wind vector at the particular location through the geophysical model function (GMF). The

GMF is an empirically derived mapping, and there are different GMFs for different operating

frequencies. The two most common operating frequencies for space-borne scatterometers

are C-band and Ku-band. The C-band CMOD5 GMF is currently used for the operational

advanced scatterometer ASCAT [9] [26]. For the SeaWinds (or QuikSCAT) scatterometer,

which was operation until the fall of 2009, the Ku-band Qmod3 and Qmod4 GMFs are often

used [8]. Figure 2.3 plots the Qmod4 for a particular look geometry (an incidence angle of

46 degrees) as a function of wind speed and relative azimuth angle χ. The relative azimuth

angle is the angle between the wind direction and the azimuth angle of the measurement

(e.g., χ = 0 means looking directly into the wind). Notice that the σ0 value is a nonlinear

function of both speed and direction. The direction modulation is sinusoidal, which results

in multiple possible wind solutions (ambiguities) for a given set of measurements.

Because of the possibility of several wind ambiguities, the problem of wind retrieval

has been approached in two separate steps: a wind estimation step in which the multiple
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Figure 2.3: σ0 value (in linear space) as a function of wind speed and relative azimuth angle
χ according to the Qmod4 GMF for h-pol measurements at an incidence angle of 46 degrees.

ambiguities are obtained, and an ambiguity selection step. The problem of ambiguity selec-

tion is particularly difficult from the scatterometer data alone. Nevertheless, useful results

can be obtained by assuming structure for the wind fields (see Chapter 6 and Appendix D).

Conventional ambiguity selection algorithms employ external wind field estimates, such as

numerical weather predictions, to select appropriate ambiguities.

Unlike the conventional σ0 reconstruction approach that neglects noise, the wind

estimation problem conventionally employs an estimation theory approach. That is, the

noisy σ0 measurements are modeled as random variables whose distributions or probability

density functions (pdfs) are functions of the wind. The wind is thus a parameter of the joint

distribution of the measurements, which parameter is to be estimated. Such methods rely

on an appropriate noise model.

2.3.1 Noise Model

A noisy scatterometer measurement σ0
m can be modeled as a Gaussian random variable

with a mean of the true or noise-free σ0 value (i.e., Eσ0
m = σ0

t where E is the expectation)

and a variance that is a quadratic function of the mean (i.e., ξ2 = α(σ0
t )

2 + βσ0
t + γ where

α, β, and γ are functions of the scatterometer design and the measured noise power) [27]
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[28]. This noise model accounts for receiver noise as well as fading. Uncertainty in the GMF

can also be modeled by modifying the random variable (i.e., changing the parameters of

the quadratic form of the variance) [29]. Conventionally, each measurement is assumed to

be statistically independent and so the pdf for the vector of σ0 measurements ~σ0
m can be

expressed as [30]

f(~σ0
m|~σ0

t ) =
∏
i

1√
2πξi

exp

{−(σ0
m,i − σ0

t,i)
2

2ξ2
i

}
(2.2)

where i indexes the different scatterometer measurements.

Several methods have been developed for wind estimation from scatterometer mea-

surements. These methods can be classified as point-wise and field-wise approaches. Point-

wise approaches estimate each wind vector independently of the others, while field-wise

methods simultaneously estimate the entire wind field over a region.

2.3.2 Drop-in-the-bucket Gridding

The standard wind retrieval method is a drop-in-the-bucket gridding technique. For

this method each σ0 measurement whose center falls into a 50km, 25km, or 12.5km wind

vector cell (WVC) is used to estimate a single wind vector for that WVC [31]. This method

is appropriate for the standard resolution products, but for wind fields with significant fine

scale features, other processing methods may be more appropriate.

2.3.3 UHR Wind Processing

Ultra high resolution wind field estimates have been obtained for the SeaWinds scat-

terometer by reconstructing several σ0 fields by combining measurements of a given flavor

(i.e., with a given polarization and frequency, and a similar geometry) onto a 2.5km grid.

These σ0 images of different flavors are used to estimate the wind on a point-wise basis [7].

This procedure allows fine scale features to be resolved, but the noise level or variability

of the estimates is significantly higher than the lower resolution products. Furthermore,

ambiguity selection is much more difficult at higher resolutions and higher noise levels.

Figure 2.4 shows images of the wind field estimates from QuikSCAT data using stan-

dard drop-in-the-bucket techniques and using the UHR approach. Although the UHR esti-
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mate is noisier, the UHR speed field shows important details that are not represented in the

conventional product.

Although the UHR method has been applied for years, the details of the theory have

not been formalized. The UHR method is formalized in Chapter 5. Chapter 6 and Appendix

D develop variations of the UHR wind retrieval method that can ameliorate noise issues and

ambiguity selection.

2.3.4 Field-wise Wind Estimation/Model-based Approaches

Although point-wise approaches provide useful results, they neglect spatial correlation

among the wind at different WVCs. Field-wise methods, which estimate the entire wind

field simultaneously, can account for this spatial structure. Field-wise methods have been

explored in the past as model-based estimation [32] [33] [34]. That is, the wind is assumed

to be in the span of a wind field model and the model parameters are estimated form the σ0

measurements. The wind estimate is then obtained by making an instantiation of the model

with the estimated model parameters. If the model is relatively low order, the number of field-

wise ambiguities may be much fewer than the number of point-wise ambiguities. However,

the lower the order, the more structure is imposed on the wind field estimates. That is, the

space of possible solutions is small, roughly equating to smooth or low resolution wind field

estimates.

Assuming a low-order wind field model may be inappropriate for some applications,

such as those requiring fine scale features to be resolved. Alternatively, the wind field may

be made discrete on a fine grid and the wind vector at every WVC may be estimated

simultaneously. This approach is the subject of Chapter 7.
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Figure 2.4: Standard resolution wind vector field plotted over the standard speed field (top)
and UHR speed field (bottom) for a QuikSCAT observation of Hurricane Katrina.
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Chapter 3

Aperture-filtered Sampling and Reconstruction Theory

The σ0 imaging problem can be expressed as a linear inverse problem, neglecting

the nonlinear incidence angle dependence. This chapter presents the theory required to

reconstruct the σ0 images from noisy σ0 measurements (Chapter 7 extends the theory to

include the nonlinearities involved in wind estimation). This chapter generalizes irregular

sampling and reconstruction theory to deal with irregular shaped aperture functions and

develops a reconstruction estimator that can appropriately deal with noise. It is shown that

reconstruction from irregular, bandlimited aperture-filtered samples is expressible as a noisy,

discrete linear inverse problem, which has a standard solution in the framework of estimation

theory [35] and inverse problems theory [36]. The material in this chapter is part of a journal

article submitted for publication [2].

3.1 Introduction

In signal processing, a continuous signal is often converted into a discrete signal so

that it can be digitally processed. In most applications the continuous signal is forced to be

bandlimited by low-pass filtering the signal before it is uniformly sampled at a rate at least

twice the bandlimit or cut-off frequency of the low-pass filter. The sampling formulation

is mathematically equivalent to performing a series of inner products of the signal with

regularly spaced Dirac delta functions. This is ‘conventional sampling’.

There are, however, practical applications where the sampling cannot be represented

by this regular scheme. For example, a scatterometer converts a received electric field which

varies continuously in time and space into a sequence of power measurements which are

positioned irregularly in space and represent the spatially averaged power over the antenna

pattern. The antenna pattern acts as a distributed aperture function (rather than a delta
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function), which varies in shape and location for different measurements. In this chapter

I provide a more general sampling formulation that allows for irregular placement of the

samples and for sampling with distributed aperture functions of different shapes. The sam-

ples produced using distributed aperture functions are called ‘aperture-filtered samples’ to

distinguish them from conventional samples.

It is well known in the signal processing community that bandlimited signals can be

reconstructed from regularly spaced samples that satisfy the Nyquist criterion [37]. More

generally, it can also be shown that bandlimited signals can be reconstructed from irregularly-

spaced samples as long as the samples are sufficiently dense [38] [39] [40]. Similar results can

be obtained from samples made with distributed sampling functions (i.e., aperture functions)

[40] [41]. These results apply to general bandlimited signals but more practical results may be

found for the finite discrete case (i.e., bandlimited periodic signals). Furthermore, previous

results assume a signal bandlimit so that the signal can be reconstructed, but do not consider

what can be done if the signal has a higher bandlimit than can be recovered from a particular

sampling.

Several reconstruction operations have been developed for irregular samples that even

include specific types of aperture-filtered sampling schemes [40] [41]. These approaches have

been adapted for scatterometer image reconstruction [25] to reconstruct images of the nor-

malized radar cross section σ0. However, the resolution or grid spacing of the reconstructed

fields is chosen somewhat arbitrarily and the reconstruction operations are based on methods

derived for the noise-free case. With noise, a reconstruction estimator that explicitly uses

the noise model can produce a more appropriate result (i.e., an estimate with a lower bias

or variability).

This chapter explores signal reconstruction from irregularly-spaced aperture-filtered

samples focusing on bandlimited periodic signals. The question of what types of signals are

recoverable from a particular sampling is addressed. The chapter also considers signal re-

covery from noisy aperture-filtered samples. A reconstruction estimator based on maximum

a posteriori probability (MAP) estimation is developed to deal appropriately with noise and

to recover the conventional samples of the signal with low variability.
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The chapter is organized as follows. Section 3.2 examines and contrasts conventional,

irregular, and aperture-filtered sampling theories. Section 3.3 explores inverse operators and

the reconstructible subspace determined by the forward and inverse operations. Section 3.4

discusses estimation from noisy samples.

3.2 Sampling

Sampling is the process of converting a continuous-index signal, such as a scalar- or

vector-valued function, into a discrete-index signal, termed a sequence. In a Hilbert space

(i.e., a complete vector space with an inner product defined [35]) sampling can be represented

as a series of inner products with sampling functions [37]. This section contrasts conven-

tional regular sampling, irregular sampling, and sampling with irregularly-spaced aperture

functions (i.e., aperture-filtered sampling) in a Hilbert space.

3.2.1 Sampling Formulations

In conventional sampling theory, the sampling of a continuous-index signal s(x) in a

Hilbert space can be represented by performing an inner product with a Dirac delta function

centered at the sample location xn for regularly spaced samples (i.e., for the one-dimensional

case xn = nTs where Ts is the sample spacing and n is an integer) to produce a sequence

in which each sample represents the value of the original signal at the corresponding sample

location [37]. This formulation also applies to irregular sampling with irregularly placed

xn’s. The sampling operation can be written as a vector of inner products

~s =




s[x1]
...

s[xN ]


 =




∫
δ(x− x1)s(x)dx

...
∫
δ(x− xn)s(x)dx


 (3.1)

where ~s is the vector of samples of the continuous-index signal, and N is the total number of

samples. While in theory N may be infinite, for all practical applications N must be finite.

In this formulation s[xn] is the value of s(x) evaluated at x = xn.

Note that if s(x) is bandlimited to ω0 then the delta functions may be replaced with

sinc functions, sinc(ω0(x − xn)) = sin(πω0(x−xn))
πω0(x−xn)

, and the same result obtained. Also, if
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the signal is bandlimited and periodic, the delta functions may be replaced with Dirichlet

kernels, D(ω0(x − xn)) = sin((2ω0+1)(x−xn)/2)
(2ω0+1) sin((x−xn)/2)

, with the integration only over one signal pe-

riod. For regular sampling of bandlimited signals the original continuous-index signal can

be reconstructed with sinc-function interpolation, while Dirichlet-kernel interpolation recov-

ers bandlimited periodic signals. These interpolation operations are equivalent to low-pass

filtering [37].

More generally, the delta functions in Eq. 3.1 can be replaced with arbitrary aperture

functions An(x) which may have a different functional form (shape) for each sample. This

produces a more general sampling operation

~g =




∫
A1(x)s(x)dx

...
∫
AN(x)s(x)dx


 (3.2)

where ~g represents the aperture-filtered samples. We use the notation ~g instead of ~s to

represent the aperture-filtered samples since the samples do not necessarily represent the

value of the original signal at a particular location due to the aperture function.

It can be shown that if the aperture functions are bandlimited, the sampling operation

can be expressed as (see Appendix B.1)

~g =




~AT1 ~s
...

~ATN~s


 = A~s (3.3)

where A is a matrix operator that operates on the conventional, regularly spaced samples ~s of

the bandlimited version of the continuous-index signal s(x), the ~An’s represent conventional

sampling of the bandlimited aperture functions, and T represents the transpose (or Hermitian

transpose for complex signals). The same result is obtained if s(x) is bandlimited even if

each An(x) is not bandlimited where the rows of A are conventional samples of bandlimited

versions of the aperture functions. Moreover, if s(x) or each An(x) is bandlimited and
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periodic then A is a finite-dimensional matrix and can be analyzed with standard linear

algebra (see Appendix B.1).

Having a discrete mapping from the conventional samples to the aperture-filtered

samples allows a unique approach to reconstruction. Reconstructing the original signal can

be thought of as first reconstructing ~s from ~g by inverting A, and then performing Dirichlet-

kernel interpolation on the reconstructed ~s to produce the continuous-index signal s(x).

3.2.2 Discrete Processing of Continuous-index Signals

In practice, sampling is limited to a finite number of samples. With a finite number

of samples, the signal may be treated as bandlimited and periodic. Constraining the signal

to be bandlimited and periodic may seem restrictive. Nevertheless as noted below, in most

practical applications the bandlimited and periodic assumption is appropriate. That is, most

practical signals can be approximated arbitrarily close by a bandlimited, periodic signal. This

approximation may introduce aliasing, but the aliasing is negligible if the bandlimit and the

period are chosen appropriately.

Note a few fundamental qualities of signals in practical applications: they have finite

extent, have finite energy, are bounded, and are generally continuous (or at least piece-wise

continuous). Signals with finite extent can be extended to be periodic and if they satisfy

the Dirichlet conditions can be exactly represented by the Fourier Series. The Dirichlet

conditions for the Fourier Series require that a periodic signal be absolutely integrable over

a signal period, be of bounded variation, and have finitely many discontinuities in order

to be represented exactly by the Fourier Series [42]. Most practical signals satisfy these

conditions. Furthermore, above some frequency the energy in the Fourier Series of the signal

must decrease toward zero since practical signals have finite energy. This suggests that for

a practical signal a bandlimit and period may be chosen such that a bandlimited, periodic

version of the signal exists where the approximation error is sufficiently small. Thus, for

practical applications any signal can be approximated arbitrarily close by a bandlimited,

periodic signal.

For the rest of the chapter, we restrict our attention to periodic bandlimited signals,

although the bandlimit may be arbitrarily high. This greatly simplifies the math and allows
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the reconstruction analysis to be performed using linear algebra instead of real analysis, i.e.,

using matrix theory instead of linear operator theory.

The choice of the signal bandlimit and period is problem dependent. A general signal

period may be chosen as anything larger than the extent of the data or region that is to be

processed. Once a signal period is selected, an appropriate bandlimit can be imposed. If the

signal bandlimit or signal spectrum is known, a bandlimit may be chosen to minimize aliasing,

but for many applications no a priori knowledge about the signal is available. Nevertheless,

there may be a fundamental bandlimit imposed by the aperture functions. If every aperture

function is bandlimited by some ω0 then the sampling operation on the continuous-index

signal is equivalent to the same sampling operation on the bandlimited version of the signal.

This implies that no portion of the signal with frequency content higher than ω0 can be

recovered. Assuming a bandlimit that is the highest bandlimit of the aperture functions is

sufficient to recover all the information about the signal that is possible from the aperture-

filtered samples alone. If the aperture-functions are not bandlimited then a high bandlimit

may be chosen so that the resulting aliasing is sufficiently small. The bandlimit and period

determine the number of conventional samples required to represent the continuous-index

signal, and the sample spacing (i.e., pixel resolution).

3.3 Noise-free Reconstruction

This section explores reconstruction from noise-free aperture-filtered samples. The

ability to reconstruct the original signal depends on whether the mapping A is reversible.

The system ~g = A~s represents a linear system of equations. Depending on the structure of

the forward operator A the system may be fully determined, overdetermined, or underde-

termined.

Whether the sampling matrix A is overdetermined, fully determined, or underdeter-

mined depends on the density of the samples, the signal bandlimit, the signal period, and

the linear independence of the aperture functions. A fully determined system results if the

number of aperture-filtered samples is the same as the number of conventional samples re-

quired to represent the bandlimited, periodic signal and if each aperture-function is linearly

independent. An overdetermined system results if there are more aperture-filtered samples
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than the required number of conventional samples and the number of linearly independent

aperture functions is the number of required conventional samples. An underdetermined

system results if there are fewer aperture-filtered samples than the required number of con-

ventional samples or if the number of linearly independent aperture functions is less than

the required number of conventional samples.

Reconstructing the conventional samples ~s from the aperture-filtered samples ~g re-

quires a slightly different reconstruction operation for each of the three cases: fully deter-

mined, overdetermined, and underdetermined. First, the aperture-filtered samples are con-

verted to conventional samples, then for each case the reconstruction of the continuous-index

signal is performed using Dirichlet-kernel interpolation with the reconstructed conventional

samples

ŝ(x) =
∑
xn

ŝ[xn]D(ω0(x− xn)) (3.4)

where ŝ[xn] is the reconstructed conventional sample corresponding to location xn and

D(ω0(x − xn)) is the Dirichlet kernel with the same period and bandlimit imposed on the

signal.

Each of the three cases is considered below and the conditions required for exact

reconstruction from the aperture-filtered samples are explored. Optimum inverse mappings

that enable reconstruction of ~s from ~g are also derived. It is shown that if the sampling

matrix is overdetermined or fully determined, exact reconstruction of any bandlimited signal

(or recovery of the bandlimited version) is possible. If the system is underdetermined then

not every bandlimited signal is recoverable, nevertheless, the subclass of signals that can

be recovered is explored. While the sampling can often be designed in a way such that

the sampling matrix is fully or overdetermined, in other applications, such as scatterometer

image reconstruction where scatterometer systems are not designed for imaging purposes,

underdetermined systems often result. Thus, we focus much of the discussion exploring the

underdetermined case.
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3.3.1 Fully-Determined Case

For the case where the system is fully determined, the matrix A is square and full

rank. In this case A is invertible and there exists a unique mapping from the aperture-filtered

samples ~g back to the conventional samples ~s. Therefore, if A is an N ×N full-rank matrix

then every signal that can be represented by N conventional samples can be reconstructed

from the aperture-filtered samples.

For this case, the discrete reconstruction operation is

~̂s = A−1~g (3.5)

where ~̂s represents the reconstructed conventional samples and A−1 is the standard matrix

inverse of A. The continuous-index signal is reconstructed using Eq. 3.4 where ~̂s is the vector

form of the reconstructed discrete signal ŝ[xn].

3.3.2 Overdetermined Case

The overdetermined case occurs when A has more rows than columns and is full-

row rank. By throwing out redundant samples, a consistent overdetermined system may be

transformed into a determined system without discarding information. That is, the aperture-

filtered samples that correspond to the linearly dependent rows of A may be discarded,

producing a mapping from ~s to the remaining aperture-filtered samples that is square and

full rank and represents a fully-determined system. Thus, if A is an M × N matrix with

N linearly independent rows then every signal that can be represented by N conventional

samples can be reconstructed from the aperture-filtered samples.

When A is overdetermined, instead of discarding data, a least-squares inverse may be

used for the reconstruction operation. A least-squares approach produces the same result in

theory but is numerically more stable. Furthermore, with additive white Gaussian noise the

least-squares inverse produces the minimum-variance unbiased estimate of the conventional
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samples (see Appendix B.2.1). Applying the least-squares inverse results in the discrete

reconstruction operation

~̂s = (ATA)−1AT~g. (3.6)

The continuous-index signal is reconstructed using Eq. 3.4.

3.3.3 Underdetermined Case

The underdetermined case occurs if the row rank of A is less than the number of

conventional samples required to represent the bandlimited signal. For this case there is no

one-to-one mapping that maps the range space of A back to the entire domain of A. If A

is an underdetermined M ×N matrix, then only some signals that can be represented by N

conventional samples may be reconstructed. That is, there is a subspace of the domain of A

over which an inverse mapping (i.e., a pseudo-inverse) may be defined. Here, restrictions on

the class of signals are investigated that allow every signal of the class to be recovered for a

given sampling.

Any class of recoverable signals is a subspace of the signal space. Figure 3.1 illustrates

the spaces associated with the sampling matrix, A, and a pseudo-inverse, Ap. Here, A :

S → G where S is the domain and represents the Hilbert space of conventional discrete

signals ~s and G is the co-domain and represents the Hilbert space of aperture-filtered signals

~g. Although A is not invertible over the entire domain and co-domain, the domain and co-

domain may be restricted so that A is bijective over these subspaces. In this case there is a

unique inverse over the subspaces and this inverse is a pseudo-inverse of A. A pseudo-inverse

of A is any mapping Ap : G → S (see Fig. 3.1) such that ApA~s = ~s for every ~s in the range

space of Ap where Ap need not be a linear operator.

There are generally several different subspaces over which we can define an inverse

of A. Each such subspace is associated with a different pseudo-inverse. Restricting the

co-domain to any subspace of the range space of A is sufficient to constrain A to be a

surjection. Moreover, deciding which subspace of S to use is equivalent to imposing a signal

model. That is, a signal model may be chosen whose range space spans a subspace of S.

Estimating the parameters of a low-order model and then constructing an estimate of the
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Figure 3.1: Spaces associated with the sampling matrix A and the mapping Ap.

signal ~s using the model and the estimated parameters constitutes an inverse of A over a

subspace of S (i.e., a pseudo-inverse of A).

Note that some pseudo-inverses may not preserve all the information in the aperture-

filtered samples. In order to preserve all the information in the samples, the pseudo-inverse

must be reversible by A. This information preserving constraint can be thought of as re-

quiring each point in the range space of A to map back to itself through the pseudo-inverse

followed by the forward projection (i.e., AAp~g = ~g for all ~g in the range space of A). This

property does not necessarily hold for every pseudo-inverse mapping Ap, but there always

exists a pseudo-inverse mapping that is information preserving (e.g., see the constrained

optimization approach described below).

An information-preserving pseudo-inverse can be defined using constrained optimiza-

tion, i.e., by choosing for each point ~g in the range space of A the point ~s in S that maps

to the point ~g that minimizes some metric d(~s, ~z) defined in S. In other words, we minimize

d(~s, ~z) subject to ~g = A~s where d(~s, ~z) is a metric that represents the distance between the

vector ~s and some predetermined vector ~z. ~z may be some particular signal (e.g., an ex-

pected signal) for which we want to find the closest signal ~s to ~z that produces the obtained

aperture-filtered samples. For many applications ~z is taken to be ~0 so that d(~s,~0) is a vector

norm.

Using the L2-norm, d(~s,~0) = ||x||22, produces the Moore-Penrose pseudo-inverse [35].

This constrained optimization approach using the L2-norm is similar to what is done in

24



the additive algebraic reconstruction technique (AART) and Grochenig’s irregular sampling

theorem [40] [25]. Another common constraint used for non-negative signals is to maximize

the signal entropy, −∑
i si log(si), subject to ~g = A~s. This is the basis for the multiplica-

tive algebraic reconstruction technique (MART) and the scatterometer image reconstruction

(SIR) algorithm [25]. Although the L2-norm constraint results in a linear pseudo-inverse, a

different constraint may produce a nonlinear pseudo-inverse for a linear sampling operator.

Formulating the pseudo-inverse as a constrained optimization problem is powerful because

it can be extended to general linear and nonlinear operators.

It is interesting to consider what happens to signals that are not in the range space

of the pseudo-inverse when the sampling and reconstruction processes are applied. The

reconstructed signal is guaranteed to be in the range space of the pseudo-inverse; however,

if the original ~s is not in the range space of the pseudo-inverse, the reconstructed signal may

not be the closest signal to ~s in the range space of the pseudo-inverse. This is a generalized

form of aliasing. For a linear pseudo-inverse, if some portions of the original signal that are

orthogonal to the range space of the pseudo-inverse are not mapped to zero in the sampling

operation, the energy in those components is preserved in the aperture-filtered samples. The

pseudo-inverse then erroneously maps this energy into its range space. Unless everything

orthogonal to the range space of the pseudo-inverse is in the null space of the sampling

operator, the pseudo-inverse introduces aliasing. The Moore-Penrose pseudo-inverse forces

signal components orthogonal to its range space to be in the null space of the sampling

operator and is therefore an anti-aliasing pseudo-inverse, whereas reconstruction using the

MART or SIR algorithms may introduce aliasing and may even result in multiple solutions.

This is illustrated in the numerical example in Section 3.3.4.

If nothing is known about the signal, we suggest that the structure to impose on the

signal be a function of A so as to force the pseudo-inverse to be linear, information preserving,

and anti-aliasing. Where no a priori knowledge of the signal structure is available and noise

is negligible, we propose reconstruction be done using the Moore-Penrose pseudo-inverse.

Using the Moore-Penrose pseudo-inverse implies that for each point in the range space

of A, the simplest or lowest energy signal that could have produced the aperture-filtered

samples is chosen as the inverse because the Moore-Penrose pseudo-inverse can be obtained
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by minimizing the L2-norm as described above. This is consistent with the notion that

signals with low energy are easier to produce and more likely to occur in nature than signals

with high energy. The Moore-Penrose pseudo-inverse can also be calculated conveniently.

Reconstructing the conventional samples from the aperture-filtered samples using the

Moore-Penrose pseudo-inverse is expressed as

~̂s = A†~g (3.7)

where ~̂s represents the reconstructed conventional samples and A† is the Moore-Penrose

pseudo-inverse of A defined by

A† = VA(ΣA)−TUT
A (3.8)

where UAΣAV
T
A is the singular value decomposition of A and (ΣA)−T is defined as the

transpose of ΣA with the non-zero elements replaced by their reciprocals [35]. The recon-

struction of the continuous-index signal is performed using Dirichlet-kernel interpolation

with the reconstructed conventional samples as described in Eq. 3.4.

3.3.4 Numerical Example

An illustrative numerical example is now explored where the aperture functions asso-

ciated with each aperture-filtered sample are bandlimited and all have the same shape but are

placed (shifted) irregularly. Suppose that each aperture function is a bandlimited periodic

version of a Hann window with period 2π that is bandlimited such that it can be represented

with 11 conventional (uniformly placed) samples (see Fig. 3.2). Different sampling schemes

are considered to explore the overdetermined, fully-determined and underdetermined cases.

First consider the overdetermined case. Suppose that a signal with period 2π is

sampled with 13 aperture functions placed randomly between −π and π. Note that the

two left most samples are almost on top of each other. Figure 3.3 shows a signal that can

be represented by 11 conventional samples along with the 13 randomly placed aperture-

filtered samples and the 11 uniformly spaced conventional samples. Note that the aperture-
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Figure 3.2: Bandlimited Hann window aperture function centered at zero.

filtered samples are placed at the location of the maximum of the irregularly-shifted aperture

functions and that the aperture-filtered sample values are not the values of the signal at the

sample locations.
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Figure 3.3: Signal, aperture-filtered samples, and conventional samples.

The sampling operator results from stacking the aperture functions into a vector

which for this case produces the sampling operator illustrated in Fig. 3.4 (a). Since each

aperture function can be represented by 11 conventional samples, the sampling operator can

be converted into a discrete sampling matrix using 11 conventional samples of each row. This

results in the sampling matrix shown in Fig. 3.4 (b). The sampling matrix is over-determined,
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meaning that there are more aperture-filtered samples than needed to exactly reconstruct

the signal. For this case the least-squares pseudo-inverse exactly recovers the 11 conventional

samples that describe the original signal from which Dirichlet-kernel interpolation recovers

the original signal. If the signal is not bandlimited so that it can be exactly represented by

11 conventional samples, the bandlimited version of the signal is reconstructed.
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Figure 3.4: (a) Sampling operator for the overdetermined case. (b) Discrete sampling matrix
for the overdetermined case. The rows are normalized to sum to unity.

Now consider the fully-determined case. Suppose the same signal as in Fig. 3.3 is

sampled, but only with 11 of the aperture-filtered samples. This results in a similar sampling

operator and sampling matrix as before but with two fewer rows. As long as the sampling

operator is invertible the 11 conventional samples are exactly recovered by applying the

inverse to the aperture-filtered samples. In this case the original signal is exactly recovered

by Dirichlet-kernel interpolation using the reconstructed conventional samples. As with the

overdetermined case if the signal cannot be exactly represented by 11 conventional samples

only the bandlimited version of the signal is recovered.

The underdetermined case is much more interesting. Suppose that there are only

nine of the aperture-filtered samples (i.e., two more are missing). The resulting sampling

matrix is underdetermined. Reconstruction is examined using two different pseudo-inverse

operations: the Moore-Penrose pseudo-inverse, and the pseudo-inverse obtained by assuming

a bandlimit such that the resulting sampling matrix is full-row rank.
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Figure 3.5: Signal, aperture-filtered samples, and reconstructed conventional samples using
the Moore-Penrose pseudo-inverse. The reconstructed signal and the signal component in the
range space of the adjoint of the sampling operator are also plotted. In this case the sampling
matrix is underdetermined.

Applying the Moore-Penrose pseudo-inverse to the aperture-filtered samples and per-

forming Dirichlet-kernel interpolation recovers the portion of the signal in the range space

of the adjoint of the sampling operator. Figure 3.5 shows the original signal, the aperture-

filtered samples, the reconstructed conventional samples using the Moore-Penrose pseudo-

inverse, the reconstructed signal, and the component of the signal in the range space of the

adjoint of the sampling operator. Although the original signal is not exactly recovered in

this case, the error is relatively small and the component of the signal in the range space of

the reconstruction operator is exactly recovered.

Now consider what happens when the conventional thinking is used to reconstruct the

signal for the underdetermined case. With the conventional approach it is assumed that the

signal is bandlimited and that the bandlimit results in an invertible sampling matrix. For the

underdetermined example, this corresponds to assuming that the signal can be represented

with 9 conventional samples. If the signal cannot be exactly represented by 9 conventional

samples, the original signal is not recovered. In fact, not even the bandlimited version of

the signal with the assumed bandlimit is reconstructed. Some portions of the signal with

higher frequency content than the assumed bandlimit are not mapped to zero in the sam-

pling operation. This causes aliasing, i.e., the energy from higher frequency components of
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Figure 3.6: Signal, aperture-filtered samples, and reconstructed conventional samples and
signal assuming that the signal is bandlimited so that A is square. In this case the sampling
operator is square and invertible, but aliasing is significant.

the signal is mapped to lower frequency components through the aperture-filtered sampling

and reconstruction process. Figure 3.6 shows the signal, the aperture-filtered samples, the

reconstructed samples and signal, and the bandlimited version of the signal for the sampling

scheme described above assuming that the signal can be represented by 9 conventional sam-

ples. Although the reconstructed signal is bandlimited with the assumed bandlimit, it is

quite different from the bandlimited version of the original signal. Therefore, assuming an

inappropriate bandlimit may result in unexpected errors and artifacts.

3.3.5 Resolution

Given a particular sampling scheme it is of interest to know the resolution of the

signals that can be reconstructed. If the sampling matrix is fully determined or overdeter-

mined then the resolution of the reconstructed signal is the spacing between the conventional

samples (i.e., the pixel resolution). However, if the sampling matrix is underdetermined, the

effective resolution may be lower and may even vary in location (see Appendix E). For a

linear sampling operator and linear reconstruction operation, the effective resolution can be

determined by how close the round-trip operator ApA is to an identity. Each row i of ApA

represents how the energy in any signal at the location xi gets spread into neighboring lo-

cations (i.e., the rows are the point spread functions). Typically, the point spread functions
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are approximations to the identity, meaning their energy is concentrated near the location of

interest (i.e., they look like a bump centered at the location xi). A measure of the effective

resolution can be obtained by evaluating the width of the point spread function. When

processing multidimensional data such as images or vector fields, the measure of effective

resolution may be a vector or tensor that varies in x.

3.4 Noise

This section considers how noise added to the samples affects the signal recovery.

First, a noise model is introduced and optimality criteria are presented. Reconstruction from

noisy aperture-filtered samples is explored. Methods of reducing the noise or variability of

the estimates are then discussed.

3.4.1 Noise Model and Optimality Criteria

For the noise model, it is assumed that a zero-mean random variable ~ν is added to

the aperture-filtered samples ~g. The noisy sampling operation may be written as

~gν = ~g + ~ν = A~s+ ~ν (3.9)

where ~ν is the noise random vector, and ~gν represents the noisy aperture-filtered samples.

With noise, a reconstruction estimator of ~s from the noisy ~gν is defined to reconstruct the

signal.

We seek an optimal estimator in the sense that the estimates are unbiased and have

the minimum covariance of all possible estimators. Depending on the structure of the noise

process, the estimator may be linear or nonlinear. A lower bound on the covariance of any

unbiased estimator is the Cramer-Rao bound. The unbiased estimator that achieves the

Cramer-Rao bound is the optimal estimator.

The Cramer-Rao lower bound on the covariance, R(~̂s), of any unbiased estimator is

the inverse of the Fisher information matrix J(~s)

R(~̂s) ≥ J(~s)−1 (3.10)
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in the sense that R(~̂s) − J(~s)−1 is positive semidefinite where the components of J(~s) are

defined as [35]

Ji,j(~s) = E

(
∂

∂si
log{f(~gν |~g)}

)(
∂

∂sj
log{f(~gν |~g)}

)
(3.11)

where f(~gν |~g) is the joint probability density function (pdf) of the noisy samples given the

noise-free samples, and si and sj represent the ith and jth components of the noise-free

discrete signal ~s. This is the minimum covariance that can be obtained with any unbiased

estimator, though we note that a biased estimator may produce a lower covariance.

3.4.2 Reconstruction Estimators

In this subsection, reconstruction approaches from noisy data are examined for the

case in which the Fisher information matrix is invertible and the case in which it is singular.

For each case methods of obtaining estimates with low bias and low expected squared error

are explored.

Invertible Fisher Information Matrix

Note that J(~s) is an N × N matrix where N is the length of the vector ~s. If A is

fully determined or overdetermined, then generally J(~s) is invertible. If J(~s) is invertible,

then every bandlimited, periodic signal that can be represented by N conventional samples is

observable in the sense that the conventional samples may be estimated with finite precision

or variance of the estimates from the aperture-filtered samples. If J(~s) is invertible, then

each conventional sample may be estimated directly; however, unless J(~s) is diagonal, the

conventional samples must be estimated simultaneously.

A minimum-variance unbiased estimator is desired; however, in most applications

there is no general method to find such an estimator. Nevertheless, maximum-likelihood

(ML) estimators are asymptotically unbiased and asymptotically efficient (i.e., minimum

variance) [35]. For these reasons we propose that, lacking further information, a ML approach

be used to estimate the conventional samples from the noisy aperture-filtered samples when

the Fisher information is invertible.
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A ML estimate of the conventional samples, ~̂s, can be written as

~̂s = argmax
~s

{f(~gν |~g)} (3.12)

which is the argument that maximizes the likelihood (i.e., f(~gν |~g)) of obtaining the noisy

aperture-filtered samples given the noise-free aperture-filtered samples, where the noise-free

aperture-filtered samples are a function of the conventional samples ~g = A~s. Reconstruction

of the continuous-index signal is accomplished via Dirichlet-kernel interpolation from the

ML estimates of the conventional samples.

It is interesting to consider the ML estimator with white Gaussian noise. The multi-

variate Gaussian pdf is

f(~gν |~g) =
exp

{−1
2
(~gv −A~s)TR−1(~gv −A~s)

}

(2π)
M
2 |R| 12

(3.13)

where M is the number of noisy aperture-filtered samples (i.e., the length of ~gv), which may

be greater than N (i.e., the length of ~s) for an overdetermined system. If the noise is white

then R = σ2I, where σ2 is the noise power. It can be shown that with white Gaussian

noise the ML estimates are the minimum-variance unbiased estimators of the conventional

samples and that they are the same estimators as the linear estimators obtained in Section

3.3 for the overdetermined and fully-determined cases (see Appendix B.2.1).

Singular Fisher Information Matrix

If A represents an underdetermined system then J(~s) is not invertible. This suggests

that the parameters (i.e., the conventional samples) are not observable from the data alone;

that is, the conventional samples cannot be estimated with any degree of precision using only

the noisy aperture-filtered samples. However, if additional constraints are imposed, such as

a signal model or a prior distribution on the signal, estimates of the conventional samples

may be obtained.

There are three philosophically different approaches for dealing with unobservable

parameters: model-based estimation, variational analysis, and Bayes estimation theory. Each
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of these methods effectively injects prior information about the signal so that the parameters

that are unobservable from the aperture-filtered samples alone become observable using the

aperture-filtered samples and the prior information.

For model-based estimation, a signal model is imposed such that the parameters of the

model are observable so that the corresponding Fisher information matrix for estimating the

model parameters is invertible. The signal is then reconstructed from the model parameter

estimates. This method requires imposing a signal model. If some knowledge of the structure

of the signal is available, a model that describes the signal structure may be chosen. We

may desire, as in Section 3.3, to impose a model that preserves all the information in the

aperture-filtered samples and minimizes aliasing.

Variational analysis imposes additional constraints on the ML objective function and

simultaneously optimizes some linear combination (usually a convex combination) of the ML

objective function with the constraints. This is similar to how the information preserving

pseudo-inverse is obtained in Section 3.3. For this method, the constraints can be chosen

somewhat arbitrarily. Furthermore, the relative weights assigned to each constraint can also

be chosen arbitrarily. Although this is a powerful tool, unless there is good reason to choose

particular constraints and relative weights, variational analysis is ad hoc.

Bayes estimation imposes prior information about the signal via a prior distribution

of the signal. The general form of a Bayesian estimator modified for our application is [35]

~̂s = argmin
~s

{∫
L(~s,~gν)f(~s|~gν)d~s

}
(3.14)

where L(~s,~gν) is a loss function and f(~s|~gν) is the conditional posterior distribution. The

most common loss functions are the squared error loss function and the uniform loss function.

Using a uniform loss function produces a maximum a posteriori probability (MAP) estimator

which has as its objective function the ML pdf scaled by the prior distribution. Bayes

estimation is extremely powerful, but it implicitly assumes the signal is a random process

and it requires knowledge of the signal distribution. Prior distributions can be obtained

for particular applications either empirically from a collection of data, theoretically from

knowledge of the physical process that produces the signal, or by assuming a maximum-
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entropy distribution given knowledge of a few qualities of the signal (such as the signal

mean, power, spectrum, or region of support).

We take a Bayesian MAP estimation approach to solve the noisy inverse problem

when the sampling operator is underdetermined. The MAP estimator can be expressed as

~̂s = argmax
~s

{f(~gν |~g)f(~s)} = argmax
~s

{log f(~gν |~g)f(~s)} = argmax
~s

{LMAP} (3.15)

where f(~s) is the prior distribution of ~s and LMAP is the MAP objective function. Using

a prior is mathematically equivalent to (although philosophically different from) assuming

additional statistically independent data representing noisy conventional samples. That is,

performing ML estimation with the aperture-filtered samples and the additional data, whose

noise distribution is the prior, results in the exact same expression as the MAP estimator.

The form of the prior depends on the application and what is reasonable to assume

about the signal. We leave the discussion on the choice of priors until the particular appli-

cations in the sequel.

If the noise process is white and Gaussian and the prior is a zero-mean Gaussian

distribution with arbitrarily large variance, the MAP estimator is the Moore-Penrose pseudo-

inverse (see Appendix B.2.2). Furthermore, the Moore-Penrose pseudo-inverse produces a

minimum-variance unbiased estimate over the range space of A†.

With a different noise distribution it is generally difficult to verify if the MAP esti-

mator is a minimum-variance unbiased estimator. Nevertheless, since the MAP estimator

can be expressed as a ML estimator with additional data (as described above), it can ex-

hibit similar asymptotic qualities. The MAP estimator is a good candidate for many noise

distributions, often resulting in low-bias and low-variance estimates.

Resolution Revisited

When the Fisher information matrix is singular, the effective resolution may differ

from the pixel resolution. Furthermore, with noise another resolution comes into play–the

measurement or radiometric resolution. The measurement resolution is an indicator of the

precision or variance of the estimates. The covariance of the estimates provides an indication
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of both the effective resolution and the measurement resolution. Each row i of the covariance

matrix is a function that indicates how much each pixel j is statistically correlated with the

pixel at index xi. The width of these correlation functions indicates the effective resolution

of the noise of the estimates for a given location (i.e., how the noise gets filtered or spread

out by the estimator). By noise of the estimates we mean the zero-mean random component.

That is, the estimate can be expressed as an output signal (i.e., the mean) plus noise (i.e.,

a zero-mean random variable). The values on the diagonal of the covariance indicate the

measurement resolution or how much the estimate at a particular location is correlated with

itself. The covariance of the estimates is generally a function of the true signal, the noise,

the sampling operation, and the estimator or reconstruction operation.

Note that depending on the noise, both MAP and ML reconstruction estimators

may be nonlinear. In this case, the noise may be filtered differently than the signal and so

the signal may have a different effective resolution imposed on it than does the noise. The

notion of resolution is greatly complicated when considering nonlinear operations. Appendix

E considers resolution as applied to nonlinear operators in more detail.

3.4.3 Noise Reduction

The covariance of the estimates may be too large to be useful for some applications.

Potential noise-reduction operations include filtering or averaging of the aperture-filtered

samples (prefiltering), low-order model-based estimation, Bayes estimation with a more in-

formative prior (i.e., a prior with lower entropy), and filtering of the reconstructed signal

(postfiltering). Prefiltering the aperture-filtered samples reduces both the signal power and

the noise power, but it is difficult to track which components of the signal and noise are be-

ing attenuated. Low-order model-based methods may introduce aliasing. Bayes estimation

reduces noise but relies on knowledge of the signal. Postfiltering of the estimates, however,

reduces the total noise power and the total signal power in a way that can be tracked and that

does not introduce aliasing. Thus, postfiltering may be suitable for reducing the variability

of the estimates if the application requires.
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3.5 Conclusion

This chapter generalizes sampling and reconstruction theory to deal with irregularly

spaced samples made with irregularly shaped aperture functions. It is shown that the aper-

ture functions determine the bandlimit and the resolution of signals that can be recovered. If

the sampling operator is underdetermined, then only a subspace of signals is reconstructible.

Assuming that the signal has a low bandlimit so that the sampling operation becomes fully

determined or overdetermined, which is what is done in irregular sampling theory, results

in unexpected artifacts (i.e., a generalized form of aliasing) if the true signal has a higher

bandlimit.

The chapter also generalizes reconstruction theory to appropriately deal with noise.

Estimators for the special case of white Gaussian noise are derived resulting in the simple

linear estimators obtained for noise-free reconstruction. This method also applies for various

noise distributions such as the scatterometer noise model. The notions of effective resolution

and pixel resolution are also defined and explained.

The linear sampling model and inverse theory in this chapter form the foundation

for many results in the remainder of the dissertation. In chapter 7 the linear forward and

inverse models are extended to deal with the nonlinearities involved in wind retrieval.
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Chapter 4

σ0 Imaging

This section explores reconstruction from irregular aperture-filtered samples as ap-

plied to scatterometer image reconstruction. The material in this chapter is part of a journal

article submitted for publication [2]. Previous scatterometer image reconstruction techniques

are reviewed, and the scatterometer noise model is stated. The scatterometer MAP recon-

struction estimator is obtained and examples from the SeaWinds and ASCAT scatterometers

are presented.

4.1 Scatterometer Image Reconstruction

As mentioned in Chapter 2, scatterometers make multiple overlapping measurements

of the Earth’s surface, and these measurements may be combined to produce σ0 images.

Several imaging methods have been proposed for scatterometer image reconstruction. Per-

haps the most simple is to create a gridded product by averaging all measurements whose

centers fall into a particular grid element. Gridding produces relatively low resolution im-

ages. Another imaging technique employs a weighted average on a higher resolution grid.

This is the basis of the averaging (AVE) algorithm [24], which sets each pixel to the average

of all the σ0 measurements, weighted by the value of the respective aperture functions at

each pixel. Some common methods that further enhance the resolution are based on the

additive algebraic reconstruction technique (AART) or the multiplicative algebraic recon-

struction technique (MART) [24] [25]. The AART algorithm is an iterative method which

finds the signal that is consistent with the measurements that minimizes the L2-norm, and

it converges to same result as the Moore-Penrose pseudo-inverse method described above.

The MART algorithm is also an iterative method, but searches for the signal that is con-

sistent with the measurements that maximizes the signal entropy. The MART algorithm
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assumes the signal has a single sign (i.e., positive or negative). For the noisy scatterometer

σ0 imaging problem, the MART algorithm tends to produce a less noisy estimate. This led

to the scatterometer image reconstruction (SIR) algorithm, which is a normalized version of

MART that tends to converge faster with less noise [24] [25].

The optimum sample spacing and optimum bandlimit to use when reconstructing

the signal have not been extensively explored in the literature. Nevertheless, a bound on

the frequency recoverability is given in [25]. The bound is determined by the sampling

density, suggesting that the reconstruction grid resolution be a function of the density of

the aperture-filtered samples. However, in order to avoid aliasing, the sample spacing must

be determined by the bandlimit, or approximate bandlimit, of the aperture functions rather

than by the density of the aperture-filtered samples. The density of the samples is related

to the condition of the sampling matrix (whether it is overdetermined, fully determined, or

underdetermined) and does not directly impose a bandlimit on the signal.

Scatterometer σ0 imaging algorithms proposed in the literature [24] [25] are based

on noise-free reconstruction operators and do not use knowledge of the noise distribution.

Furthermore, the commonly used SIR algorithm is tuned using ad hoc methods in order to

reduce the effects of noise and the filtering artifacts imposed by the aperture functions. These

ad hoc methods make it difficult to analytically evaluate the quality of the estimates. An

estimator that uses the noise distribution can be expected to perform better, is theoretically

more appropriate, and allows the quality of the estimates to be analyzed using standard

estimation theory tools.

4.2 Scatterometer Noise Model

As scatterometer noise model is presented in Chapter 2. With this model the noisy

scatterometer σ0 measurements are represented as Gaussian random variables where the

variances are quadratic functions of the means [27]. This noise distribution embodies the

receiver noise as well as fading. Measurements are assumed to be statistically independent.
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The noise distribution has the form in Eq. 3.13 where R is a diagonal matrix and

each diagonal element Ri,i can be expressed as

Ri,i = αi(~gi)
2 + βi~gi + γi = αi( ~A

T
i ~s)

2 + βi ~A
T
i ~s+ γi (4.1)

where gi = ~ATi ~s is the ith noise-free σ0 measurement, ~s represents the conventional samples

of the continuous-index σ0 field, and αi, βi, and γi are the noise parameters for the ith

measurement that are a function of the scatterometer design and the measured receiver

noise power [27].

4.3 Scatterometer MAP Reconstruction Estimator

Scatterometers are designed for large scale ocean wind vector measurements rather

than σ0 imaging. As a result, scatterometer sampling operators may be underdetermined in

imaging applications. Therefore, some signal structure must be imposed in order to estimate

the uniform samples of the σ0 image. Here, we take a Bayesian approach and apply a prior

using a maximum a posteriori probability (MAP) estimator. The ML estimator is derived

in Appendix B.3.

Reconstruction is accomplished by estimating the conventional (uniformly spaced)

samples ~s of the σ0 field using a MAP estimator. The MAP estimator searches for the

conventional samples ~s that maximize the maximum-likelihood function scaled by the prior.

This process is equivalent to maximizing the linear combination of the log-likelihood function

and the log of the prior. The maximum-likelihood function is the probability density function

(pdf) of the noisy σ0 measurements and the prior is a pdf of the σ0 image. The MAP log-

likelihood objective function is

LMAP = −
∑
i

[
(gν,i − ~ATi ~s)

2

2Ri,i

+ 1/2 log{2πRi,i}
]

+ log f(~s) (4.2)

where f(~s) is the prior pdf.

The local maxima of the MAP objective function can be found by setting the gradient

equal to zero and solving the corresponding system of equations. However, the resulting
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system of equations is somewhat complicated so we use a gradient search method to find a

local maximum of Eq. 4.2 near an initial guess. The gradient search method begins with an

initial value computed using the AVE algorithm and moves incrementally in the direction of

the gradient until convergence to the maxima. The partial derivative of LMAP with respect

to the ith component of ~s is

∂LMAP

∂si
=

∂ log f(~g|~s)
∂si

+
∂ log f(~s)

∂si

= −
∑
n

∂

∂si

[
(gν,n − ~ATn~s))

2

2Rn,n

+
1

2
(log{2π}+ log{Rn,n})

]
+
∂ log f(~s)

∂si

=
∑
n

−KnAn
∂sn
∂si

= −KiAi (4.3)

where

Kn =

[
(gν,n − ~ATn~s)− (αn ~A

T
n~s+ βn/2)

Rn,n

+
(gν,n − ~ATn~s)

2(αn ~A
T
n~s+ βn/2)

R2
n,n

]
. (4.4)

4.4 Priors

The form of the prior depends on the application and what is reasonable to assume

about the signal. The standard approach is to obtain a prior is using an empirical distri-

bution from a large collection of data. However, because different surfaces (i.e., land, ice,

ocean, or vegetation) have such different responses, empirical priors for scatterometer imag-

ing applications are multi-modal and difficult to express as a functional form that can be

differentiated.

Another approach to obtain a prior is to employ a maximum-entropy distribution.

For scatterometer imaging a one-sided distribution is appropriate since the noise-free σ0

measurements represent a magnitude. The maximum-entropy one-sided distribution with

one parameter is the exponential distribution. The larger the mean of the exponential

distribution, the larger the entropy. Thus, we may use an exponential distribution with an

arbitrarily large mean to regularize the problem. However, because of the structure of the

scatterometer noise, using an exponential prior requires too many iterations for the gradient

search algorithm to converge to be practical.
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For convenience, we use a log-normal prior with a mean as the AVE image and a

tunable variance. The smaller the variance, the closer the estimate is to the smooth AVE

image. The larger the variance, the less the result is influenced by the prior. A tunable

variance allows a trade-off between resolution enhancement and noise amplification. The

prior distribution can be expressed as

f(~s) =
∏
i

f(si) =
∏
i

1

2πp
exp

{−(10 log10(sAV E,i)− 10 log10(si))
2

2p

}
(4.5)

where i indexes the image pixels, p is the variance tuning parameter, and sAV E,i is the AVE

estimate of pixel i in linear space.

4.5 SeaWinds and ASCAT Examples

In this subsection, two-dimensional reconstruction of the σ0 field from the SeaWinds

scatterometer and the Advanced Wind Scatterometer (ASCAT) is explored. Basic infor-

mation about SeaWinds and ASCAT is presented, the optimal regular sample spacing (i.e.,

pixel resolution) is derived from the aperture functions, and examples are provided.

SeaWinds is a Ku-band scatterometer that orbits the Earth in a sun-synchronous

near-polar orbit. The instrument has a scanning pencil-beam antenna with two beams at

different incidence angles and polarizations. The v-pol beam is at a nominal incidence angle

of 54 degrees with the h-pol beam at an incidence angle of 46 degrees. This produces a

swath with four ‘flavors’ (v-pol fore- and aft-looking and h-pol fore- and aft-looking) in the

inner portion of the swath and two flavors in the outer portion of the swath where there is

only one beam. The backscatter return from each pulse from each beam is partitioned into

several ‘slices’ using range-Doppler processing. Each slice is considered to be statistically

independent and each has its own aperture function or slice spatial response function [8].

The ASCAT scatterometer is a C-band v-pol instrument in near polar orbit that has

two sets of three stationary fan-beam antennas pointed at different azimuth angles. The

system applies a type of pulse compression to obtain range resolution, producing slice σ0

measurements with a relatively wide range of incidence angles. This sampling results in a

swath in which each point is sampled by multiple beams with differing azimuth angles [9].

43



225 225.2 225.4 225.6 225.8 226 226.2 226.4 226.6

45.8

46

46.2

46.4

46.6

46.8

47

Longitude (Degrees)

La
tit

ud
e 

(D
eg

re
es

)

Figure 4.1: Typical slice spatial response functions from SeaWinds and ASCAT for one pulse.
The 6dB contours are shown. The boxes with the circles in them are ASCAT slices; the contours
on the left are SeaWinds slices.

The σ0 measurements represent noisy aperture-filtered samples of the two-dimensional

σ0 field. The σ0 field may be reconstructed using the various slice measurements of a similar

flavor (i.e., having the same geometry, frequency, and polarization). Measurements of a given

flavor sample the same σ0 field and can be combined. Furthermore, for land and ice imaging

purposes, all slices of a given polarization and frequency may be combined by assuming

negligible azimuthal variation and by adjusting the σ0 values to a common incidence angle

[24]. For SeaWinds, the incidence angle adjustment is not necessary since the slices of a given

polarization have a similar incidence angle. For ASCAT, incidence angle normalization to

40◦ is used.

Although SeaWinds and ASCAT cover a large percentage of the Earth’s surface daily,

the σ0 fields are generally reconstructed only over particular regions of interest. That is, we

are only interested in a region of finite extent which means that the signal and the slice

response functions can be assumed to repeat periodically outside the region of interest.

The image grid pixel size is determined by the bandlimit of the slice spatial response

functions. Figure 4.1 illustrates typical 6dB contours of the slice spatial response functions

for a given pulse from SeaWinds and from ASCAT [43] [44]. For SeaWinds, the 6dB slice

contours are approximately 6km in the narrow direction and 25km wide in the long direc-
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tion. For ASCAT, the contours are about 4.2km in the narrow direction and 20-35km in

the long direction. In the following, each of the slice response functions is approximated by

a sinc-squared function that has the same 6dB width as the slices in the narrow and long

directions. The sinc-squared functions can be represented by regular samples with spacing

corresponding to about half the narrow 6dB beam-width. This sample spacing is scaled

by a factor of 1/
√

2 to allow for the worst-case slice orientation with respect to the grid-

ding axes (i.e., 45◦). For SeaWinds, this results in a conventional sample spacing of about

6km/2
√

2 ≈ 2.12km [7]. This verifies that the 2.225km pixel spacing found empirically to be

the resolution enhancement limit for SeaWinds slices is appropriate. For ASCAT, the con-

ventional sample spacing is about 4.2km/2
√

2 ≈ 1.5km. Note that the range filtering of the

σ0 values performed onboard the ASCAT spacecraft degrades the effective reconstruction

resolution. Thus for ASCAT, a coarser conventional sample spacing may be appropriate.

From empirical observations it seems that the resolution enhancement limit is about 4 to

6km for ASCAT. To be consistent between the data sets we process both the SeaWinds and

ASCAT data on the standard 2.225km grid.

Figure 4.2 shows multi-orbit gridded, SIR, and MAP images of the Amazon made

from SeaWinds and ASCAT data. For ASCAT, the incidence-angle-normalized images are

plotted. As expected, the ASCAT effective resolution is lower due to the onboard spatial

filtering. The results of the reconstruction algorithms, represented by the bottom two rows of

images in Fig. 4.2, enhance the resolution compared to the gridded product (top row). The

MAP images (bottom row) contain more detail than the SIR images (middle row), although

the MAP images seem to be noisier. The noise in the MAP images can be attenuated by

filtering the images or by tuning the variance of the log-normal prior (as described below),

which can produce images of comparable quality to the SIR images.

Recall that the sampling matrix is typically underdetermined, even when using multi-

ple passes. This may introduce artifacts that are difficult to remove by filtering the estimates.

To illustrate this, Fig. 4.5 shows multi-orbit gridded, SIR, and MAP images of the Weddell

Sea in Antarctica made from SeaWinds and ASCAT data, where the MAP images are made

using an exponential prior with a large mean (i.e., a maximum entropy one-sided distribu-

tion). The dark regions of the image are newly formed sea ice, whereas the slightly brighter
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Figure 4.2: Reconstructed σ0 images (in dB) from SeaWinds and ASCAT over the Amazon
using four days worth of data (JD 201-204) in 2008. Images a), b), and c) are gridded images
of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. Images d), e), and f) are SIR
images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. Images g), h), and i)
are MAP images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. The diagonal
streaks in the river are actual features.

regions are older, thicker sea ice. The brightest regions are glacial ice on the Antarctic

peninsula, the Ronne ice shelf, and the large icebergs embedded in the sea ice. Although the

MAP images are more sharp than the gridded and SIR images, dark bands appear around

large icebergs and the sharp transition between the the glacial continent and the sea ice in

the lower left of the MAP images. Furthermore, the MAP images appear to have a higher

noise level than the SIR image.

Low-pass filtering reduces the effect of noise but accentuates the ringing around bright

targets in the ASCAT image in Fig. 4.5 (f). The ringing or darkening around bright targets

in the ASCAT MAP image is an artifact of the low-pass filtering effect imposed by the spatial

response functions, exacerbated by the underdetermined system. This ringing structure is

similar to Gibbs phenomenon, which occurs when representing a square wave (which has

infinite frequency content) with a finite Fourier Series. The ringing is not as apparent in the

SeaWinds MAP image because the effective resolution is greater. Although this artifact may
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be beneficial in some applications such as iceberg detection, the ringing may be ameliorated

by imposing a more informative prior that favors desirable signal qualities (see Fig. 4.4).

Figure 4.4 shows the MAP results using log-normal priors with means corresponding to the

AVE images and relatively low variances. Using the more informative log-normal prior both

reduces the noise level and the ameliorates the artifacts, producing results similar to the SIR

approach.
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Figure 4.3: Reconstructed σ0 images (in dB) from SeaWinds and ASCAT over the Weddell
Sea in Antarctica using four days worth of data (JD 215-217) in 2008. a) SeaWinds v-pol
gridded image. b) SeaWinds v-pol SIR image. c) SeaWinds v-pol MAP image. d) ASCAT
gridded image. e) ASCAT SIR image. f) ASCAT MAP image.

The differences in polarization and frequencies between the different data sets (AS-

CAT and SeaWinds h-pol and v-pol images) allow discrimination between different types of

surfaces. Figure 4.5 shows a false color MAP image of a larger region of the Weddell Sea

using the same four days worth of data from SeaWinds and ASCAT. The blue region in
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Figure 4.4: Reconstructed σ0 MAP images (in dB) using an informative prior (log-normal)
from (a) SeaWinds and (b) ASCAT over the Weddell Sea in Antarctica using four days worth
of data (JD 215-217) in 2008.

the top left corner is open ocean, the purple regions of the image are newly formed sea ice,

whereas the tinted yellow regions are older, thicker sea ice. The brighter yellow region in the

lower left is the Ronne ice shelf. The bright white regions are glacial ice on the Antarctic

peninsula and large icebergs embedded in the sea ice. Combined, the two scatterometers

offer more discrimination capability than either alone.

4.6 Conclusion

This chapter approaches scatterometer image reconstruction as the inversion of a

noisy aperture-filtered sampling operation, focusing on bandlimited, periodic signals. A the-

oretically more appropriate reconstruction algorithm is proposed based on MAP estimation,

which can reconstruct more detail than the SIR algorithm, but with a higher noise level. The

noise in the MAP estimates can be reduced without introducing the ad-hoc methods used

in SIR processing but rather by either filtering or using more informative priors. Examples

from SeaWinds and ASCAT are presented.

Many measurement applications can be expressed as an aperture-filtered sampling

problem where the fields that are sampled by the aperture functions are related by a point-

wise nonlinearity. For example, scatterometers sample σ0 fields with different shaped aper-

ture functions, but over the ocean each measurement with a different look geometry samples
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Figure 4.5: False color MAP reconstructed σ0 image from SeaWinds and ASCAT over the
Weddell Sea in Antarctica using four days worth of data (JD 201-214) in 2008. Red corre-
sponds to the SeaWinds h-pol image, green corresponds to the SeaWinds v-pol image, and
blue corresponds to the ASCAT image.

a different σ0 field, and these σ0 fields are nonlinearly related to an underlying wind vector

field. It is often of interest to estimate the underlying field from the aperture-filtered sam-

ples. Chapter 7 extends the scatterometer reconstruction approach applied here for image

reconstruction to handle the nonlinearity of the geophysical model function. Such an ap-

proach allows reconstruction of the underlying wind field. A similar approach may be used

to address the incidence angle normalization model for fan-beam scatterometers, which is

also nonlinear (i.e., linear in dB). This would allow for the simultaneous estimation of the

A and B images using the new MAP reconstruction approach.
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Chapter 5

UHR Wind Processing

Ultra high resolution (UHR) wind vector field estimates can be inferred from recon-

structed σ0 images over the ocean as long as temporal resolution and azimuth diversity are

preserved. This chapter considers point-wise wind vector estimation from reconstructed σ0

images over the ocean. Although this approach has been implemented for several years for

the SeaWinds scatterometer [45] [46] [47], many theoretical issues have not been addressed.

This chapter formalizes the UHR wind estimation theory. The implicit assumptions

applied in UHR retrieval are precisely stated. The UHR sampling and noise models are

presented. Modifications of the UHR procedure that help ameliorate noise and ambiguity

selection issues are also introduced.

5.1 σ0 Reconstruction for Wind Retrieval

The UHR approach to wind estimation attempts to account for the irregular overlap

and the irregular shape of the aperture functions by first reconstructing the σ0 fields for

different ‘flavors’ of measurements from a single scatterometer pass. The different flavors are

then combined to estimate the wind point-wise.

In order to preserve azimuth diversity and temporal resolution, only σ0 measurements

from a given look and pass are combined in reconstruction intended for wind retrieval. This

produces multiple reconstructed σ0 images for a given pass, having different look geometries.

Currently, UHR wind processing is only implemented for SeaWinds, but it could be extended

to other scatterometers. The SeaWinds UHR wind product is reported on a 2.5km grid so

that it can be easily compared to the standard 25km product. For SeaWinds, four flavors

or looks are reconstructed (i.e., fore and aft, v-pol and h-pol).
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In reconstruction for wind retrieval, the σ0 fields are much more under-sampled than

for other imaging applications because fewer slice measurements go into reconstructing the

σ0 images of a given flavor. Although SIR processing or MAP reconstruction may be applied

to reconstruct the σ0 fields for wind retrieval, the single-pass resolution is not enhanced much

more than using the AVE algorithm and the noise is greatly amplified. The AVE algorithm is

also more computationally efficient than other reconstruction methods. Furthermore, AVE is

a linear reconstruction approach. Thus, AVE reconstruction has been adopted for SeaWinds

UHR processing.

5.2 UHR Sampling Model

The UHR method assumes that the different measurements of a given flavor (i.e.,

the same polarization and frequency, and similar observation geometry) sample the same σ0

field. This assumption results in a sampling operation similar to Eq. 3.2 for each flavor f

~σ0
f =




∫
A1(x)σ

0
f (x)dx

...
∫
ANf

(x)σ0
f (x)dx


 = Afσ

0
f (x) (5.1)

where x is a two-dimensional spatial variable, Nf is the number of measurements of flavor

f , the Anf
(x)’s are the aperture functions of the different σ0 measurements, σ0

f (x) is the

σ0 field that is sampled by the different measurements, and Af is a linear operator. The

measurements of different flavors can be stacked into a vector producing

~σ0 =




Af1σ
0
f1

(x)
...

AfM
σ0
fM

(x)


 = A~σ0(x). (5.2)

In practice, the sampling operator is made discrete, the σ0 images for each flavor are recon-

structed separately, and the wind is estimated point-wise over each UHR wind vector cell

(WVC). Solving the discrete problem in this manner is equivalent to assuming that the wind
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is piece-wise constant over each UHR WVC. The discrete version of the sampling operation

can be expressed as

~σ0 =




~σ0
f1
...

~σ0
fM


 =




Af1σ
0
f1

[x]
...

AfM
σ0
fM

[x]


 = A~σ0[x] (5.3)

where ~σ0
fi

= Afi
σ0
fi
[x] is a vector of slice measurements of a flavor fi. The jth component of

~σ0
fi

is
∑

xAj[x]σ
0
j [x]. The AVE reconstructed σ0 field for flavor fi can be expressed as

σ0
AV E,fi

[x] = ÃT
fi
σ0
fi

=
∑

jεfi

Ãj[x]σ
0
j (5.4)

where Ãj[x] is the slice response function of a particular slice j of flavor fi normalized so that

it sums to unity (i.e.,
∑

x Ãj[x] = 1 for all jεfi). The collection (i.e., vector) of reconstructed

σ0 fields can be written as ~σ0
AV E[x] = ÃT~σ0. Since each σ0 field is reconstructed separately,

we express σ0
AV E,fi

[x] simply as σ0
AV E[x] to simplify the notation in the rest of the chapter.

5.3 Noise Model

The noise model used in the UHR processing is simplistic. Each pixel of the recon-

structed σ0 fields is considered to be an independent realization of a random variable. The

mean of the distribution at each point is assumed to be the true σ0 value (i.e., the wind field

projected trough the GMF). The variance of the distribution of each pixel is obtained using

the standard method for composite measurements [47]. The standard approach for compos-

ite measurements is appropriate for drop-in-the-bucket methods, where each measurement

is dropped into only one bin. However, when using a reconstruction approach, information

from the same measurement modifies the reconstructed σ0 value for many UHR WVCs. The

noise model for the variance is more complicated than previously assumed. This subsec-

tion explores the relationship of between the noise model assumed for UHR wind retrieval

and the standard noise model (i.e., where the slice σ0 measurements represent independent

realizations of random variables).
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The noise model for the AVE images can be derived from the standard noise model

as a linear combination of the slice measurement random variables. The slice measurements

are represented as Gaussian random variables where the variance is a quadratic function of

the mean as described in Chapter 2.

Since the slice measurements are Gaussian random variables, the AVE images are

Gaussian random vectors. Also, because each slice measurement is assumed to be statistically

independent and each slice contributes to only one of the AVE images, each AVE image is

independent from each other. The mean and covariance of the AVE images completely

characterize the UHR noise distribution. The mean of the pixel xj of an AVE image of a

given flavor can be calculated as

Eσ0
AV E[xj] =

∑
i

Ãi[xj]Eσ
0
i =

∑
i

Ãi[xj]σ
0
i,t (5.5)

where the sum over i is a sum over the slices of a given flavor. σ0
i,t is the true slice σ0 value

and is related to the wind field ~U [x] by

σ0
i,t =

∑
x

Ai[x]gmf(~U [x], θi[x], ψi[x], poli, fi) (5.6)

where θi[x], ψi[x], poli, and fi represent the incidence angle, azimuth angle, polarization,

and frequency of a of the ith slice measurement, respectively.

The covariance of pixel x with pixel y of a particular AVE image is

CAV E[x, y] = E(σ0
AV E[x]− Eσ0

AV E[x])(σ0
AV E[y]− Eσ0

AV E[y])

= E

(∑
i

Ãi[x](σ
0
i − σ0

i,t)

) (∑
j

Ãj[y](σ
0
j − σ0

j,t)

)

=
∑
i,j

Ãi[x]Ãj[y]E(σ0
i − σ0

i,t)(σ
0
j − σ0

j,t)

=
∑
i

Ãi[x]Ãi[y]E(σ0
i − σ0

i,t)
2 =

∑
i

Ãi[x]Ãi[y]ξ
2
i (5.7)
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where ξ2
i = α(σ0

i,t)
2 + βσ0

i,t + γ is the variance of the ith slice measurement. This expression

describes the correlation among pixels in a single AVE image. As noted before, the different

AVE images are statistically independent and thus uncorrelated.

Note that if the AVE operation is underdetermined (which is generally true if the

sampling matrix is underdetermined), the covariance matrix is singular. Thus, there is a

lower dimensional manifold over which the Gaussian probability density function (pdf) is

defined and it’s density function is zero over the rest of the subspace. That is, we can

take the singular value decomposition (or eigen decomposition) of the covariance matrix

CAV E = [V1,V0]diag([~λ1;~0, ])[V1,V0]
T and the singular vectors V1 corresponding to non-

zero singular values ~λ1 span the linear subspace (i.e., manifold) over which the Gaussian pdf

is defined. Note, that the parameters of the pdf are functions of the wind field ~U [~x]. The

pdf of the reconstructed σ0 fields for a given wind field can be expressed as

f(~σ0
AV E[x]|~U [~x]) =





exp{−1
2

(~σ0
AV E−E~σ0

AV E)T C†AV E(~σ0
AV E−E~σ0

AV E)}
(2π)N/2

QN
n=1 λn

if ~σ0
AV E = V1~p

0 otherwise
(5.8)

for some ~p, where N is the dimension of the manifold, and the components of E~σ0
AV E and

~λ1 are functions of the wind field ~U [x].

f(~σ0
AV E[x]|~U [~x]) is the maximum likelihood function and can be used to estimate the

wind field from the AVE images. Since each pixel is potentially correlated with other pixels

in the AVE images, the Fisher information matrix is generally not diagonal, suggesting

that the wind at every pixel must be estimated simultaneously. Furthermore, the Fisher

information matrix may be singular meaning that the wind field at the higher resolution

cannot be estimated from the data alone. For these reasons, it may be more straight-forward

to estimate the wind field directly from the slice measurements, applying a prior to regularize

the problem, instead of first reconstructing the σ0 measurements. This is investigated in more

detail in Chapter 7.

5.3.1 UHR Point-wise Noise Model

Historically, the UHR wind estimation problem has been simplified by modifying the

maximum-likelihood function and assuming that the covariance is diagonal.This regularizes
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the problem and makes it possible to estimate the wind vector at each pixel independently

(i.e., point-wise estimation).

The forward projection is also modified so that each pixel of the AVE image is assumed

to represent the projection of the wind field directly through the GMF

Eσ0
AV E[x] ≈ gmf(~U [x], θ[x], ψ[x], pol, f) (5.9)

instead of mapping through the sampling operator and the AVE reconstruction operator

Eσ0
AV E[x] =

∑
i

Ãi[x]σ
0
i,t =

∑
i

Ãi[x]
∑
y

Ai[y]gmf(~U [y], θi[y], ψi[y], poli, fi). (5.10)

That is, AVE reconstruction is assumed to be an exact inverse of the sampling operation.

Note that, pol and f are the polarization and frequency of the slices that are used to produce

a particular AVE image. The azimuth and incidence angles for pixel x of a particular AVE

image are approximated as

ψ[x] =
∑

iAi[x]ψi[x] (5.11)

and θ[x] =
∑

iAi[x]θi[x] (5.12)

respectively. For SeaWinds the look geometry approximation is appropriate because the

change in the GMF with respect to the change in geometry over the slices that significantly

contribute to a given pixel is relatively small.

The ML objective function for the modified UHR noise and measurement model is

f(~σ0
AV E[x]|~U [x]) =

1

(2π)M/2|C̃AV E|M
exp

{−1

2
(~σ0

AV E − E~σ0
AV E)T C̃†

AV E(~σ0
AV E − E~σ0

AV E)

}

=
∏
x

1

(2π)2
∏

l ξ
2
l [x]

exp

{∑

l

−(σ0
AV E,l[x]− Eσ0

AV E,l[x])
2

2ξ2
l [x]

}
(5.13)

where l indexes the different AVE images, and C̃AV E,l is a diagonal matrix with ξ2
l [x] as

the xth diagonal element. Since the covariance of the Gaussian distribution is diagonal (by

the UHR assumption), each pixel of each AVE image can be expressed as an independent
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random variable. This causes the Fisher information matrix to also be diagonal and so

the wind vector at each pixel may be estimated separately. The UHR point-wise likelihood

function is

f(~σ0
AV E[x]|~U [x]) =

1

(2π)2
∏

l ξ
2
l [x]

exp

{∑

l

−(σ0
AV E,l[x]− Eσ0

AV E,l[x])
2

2ξ2
l [x]

}
. (5.14)

5.4 Wind Vector Field Estimation

The modifications to the noise and measurement model made in the previous section

greatly simplify the problem and make point-wise wind estimation possible. Although the

UHR modifications effectively change the problem, in practice UHR point-wise estimation

has been proven to produce useful results. Here, we investigate the point-wise estimation

problem assuming the simplified UHR noise and measurement models. The conventional

point-wise ML estimation approach is presented and some other approaches that ameliorate

noise issues and improve ambiguity selection are introduced.

5.4.1 Point-wise ML Estimation

The standard approach to UHR retrieval is to separately estimate a wind vector

for each pixel of the AVE images with a maximum-likelihood (ML) estimator. This is

similar to the approach taken in conventional processing. However, UHR wind retrievals

are much noisier and may be more biased than standard resolution products because there

are fewer different AVE images (four for SeaWinds) than egg measurements (i.e., composite

slice measurements) that fall into a standard resolution WVC and because the variance

values are typically higher for the reconstructed σ0’s than for egg σ0 measurements. Also,

with the higher noise level, the skill (or percentage of highest ranked ambiguities that are the

closest ambiguity to the true wind vector) is significantly degraded compared to the standard

resolution product. The current UHR implementation selects the closest ambiguity to the

standard resolution product then median filters the result [48]. The next two subsections

discuss methods to ameliorate noise and ambiguity selection issues involved with UHR wind

estimation.
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5.4.2 Prefiltering σ0

One method to reduce the effect of noise is to filter the AVE images before retrieving

the wind. This is useful for reducing the noise level and improving the skill. However,

this also reduces the spatial resolution and can introduce undesirable artifacts. Since the

azimuth angle varies throughout the AVE images, low-pass filtering the AVE images may

confound the look geometry for each pixel, especially in the swath edges and nadir regions

for SeaWinds. Appendix D explores σ0 filtering in more detail as well as presents a method

to improve ambiguity selection without using external sources for UHR wind data.

5.4.3 MAP Estimation

Another method that reduces the variability of the estimates and that improves ambi-

guity selection is to impose a prior distribution using a MAP estimator. The MAP estimator

for point-wise wind estimation of the vector at pixel xi is

~̂UMAP [xi] = argmax
~U [xi]

{f(~σ0
AV E[xi]|~U [xi])f(~U [xi])} (5.15)

where ~σ0
AV E[xi] is the vector of AVE σ0 values at pixel xi from all the different flavors,

and f(~U [xi]) is a prior of the wind vector. Note that the log of the objective function,

log f(~σ0
AV E[xi]|~U [xi]) + log f(~U [xi]), is used in practice.

Figure 5.1 shows a ML log-likelihood function for wind retrieval as a function of wind

speed and direction, the log of a Gaussian prior in speed and direction, and the corresponding

MAP log-likelihood function. The ML log-likelihood function has several local maxima with

similar values. These different modes correspond to wind vector ambiguities. The prior

causes one of the modes to become the dominant mode in the MAP log-likelihood function.

In this case, ambiguity selection becomes trivial and consists of choosing the ambiguity with

the highest MAP log-likelihood value. It is apparent that an appropriate prior be used

for each pixel (i.e., a prior whose mean changes smoothly over the pixels) otherwise an

inconsistent wind field may result.

The MAP method is most useful for ameliorating ambiguity selection if the prior

exhibits some spatial structure. For example, suppose that we have a prior distribution for
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Figure 5.1: Images of the log of the point-wise (a) maximum-likelihood objective function, (b)
prior distribution, and (c) MAP objective function, as a function of wind speed and direction
for a particular observation geometry and synthetic wind vector.
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each pixel x where the means among adjacent pixels are related by a wind field model. We

could estimate the model parameters from the data and then impose the model fit as the

mean of the prior. This helps create a smooth wind field while allowing the estimates to

diverge from being forced to be in the space spanned by the wind field model. Alternatively,

we may estimate the wind field and the model parameters simultaneously using a field-wise

MAP estimator. The UHR field-wise MAP estimator can be expressed as

~̂UMAP [x] = argmax
~U [x]

{f(~σ0
AV E[x]|~U [x])f(~U [x])}

= argmax
~U [x]

{f(~U [x])
∏
x

f(~σ0
AV E[x]|~U [x])} (5.16)

for a given field-wise prior f(~U [x]), and if the prior is a function of a field-wise model (i.e.,

f(~U [x]|M(~α)) where M(~α) is a wind field model with model parameters ~α), then

{ ~̂UMAP [x], ~̂αMAP} = argmax
~U [x],~α

{f(~U [x]|M(~α))
∏
x

f(~σ0
AV E[x]|~U [x])}. (5.17)

UHR field-wise MAP estimation using a model-based prior is investigated for hurricane wind

and rain estimation from SeaWinds in Chapter 6.

5.5 Conclusion

This chapter formalizes the UHR wind estimation theory. The sampling model is

presented and the implicit assumptions are explicitly stated. The noise model for the recon-

structed σ0 fields is derived from the standard scatterometer noise model. The simplified

UHR noise model is stated along with the implicit assumptions. Alternate wind estima-

tion approaches that deal with noise and ambiguity selection issues are also introduced,

although more detailed explanations of the σ0 filtering and UHR MAP estimation methods

are provided in Appendix D and Chapter 6.
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Chapter 6

Hurricane Wind and Rain Estimation from SeaWinds at Ultra High
Resolution

This chapter considers the UHR MAP estimation approach introduced in chapter 5

as applied to hurricane wind and rain field estimation. The material in this chapter is the

subject of a published journal article [1] and two conference papers [5] and [6].

6.1 Introduction

Direct measurements of wind and rain are difficult to obtain in the extreme conditions

of hurricanes. Buoys are often damaged in these intense storms and ships avoid them.

Aircraft radar and dropsonde measurements in hurricanes provide important information,

but this data is limited in spatial coverage.

Space-borne scatterometers have swaths that cover large regions over short time du-

rations and provides invaluable data of large scale global weather. However, the relatively

coarse resolution (typically 50km or 25km) of standard scatterometer wind products limits

their use in resolving small scale features. While tropical cyclones are apparent in standard

resolution products, important storm parameters such as the eye center location are not well

resolved.

In ultra high resolution (UHR) surface wind data, much of the storm structure of

hurricanes is obvious. However, there remain several issues that limit the use of scatterome-

ters in observing tropical cyclones. Due to the resolution enhancement procedure, the UHR

products are inherently noisier than their lower resolution counterparts [45]. Tropical cy-

clones are also associated with heavy rain which contaminates the wind estimates at both

C-band and Ku-band (the conventional frequencies of space-borne systems) [49] [50] [51] [52].

Furthermore, the relationship between hurricane force winds and radar backscatter may not
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be modeled well by current geophysical model functions (GMF), though research is being

done to improve the model function for extreme winds [53]. Moreover, the GMFs used for

the UHR retrievals (QSCAT-1/F13 sometimes termed QMOD3 used by JPL in standard

products for SeaWinds and CMOD5 for C-band instruments) are derived for the lower res-

olution products [8] [26]. In principle, the GMF should be independent of the resolution.

However, since the GMFs are derived from low resolution data, using them for UHR winds

may produce somewhat biased results–especially at very low wind speeds [54] [55].

This chapter applies the MAP estimation approach for ultra high resolution wind

field estimation described in Section 5.4.3 to tropical cyclones using data from the SeaWinds

scatterometer. The focus is primarily to present a new method to improve direction es-

timates and to reduce the variability of the vector estimates (speed and direction) while

preserving mesoscale detail. A simple low-order hurricane wind field model is developed to

provide prior information for maximum aposteriori (MAP) estimation of the wind. Using

the hurricane model ameliorates the effects of rain and noise. The new method provides im-

proved ambiguity selection, alternate wind estimates (MAP ambiguities), and estimates of

important hurricane parameters. Simulation is employed to explore the effects of rain on the

new method. The accuracy of the hurricane model parameter estimates is analyzed using

the best track hurricane eye locations provided by the National Hurricane Center (NHC)

and interpolated numerical weather prediction winds provided by the National Centers for

Environmental Prediction (NCEP). The quality of the wind field estimates are analyzed

using H*Winds made available by NOAA’s hurricane research division [56]. Since σ0 mea-

surements are influenced by rain rate, the approach is extended to simultaneously estimate

the wind and rain fields in hurricanes.

The chapter is organized as follows: Section 6.2 reviews pertinent principles of scat-

terometry and the high resolution wind products derived form SeaWinds. Section 6.3 outlines

the new MAP wind estimation procedure for hurricanes. Section 6.4 develops the hurricane

wind field model appropriate for scatterometry. Section 6.5 describes a simplification of the

new method that allows for near real time implementation. Section 6.6 analyzes the quality

of the results. Section 6.7 extends the method to simultaneous wind and rain estimation in

hurricanes. Section 6.8 concludes.
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6.2 Background

In tropical cyclones, the ultra high resolution product can resolve structure that is

not apparent in the 25 km product. The eye center location, rain bands, and mesoscale

convective events are resolved in the high resolution wind speed field. The resolution of

the direction field, however, is limited by the nudging field in conventional ambiguity se-

lection. High resolution ambiguity selection is problematic because the numerical weather

prediction (NWP) winds used in ambiguity selection poorly represent small scale features.

Ambiguity selection is further complicated by rain contamination and increased noise level.

Low resolution nudging fields tend to produce UHR estimates with the hurricane eye center

mislocated.

6.3 MAP Estimation for Tropical Cyclones

The wind estimation method presented here takes a novel approach. A low-order

hurricane model is developed and is used as the mean of a field-wise prior distribution of the

wind. This prior is used to augment the maximum likelihood objective function–producing

MAP ambiguities and a field-wise MAP estimate of the wind. In the sequel we also develop

a method based on MAP estimation to improve ambiguity selection of the point-wise ML

ambiguities.

This section explains the theory behind the MAP estimation method. First, an

overview of point-wise ML estimation and MAP estimation is provided. Then, field-wise

MAP estimation using the hurricane model is developed. Next, the new method is contrasted

with the conventional model-based approach and the conventional point-wise approach. Fi-

nally, a discussion of how to obtain prior distributions is presented.

6.3.1 Point-wise ML Estimation

For conventional UHR processing, ML estimation is employed to retrieve a wind

vector for each pixel of the reconstructed σ0 fields. This approach finds the wind vector

~U [xj] at each pixel xj that maximizes the probability density function (pdf) of obtaining

the reconstructed σ0 ~σ0
AV E[xj] at pixel xj given the wind vector. This pdf or likelihood

function for pixel xj can be expressed as f(~σ0
AV E[xj]|~U [xj]). Note that when estimating the
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wind and rain simultaneously from the σ0 data, ~U [xj] is a wind/rain vector. To be explicit

and to simplify the notation, we express the wind vector speed and direction components

explicitly as S and D when considering wind-only estimation in this chapter. We also

simplify ~σ0
AV E[xj] as ~σ0, dropping the pixel index xj because it can be implied by context.

The likelihood function is then expressed asf(~σ0|S,D).

6.3.2 Point-wise MAP Estimation

In contrast to conventional point-wise ML wind estimation which finds the wind vector

that maximizes the probability of σ0 given the wind speed and direction, f(~σ0|S,D), point-

wise MAP estimation maximizes the probability of the vector wind given the reconstructed

σ0 measurements, f(S,D|~σ0). This probability distribution can be found using Bayes’ rule

f(S,D|~σ0) =
f(~σ0, S,D)

f(~σ0)
=
f(~σ0|S,D)f(S,D)

f(~σ0)
(6.1)

where the probability distribution f(S,D) is the prior distribution of the wind. The MAP

objective function, f(S,D|~σ0), is essentially a weighted version of the ML objective func-

tion, f(~σ0|S,D). Given the multiple σ0 measurements, the wind speed and direction that

maximize f(S,D|~σ0) can be found.

The point-wise ML objective function represents a joint distribution of independent

Gaussian random variables and has the form [57]

f(~σ0|S,D) =
∏
i

1√
2πξi

e
− (σ0

i−gmfi(S,D))2

2ξ2
i (6.2)

where σ0
i represents the ith reconstructed σ0 measurement, gmfi(S,D) represents the σ0

value resulting from projecting the given wind vector through the GMF with the same

measurement geometry as the ith measurement, and ξ2
i is the variance that is a function of

the measurement noise and the modeling uncertainty of the GMF. Therefore, if the point-

wise prior distribution is known the point-wise MAP estimate can be found by scaling the

ML objective function by f(S,D) and searching for the maxima. Note that f(σ0) represents

the probability distribution of σ0 and is not a function of the S and D which are to be
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estimated. Thus, it can be factored out of the maximization. This produces the point-wise

wind vector estimate:

{Ŝ, D̂} = argmax
S,D

{f(~σ0|S,D)f(S,D)/f(~σ0)} = argmax
S,D

{f(~σ0|S,D)f(S,D)} (6.3)

which is the same expression as Eq. 5.15 in Section 5.4.3, but with the more explicit notation.

6.3.3 Field-wise MAP Estimation

For field-wise estimation the entire wind speed field, ~S (i.e., S[x]), and direction

field, ~D (i.e., D[x]) are estimated. The field-wise prior distribution f(~S, ~D) is given by

the hurricane model. For each resolution cell, the speed and direction are assumed to be

independent Gaussian random variables with means given by the model and some variance.

Using this construction the prior distribution for one cell has the form

f(S,D) = f(S)f(D) =
1√

2πξS
e
− (S−S)2

2ξ2
S

1√
2πξD

e
− (D−D)2

2ξ2
D (6.4)

where S and D are the speed and direction of the hurricane model wind for the resolution

cell of interest. This construction provides prior distributions for each resolution cell.

The notion of correlation between adjacent cells is captured by the similarity of the

means of the prior distributions rather than imposing correlation between the distributions

(i.e. the distributions are statistically independent although the means of the distributions

are linked by the field-wise model). This allows for small scale variability and preservation

of high frequency information, although this may preserve high frequency noise as well.

Assuming correlation between adjacent cells imposes additional structure on the estimated

wind field. Since we desire estimates that are based primarily on the measurements and only

moderately impacted by the model (since the model is simplistic), assuming independence

between adjacent cells is appropriate for this application. Nevertheless, a more sophisticated

model allowing correlation between adjacent cells may produce a more accurate result.

Independence between the distributions of adjacent resolution cells causes the field-

wise prior to be equal to the product of the point-wise priors, f(~S, ~D) =
∏

m,n f(S,D).

Note that we use the notation m,n instead of x to emphasize that the spatial index is two-

65



dimensional (i.e., m and n index the rows and columns respectively of the wind field and

σ0 images). Assuming that each resolution cell is independent from each other also enables

the field-wise ML objective function to be written as the product of the point-wise objective

functions. Thus, the field-wise MAP objective function has the form

f(~S, ~D|~σ0) =
1

f(~σ0)
f(~σ0|~S, ~D)f(~S, ~D) =

1

f(~σ0)

∏
m,n

{
f(S)f(D)

∏
i

f(σ0
i |S,D)

}

=
1

f(~σ0)

∏
m,n

{
1

2πξSξD
e
−(S−S(~α))2

2ξ2
S e

−(D−D(~α))2

2ξ2
D

∏
i

1√
2πξi

e
− (σ0

i−gmfi)
2

2ξ2
i

}
(6.5)

where ~σ0, ~S, and ~D represent the σ0 fields, the wind speed field, and the wind direction field

of the study region, respectively. σ0
i , S, and D represent the ith σ0 measurement, the wind

speed, and the wind direction all for a particular resolution cell at index (m,n) of the fields.

Also, S(~α) and D(~α) represent the hurricane model speed and direction for a cell at index

(m,n) where ~α represents a vector of hurricane model parameters.

Note that Equation 6.5 states that the field-wise MAP objective function is a scaled

product of the point-wise objective functions of each cell in the field-wise grid. Likewise, it

can be shown that with this construction the field-wise MAP value is a scaled product of

the point-wise MAP values for a particular model instance,

MAPfw = max
~S, ~D

f(~S, ~D|~σ0) = max
~S, ~D

1

f(~σ0)

∏
m,n

{
f(S)f(D)

∏
i

f(σ0
i |S,D)

}

=
1

f(~σ0)

∏
m,n

max
S,D

{
f(S)f(D)

∏
i

f(σ0
i |S,D)

}
=

1

f(~σ0)

∏
m,n

MAPpw. (6.6)

The best model instance is the one that maximizes the field-wise MAP value. Thus, the

field-wise MAP value becomes the hurricane model objective function l,

l = max
~α
{MAPfw(~α)} . (6.7)
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For practical implementation, the log of the field-wise objective function is maximized.

Taking the log of Equation 6.5, leaving out constant terms, and then maximizing over wind

fields and hurricane model parameters produces

L = max
~α

{∑
m,n

max
S,D

{
−(S − S(~α))2

ξ2
S

− (D −D(~α))2

ξ2
D

−
∑
i

(σ0
i − gmfi(S,D))2

ξ2
i

}}
. (6.8)

The arguments S, D, and ~α that maximize the log likelihood value L are the estimates of

the wind speed and direction for each resolution cell and the hurricane model parameters.

This method simultaneously estimates the hurricane model parameters and the wind field.

Note that if we factor out a negative sign from the right side of Equation 6.8, the objective

function must be searched for minima rather than maxima and we obtain an expression

similar to the standard ML objective function. The expression in Equation 6.8 is similar to

procedures frequently used in NWP data assimilation [58] [59]. However, the measurement

term (the last term on the right) remains Gaussian in the σ0 domain, which is consistent

with standard ML wind retrieval schemes. We note that certain wind directions may be

favored for certain measurement geometries by the ML objective function [60]. This may

also be inherited by the MAP estimator described here.

6.3.4 Implications

The new approach diverges from conventional model-based methods. Here model-

based implies using a field-wise model to describe the two-dimensional structure of the surface

vector wind. Conventional model-based methods estimate only the parameters of the wind

field model. These methods force the wind estimate to be in the space spanned by the

model. Thus, the resulting wind fields contain only information captured by the model. For

a practical low-order model, forcing the wind field estimate to be in the space spanned by

the model restricts the wind field estimates to low resolution. The new MAP construction

allows for the preservation of the information obtainable by a non-model-based approach

(point-wise ML estimation), while emphasizing the structure described by the model.

The difference between point-wise ML estimation, model-based field-wise ML esti-

mation, and the field-wise MAP estimation is illustrated by the following. All three of
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these methods can be formulated as a constrained optimization problem. For point-wise ML

estimation the problem statement is:

for each cell at index (m,n),

maximize
∑

i

−(σ0
i−gmfi(S,D)2

ξ2i
, or equivalently f(σ0|S,D),

subject to S ≥ 0 and 0 < D ≤ 360.

This produces up to four possible wind ambiguities for each resolution cell due to

local maxima in the objective function. Ignoring ambiguities (only considering the absolute

maxima which corresponds to the first ambiguity) the point-wise objective functions can be

summed up to form a field-wise objective function. The point-wise ML estimation problem

statement for the entire field (field-wise ML estimation) can thus be written as

maximize
∑

m,n,i

−(σ0
i−gmfi(S(m,n),D(m,n)))2

ξ2i
, or equivalently f(~σ0|~S, ~D),

subject to S ≥ 0 and 0 < D ≤ 360

since both problem statements result in the same wind field. This can be interpreted as

a field-wise objective function which is maximized when the point-wise objective function

of each resolution element is maximized. Such a result allows comparisons of point-wise

with field-wise techniques. For model-based ML estimation with the assumption that each

resolution element is independent, the problem statement can be expressed as

maximize
∑

m,n,i

−(σ0
i−gmfi(S(m,n),D(m,n)))2

ξ2i
, or equivalently f(~σ0|~S, ~D),

subject to ~S = S(~α), ~D = D(~α), where Sε~S and Dε~D.

This is equivalent to estimating the model parameters ~α and then generating the estimate

of the wind field using the model. The field-wise ML estimation method and the model-

based ML estimation method optimize the same metric but the model-based ML estimation

method restricts the solution space more than the point-wise ML estimation method. The

field-wise MAP estimation method searches the same solution space as the field-wise ML

estimation method but optimizes an augmented metric. For field-wise MAP estimation the

problem statement is:
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maximize
∑

m,n,i

{
−(S−S(~α))2

ξ2S
− (D−D(~α))2

ξ2D
− (σ0

i−gmfi(S(m,n),D(m,n)))2

ξ2i

}
,

or equivalently f(~S, ~D|~σ0),

subject to S ≥ 0 and 0 < D ≤ 360.

The field-wise MAP estimation approach can be viewed as point-wise MAP estimation with

priors given by a field-wise model. Remember that ξi characterizes the uncertainty of the ith

observation to the true σ0. If the variance terms ξS and ξD are very large compared to the

ξi’s, the field-wise MAP objective function effectively becomes the field-wise ML objective

function. Furthermore, if ξS and ξD are small compared to the ξi’s, any solution that is not

in the space spanned by the hurricane model produces a large and negative MAP value (in

log space) and the field-wise MAP problem statement essentially becomes equivalent to the

model-based ML estimation problem statement. Thus, the variance terms control how much

the hurricane model is imposed. The relative values between ξS, ξD and ξi are a measure of

the importance of the model speed error, the model direction error, and the actual measured

σ0 error respectively. ξi is a function of the measurement and the true wind, while ξS and ξD

are linked to the hurricane model. Furthermore, ξS and ξD can be scaled relative to the ξi’s

in order to minimize the influence of the hurricane model while maintaining an acceptable

noise level (variability of the estimates). Nominal values of ξS and ξD are found empirically

in the sequel.

Imposing a prior on the wind has positive consequences as well as limitations. The

new method ameliorates the cross-track pinning of the winds caused by rain and simplifies,

or even eliminates, the issue of ambiguity removal. However, the priors modify the ML

objective function so that the resulting estimates are no longer ‘pure’ measurements (they

are combinations of measurements and a model). Nevertheless, the MAP estimation method

imposes the hurricane model less severely than true model-based estimation.

6.3.5 Prior Distributions

It is important that the prior be appropriate for the situation. There are many

schemes for obtaining appropriate prior distributions. For example, one may choose a non-

informative prior (constant or uniform distribution), which causes the MAP estimation prob-
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lem to reduce to maximum likelihood estimation. Alternatively, one may apply a maximum

entropy prior subject to some constraint. Both the uniform prior and the maximum entropy

prior are useful when it is desirable to minimize the amount of information that the prior

imposes on the estimates. A more conventional approach is to apply an empirical prior.

Empirical priors can be derived from wind/rain data from any source or sensor. Such priors

may be global or specific to certain types of storms. In Section 6.4 a prior for winds in

hurricanes is derived from several observations of tropical cyclones.

The question to be addressed is which prior is the best. According to convex Bayes

theory, the set of prior distributions is a convex set. That is, if we have multiple viable priors,

any convex combination of the priors is also a reasonable prior [61]. Thus, we may combine

any two priors that are optimum according to two different criteria to obtain a new prior

that represents a trade-off between the criteria. For example, we may combine an empirical

prior with a uniform prior in order to reduce the influence that the prior has on the estimate.

This approach is taken in Section 6.7 for the rain prior in hurricanes.

6.4 Empirical Hurricane Model

This section develops the empirical hurricane model that provides the prior distri-

butions for the MAP estimation wind retrieval procedure. The model is not dynamic but

is rather a simple ‘snapshot’ model of the horizontal structure of the near surface winds of

hurricanes. First, the statistics of real storms are analyzed and empirical distributions are

developed from high resolution SeaWinds wind data. Although these winds are rain contam-

inated and may contain ambiguity selection errors, we assume that these effects average out.

Nevertheless, we recognize that there may still remain a bias in the estimates due to rain

effects [62] [49]. We neglect this issue here so that the model is consistent with the standard

GMF used in wind retrieval. Using scatterometer data to derive the model produces a model

that is consistent with and appropriate for the scatterometer data.

Although the model developed is simplistic, the MAP estimation and MAP ambiguity

selection procedures can be scaled to impose the model as weakly (or strongly) as desired.

Thus, the benefits of imposing the large scale structure described by the model are obtained,

while the small scale structure that is not described by the model is preserved.
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We hypothesize that much of the asymmetrical structure of the storms can be de-

scribed by a superposition of a mean wind flow (mean flow) through the region containing

the storm [53]. This hypothesis is tested and verified by orienting the storms according

to this mean flow and then generating new empirical distributions for the wind speed and

direction. This asymmetry is then investigated further by binning the storms by size and by

magnitude of the mean flow and generating empirical distributions for each type of storm.

Finally, a model is developed based on the relationship between the size of the storm and

the mean flow.

6.4.1 Empirical Distribution of Hurricane Winds

Empirical probability density functions (pdfs) for the priors are obtained using

QuikSCAT-derived conventional UHR data of a large number (100) of observations of named

storms in the North Atlantic Basin from 1999 to 2005. Normalized histograms (empirical

pdfs) are generated by binning the wind speeds and directions as a function of distance from

the eye (1 km per bin). The direction relative to the eye center (relative direction) is defined

as the angle between the eye vector (the vector drawn from the eye center to the resolution

cell of interest) and the wind vector in a clock-wise manner from the eye vector.

Note that in generating the empirical priors we include all UHR retrieved wind es-

timates with only minimal use of quality control. Quality control methods are important

to ensure reliability of the hurricane model as well as the resulting estimates. As a quality

control metric, high resolution simultaneous wind and rain retrieval may be used to throw

out rain contaminated winds. Several low resolution quality control methods have proven

effective for use in 25 km products [63] [64]. However, the effectiveness of using low resolution

quality control for use with the UHR products as well as within hurricanes has yet to be

explored. Furthermore, low resolution quality control methods tend to flag large portions of

hurricanes as poor due to rain and uncertainty in the GMF. Discarding this data limits the

amount of data needed to derive the prior distributions as well as fit the hurricane model

in the wind retrieval step. Other limitations include the fact that the QMOD3 GMF tends

to underestimate very high wind speeds. This produces a hurricane wind field model whose

high wind speeds may also be underestimated. This issue may be corrected using bias cor-
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rection techniques post wind retrieval or by improving the GMF. However, due to lack of

truth data and since we are primarily concerned with improving direction estimates, neither

bias correction nor GMF adjustment is employed.

Figure 6.1 illustrates the mean of the wind speed and direction relative to the eye

center as a function of distance from the eye center. The mean of the direction distribution

is about 250 degrees rather than 270, which produces vectors orthogonal to the vector drawn

from the eye center to the resolution cell of interest. This is consistent with the known fact

that there is a significant degree of convergence (negative divergence) in the near surface

wind fields of hurricanes.
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Figure 6.1: Means of the empirical speed and relative direction distributions as a function of
distance from the hurricane eye. a) The mean of the wind speed distribution. b) The mean of
the relative direction distribution.

Figure 6.2 depicts the standard deviations of the scatterometer wind speed and di-

rection as a function of distance from the eye. The peak near the eye center of the standard

deviation of the direction distribution is caused by several factors including rain contamina-

tion, ambiguity selection errors, artifacts of small scale features, and insufficient data for the
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statistics to converge. The higher standard deviation far from the eye can be attributed to

lack of data and to other convective events outside the immediate vicinity of the hurricane

center.
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Figure 6.2: Standard deviations of the empirical speed and relative direction distributions as
a function of distance from the hurricane eye. a) The standard deviation of the wind speed
distribution. b) The standard deviation of the relative direction distribution.

Figure 6.3 illustrates a plot of the empirical distributions for the wind speed and

direction for a particular distance from the eye (140 km) with a Gaussian fit superimposed.

Although the direction distribution may have some significant higher order moments, both

the wind speed and direction distributions are similar to the Gaussian distributions. This

justifies the Gaussian approximation used in the development of the MAP estimation pro-

cedure in Section 6.3.

6.4.2 Investigating Asymmetry

The empirical distributions developed above describe the bulk structure of the storms

as a function of distance from the eye. The asymmetrical structure of the storms is now

investigated using an empirical approach.
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Figure 6.3: Wind speed and relative direction distributions for a particular distance from the
eye center (140 km) with a Gaussian fit superimposed. a) The wind speed distribution. b) The
relative wind direction distribution. Both distributions are similar to the Gaussian suggesting
that a Gaussian approximation can be used.

The same 100 named storms are oriented so that the mean flow is pointed in the same

direction. Then a histogram is generated where the wind is binned with respect to the angle

from mean flow as well as the distance from the eye center. The mean flow is determined by

the vector mean of the wind field (care is taken to include the same number of vectors on

each side of the eye to suppress a bias in the mean).

Figure 6.4 shows the mean of the wind speed as a function of angle from the mean

flow for several distances from the eye center. The curve shows the asymmetry due to the

mean flow. The peak near the 90 degree bin shows that the right side of the storm, with

respect to the direction of the mean flow, tends to have the highest wind speed. Figure 6.5

illustrates the standard deviation of the wind speed as a function of distance from the eye

averaged over several angles from the mean flow. The solid line is the standard deviation

in Figure 6.2 and the dashed line is the standard deviation averaged over the angles from

the mean flow. The standard deviation is generally reduced when taking the mean flow into
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account. This implies that superposition of a mean wind flow can be used to describe general

flow in a hurricane better than a pure axially symmetric field.
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Figure 6.4: Mean of the wind speed distribution as a function of angle from mean flow for
various distances from the hurricane eye. This pattern affirms that the right side of the storm
(with respect to the mean flow) generally has a higher wind speed than the left side.
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Figure 6.5: Standard deviation of the empirical wind speed distribution versus distance from
the eye averaged over several angles from mean flow. The upper line is the standard deviation
without taking the mean flow into account.

Further analysis is employed in order to investigate the relationship between the

magnitude of the mean flow, the size, and the asymmetrical structure of a storm. Each

storm is binned according to its size and the magnitude of the mean flow. Then the storms

are oriented so that the direction of the mean flow is the same and speed and direction
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histograms are generated for each resolution cell on the new grid (oriented according to

the eye center and mean flow). The size of the storm is determined by the root mean

squared (RMS) value of the speed in a region including all cells within 150 km from the

eye. The means and standard deviations of the wind speed and direction distributions are

also calculated. The plots in Figure 6.6 illustrate slices of the mean wind speeds for large

and small storms with various magnitudes of the mean flow. A storm is considered small (or

large) if the RMS speed near the eye is less than or equal to 22 m/s (or greater than 22 m/s).

Mean flow is categorized as low, medium, or high if the magnitude of the vector mean is less

than or equal to 2.5 m/s, greater than 2.5 m/s and less than or equal to 5 m/s, or greater

than 5 m/s respectively. The slices orthogonal to the mean flow are reported because they

represent the most extreme asymmetry due to the mean flow. The large and small storms

have similar speed profiles but the large storm speeds are scaled higher. Also, the left side

of the storm (with respect to the mean flow) is generally less intense than the right side and

the asymmetry is increased with higher magnitude of the mean flow.

6.4.3 Hurricane Model

Any of the empirical distributions described above can be used directly in the MAP

wind retrieval process; however, this subsection develops a simple model that approximates

the empirical distribution where the mean flow and storm size are taken into account. This

allows interpolation between the coarsely binned sizes of storms and mean flows of the

empirical distributions. A simplistic model with few parameters is developed to describe the

large scale horizontal structure of the near surface winds of a hurricane as a function of the

hurricane size and the mean flow (and eye center location). The model assumes that the

hurricane wind field is composed of a symmetric cyclonic wind field with a superimposed

mean wind flow.

To obtain the structure of the wind field a simple curve is fit to the speed profile in

Figure 6.1. This simple curve ramps up linearly from about half of the maximum speed to

the maximum speed, and then falls off exponentially to a mean offset. For simplicity, we

assume a mean offset which is constant over all types of hurricanes. Using the curve in Figure

6.1 we choose a mean offset of 7 m/s (which is also approximately the mean wind speed over
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the ocean). Fitting this curve to the speed profile in Figure 6.1 provides nominal values for

the radius of maximum wind speed of the eye and the decay rate of the exponential portion.

The fit produces a radius of maximum wind speed of about 50 km and a spatial decay rate

of about 475 km. A model realization is generated by producing a symmetric cyclonic wind

field with the appropriate speed profile and direction field (250 degrees from eye vector) and

superimposing a mean wind flow.

The plots in Figure 6.6 show slices of the speed fields of the hurricane model fits as

well as the mean wind speeds for large and small storms with various magnitudes of the

mean flow. The model fits the data well for low and medium wind flow, but for the high

mean flow the model fit shows slightly more asymmetry than the data suggests. This is due

to lack of high mean flow cases, which are more rare. For these cases, the rain contamination

and ambiguity selection errors may not have been averaged out.

Table 6.1 shows the vector RMS differences between the means of the empirical speed

and direction distributions and the model fit for large and small storms with various mag-

nitudes of the mean flow for the same North Atlantic storms. As expected, the high mean

flow case has larger RMS differences than the other two cases; however, all the cases have

a relatively low RMS difference (less than 7.1 m/s) suggesting that the model fits the mean

of the empirical distributions well. Thus, the model may be used to describe the storm

structure with respect to its size and mean flow.

Table 6.1: Vector RMS differences between the mean of the empirical
distributions and the model fit for large and small storms

with various magnitudes of mean flow.

Mean Flow
Low Medium High

Small Storms 3.05 m/s 2.97 m/s 5.31 m/s
Large Storms 4.39 m/s 5.00 m/s 7.07 m/s

With these results in mind, the means for the prior distributions for MAP estimation

are derived from the simplified hurricane model fit to the data (in the sense of optimizing the
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Figure 6.6: Slices of the mean of the empirical wind speed distributions orthogonal to the
mean flow vector for large and small storms with various magnitudes of the mean flow. a) Low
mean flow. b) Medium mean flow. c) High mean flow. The corresponding speed profiles from
the simplified hurricane model are superimposed.

MAP objective function). This provides estimates of the eye center location (latitude and

longitude), the magnitude and direction of the mean flow vector, and the maximum speed

scale factor, which are parameters of the hurricane model. The variances of the priors are

obtained from the general empirical distributions in Figure 6.2. We conservatively assume

that the standard deviation of the speed and direction are constant at 7 (m/s) and 45 degrees

respectively.
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6.5 Implementation

Incorporating the prior described in Section 6.4 into the MAP estimation procedure

requires searching a nonlinear objective function of several variables (the hurricane parame-

ters as well as the wind speed and direction at each resolution cell). This is computationally

taxing and can be a deterrent for using such a method in near real time processing. This

section considers a simplification by constraining the solution space to that spanned by the

point-wise ambiguities (MAP ambiguity selection). This reduces the search space consid-

erably, as well as produces an estimate of the wind that is not biased by the model. This

section also considers estimating the eye center from the speed field before performing MAP

ambiguity selection, which reduces the search space even further.

MAP ambiguity selection is performed to reduce computation and to provide an

improved ML estimate of the wind. MAP ambiguity selection is a form of weak nudging.

Instead of forcing the ML ambiguity choice to be closest to the nudging field, MAP ambiguity

selection allows for the likelihood value to dominate the speed and direction error–thus the

ambiguity with the higher probability will be chosen more often than with conventional

nudging. This new field-wise MAP ambiguity selection procedure begins with conventional

high resolution point-wise estimation. The ambiguities are then chosen to maximize the log

of the field-wise MAP objective function. Thus, Equation 6.8 becomes

L∗ = max
~α

{∑
m,n

max
k

{−(Sk − S(~α))2

ξ2
S

− (Dk −D(~α))2

ξ2
D

−
∑
i

(σ0
i − gmfi(Sk, Dk))

2

ξ2
i

}}
,(6.9)

where Sk and Dk are the speed and directions of the kth point-wise ambiguity. This field-wise

MAP ambiguity selection procedure produces estimates of the hurricane model parameters

as well as choosing appropriate ambiguities. Field-wise MAP ambiguity removal is not MAP

wind retrieval. Ambiguity selection cannot provide the same immunity to rain and noise

that is possible with MAP wind retrieval. Nevertheless, MAP ambiguity selection is useful

in two ways. First, it can provide an estimate of the wind that is not biased by the model.

Second, performing field-wise MAP ambiguity selection provides estimates of the hurricane

model parameters which can be used in MAP wind retrieval. Performing MAP estimation

with these hurricane model parameters is more computationally efficient than simultaneously
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estimating the wind and the hurricane model parameters. Thus, field-wise MAP estimation

(or wind retrieval) can also be done in near real time and the field-wise MAP ambiguity

selection (of the ML ambiguities) is also provided.

Although MAP ambiguity selection reduces the search space significantly, the method

remains computationally taxing. To simplify the problem further, a method for finding the

eye center from the first ambiguity speed field before applying MAP ambiguity selection is

developed. This method is based on the circular Hough transform (CHT). The CHT is used

to find circles in a binary image (an image consisting of ones and zeros). If the radius R of

the circle is known, the CHT is calculated simply by drawing a circle of radius R from each

pixel that has a value of 1 in the binary image and accumulating the number of these circles

that hit each pixel. Thus, the maximum value of the CHT is at the same index as the center

point of the circle. For finding the hurricane eye, the speed field is converted to a binary

image and then searched for a circle with a 50 km radius. Then, the CHT is weighted by

the inverse of the speed field. This weighting is done to suppress circle centers in high wind

speed regions and emphasize those in low wind speed regions (like the eye center). Finally,

the index of the maximum of the weighted CHT is reported as the hurricane eye center.

We note that when the eye is over land or outside the swath, the CHT method produces

erroneous eye center estimates. We also note that there may be several local maxima in

the weighted CHT. The other local maxima typically occur in heavy rain bands (since rain

attenuation may cause the rain bands to appear as lower wind speeds), but since these are

not typically circular the CHT value of the true eye tends to dominate.

6.6 Analysis

It is difficult to validate the MAP estimation method for hurricanes because truth

data is limited–especially in spatial coverage. One indicator of the quality of the result is

the accuracy of the estimates of the hurricane model parameters. Another is the accuracy

of the estimated wind. In this section simulation is employed to explore the effect of rain

on MAP estimation and MAP ambiguity selection. Also, the new eye center estimates are

compared to the best track locations provided by the NHC. Interpolated NCEP winds are

used to check the quality of the other estimated hurricane model parameters (the mean
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flow and maximum speed scale factor). Although, NCEP winds are limited in resolving fine

scale hurricane structure, they may be used as an indicator of consistency of the estimated

mean flow and maximum speed scale factor parameters. Finally, the H*Wind hurricane

model winds provided by NOAA’s hurricane research division [56] are used to check the

quality and integrity of the estimated winds. The H*Wind products are smoothed over

several hours and although they are reported with a grid spacing of about 5-6 km, the actual

resolution is much more coarse than the UHR winds. Nevertheless, they portray the large

scale structure of hurricanes well.

6.6.1 Simulation

Simulation is employed to analyze the effectiveness of the new approach. Synthetic

σ0 values are generated by projecting H*Wind wind fields and synthetic uniform rain rates

through the simultaneous wind and rain model described by Draper [50] and adding Monte

Carlo noise. The noise, ν, represents communication noise and fading, and is modeled

by a zero-mean Gaussian random variable whose variance is a function of the σ0 value as

described in Chapter 2. Thus, ν ∼ N
(
0,

√
α+ β

σ0 + γ
(σ0)2

)
, where nominal values are used

for α, β, and γ (i.e., α = 0.0025, β = 1.9 × 10−4, and γ = 1.2 × 10−7) [8]. σ0 fields are

simulated for various rain rates and the error of the resulting wind fields is calculated. Ideal

ambiguity selection (the conventional high resolution ambiguity closest to the H*Wind),

MAP ambiguity selection, and MAP estimation are compared. For simulation the MAP

ambiguity selection and MAP estimation eye centers are fixed to the true eye center.

Figure 6.7 shows the RMS error versus rain rate averaged over a few H*Wind fields

used in simulation. On average the MAP estimation procedure reduces the RMS error lower

than even ideal ambiguity selection (i.e., closest to the true), and thus does much better

than the conventional ambiguity selection on real data. Also, MAP ambiguity selection

approaches ideal ambiguity selection in the RMS error sense. These results suggest that for

all rain rates the MAP estimation procedure is superior to the other methods and that the

MAP ambiguity selection method is similar to ideal ambiguity selection and thus generally

better than the conventional approach.
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Figure 6.7: RMS error versus rain rate for ideal ambiguity selection, MAP ambiguity selection,
and MAP estimation.

6.6.2 Quality of the Hurricane Model Parameters

This subsection analyzes the scatterometer derived hurricane model parameters: the

eye center estimates, the maximum speed scale factor and the mean flow. The eye center

results are compared with the best track locations (which are interpolated to the same time as

the QuikSCAT measurements). First the MAP ambiguity selection eye center location, which

is derived from the hurricane model fit, is evaluated. Next, the CHT eye finding method is

analyzed. Then, the conventional high resolution method is explored with respect to the eye

center parameter. Since the conventional high resolution method provides no eye location

estimate, the conventional eye location is estimated from the vector field and compared with

the results of the other methods (CHT and hurricane model fit). The maximum speed scale

factor and the mean flow parameters are then compared to maximum wind speed and mean

flow quantities derived from NCEP winds.

The best track locations are compared to the new eye location derived from the

hurricane model fit. Figure 6.8a shows the histogram of the distance between the best track

eye locations and the eye locations derived using only the hurricane model for a number of

observations of North Atlantic storms from 1999 to 2005. The mean and standard deviation

are reported as well. The distribution shows that the majority of cases are at low distance

bins, but the mean and standard deviation are quite large. This can be due to several factors

such as rain contamination, unmodeled parameters, swath edge effects, land contamination,

and including underdeveloped storms in the analysis.

The eye center locations from the CHT method are compared to the best track

locations provided by the NHC. The mean and standard deviation of the distance from
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the interpolated best track location are also calculated for the eye center found by the CHT

method. Figure 6.8b shows the histogram of the distance from the best track eye center for

the CHT method for the same hurricanes as in Figure 6.8a. The mean is improved over the

method that uses only the model fit to find the eye. Note that the size of a typical eye is

about 50 km, and as long as the eye center estimate is within the eye wall, the resulting

MAP wind fields are good. This suggests that for the majority of cases, both the model

based method and the CHT method result in good MAP estimates of the wind field.

0 100 200 300 400 500 600
0

10

20

Distance (km), avg=74.3646, std=62.8398

C
ou

nt
 (

15
9 

T
ot

al
)

a)

0 100 200 300 400 500 600
0

10

20

Distance (km), avg=65.6351, std=64.4163
C

ou
nt

 (
15

9 
T

ot
al

)

b)

Figure 6.8: Histogram of distance of eye center from best track location for a) the model
fit method and b) the circular Hough transform method. Results are derived from 159 North
Atlantic named storms from 1999 to 2005.

In order to compare the methods with the conventional approach, the eye centers are

estimated using the curl of the vector fields. Figure 6.9 shows the distributions for distance

from best track for the conventional high resolution eye, the field-wise MAP eye, and the

CHT eye based on the curl of the vector fields. The mean and standard deviation of the field-

wise MAP eye and CHT eye are lower than the those corresponding to the conventional eye

suggesting that both new methods generally perform better than the conventional method.

The new eye finding method based on the CHT generally improves the eye estimates

over the conventional method; however, a human can improve the results even further. Since

hurricanes are relatively rare, using human analysts for eye finding is a feasible alternative

to purely automated data processing. According to [65], a human in the loop can improve

the average error from best track to 21.1 km. However, some storm observations must be

discarded in the analysis because the eye center is not obvious to a human. Furthermore,

human-based analysis is somewhat subjective. A fully automated method, such as the CHT

method, provides objective and timely results.
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Figure 6.9: Histogram of distance of eye center from best track location for a) the conventional
high resolution method, b) the field-wise MAP wind method, and c) the CHT method all based
on the curl of the vector fields. The same storms as in Figure 6.8 are used.

We analyze the quality of the other estimated hurricane model parameters (the max-

imum speed scale factor and the mean flow) using NCEP winds as reference. For both the

maximum speed scale factor and the mean flow analysis we manually fix the eye center esti-

mates. First, we compare the estimated maximum speed scale factor to the maximum wind

speed reported by the spatially interpolated NCEP wind field. Figure 6.10a illustrates the

scatter plot of the maximum speed scale factor versus the maximum NCEP wind speed of

several different QuikSCAT observations of hurricanes. The general correlation between the

two quantities suggests that the maximum speed scale factor estimates are consistent with

the NCEP maximum speed.

We compare the estimates of the mean flow derived from the QuikSCAT data to a

mean flow quantity derived from the NCEP winds. The NCEP mean flow is found by taking

the vector average of the wind field in the vicinity of the hurricane. Figure 6.10b shows the

scatter plot of the magnitude of the mean flow estimate derived from QuikSCAT versus the

magnitude of the NCEP mean flow. While the correlation is somewhat weak, the quality of

the wind estimates is not particularly sensitive to errors in the magnitude of the mean flow.

Figure 6.10c depicts the scatter plot of the direction of mean flow derived from QuikSCAT

versus the NCEP direction of mean flow. The mean flow direction derived from QuikSCAT

data correlates well with NCEP mean flow, suggesting that the MAP ambiguity selection

algorithm estimates the direction of the mean flow relatively well.
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Figure 6.10: Scatter plot of the hurricane model estimates versus corresponding NCEP-
derived quantities. a) Maximum speed scale factor. b) Magnitude of mean flow. c) Direction
of mean flow.

6.6.3 Accuracy of the Estimated Winds

In order to test the quality of the estimated winds we use the standard H*Wind

products. The H*Wind fields are smoothed over several hours and do not exhibit much of

the small scale information that exists in the QuikSCAT UHR fields. Nevertheless, we use

H*Winds to compare to the new wind estimates because the H*Winds are readily available,

are commonly used in hurricane analysis, and are useful for studying the larger scale storm

structure [56].

The scatterometer-derived winds are compared to the closest (in time and space)

H*Winds for a typical storm observation (Hurricane Isabel 2003). We compare the conven-

tional high resolution winds, the MAP ambiguity selection, and the MAP estimates to the

H*Winds and calculate several metrics: the vector RMS difference, the speed difference, and

the direction difference. Table 6.2 reports the vector RMS difference, the mean and stan-

dard deviation of the speed difference, and the mean and standard deviation of the direction

difference for the three wind estimation schemes. The differences are defined as the H*Wind

minus the MAP wind quantities. The MAP ambiguity selection method improves the RMS
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difference and the speed and direction standard deviations over the conventional method,

and the MAP estimate improves these same quantities over the MAP ambiguity selection

method. This suggests that the MAP estimation procedure produces results more consistent

with the standard H*Wind products.

Table 6.2: Differences from H*Winds for the conventional, MAP ambiguity selection,
and MAP estimation methods for the observation of Hurricane Isabel 2003.

Conventional UHR MAP Ambsel MAP Estimate
Vector RMS 17.19 m/s 14.60 m/s 10.15 m/s
Speed Mean 4.47 m/s 4.35 m/s 3.90 m/s
Speed Std 6.57 m/s 6.43 m/s 5.31 m/s
Dir Mean -13.15 deg. -0.28 deg. 5.65 deg.
Dir Std 42.27 deg. 33.31 deg. 20.51 deg.

Figure 6.11 shows the density plots of the H*Wind wind speed versus the scatterom-

eter winds for the three wind retrieval schemes for the same observation of Hurricane Isabel.

The correlation coefficient (ρ) is also reported on the plots. The correlation coefficients for

each of the methods are very high but the MAP estimation winds are the highest. This im-

plies that an affine transformation of the MAP estimated wind field is most consistent with

the H*Wind field. Note that the general trend of the data is linear with a slope less than

one and intercept greater than zero. Applying bias correction (augmenting the retrieved

wind speeds so that the slope is one and the intercept is zero) may make the scatterometer

data more consistent with the H*Winds. Alternatively, improving the GMF for hurricanes

(especially the high wind speeds which tend to be underestimated with the current GMF)

may improve the consistency with H*Winds. Nevertheless, in the upper right portion of the

images (the high wind speed region) the variance of the data is significantly reduced with the

MAP estimation scheme. This suggests that the MAP estimation procedure produces a less

noisy (although still biased) estimate of the high wind speeds as compared with H*Winds

for this storm observation.
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Figure 6.11: Density plots of the H*Wind wind speed versus the scatterometer wind speeds
from the three wind retrieval schemes for the observation of Hurricane Isabel 2003. a) Con-
ventional UHR. b) MAP ambiguity selection. c) MAP estimation. The correlation coefficients
are also reported.

Figure 6.12 shows an example of a real storm (Floyd 1999). Conventional wind

retrieval, field-wise MAP ambiguity selection, and field-wise MAP wind retrieval are all

depicted. Using the MAP model reduces the variability of the speed and direction estimates,

which gives the illusion of biasing low the wind speed compared to the non-model-based

ML estimates. The MAP ambiguity selection routine finds the eye center better than the

conventional method and improves the ambiguity selection. The lower left quadrant of the

storm where the vectors are pinned in the cross track direction in the conventional high

resolution product due to rain contamination are corrected in the MAP ambiguity selection

and MAP estimation products. The field-wise MAP wind retrieval method produces a

more smooth and less squared off storm than even the field-wise MAP ambiguity selection.

This suggests that the MAP estimation procedure may mitigate the directional biases of
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conventional wind retrieval (which account for some of the squaring off of the storms even

in non-raining portions of the storms). Although MAP estimation utilizes a model that

does not describe the comma cloud and smaller convective events (speckles in the wind

speed image), the MAP estimation method reports a similar speed field structure as the

conventional (non-model-based) method.

6.7 Rain and Wind Estimation from SeaWinds in Hurricanes

Using a prior to estimate the wind as described above reduces the effect of rain on

the wind estimates. However, where rain rates are large, this method tends to deweight

the measurements and impose the model more heavily. The rain contamination issue can

be explicitly handled using a simultaneous wind and rain retrieval method at ultra-high

resolution (UHRSWR) [66] [50]. However, this further increases the variability of the wind

estimates and does not deal with ambiguity selection issues. A potential solution is to

combine a MAP estimation scheme with UHRSWR.

This section develops a method for estimating wind and rain in hurricanes at ultra-

high resolution from the SeaWinds scatterometer using a MAP estimation approach. A wind

and rain prior is employed which reduces the variability of the wind and rain estimates and

simplifies ambiguity selection. The procedure uses a simple statistical hurricane wind and

rain model to provide prior distributions that are used to modify the maximum likelihood

(ML) objective function in the simultaneous wind and rain retrieval step. The low-order

hurricane wind and rain prior is derived empirically from SeaWinds and TRMM-PR data.

This section develops the theory and implementation of the new method—simultaneous

wind and rain retrieval using MAP estimation (SWRMAP). MAP estimation for hurricane

wind and rain retrieval is derived, the wind/rain field model for hurricanes used to generate

the priors is developed, and the implementation for SeaWinds is described.

6.7.1 Method

The new method employs MAP estimation to retrieve the wind/rain vector, denoted

~U [xj], from the reconstructed σ0 measurement vector, denoted ~σ[xj], at each UHR (2.5 km)

pixel, denoted xj, within a hurricane. Note that the likelihood function f(~σ[xj]|~U [xj]) for
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Figure 6.12: Hurricane Floyd (1999) example. a) Conventional UHR wind field. b) The
result of the field-wise MAP ambiguity selection. c) The field-wise MAP estimate of the wind
field. The wind vector fields are down-sampled by 10 for plotting. The black dots represent
the eye center reported by the new method and the black dots with white x’s represent the
conventional high resolution eye center based on the curl of the vector field. The smoothness of
the MAP estimate may be adjusted by scaling the variances of the priors. The MAP estimation
uses the variances suggested by the empirical priors.
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each pixel xj may be a multi-modal function of the wind/rain vector, which gives rise to

wind/rain ambiguities. However, if an appropriate prior is applied in MAP estimation, the

prior term tends to emphasize one particular maximum and suppress the others—generally

resulting in a unique wind/rain vector estimate corresponding to the dominant mode.

In this section we use a convex combination of an empirical prior with a non-informative

prior for wind and rain in hurricanes. For the wind prior, we use the prior developed above.

This prior varies with certain hurricane parameters: the eye center location, maximum speed,

and mean flow vector. We also develop a rain prior to add to this model that is a function

of the distance between the pixel and the eye center.

Since the empirical prior is a function of the hurricane model parameters, we estimate

the hurricane model parameters using the spatial model that relates the parameters of the

priors between pixels. We call this relationship between the parameters of the priors the

field-wise wind/rain model. We estimate the parameters of the model using model-based

ML estimation based on the actual slice σ0 measurements (not the reconstructed ~σ field).

Once the model parameters are estimated, the wind/rain field is produced. The wind/rain

vector at each pixel is directly related to the parameters of the prior for each pixel. Thus,

we can generate the priors for each pixel.

Wind/rain Model

We derive the model for the two-dimensional wind/rain field in a hurricane by using

the same wind model developed above and by deriving a simple model for the rain from

TRMM-PR data. We restrict the rain model prior to be only a function of the distance

from the eye center. Based on several different hurricanes we generate a histogram of all

TRMM-PR rain rates greater than zero as a function of distance from the eye center. This

produces a general prior for the rain rate given that it is raining f(10 log10(R)|R > 0) as a

function of the distance from the eye center.

Figure 6.13 shows the plots of the rain histogram for a particular distance from the

eye, as well as the mean and standard deviation as a function of the distance from the eye.

The histogram is similar to a Gaussian when the rain rate is expressed in dB. Thus, we

assume that the prior is Gaussian in the log of the rain rate. We fit a line to the mean of the
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Figure 6.13: TRMM-PR rain rate histogram with Gaussian fit superimposed (top), mean
rain rate as a function of distance from the eye (middle), and standard deviation of the rain
rate as a function of distance from the eye (bottom).

rain rate as a function of the distance from the eye and assume that the standard deviation

is constant at 6 dB km-mm/hr. The form of the rain prior (given that it is raining) is thus

f(RdB) =
1

ξR
√

2π
exp

{
−(RdB − µR)2

2ξ2
R

}
(6.10)

where µR and ξR correspond to the mean and standard deviation of the distribution of the

rain rate in dB.
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Convex Bayes Priors

We combine a uniform prior with the empirical priors to enable control of the impact

of the priors on the estimates. We introduce convex combination parameters for the wind

speed prior αs, the wind direction prior αd, and the rain prior αr. The convex combination

parameters determine how much we impose the empirical priors. Thus, we can increase

the convex parameters (i.e., αs, αd, and αr) to obtain a low variability at the expense

of suppressing the small scale features or decrease the convex parameters to achieve the

opposite. The convex rain prior is of the form

fc(RdB) = αrfEmp(RdB) + (1− αr)fU(RdB) (6.11)

where fEmp is the empirical prior, fU is the uniform prior, and fc is the convex prior.

Similarly, the wind speed and direction priors can also be combined with a uniform prior.

Note that the uniform prior is only constant over the search space (wind speed between 0 m/s

and 50 m/s, wind direction between 0o and 360o, and rain rates between -10 dB km-mm/hr

and 22 dB km-mm/hr).

An information theoretic approach to choosing the convex parameters is considered.

We may choose a prior that minimizes the Kullback-Leibler distance or the relative entropy

between the ML and MAP probability density functions (pdfs) subject to a constraint on

the variability of the estimates. The relative entropy between the MAP and ML pdfs for

pixel xj is [67]

D(f(~σ0[xj]|~U [xj])||f(~U [xj]|~σ0[xj])) = −
∫
f(~σ0[xj]|~U [xj]) log(f(~U [xj]))d~U [xj] (6.12)

and represents the information added by imposing the prior. The variability of the esti-

mate (first ambiguity) is related to the variance around the dominant peak of the MAP

objective function. Thus, we may adjust the convex parameters closer to one in order to

narrow the dominant peak due by adding more information from the prior. This method for

determining the convex parameters is a function of the measurement geometry and the noise

in the measurements, and is complicated to implement. For simplicity, we set the convex
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parameters to constants. We specifically set the convex parameters αs, αd, and αr to 0.2,

0.3, and 0.1, respectively so that the priors weakly influence the estimates while producing

a relatively smooth result. This allows the data to influence the estimates more significantly

than directly applying the empirical priors.

Implementation

The first step in the new method is field-wise model-based estimation of the wind/rain

field using the hurricane wind/rain field model. This produces estimates of the hurricane

model parameters. Model-based maximum likelihood estimation searches for the model

instance that maximizes the joint probability of observing the σ0 slice measurements given

that the model instance is the true wind/rain field. Thus, the estimate of the wind/rain field

~̂U [x] is given by

~̂U [x] = argmax
~U [x]=M(~a)

{∏
s

f(σ0
s |~U [x])

}
(6.13)

where ~U [x] = M(~a) is the wind/rain field on an [x] grid produced by the wind/rain model

M(~a) where ~a represents the model parameters. f(σ0
s |~U [x]) is the pdf of a slice measurement

σ0
s given the wind, which has the form

f(σ0
s |~U [x]) =

1√
2πξs

exp

{
−(σ0

s − gmfs(~U [x]))2

2ξ2
s

}
(6.14)

where ξ2
s is the variance and

gmfs(~U [x]) =
∑
x

As[x]gmft(~U [x], θs[x], ψs[x], pols, fs) (6.15)

where gmft is the true (high resolution) geophysical model function, As[x] is the spatial re-

sponse function for the slice projected onto the Earth, θs is the incidence angle, ψs is the

azimuth angle, pols is the polarization, and fs is the center frequency of the slice measure-

ment.

Once the hurricane model parameters are estimated, the priors for each pixel are

computed and MAP estimation using the priors on the wind speed, wind direction, and rain
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rate is employed to estimate the wind/rain vector for each pixel using the UHR ~σ field. This

produces multiple ambiguities similar to ML estimation. However, due to the inclusion of the

prior, the first ambiguity (corresponding to the highest maximum) tends to have a likelihood

value that is much higher than the others. Thus, we merely choose the first ambiguity as

the final estimate and perform no further ambiguity selection. This provides an estimate of

the wind/rain vector for each pixel given that it is raining.

In order to include non-raining cases, we perform wind-only retrieval using the MAP

estimation scheme with priors on the speed and direction. The first ambiguity provides the

best estimate (in the MAP objective function sense) of the wind given that it is not raining.

To choose whether the wind-only or the SWR estimate is best, we compare the probabilities

(MAP objective function values) weighted by the probability that it is raining. That is, we

combine the wind-only and SWR ambiguities to a single set of ambiguities according to

fnew(~Ui) =





p(R = 0)fUHR(~Ui) if i < 4

p(R > 0)fSWR(~Ui−4) if i > 4
(6.16)

where p(R = 0) is the probability that it is not raining and p(R > 0) = 1 − p(R = 0), and

the subscript i indexes the ambiguity. Then, we sort the new list of ambiguities by fnew.

The final wind/rain estimate for each pixel becomes the first ambiguity of the combined

ambiguity list.

Figure 6.14 shows the plot of the probability of false alarm Pfa and the probability

of missed detection Pmd versus p(R = 0) for a particular storm using TRMM-PR as ground

truth. Based on the plot, we set p(R = 0) to 0.43 for all cases, which produces a Pfa and

Pmd less than 30% for this case.

6.7.2 Analysis

We analyze the MAP estimates of the wind and rain by comparing them to co-located

data from other sources. We compare the rain estimates from the new MAP method and

the UHRSWR method to TRMM-PR data and the wind estimates to H*Wind fields.

To investigate the quality of the rain estimates we compare the SWR and SWRMAP

rain rates to co-located TRMM-PR rain rates of several storms. Figure 6.15 shows a log-
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Figure 6.14: Probability of false alarm and probability of missed detection of the rain versus
the probability that it is not raining.

density plot of the log of the SWR and SWRMAP rain rates versus the log of TRMM-PR rain

rates. There are many low SWR rain rates where the TRMM-PR rain rates are relatively

large. This underestimation is corrected in the SWRMAP estimates; however, there is a

slight bias of the low rain rates of about 8 dB. This bias is because the rain prior begins to

impact the rain estimates more significantly than the likelihood function for low rain rates.

That is, scatterometer measurements are not very sensitive to low rain rates (below about

5 km-mm/hr), and thus the MAP estimates of low rain rates rely significantly on the prior.

Although the variability of the rain estimates is improved with the SWRMAP method, both

the SWRMAP and SWR rain estimates are quite noisy.
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Figure 6.15: Density plots of SWRMAP rain rate versus TRMM-PR rain rate (left) and
SWR rain rate versus TRMM-PR rain rate (right).
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It is difficult to validate the wind estimates since truth data is limited—we lack

co-located wind data of similar temporal and spatial resolution to the UHR products. Nev-

ertheless, we compare the wind speed estimates to the H*Wind product because it is a

standard hurricane product and the data is easily accessible. Figure 6.16 shows the log-

density plot of the SWRMAP and SWR wind speed estimates for a particular storm (Daniel

2000) in the Eastern Pacific basin. For H*Wind speeds less than about 15 m/s both methods

produce similar speed estimates. However, the SWRMAP method reduces the variance of

the estimates over the SWR method for H*Wind speeds higher than 15 m/s.
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Figure 6.16: Density plots of SWRMAP wind speed versus H*Wind speed (left) and SWR
wind speed versus H*Wind speed (right).

Figure 6.17 displays the SWRMAP wind field, the SWR wind field, the SWRMAP

rain field and a co-located TRMM-PR rain field for Hurricane Isaac on Sept. 29, 2000. The

SWRMAP wind field is much less noisy than the SWR field and the SWRMAP winds in the

rain-dominated regime (lower left quadrant) are closer to what is expected in a hurricane.

Though noisy, the SWRMAP rain field has a similar spatial structure to the TRMM-PR

rain field.

6.8 Conclusion

The field-wise MAP wind retrieval method can be used to augment scatterometer

hurricane analysis. It reduces the variability of the wind vector estimates, provides estimates

of useful hurricane parameters (such as the eye center location), and improves wind direction
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Figure 6.17: SWRMAP wind field (top), SWR wind field (second), SWRMAP rain field
(third), and co-located TRMM-PR rain rate (bottom). The colorbar is in m/s for the wind
fields and km-mm/hr for the rain fields.
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estimates–especially in rain contaminated portions of the storm. Furthermore, the method

can be applied in near real time.

The hurricane model is simplistic but appropriate for MAP techniques in well-developed

tropical cyclones. Moreover, the MAP procedure allows the operator to vary how much the

model is imposed.

This MAP estimation approach mitigates the effects of noise and rain, but relies on

a hurricane model fit to generate appropriate prior distributions. Although the new method

imposes a low-order model, the effects are less severe than pure model-based methods as

the MAP estimation scheme preserves small scale information that is not represented by the

model.

MAP ambiguity selection provides an improved selection of the ML ambiguities in

tropical cyclones. Although rain and noise artifacts may remain in the result, MAP ambiguity

selection imposes the model more weakly than MAP estimation and even standard nudging.

Therefore, MAP ambiguity selection may be more appropriate than MAP estimation for

certain applications (such as the study of smaller scale structures on the order of 3-10 km).

Simulation suggests that where an eye center can be found in the data, the MAP

estimation and MAP ambiguity selection methods are superior to the conventional high

resolution approach for all realistic rain rates. The eye center location for the new method

is improved over the conventional method (using the curl of the vector fields). However, the

eye center estimates may be improved further by a human analyst. Furthermore, the MAP

estimation procedure produces results that are more consistent with the standard H*Wind

product, although the wind speed estimates tend to remain underestimated compared to

H*Winds due to the GMF and rain contamination. The method may be further improved

by using quality control and an improved GMF for hurricane conditions (high wind speeds

and rain rates).

MAP estimation of hurricane wind and rain fields from the SeaWinds scatterometer

is developed. The rain prior is derived from TRMM-PR data as a function of distance from

the eye. The SWRMAP estimation method reduces the variability of the rain estimates and

corrects the underestimation of low rain rates compared to the ML-based SWR method. The

variability of the wind estimates is also reduced with the SWRMAP method.
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Future work should include the development of quality control algorithms. Future

work could also explore MAP nudging (point-wise MAP ambiguity selection with NWP winds

as the mean of the prior), which can be applied to generic wind structures beyond tropical

cyclones. The MAP procedure assumes that a hurricane is present in the data. Future

research will involve using the MAP model with automatic hurricane detection. UHR and

UHR MAP methods can also be considered for C-band scatterometers such as the operational

ASCAT scatterometer, which may be less sensitive than SeaWinds to rain.

99



100



Chapter 7

Scatterometer Wind Field Reconstruction

A scatterometer is a radar that measures the normalized radar cross section (σ0)

of the Earth’s surface. Over the ocean, the backscattered signal is related to the wind

through a geophysical model function (GMF). Each σ0 measurement contains information

about the wind averaged over an area. Scatterometers make several measurements over the

same spatial region with different geometries, polarizations, and possibly frequencies. These

different ‘flavors’ of measurements can be combined to estimate the wind vector field over

the ocean. Several methods of estimating the wind field from the σ0 measurements have

been proposed each having their limitations and imposing different assumptions.

Conventionally the wind field is estimated on a point-wise basis. That is, the scat-

terometer swath is partitioned into discrete wind vector cells (WVCs) and a single wind

vector is separately estimated for each WVC. Standard scatterometer processing employs

a drop-in-the-bucket gridding technique using only measurements whose centers fall into a

particular WVC to estimate the wind for that WVC, essentially assuming a uniform wind

vector field over the WVC. Ultra high resolution (UHR) products have been obtained by

reconstructing the σ0 fields of each flavor separately and then performing point-wise wind

retrieval on a high resolution grid [7]. Both of these point-wise methods impose implicit

assumptions and neglect spatial correlation between WVCs. A more appropriate way which

incorporates the spatial relationship between the measurements is to reconstruct the entire

wind field directly from the σ0 measurements, i.e., field-wise wind estimation.

Field-wise wind estimation has been explored in the past with model based methods

[32] [33] [34]. In this approach, the wind field model parameters are estimated from the

σ0 measurements, and the wind field estimate is then computed from the model parameter

estimates. However, if the wind field is not in the span of the model, the estimated wind
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may not be the closest wind field in the space to the true wind field. Furthermore, model-

based methods require imposing structure (i.e., the model) on the wind fields, which may be

inappropriate for a particular application.

This chapter considers an alternate field-wise approach to reconstruct the wind field

directly from the σ0 measurements. This chapter approaches the scatterometer wind estima-

tion problem as the inversion of a noisy, nonlinear sampling operation, i.e., as a noisy inverse

problem. A more general scatterometer sampling model is presented. A Bayesian maximum

a posteriori (MAP) estimation method is proposed to reconstruct the wind vector field from

the noisy σ0 measurements. The new approach generalizes and unifies the other wind estima-

tion approaches. The conventional drop-in-the-bucket, UHR, and model-based approaches

can be expressed as simplified special cases of the new method. The reconstruction approach

is applied to retrieve high resolution wind fields from the SeaWinds scatterometer. The new

results are compared to conventional and UHR SeaWinds products.

The chapter is organized as follows. Section 7.1 presents the forward scatterometer

sampling operation and shows that it can be made discrete under reasonable assumptions.

Section 7.2 presents a method for wind field estimation from noisy scatterometer measure-

ments. Section 7.3 considers the relationship between conventional approaches and the new

method. Section 7.4 applies the new approach to the SeaWinds scatterometer. Finally,

Section 7.5 summarizes the results and concludes.

7.1 Forward Model

The forward model or sampling operation describes the relationship between the

wind field and the scatterometer measurements. This relationship is required to estimate

the wind field from scatterometer measurements. This section presents the scatterometer

sampling model. Background on sampling and aperture-filtered sampling is presented, the

scatterometer sampling operation is stated, the forward operator is made discrete, and the

sample spacing or pixel resolution is considered.
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7.1.1 Sampling

Sampling is the process of converting a continuous signal into a sequence. Sampling in

a Hilbert space can be represented as a sequence of inner products of a signal with sampling

functions (i.e., aperture functions). Conventional sampling can be represented as a vector

of inner products with Dirac delta functions. In a bandlimited space, this is equivalent

to sampling with sinc function apertures [37]. More generally, sampling can be done with

irregularly spaced aperture functions with different shapes; such samples are called aperture-

filtered samples [2] [38]. In scatterometry, the aperture function is the measurement spatial

response function due to the antenna pattern and processing, and sampling is the process of

making σ0 measurements.

Wind scatterometry is an application of aperture-filtered sampling in the sense that

each σ0 measurement represents an aperture-filtered sample of a continuous σ0 field; however,

each measurement samples a different σ0 field (i.e., measurements are made with different

geometries). Over the ocean, the σ0 fields sampled by a scatterometer are related nonlinearly

to the underlying wind field through the geophysical model function (GMF).

7.1.2 Scatterometer Sampling Model

Scatterometers measure the backscattered power from the Earth’s surface averaged

over the antenna gain pattern. This power measurement is scaled to produce the normalized

radar cross section [68]. The measurement of a given scatterometer pulse is partitioned into

several ‘slice’ measurements using range/Doppler processing or pulse compression [10] [8]

[9]. The spatial response functions (i.e., aperture functions) of the slice measurements vary

in shape and location. Neglecting noise, a particular σ0 measurement σ0
t,i with aperture

function Ai(x) is represented by the inner product of a continuous σ0 field σ0
t,i(x) with the

aperture function

σ0
t,i =

∫
Ai(x)σ

0
t,i(x)dx (7.1)

where x represents a two-dimensional spatial variable. Here, the subscript t indicates that

the σ0 value is the ‘true’ or noise-free value and i indexes the different measurements.
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Over the ocean, the σ0
t,i(x) fields are related to the wind vector field ~U(x) through

the GMF

σ0
t,i(x) = gmf(~U(x), θi(x), ψi(x), poli, fi) = gmfi(~U(x)) (7.2)

where θi(x), ψi(x), poli, and fi are the incidence angle field, azimuth angle field, polarization,

and frequency corresponding to the ith slice measurement respectively. For convenience,

these arguments of the GMF are dropped in the rest of the chapter, resulting in the more

compact notation gmfi(~U(x)). Scatterometers make several measurements with different

look geometries over the same spatial region. Stacking the multiple measurements into a

vector, the scatterometer sampling model is expressed as

~σ0
t =




∫
A1(x)gmf1(~U(x))dx

...
∫
AN(x)gmfN(~U(x))dx


 = T (~U(x)) (7.3)

where T is a nonlinear sampling operator that maps the wind field to the noise-free slice

measurements.

Equation 7.3 states the forward model (i.e., projecting the wind to the σ0 measure-

ments); wind field reconstruction involves solving the inverse problem (i.e., estimating the

wind from the σ0 measurements). In theory, the sampling operation can be inverted using

constrained optimization (see Appendix C.1). However, in order to simplify the problem

and deal with noise appropriately, the problem is solved discretely.

7.1.3 Discrete Model

Here, the sampling operation is transformed into a discrete operation on conventional

samples of the wind field (i.e., the forward operation is made discrete). The wind field can

be made discrete by assuming that it is bandlimited; however, in order to make the sampling

operation discrete, the integrals in Eq. 7.3 must be expressible as summations. Further, not

only the wind field but the σ0 fields σ0
t,i(x) corresponding to each measurement i must be

bandlimited.
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For a general nonlinear function, assuming that the wind field is bandlimited does

not necessarily force the corresponding σ0 fields to be bandlimited. Nevertheless, the GMF

can be be expressed in such a way that the σ0 fields are guaranteed to be bandlimited, but

with a potentially different band limit than the wind.

The GMF is an empirical function that can be approximated by a finite power series.

In Appendix C.2, it is shown that if the wind field has bandlimited components, and the

nonlinear GMF can be represented by a finite power series, then the relationship between

the bandlimit of the σ0 fields ωσ and the bandlimit of the wind field components ωU1 and

ωU2 is (see Appendix C.2)

ωσ ≤ P1ωU1 + P2ωU2 + ωa (7.4)

where P1 and P2 correspond to the order of the power series for the wind vector components

and ωa is the bandlimit of the power series coefficients.

The inequality in Eq. 7.4 states that the bandlimit of the σ0 fields is generally higher

than the bandlimit of the wind field components. This relationship suggests that the regular

sample spacing required to represent the σ0 fields may be finer than the regular sample

spacing required to represent the wind field components. Thus, an oversampled version of

the wind field with the assumed bandlimit should be projected through the discrete version

of T when calculating the forward projection numerically. However, relatively small errors

may result from expressing the σ0 fields on the same wind field grid (see Appendix C.2).

Thus, if the wind field components are bandlimited, the σ0 fields are also bandlimited

and the sampling operator can be made discrete. The discrete sampling operation can be

expressed as

~σ0
t =




∑
xA1[x]gmf1(~U [x])

...
∑

xAN [x]gmfN(~U [x])


 = T(~U [x]) (7.5)

where the square brackets [x] represent regularly spaced samples on an up-sampled version

of the wind field grid (since the σ0 bandlimit is higher than the wind field bandlimit), and

T is the discrete version of the nonlinear sampling operator T . The Nyquist samples of
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the wind field, denoted ~U [x′], are related to the samples on the higher resolution grid by

~U [x] = H~U [x′] where H is the up-sampling operator.

7.1.4 Wind Field Bandlimit and Sample Spacing

As noted, the sampling operator can be made discrete by assuming a bandlimited

wind field; however, the bandlimit to assume must be considered. The assumed bandlimit

determines the regular sample spacing required to represent the wind field with that ban-

dlimit. This sample spacing provides the pixel resolution on which to reconstruct the wind

fields.

Determining the wind bandlimit and the regular sample spacing is much more compli-

cated than the case of linear aperture-filtered sampling with bandlimited aperture functions.

In the linear case the sample spacing is determined directly from the highest bandlimit of

the aperture functions [2]. With the point-wise nonlinear constraint introduced by the GMF,

it may be possible to recover higher frequency content than the bandlimit of the aperture

functions (see Appendix C.1). Therefore, the bandlimit or signal structure imposed is based

on knowledge of the wind spectrum.

Fortunately, wind generally has a red spectrum that falls off approximately as one

over the wave number squared [69]. This allows for the imposition of a relatively low ban-

dlimit without introducing significant aliasing on average. Nevertheless, for particular wind

features, such as storms or fronts, the wave number spectrum may have significant high

frequency energy. In general, a better result may be obtained by assuming a high bandlimit

than to potentially introduce aliasing by assuming a bandlimit that is too low. This suggests

that reconstruction be done on the highest resolution grid that is practical and that lower

resolution estimates be obtained by low-pass filtering the estimated wind.

7.2 Wind Field Reconstruction from Noisy σ0 measurements

Wind retrieval from scatterometer measurements is a noisy inverse problem that can

be solved using an estimation theory approach. Here, wind field reconstruction from noisy

σ0 measurements over the ocean is considered. A scatterometer noise model is reviewed.

A MAP reconstruction estimator is proposed for wind field reconstruction. An appropriate
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prior to regularize the problem is presented. An approach for practical implementation is

also described.

7.2.1 Noise Distribution

The noise distribution for a scatterometer measurement is modeled as a Gaussian

random variable with a mean that is the true or noise-free value and a variance that is

a quadratic function of the mean [27] [28]. This variance formulation incorporates fading

and receiver noise. With this noise model, the vector of noisy σ0 measurements ~σ0
m can be

expressed as

~σ0
m = ~σ0

t + ~ν (7.6)

where ~σ0
t = T(H~U [x′]), and ~ν is a zero-mean Gaussian random vector with a diagonal

covariance R. The diagonal terms of the covariance Ri,i can be written as

Ri,i = αi(σ
0
t,i)

2 + βiσ
0
t,i + γi (7.7)

where σ0
t,i is the ith component of ~σ0

t and αi, βi, and γi are functions of the scatterometer

design and the measured noise power. Note that the expression above assumes that the

GMF is a deterministic mapping. Uncertainty in the GMF (or geophysical noise [29]) may

be included by modifying the random vector ~ν.

For this chapter, we assume that the geophysical noise is negligible and use the

Gaussian noise model described above. This results in the likelihood function

f(~σ0
m|~σ0

t ) =
exp{(~σ0

m − ~σ0
t )
TR−1(~σ0

m − ~σ0
t )}

(2π)N/2|R|1/2 . (7.8)

Note that f(~σ0
m|~σ0

t ) may also be expressed as f(~σ0
m|~U [x′]) since ~σ0

t = T(H~U [x′]).

A common approach to estimate the parameters of a distribution is maximum-

likelihood (ML) estimation. However, at ultra high resolution, the scatterometer wind field

estimation problem is generally ill-posed (i.e., there are more parameters to estimate than

measurements). To regularize the problem, we propose a Bayesian approach, which employs

a prior distribution.
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7.2.2 MAP Reconstruction Estimator

Because of the nonlinearity of the GMF, the shape of the noise distribution with

respect to the wind is generally multimodal [29]. A maximum a posteriori (MAP) estimator

can deal with the potential ambiguity this causes. MAP estimation is Bayesian estimation

with a uniform loss function [35] and is similar to maximum-likelihood estimation but also

incorporates the prior distribution. The MAP estimator can be expressed as

~̂UMAP [x′] = argmax
~U [x′]

f(~σ0
m|~σ0

t )f(~U [x′]) (7.9)

where ~σ0
m is the noisy measurement vector, f(~σ0

m|~σ0
t ) is the likelihood function defined in

Eq. 7.8, and f(~U [x′]) is a prior distribution. Note that f(~U [x′]) need not be a direct prior of

the wind vector field. For example, the prior may be a distribution of some function of the

wind field. In practice the MAP log-likelihood function

log f(~σ0
m|~σ0

t ) + log f(~U [x′]) (7.10)

is used as the MAP objective function.

7.2.3 Prior Distributions

Prior distributions can be obtained in various ways. They can be empirically derived

from data, or can be chosen in order to apply additional constraints. For wind scatterometry,

prior distributions can both regularize the inverse problem and aid in ambiguity selection.

Prior distributions can also be employed to force the wind estimates to be consistent with

other wind field estimates with potentially different resolutions.

For the purpose of this chapter, we desire to impose a prior that regularizes the

problem without imposing much structure on the wind fields, and without relying too heavily

on external data. In order to regularize the problem, we apply a prior that is independent

from pixel to pixel. Although a wind field prior may be used, we apply the prior in the σ0

field domain since it is difficult to obtain a useful direction prior without an external data

source. Imposing a prior on the σ0 fields in this manner can be viewed as estimating the
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σ0 fields via the wind. That is, we reconstruct the σ0 fields that are consistent with an

underlying wind field and simultaneously produce a wind field estimate.

We assume that each pixel of each σ0 field has the mean of the obtained scatterometer

measurement and a finite variance. The Gaussian distribution is the maximum entropy

distribution for a given mean and variance, i.e., it imposes the least amount of structure of

all distributions with a given mean and variance [67]. Therefore, each pixel of each σ0 field

is assumed to be an independent Gaussian random variable with a mean corresponding to

the aperture-filtered σ0 measurement and a given variance. More precisely, the prior can be

expressed as

f(~U [x′]) =
∏

i,x′
f(σ0

t,i[x
′]) =

∏

i,x′
f(gmfi(~U [x′])) (7.11)

where each f(gmfi(~U [x′])) is

f(gmfi(~U [x′])) =
1√
2πp

exp

{
−(σ0

m,i − gmfi(~U [x′]))2

2p2

}
(7.12)

where p2 is the variance. Note that for all the pixels of the σ0 field for a given measurement

i, the mean σ0
m,i of this prior is constant. Thus, this prior also acts as a smoothing filter

on the σ0 fields and the wind estimates. The variance p2 is left as a tuning parameter to

trade-off spatial resolution for reduced variability of the estimates.

7.2.4 Implementation

Because of the nonlinearity of the GMF and the structure of the noise, the MAP

objective function is multimodal. The local maxima represent field-wise ambiguous winds.

Although it is theoretically possible to find every local maxima and report them as wind

field ambiguities, this is difficult because of the high number of parameters in the wind field

reconstruction problem.

For convenience, we employ a gradient search method initializing with an up-sampled

result of the standard resolution product. This results in a single wind field estimate. The ini-

tialization field effectively acts as an ambiguity selection step since the new method generally

converges to a wind field ambiguity close to the initialization field. Alternative initialization
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fields may be obtained from ultra high resolution (UHR) processing, model-based wind field

estimation from the σ0 data, or data from external sources. Note that the wind field may be

estimated in meridional and zonal components or in speed and direction components. We

search along the gradient with respect to the wind speed and direction components, since it

is simpler to search numerically due to the structure of the objective function. The gradient

of the MAP objective function is provided in Appendix C.5.

7.3 Connections Between Approaches

The new approach solves the general inverse problem by regularizing via a prior. The

conventional approaches, which apply assumptions and approximations to solve the problem,

can be expressed as simplified special cases of the new method. The implicit assumptions

made by the drop-in-the-bucket and UHR methods have the effect of regularizing the wind

inversion problem by enabling point-wise wind field estimation. This section explores the

relationship between the new approach and the standard drop-in-the-bucket, UHR, and

model-based approaches.

7.3.1 Drop-in-the-bucket Approach

First, consider the drop-in-the-bucket approach. This approach uses multiple mea-

surements whose aperture-function centers fall into a WVC to independently estimate a

wind vector for that cell [31]. In relation to the sampling model in Eq. 7.3, this can be

viewed as assuming that the wind field is piece-wise constant over the WVCs and that the

aperture functions are delta functions. That is, under the implicit assumptions, each row of

the sampling model can be expressed as

σ0
d,i =

∫
δ(x− xi)gmfi(~U(x))dx = gmfi(~U(xi)) (7.13)

where xi is the center of the aperture function for measurement i and ~U(xi) = ~U(xj) for all

xi, xj in the same WVC. We use the notation σ0
d,i to represent the ith σ0 measurement for

the drop-in-the-bucket method. The vector of σ0 measurements for the drop-in-the-bucket

method is expressed as ~σ0
d. Note that since the true wind field is not piece-wise constant
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and the aperture functions are not delta functions, the drop-in-the-bucket technique, in

effect, solves a different problem than the original. The errors introduced by the implicit

assumptions made using drop-in-the-bucket methods can be evaluated by

∣∣∣∣~σ0
t − ~σ0

d

∣∣∣∣
L1

=
∑
i

∣∣σ0
t,i − ~σ0

d,i

∣∣

=
∑
i

∣∣∣∣
∫
Ai(x)gmfi(~U(x))dx− gmfi(~U(xi))

∣∣∣∣

=
∑
i

∣∣∣∣
∫
Ai(x)[gmfi(~U(x))− gmfi(~U(xi))]dx

∣∣∣∣

≤
∑
i

∫
Ai(x)

∣∣∣gmfi(~U(x))− gmfi(~U(xi))
∣∣∣ dx. (7.14)

If the wind field is relatively smooth,
∣∣∣gmfi(~U(x))− gmfi(~U(xi))

∣∣∣ is generally small for each

i and the L1 normed difference between the forward projections is small. However, for wind

fields with significant small scale structure, the normed difference may be large, resulting in

biases in the wind estimates.

While the drop-in-the-bucket sampling operation differs from the new method, the

noise model is the same. This results in a similar expression for the likelihood function

f(~σ0
m|~σ0

d) as expressed in Eq. 7.8 but with ~σ0
t replaced by ~σ0

d.

It can be shown that the MAP reconstruction method for estimating the wind reduces

to the conventional method, assuming the drop-in-the-bucket forward model and a particular

prior. First, suppose we apply the new field-wise approach to estimate the wind from the

σ0 measurements assuming the drop-in-the-bucket forward operation. The assumption that

the wind field is piecewise constant makes the problem discrete, albeit in a different way

than assuming that the wind fields are bandlimited. To solve this discrete problem using

the MAP reconstruction approach, a gradient search is used. With the drop-in-the-bucket

forward model, the gradient of the likelihood function defined in Appendix C.5 Eq. C.20

reduces to

∂ log f(~σ0
m|~U [x′])

∂Uj[x]
=





∑
iKi

∂gmfi(
~U [x])

∂Uj [x]
if x′ = x

0 otherwise
(7.15)
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where the square brackets [x] represent regular sampling of the piece-wise constant wind field

(i.e., one sample per WVC). Note that the partial derivative of the likelihood function with

respect to the wind at a particular WVC is not a function of the wind in other WVCs. This

implies that the wind vector at each WVC can be estimated independently (i.e., point-wise).

Note that the above expression is the gradient of the likelihood function without

the prior. As long as some measurements fall into every WVC, the wind can be estimated

point-wise for each WVC without a prior (i.e., the Fisher information matrix is diagonal

and not singular). Thus, the implicit assumptions in the modified forward model effectively

regularize the problem. If no prior is imposed (or equivalently if a non-informative prior is

used), the MAP reconstruction approach reduces to conventional processing, when assuming

the drop-in-the-bucket forward model. We note, however, that the new approach provides

more control of how the problem is regularized and allows for higher resolution wind estimates

than possible with conventional drop-in-the-bucket methods.

7.3.2 UHR Approach

The UHR approach assumes a similar forward model as in Eq. 7.3, but modifies it

slightly by making an important assumption. UHR processing assumes that measurements of

a similar geometry (and same polarization and frequency) sample the same wind-dependent

σ0 field.

More precisely, each row of the UHR sampling operation is expressed as

σ0
UHR,i =

∫
Ai(x)gmff (~U(x))dx (7.16)

where gmff (~U(x)) represents the σ0 field of a given flavor (e.g., consecutive measurements

from the same beam). Under the UHR assumption, each σ0
UHR,i of a particular flavor sam-

ples the same gmff (~U(x)). The multiple measurements of a given flavor are combined to

reconstruct the σ0 field of a given flavor, and this is done for each different flavor. The wind

is then estimated point-wise from the reconstructed σ0 fields [7].

Although the assumption is that multiple measurements sample the same σ0 field,

each measurement actually samples a slightly different σ0 field because each measurement
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views the surface with a slightly different geometry. The error introduced by this assumption

can be evaluated as

∣∣∣∣~σ0
t − ~σ0

UHR

∣∣∣∣
L1

=
∑
i

∣∣σ0
t,i − ~σ0

UHR,i

∣∣

=
∑
i

∣∣∣∣
∫
Ai(x)gmfi(~U(x))dx−

∫
Ai(x)gmff (~U(x))dx

∣∣∣∣

=
∑
i

∣∣∣∣
∫
Ai(x)[gmfi(~U(x))− gmff (~U(x))]dx

∣∣∣∣

≤
∑
i

∫
Ai(x)

∣∣∣gmfi(~U(x))− gmff (~U(x))
∣∣∣dx (7.17)

where ~σ0
UHR is the vector of measurements assuming the UHR forward model, and gmff (~U(x))

is the σ0 field assuming the geometry of flavor f . Note that gmfi(~U(x)) is the actual σ0 field

that is sampled by the ith measurement and differs from gmff (~U(x)) because of a slightly

different viewing geometry. The normed difference between the forward projections is rela-

tively small if the change in the GMF with respect to the differences in the geometry between

the actual measurements i and the assumed look geometry are small over the main lobe of

Ai(x). For scatterometer designs with narrow measurement spatial response functions, this

assumption is appropriate, but for scatterometer systems with broad measurement response

functions, this assumption may result in significant bias errors.

The noise model assumed for UHR processing differs from the standard noise model.

Although the UHR noise model is derived from the standard noise model, the UHR model

assumes each pixel to be statistically independent, resulting in a diagonal covariance matrix.

Also, the mean of the distributions for each pixel are assumed to be the true σ0 value at the

given pixel (i.e., σ0
t,i[x] = gmfi(~U [x]) for pixel x).

Note that if the covariance is assumed to be diagonal, it is generally non-singular (ex-

cept possibly if there are WVCs that happen to be in a null of every aperture function). This

implicit assumption regularizes the problem making point-wise estimation possible without

imposing a prior. If no prior is imposed (or equivalently if a non-informative prior is used)

MAP reconstruction reduces to point-wise UHR estimation, when assuming the UHR for-

ward operation and noise model.
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The actual noise distribution of the reconstructed σ0 fields has correlation among

adjacent WVCs due to the measurement overlap, resulting in a non-diagonal covariance

matrix. Although the UHR assumptions simplify the problem and result in useful estimates,

assuming that the covariance is diagonal may result in artifacts when the actual correlation

is significant.

The modifications to the noise model used in UHR processing regularize the inverse

problem (i.e., they make the underdetermined forward model invertible) and make point-wise

retrieval possible, but are somewhat ad-hoc. An alternate method may be to regularize the

problem by adding a diagonal to the singular covariance matrix. In fact, this is equivalent

to applying an independent Gaussian prior to each pixel of the reconstructed σ0 fields and

performing MAP estimation on a field-wise basis, similar to what is proposed above. This

suggests that for systems where measurements of a similar flavor can be combined, the prior

in Eq. 7.12 may be modified by replacing the mean σ0
m,i with the reconstructed σ0 value for

a given pixel.

7.3.3 Model-based Approach

Model-based estimation assumes that the true wind field is contained in the span

of the wind field model. The model parameters are estimated from the measurements and

then a wind field estimate is computed from the model parameter estimates. Generally, a

model is chosen so that there are fewer parameters to estimate than measurements, thus

regularizing the problem. The parameters are conventionally estimated using maximum

likelihood estimation [32] [33] [34]. Note that assuming that the wind field is in the span

of a wind field model is equivalent to imposing a uniform prior over the range space of the

wind field model. Thus, model-based methods can also be expressed as a special case of the

MAP reconstruction approach.

7.4 Application to SeaWinds

This section considers the application of the MAP wind reconstruction method to

the SeaWinds scatterometer. Here, background on the sensor is provided, examples are
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presented, and the MAP reconstruction estimates are compared to conventional products.

Simulation is employed to analyze the quality of the estimates.

7.4.1 SeaWinds Background

SeaWinds is a Ku-band scanning pencil-beam scatterometer. Two beams (v-pol and

h-pol) at two different nominal incidence angles are employed to produce a wide swath with

sufficient azimuth diversity to infer wind direction. Range/Doppler filtering is employed to

obtain several σ0 measurements (‘slices’) for each radar pulse [8]. The aperture function

of each slice σ0 measurement is a function of the antenna pattern and the range/Doppler

processing. In practice, the aperture functions can be approximated by a binary mask (i.e.,

a mask with ones within the 6dB main lobe and zeros outside) [43].

For SeaWinds, the wind is conventionally estimated on a 25km grid (L2B), 12.5km

grid (L2BH), and a 2.5km grid (UHR). For the L2B product, the slices of a given pulse are

first averaged together into ‘egg’ measurements and the eggs whose centers fall into a 25km

wind vector cell (WVC) are used to estimate the wind vector for that WVC [8]. A similar

procedure is done for the L2BH product, only the measurements are binned on a 12.5km

grid [8]. UHR processing first reconstructs four σ0 fields, one for each flavor (v-pol and

h-pol, fore- and aft- looking), onto a 2.5km grid using a weighted average of all the slice σ0

values weighted by the respective aperture functions [24] [25]. The wind is then estimated

point-wise from the reconstructed σ0 fields [7]. We compare the results of these different

methods with the new MAP reconstruction method.

7.4.2 Example

Figures 7.1 and 7.2 illustrate an example of wind field reconstruction from the Sea-

Winds scatterometer for a wind field with relatively small scale features. The L2B, UHR, and

MAP estimated wind speed fields are shown in Fig. 7.1, while the direction fields are plotted

in Fig. 7.2. The new method improves the resolution over the L2B product, producing a

wind field similar to the UHR field but with less noise.

Figures 7.3 and 7.4 display the speed difference fields and direction difference fields

between the various methods respectively. The difference between the MAP and L2B fields,
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Figure 7.1: Wind speed fields in m/s from L2B (top), UHR (middle), and MAP reconstruction
(bottom).
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Figure 7.2: Wind direction fields in degrees relative to north from L2B (top), UHR (middle),
and MAP reconstruction (bottom).
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the MAP and UHR fields, and the UHR and L2B fields are all shown. These images suggest

that the MAP estimates are consistent with the L2B and UHR estimates throughout the

swath. The UHR speed and direction estimates are noisy in the nadir region, while the MAP

direction estimates appear less noisy. Note that the differences between the UHR and L2B,

and the MAP and L2B wind estimates are also due in part to the differing resolutions of the

products.

7.4.3 Validation

It is difficult to evaluate the quality of the wind estimates without an independent

set of collocated data of a similar resolution. Lacking such data, we compare the MAP

reconstruction results to the conventional low resolution results and to the UHR product for

20 SeaWinds passes in the south Atlantic (i.e., a 6× 6 degree window around latitude −30,

longitude −130). The south Atlantic is chosen for convenience to avoid the tropics where

rain contamination is significant. Tables 7.1 and 7.2 show the speed and direction mean

difference, standard deviation (STD) of the difference, and the root mean squared (RMS)

difference between the MAP reconstructed winds and the L2B winds, between the UHR

winds and L2B winds, and between the MAP reconstructed winds and the UHR winds. For

Table 7.1 the L2B winds are up-sampled (using nearest neighbor interpolation) to the high

resolution grid, while for Table 7.2 the MAP and UHR winds are averaged down (using a

vector average) to the L2B resolution. The results suggest that the MAP reconstruction

method is consistent with the standard SeaWinds product and with the UHR product. The

mean difference (or bias) with respect to the L2B is low for both UHR and MAP wind

estimation. The standard deviation and RMS differences suggest that the MAP estimates

are generally less noisy than the UHR products.

7.4.4 Simulation

To further investigate the performance of the new method, we employ Monte-Carlo

simulation. Estimates of the bias and variance of the estimates of the L2B, UHR, and MAP

reconstruction wind retrieval methods are also obtained using simulation.
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Figure 7.3: Wind speed difference fields in m/s from difference between MAP and L2B (top),
difference between MAP and UHR (middle), and difference between UHR and L2B (bottom).
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Figure 7.4: Wind direction difference fields in degrees between MAP and L2B (top), between
MAP and UHR (middle), and between UHR and L2B (bottom).
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Table 7.1: Mean difference, standard deviation of the difference, and RMS difference
between MAP and L2B, and between MAP and UHR estimated wind speeds and

directions at UHR resolution (averaged over 20 passes in the south Atlantic).

Mean STD RMS
MAP − L2B speed -0.46 1.32 1.40
UHR − L2B speed -0.23 1.53 1.55
MAP − UHR speed -0.24 1.40 1.42

MAP − L2B dir -1.78 17.03 17.13
UHR − L2B dir 0.22 26.08 26.08
MAP − UHR dir -2.01 27.09 27.16

Table 7.2: Mean difference, standard deviation of the difference, and RMS difference
between MAP and L2B, and between MAP and UHR estimated wind speeds and

directions at L2B resolution (averaged over 20 passes in the south Atlantic).

Mean STD RMS
MAP − L2B speed -0.98 1.14 1.50
UHR − L2B speed -1.26 1.22 1.76
MAP − UHR speed 0.28 0.63 0.69

MAP − L2B dir -1.98 8.38 8.60
UHR − L2B dir -1.40 9.26 9.37
MAP − UHR dir -0.58 5.93 5.96

A comprehensive simulation and analysis is beyond the scope of this chapter and is

the subject of future research. Here, we analyze the results from a particular wind field

with 100 independent noise realizations. We generate a simulated wind field that has a wave

number spectrum that falls off as one over the wave number squared. Figure 7.5 plots the

wind speed and direction field used in simulation. Although this wind field may not be

realistic, it exhibits small scale structure necessary to test the resolution of the estimates.

Figures 7.6 and 7.7 show the scatter density plots of the MAP and UHR estimates

compared to the true wind for the wind speed and direction, respectively, for a particular

noise realization. The plots suggest that the MAP direction estimates are less noisy than

the UHR estimates. The MAP speed estimates of high wind speeds have a slightly lower

variability than the UHR estimates while the variability at low wind speeds is higher.
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Figure 7.5: Simulation wind speed field in m/s (left) and direction field in degrees (right).
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Figure 7.6: Scatter density plots of wind speed obtained in simulation for MAP (left) and
UHR (right).

Figures 7.8 and 7.9 plot the bias of the wind speed and direction estimates, respec-

tively, for the MAP and UHR methods. For both methods higher wind speeds tend to

produce a larger bias, although the bias of MAP reconstruction estimates are less severe

than the UHR estimates. In the swath edges the structure of the bias seems to be differ-

ent from the inner swath. The direction estimates are relatively unbiased except in frontal

features.
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Figure 7.7: Scatter density plots of wind direction obtained in simulation for MAP (left) and
UHR (right).

Along−track (km)

C
ro

ss
−

tr
ac

k 
(k

m
)

 

 

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

−10

−8

−6

−4

−2

0

2

4

6

8

10

Along−track (km)

C
ro

ss
−

tr
ac

k 
(k

m
)

 

 

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

1400

1600

1800

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 7.8: Bias of wind speed estimates in (m/s) for MAP (left) and UHR (right).

Figures 7.10 and 7.11 plot the standard deviation of the wind speed and direction

estimates, respectively, for the MAP and UHR methods. As expected the MAP estimates of

high wind speeds have a lower standard deviation than the UHR estimates. The standard

deviation of the direction fields is much different for the UHR and MAP estimates. In the

nadir region, the UHR direction estimates have a large standard deviation, whereas the MAP

estimates have a relatively low standard deviation all throughout the swath.
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Figure 7.9: Bias of wind direction estimates in degrees for MAP (left) and UHR (right).
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Figure 7.10: Standard deviation of wind speed estimates in (m/s) for MAP (left) and UHR
(right).

7.5 Conclusion

This chapter approaches the scatterometer wind field estimation problem in a novel

way. Wind field estimation is performed on a field-wise basis without imposing a low-order

model. MAP estimation is employed to estimate regularly spaced samples of the wind field at

ultra high resolution. The method is applied to the SeaWinds scatterometer and the results

are compared to standard products. The MAP reconstruction method is consistent with

low resolution standard products but provides higher resolution information. For SeaWinds,
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Figure 7.11: Standard deviation of wind direction estimates in degrees for MAP (left) and
UHR (right).

the MAP reconstruction estimates are consistent with the UHR estimates, but produce less

noisy estimates.

Future research may include a more rigorous validation of the MAP reconstruction

product for the SeaWinds scatterometer. Also, the approach can be applied to operational

scatterometer data, such as the advanced scatterometer (ASCAT), and adapted for a near

real time ultra high resolution product. The MAP reconstruction approach can also be

extended to simultaneously reconstruct wind and rain vector fields from scatterometer mea-

surements.
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Chapter 8

Conclusion

This dissertation approaches the problems of scatterometer image reconstruction and

wind estimation from a new perspective. Scatterometer image reconstruction methods are

extended to appropriately handle scatterometer noise. Wind estimation from the σ0 mea-

surements is treated as a nonlinear extension of the new scatterometer image reconstruction

approach, dealing with noise and the nonlinearity introduced by the GMF. Ultra high res-

olution wind field estimation is revisited and formalized. Several new algorithms for scat-

terometry are presented and analyzed, including MAP σ0 reconstruction, point-wise MAP

UHR wind estimation, and MAP wind field reconstruction. The theory and results provide

new insight into the scatterometer σ0 imaging and wind estimation problems. Although the

new methods have been implemented for the SeaWinds scatterometer, the general approach

to scatterometry developed in the dissertation is applicable to any scatterometer design and

may influence the design of future scatterometers.

With the new field-wise approach, issues such as observability, identifiability, and

resolution of the σ0 and wind fields can be addressed from a field-wise perspective. The new

approach generalizes and unifies previous wind estimation approaches as special cases of a

more general solution. The relationship between the different wind estimation approaches

can now be analyzed under one unified theory.

8.1 Summary of Contributions

The major contributions of the dissertation are published or in review, comprising

three journal articles [1] [2] [3] (with [2] and [3] currently in review), and several conference

papers [4] [5] [6] [7]. The three journal articles consider the three major topics of the dis-

sertation: σ0 imaging, UHR wind estimation, and wind field reconstruction. Contributions
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include new theoretical perspectives, and development and analysis of improved processing

algorithms. The contributions to each topic of the dissertation are summarized below.

For σ0 imaging, the theory of aperture-filtered sampling and reconstruction is devel-

oped and reconstruction is extended to deal with noise. A MAP reconstruction method is de-

veloped. Trade-offs and issues with choosing different prior distributions are discussed. The

method is implemented for the SeaWinds and ASCAT scatterometers. The MAP method

results in high resolution σ0 images, without the ad-hoc processing steps of the SIR algo-

rithm. Appropriate priors can be chosen to reduce noise and sampling artifacts. The MAP

reconstruction approach with a near non-informative prior produces higher resolution images

than the SIR method and does not rely on ad-hoc tuning methods. However, the noise level

is typically higher than with the SIR method. The MAP method may be tuned to trade-off

noise for resolution explicitly and can produce images of a similar resolution and noise level

as the SIR method.

For UHR wind estimation, several theoretical issues are dealt with, and novel ap-

proaches to reduce noise and improve ambiguity selection are developed. The UHR noise

and measurement models are formally developed and the implicit assumptions involved are

explicitly stated. Point-wise MAP estimation using a prior that is a function of a wind field

model is developed and applied to the case of hurricane wind and rain field estimation. The

UHR MAP approach improves ambiguity selection, reduces the variability of the estimates,

and produces results more consistent with what is expected in hurricanes (see Chapters 5

and 6). However, the UHR MAP approach developed in Chapter 6 depends on a simplified

hurricane model that is derived from standard UHR SeaWinds data.

For wind field reconstruction, wind estimation is generalized to handle spatial cor-

relation introduced by the irregular sampling operation. A MAP wind field reconstruction

estimator is developed and the method is applied to the SeaWinds scatterometer. The re-

sults are compared to the conventional L2B and UHR products. The MAP reconstruction

approach produces ultra high resolution wind field estimates that are consistent with both

the L2B and UHR products, but with a lower variability and bias. For SeaWinds, MAP

wind field reconstruction results in a lower bias than the conventional UHR approach. The

variability of the MAP speed estimates is similar to the conventional UHR estimates, but
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the variability of the MAP direction estimates is significantly lower–especially in the nadir

region of the swath. MAP wind reconstruction using a gradient search method also resolves

the issue of ambiguity selection, effectively using the initialization field as a type of nudging

field. This results in a much simpler solution than the conventional point-wise approach of

reporting every possibly point-wise ambiguity as a potential solution.

8.2 Logical Extensions and Future Work

Although the algorithms are implemented only for particular scatterometers, the the-

ory developed in the dissertation applies generally to any scatterometer design. The pro-

cessing methods developed here may be applied effectively to other scatterometers. The

hurricane estimation approach would be particularly interesting to apply to a C-band scat-

terometer such as ASCAT because the rain effects are generally less severe than for Ku-band.

Also, a UHR wind product can be developed for ASCAT using the concepts developed in

this dissertation. A UHR ASCAT wind product could provide important information on

smaller scale wind structures for operational weather now-casting, forecasting, and post-

casting. Furthermore, SeaWinds MAP σ0 imaging and wind estimation approaches may be

standardized as operational products, which would require a more thorough validation and

quality control analysis with in-situ data.

The approach taken to the scatterometer problem can be applied to many microwave

remote sensing problems. For example, microwave imaging using synthetic aperture radar

can be expressed as a special case of reconstruction from aperture-filtered samples. Also, the

approach can be applied to passive microwave systems, such as radiometers, to reconstruct

images of brightness temperature or other geophysical parameters from the raw measure-

ments. Both of these applications would be particularly interesting because the noise model

may be treated as additive white Gaussian noise.
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Appendix A

List of Acronyms

GMF geophysical model function
UHR ultra high resolution
SWR simultaneous wind and rain
WVC wind vector cell
MAP maximum aposteriori
ML maximum-likelihood
ASCAT Advanced scatterometer
QuikSCAT SeaWinds scatterometer on the QuikSCAT platform
TRMM-PR precipitation radar on the tropical rain measurement mission
AVE averaging reconstruction algorithm
AART additive algebraic reconstruction technique
MART multiplicative algebraic reconstruction technique
SIR scatterometer image reconstruction algorithm
L2B level 2B standard 25 km SeaWinds wind product
NWP numerical weather prediction
NCEP National Centers for Environmental Prediction
H*Wind hurricane wind model from the National Hurricane Center
CHT circular Hough transform
RMS root mean square
pdf probability density function
SFIC σ0 filtering with inconsistency correction algorithm

137



138



Appendix B

Appendix to Chapter 3

This appendix provides derivations and theoretical results connected with aperture-
filtered sampling and reconstruction discussed in Chapter 3. First, the subtleties associated
with processing continuous signals as discrete signals are considered. Reconstruction esti-
mators are then derived for the additive white Gaussian noise case. Then, the scatterometer
ML reconstruction estimator is derived.

B.1 Discrete Equivalence of Bandlimited Signals

Here, the conditions are considered under which the continuous-index sampling op-
eration A is equivalent to a discrete linear operation on the conventional samples. First,
it is shown that if each An(x) is bandlimited, the sampling can be represented by Eq. 3.3.
The same result is obtained if s(x) is bandlimited, even if each An(x) is not bandlimited.
Next, it is shown that if s(x) or each An(x) is bandlimited and periodic then A is a finite
dimensional matrix and can be analyzed with standard linear algebra.

First consider the case in which each An(x) is bandlimited to ω0 and both s(x) and
each An(x) are in the Hilbert space of square integrable functions (L2). From conventional
reconstruction theory recall that any function f(x) that is bandlimited to ω0 can be rep-
resented by sinc-function interpolation from the conventional (uniformly spaced) samples
f [xn], and f(x) can thus be expressed as

f(x) =
∑
n

f [xn]sinc(ω0(x− xn)). (B.1)

If each of the aperture functions An(x) are bandlimited to ω0 then each row of the sampling
operation in Eq. 3.2 can be written as

∫
An(x)s(x)dx =

∫ ∑
i

An[xi]sinc(ω0(x− xi))s(x)dx

=
∑
i

An[xi]

∫
sinc(ω0(x− xi))s(x)dx

=
∑
i

An[xi]sBL[xi] (B.2)

where sBL[xi] represents the conventional samples of a bandlimited version of s(x) and An[xi]
represents the conventional samples of the aperture functions. The sampling operation can
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thus be written as a discrete linear operation on the samples of a bandlimited version of the
signal.

By a similar argument if s(x) is bandlimited, but the An(x)’s are not necessarily
bandlimited, a similar result is obtained

∫
An(x)s(x)dx =

∫ ∑
i

sinc(ω0(x− xi))An(x)s[xi]dx

=
∑
i

An,BL[xi]s[xi] (B.3)

where An,BL[xi] represents the bandlimited version of the nth aperture function.
Therefore, if either s(x) or each An(x) is bandlimited the formulation in Eq. 3.3 is

obtained. Here, ~s represents the sinc-function samples of s(x) (i.e., conventional samples of
a low-pass filtered version of s(x)) and the rows of A represent sinc-function samples of the
aperture functions. In general, ~s and A are infinite-dimensional.

It can be shown that A and ~s are finite dimensional if either the aperture functions
or the signal are bandlimited and periodic. Suppose each An(x) is bandlimited and periodic.
Dirichlet-kernel interpolation then reconstructs the aperture functions from conventional
samples. Each row of the sampling operation becomes

∫

P
An(x)s(x)dx =

∫

P

P∑
i=1

An[xi]D(ω0(x− xi))s(x)dx

=
P∑
i=1

An[xi]

∫

P
D(ω0(x− xi))s(x)dx

=
P∑
i=1

An[xi]sBL,P [xi] (B.4)

where D(ω0(x−xi)) represents the Dirichlet kernel, sBL,P [xi] represents conventional samples
of the bandlimited periodic version of s(x), and P represents the fundamental period of the
aperture functions. Also, if the An(x)’s can be represented as periodic but are not necessarily
bandlimited but s(x) is bandlimited and periodic, by symmetry a similar result is obtained
with the periodic and bandlimited versions of the aperture functions.

B.2 White Gaussian Noise

Here, reconstruction estimators are derived based on ML and MAP estimation for
the case of white Gaussian noise. The Fisher information matrix is obtained and it is shown
that the estimates are minimum-variance unbiased estimates. Furthermore, the minimum
variance unbiased estimators are the same linear estimators used in noise-free reconstruction
in Section 3.3.
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B.2.1 Invertible Fisher Information

First, consider the case in which the Fisher information matrix is invertible. For ML
estimation the pdf in Eq. 3.13 is maximized. Note that maximizing f(~gν |~g) is equivalent
to maximizing log{f(~gν |~g)}. To find the argument that maximizes the log-likelihood, the
derivative is set equal to zero and the resulting system of equations is solved. Taking the
derivative with respect to the ith component of ~s produces

∂ log{f(~gν |~g)}
∂si

=
∂

∂si

(
−M

2
log{2πσ2} −

∑
j

(gν,j − ~ATj ~s)
2

2σ2

)

=
∑
j

(gν,j − ~ATj ~s)

σ2
Aj,i = 0 ∀i = 1, · · · , N (B.5)

where N is the number of conventional samples. This results in the system of linear equations

AT ~gν = ATA~s. (B.6)

Since A is either overdetermined or fully determined, it has full-row rank, which implies that
ATA is a square invertible matrix. Thus, the solution to this system of equations is

~̂s = (ATA)−1AT ~gν (B.7)

which is the ML estimate of the conventional samples. This estimator has exactly the same
form as the reconstruction operator obtained for the noise-free overdetermined case. If A
is fully determined then it can be shown that (ATA)−1AT = A−1, which is the linear
reconstruction operator found in Section 3.3 for the noise-free fully-determined case.

Now the bias and the covariance of the estimates are evaluated. The expected value
of the estimate ~̂s is

E~̂s = E(ATA)−1AT ~gν = (ATA)−1ATE ~gν

= (ATA)−1AT~g = (ATA)−1ATA~s = ~s (B.8)

and so the estimate is unbiased. The covariance is

R(~̂s) = E(~̂s− E~̂s)(~̂s− E~̂s)T

= E((ATA)−1AT ~gν − ~s)((ATA)−1AT ~gν − ~s)T
= E((ATA)−1AT~ν)((ATA)−1AT~ν)T

= (ATA)−1ATE~ν~νTA(ATA)−T

= σ2(ATA)−1ATA(ATA)−T

= σ2(ATA)−T . (B.9)
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Components of the Fisher information matrix for the white Gaussian case are

Ji,j(~s) = E
∑

k,l

(gν,k − ~ATk~s)

σ2
Ak,i

(gν,l − ~ATl ~s)

σ2
Al,j

=
∑

k

(gν,k − ~ATk ~s)
2

σ4
Ak,iAk,j =

∑

k

Ak,iAk,j
σ2

. (B.10)

The Fisher information matrix then becomes

J(~s) =
1

σ2
ATA (B.11)

which is invertible and has the inverse J(~s)−1 = σ2(ATA)−1. Observe that ATA is symmetric
(i.e., ATA = (ATA)T ) and the inverse is also symmetric. Therefore,

J(~s)−1 = σ2(ATA)−T = R(~̂s) (B.12)

implying that this estimator is a minimum-variance unbiased estimator.

B.2.2 Singular Fisher Information

Consider the case with Gaussian white noise on the aperture-filtered samples in which
A is underdetermined. The MAP estimate with a maximum-entropy prior (zero-mean Gaus-
sian) is

~̂s = argmax
~s

{f(~gν |~g)f(~s)} = argmax
~s

{log{f(~gν |~g)f(~s)}}

= argmax
~s

{
−

∑
j

(gν,j − ~ATj ~s)
2

2σ2
−

∑
i

s2
i

2σ2
s

}
(B.13)

where σs is the variance of the Gaussian prior. Note that the constant terms (−M
2

log{2πσ2}
and −N

2
log{2πσ2

s}) have been dropped since they do not affect where the maxima occur. To
find the maximum, the derivative with respect to each component of ~s is set equal to zero.
This results in

∂

∂sk

{
−

∑
j

(gν,j − ~ATj ~s)
2

2σ2
−

∑
i

s2
i

2σ2
s

}

=
∑
j

(gν,j − ~ATj ~s)

σ2
Ak,j − sk

σ2
s

= 0 ∀k = 1, · · · ,M (B.14)

which can be written as

1

σ2
(AT~gν −ATA~s)− 1

σ2
s

~s = ~0 (B.15)
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or

AT~gν =

(
ATA +

σ2

σ2
s

I

)
~s. (B.16)

As long as the ratio −σ2

σ2
s

is not equal to any of the eigenvalues of ATA,
(
ATA + σ2

σ2
s
I
)

is

invertible and the MAP estimate of the conventional samples is

~̂s =

(
ATA +

σ2

σ2
s

I

)−1

AT~gν . (B.17)

This corresponds to a regularization approach to the inverse of the matrix ATA. Observe
that the Moore-Penrose pseudo-inverse of A can be calculated by the limit

A† = lim
δ→0

(
ATA + δI

)−1
AT . (B.18)

As σ2
s approaches infinity, the ratio σ2

σ2
s

approaches zero and so the maximum-entropy MAP
estimate is provided by the Moore-Penrose pseudo-inverse. This is exactly the reconstruction
operation obtained for the underdetermined system in Section 3.3.

Although the Moore-Penrose pseudo-inverse is not generally a minimum-variance un-
biased estimator over the entire domain of A, it is a minimum-variance unbiased estimator
over the range space of A†. In order to show this, we need a lower bound on the covariance.
Since the Fisher information is singular, we cannot apply the Cramer-Rao bound directly
and must find a lower bound another way. An estimator over any subspace can be obtained
by finding a signal model that spans the subspace, estimating the model parameters, and
then projecting the model parameter estimates back through the model to estimate the sig-
nal. The Cramer-Rao bound on the estimates of the model parameters may be obtained
and then scaled by the sensitivity of the model to obtain a lower bound on the estimates of
the signals over the subspace. More precisely the model ~s = A†~a is applied where ~a are the
model parameters. This results in the Fisher information matrix for estimating the model
parameters

J(~a) =
1

σ2
I. (B.19)

The sensitivity of the model is
∂

∂~a
A†~a = A† (B.20)

resulting in the lower bound

R(~̂s) ≥
(
∂

∂~a
A†~a

)
J(~a)−1

(
∂

∂~a
A†~a

)T

= σ2A†A†T . (B.21)

Now the bias and covariance of the MAP estimator over the range space of A† are
obtained. The expected value of the estimate is

E(~̂s) = E(A†~gν) = A†~g = A†A~s (B.22)
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and if ~s = A†~a then
E(~̂s) = A†AA†~a = A†~a = ~s. (B.23)

Thus, the MAP estimator for white Gaussian noise is unbiased over the range space of A†.
The covariance of the MAP estimator over the range space of A† is

R(~̂s) = E(~s−A†~g)(~s−A†~g)T

= E(A†~gν)(A†~gν)T − ~s~sT
= A†(~g~gT + σ2I− ~a~aT )A†T

= A†(AA†~a~aT (AA†)T + σ2I− ~a~aT )A†T

= σ2A†A†T . (B.24)

Thus, the covariance achieves the lower bound and so the MAP estimator is a minimum-
variance unbiased estimator over the range space of A† for white Gaussian noise.

B.3 Scatterometer ML Estimator

Here, the ML scatterometer reconstruction estimator is obtained assuming that the
sampling matrix is not underdetermined. It is also shown that an analytic form for the
estimator may be obtained, although the expression is rather complicated and multiple
solutions (local maxima) are possible.

The ML estimator for the scatterometer noise model searches for the conventional
samples ~s that maximize the log-likelihood function

LML = −
∑
i

[
(gν,i − ~ATi ~s)

2

2Ri,i

+ 1/2 log{2πRi,i}
]
. (B.25)

The local maxima is obtained by setting the gradient to zero and solving the resulting system
of equations. The partial derivative of LML with respect to the jth component of ~s is

∂LML

∂sj
=

∑
i

−Ai,j
Ri,i

[
−gν,i + ~ATi ~s+ αi ~A

T
i ~s+ βi/2 −(gν,i − ~ATi ~s)

2(αi ~A
T
i ~s+ βi/2)

Ri,i

]

= ~ATj
~K(~s). (B.26)

Taking the partial derivatives with respect to each component and setting them equal to
zero produces the system

AT ~K(~s) = ~0 (B.27)

which implies that ~K(~s) = ~0 or that ~K(~s) is in the null space of AT . If A is fully determined

or overdetermined, there is no null space and the only solutions are when ~K(~s) = ~0. If each

element of ~K(~s) is set to zero, cubic equations in ~ATi ~s are obtained for each i that have at
least one and up to three real roots. Each of these roots can be solved analytically via the
cubic equation. The solutions to the entire system of equations result in a linear system in
~s. That is, if ~z is a solution to the cubic system of equations ~K(~s) = ~0, then ~ATi ~s = zi for
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each i and the linear system A~s = ~z is obtained. If A is fully determined, then ~̂s = A−1~z,
and if it is overdetermined, then ~̂s = (ATA)−1AT~z.

Note that there are potentially N3 local maxima of LML where N is the number of
conventional samples, although in practice there tend to be fewer local maxima. The N3

local maxima correspond to every combination of the three roots of the cubic equations. To
find the ML estimate, all of the local maxima must be found and checked to see which one
has the highest maxima. This is too cumbersome for a practical implementation and so a
simple gradient search is used to find a local maxima near an initial guess.
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Appendix C

Appendix to Chapter 7

This appendix considers several issues involved in the scatterometer wind field recon-
struction approach developed in Chapter 7. First, noise-free reconstruction of the continuous
forward operator is discussed. The relationship between the wave number spectra of the wind
and the associated σ0 fields is then addressed. Next, noise-free wind field reconstruction of
the discrete forward operator is considered. An approach to deal with Geophysical noise is
presented. The gradient of the MAP objective function is derived. Finally, an approach to
obtain a lower bound on the estimates of the MAP reconstruction estimator is developed.

C.1 Inversion of the Continuous Noise-free Forward Operator

In theory, the continuous sampling operation can be inverted using constrained opti-
mization. That is, we define a metric d(~U(x), ~z(x)) over the wind field domain to optimize

subject to a consistent forward sampling operation ~σ0
t = T (~U(x)). To find the optima, the

Lagrangian
L = d(~U(x), ~z(x)) + ~λT (~σ0

t − T (~U(x))) (C.1)

is used. The gradient with respect to the wind field and ~λ are set to zero to find the critical
points. Depending on the metric and the sampling geometry, a second derivative test may
be required to distinguish maxima from minima. For a given set of noise-free measurements
~σ0
t , solutions to these equations and inequality constraints represent wind fields that are

consistent with the forward operator that optimize the metric. As a function of ~σ0
t , the

set of equations and inequalities define a finite-dimensional manifold in the wind domain
representing all consistent solutions that optimize the metric. This manifold defines the
class of signals that can be reconstructed under the metric. A different metric may result in
a different class of reconstructible signals. In principle, the manifold may be parameterized,
producing a wind field model with finitely many parameters that can be estimated from the
σ0 measurements.

Note that although this approach allows the reconstructible wind field signals to be
represented with a finite number of parameters, because of the nonlinearity the manifold
cannot in general be contained within the span of a finite linear basis. Since bandlimited
spaces are finite linear subspaces, the class of reconstructible wind fields is generally not
bandlimited. Even if all the aperture functions are bandlimited, they may not impose a
bandlimit on the wind fields (nor the σ0 fields because they must be consistent with the
wind field). Therefore, it may be possible to obtain wind estimates (and corresponding σ0

field estimates) with higher frequency content than the band limit of the aperture functions.
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C.2 Relationship Between Spectra of Wind and σ0 Fields

This section presents the relationship between the wave-number spectrum (Fourier
transform) of the spatially continuous σ0 fields for each measurement and the wave-number
spectrum of the components of the wind field. First, a theorem and proof for the relationship
between the spectrum of the σ0 fields and the spectrum of the components of the wind/rain
field are stated. Then some practical considerations for the relationship of the bandlimit of
the σ0 fields and the bandlimit of the wind fields are presented.

Theorem: For the nonlinear operator T defined in Eq. 3.2 with a GMF that can
be represented by a finite power series (where N1 and N2 are the order of the wind vector
components), we have:

(1) The Fourier transform of the ith σ0 field σi(x) = gmf(~U(x), θi(x), ψi(x)) is related
to the Fourier transform of the components of wind field U1(x) and U2(x) by

F{σi(x)} =

N1,N2∑
n1,n2=0

F{ai,n1,n2(x)} ∗
[

2∗
k=1

[
nk∗
j=1
F{Uk(x)} − F{ck}

]]
(C.2)

where F represents the Fourier transform, ai,n1,n2(x) is the power series coefficient corre-
sponding to U1(x) and U2(x), ck represents a reference wind field component that is constant
in x, and ∗nj=1 represents n nested convolutions.

(2) If the wind field components are bandlimited by ωU1 and ωU2, and the power series
coefficients are bandlimited by ωa, then the σ0 field components are bandlimited by

ωσ ≤ N1ωU1 +N2ωU2 + ωa. (C.3)

Proof: Showing part (1) is straight forward. The power series expansion of σi =

gmf(~U(x), θi(x), ψi(x)) is

σi(x) =

N1,N2∑
n1,n2=0

ai,n1,n2(x)
2∏

k=1

(Uk(x)− ck)
nk . (C.4)

Taking the Fourier transform produces

F{σi(x)} = F
{

N1,N2∑
n1,n2=0

ai,n1,n2(x)
2∏

k=1

(Uk(x)− ck)
nk

}

=

N1,N2∑
n1,n2=0

F{ai,n1,n2(x)} ∗ F{
2∏

k=1

nk∏
j=1

(Uk(x)− ck)}

=

N1,N2∑
n1,n2=0

F{ai,n1,n2(x)} ∗
[

2∗
k=1

[
nk∗
j=1

(F{Uk(x)} − F{ck})
]]

(C.5)

which is Eq. C.2.
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To show part (2), we start with bandlimited wind field components with bandlimits
ωUk

for each component k. Note that since ck is a constant for each k, F{ck} is a delta
function centered at zero. The term

[
nk∗
j=1

(F{Uk(x)} − F{ck})
]

(C.6)

represents the convolution of the kth wind field component with itself nk times with the DC
term modified. Each autoconvolution expands the spectrum by ωUk

so the term above has
a bandlimit of n1ωU1 for k = 1. This term is then convolved with the autoconvolution of
the other wind field component (i.e., k = 2), which has a bandlimit of n2ωU2 , producing a
bandlimit of n1ωU1 + n2ωU2 . This quantity is then convolved with F{ai,n1,n2(x)}, resulting
in a band limit of n1ωU1 + n2ωU2 + ωa. Then each combination of n1 and n2 is added
together. The resulting bandlimit is the highest bandlimit of any of the terms in the sum,
which corresponds to the term where n1 = N1 and n2 = N2, resulting in the bandlimit
N1ωU1 +N2ωU2 + ωa. In case some high frequency content of the different terms in the sum
cancel out portions of the spectrum, an inequality relation is obtained. Thus,

ωσ ≤ N1ωU1 +N2ωU2 + ωa. (C.7)

Note that ai,n1,n2(x) is a function of x because the look geometry changes in x. If
the aperture functions are sufficiently narrow such that variation of the look geometry is
negligible over the main lobe, then ai,n1,n2(x) can be approximated as constant in x and the
result in part (2) of the theorem reduces to

ωσ ≤ N1ωU2 +N2ωU2 . (C.8)

The relationship between the bandlimit of the σ0 fields and the bandlimit of the wind
field components suggests that an up-sampled version of the wind field should be projected
through the sampling operator when calculating the forward projection. Although the actual
bandlimit of the σ0 fields can be as high as the result in part (2) of the theorem, it may be
possible to assume that the σ0 bandlimit is similar to the bandlimit of the wind components
without introducing significant errors. This is because the autoconvolutions in Eq. C.2 tend
to produce spectra with relatively low energy at high frequencies. To illustrate this, consider
the one-dimensional case. The magnitude of the autoconvolution of a bandlimited signal is
less than autoconvolution of the magnitude. That is,

|X(ω) ∗X(ω)| = |
∫
X(τ)X(τ − ω)dτ |

≤
∫
|X(τ)||X(τ − ω)|dτ = |X(ω)| ∗ |X(ω)|. (C.9)
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Also, note that |X(ω)| ≤ αB(ω) for some α and for every ω, where B(ω) is a boxcar function
centered at zero. Thus,

|X(ω) ∗X(ω)| ≤ (αB(ω)) ∗ |X(ω)|
≤ (αB(ω)) ∗ (αB(ω)) = α2(B(ω) ∗B(ω)). (C.10)

Extending this to multiple nested convolutions we have

| n∗
j=1

X(ω)| ≤ αn
n∗
j=1

B(ω). (C.11)

Now, consider the autoconvolution of the boxcar function. Each increasing n extends the tail
into higher frequencies, but the higher frequencies have lower values than lower frequencies.

C.3 Noise-free Wind Field Reconstruction

In the noise-free case, reconstruction is accomplished by inverting the discrete sam-
pling operation (i.e., by estimating the uniformly spaced samples of the wind vector field
~U [x′]). Although in practice scatterometer measurements are noisy, considering the noise-
free case gives insight into the nature of the problem. This section of the appendix considers
noise-free reconstruction of the uniform samples of the wind field ~U [x′].

Note that the sampling operation in Eq. 7.5 represents a system of nonlinear equations
with N equations and M unknowns where N is the number of σ0 measurements and M is the
number of samples required to represent the wind field with the assumed bandlimit. Since
the bandlimit is not explicitly set by the aperture functions, a high enough bandlimit may
be assumed such that the system of equations in 7.5 is underdetermined for any sampling
scheme (i.e., a high bandlimit may be chosen so that M > N). Thus, the scatterometer wind
inversion problem is generally ill-posed meaning that more parameters than data points are
to be estimated. For the noisy case, this translates into having unobservable parameters
(i.e., a singular Fisher information matrix).

The underdetermined operator T cannot be inverted without imposing additional
structure on the signal. Structure may be imposed by employing a field-wise model or
additional constraints.

Model based methods assume that the wind field is in the span of a field-wise model. A
low-order model is chosen so that an inverse mapping from the measurements to the model
parameters may be obtained that is fully or overdetermined. The model parameters can
then be estimated and the wind field recovered by projecting the model parameter estimates
through the model.

Constrained optimization is a more general way to regularize the problem. This is
the approach taken in the continuous case in Section C.1. Constrained optimization for the
discrete case can be expressed as

optimize d(~U [x′], ~z[x′]),

subject to ~σ0
t = T(H~U [x′])

where d(~U [x′], ~z[x′]) is a metric in the discrete wind domain. The optima can be found

by obtaining the Lagrangian L(~U [x′]) = d(~U [x′], ~z[x′]) + ~λT (~σ0
t = T(H~U [x′])), setting the
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gradient to zero, and solving the resulting nonlinear system of equations. If the metric is
chosen appropriately, this approach results in a fully determined system of equations that
may have multiple solutions. If there are multiple global minima, then these represent field-
wise ambiguities and cannot be distinguished. In the noisy case, the possibility of multiple
solutions contributes to the unidentifiability (or more precisely the set-wise identifiability)
of the scatterometer problem.

C.3.1 Observability

In wind field reconstruction from σ0 measurements the parameters to estimate are
the uniformly spaced conventional samples of the wind vector field. These parameters are
observable if the Fisher information matrix is invertible. By observable, we mean that the
parameters can be estimated with finite precision from the σ0 measurements alone.

Recall that the noise-free forward operation is generally underdetermined. When
including the scatterometer noise model, a singular Fisher information matrix results. Thus,
the wind fields are generally unobservable for scatterometer sampling schemes. Scatterometer
wind field estimation is ill-posed, and in order to estimate the wind field, some structure
must be imposed on the signal. As noted, this can be done directly by imposing a signal
model, or by applying some additional constraints from other data or prior knowledge of
the signal structure. In Chapter 7 a Bayesian approach is employed, which uses a prior
distribution to regularize the problem.

C.3.2 Identifiability

The nonlinearity of the GMF introduces the possibility of multiple solutions, which is
related to identifiability. Identifiability has to do with the number of solutions to the inverse
problem. For example, in the noise-free case, the parameters are identifiable if there is a
single element in the inverse image for every accessible set of noise-free σ0 measurements.
By accessible noise-free σ0 measurements, we mean any ~σ0

t in the range space of T(·). If
there are a finite or countable number of elements in the inverse image, the inverse problem
is said to be set-wise identifiable. If there are infinitely (uncountable) many solutions, the
system is considered to be unidentifiable.

In the noisy case, identifiability can be thought of as having to do with the number
of near consistent solutions. That is, the inverse image is always the entire domain of the
sampling operator; however, some portions of the domain are more likely to produce the
observed σ0 measurements than others. Identifiability in the noisy case has to do with the
number of local maxima of the likelihood function f(~σ0

m|~σ0
t ). For wind scatterometry, if

the forward sampling operation is underdetermined, then there are an uncountably infinite
number of wind fields that are equally most-likely to produce the same measurements. In
general, wind scatterometry is unidentifiable. However, the MAP estimation approach pro-
posed in Chapter 7 to make the parameters observable also makes the parameters set-wise
identifiable for wind scatterometry. That is, if the prior is chosen appropriately, MAP es-
timation regularizes the problem to make each local maximum of the posterior distribution
have exactly one equally probable element. The different local maxima represent field-wise
ambiguities. The MAP likelihood values of the different local maxima may have different
values providing some skill in discriminating between them.
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The sources of field-wise ambiguities derive from three factors: 1) the point-wise
nonlinearity introduced by the GMF, 2) the underdetermined sampling operator, and 3) the
fact that the likelihood function may be multimodal as a function of true σ0 fields since the
variance is a function of the true σ0.

C.4 Noisy GMF

The GMF can be modeled as a random variable by adding a zero-mean random
variable to the deterministic mapping

σi[x] = gmf(~U [x], θi[x], ψi[x]) + νgmf,i[x] (C.12)

where σi[x] is the discrete σ0 field associated with the ith σ0 measurement, and each compo-
nent of νgmf,i[x] is a zero-mean random variable. Note that the sampling operation can be
expressed as

T(H~U [x′]) = T(~U [x]) = A(~σ[x]) (C.13)

where ~σ[x] is the vector of σi[x]s, and A is the operator defined as

A(~σ[x]) =




∑
xA1[x]σ1[x]

...∑
xAN [x]σN [x]


 . (C.14)

Because the rows of A are linear, the modified noise model becomes

~σ0
m = ~σ0

t + A(~νgmf [x]) + ~ν

= ~σ0
t + ~̃ν (C.15)

where each component of ~̃ν is a zero-mean random variable.

C.5 Gradient of MAP Objective Function

The gradient of the MAP objective function is required for practical implementation
of the MAP wind reconstruction method. Here, the gradient of the MAP objective function
is derived.

The MAP objective function is the sum of the log-likelihood function log f( ~σ0
m| ~σ0

t )

(or equivalently log f( ~σ0
m|~U [x])) and the log of the prior log f(~U [x]). For the scatterometer

noise model used in this paper, the partial of the log-likelihood function with respect to the
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ith wind vector component at location x is

∂ log f(~σ0
m|~U [x′])

∂Ui[x]

=
∂

∂Ui[x]

∑
n

−(σ0
m,n − Tn(H~U [x′]))2

2Rn,n

+
∂

∂Ui[x]
log{(2π)N/2

∏
n

Rn,n}

= −
∑
n

∂

∂Ui[x]

[
(σ0

m,n − Tn(H~U [x′]))2

2Rn,n

+
1

2
(log{2π}+ log{Rn,n})

]
. (C.16)

The first term in the sum is

∂

∂Ui[x]

[
(σ0

m,n − Tn(H~U [x′]))2

2Rn,n

]

=
2(σ0

m,n − Tn(H~U [x′])(−∑
y An[y]

∂gmfn(H~U [x′])
∂Ui[x]

)

4R2
n,n

− (σ0
m,n − Tn(H~U [x′]))2

4R2
n,n

∂2Rn,n

∂Ui[x]

= −
(σ0

m,n − Tn(H~U [x′])An[x]
∂gmfn(~U [x])

∂Ui[x]
)

Rn,n

− (σ0
m,n − Tn(H~U [x′]))2

2R2
n,n

∂Rn,n

∂Ui[x]
(C.17)

where Tn =
∑

y An[y]gmfn(H~U [x′]). The second term in the sum in Eq. C.16 is

∂

∂Ui[x]

1

2
[log{2π}+ log{Rn,n}] =

1

2Rn,n

∂Rn,n

∂Ui[x]
. (C.18)

Note that the partial derivative of Rn,n is

∂Rn,n

∂Ui[x]
= (2αnTn(H~U [x′]) + βn)An[x]

∂gmfn(~U [x])

∂Ui[x]
. (C.19)

Thus,

∂ log f(~σ0
m|~U [x′])

∂Ui[x]
=

∑
n

[
(σ0

m,n − Tn(H~U [x′])− (αnTn(H~U [x′]) + βn/2)

Rn,n

+
(σ0

m,n − Tn(H~U [x′])2(αnTn(H~U [x′]) + βn/2)

R2
n,n

]
An[x]

∂gmfn(~U [x])

∂Ui[x]

=
∑
n

−KnAn[x]
∂gmfn(~U [x])

∂Ui[x]
(C.20)
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where

Kn =

[
(σ0

m,n − Tn(H~U [x′])− (αnTn(H~U [x′]) + βn/2)

Rn,n

+
(σ0

m,n − Tn(H~U [x′])2(αnTn(H~U [x′]) + βn/2)

R2
n,n

]
. (C.21)

The gradient of the log of the prior expressed in Eq. 7.11 and Eq. 7.12 is

∂ log f(~U [x′])
∂Ui[x]

=
∑
n

−1

p
(σ0

n − gmfn(~U [x]))
∂gmfn(~U [x])

∂Ui[x]
. (C.22)

Adding this expression to Eq. C.20 results in the gradient of the MAP objective function.

C.6 Fisher Information and Cramer-Rao Bound for Estimating the Wind Field
Using the σ0 Measurements and a Gaussian Maximum-Entropy Prior

Recall that the Fisher information matrix for the scatterometer wind field estimation
problem is generally singular. This makes it difficult to evaluate the quality of the estimates
using the Cramer-Rao bound. This section considers an extension of the Cramer-Rao bound
that is appropriate for a MAP estimator.

Note that using a prior to perform MAP estimation is mathematically equivalent to
(although philosophically different from) ML estimation with additional statistically inde-
pendent data whose noise distribution is the prior. The Fisher information corresponding
to the MAP estimator can be obtained in a similar manner as the Fisher information corre-
sponding the ML estimator. A Cramer-Rao bound for any unbiased estimator that uses the
original data and the additional data (or equivalently the prior) can be obtained.

To illustrate that the MAP estimator is equivalent to a ML estimator with additional
data, suppose that we have additional independent noisy measurements of the wind field
components, ~Um[x′], along with the original noisy aperture-filtered σ0 measurements, ~σ0

m.
The joint distribution of all the measurements given the noise-free wind component mea-
surements ~U [x′] is f(~σ0

m, ~Um[x′]|~U [x′]). Since ~σ0
m and ~Um[x′] are statistically independent

they are conditionally independent and so f(~σ0
m,
~Um[x′]|~U [x′]) = f(~σ0

m|~U [x′])f(~Um[x′]|~U [x′]).
This is exactly the form of the MAP estimator if f(~Um[x′]|~U [x′]) the same form as the prior

distribution f(~U [x′]) defined above.
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The elements of the Fisher information matrix for estimating the wind vector samples
from the noisy σ0 measurements and the additional noisy wind vector samples are

J jointi,j,x,y(
~U [x′])

= E
(

∂
∂Ui[x]

log{f(~σ0
m|~U [x′])f(~Um[x′]|~U [x′])}

)(
∂

∂Uj [y]
log{f(~σ0

m|~U [x′])f(~Um[x′]|~U [x′])}
)

= E
(

∂
∂Ui[x]

log{f(~σ0
m|~U [x′])}

)(
∂

∂Uj [y]
log{f(~σ0

m|~U [x′])}
)

+E
(

∂
∂Ui[x]

log{f(~Um[x′]|~U [x′])}
)(

∂
∂Uj [y]

log{f(~Um[x′]|~U [x′])}
)

+E
(

∂
∂Ui[x]

log{f(~σ0
m|~U [x′])}

)(
∂

∂Uj [y]
log{f(~Um[x′]|~U [x′])}

)

+E
(

∂
∂Ui[x]

log{f(~Um[x′]|~U [x′])}
)(

∂
∂Uj [y]

log{f(~σ0
m|~U [x′])}

)

= JML
i,j,x,y(~U [x′]) + JPriori,j,x,y(~U [x′])

+E
(

∂
∂Ui[x]

log{f(~σ0
m|~U [x′])}

)
E

(
∂

∂Uj [y]
log{f(~Um[x′]|~U [x′])}

)

+E
(

∂
∂Ui[x]

log{f(~Um[x′]|~U [x′])}
)
E

(
∂

∂Uj [y]
log{f(~σ0

m|~U [x′])}
)

= JML
i,j,x,y(~U [x′]) + JPriori,j,x,y(~U [x′]) (C.23)

where JML
i,j,x,y(~U [x′]) is the {i, j, x, y}th element of the Fisher information for estimating the

wind field samples from the σ0 measurements, and JPriori,j,x,y(~U [x′]) is the {i, j, x, y}th element
of the Fisher information for estimating wind field samples from the additional samples. The
third and fourth terms in the expression are zero since the σ0 measurements and the addi-
tional wind component measurements are independent and the expected value of the gradient
of any differentiable log-likelihood function is zero [35]. The corresponding Fisher informa-
tion matrix using any wind prior that is statistically independent of the σ0 measurements
can be written as

Jjoint(~U [x′]) = JML(~U [x′]) + JPrior(~U [x′]). (C.24)

Now consider the case with a zero-mean Gaussian prior with an arbitrarily large
variance (i.e., the Gaussian maximum entropy zero-mean prior). For this case, MAP es-
timation is equivalent to having additional statistically independent samples of the wind
field components that are all zero (i.e., ~Um[x′] = ~0 ) but whose variance is arbitrarily large.
For this Gaussian case the Fisher information is the inverse of the covariance matrix (i.e.,

JPrior(~U [x′]) = 1
p
I). This results in the joint Fisher information for using the σ0 measure-

ments and the additional noisy samples of the wind field

Jjoint(~U [x′]) = JML(~U [x′]) +
1

p
I (C.25)

and the Cramer-Rao bound becomes

R( ~̂U [x′]) ≥
(
JML(~U [x′]) +

1

p
I

)−1

. (C.26)
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Note that if we let p get arbitrarily large, the bound becomes

R(~U [x′]) ≥ JML(~U [x′])† (C.27)

where JML(~U [x′])† is the Moore-Penrose pseudo-inverse of JML(~U [x′]). Therefore, the pseudo-
inverse of the ML Fisher information provides a lower bound on any unbiased estimator of
the wind field samples from the σ0 measurements and the additional wind field samples
composed of the mean of the maximum-entropy prior.

Although there may be theoretical issues in assuming the Fisher information and
Cramer-Rao bound obtained here can be applied to the MAP estimation problem, doing so
can provide valuable insight into the problem and may result in practical design tools. Thus,
we define the Fisher information matrix corresponding to the MAP estimation problem as

JMAP (~U [x′]) = Jjoint(~U [x′]) = JML(~U [x′]) + JPrior(~U [x′]) (C.28)

which is a regularized version of the standard Fisher information matrix.
Note that this result applies to both the σ0 imaging problem and the wind estimation

problem. The result yields a bound on the variability of an unbiased estimator that uses
the data and a particular prior. However, with the scatterometer noise model, both the
MAP σ0 image reconstruction estimator and the MAP wind field reconstruction estimator
are generally biased estimators. A biased Cramer-Rao bound may be obtained using the
gradient of the bias [30]. However, it is difficult to find an analytic form for the gradient of
the bias and so a numerical methods may be applied. Monte-Carlo methods are useful to
obtain the bias and gradient of the bias of a MAP estimator, which can be used to come up
with a bound. However, Monte-Carlo simulation can be applied to simultaneously estimate
the variability of the estimates and the bias, making a bound unnecessary. Nevertheless,
the unbiased bound allows us to compare the results of a biased estimator to the lowest
variability of any unbiased estimator.

In the following we provide the prior Fisher information matrix JPrior(~U [x′]) for the
various priors applied in the σ0 imaging and wind estimation problems. First, consider the
exponential prior for the MAP σ0 imaging problem (i.e., f(s[x′]) =

∏
x′ λ exp {λs[x′]} where

s[x′] is the σ0 image). The components of the corresponding prior Fisher information matrix
can be expressed as

JPriorx,y (s[x′]) = E

(
∂

∂s[x]
log{f(s[x′])}

)(
∂

∂s[y]
log{f(s[x′])}

)

= E

(
−λ∂s[x

′]
∂s[x]

)(
−λ∂s[x

′]
∂s[y]

)
= λ2δ(x− x′)δ(y − x′) (C.29)

where δ(x − x′) and δ(y − x′) are delta functions. This results in the Fisher information
matrix

JPrior(s[x′]) = λ2I. (C.30)
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If the log-normal prior is used for σ0 image reconstruction described in Eq. 4.5, the
components of the prior Fisher information matrix are

JPriorx,y (s[x′]) = E

(
∂

∂s[x]
log{f(s[x′])}

)(
∂

∂s[y]
log{f(s[x′])}

)

= E

(
100(10 log10(sAV E[x])− 10 log10(s[x]))

p2 ln(10)2s[x]

)

(
100(10 log10(sAV E[y])− 10 log10(s[y]))

p2 ln(10)2s[y]

)
. (C.31)

Note that this expression assumes that sAV E[x′] is not a function of the true σ0 image, and
so the result is only an approximation.

The prior Fisher information matrix for the prior used in wind field reconstruction in
Eq. 7.12 is

JPriori,j,x,y(~U [x′]) = E

(
∂

∂Ui[x]
log{f(~U [x′])}

) (
∂

∂Uj[y]
log{f(~U [x′])}

)

= E

(∑

k

(σ0
m,k − gmfk(~U [x′]))

p2

∂gmfk(~U [x′])
∂Uj[y]

)

(∑

l

(σ0
m,l − gmfl(~U [x′]))

p2

∂gmfl(~U [x′])
∂Uj[y]

)
. (C.32)

Note that this expression assumes that the mean of the prior ~σm is not a function of the
true wind field. Since the measurements are a function of the true wind, this prior is not
independent of the measurements and the result shown above should be used with caution.
In order to calculate this Fisher information matrix in practice, numerical integration can be
employed. This approach can be quite cumbersome. As a result, the Monte-Carlo method
is a practical alternative to calculating the Cramer-Rao bound.
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Appendix D

σ0 Filtering and Inconsistency Correction

This appendix describes an entirely new method for initializing scatterometer wind
ambiguity selection, especially for high resolution winds. The new method is analyzed using
both real data and simulation. Some limitations and future improvements of the method are
considered.

D.1 Method

The new method improves the high resolution ambiguity selection by obtaining a
high quality nudging field from the scatterometer data. This field is obtained by spatially
low-pass filtering the ultra high resolution σ0 fields, retrieving the wind, and then correcting
the remaining directional inconsistencies in the ML first ambiguity field. The resulting
wind field is used to initialize median filter based ambiguity selection for the high resolution
ambiguities. Figure D.1 illustrates the overall procedure.

Figure D.1: Overall procedure of the new SFIC algorithm.
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D.1.1 Resolution Enhancement

For the new method, the first step in obtaining a high quality nudging field is to
enhance the resolution of the σ0 fields obtained by the scatterometer. This paper employs
the UHR method described in Chapters 2 and 5 to improve the spatial resolution to 2.5 km
for each of the four azimuth looks.

D.1.2 Backscatter Filtering

Given the enhanced resolution σ0 fields, the first step to obtain an initializing field is
to spatially low-pass filter or smooth each high resolution σ0 field separately. This reduces
the variability of the ML estimate and results in a higher quality first ambiguity wind field.

A weighted averaging filter used is

σ̂0(m,n) =

∑s
i,j=−sW (m+ i, n+ j) σ0(m+ i, n+ j)∑s

i,j=−sW (m+ i, n+ j)
(D.1)

where s controls the filter size and W is a weighting function that takes on the values of 1 if
the measurement is over the ocean and 0 if it is over land. This ensures that measurements
near coastal regions are not biased by land. Furthermore, the filter preserves the dense
spatial sampling (2.5 km/vector) in order to aid high resolution nudging and promote a
higher spatial correlation. Next, point-wise wind retrieval is performed on the smoothed σ0

data at 2.5 km/pixel. This results in four ambiguities where the first ambiguity (ML wind
estimate) is improved.

Several factors constrain the size of the low-pass filter. The power of the wind falls
off approximately as k−2 [69]. Since the backscatter is approximately proportional to the
magnitude of the wind squared, the backscatter falls off as approximately k−1. Low-pass fil-
tering the σ0 fields destroys some high frequency information about the wind, thus degrading
the resolution. Therefore, there is a trade-off between resolution and noise when choosing a
filter size. However, by only using the lower resolution field to initialize a selection algorithm
with the original high resolution ambiguities, the high resolution is preserved while loosely
constraining the result to be consistent with the low resolution estimate.

D.1.3 Inconsistency Correction

Even after filtering the σ0 fields, the resulting ML first ambiguity wind field generally
contains regions of directional discontinuities or inconsistencies. Therefore, the second step
in the method is an inconsistency correction (IC) procedure. The IC procedure is similar to
the method described by Draper and Long [70]; however, the dilation phase is modified to
favor concave edges. The IC procedure begins by searching out and flagging inconsistencies
in the σ0-filtered ML wind field. After flagging the inconsistent vectors, a series of dilations
and erosions are performed to flag inconsistent regions. The flagged regions are then flipped
180 degrees and the result is median filtered. This process is repeated until a maximum
number of iterations is performed. The resulting field is smooth and more consistent. Thus,
the new σ0-filtering with inconsistency correction (SFIC) method produces a high quality
nudging field for the high resolution ambiguities.
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D.2 Analysis

Actual and simulated data are employed to explore the effectiveness of each phase of
the algorithm and to choose tuning parameters. High resolution wind simulation is employed
to provide a truth data set with which the results of the SFIC method can be compared.

In order to validate the method, the algorithm is applied to various real data sets
and compared with results obtained by the other techniques, including conventional low
resolution winds and numerical weather prediction models. The new procedure produces
more reliable high resolution wind field estimates.

D.2.1 Simulation

In order to determine the error between the SFIC and the true winds, a high res-
olution geostrophic wind simulation is implemented. The synthetic “true” wind is derived
by constraining the magnitude of the Fourier transform to fall off as k−2 and generating a
random phase [71]. This synthetic wind field is used to simulate noisy σ0 fields on which the
new method is applied.

Simulation is utilized to determine the optimal parameter settings of the SFIC algo-
rithm, and then the effectiveness of the procedure with the optimal parameter settings is
tested extensively. The IC procedure is done on both the original high resolution and the
filtered σ0 wind fields. Table D.1 shows the average percentage and RMS error of vectors
closest to the simulated wind for several steps in the algorithm.

Table D.1: Percentages of vectors closest to the true wind field and RMS error from
true wind for the inner portion of the swath (averaged over 100 realizations).

Category Percent Closest
No σ0 Filter σ0 Filter

1st Ambiguity (skill) 57.0 % 78 0%

Median filtered 1st ambiguity 66.5% 87.0 %
Inconsistency corrected 63.2 % 87.8 %
High resolution result 63.2 % 88.1 %

Category RMS Error
No σ0 Filter σ0 Filter

1st Ambiguity (skill) 24.5 17.3

Median filtered 1st ambiguity 23.8 12.0
Inconsistency corrected 23.1 9.5
High resolution result 23.1 12.1

Filtering the σ0 fields dramatically improves the skill (the percentage of vectors that
are closest to the “true” wind) in high resolution retrieval from about 60% to about 80%.
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Although merely applying a median filter-based ambiguity selection procedure results in
about the same percent of vectors closest to the true wind as performing the IC procedure
(87 percent), the IC procedure reduces the RMS error, suggesting that the SFIC result is
closer to the “true” wind. Finally, the SFIC high resolution result chooses about 88% of the
ambiguities closest to the true wind.

These results assume a simple rain free geostrophic wind model and the results applied
to real data may differ. However, the simulation suggests that the SFIC method is an
appropriate method for high resolution ambiguity removal.

D.2.2 Validation

Lacking high resolution “truth” data for validation, the effectiveness of the algorithm
is validated by applying it to several cases of real data and comparing the results with the
low resolution L2B results and the Numerical Weather Prediction (NWP) winds. Two dif-
ferent weather prediction winds are used: the National Center for Environmental Prediction
(NCEP) winds and the European Center for Medium-Range Weather Forecasting (ECMWF)
winds. Both hurricane and non-hurricane cases are considered.

For regions not containing hurricanes, the SFIC algorithm is applied to several sets
of QuikSCAT data and the results are compared to the L2B, NCEP and ECMWF winds for
different wind speed regimes (less than 5 m/s, between 5 and 15 m/s, greater than 5 m/s,
and all wind speeds). The percent of high resolution ambiguities closest to the L2B, NCEP,
and ECMWF winds that are the same as the SFIC high resolution result are computed.
Table D.2 shows the results of the comparison and Figure D.2 illustrates an example of the
L2B and the SFIC results for a non-storm region and for a small storm.

About 89 percent of the SFIC high resolution winds are the same as the ambiguities
closest to the model winds and the L2B winds. The L2B and NWP winds agree very well
with the SFIC low resolution winds for typical wind speed regions (wind speeds less than
15 m/s), choosing about 90 percent of the same high resolution ambiguities. For the stormy
regions and regions of high wind speed the L2B winds differ from the SFIC winds; however,
the difference is relatively small and both methods choose close to 80 percent of the same
high resolution ambiguities. This suggests that the SFIC method produces a suitable nudging
field for high resolution wind fields.

The difference between the SFIC winds and the L2B and NWP winds at high wind
speeds could be due to several factors. The NWP estimates often spatially mislocate storms
and regions of high wind speeds. Furthermore, rain contaminates the scatterometer-derived
wind estimates making the speed appear higher and modifying the direction; however, the
σ0 filtering may ameliorate this effect.

For hurricane cases, the NWP and L2B winds are compared with the SFIC winds
along with characterizing features of the wind (such as the eye of a hurricane whose location
can be determined strictly from the high resolution speed field). Figure D.3 illustrates
one hurricane example where the SFIC method produces a more accurate estimate of the
hurricane eye than the L2B winds, although their remains a cross swath bias in some regions
that is indicative of rain contamination. Thus, the SFIC method can improve the nudging
field over the L2B winds even in storm and hurricane cases, but further investigation must
be done to explore rain effects.
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Figure D.2: L2B and SFIC low resolution results for a non-storm (top) and for a small storm
(bottom) derived from σ0 data obtained by QuikSCAT. The red vectors are the L2B winds,
The black vectors are the down sampled SFIC low resolution winds. The SFIC low resolution
result matches the L2B result very well everywhere but in the stormy regions where rain could
be contaminating the ML estimate of the filtered σ0 fields.
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Table D.2: Percentage of cells were SFIC method chooses the same high
resolution ambiguities as nudging with the L2B or NWP winds.

Percent Same Total cells
L2B NCEP ECMWF in bin

S<5 m/s 90.5% 90.8% 96.2% 41450
5≤S<15 m/s 91.4 % 90.6% 90.2 % 1074136
S≥15 m/s 78.5% 78.4% 78.3 % 219530
All speed bins 89.9% 89.2% 88.9% 1335382

D.3 Conclusion

Backscatter filtering combined with inconsistency correction can produce high qual-
ity initializing fields for ultra high resolution ambiguity selection that are independent of
external data. Filtering the backscatter fields improves the high resolution ML estimator
because it reduces noise. However, even in a noise-free environment, inconsistencies compli-
cate ambiguity removal. Fortunately, these inconsistencies have structure and can often be
corrected.

Simulation methods confirm that this ambiguity selection method performs well in
the inner portion of the swath. The SFIC method strongly agrees with NWP winds for wind
speeds less than 15 m/s but differs for high winds and hurricane cases, thus validating the
new method for the majority of ocean surface wind fields. Furthermore, in some hurricane
cases the new method even improves the L2B winds as a nudging field, although heavy rain
seems to remain a problem.
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Figure D.3: Hurricane Floyd example in swath along-track/cross-track coordinates. North is
approximately to the left. The image on the top shows the large scale view of the storm. Land
is shown in dark blue. The bottom image is an expanded view of the eye area. On both images
red vectors represent the L2B winds. For the top figure the black vectors are the down sampled
SFIC low resolution winds while for the bottom figure the black vectors are the noisy SFIC
high resolution winds. Although there exists a cross swath direction bias that is typical of rain
contamination, the SFIC method produces a better estimate of the hurricane eye location than
the L2B winds for this case.
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Appendix E

Resolution

The notion of ‘resolution’ is not a well-defined concept. In different applications,
different meanings are associated with the term. For example, a bandlimited signal can be
said to have a resolution (temporal or spatial) defined as one over the band limit, since it
requires samples with spacing at least this fine to exactly represent the signal by samples.
Also, the resolution of an image may be defined as the pixel spacing required to distinguish
any two lines or points raised at least 3 dB above the background image.

The resolution of a random process can be defined by the width of the power spectrum
or correlation function, which indicates how a sample at a particular location is related to
the samples at other locations [72]. A random process also has a measurement resolution
(sometimes called radiometric resolution) defined by the height of the covariance, which is a
measure of uncertainty around the mean.

The above notions of resolution are properties of signals. When a signal is passed
through a filter (or an operator), the resolution of the output is modified by the filter. Filters
can impose a resolution on signals that pass through them. A notion of the resolution of a
linear operator or filter is the width of the impulse response, which indicates how the portion
of a signal at a particular location is spread out by the filter. Note that if the filter is not
shift invariant, the resolution may change as a function of where the impulse is centered. For
discrete linear operators, this leads to the notions of sampling resolution (or pixel resolution)
and effective resolution. The pixel resolution of a discrete linear operator is the pixel spacing
corresponding to the highest resolution impulse response, and the effective resolution varies
with location.

A symmetric linear operator has a spectral resolution defined by the eigenvalue de-
composition, which provides a linear basis that spans the range space of the operator with
the eigenvalues indicating how the components of a signal are scaled by the operator. For
discrete linear operators, the notion of spectral resolution can be extended to non-symmetric
operators using singular value decomposition.

Now consider the case where we have a signal with noise that can be expressed as
a deterministic signal plus a zero-mean random variable. When filtering such a random
process, the filter imposes structure on both the spatial resolution and the measurement
resolution (i.e., both the signal and noise are filtered). The correlation of the signal and the
covariance of the noise are both generally modified by the filter. If the filter is linear, the
same structure is imposed on both the signal and the noise, but if the filter is nonlinear the
noise may be filtered differently than the signal. The relationship between the mean of the
input and the mean of the output can be considered the filter response applied to the signal,
while the relationship between the zero-mean random variable on the input and zero-mean
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random variable on the output can be thought of as the filter response applied to the noise.
If the filter is linear, then the output of the filter of the sum of the signal and noise is the
same as the sum of the output of the filter on the signal-only component and the output of
the filter on the noise-only component (i.e., the signal and noise are filtered the same). With
a nonlinear operator, the output of the sum of the inputs is not the sum of the outputs of
the signal and noise. There are generally cross terms and coupling between the signal and
noise, which can be represented as different filtering operations on the signal and the noise.

For this appendix, we are interested in the effective resolution imposed by the sam-
pling and estimation operations of the scatterometer σ0 imaging and wind estimation prob-
lems. Since the reconstruction estimators for the σ0 imaging and wind estimation problems
are difficult to express explicitly as an operator, we develop methods to estimate the filter
response from input/output relationships. First, we consider linear shift-invariant operators
and linear shift-varying operators. Then, nonlinear operators are investigated. Only the
discrete cases are considered.

E.1 Linear Shift-invariant Operators

Suppose that the sampling operation and the estimator are both linear and shift in-
variant. This corresponds to sampling with the same aperture function shifted regularly in
time or space. The operation defined by the sampling operation followed by the reconstruc-
tion operation can be expressed as a linear shift-invariant filter with impulse response h[x].
The estimate or output ŝ[x] can be expressed as a convolution of the input s[x] with the
impulse response, i.e.,

ŝ[x] =
∑

x′
h[x− x′]s[x′]. (E.1)

Although for the linear case it may be possible to obtain the filter response of the sampling
operator and estimator analytically, we take an approach that is later extended to the more
difficult nonlinear case. Note that a known signal can be put into the filter and the filter
response can be estimated from input/output relationship using standard transfer function
methods [42]. That is, the convolution in time/space becomes multiplication when a Fourier
transform is applied. Thus,

Ŝ[ω] = H[ω]S[ω] (E.2)

where Ŝ[ω], H[ω], and S[ω] are the Fourier transforms of ŝ[x], h[x], and s[x] respectively.
For frequencies where the spectral response of the input s[x] is non-zero,

H[ω] =
Ŝ[ω]

S[ω]
(E.3)

and an estimated filter response can be found as the inverse Fourier transform of H[ω].
A measure of spatial resolution can be obtained as the ‘width’ of the correlation

function of the filter response. The correlation Rh is defined as Rh =
∑

x′ h[x]h[x+ x′] and
can be obtained by taking the inverse Fourier transform of H[ω]H∗[ω] where ∗ denotes the
conjugate. The width of the correlation function can be defined in many ways. If x is a
two-dimensional index as it is with scatterometry, the width may be different in different
directions (i.e., the correlation function may be long in one direction and narrow in another).
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A particular measure of resolution that can handle the resolution being different in different
directions is to take the second central moment of a scaled magnitude of the correlation
function. More precisely,

∆r =
∑
x

(x− x0)(x− x0)
T |Rh[x]|∑

x |Rh[x]| (E.4)

where x0 is the location of the maximum of the correlation function. Note that for multidi-
mensional x, ∆r is a matrix whose eigenvalues indicate the correlation length in the dominant
directions and the eigenvectors indicate the directions.

E.2 Linear Shift-varying Operators

Now suppose that the aperture functions are different for different samples, but the
sampling and reconstruction estimators are still linear. The effective filter is then a linear
shift-varying filter and the input/output relationship can be represented as

ŝ[x] =
∑

x′
h[x, x′]s[x′] (E.5)

which can be expressed as
~̂s = H~s (E.6)

where H is a matrix, and ~s and ~̂s are the vectorized versions of s[x] and ŝ[x] respectively.
Estimating the filter response for this case is a system identification problem that has N2

parameters to estimate, where N is the number of samples of the signals. Generally, a shift-
varying filter cannot be identified from only one input/output relationship. Several inputs
(e.g., impulses at every sample location) may be used to identify the response of the filter.
This results in a correlation function that varies in time/space (i.e., the correlation function
can be expressed as Rh[x, x

′]). The effective resolution can be defined a similar way as above

∆r[x
′] =

∑
x

(x− x0)(x− x0)
T |Rh[x, x

′]|∑
x |Rh[x, x′]| . (E.7)

Note that for a multidimensional x, this definition results in a matrix that indicates resolution
in different directions that potentially vary with location.

E.3 Nonlinear Operators

The notion of resolution of a nonlinear filter is difficult to express. Here, some non-
linear extensions of the linear concept of resolution are developed.

Note that for any one input/output relationship from a nonlinear operator, there
exists a linear operator with that same relationship. We can analyze the resolution of the
linear operator and assume the results apply to the nonlinear operator, but there are some
severe limitations to this approach. First, there may be several linear operators with the same
input/output relationship, resulting in ambiguous results for the resolution. Furthermore, if
the input is changed, the corresponding linear operator is also changed (i.e., we only have

169



one input/output relationship for each linear version of the nonlinear operator). Since a
shift-varying filter requires several input/output relationships to estimate the filter response,
shift-varying filters cannot be analyzed without imposing some more constraints on the
system identification problem.

A few approaches can be taken to obtain a metric for the resolution of a nonlinear
operator. For a given input signal, the system can be assumed to be linear and shift invariant,
allowing the filter response to be obtained from a single input/output relationship. With
this assumption, a unique linear filter can be estimated using the transfer function method
described above. This results in a correlation function that does not vary in time/space, but
is a function of the input signal. The resolution can be expressed as

∆r(s[x]) =
∑
x

(x− x0)(x− x0)
T |Rh(x, s[x])|∑

x |Rh(x, s[x])| . (E.8)

This resolution metric is appropriate for nonlinear systems that when linearized around s[x]
vary slowly over the time/space window of the data.

For scatterometer sampling and reconstruction, the aperture functions vary signif-
icantly over the swath, and thus a more suitable assumption may be applied to obtain a
measure of the effective resolution as a function of swath location. For example, the swath
may be partitioned into small, overlapping chunks and the same approach described above
may be applied to each chunk. That is, over the smaller chunks the system is assumed to
be linear and shift invariant and the effective resolution ∆r(s[x]) is calculated for chunks of
data centered at each location x′. This results in a resolution metric that varies in location
and with the signal

∆r(x
′, s[x]) =

∑
x

(x− x0)(x− x0)
T |Rh(x, x

′, s[x])|∑
x |Rh(x, x′, s[x])| . (E.9)

This method is similar to time/frequency analysis (i.e., it is an application of the short-time
Fourier transform) and other time frequency analysis methods may also be applied [73].
Note that it may be useful to average out the signal dependence from the effective resolution
to obtain a result similar to the linear case (i.e., independent of the signal). This can be
done by assuming a distribution for the signal and taking the expected value of the effective
resolution.

The above expressions for effective resolution of a nonlinear operator indicate how
the signal is filtered by the operator. When noise is added to the aperture-filtered samples
before reconstruction, the noise may be filtered differently than the signal. A measure of the
effective spatial resolution of the noise is contained in the covariance of the estimates. The
covariance of the estimates is a matrix and each row is a correlation function that indicates
how the noise of the estimate at a particular location is correlated with the estimates of
other locations. The noise correlation length indicates how the noise gets spread by the
estimator and may vary from row to row (i.e., the effective noise resolution may vary in
time/space). Note that if the noise is correlated on the input of the estimator, the covariance
of the estimates contains information about the original noise correlation and the correlation
imposed by the estimator. For the scatterometer noise model, the noise is uncorrelated on
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the input to the estimators and so the covariance of the estimates is an indicator of the
effective resolution of the estimator on the noise. Note also that the effective resolution of
the noise may be used as a rough indicator of the effective signal resolution imposed by the
estimator, since in the linear case they coincide.

The covariance of the estimates can be estimated using Monte-Carlo simulation and
estimates of the effective resolution of the noise may be derived. This results in the same
expression as in Eq. E.9, but replacing Rh(x, x

′, s[x]) with the the row of the covariance
matrix corresponding to location x′.

As noted above, when filtering a noisy signal with a nonlinear operator, the noise and
signal become coupled. In fact, the effective filter response on the signal may be different
from the filter response on the same signal when noise is introduced. Thus, in the definition
of the effective signal resolution defined in Eq. E.9, the correlation Rh(x, x

′, s[x]) is obtained
from input/output relationship between the input signal and the mean of the output.

Another approach may be applied to obtain a measure of resolution of a nonlinear
operator if a functional form can be found. If we have a function form for the nonlinear
operator, it can be linearized around a nominal signal and standard linear operator analysis
can be applied directly to the linearized operator for all signals within a ball of the nominal
signal.

171



172



Appendix F

Coherent and Incoherent Applications

The reconstruction procedure developed in Chapter 3 applies not only to scatterom-
eters, but for general microwave imaging applications. Imaging from either passive or ac-
tive systems, or coherent or incoherent systems, can be approached as reconstruction from
aperture-filtered samples. This Appendix considers fully coherent reconstruction from syn-
thetic aperture radars, and fully incoherent reconstruction from microwave radiometers.

F.1 Coherent Detection and Synthetic Aperture Processing

Although scatterometers apply pulse compression or range/Doppler processing to
partition each pulse into several slice σ0 measurements, the sampling operation is assumed
to incoherently integrate in space (i.e., magnitude sum) the responses from all of the targets
weighted by the spatial response functions of the slice measurements. Incoherent integration
is only an approximation and leads to significant fading and increases the variability in the
noise model. In reality, the backscattered signals of different targets interfere because the
signals are integrated coherently (i.e., complex linear sum) over the aperture functions. If
we have a radar that detects the magnitude and phase of the incoming signal (or the output
of the range/Doppler matched filter) rather than only the squared magnitude (i.e., power
law detection) it is possible to reduce fading and produce an image with lower noise power.
This is the basis behind synthetic aperture radar (SAR).

SAR is a special case of reconstruction from aperture-filtered samples. The received
baseband signal from a coherent radar can be expressed as [74]

y(t) =

∫
|G(x, t)|2a

(
t− 2R(x, t)

c

)
e−jθ(t−

2R(x,t)
c

)σ(x)e−jψ(x)dx (F.1)

where R(x, t) is the range to the resolution cell centered at location x at time t, |G(x, t)|2
is the two way antenna gain pattern which shifts as a function of time, a(t) is the pulse
amplitude modulation, θ(t) is the phase modulation, σ(x) is the magnitude of the radar
cross section at location x and ψ(x) is the phase. The antenna pattern and the pulse
modulation can be lumped together producing the linear sampling operation

y(t) =

∫
A(x, t)σc(x)dx = A(σc(x)) (F.2)

where σc(x) is the complex radar cross section. Generally, a radar digitizes y(t) by sampling
and in SAR processing each resolution element is assumed to have one isotropic scatterer
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at the center of the cell. Thus, the operation becomes a discrete linear operation which can
be expressed as a matrix equation ~y = A~σc. Every SAR processing algorithm is effectively
a method of inverting A (or a slightly modified version) that imposes some assumptions on
the matrix to make the inversion fast.

Note that some SAR systems may not actually sample the complex base-band signal.
For example, linear frequency modulated systems often multiply the incoming signal with a
shifted version of the transmitted chirp, low-pass filter the result, and then sample the wave
form. The sampled waveform of such a system can be expressed as the complex samples
of the output of a matched filter (or samples of the Fourier transform of the output of
a matched filter). The relationship between the sampled waveform and the σc image for
this case, and for any preprocessing done in hardware, is generally expressible as a matrix
equation ~y = A~σc, where A and ~y may be different than above.

The noise of a coherent radar can be approximated as a white, zero-mean complex-
Gaussian random process and so the Moore-Penrose pseudo-inverse of A (or the least squares
pseudo-inverse if the system is overdetermined) is the optimal reconstruction estimator and
effectively does the matched filtering and the reconstruction in the same step. Alternatively,
the speckle, which is caused by fading and the assumption that each resolution element has
one isotopic scatterer, may be modeled as a noise process and a reconstruction estimator
can be obtained that minimizes speckle.

Note that in conventional SAR systems, the matrix A has a very special structure
which makes it possible to calculate the Moore-Penrose pseudo-inverse very efficiently using
standard SAR processing methods. However, when there is significant deviation of the
platform from the nominal trajectory, artifacts result in the conventional SAR processed
image. Motion compensation methods have been successfully implemented at the cost of
complexity and increased processing time. For the motion compensation case, it may be
beneficial to apply an iterative method, such as a gradient search of the ML or MAP objective
function, to recover the SAR image from the raw measurements. The computations required
for a gradient search method are NML where N is the number of image pixels, M is
the number of measurement samples, and L is the number of iterations. Although many
iterations L may be required for the gradient search to converge, it may be possible to
obtain a sufficiently focused image that can account for nonuniform motion with relatively
few iterations. This approach can be applied as an iterative form of the computationally
taxing back-projection algorithm.

F.2 Fully Incoherent Reconstruction: Application to Radiometry

A microwave radiometer is a passive device that measures the microwave emissions
from the Earth’s surface. Since radiometers are passive, they cannot employ pulse com-
pression or range/Doppler processing, and each measurement can be approximated as the
inner-product of the antenna gain pattern with the emissions from many particles on the
Earth’s surface and atmosphere. For low frequencies, the contributions from the atmosphere
can be neglected, while for higher frequencies atmospheric effects may be significant.

Assuming incoherent integration results in a residual cross term that acts as a fading
random variable. This can be represented as a zero-mean Gaussian random variable with a
variance that is a function of the signal magnitude, similar to the scatterometer problem.
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The measurement that is often of interest in radiometry is the brightness temperature Tb.
However, radiometers measure a quantity called the apparent brightness temperature TAP
that has contributions from upwelling and reflected down-welling from the atmosphere. The
measured TAP is related to the apparent brightness temperature from the each point on the
Earth as

TAP,i =

∫
TAP (θi, φi)G(θi, φi)dΩ + νi (F.3)

where θi and φi are the azimuth and incidence angle of the ith measurement, and νi is
a zero-mean Gaussian random variable with variance ∆T where ∆T is a function of the
system noise, the amplifier gain uncertainties, and the signal. TAP (θi, φi) represents the
contributions from emitters from the surface and the atmosphere and can be expressed as
[68]

TAP (θi, φi) = TAP (θi, φi, 0) +
∫ r

0
TAP (θi, φi, r

′)dr′

= TAP (θi, φi, 0) +
∫ r

0
κe(θi, φi, r

′)[(1− a)T (θi, φi, r
′) + aTSC(θi, φi, r

′)]dr′ (F.4)

where r is the range from the surface of the Earth to the radiometer, κe is the extinction coef-
ficient, a is the albedo, T is the physical temperature, and TSC is the scattering temperature.
Note that if atmospheric effects are negligible, TAP (θi, φi) = TAP (θi, φi, 0).

If atmospheric effects are negligible and the emitters are assumed to be isotropic, each
TAP,i measurement can be expressed as

TAP,i =

∫
TAP (x)Ai(x)dx+ νi (F.5)

where x is a two-dimensional spatial variable on the Earth’s surface, and Ai(x) is the an-
tenna gain pattern of the ith measurement projected on the Earth’s surface. The multiple
measurements can be stacked into a vector resulting in

~TAP =




∫
TAP (x)A1(x)dx+ ν1

...∫
TAP (x)AN(x)dx+ νN


 = A(TAP (x)) + ~ν. (F.6)

Since the antenna has finite length and the far field antenna pattern is approximately the
Fourier transform of the near field, the antenna gain pattern can be assumed to be ban-
dlimited and the sampling operator A can be represented by a discrete matrix operation on
conventional samples of TAP (x). That is,

~TAP = A(TAP [x]) + ~ν (F.7)

where A is a matrix and the square brackets [x] represent a sampled version of TAP (x).
Neglecting noise, the brightness temperature image can be reconstructed by applying

an inverse or a pseudo-inverse of the sampling matrix A. But because of the structure of
the noise, a ML or MAP estimator may be more appropriate.
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The assumption that atmospheric effects are negligible may be appropriate for lower
frequency channels when there is no significant weather; however, rain, water vapor, and
oxygen concentrations in the atmosphere can significantly affect the apparent brightness
temperature for certain radiometer channels. Imaging of the surface in the manner described
above in Eq. F.7 limits the use of some radiometer channels. The higher frequency channels
have a higher resolution, but are more limited in observing surface effects. Using each channel
to reconstruct some other quantity that is common or related among them may result in a
higher resolution image of the surface, as well as a tomographic image of the atmosphere.

Equation F.4 expresses the apparent brightness temperature for each channel as a
function of the surface contributions and atmospheric contributions. Note that the surface
contributions, the extinction coefficient, the albedo, and the scattering temperature are
functions of the physical material and all vary with frequency. The physical temperature,
however, is constant with frequency. The contributions from the surface can be approximated
as TAP = εT where ε is the emissivity which varies with material and texture, and T is the
physical temperature.

A geophysical model function that describes relationship between the type of mate-
rial (i.e., concentrations of gasses/liquids in the atmosphere, and type of surface material
and texture) and the albedo, the extinction coefficient, the scattering temperature, and the
surface emissivity can be used to simultaneously estimate all of these quantities with the
temperature profile using all channels of the radiometer. Thus, instead of reconstructing
TAP for each channel, an ε map and temperature map may be reconstructed for the surface,
and a three-dimensional tomographic image of κe, TSC , and a may be obtained, along with
the surface classification and gas concentration maps.
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