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Abstract

Passive localization of aircraft in flight using signal time of arrival

(TOA) poses some unique challenges. The sensors must be deployed in

an approximately coplanar configuration, which produces significant

vertical uncertainty in the estimated position. This dissertation examines

the traditional algorithms used in passive localization. It presents

general forms of linear TOA, time difference of arrival (TDOA), angle

of arrival (AOA), and frequency difference of arrival (FDOA) equations

from the literature and explains how to apply an intuitive geometric

interpretation of these equations. It presents two novel algorithms

for passive localization. One uses a one dimensional AOA (1AOA) to

improve the vertical estimate. The other employs an a priori estimate

to approximate the non-linear localization problem as a linear problem

and produce a high quality position estimate. A comprehensive survey

of the literature is presented. This dissertation provides a summary

and classification of passive localization algorithms from the literature

with simple descriptions of how the form of the equations relate to

their numerical stability. It presents two novel algorithms for passive

localization. The hybrid multilateration and triangulation algorithm

improves wide area multilateration by using vertical 1AOA to constrain

the vertical position. The multilateration with a priori estimates algorithm

provides a linear localization method that utilizes previous location

estimates.

Keywords: multilateration, TOA, TDOA, AOA, FDOA, multistatic radar,

literature review
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aThis behavior is frequently depicted in

films. A slowly beeping RWR indicates a

radar in search mode. Faster beeping

indicates tracking mode, making target

updates up to several times per second. A

steady tone is consistent with the radar

providing constant or near-constant

target illumination to help guide a missile

in flight.

Introduction

1.1 History and Motivation
Since shortly before World War II, aircraft have been employed to attack

targets far behind enemy lines and radars have been employed to detect

those attacks so that defenders can respond quickly and decisively. These

two developments, made independently at roughly the same time, have

changed the face of warfare, setting off the field of electronic warfare

(EW), also dubbed the radar game [1], a back-and-forth of escalating

technologies for detecting aircraft and evading detection.

The radar game largely stabilized towards the end of the Cold War.

Radar technology reached a plateau of capability, and aircraft developed a

standard suite of EW capabilities that were reasonably effective, including

jammers and radar warning receivers (RWRs), which alerted pilots to

enemy radar systems and allowed them to take appropriate actions. The

end of the Cold War saw the introduction of stealth aircraft, such as the

F-117 Nighthawk and B-2 Spirit. Stealth aircraft changed the radar game,

and it would take radars well over a decade to respond. The proliferation

of stealth aircraft has progressed, with the development of the F-117, B-2,

F-22, F-35 (see Fig. 1.1), Su-57, Su-75, J-20, and FC-31 aircraft.

More recently, the development of unmanned aerial vehicles (UAVs)

once again shows potential to radically change the state of air power.

In particular, swarms of powerful and expendable UAVs can be every

bit as deadly as modern fighter and bomber aircraft while also being

as difficult to target as flies in a swarm or birds in a flock. This poses a

significant challenge for radars, most of which have a beam width that

is far too wide to enable the resolution of individual targets within a

swarm.

One key weapon in an aircraft’s EW arsenal is the RWR. This device

detects the signals emitted by a radar and identifies the type of system

that emitted the signals. In many cases the RWR can determine whether

the radar is searching, tracking the aircraft, or providing guidance to a

surface-to-air missile that is aimed at the aircraft. If the radar is deemed

to be a sufficient threat, the RWR notifies the pilota so that they can take

evasive action.

In playing the radar game, both the aircraft and radar benefit from

stealth. For the radar, one way to achieve this is to operate in a passive

mode. If the radar is not emitting any energy, then the aircraft has no way

of knowing that it is being observed. This is passive detection or passive

1



2 Introduction

Figure 1.1: Maj. Kristin Wolfe, F-35A Lightning II Demonstration Team commander,

performs an aerial maneuver during the Reno Air Races in Reno, Nevada, 19 Sep. 2021.

Photo from US Air Force, photographed by TSgt. Nicolas Myers.

bGiven that a typical UAV is smaller than

a manned aircraft, these two problems

are not mutually exclusive.

localization. In passive localization, a target is located by detecting and

analyzing signals that it emits. A key application, which contributed to

the surge in passive localization research in the 1990s, is locating cellular

telephones that call for emergency services.

1.2 Contributions
The work in this dissertation is inspired by the problems of locating

stealth aircraft and individual objects in a UAV swarmb. These are

very difficult problems which this dissertation does not attempt to fully

solve. In this dissertation, I explore passive localization where signals

transmitted from an aircraft are detected and used to determine the

position of the aircraft. In particular, I look at the algorithms used to

calculate position based on the time of arrival (TOA) or time difference

of arrival (TDOA) and angle of arrival (AOA) of the signals and develop

two new algorithms that can help improve the speed and accuracy of

localization.

TOA and TDOA localization, also known as multilateration, is a

well-known problem. TDOA localization, with mutliple transmitters and

a single receiver, is how the global navigation satellite systems (GNSS)

such as the global positioning system (GPS) function. In the aircraft

localization problem this is reversed, with one transmitter at an unknown

location and many receivers at known locations.

This effort produced three technical papers that have been submitted

to peer reviewed journals. Two papers have been published [2, 3] and

one is currently in review [4].
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My work includes a review of passive localization techniques, al-

gorithms, and applications. This involves identifying the common

equations used across multiple localization algorithms and presenting a

simple form of these equations. These simplified, noise-free equations

are useful for identifying the shared techniques used across papers.

They also make it possible to intuitively understand the geometry of

the problem and its solution. Building an intuitive understanding of

the problem enables the identification of numerically unstable scenar-

ios without having to perform an exhaustive numerical analysis. This

simplified interpretation of linear localization equations is unique in the

literature. Most papers start with statistical models which are wrestled

into submission in a flurry of symbols, substitution, and abstraction.

This approach obfuscates the way that the resulting equations relate to

the original problem. Papers rarely even identify the point where they

present the solution to the localization problem.

The literature review in Ch. 2 provides an extensive list of applications

where localization algorithms are employed. This includes, among others,

locating cellular and wireless devices, tracking aircraft and satellites,

and acoustic localization. It also provides a brief review of some TOA-

based bistatic radar applications. Passive bistatic radar, using emitters of

opportunity such as radio or television stations, is a very popular topic,

with hundreds of papers produced every year. This literature review

and functional analysis has been submitted for peer review [4].

TOA localization of aircraft faces a significant obstacle due to the

geometric requirements and constraints. The receivers must cover a

large area, and must also be mounted on or near the ground. This

produces a receiver constellation that is nearly coplanar. For most TOA-

based localization algorithms, the coplanar sensors produce numerically

unstable equations, where vertical position (i.e. perpendicular to the

plane approximated by the receivers) is difficult to calculate accurately.

One way to resolve the vertical uncertainty is by measuring the elevation

angle of each of the arriving signals. This constrains the calculated vertical

position, greatly improving the accuracy of the estimate. I develop

an algorithm that removes the 𝑧 dimension from the multilateration

equations, instead calculating it with triangulation using TOA and AOA.

This algorithm out-performs the standard linear TDOA algorithm in

total accuracy, particularly when the receivers are nearly coplanar. This

algorithm has been published in a peer reviewed journal [2].

One issue common with linear multilateration algorithms is that they

do not incorporate any a priori information about the target location.

Such information could be used to either improve the accuracy of the

estimate. It could also be used to track objects in a formation or swarm. I

develop a multilateration algorithm that incorporates an a priori estimate

to produce a planar approximation of the spheres implied by the TDOA

measurements. The intersection of those planes is a straightforward

linear problem. This works well when the target is close enough to

the initial estimate. I present a method for improving the accuracy of

the algorithm when the initial estimate is not close enough to the true
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position, as described in Sec. 4.3.3. This algorithm is well-suited for use

in a Kalman filter or a swarm tracking algorithm. This algorithm has

been published in a peer reviewed journal [3].

1.3 Outline
Chapter 2 provides a history of multilateration algorithms, with par-

ticular focus on linear multilateration algorithms. Linear localization

equations make it possible to combine multiple measurements, including

measurements of different types, into a single system of equations that

provide a single solution to the localization problem. They are much

faster to compute than iterative algorithms and much easier to expand

and adapt than quadratic algorithms. The chapter presents simplified

forms of linear TOA, TDOA, AOA, frequency difference of arrival (FDOA),

and multistatic radar equations that are found in the literature. It ex-

amines how these forms of the equations constrain the solution, which

can help to identify when the algorithms are numerically unstable. It

also includes a review of the literature employing TOA, TDOA, and AOA

algorithms.

This chapter is supplemented by Appendix A, which derives a single

generalized system of TOA and TDOA equations. These equations can be

simplified to produce the most common TOA equations, or in a different

way to produce the most common TDOA equations. This shows how the

two algorithms are related.

Chapter 3 presents a wide area hybrid multilateration and triangu-

lation algorithm where the TOA measurements are paired with AOA

measurements to reduce the vertical error. In the algorithm, multilatera-

tion is used for the horizontal directions and triangulation is used for

the vertical direction. The algorithm performs well against the standard

linear TDOA algorithm except in a few cases where it is numerically

unstable, which are identified and modeled.

Chapter 4 presents a linear multilateration algorithm that uses an a
priori estimate of a target position to approximate the non-linear geometry

of the localization problem as a simple set of linear equations. When the

initial estimate is sufficiently close to the true value, it meets or exceeds

the performance of other linear localization algorithms. It also includes

an iterative version that is able to correct for poor estimates of the target

position. This algorithm can be used to update the position of a target

that is being tracked, or to calculate the position of a UAV in a swarm

relative to a central point within the swarm.

Chapter 5 summarizes the work of this dissertation. It offers possible

avenues to extend the research presented here.



2AReview of Linear Multilateration Techniques
and Applications

This chapter is composed from a paper entitled “A Review of Linear

Multilateration Techniques and Applications” that is in review at the

journal IEEE Access [4]. I hereby confirm that the use of this article is

compliant with all publishing agreements.

2.1 Introduction

Multilateration is a localization approach that uses distances from several

known points to an unknown point to determine the location of that

unknown point. This is typically done by using the propagation time,

measured from a signal time of arrival (TOA), to calculate the distance or

relative distance between two points. This is the foundation of how many

modern location services function, such as the Global Positioning System

(GPS), work. It can also be used to determine the position of a radio

frequency (RF) source at an unknown location. This has been an active

area of research since at least the 1960s, with big pushes made in the

1970s with the development of GPS, in the 1990s with the proliferation of

cellular telephones and the need to locate callers to emergency services [5],

and in the 21st century with focus on passive localization and multistatic

radar.

Over time, three families of methods have been developed for solving

the time of arrival positioning problem. The earliest approaches used

iterative methods, which are a relatively easy way to approach solving

non-linear equations, but which can take longer to compute and may not

converge to the correct solution. These were followed in the 1980s by

methods which manipulate the system of equations to produce a single

quadratic equation of one variable, which then produces two solutions,

one of which is correct. The mid-1990s saw the introduction of linear

methods for solving the system of equations. These provide a single,

closed form solution, which comes at the expense of requiring at least

one more measurement than the non-linear methods.

One of the strengths of linear equations is that they can be easily

expanded to include additional measurements. The additional measure-

ments can be more TOA measurements, or any other measurements that

can be related to the problem using linear equations. This flexibility

5



6 A Review of Linear Multilateration Techniques and Applications

aDOA differs from AOA in that DOA

assumes that the signal source is far

enough from the receivers that the AOA

is the same for all receivers. In other

words, the receivers form an antenna

array, and the signal source lies in the far

field of that array. In AOA, the source is

close enough to the recievers that the

AOA measurements are distinct enough

to be used for triangulation.

bPassive bistatic radar can be

geometrically and algorithmically similar

to multilateration. The linear versions of

the multistatic radar equations, which are

presented in Sec. 2.2.1, are nearly

identical to time difference of arrival

(TDOA) multilateration equations.

has allowed for the development of localization algorithms employing

angle of arrival (AOA), frequency difference of arrival (FDOA), received

signal strength (RSS), and direction of arrivala (DOA). The introduction

of linear methods of solving the positioning equations has also led to a

proliferation of algorithms. Amid this proliferation, many papers derive

their own versions of the linear multilateration algorithms.

Each of these algorithms has advantages and disadvantages. These

often arise from how the equations they employ are derived. Most

derivations start with a noisy measurement model and attempt to derive

a maximum likelihood estimator from that. In doing so, the solutions

usually correspond to one of a handful of solutions to the noise-free

localization problem. The connection to the simple solution is generally

lost in a sea of symbols, sometimes buried under many layers of substi-

tutions, to the point that the solution no longer has a clear connection to

the underlying physical problem, nor to the other algorithms that use

similar equations.

This paper presents an analysis and survey of the linear equations

employed in algorithms to solve localization problems using TOA mul-

tilateration. There are a number of other survey papers on the subject,

addressing general and specific applications of TOA localization. Iliev [6]

provides a broad survey of the applications of multilateration. Gao [7]

explores localization methods as applied to small-scale applications,

such as inside a single room or building. Yang [8] also surveys indoor

multilateration, with particular attention to neural network approaches.

Tahat [9] provides a review of the performance of multilateration and

triangulation algorithms, addressing the relative strengths and weak-

nesses of each approach. Zhang [10] provides a very high-level overview

of the current work with passive bistatic radarb, along with potential

applications and areas for further development.

This paper presents a brief history of some common algorithms used

to solve multilateration problems. It provides a simple description of

common linear solutions to the noise-free localization problem, including

straightforward derivations and an intuitive interpretation of how these

equations project measurement error onto the physical geometry of the

problem. It also includes a review of examples from the literature that

employ algorithms that use the equations presented in this paper.

2.2 Multilateration algorithms
There are three primary approaches to solving the multilateration prob-

lem that have been known for decades, which we classify as iterative,

algebraic or quadratic, and linear. The most cited papers for each of

these methods date back to the 1970s, 80s, and 90s, respectively.

The iterative method seeks to minimize the error in an estimated

solution to the location equations, which are generally non-linear. Typical

methods include steepest descent [11], or the multivariable Newton-

Raphson method or Taylor series approximation [12][13, pp. 229-249],

typically using the Jacobian of an error function. Of these, Foy [12]
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cIn our experience, iterative

multilateration problems have two basins

of convergence, which correspond to the

two roots of the quadratic approach.

is the one most often cited in positioning papers, likely because Foy

was applying this method to a localization problem, as opposed to a

more general optimization problem. Most iterative approaches can

incorporate an arbitrary number of data points and can be extended to

include more measurements such as AOA measurements, as long as it

can be incorporated into a cost function. Iterative methods generally

have two weaknesses. The biggest problem with iterative methods is

that they usually have more than one basin of convergence, meaning that

a given initial estimate may iterate to a locally optimal solution rather

than to the globally optimal solution, and the boundaries between these

regions can become fractals [14]. Iterative algorithms also take longer to

compute than direct, closed-form methods.

An alternate iterative approach is a genetic algorithm called particle

swarm optimization (PSO) [15–17]. It includes a number of random

estimates that are iteratively updated to seek out the optimal solution,

akin to a swarm of birds or insects. It is a potentially powerful tool which

is more likely to converge to an optimal solution than the traditional

single-path iteration approaches. It is significantly slower than any of

the other methods presented in this paper, and its convergence accuracy

is limited by the final step size of the algorithm.

Bancroft [18] proposed an algebraic approach to exactly solving

multilateration equations in 1985. His approach determines two vectors

that, together, describe a quadratic function with two roots that are

possible solutions. These two solutions are similar to the basins of

convergence of the iterative methodsc. A key advantage of a quadratic

solution is that both of these roots are produced directly, making it

possible to evaluate both and choose the better one. Bancroft’s method

incorporates an arbitrary number of linear equations and scales to

accommodate an arbitrary number of points. Another quadratic method,

developed by Bucher [19], is written to solve the multilateration problem

for four points. Bucher’s approach is intended for implementation on a

programmable chip, and as such it does not scale to include more than

four measurements nor to incorporate more data.

Iterative and quadratic approaches have been the standard methods

for solving multilateration and bistatic radar problems and have been

used extensively in the literature. While they are less common in more

recent papers, they are still used regularly, in part because it is more

intuitive to employ non-linear methods to solve localization problems

that are defined in a non-linear manner.

A linear solution to the multilateration problem has been sought since

the problem was first posed in the 1960s. Early methods sought to find 𝐷

linear equations that could be used to directly solve the 𝐷-dimensional

multilateration problem [20, 21], which meant that the linear position

equations depended on one or more unknown, non-linear terms. The

key to most modern linear algorithms is to include an extra variable,

along with one or more extra measurements, to address these unknowns.

The first fully linear solution to the multilateration problem was devel-

oped by Chan [22] in 1995. Their approach employs 𝑁 + 1 measurements
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dSimilar equations have been around for

a long time. In 1969, Gaarder [25] gave a

nearly linear form of the localization

equations that was quite similar to

Norrdine’s. These near misses can be

found throughout the literature, with

early papers coming close to producing

linear equations without actually

eliminating all of the non-linear terms.

eOne danger of independently deriving

localization equations is that the

equations may gather too much data,

such as [31], which measures AOA on

three axes even though that adds no

information above a two-axis

(azimuth/elevation) approach. It is also

possible to under-utilize the data, such

as [32], which pairs 𝑀 TOA

measurements to produce 𝑀/2 TDOA

measurements, rather than producing

𝑀 − 1 independent equations.

fThis refers to the fact that iterative

methods typically have 2 or more regions

of convergence. Depending on the initial

value, an iterative algorithm may not

converge to the optimal solution. This is

distinct from numerical stability, which

affects most of the algorithms discussed

in this paper, with PSO as the notable

exception.

to generate 𝑁 non-linear multilateration equations, which each includes

an unknown transmit clock offset, then subtracts one of these equations

from each of the others. The non-linear unknown terms are the same for

each equation, so this subtraction cancels out the non-linear unknown

terms, leaving only linear equations. Chan’s method is described as

“hyperbolic” because the difference equations describe a single branch

of a four-dimensional hyperboloid. While this is true, the equations

themselves are linear, though there has been some confusion about this

in the literature [23]. These equations, which we call time difference of

arrival (TDOA) equations, are derived and explored further in Sec. 2.2.1.

The second standard linear approach deals with the non-linear terms

by simply replacing them with an extra variable. This variable, as defined,

represents the square of the distance from the origin to the target. The

earliest version that we have seen of this method was presented by Chen

in 2002 [24], with a clearer derivation given by Norrdined [26, 27]. This

new variable nominally preserves the radii of the multilateration spheres,

but as an independent variable it not bound by that constraint. This

approach requires just 𝐷 + 1 measurements to produce 𝐷 + 1 equations,

which is better than the 𝐷 + 2 measurements required by Chan’s method.

While the two methods look quite different, they can be derived from the

same equations, as shown in Appendix A. The equations for Norrdine’s

algorithm, which we call time of arrival (TOA) equations, are derived

and explored further in Sec. 2.2.1.

While many papers derive their localization equations from first

principles, it is rare to find papers that employ functionally different

multilateration equations from those of Chan or Norrdine. When distinct

equations are produced, they can usually be derived from Chan’s [28]

or Norrdine’s [29] equations. It is common to find papers that attempt

to produce new approaches and instead re-derive Chan’s or Norrdine’s

methods exactly [30], although this is often buried under layers of

convoluted notatione [33].

Linear equations offer a number of advantages over non-linear algo-

rithms. Unlike iterative methods, they do not require an initial guess

and they they do not have convergence problemsf, and are much faster

to compute. Unlike quadratic methods, they can readily be expanded

by adding more linear equations to include more and different measure-

ments. This comes at a cost of requiring at least 1-2 more measurements

than are required for non-linear methods.

The use of linear equations to solve the positioning problem has

enabled a wide range of approaches. Any data that can be related to

the problem by linear equations can be added to a linear algorithm

by (relatively) straightforward matrix concatenation [34–36]. This has

led to a boom in multilateration techniques that employ AOA or other

information.

In over-determined systems of linear equations, each equation can

be weighted to change how much it contributes to or dominates the

solution to the total problem. Most of the papers employing linear

localization equations devote considerable effort to statistical analysis to
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gA notable exception to this is a paper by

Lee [37], which provides an intuitive

geometric derivation of a far less intuitive

result from his earlier papers [38, 39].

Lee’s papers analyze the geometric

stability of the multilateration problem

without providing an algorithm for

solving it.

determine an optimal weighting matrix. We note that the current paper

is only interested in the linear equations used and does not address the

weighting matrices and associated statistical analyses. Those analyses

and weighting matrices are important parts of their respective algorithms,

especially when it comes to optimizing the performance of the algorithms

on noisy measurements and achieving the Cramér-Rao lower bound

(CRLB).

2.2.1 The Geometry of Linear Localization Equations
Localization is a physical problem. If one or more equations provide

a correct solution to that problem then there should be a geometric

interpretation of the equations that physically describes how the equa-

tions produce a valid solution. This geometrical understanding is rarely

the motivation for deriving the solutiong to the localization equations,

but finding it helps in understanding the equations and their solutions,

including giving a more intuitive sense of when they become numerically

unstable. This section presents a general approach to understanding

the geometry of linear positioning equations. It also presents simple,

intuitive derivations of the noise-free positioning equations. This can

aid the reader in understanding the linear positioning equations used

throughout the literature.

For the equations presented in this paper, we consider a transmitter

at a point u that emits a signal at time 𝑡𝑢 that is received at 𝑁 different

points p𝑖 , 𝑖 = 1, . . . , 𝑁 at times 𝑡𝑖 . These times are converted to a

pseudodistance 𝑑𝑖 = 𝜈𝑡𝑖 where 𝜈 is the propagation speed of the signal,

which is normally the speed of light 𝑐. These time of arrival values, along

with the time that the signal was transmitted, describe spheres centered

on the receivers. Two-dimensional examples of these spheres are shown

as circles in Figs. 2.1 and 2.2 The transmitter u lies at the intersection of

those spheres.

Finding that intersection is a fundamentally non-linear problem. If

𝑡𝑢 is known then it is the TOA problem, which requires finding the

intersection of spheres. If 𝑡𝑢 is unknown then the solution lies at the

intersection of 4-dimensional hyperboloids, each with its foci at the

locations of a pair of receivers. Methods for converting this non-linear

problem into linear equations are presented in Secs. 2.2.1 and 2.2.1.

To understand the geometry of a linear equation, consider the generic

linear equation

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑. (2.1)

The solution to this equation is a plane that is perpendicular to the

vector [𝑎, 𝑏, 𝑐]T, intersecting that vector at a distance from the origin of

𝑑/
√
𝑎2 + 𝑏2 + 𝑐2

. The specific location of this intercept is not as important

as understanding the relative shape and orientation of these solution sur-

faces. Combining linear equations for multiple measurements produces

a system of linear equations, each one contributing to a set of solution

planes. If the solution planes are roughly perpendicular to each other
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hIn this context, a nuisance variable is any

unknown value that is not a spatial

coordinate of the unknown transmitter.

While it may describe some attribute of

the transmitter, such as its transmit time

or distance from the origin, it is not

typically of interest and is discarded after

the position is calculated.

then the problem is well-conditioned. If they are nearly parallel then the

problem is ill-conditioned.

In this section we consider linear equations in 4 dimensions, with

the fourth dimension describing some non-spatial parameter, such as

transmission time, or some other nuisance variable employed to help

linearize the equations. The general form of this 4-dimensional equation

is [
aT 𝑒

] [
x
𝑤

]
= 𝑑 (2.2)

where 𝑤 is a nuisance variableh. This equation describes a 3-dimensional

subspace that is perpendicular to the vector

[
aT 𝑒

]
T

. Because it

is much harder to mentally visualize higher dimensional spaces, we

consider the projection of this subspace onto the familiar 𝑥𝑦𝑧 space. This

means considering (2.2) as

aTx = 𝑑 − 𝑒𝑤 (2.3)

which is a plane perpendicular to a, but where the its intersection point

now depends on the value of 𝑤. This means that, as 𝑤 changes, the

solution planes for each equation moves along that vector. The solution

to the equations is then the point where, as these solution planes translate

along the vectors, they become closest to intersecting at a single point.

The remainder of this section presents the noise-free equations of a

number of common linear localization equations, including a straight-

forward derivation of each equation and an intuitive description of the

underlying geometry. The methods we derive are

• Time of arrival (TOA),

• Time difference of arrival (TDOA),

• Azimuth-only angle of arrival (AOA),

• Azimuth and elevation angle of arrival (2AOA),

• Arbitrarily oriented single angle of arrival (1AOA),

• Vertical-only angle of arrival with multilateration (vertical AOA),

• Frequency difference of arrival (FDOA), and

• TDOA-based bistatic radar (bistatic TDOA).

Time of arrival (TOA)
The single receiver non-linear multilateration equations in 3 dimensions

are

𝑑𝑖 − 𝑑𝑢 =

√
(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 (2.4)

𝑥2

𝑖 + 𝑦
2

𝑖 + 𝑧
2

𝑖 − 𝑑
2

𝑖 = 2𝑥𝑖𝑥𝑢 + 2𝑦𝑖𝑦𝑢 + 2𝑧𝑖𝑧𝑢 − 2𝑑𝑖𝑑𝑢−
𝑥2

𝑢 − 𝑦2

𝑢 − 𝑧2

𝑢 + 𝑑2

𝑢 (2.5)
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iThe accuracy of the estimate of 𝑑𝑢 must

be at least equal to the measurement

accuracy in order to avoid adding

significant error to the calculated position.

While this cannot be done in all cases, in

some applications, such as tracking

aircraft based on ADS-B or beacon

transmissions, this kind of estimate is

possible.

jThe independence of 𝐾 from the position

estimate is addressed in [40] which

attempts to constrain the 2-dimensional

solution so that 𝑥2

𝑢 + 𝑦2

𝑢 ≈ 𝐾.

where p𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]T is the location of a known point where time of

arrival pseudodistance measurement 𝑑𝑖 is taken, and u = [𝑥𝑢 , 𝑦𝑢 , 𝑧𝑢]T is

the location where a signal was transmitted at the time corresponding to

pseudodistance 𝑑𝑢 .

There are two common approaches to dealing with the quadratic

terms in Eq. 2.5 that produce purely linear equations. The method

we consider in this section [26, 27] uses a dummy variable 𝐾 which

is nominally equal to 𝑥2

𝑢 + 𝑦2

𝑢 + 𝑧2

𝑢 − 𝑑2

𝑢 , to replace those terms. This

approach assumes that the unknown transmit time 𝑑𝑢 = 0. The more

general form of these equations is derived in Appendix A. Because 𝐾

does not replace the 𝑑𝑖𝑑𝑢 term, this approach is only accurate when 𝑑𝑢
can be accurately approximatedi.

The corresponding linear TOA equations are of the form

𝑥𝑖𝑥𝑢 + 𝑦𝑖𝑦𝑢 + 𝑧𝑖𝑧𝑢 + 𝐾 =
𝑥2

𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖
− 𝑑2

𝑖

2

. (2.6)

The equation describes a plane perpendicular to the vector p𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]T,

as shown in Fig. 2.1. The 𝐾 variable, while nominally equal or related

to 𝑥2

𝑢 + 𝑦2

𝑢 + 𝑧2

𝑢 , is actually free to vary independently from the other

unknownsj. The practical effect is that u can lie on a larger or smaller

sphere than 𝐾 implies.

By considering the orientation of these planes, we can intuitively

understand that this method provides a numerically stable solution when

the points p𝑖 are distributed around the origin. When they are all very

far from the origin in the same direction, the planes are nearly parallel

and the system of equations may be ill-conditioned. This method is used

frequently in the literature [24, 41–58].

Time difference of arrival (TDOA)
In TDOA multilateration, the non-linear terms in Eq. 2.5 are eliminated by

taking the difference between the equations for two different points [22].

Since the non-linear unknown terms are equal in each equation, they

cancel out, leaving only linear terms. The resulting equation is of the

form

(𝑥𝑖 − 𝑥 𝑗)𝑥𝑢 + (𝑦𝑖 − 𝑦 𝑗)𝑦𝑢 + (𝑧𝑖 − 𝑧 𝑗)𝑧𝑢 − (𝑑𝑖 − 𝑑 𝑗)𝑑𝑢 =

1

2

(
𝑥2

𝑖 + 𝑦
2

𝑖 + 𝑧
2

𝑖 − 𝑥
2

𝑗 − 𝑦
2

𝑗 − 𝑧
2

𝑗 − 𝑑
2

𝑖 + 𝑑
2

𝑗

)
. (2.7)

This approach is also used frequently in the literature [2, 11, 16, 30, 33–35,

49, 50, 52, 55, 59–72]. Many of these papers independently derive Eq. 2.7.

This is sometimes done explicitly, such as the maximum likelihood (ML)

derivation given in [30].

Eq. 2.7 describes a plane that is perpendicular to the line between p𝑖
and p𝑗 . In multilateration, the unknown point lies at the intersection of

spheres centered on the known points. The intersection of two spheres

is a circle or a point. The plane described by this equation is the plane
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p1

p2

p3

o

u

Origin (0,0)
Receivers
Target
Difference vectors
Solution spheres
Solution planes

Figure 2.1: Illustration of the linearization of the TOA localization equations in 2

dimensions. The solution lies at the intersection of planes (or lines, in 2 dimensions)

that are perpendicular to the position vectors for the receivers.

containing the circle of intersection for the spheres centered at p𝑖 , p𝑗 , as

shown in Fig. 2.2.

The fact that this gives the plane, rather than the circle, suggests that

this approach can produce solutions which lie somewhere on the plane

that is distant from the circle. This is not generally a problem when the

overall equations are well-conditioned, but when the points p𝑖 are nearly

coplanar, the equations are ill-conditioned and the lack of constraint is

more relevant, resulting in potentially distant solutions.

There is also a modified version of (2.7) where 𝑑𝑢 is solved implic-

itly [28, 73]. This approach has been called line of position (LOP) [65].

This is done by solving (2.7) for 𝑑𝑢 and then combining pairs of those

equations, producing linear equations that are each based on three mea-

surements. This requires the same number of measurements but can

introduce divide-by-zero singularities. The numerical advantage is that

it only requires inverting a 3 × 3 matrix, rather than a 4 × 4 matrix.

Some algorithms use received signal strength (RSS) [29, 50, 74] or

gain ratio of arrival (GROA) [75–81] instead of TOA or TDOA. Signal

strength measurements produce equations that are geometrically similar

to the TOA or TDOA equations presented here.
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p1

p2

p3
p4

u

Receivers
Target
Difference vectors
Solution spheres
Solution planes

Figure 2.2: Illustration of the linearization of the TDOA localization equations in 2

dimensions, with the differences taken relative to receiver p
1
. The solution lies at the

intersection of planes (or lines, in 2 dimensions) that are perpendicular to the vectors

connecting the pair of receivers in each equation, and that pass through the intersections

of the solution spheres.

Azimuth and elevation angle of arrival (AOA)
There are three ways that angle of arrival is typically used in a linear

localization equation: azimuth only, azimuth and elevation, and elevation

only. Typically, azimuth and/or elevation angles are measured as shown

in Fig. 2.3. The general form of the equations can be seen in the equation

for an azimuth angle. A given azimuth angle 𝜃𝑖 relative to p𝑖 gives the

equation

𝑦𝑢 − 𝑦𝑖
𝑥𝑢 − 𝑥𝑖

= tan𝜃𝑖 =
sin𝜃𝑖
cos𝜃𝑖

. (2.8)

Putting this in canonical linear equation form suitable for solving by

matrix gives the linear azimuth equation

𝑥𝑢 sin𝜃𝑖 − 𝑦𝑢 cos𝜃𝑖 = 𝑥𝑖 sin𝜃𝑖 − 𝑦𝑖 cos𝜃𝑖 . (2.9)

This equation describes a vertical plane passing through p𝑖 with a

heading of 𝜃. The most important thing to note with this equation is

that it uses the sine and cosine, rather than the tangent. This produces

an equation that is far more numerically stable than equations using the
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pi

u

θi

ϕi

Receiver
Target

Figure 2.3: Illustration of the typical azimuth and elevation AOA measurements.

tangent. If the tangent of the azimuth is used then the magnitudes of

the coefficients blow up when 𝜃𝑖 ≈ ±𝜋/2, causing this term to dominate

the larger system of linear equations. AOA equations using the tangent

appear occasionally in the literature [31, 33, 46, 47, 82–86]. The form

shown here, using sine and cosine, is far more common [29, 32, 34–36,

41–43, 49–62, 70–72, 76–78, 87–104].

When elevation angles are used in conjunction with azimuth angles

the standard approach is to apply the relationship from Eq. 2.8 to 𝜙𝑖 in

the vertical plane passing through the 𝜃𝑖 azimuth.

𝑧𝑢 − 𝑧𝑖
(𝑥𝑢 − 𝑥𝑖) cos𝜃𝑖 + (𝑦𝑢 − 𝑦𝑖) sin𝜃𝑖

= tan 𝜙𝑖 =
sin 𝜙𝑖
cos 𝜙𝑖

. (2.10)

Putting this in canonical linear equation form gives

𝑥𝑢 cos𝜃𝑖 sin 𝜙𝑖 + 𝑦𝑢 cos𝜃𝑖 sin 𝜙𝑖 − 𝑧𝑢 cos 𝜙𝑖 =

𝑥𝑖 cos𝜃𝑖 sin 𝜙𝑖 + 𝑦𝑖 sin𝜃𝑖 sin 𝜙𝑖 − 𝑧𝑖 cos 𝜙𝑖 . (2.11)

This equation describes a plane, passing through p𝑖 , perpendicular

to the vertical plane described by Eq. 2.9 and rotated 𝜙𝑖 from the 𝑥 − 𝑦
plane. The key point of this equation is that the intersection of this plane

with the plane defined in Eq. 2.9 is the line passing through u and p𝑖 .
Recently, a single angle triangulation approach has been proposed [105,

106] where each receiver has an independent orientation unit vector s𝑖
and a single angle 𝜓𝑖 is measured relative to that vector, as shown in

Fig. 2.4. This is one angle of arrival (1AOA). The relationship can be

expressed as

cos𝜓𝑖 =
(u − p𝑖)Ts𝑖
|u − p𝑖 |

. (2.12)
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si

u

ψi

pi

Receiver
Target

Figure 2.4: Illustration of the arbitrary single AOA measurement. The measurement

constrains the solution to lie on the indicated cone.

Breaking the dot product into components and using the fact that

|u − p𝑖 | = 𝑑𝑖 − 𝑑𝑢 , this becomes

cos𝜓𝑖 =
𝑥𝑠𝑖 (𝑥𝑢 − 𝑥𝑝𝑖 ) + 𝑦𝑠𝑖 (𝑦𝑢 − 𝑦𝑝𝑖 ) + 𝑧𝑠𝑖 (𝑧𝑢 − 𝑧𝑝𝑖 )

𝑑𝑖 − 𝑑𝑢
, (2.13)

which can be rewritten in a linear form as

𝑥𝑠𝑥𝑢 + 𝑦𝑠𝑖 𝑦𝑢 + 𝑧𝑠𝑖 𝑧𝑢 − 𝑑𝑢 cos𝜓𝑖 =

𝑥𝑠𝑖𝑥𝑝𝑖 + 𝑦𝑠𝑖 𝑦𝑝𝑖 + 𝑧𝑠𝑖 𝑧𝑝𝑖 − 𝑑𝑖 cos𝜓𝑖 . (2.14)

Eq. 2.14 constrains the distance from u to the line formed by p𝑖 + 𝑘s𝑖
to be proportional to 𝑑𝑖 − 𝑑𝑢 . The quantity 𝑑𝑖 − 𝑑𝑢 , in turn, constrains

|u − p𝑖 |. The locus of those constraints is the cone shown in Fig. 2.4.

Note that this method, as described here, requires TOA measure-

ments, meaning that it cannot operate in a triangulation-only localization

algorithm. In general, localization via triangulation-only is less accurate

than localization via multilateration-only [107, 108]. This is largely due

to the fact that in multilateration position errors are proportional to mea-

surement error, while in triangulation position errors are proportional to

measurement error multiplied by the distance to the target. When the

multilateration problem is ill-conditioned, or when the target is close to

the vertex of the angle, then the accuracy due to triangulation may be

better than from multilateration. This a key motivation for combining

TOA and AOA measurements into a single system.



16 A Review of Linear Multilateration Techniques and Applications

kNote that this angle is the complement of

the angle used in Eq. 2.14, which is why

Eq. 2.14 uses cos𝜓𝑖 and Eq. 2.15 uses

sin 𝜙𝑖 . The vertical 1AOA equation

differs from Eq. 2.11 in that it uses 𝑑𝑖 − 𝑑𝑢
instead of the azimuth angle to relate the

elevation angle to u.

A special case of 1AOA uses s𝑖 = z, i.e., the angles are all taken

relative to vertical, as shown in Fig. 2.5 [2]. In this case, the angle is

typically taken relative to the horizontal, similar to the elevation angle in

2AOAk. The resulting equation can be derived from Eq. 2.14 by replacing

s𝑖 with z =
[

0 0 1

]
T

, giving

z
u

pi
x

ϕi

Receiver
Target

Figure 2.5: Illustration of the vertical AOA measurement. The measurement constrains

the solution to lie on the indicated cone.

𝑧𝑢 − 𝑑𝑢 sin 𝜙𝑖 = 𝑧𝑖 − 𝑑𝑖 sin 𝜙𝑖 . (2.15)

As with Eq. 2.14, this equation effectively describes a cone, with a vertex

at p𝑖 . This type of measurement is helpful in wide area multilateration,

where the receivers are spread out over a large area, and are nearly

coplanar. In those scenarios, multilateration is not as accurate in the

vertical direction, so adding an elevation angle is an efficient way of

improving the overall position accuracy.

In recent years, TOA and AOA have been applied to a different

localization measure, called direction of arrival (DOA) [98]. When a

source is far from all of the receivers, determining a fixed position in

space may be impossible. Instead, these methods seek to use measured

TOA and AOA to improve the estimate of the true bearing of the target,

relative to all of the receivers (i.e., assuming that the target is in the far

field and that the angle to each receiver is the same). Additional research

on this approach, all performed by the same research group, has focused

on determining when to determine DOA or position [95, 99, 109].
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lThese conditions are the opposite of the

conditions for SAR mapping, where the

relative motion of the radar and target is

well known.

mThis can also be linearized using an

approach similar to Norrdine. That

approach requires a second nuisance

variable, but there is already a second

nuisance variable ( 𝑓𝑢 ) in the FDOA

equation presented here.

Frequency difference of arrival (FDOA)
Frequency difference of arrival (FDOA) involves measuring the received

frequency of a signal with an unknown or uncertain transmitted fre-

quency to improve the estimated location parameters of the transmitter.

In the general case of passive localization, where the transmitted signal

characteristics are not known a priori and the signals are not optimized for

range-Doppler processing, FDOA can be difficult to implement. Never-

theless, the notion of using FDOA as part of passive localization schemes

has been proposed.

In synthetic aperture radar (SAR), FDOA is used to disambiguate

returned signals in range and azimuth. By that reasoning, it could be

employed to improve the solution in passive localization. It turns out

that, when the transmitter velocity is unknown and the receiver velocities

are all zerol, the FDOA measurements do not provide any information

on the position of the transmitter. FDOA is therefore primarily useful for

measuring the velocity of a target for use in a tracking algorithm.

Given a target moving at point u with velocity v𝑢 that transmits a

signal with frequency 𝑓𝑢 and a wavelength of 𝜆𝑢 = 𝜈/ 𝑓𝑢 where 𝜈 is the

propagation speed of the signal, and a receiver moving at p𝑖 with velocity

v𝑖 , the frequency of the received signal is

𝑓𝑖 = 𝑓𝑠 −
(v𝑢 − v𝑖) · (u − p𝑖)

𝜆𝑢 |u − p𝑖 |
. (2.16)

By rearranging the equation and using 𝑑𝑖 − 𝑑𝑢 = |u − p𝑖 |, this can be

rewritten as

𝜆𝑢( 𝑓𝑢 − 𝑓𝑖)(𝑑𝑖 − 𝑑𝑢) = (v𝑢 − v𝑖) · (u − p𝑖) (2.17)

which, when split into individual terms, is

𝜆𝑢 𝑓𝑢𝑑𝑖 + 𝜆𝑢 𝑓𝑖𝑑𝑢 − 𝜆𝑢 𝑓𝑢𝑑𝑢 − 𝜆𝑢 𝑓𝑖𝑑𝑖 =

v𝑢 · u − v𝑢 · p𝑖 − v𝑖 · u + v𝑖 · p𝑖 . (2.18)

Apart from the 𝑓𝑢𝑑𝑢 and v𝑢 · u terms, this equation is already linear

in terms of the unknown variables u, 𝑑𝑢 , v𝑢 , and 𝑓𝑢 . As with Eq. 2.5, one

straightforward way to linearize the equationm is to take the difference

between the equations for two points p𝑖 and p𝑗 . This produces the

equation [64]

u · (v𝑖 − v𝑗) + v𝑢 · (p𝑖 − p𝑗)+
𝜆𝑢( 𝑓𝑖 − 𝑓𝑗)𝑑𝑢 + 𝜆𝑢(𝑑𝑖 − 𝑑 𝑗) 𝑓𝑢 =

v𝑖 · p𝑖 − v𝑗 · p𝑗 + 𝜆𝑢𝑑𝑖 𝑓𝑖 − 𝜆𝑢𝑑 𝑗 𝑓𝑗 . (2.19)

This equation is distinct from the other equations in this section in that it

has eight unknowns, rather than just two to four. This makes it harder to

visualize the linear geometry represented by these equations. Instead

of visualizing the entire 8-dimensional linear system, we consider a

simplified version that is sufficient for a wide range of applications. If
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the receivers are all located at fixed sites then there is no Doppler shift

due to receiver motion, making v𝑖 = 0. This produces a simplified FDOA

equation

v𝑢 · (p𝑖 − p𝑗) + 𝜆𝑢( 𝑓𝑖 − 𝑓𝑗)𝑑𝑢 + 𝜆𝑢(𝑑𝑖 − 𝑑 𝑗) 𝑓𝑢 =

𝜆𝑢𝑑𝑖 𝑓𝑖 − 𝜆𝑢𝑑 𝑗 𝑓𝑗 . (2.20)

The most important detail of this equation is that it does not include

the unknown transmitter position u. That means that FDOA cannot be

used with stationary receivers to locate a transmitter. Instead, FDOA

is mostly useful for calculating the movement of a transmitter, which

enables improved tracking.

The solution to this system of equations can be understood in the same

way as the TDOA equations in Sec. 2.2.1. The velocity of the transmitter

is at or near the intersection of surfaces that are perpendicular to the

vectors joining the receiver locations, as shown in Fig. 2.6.

p1

p2

p3

p4

vu

Receivers
Target velocity
Difference vectors
Solution planes

Figure 2.6: Illustration of the linearization of the FDOA equations in 2 dimensions, with

the differences taken relative to receiver p
1
.The solution lies at the intersection of planes

(or lines, in 2 dimensions) that are perpendicular to the vectors connecting the pair of

receivers in each equation. The incongruity between using position and speed vectors

can be reconciled by noting that velocity vectors and position vectors are proportional

to each other, and that the point of the relationship is to show the orientation of the

solution planes.
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nIn a single transmitter, multiple receiver

case, 𝑟𝑢 is the transmitter-target range.

That includes passive multistatic radar,

which is found frequently in the

literature.

Another reduced form of Eq. 2.19 can be made if the sensor velocities

v𝑗 are non-zero and known (e.g., the orbital velocities of GPS satellites)

and v𝑢 and 𝑓𝑢 are assumed to be zero. In that case, Eq. 2.19 reduces to

a linear equation of four unknowns. That system of equations can be

used to determine u, which lies on a plane perpendicular to the relative

receiver velocity vector v𝑖 − v𝑗 .
FDOA is included in some localization algorithms. Implementations

include quadratic [110], iterative [87], and linear [64, 90, 111], and

probabilistic [112] methods. It is common for FDOA to be employed in

bistatic radar [113–118]. Linear bistatic radar localization is explored in

the section below.

Bistatic radar
The localization of a target in a bistatic radar is quite similar to multi-

lateration, using time of arrival to estimate the position of a scattering

target. Approaches for solving the bistatic radar problem are presented

by Malanowski [119, 120] and Willis [121]. The linear bistatic radar

equation from Malanowski for multiple transmitters and a single receiver

is

𝑥𝑖𝑥𝑢 + 𝑦𝑖𝑦𝑢 + 𝑧𝑖𝑧𝑢 − 𝑟𝑖𝑟𝑢 =
1

2

(
𝑥2

𝑖 + 𝑦
2

𝑖 + 𝑧
2

𝑖 − 𝑟
2

𝑖

)
(2.21)

where 𝑟𝑢 is an unknown target-receiver range that is constant for all

transmittersn and 𝑟𝑖 is the measured bistatic range to the target. This

equation is equivalent to Eq. 2.7 with the receiver acting as the common

node and with a sign change.

Malanowski only applies the linear equations to the position variables,

considering the 𝑟𝑢 as a non-linear variable that needs to be solved

independent of [𝑥𝑢 , 𝑦𝑢 , 𝑧𝑢]T. He suggests two different approaches for

doing so. The first (spherical interpolation, or SI) is nearly linear, but

includes a non-linear step, based on similar multilateration algorithms [20,

21]. The second (spherical-intersection, or SX) is similar to the quadratic

approach in [18]. As non-linear solutions, neither of those approaches

are well-suited for adding additional information such as AOA or FDOA.

Geometry summary
These different localization equations, or others like them, can be used,

individually or together, to create localization algorithms suited to

most scenarios. The key is to consider the geometric limitations of

each technique, and to bring together different techniques that have

complementary strength. For example, for tracking aircraft in flight

there is a need for 3 dimensional positioning using ground-based sensors

that are nearly coplanar. That sensor layout can produce very good

localization in 2 dimensions using TOA/TDOA, but the equations are

ill-conditioned in the vertical direction. By adding elevation AOA

measurements, the problem becomes constrained vertically and the

solution becomes more accurate.

This flexibility is the key advantage to linear equations. Most non-

linear TDOA [19], TDOA/AOA [91, 93], or TDOA/FDOA [110] methods
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oEven Chan’s paper [22] starts with a 3

measurement, 2-dimensional quadratic

algorithm that does not scale to include

more or different measurements.

do not scale to include more datao. Significant effort is required to incor-

porate different kinds of measurements into quadratic algorithms. This

can be seen in the relative complexity of a quadratic TDOA algorithm [18]

versus a quadratic TDOA/AOA algorithm [72].

When combining linear equations, especially when different types

of measurements (TOA/TDOA, azimuth AOA, elevation AOA, FDOA,

etc.) are used, it is essential to use weighted least squares with an

appropriate weighting matrix, or to incorporate the weighting directly

into the equations themselves [60]. This is a non-trivial problem that

encompasses the bulk of the analytical work in the literature cited here.

2.3 Review of TDOA/AOA Multilateration Approaches
The last 30 years has seen a large volume of papers on passive localization,

especially using TDOA and/or AOA techniques. This section reviews

examples of these linear approaches from the literature, with particular

interest in papers that supplement the TOA or TDOA data with AOA or

other data. The wide array of approaches and implementations show

the versatility of linear equations when it comes to expanding on the

basic TOA/TDOA localization problem.

This review gives some examples of work in general localization,

optimized sensor placement, clutter and multipath, cellular telephone

localization, wireless device localization, tracking air and space vehicles,

acoustic localization, underwater localization, optical multilateration,

and object orientation. It also includes a brief review of some work in

passive multistatic radar.

2.3.1 General multilateration and triangulation algorithms
Many papers combine 2-dimensional mulilateration and azimuth AOA

for more general localization. These employ TDOA [53, 71] and TOA [46,

56]. Rui [122] provides a generalized analysis of the maximum likelihood

estimator for 2-dimensional TDOA/AOA localization. Ma [59] adds a

non-linear constraint to the linear equations, then creates a linear approx-

imation of that constraint. A method exists for 2-point, two-dimensional

TDOA/FDOA/AOA localization [87], using a TDOA/FDOA approach

intended for global navigation satellite system (GNSS) localization [110].

A French team implemented a two-point TOA/AOA system [123], with

emphasis on the hardware used to measure the signals.

When extending TDOA/AOA methods to three dimensions, there

are two standard approaches to the AOA. The simpler approach is to only

measure angle in azimuth, which is done for multipath environments [54]

and to locate points of failure on a power grid [84]. The more general case

also includes elevation angle [94, 96]. A method can add both azimuth

and elevation AOA, which gives improved 3-dimensional position [31,

32, 96], or a way to isolate multipath and clutter returns [88, 124, 125]. A

rigorous analysis of two angle TDOA/AOA errors is found in [94]. Most

papers assume that angle measurements are small, allowing for a small

angle approximations in the error terms, but [104] provides an AOA
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pIn a two-dimensional localization

problem, a non-azimuth angle lies

outside the solution space and cannot be

used directly to locate the target.

Instead, [126] uses the elevation angles to

foreshorten the measured

pseudodistances, at which point they use

conventional TDOA equations, without a

transmitter clock offset, to determine the

(𝑥, 𝑦) position of the target.

analysis that does not rely on that assumption. One method employs a

reference source at a known location to calibrate the algorithm [61].

A less common TOA/AOA localization approach is to use a single

AOA that is not the azimuth angle. This includes two-dimensionalp [126]

and three-dimensional [2, 127] localization using elevation angles only.

A more general approach using a single non-azimuth AOA, where the

AOA measurements are made relative to arbitrarily oriented vectors, is

given in [105, 106].

Filtering is not a common feature of TDOA/AOA algorithms but is oc-

casionally included. Filtering approaches include Kalman filtering [128]

and a Kalman-like Bayesian filter [129].

Limited sensors
An interesting approach to achieving multiple sensor localization with

just two sensors suggests using a stationary sensor and a moving sen-

sor [57]. This enables TDOA/AOA localization from different points us-

ing TDOA pairs with the stationary sensor. They also survey approaches

based on unmanned aerial vehicle (UAV) platforms, summarizing their

accuracy based on environment, geometry, and measurement types [42].

The most extreme version of passive localization with limited sensors

is 2-dimensional TOA/AOA multilateration employing a single station.

The challenge in such a system is determining the true distance. This is

done by using synchronized transmissions [130] or RSS [81, 92]. Both ap-

proaches require a target that is either cooperative or at least predictable.

A passive single-sensor localization approach in 3 dimensions, with

azimuth and elevation angles has been proposed [100]. It assumes that a

target is moving at a constant velocity and uses multiple TOA and AOA

samples over time to model the target’s position and velocity, making

it geometrically similar to SAR. Another SAR-like approach employs

AOA and FDOA to a 2-dimensional Doppler-triangulation localization

method for a target that is moving in a non-linear path [97]. It has also

been suggested that using TDOA and AOA from multipath returns could

be sufficient to determine the position of a transmitter from a single

reference point [68].

Triangulation only
Some papers consider TDOA and AOA and ultimately only implement

the latter. One stated reason for excluding multilateration is that “these

multilateration techniques systems have several drawbacks mainly re-

lated to the requirement of network synchronization, which does not

exist in [cellular telephone networks] ." [131] Given the relatively poor

accuracy of AOA compared to TDOA, this is a poor choice for wide

area applications. Triangulation-only is applied to self-localization [89],

2-dimensional localization [58], and 3-dimensional localization [102].

One paper [132] presents a method of localizing a set of unknown sources

and sensors using only azimuth angles. The resulting solution is an

approximation of the true relative positions, which must then be rotated,

translated, and scaled to approximate the true absolute positions.
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Optimized sensor placement
A few papers analyze the problem of optimizing sensor placement for

multilateration problems. This is done in 2 dimensions [63, 133, 134] and

in 3 dimensions [101]. One [134] determines that the optimal positions

for three sensors is in an equilateral triangle. Typically, these methods

provide complicated equations that are far removed from the underlying

geometry, depriving readers of any general or intuitive understanding of

the results.

2.3.2 Multilateration applications
Clutter and multipath
Localization in the presence of multipath propagation and clutter, or non-

line of sight (NLOS), has been an important area of research [53, 54, 65, 124,

125]. The multipath signal has a path length and AOA that differ from the

true line of sight (LOS) path. This can affect the accuracy of multilateration

systems, especially in urban environments. For that reason, it correcting

for NLOS has been a focus of Enhanced 911 (E-911) localization [44, 47,

51, 55, 83, 90]. AOA may be employed to correct multilateration path

lengths [45] and to determine the optimal beamforming for a multiple-

input multiple-output (MIMO) antenna [69]. A proposed self-localization

method is proposed for cellular phones employing TOA and AOA in a

multipath environment with other cooperative receivers and information

from the transmitter [68]. A more algorithmic approach to localization in

clutter is presented in [85]. NLOS can also be an issue underwater [88].

Cellular telephone localization
Enhanced 911 (E-911), established by the Wireless Communications and

Public Safety Act in 1999 [5], levied a requirement on cellular telephone

services to be able to locate phones that have called emergency services.

This prompted a flurry of research into passive localization of cellular

devices [135]. The addition of AOA has been employed to resolve under-

determined localization scenarios, such as when the base stations are

all in a line [41]. E-911 research has focused on scenarios with limited

reference points [49, 51], which is common for rural environments,

and scenarios with significant scattering in 2-dimensions [44, 83] or

3-dimensions [52, 55, 66], which is typical for urban areas. One approach

uses the scatterers to help locate the telephone in 3 dimensions [90], using

AOA to characterize the locations of the scatterers. E-911 approaches

also employ filters [49] and estimators [47]. A few E-911 papers propose

localization with triangulation only [136, 137].

Wireless device localization
A common application of multilateration is locating wireless network

devices. Methods that incorporate AOA with 2-dimensional multilat-

eration equations do not appear to be popular. One simple system

employing two sensors with two TOA and one AOA measurements

is [70]. TDOA/AOA measurements are also used to locate interference
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sources, either at specific points [138] or in specific directions [139].

The latter uses the TDOA at two close antennas to measure the AOA.

TDOA/AOA is also used to distinguish between signal sources [82].

Tracking air and space vehicles
Passive detection is of interest to civil aviation agencies seeking to

track aircraft. These applications typically employ aircraft transponder

signals such as Airborne Collision Avoidance System (ACAS) Mode

S signals [140], L-band digital aeronautical communication system

(LDACS) [141], or the Automatic Dependent Surveillance-Broadcast

(ADS-B) messages [48, 142]. The approach in [140] is for ground tracking

at an airport, rigidly limiting the scenario to two dimensions, and employs

RF over fiber (RoF) in order to centralize the detection and processing

functions. Some papers respond to the difficulty of 3-dimensional local-

ization in wide area multilateration by only considering the horizontal

accuracy, even for aircraft in flight [141, 143].

Multilateration may also be used to track objects in space. A Korean

team has employed TOA/AOA localization in tracking space vehicles

during launch [144, 145]. A satellite tracking algorithm employs FDOA

in addition to TDOA and AOA, using PSO [17]. AOA is not typically

applied to GPS, but it has been proposed as part of a GPS augmentation.

This includes a case where ground stations, acting as pseudo-satellites,

can measure azimuth AOA [146], and where AOA is measured directly

to the satellites [147].

Acoustic localization
Acoustic waves may be used for multilateration and AOA measurements.

Acoustic signals can experience stronger dispersion than RF signals,

making it difficult to employ the relatively wide bandwidth signals that

are most effective for TOA measurements. Acoustic localization can

be done over distances of meters [148] or over longer distances in 2

dimensions [80] and 3 dimensions [77].

Underwater localization
Underwater multilateration using RF waves and AOA has been proposed

as a method to locate invasive weeds [62]. AOA has also been applied to

correct ranges in multilateration-only localization underwater [67]. RF

attenuation underwater can be severe, which places great importance on

placing sensors and selecting which sensors to include in a solution [103,

149].

Optical multilateration
A recent paper [86] uses phase and modulation to measure TOA in optical

systems, which it then adds to the angle measurements inherent in an

image to produce a hybrid TDOA/AOA optical localization system.
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Object orientation
Multilateration with AOA can be used to determine the orientation of a

rigid body using a fixed point and sensors positioned on the body [150,

151]. This is a difficult problem with six degrees of freedom (translation

in three dimensions and rotation on three axes) that is very different

from a traditional localization problem.

2.3.3 Multistatic radar
Bistatic radar uses separate antennas to transmit and receive, which may

or may not be located near each other. A multistatic radar employs one or

more transmitting antennas and one or more receiving antennas. When

a system employs a transmitter (which may be part of the system or

may be transmitting signals for some other purpose, such as radio or

television broadcasts) and several geographically separated receivers,

then the target localization problem becomes quite similar to the problem

in multilateration. The problem can be solved with linear equations

nearly identical to those presented by Chan [22, 30, 43], with AOA

measurements producing equations similar to those given in Sec. 2.2.1 [34,

36, 43]. Including the uncertainty in the sensor locations produces

more complicated WLS weights but otherwise does not affect the linear

equations [33, 152].

The multistatic radar scenario, when viewed in terms of the signal

being reflected from a single target, can be reduced to a multilateration

problem where the transmitter is equivalent to a receiver with negative

propagation time. As a result of this, multilateration techniques can be

applied to multistatic radar, and many multistatic radar algorithms can

be applied to multilateration problems. They also share some of the

same geometric problems including multipath [116, 153] and vertical

ambiguity. Multistatic radar has more difficulties with ghosting [154]

than multilateration. Like other surveillance radars, multistatic radars

are able to take advantage of Doppler filtering for clutter rejection [117]

when the target is moving.

An active area of multistatic radar research is passive multistatic

radar using signals from digital radio (DAB) and TV (DVB-T) stations as

illuminators [111, 114, 115, 117, 154]. Experimental radars using DVB-T

signals can track objects in 2 dimensions with reasonable accuracy [113,

155]. The DAB/DVB-T radar papers cited here do not employ AOA due to

their use of small, relatively inexpensive antennas which are inadequate

for measuring AOA in azimuth or elevation. Passive multistatic radars

require a direct path signal for synchronization, but the direct signal can

interfere with the reflected waveforms [116].

A popular approach to solving the multistatic radar localization

problem is to maximize a joint probability distribution across multiple

receivers [30, 33, 111, 112, 116, 118, 152]. When this approach produces an

algorithm for solving the localization problem the resulting equations are

often similar to methods for multilateration [30, 33]. Other approaches

also produce equations similar to the linear equations for multilateration,
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qEven the seminal works on linear

algorithms [22, 119] are reluctant to use

fully linear solutions, choosing instead to

stop short and finish the solutions using

quadratic equations.

including those employing AOA information [34, 36].

Other algorithmic refinements include adaptive nulling of interfer-

ence sources [153], tracking algorithms [111, 114, 115], and employing

intelligent reflectors [156] in the environment, effectively functioning as

passive receivers [157]. Timing is important for all passive localization al-

gorithms. The industry standard is the white rabbit algorithm developed

by CERN [158], although other methods have been proposed [142].

2.4 Conclusion
Passive localization has been the topic of extensive research. This has led

to a wide range of algorithms that can be employed to locate a transmitter

based on TOA and/or AOA. Unfortunately, it can be quite difficult to

recognize when two algorithms are using the same equations. Even with

deliberate effort, it can be difficult to see the connection between the

equations and the underlying geometric problem.

The field of passive localization could greatly benefit from one simple

change to how equations are derived. Most papers start their derivations

from noisy signal models, which means that the geometric solution is

surrounded in a cloak of random vectors and statistical functions. This

analysis is important for analyzing and optimizing the algorithm, but it

is not necessary to produce the geometric solution.

Our review highlights the utility and adaptability of linear TOA,

TDOA, AOA, and FDOA equations. These provide simple building

blocks that can be employed to solve a wide range of problems in passive

localization. The community was reluctant to use linear equations in this

wayq, but the proliferation of papers employing these linear algorithms

shows that they have come around to using linear equations to solve

localization problems.

Recognizing and understanding the linear equations used in a lo-

calization algorithm enables a more intuitive understanding of these

algorithms. The equations describe vectors, which can be visualized in

terms of the geometry of the scenario. This sort of intuitive understand-

ing can help in avoiding stability issues when implementing localization

algorithms.
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aThis is an approach that we considered

as a generalization of the algorithm

presented in this chapter. Ultimately, we

decided that this generalization did not

expand significantly enough on our

earlier approach to warrant fleshing it out

more.

Hybrid Multilateration and Triangulation

This chapter is composed from a paper entitled “Hybrid Multilateration

and Triangulation” published in the journal Positioning [2]. I hereby

confirm that the use of this article is compliant with all publishing

agreements.

3.1 Introduction
A key application of multilateration-based localization is locating aircraft

in flight. This scenario presents some distinct challenges, most notably

that the receivers are typically all on or very close to the ground. In

most cases, this will mean that they are very nearly coplanar. In TOA

multilateration this creates an ambiguous geometry, where the target can

lie above or below the ground, which can usually be resolved by checking

the altitude of the aircraft. In TDOA multateration the problem is much

more complex. Slight changes in the calculated transmitter offset 𝑡𝑢 or

transmitter offset pseudodistance 𝑑𝑢 = 𝑐𝑡𝑢 can produce valid position

solutions at a wide range of altitudes above and below the ground,

following a near-vertical line or hyperbolic curve. This is independent

of algorithm, as the underlying geometry of the problem is unstable,

regardless of the method used to solve it [37].

The most common way of resolving this issue in the literature is to

simply calculate a 2-dimensional position, ignoring the vertical position

entirely [140, 141, 143]. While 2-dimensional localization is acceptable in

some applications, it can have serious negative implications for tracking

and flight safety. Many recent papers addressing 3-dimensional mul-

tilateration, including a few cases of tracking cellular telephones [52,

55, 66], which are typically at or near ground level, include angle of

arrival, include angle of arrival information as a way of improving the

algorithm’s performance [61, 72].

Our approach to mitigating the vertical uncertainty is to add vertical

angle of arrival (AOA) measurements. Somewhat surprisingly, this is

relatively uncommon in the literature. We were unable to find any

papers that used only vertical AOA to improve localization performance,

although there is a paper that uses only a single angle of arrival, oriented

relative to an arbitrary axis, as part of its localization algorithm [127]a.

This chapter presents an algorithm that combines TDOA multilatera-

tion with a vertical AOA to produce a single set of linear equations for

27
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determining the location of an unknown transmitter.

3.2 Algorithm
Let p𝑖 = [ 𝑥𝑖 𝑦𝑖 𝑧𝑖 ]T , 𝑖 = 1, 2, . . . , 𝑁 be the position of 𝑁 receivers

and u = [ 𝑥𝑢 𝑦𝑢 𝑧𝑢 ]T be the unknown position of a transmitter. The

transmitter emits a signal at time 𝑡𝑢 that is received at p𝑖 at time 𝑡𝑖 .

For each receiver, a pseudo-distance 𝑑𝑖 = 𝑐𝑡𝑖 is calculated, where 𝑐 is

the speed of light. This pseudodistance is used instead of time in the

positioning equations. For each p𝑖 , the angle of arrival of the transmitted

signal relative to the 𝑥 − 𝑦 plane, 𝜙𝑖 is measured. For any p𝑖 and p𝑗 , the

difference between the corresponding parameters is

𝑎𝑖 − 𝑎 𝑗 = �̃�𝑖 , 𝑗 , (3.1)

e.g. �̃�𝑖 , 𝑗 = 𝑥𝑖−𝑥 𝑗 . The vector p̃𝑖 , 𝑗 = p𝑖−p𝑗 is the difference vector between

the 𝑖th and 𝑗th receiver locations. The operation a′ = [ 𝑥𝑎 𝑦𝑎 ]T projects

of a onto the 𝑥𝑦 plane, so that a =
[

a′T 𝑧𝑎
]

T

.

The following sections present the HM algorithm by first deriving a

TDOA multilateration algorithm, and then incorporating the measured

angle information.

3.2.1 TDOA multilateration-only
Linear equations for solving TDOA multilateration are given in [22].

This section presents a clearer derivation of those equations that is more

suited for use in the later steps.

The distance between points p𝑖 and u is

|u − p𝑖 | = |𝑑𝑢 − 𝑑𝑖 |. (3.2)

Squaring both sides gives

|u|2 + |p𝑖 |2 − 2u · p𝑖 = 𝑑2

𝑢 − 2𝑑𝑢𝑑𝑖 + 𝑑2

𝑖 (3.3)

where a · b is the dot product. This can be rearranged to yield

2u · p𝑖 − 2𝑑𝑢𝑑𝑖 − |u|2 + 𝑑2

𝑢 = |p𝑖 |2 − 𝑑2

𝑖 . (3.4)

This is almost linear in terms of the unknown values, but those unknown

terms contribute the exact same −|u|2 + 𝑑2

𝑢 to the equation for each point.

This means that they can be eliminated by taking the difference between

the equations for two separate points. Taking that difference between

the 𝑖th and 𝑗th equations gives

2u · p̃𝑖 , 𝑗 − 2𝑑𝑢 �̃�𝑖 , 𝑗 = |p𝑖 |2 − |p𝑗 |2 − 𝑑2

𝑖 + 𝑑
2

𝑗 . (3.5)

These are the linear equations from [22], without the measurement error

terms. It can be written in matrix form as

A𝑀 x̄ = b𝑀 (3.6)
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where x̄ =
[
�̄�𝑢 �̄�𝑢 �̄�𝑢 �̄�𝑢

]
T

is an estimated value of the unknown

values u and 𝑑𝑢 ,

A𝑀 =


2p̃′

2,1
−2�̃�2,1

...
...

2p̃′
𝑁,1

−2�̃�𝑁,1


b𝑀 =


|p2 |2 − |p1 |2 − 𝑑2

2
+ 𝑑2

1

...

|p𝑁 |2 − |p1 |2 − 𝑑2

𝑁
+ 𝑑2

1

 .
(3.7)

3.2.2 Vertical AOA-only
For this algorithm, a vertical AOA measurement is taken relative to

the horizontal at one or more receivers, as shown in Fig. 3.1. If the

measurement is error-free then a given value of 𝜙𝑖 places the target on a

vertically-oriented cone.

The triangulation algorithm uses the measured values of the angle

of the transmitter relative to vertical for each receiver, as shown in

Fig. 3.1. Adding this one-dimensional triangulation to the multilateration

equations can help to significantly improve the solution in the 𝑧 direction.

z
u

pi
x

ϕi

Receiver
Target

Figure 3.1: Angle measurement for vertical angle of arrival. The measured angle

describes a cone containing the transmitter. Note that this figure is identical to Fig. 2.5.
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The measured angle 𝜙𝑖 relates the distance |p𝑖 − u| = 𝑑𝑖 − 𝑑𝑢 and the

difference in elevation 𝑧𝑢 − 𝑧𝑖 as

𝑧𝑢 − 𝑧𝑖 = (𝑑𝑖 − 𝑑𝑢) sin 𝜙𝑖 . (3.8)

This can be rewritten as a linear equation of the unknown variables

𝑧𝑢 + 𝑑𝑢 sin 𝜙𝑖 = 𝑧𝑖 + 𝑑𝑖 sin 𝜙𝑖 , (3.9)

which has a matrix form

A𝑇 x̄ = b𝑇 (3.10)

where

A𝑇 =


0 0 1 sin 𝜙1

...
...

...
...

0 0 1 sin 𝜙𝑁


b𝑇 =


𝑧1 + 𝑑1 sin 𝜙1

...

𝑧𝑁 + 𝑑𝑁 sin 𝜙𝑁

 .
(3.11)

This is clearly not sufficient for determining x′, but it can be combined

with Eq. 3.6 to produce an augmented system of equations that combine

TDOA multilateration and triangulation.[
A𝑀

A𝑇

]
x̄ =

[
b𝑀
b𝑇

]
. (3.12)

This is how combined TDOA/AOA localization is typically implemented,

with linear TDOA equations concatenated with linear AOA equations

into a single system of linear equations. In this paper, we go one step

further to explicitly tie the 𝑧𝑢 value to the triangulation.

3.2.3 Hybrid Multilateration/Triangulation
The hybrid multilateration and triangulation equations are derived by

replacing the value 𝑧𝑢 in Eq. 3.5 with the value for 𝑧𝑢 from Eq. 3.9,

producing an equation in terms of 𝑥𝑢 , 𝑦𝑢 , and 𝑑𝑢 , so that

2u · p̃′
𝑖 , 𝑗 + 2�̃�𝑖 , 𝑗𝑧𝑢 − 2𝑑𝑢 �̃�𝑖 , 𝑗 = |p𝑖 |2 − |p𝑗 |2 − 𝑑2

𝑖 + 𝑑
2

𝑗 (3.13)

becomes

2u ·p̃′
𝑖 , 𝑗−2𝑑𝑢

(
�̃�𝑖 , 𝑗 sin 𝜙𝑖 + �̃�𝑖 , 𝑗

)
= |p𝑖 |2−|p𝑗 |2−𝑑2

𝑖 +𝑑
2

𝑗 − �̃�𝑖 , 𝑗
(
𝑧𝑖 + 𝑑𝑖 sin 𝜙𝑖

)
.

(3.14)

This equation combines multilateration in 𝑥 and 𝑦 with triangulation in

𝑧, all of which are tied to 𝑑𝑢 . These equations are then combined into the

hybrid matrix form

A𝐻 �̄� = b𝐻 (3.15)
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bIn most cases, the weighting matrix is

calculated from the variances of the

measurement errors, which are all

uniform. This means that the weighting

matrix is equivalent to the identity

matrix.

where

A𝐻 =


2̃p′

2,1 0 −2

(
�̃�2,1 sin 𝜙2 + �̃�2,1

)
...

...
...

2̃p′
𝑁,1 0 −2

(
�̃�𝑁,1 sin 𝜙𝑁 + �̃�𝑁,1

)


b𝐻 =


|p2 |2 − |p1 |2 − 𝑑2

2
+ 𝑑2

1
− 2�̃�2,1

(
𝑧2 + 𝑑2 sin 𝜙2

)
...

|p𝑁 |2 − |p1 |2 − 𝑑2

𝑁
+ 𝑑2

1
− 2�̃�𝑁,1

(
𝑧𝑁 + 𝑑𝑁 sin 𝜙𝑁

)
 .

(3.16)

The hybrid multilateration equations of Eq. 3.15 are concatenated

with the matrices from Eq. 3.12.[
A𝐻

A𝑇

]
x̄ =

[
b𝐻
b𝑇

]
. (3.17)

This can be solved using any linear algebra pseudoinverse such as

least squares (LS) or weighted least squares (WLS). In most localization

algorithms, WLS is employed to minimize the effects of uncertainty of

the measurement error on the calculated positionb. In this case, given

that the norms of the rows in A𝐻 are typically orders of magnitude larger

than the norms in the rows of A𝑇 , it is essential to use WLS to bring the

rows into roughly the same scale. The next section provides a statistical

basis for choosing a good weighting for weighted least squares.

3.3 Optimal weighted least squares
To understand the behavior of this algorithm, we must consider the

effect of measurement error on its performance. Let the measured

pseudodistance be

𝑑𝑖 = �̂�𝑖 + 𝑛𝑖 (3.18)

where 𝑑𝑖 is the measured pseudodistance at p𝑖 , �̂�𝑖 is the noise-free

pseudodistance, and 𝑛𝑖 is a zero-mean, uncorrelated Gaussian random

variable with variance 𝜎2

𝑑,𝑖
. Similarly, let

𝜙𝑖 = �̂�𝑖 + 𝑚𝑖 (3.19)

where 𝜙𝑖 is the measured elevation angle at p𝑖 , �̂�𝑖 is the noise-free

elevation angle, and 𝑚𝑖 is a zero-mean Gaussian random variable with

variance 𝜎2

𝜙,𝑖 . These can be written in vector form as

d = d̂ + n (3.20)

and

𝚿 = �̂� + m (3.21)
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cThe fact that the noise-free

measurements produce a residue of zero

can be seen in two ways. First, if the noise

terms are all zero then the equations

describe x̄ exactly. Second, the expected

value of the noisy terms in Eq. 3.26 are all

zero as long as the time or distance

measurement error is has an average

value of zero with the same variance at

all points.

where d̂ =
[
�̂�1 . . . �̂�𝑁

]
T

, n =
[
𝑛1 . . . 𝑛𝑁

]
T

, �̂� =
[
�̂�1 . . . �̂�𝑁

]
T

,

and m =
[
𝑚1 . . . 𝑚𝑁

]
T

. These noise vectors have covariance matri-

ces

E(nnT) = Q𝑛 =

[
𝜎𝑑,1 0(1×𝑁−1)

0𝑁−1×1 Q′
𝑛

]
(3.22)

and

E(mmT) = Q𝜙 (3.23)

where Q′
𝑛 = E(n′n′T), and n′ = [𝑛2 , . . . , 𝑛𝑁 ]T.

The effects of noise on the system can be found by considering the

weighted residue vector

𝝍 =

[
W𝐻 0

0 W𝑇

] ( [
b𝐻
b𝑇

]
−

[
A𝐻

A𝑇

]
x̄
)

(3.24)

where W𝐻 = diag(𝑤𝐻,2 , . . . , 𝑤𝐻,𝑁 ) and W𝑇 = diag(𝑤𝑇,1 , . . . , 𝑤𝑇,𝑁 ) are

diagonal weighting matrices. If the measurements are noise-free then

𝝍 = 0. The effects of noise can be found by breaking down A𝐻 , A𝑇 , b𝐻 ,

and b𝑇 into noisy and noise-free components by substituting Eqs. 3.20

and 3.21 into Eqs. 3.16 and 3.11. To simplify the resulting equations, we

consider the value of sin 𝜙𝑖 for when 𝑚𝑖 is small.

sin 𝜙𝑖 = sin

(
�̂�𝑖 + 𝑚𝑖

)
= sin �̂�𝑖 cos𝑚𝑖 + cos �̂�𝑖 sin𝑚𝑖

≈ sin �̂�𝑖 + 𝑚𝑖 cos �̂�𝑖 .

(3.25)

This gives

A𝐻 ≈ Â𝐻 +


0 0 0 −2𝑚2 �̃�2,1 cos �̂�2 − 2(𝑛2 − 𝑛1)
...

...
...

...

0 0 0 −2𝑚𝑁 �̃�𝑁,1 cos �̂�𝑁 − 2(𝑛𝑁 − 𝑛1)


A𝑇 ≈ Â𝑇 +


0 0 0 𝑚1 cos �̂�1

...
...

...
...

0 0 0 𝑚𝑁 cos �̂�𝑛


b𝐻 ≈ b̂𝐻 +


−2�̂�2𝑛2 − 𝑛2

2
+ 2�̂�1𝑛1 + 𝑛2

1

...

−2�̂�𝑁𝑛𝑁 − 𝑛2

𝑁
+ 2�̂�1𝑛1 + 𝑛2

1

 +
−2�̃�2,1(𝑛2 sin �̂�2 + (�̂�2 + 𝑛2)𝑚2 cos �̂�2))

...

−2�̃�𝑁,1(𝑛𝑁 sin �̂�𝑁 + (�̂�𝑁 + 𝑛𝑁 )𝑚𝑁 cos �̂�𝑁 ))


b𝑇 ≈ b̂𝑇 +


𝑛1 sin �̂�1 + (�̂�1 + 𝑛1)𝑚1 cos �̂�1

...

𝑛𝑁 sin �̂�𝑁 + (�̂�𝑁 + 𝑛𝑁 )𝑚𝑁 cos �̂�𝑁

 .

(3.26)
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dThere are several issues with this

approach, most notably that the hybrid

terms all include 𝑛1, which means that

there will be some non-zero

cross-correlation between those

equations. For this derivation we ignore

this cross correlation. For weighting

matrices, findinging the correct

magnitude is more important than

obtaining an exact value.

Applying these to Eq. 3.24 and using the fact that the noise-free mea-

surements produce a residue of 𝝍 = 0c, the residue can be written

as

𝝍 =

𝑁∑
𝑖=2

𝑤𝐻,𝑖

[
2�̃�𝑖 ,1

(
𝑑𝑢𝑚𝑖 cos �̂�𝑖 − 𝑛𝑖 sin �̂�𝑖 − (�̂�𝑖 + 𝑛𝑖)𝑚𝑖 cos �̂�𝑖

)
+

2𝑑𝑢(𝑛𝑖 − 𝑛1) − 2�̂�𝑖𝑛𝑖 − 𝑛2

𝑖 + 2�̂�1𝑛1 + 𝑛2

1

]
+

𝑁∑
𝑖=1

𝑤𝑇,𝑖

[
𝑛𝑖 sin �̂�𝑖 + (�̂�𝑖 + 𝑛𝑖)𝑚𝑖 cos �̂�𝑖 − 𝑑𝑢𝑚𝑖 cos �̂�𝑖

]
(3.27)

The optimal weights weighted least squares are the weights such that

the expected value 𝚿 = 𝐸
[
𝝍𝝍T

]
≈ I. While this can be done with

some mathematical rigor, the same result can be achieved intuitively by

examining Eq. 3.27 and considering the square of each sum termd. For

this analysis, we assume that

| �̃�𝑖 ,1 | < |𝑑𝑢 | < |�̂�𝑖 |
𝜎2

𝜙,𝑖 cos
2 �̂�𝑖 ≪ 𝜎2

𝑑,𝑖
.

(3.28)

For the 𝑤𝐻,𝑖 terms, the dominant contributors to 𝚿 are the −2�̂�𝑖𝑛𝑖 +
2�̂�1𝑛1 terms. The expected value of those terms within𝚿 is 4𝑤2

𝐻,𝑖
𝜎2

𝑑,𝑖
(�̂�2

𝑖
+

�̂�2

1
) ≈ 8𝑤2

𝐻,𝑖
𝜎2

𝑑,𝑖
�̂�2

𝑖
. Since this should be approximately equal to 1, we find

that

𝑤𝐻,𝑖 ≈
1√

8𝜎𝑑,𝑖 �̂�𝑖
. (3.29)

For the𝑤𝑇,𝑖 terms, the dominant contributor to𝚿 is the𝑤𝑇,𝑖 �̂�𝑖𝑚𝑖 cos �̂�𝑖
term. The expected value of this term within 𝚿 is 𝑤2

𝑇,𝑖
�̂�2

𝑖
𝜎2

𝜙,𝑖 cos
2 �̂�𝑖 .

Since this should be approximately equal to 1, we find that

𝑤𝑇,𝑖 ≈
1

�̂�𝑖𝜎𝜙,𝑖 cos �̂�𝑖
. (3.30)

When the values of 𝑑𝑖 and 𝑧𝑖 are all roughly the same and 𝑧𝑖 ≈ 𝑧𝑢 , the

weights can be further simplified. In that case, the �̂�𝑖 terms are all equal

and can be omitted, and the cos �̂�𝑖 ≈ 1, giving a weighting matrix of

W = diag

(
1√

8𝜎𝑑,2
, . . . ,

1√
8𝜎𝑑,𝑁

,
1

𝜎𝜙,1
, . . . ,

1

𝜎𝜙,1

)
. (3.31)

These approximations only apply when the inequalities of Eq. 3.28 hold.

When they do not, and in particular when 𝜎2

𝜙,𝑖 is not several orders of

magnitude smaller than 𝜎𝑑,𝑖 , then better weighting coefficients are given
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by

𝑤𝐻,𝑖 =
����̃�𝑖 ,1 [

(𝑑𝑢 − �̂�𝑖 − 𝜎𝑑,𝑖)𝜎𝜙,𝑖 cos �̂�𝑖 − 𝜎𝑑,𝑖 sin �̂�𝑖
]
+

(𝑑𝑢 − �̂�𝑖)𝜎𝑑,𝑖 − (𝑑𝑢 − �̂�1)𝜎𝑑,1 − (𝜎2

𝑑,𝑖
− 𝜎2

𝑑,1
)/2

���−1

𝑤𝑇,𝑖 =
���𝜎𝑑,𝑖 sin �̂�𝑖 + (�̂�𝑖 + 𝜎𝑑,𝑖 − 𝑑𝑢)𝜎𝜙,𝑖 cos �̂�𝑖

���−1

.

(3.32)

In calculating the weights using Eq. 3.32, the measured values can

generally be used instead of the noise-free values. The unknown value

𝑑𝑢 can be set to 0, approximated as being roughly equal to the 𝑑𝑖 or |p𝑖 |
values, or estimated by solving the equations with less optimal weights.

Note that these derivations are quite rough. This is intentional. The

key to a successful application of weighted least squares is to weight the

equations based on how much information they contribute to the overall

problem. Without any additional information about the quality of each

equation, the best weighted least squares is one that has every equation

contribute the same amount to the overall solution. This means that

each equation should be scaled to the point that their magnitudes are

roughly equal. This matches the results of every weighted least squares

analysis that I have observed in the literature. Relevantly, the result in

Eq. 3.29 is consistent with the weights given in [22] and the result in

Eq. 3.30 is consistent with the weights given in [105]. The results are

not very sensitive to small changes in the weighting matrix. As long as

the weighting matrix scales A𝑇 and b𝑇 more than it scales A𝐻 and b𝐻
by a factor that is roughly the same magnitude as the average value of

|p𝑖 − p1 |, the solution is statistically indistinguishable from a solution

prepared using a more precisely calculated weighting matrix.

3.4 Stability

Multilateration algorithms are sensitive to the positions where the mea-

surements are taken. If the reference point locations are not sufficiently

distributed, then the algorithm can fail. This is a problem with terrestrial

multilateration systems that are tracking aircraft over a large area. In

a system, the reference points are likely to be approximately coplanar,

which makes it difficult for a multilateration algorithm to distinguish

between points that are at orthogonally opposite positions relative to

that plane.

In analyzing the algorithm, we are primarily concerned with scenarios

where the reference points are coplanar or nearly coplanar. For most

scenarios the transmitter is not in the same plane. The stability of

the approach depends on the stability of the matrix

(
ATA

)−1

, where

A =
[
𝐴T

𝐻
𝐴T

𝑇

]
T

, given by
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ATA =

𝑁∑
𝑖=2


4�̃�2

𝑖 ,0
4�̃�𝑖 ,0 �̃�𝑖 ,0 0 −�̃�𝑖 ,0(�̃�𝑖 ,0 + �̃�𝑖 ,0 cos 𝜙𝑖)

4�̃�𝑖 ,0 �̃�𝑖 ,0 4�̃�2

𝑖 ,0
0 −�̃�𝑖 ,0(�̃�𝑖 ,0 + �̃�𝑖 ,0 cos 𝜙𝑖)

0 0 0 0

−�̃�𝑖 ,0(�̃�𝑖 ,0 + �̃�𝑖 ,0 cos 𝜙𝑖) −�̃�𝑖 ,0(�̃�𝑖 ,0 + �̃�𝑖 ,0 cos 𝜙𝑖) 0 (�̃�𝑖 ,0 + �̃�𝑖 ,0 cos 𝜙𝑖)2

 +
𝑁∑
𝑖=1


0 0 0 0

0 0 0 0

0 0 1 cos 𝜙𝑖
0 0 cos 𝜙𝑖 cos

2 𝜙𝑖

 .
(3.33)

The following sections analytically demonstrate the instability of the

algorithm for a few specific special cases of receiver layouts. It also

considers several other receiver configurations to gain insight into the

stability of the algorithm.

3.4.1 Linear Deployment
If the receivers are in a line where 𝑥𝑖 = 𝑥 𝑗∀𝑖 , 𝑗 then the first row and

column of ATA are uniformly zero, and ATA has no inverse. The same

holds for when 𝑦𝑖 = 𝑦 𝑗∀𝑖 , 𝑗, which leads to all zeros in the second row

and column.

For other linear arrangements, consider a line of receivers located

at (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = (𝑎𝑘𝑖 + 𝑥0 , 𝑏𝑘𝑖 + 𝑥0 , 𝑧𝑖) for some 𝑎, 𝑏, 𝑘1 , . . . , 𝑘𝑛 where 𝑘𝑖
is a scalar representing the location of the receiver on the line. Then

�̃�𝑖 ,0 = 𝑎𝑘𝑖 and �̃�𝑖 ,0 = 𝑏𝑘𝑖 . Let 𝐾 =
∑
𝑘2

𝑖
. Then

ATA =


4𝑎2𝐾 4𝑎𝑏𝐾 0 −∑

𝑖 𝑎𝑘𝑖 �̃�
′
𝑖 ,0

4𝑎𝑏𝐾 4𝑏2𝐾 0 −∑
𝑖 𝑏𝑘𝑖 �̃�

′
𝑖 ,0

0 0 𝑁
∑
𝑖 cos 𝜙𝑖

−∑
𝑖 𝑎𝑘𝑖 �̃�

′
𝑖 ,0

−∑
𝑖 𝑏𝑘𝑖 �̃�

′
𝑖 ,0

∑
𝑖 cos 𝜙𝑖

∑
𝑖

(
cos

2 𝜙𝑖 + �̃�′𝑖 ,0
)


(3.34)

where �̃�′
𝑖 ,0

= �̃�𝑖 ,0 + �̃�𝑖 ,0 cos 𝜙𝑖 . The first two columns of that matrix are 𝑎x
and 𝑏x where

x =

[
4𝑎𝐾 4𝑏𝐾 0 −∑

𝑖 𝑘𝑖 �̃�
′
𝑖 ,0

]
T

. (3.35)

This means that those two columns are not linearly independent and that

ATA is deficient. Therefore any linear arrangement of sensors produces

a deficient ATA matrix.

3.4.2 Circular Deployment
Let the receivers be located on a circle, such that the location of each

sensor is (�̂� + 𝑟 cos 𝜙𝑖 , �̂� + 𝑟 sin 𝜙𝑖 , �̂�), and the transmitter located at

(�̂� , �̂� , 𝑧𝑠). The values of �̃�𝑖 ,𝑠 =
√
𝑟2 + (𝑧 − �̂�)2 + 𝑑𝑠 are the same for all of

the sensors, so that �̃�𝑖 ,0 = 0. Similarly, �̃�𝑖 ,0 = 0 for all sensors. Since the

horizontal and vertical distance from the transmitter to each sensor is

the same,

𝜙𝑖 = tan
−1
𝑧𝑠 − �̂�
𝑟
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eAdditionally, a Gaussian error with a

standard deviation of 100 m was added to

the pseudodistances used by the HM

algorithm. This term did not affect the

results because it was constant across all

of the pseudodistances and therefore

cancelled when the �̃�𝑖 , 𝑗 terms were

calculated.

is the same for all sensors. This results in

ATA =

𝑁∑
𝑖=1


4�̃�2

𝑖 ,0
4�̃�𝑖 ,0 �̃�𝑖 ,0 0 −�̃�𝑖 ,0

4�̃�𝑖 ,0 �̃�𝑖 ,0 4�̃�2

𝑖 ,0
0 −�̃�𝑖 ,0

0 0 1 cos 𝜙𝑖
−�̃�𝑖 ,0(0 + 0 cos 𝜙𝑖) −�̃�𝑖 ,0(0 + 0 cos 𝜙𝑖) cos 𝜙𝑖 cos

2 𝜙𝑖


=

𝑁∑
𝑖=1


4�̃�2

𝑖 ,0
4�̃�𝑖 ,0 �̃�𝑖 ,0 0 0

4�̃�𝑖 ,0 �̃�𝑖 ,0 4�̃�2

𝑖 ,0
0 0

0 0 1 cos 𝜙𝑖
0 0 cos 𝜙𝑖 cos

2 𝜙𝑖


=


∑𝑁
𝑖=1

4�̃�2

𝑖 ,0

∑𝑁
𝑖=1

4�̃�𝑖 ,0𝑦𝑖 ,0 0 0∑𝑁
𝑖=1

4�̃�𝑖 ,0𝑦𝑖 ,0
∑𝑁
𝑖=1

4�̃�2

𝑖 ,0
0 0

0 0 𝑁 𝑁 cos 𝜙0

0 0 𝑁 cos 𝜙0 𝑁 cos
2 𝜙0


(3.36)

The third and fourth columns are equal to 𝑁[ 0 0 1 cos 𝜙0 ]T and

𝑁 cos 𝜙0[ 0 0 1 cos 𝜙0 ]T, so the columns of ATA are linearly depen-

dent and ATA is deficient.

Therefore, an arrangement of receivers on a circle cannot produce

a solution when the transmitter is located exactly equidistant from the

receivers at the center of the circle. This holds whether the receivers are

evenly or unevenly spaced, and whether the receivers are around the

whole circle or located exclusively along an arc of the circle. This pole

of instability is only present when the transmitter is at the center of the

circle. As the transmitter moves away from the center of the circle the

instability disappears.

The behavior of the HM algorithm with a circular configuration

of receivers can be seen in Fig. 3.2. The HM algorithm is compared

to a similar algorithm that only uses multilateration (ML) [27]. Both

plots show the deviation as a function of transmitter position relative

to the receivers at the positions shown. Gaussian error with a standard

deviation of 1 m was added to the true pseudodistances and a Gaussian

error with a standard deviation of 1
◦

was added to the true elevation

values.e Note that the scales are different for the two images.

This shows a problem with using a multilateration algorithm in that

scenario that needs to be corrected to give realistic comparable results

between the two algorithms. A comparison of the scales in Fig. 3.2

shows that HM algorithm out-performs the ML algorithm by at least

60 dB meters, which is a factor of 1,000,000:1. This is due to the fact

that the receivers were coplanar. In any algorithm that relies solely on

multilateration, having all of the reference points in a single plane creates

an ambiguity. The algorithm cannot distinguish between points above

the plane and points below the plane. To resolve this the simulations were

performed using receiver locations with 𝜎𝑧 = 20 m of Gaussian random

variation added to their height. This is the near-coplanar configuration

used in all of the remaining simulations in this paper. The results are
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(a) ML

(b) HM

Figure 3.2: Standard deviation of a multilateration (ML) algorithm and the hybrid

multilateration (HM) algorithm error as a function of transmitter location with coplanar

receivers. The ML algorithm has sizeable error with all receivers on the same plane. It

cannot distinguish between transmitters with a positive 𝑧 coordinate and those with a

negative 𝑧 coordinate. Note that the two figures use different scales for the standard

deviation of the error.
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shown in Fig. 3.3. The HM algorithm still produces significantly lower

error except at its point of instability.

(a) ML

(b) HM

Figure 3.3: Standard deviation of ML and HM algorithm error as a function of transmitter

location with near-coplanar receivers. The ML error is about 6 to 10 times larger at all

points apart from the center where the HM algorithm is unstable.

The choice of 𝜎𝑧 = 20 m is based on the underlying scenario that

the ground level varies by less than 20 m. The performance of both
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algorithms is affected by this vertical perturbation of receiver positions,

but for small variation of height only the ML algorithm is significantly

affected. A plot of the position error as a function of 𝜎𝑧 is shown in

Fig. 3.4. Accuracy of the ML algorithm increases as the vertical separation

between receivers increases. The HM algorithm performs equally well

across a range of local topological variation. This means that the HM

algorithm performs better than the ML algorithm when the receivers

are more planar and the ML performs better when the receivers have

significant vertical variation. In the scenario analyzed in Fig. 3.4 the

vertical relief must have a standard deviation of about 𝜎𝑧 = 500 meters

(27 dB meters) before the two algorithms perform equally well. The

near-coplanar simulations in this paper use vertical standard deviation

of 𝜎𝑧 = 20 meters (13 dB meters).
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Figure 3.4: Algorithm comparison as a function of vertical variance using a central

receiver in the same configuration shown in Fig. 3.6 with the transmitter directly above

the central receiver.

Moving one of the sensors outward from the circle by a small distance

creates two poles of instability along the axis that contains the point that

was moved. Moving one sensor inward by a small distance creates two

poles of instability that are located on a line perpendicular to the axis

that contains the point that was moved. Plots of the convergence are

shown in Fig. 3.5. This shows that small changes from a strictly circular

configuration aren’t enough to remove the instability.

The circular non-convergence problem can be resolved by moving

one of the sensors to the center of the circle and rearranging the other

sensors evenly around a circle. This eliminates the pole of instability at

the center of the circle, as shown in Fig. 3.6. The HM algorithm performs

better than the ML algorithm in this configuration, producing errors less
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(a) Receiver moved outward

(b) Receiver moved inward

Figure 3.5: Standard deviation of the HM algorithm error. The right-most point is

displaced 400 m in the 𝑥-direction from the circle containing the other points. This

shows that the HM algorithm still has points of instability when small changes are made

to the circular receiver configuration.
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than 5% of the ML algorithm errors at most points.

(a) ML

(b) HM

Figure 3.6: Comparison of the standard deviation of the ML and HM algorithm error for

near-coplanar receivers with a central receiver. The HM algorithm no longer has a point

of instability. The ML error is 10 times larger than the HM error at every point.



42 Hybrid Multilateration and Triangulation

3.4.3 Other Receiver Configurations
Circular or near-circular receiver arrangements are undesirable because

they create a pole of instability. This instability isn’t present in other

receiver configurations. This section considers the stability of the HM

algorithm with other receiver configurations.

A delta, or V, configuration places the receivers along two lines that

meet at a point. This works relatively well with the ML algorithm, which

performs roughly the same as it did in the circular configurations. With

the HM algorithm this configuration induces a line of relative instability

in the direction that the V is pointing, as shown in Fig. 3.7. The HM

algorithm still out-performs the ML algorithm, producing about 10% as

much error even in the places where it was not performing as well.

Another configuration is a wye or Y configuration. This consists of a

central point and the receivers placed on three lines radiating outward

from the center. The Y configuration is very similar to the circular

configuration with a receiver in the center, as seen in Fig. 3.8. The HM

algorithm produces significantly less error at every point.

The performance of the scenarios in this section and Fig. 3.9 is

summarized in Table 3.1. Note that these ranges include the values from

outside the sensor perimeter.

Scenario Fig ML min ML max HM min HM max

Circular 3.3 29.1 36.1 18.0 30.1

Circular (outward) 3.5a — — 17.9 31.8

Circular (inward) 3.5b — — 18.0 32.0

Eye 3.6 28.9 34.5 17.3 22.4

Delta 3.7 26.8 34.8 15.4 24.3

Wye 3.8 29.1 39.3 15.3 22.6

Lattice 3.9 25.8 41.0 17.0 24.5

Table 3.1: Range of error in the scenarios presented in this section. All values are

standard deviation of error and are given in dB meters.

3.5 Implementation Factors
A number of factors should be taken into consideration when imple-

menting the HM algorithm. They include the desired coverage area, the

number and location of receivers, and the utilization of those receivers

in the calculations. Each of these are addressed in the following section.

The HM algorithm works best when the transmitter is located some-

where between the receivers. As such, the optimal arrangement is to

have receivers surrounding the area of interest.

3.5.1 Coverage Area
The coverage area places some requirements or constraints on the employ-

ment of this algorithm. The algorithm is built around the assumption

that all of the angles are measured relative to a common vertical di-

rection. This can be a problem if the coverage area gets wide enough
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(a) ML

(b) HM

Figure 3.7: Comparison of the standard deviation of the ML and HM algorithm error

for near-coplanar receivers in a delta configuration. The HM algorithm performs well

over most of the area, but is relatively unstable as the transmitter moves away from the

receivers in one direction. It still outperforms the ML algorithm at every point.
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(a) ML

(b) HM

Figure 3.8: Comparison of the standard deviation of the ML and HM algorithm error

for near-coplanar receivers in a Y configuration. The HM algorithm performs better at

every point.
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for the curvature of the Earth to start introducing error into the angle

measurements. The two solutions to this are to limit the coverage area or

to orient the receivers to a shared vertical that may be different from the

local vertical.

The alternative is to orient all the sensors so that they measure angle

with respect to parallel vertical axes. This presents a significant challenge

installing and maintaining the receiver antennas as it is relatively easy

to measure whether an object is aligned to vertical and difficult to align

it to a specific deviation from vertical. In a wide area deployment the

receivers need to be aligned to an angle that is slightly off from vertical

or bias is introduced to the resulting measured angles which produces

more position error from the algorithm.

The size of a limited coverage area affects the accuracy of the calculated

position. An inherent problem with triangulation is that triangulation

errors are proportional to the error in measuring the angle and to the

distance from the vertex of the measured angles. This triangulation error

must be considered when determining the size of the coverage area and

the spacing of sensors within it. A denser deployment of sensors allows

for more angular error because the distance from transmitter to receiver

does not contribute as much to the overall triangulation error. Receivers

deployed less than 44 km apart have less than 1
◦

difference in their

local vertical direction which may be sufficient for a given application,

depending on the tolerance for angular error.

Coverage area can also be expanded by using a wider array of receivers

and then only including the closest measurement to the transmitter,

determined by the time of arrival of the signal, in the calculations.

This keeps the triangulation error in any given calculation small while

allowing for a larger coverage area at the expense of requiring more

receivers.

3.5.2 Receiver positions
The stability analysis in Section 4.3 demonstrated that the algorithm

works best when the transmitter is within a polygon surrounding the

receivers. Some coverage outside that boundary may be possible, any

positions calculated outside the perimeter contain additional error due

to the geometric problems with multilateration and the fact that a fixed

angular measurement produces more error the farther it is from the

point of measurement.

Spacing of sensors affects the accuracy of the algorithm. The inclusion

of triangulation in the algorithm means that more distance between the

transmitter and receiver induces a larger position error for the same

angle error. The optimal spacing depends on the accuracy of angular

measurements and the required positional accuracy.

3.5.3 Number of Receivers
The best performance is achieved when the transmitter is inside the

perimeter created by the receivers. The performance is also affected by
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the spacing between the receivers. These two constraints will dictate the

number of receivers required.

The most efficient spacing may be an equilateral triangular lattice

pattern, which puts receivers close to any transmitter within its coverage

area. A plot of this type of scenario and the resulting stability is shown

in Fig. 3.9. The simulations show that this lattice arrangement gives

consistent coverage over the area bounded by the sensors, with less stable

responses outside of that area.

3.5.4 Selection of Sensors
The HM algorithm requires at least 5 receivers to accurately calculate the

position of a transmitter. If a system has more than 5 receivers then there

are three options for dealing with the extra sensors.

• The extra sensors can be omitted from the calculations. In this case,

the sensors with the highest signal-to-noise ratio are typically the

best ones to use in the calculation.

• The extra sensors can be included in the calculations. The algorithm

can easily accommodate additional measurements. If there is error

in the extra measurements it could degrade the quality of the

calculations.

• The calculations can be done using weighted measurements. Weight-

ing the measurements according to a factor such as the signal to

noise ratio can be a way to include the extra information from

additional sensors without harming the calculated result. This is

done by weighting each row of A𝐻 and b𝐻 according to the quality

of the data in that row.

3.6 Conclusion
Incorporating triangulation measurements into a multilateration system

produces significant improvement in the accuracy of the ML algorithm.

Its ability to accurately calculate height while using sensors on or near

the ground makes it useful in real-world scenarios where objects are

being tracked in 3 dimensions. It can make multilateration useful for

tracking aircraft in flight over a wide area. This could include tracking

aircraft in flight near airports or drone swarms.

Except for a few particular cases the algorithm performs well in a

variety of sensor configurations. When the receivers are nearly coplanar

it consistently out-performs a multilateration-only algorithm. Adapting

the algorithm for receivers that do not share a common vertical direction

is an area for further research.
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(a) ML

(b) HM

Figure 3.9: Comparison of the standard deviation of the ML and HM algorithm error

for near-coplanar receivers in a triangular lattice configuration. The patterns in the

ML figure are a result of the vertical deviation that was added to the receiver locations.

Both algorithms show an increase in error as the transmitter moves outside the region

containing the receivers.
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aThe numerical stability problem can also

affect iterative and quadratic methods.

Many iterative and quadratic methods

also involve matrix inversion and become

unstable when those matrices are

ill-conditioned.

bThree dimensional TDOA

multilateration requires at least 5

measurements, corresponding to the 3

spatial dimensions, the unknown clock

offset, and one extra degree of freedom to

help linearize the equations.

Multilateration Using a priori Position Estimates

This chapter is composed from a paper entitled “Multilateration Using

A Priori Position Estimates” published in the journal IEEE Transactions
on Radar Systems [3]. © 2023 IEEE. Reprinted, with permission from

Widdison, E. and Long, D. G. “Multilateration Using A Priori Position

Estimates,” IEEE Transactions on Radar Systems, Aug 2023. I hereby

confirm that the use of this article is compliant with all publishing

agreements.

4.1 Introduction
Multilateration is a process whereby an unknown position of an object

can be determined using the distance between its location and several

known points. The unknown location lies at the intersection of the

spheres centered at the known points with the corresponding radii.

One application of this is to determine the location of a transmitter

by recording the time that a single transmitted waveform is received

at several different locations. If the positions of these locations are

known and their clocks are adequately synchronized, then by using the

time of arrival (TOA), the position of the transmitter and the time of

its transmission can be determined. [135] This can work without the

cooperation of the transmitter.

Multilateration algorithms can be broadly grouped into three cate-

gories: iterative, closed-form non-linear, and linear. Iterative methods [12,

15, 159] often perform well but take longer to compute than closed-form

methods and can converge to the wrong solution [16]. Closed-form

non-linear methods, such as quadratic methods [18, 19], explicitly give

the multiple solutions produced by iterative methods but are not always

scalable and are not generally compatible with other forms of information

such as AOA [2, 31, 32, 41, 96] and FDOA [64, 90, 110]. Linear methods

are easily expanded to include additional data [64, 75], but require at least

one extra measurement [22, 27] and can be less stable when the linear

equations are ill-conditioneda. When there are enough measurementsb

the three families of methods have similar accuracy.

One shortcoming of most closed-form solutions to the multilateration

problem is that they do not have a way of incorporating or exploiting any a

priori information about the target’s location to calculate its position [160].

From the perspective of a single sensor, the target can lie anywhere on a

49
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sphere.The motivation for this paper is to incorporate an a priori position

estimate as a constraint on the multilateration problem. This is done

by using linear approximations of the spherical surfaces, at the a priori

estimate position. This geometry has been employed to determine the

maximum accuracy of a localization algorithm [37], but not as a way of

updating a location estimate.

For the purposes of this paper, the creation and maintenance of the a

priori estimate is not considered a part of the algorithm. The initial a

priori estimate can come from a wide range of sources. This can include

location via surveillance radar, location via unconstrained multilateration,

or using self-reported position information from transponder systems

such as ADS-B. This method also be used to create improved positions

of objects in a swarm, using an average or group position as the a priori

estimate.

This paper presents the derivation of the algorithm. Section III

analyzes the sources can of error, including measurement error and error

created because the true position differs from the estimate. This later

error sets a minimum accuracy for the algorithm which can be iteratively

improved. Section IV compares the new algorithm with linear TDOA

multilateration across a range of wide area multilateration scenarios.

4.2 Differential multilateration algorithm
In this paper, vectors representing a point in space are written in bold,

e.g., a and vectors representing a difference between two points are

written with an overbar, e.g., 𝑐.

Conventional multilateration uses a set of distances from a set of

known points to a target to determine the position of the target. The

target is located at the intersection of a set of spheres. If the target is far

from the known points then the spheres can be approximated by planes

tangent to the sphere at or near the location of the target. Choosing the

point of tangency requires some a priori knowledge of the position of the

target.

The proposed new algorithm takes an estimated target position b
and uses it to produce planar approximations of the spheres used in

conventional multilateration. The planar approximations of the spheres

are perpendicular to the vectors from the known points p𝑖 to the estimated

position b, which is adjusted based on the measured pseudodistance

and estimated transmitter pseudodistance, as shown in Fig. 4.1.

Let a = b + 𝑐 be the unknown position of a transmitter relative to the

known estimate b and let p𝑖 , 𝑖 = 1, . . . , 𝑁 be the positions of 𝑁 receivers.

The transmitter emits a signal at unknown time 𝑡𝑎 which is received at

p𝑖 at time 𝑡𝑖 . Pseudodistances

𝑑𝑎 = 𝑡𝑎𝜈

𝑑𝑖 = 𝑡𝑖𝜈
(4.1)

are calculated, where 𝜈 is the propagation speed of the signal, which
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p1

r1

p2

r2

p3

r3

a
b c

a'

Figure 4.1: The multilateration scenario. Points in space are shown as dots while vectors

representing the difference between two points are shown as arrows. The solid lines are

the planar approximations of the spheres passing through a, shown as dotted lines. This

method places the target at the incircle of the triangle they form, marked as a′.

is typically the speed of light, 𝑐. The distance between transmitter and

receiver is then |a − p𝑖 | = 𝑑𝑖 − 𝑑𝑎 .
For each point p𝑖 , let 𝑟𝑖 = b − p𝑖 be the radial vector for that point.

The planar approximation of a sphere of radius (𝑑𝑖 − 𝑑𝑎) = 𝑑 |𝑟𝑖 | centered

at p𝑖 , perpendicular to 𝑟𝑖 , is the set of points orthogonal to 𝑟𝑖 at p𝑖 + 𝑑𝑟𝑖
such that

⟨(a − p𝑖) − 𝑑𝑟𝑖 , 𝑟𝑖⟩ = 0. (4.2)

This is equivalent to

⟨a, 𝑟𝑖⟩ + 𝑑𝑎 |𝑟𝑖 | = 𝑑𝑖 |𝑟𝑖 | + ⟨p𝑖 , 𝑟𝑖⟩ , (4.3)

which can be normalized by dividing by |𝑟𝑖 | to produce

⟨a, 𝑟𝑖⟩ + 𝑑𝑎 = 𝑑𝑖 + ⟨p𝑖 , 𝑟𝑖⟩ (4.4)

where 𝑟𝑖 = 𝑟𝑖/|𝑟𝑖 | is the unit vector in the direction of 𝑟𝑖 . In 3-dimensional

space this is a linear equation of four unknowns. These equations, taken

across four or more points, can be expressed as a matrix equation of the
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form

A =


𝑟T

1
1

...
...

𝑟T

𝑁
1


x =

[
a′
𝑑′𝑎

]
y =


𝑑1 + ⟨p1 , 𝑟1⟩

...

𝑑𝑁 + ⟨p𝑁 , 𝑟𝑁⟩


Ax = y

(4.5)

where a′ is the calculated position and 𝑑′𝑎 is the calculated pseudodistance

associated with the signal transmission time. The unknowns can be

calculated directly as x = A−1y if A is square or via least squares as

x =
(
ATA

)−1 ATy.

This method produces estimates of the target position that are at

least as accurate as those from traditional multilateration as long as the

measurement error is small enough relative to the error due to using

a planar approximation of the multilateration spheres. The general

stability of this method is analyzed in Sec. 4.3 and the errors due to

approximating the spheres as planes is analyzed in Sec. 4.3.2.

4.2.1 Two dimensional algorithm
This algorithm, as written, can be used in an 𝐷-dimensional space, but

here is only used for 𝐷 = 2, 3. For a target and reference points in 3

dimensions, at least four reference points are required to determine the

location of the target. The 𝐷 = 2 case requires only 3 reference points,

along with some care to implement correctly.

In a 2-dimensional implementation the assumption is that the target

lies on a 2-dimensional plane. Since 2-dimensional scenarios typically

constrain the solution space and not the locations of receivers, the

positions of the reference points may be somewhere other than directly

on that plane. The algorithm uses the propagation speed in the plane,

which in this case needs to account for the difference between the slant

range between the transmitter and receiver, and the projection of that

range onto the plane. If 𝑟𝑖 =
[
𝑥𝑖 𝑦𝑖 𝑧𝑖

]
T

and the target is assumed

to lie in the 𝑥𝑦 plane then the projected pseudodistance

𝑑𝑖 = 𝑡𝑖𝜈𝑖 = 𝑡𝑖𝜈 cos 𝜙𝑖 (4.6)

where

tan 𝜙𝑖 =
𝑧𝑖√

𝑥2

𝑖
+ 𝑦2

𝑖

. (4.7)
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cIn this section, the term “coplanar" is

based on a 3 dimensional algorithm.

More generally, these instability cases

require that 𝐷 + 1 receivers lie in a 𝐷 − 1

dimensional subspace of a 𝐷 dimensional

space. In the 2 dimensional case this

condition only applies when at least three

points are colinear and equidistant from

the reference point. However, three

points cannot be colinear and all

equidistant from a fourth point.

Therefore the coplanar equidistant

condition cannot apply in 2 dimensions.

Alternately, this is

𝑑𝑖 = 𝑡𝑖𝜈
©­­«
√
𝑥2

𝑖
+ 𝑦2

𝑖

|𝑟𝑖 |
ª®®¬ . (4.8)

With this adjustment of the pseudodistance, compared to Eq. 4.1, the

2 dimensional algorithm can be implemented using Eq. 4.5 with A of

size 𝑁 × 3.

4.3 Numerical stability

4.3.1 Unstable cases
There are two cases where the A matrix is singular. When the receivers

are all coplanarc and equidistant from the estimate point (the coplanar

equidistant case, i.e. the receivers lie on a circle and the estimate point is

on the line that is equidistant from all points on the circle, Fig. 4.2a), or

when the receivers are coplanar with the estimate point (the coplanar

case, Fig. 4.2b). In both of these cases, the A matrix is not full rank

and cannot be inverted. It is possible for a scenario to experience both

instability conditions at the same time.

Multilateration algorithms cannot generally work when the receivers

are all coplanar. The proposed algorithm is numerically stable when the

receivers are coplanar as long as the a priori estimate point is not also

coplanar with them and the receivers are not all equidistant from the

estimate point.

The coplanar equidistant case is equivalent to all the receivers lying

on a circle with the estimate point on the line perpendicular to the circle

and passing through the center. To see why this case does not produce a

full rank matrix, consider the case where the radial unit vectors are all of

the form 𝑟𝑖 =
[
𝑟 cos𝜃𝑖 𝑟 sin𝜃𝑖 𝑧

]
T

, where 𝜃𝑖 is the bearing from the

estimate point to the 𝑖th receiver. This produces the matrix

A =


𝑟 cos𝜃1 𝑟 sin𝜃1 𝑧 1

...
...

...
...

𝑟 cos𝜃𝑁 𝑟 sin𝜃𝑁 𝑧 1

 . (4.9)

The right two columns of A have the same value in each row, so the

columns are multiples of each other. This means the matrix A has, at

most, rank 3, when it needs to be rank 4 to be inverted and produce a

valid estimate of a′.
If the receivers lie on any plane other than one parallel to the 𝑥𝑦

plane then the A matrix can be converted into this form by a coordinate

transformation, which means that the matrix is rank deficient for any set

of coplanar receivers that are equidistant from the transmitter.

In the second unstable case, the receivers and estimate points are all

coplanar. This can be examined by considering the case where the radial

vectors all lie on the 𝑥𝑦 plane and are of the form 𝑟𝑖 =
[
𝑥𝑖 𝑦𝑖 0

]
T

.
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p0

p1

p2

p3

b

(a) Coplanar equidistant case

p1

p2

p3

p4
b

(b) Coplanar case

Figure 4.2: A depiction of numerically unstable scenarios, with the estimate position

marked as a square and the receiver positions marked as circles. In (a), the coplanar

equidistant case, the receivers all lie on a circle and the estimate lies on the axis of

symmetry of that circle. In (b) the receivers all lie on the same plane as the estimate. The

points marked by stars are included to show that the receiver positions are equivalent to

non-coplanar points that have been projected onto a single plane.
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dTo improve the readability of the

derivations in this section, we ignore the

transmitter pseudodistance, and assume

that the pseudodistance 𝑑𝑖 is a true

distance, with 𝑑𝑎 = 0. This does not affect

the results of the derivation. If 𝑑𝑎 ≠ 0

then the first line in Eq. 4.12 starts

𝑒𝑖 = 𝑑𝑖 − 𝑑𝑎 − (�̃�𝑖 − 𝑑𝑎) = 𝑑𝑖 − �̃�𝑖 . . ., with

the rest of the derivation following

identically.

This produces the A matrix

A =


𝑥1 𝑦1 0 1

...
...

...
...

𝑥𝑁 𝑦𝑁 0 1

 . (4.10)

With one column equal to zero, this matrix is also deficient. As with the

coplanar equidistant receiver case, any set of receivers that are coplanar

with the estimate can, with a coordinate transformation, be put in this

form and is rank deficient.

These instability cases depend only on the receiver locations and the

estimate point. One way to ensure that these conditions are never met is

to ensure that the receivers are not coplanar. If the target’s position can

be assumed to be out of the plane containing the receivers, for example, if

the target is an airplane with some minimum altitude, then it is sufficient

to ensure that the receivers do not lie in a circle. With a large number of

receivers this is unlikely to occur accidentally, but when only 4 receivers

are used some care should be taken in choosing suitable locations for the

receivers.

4.3.2 Planar approximation error
In this algorithm, the use of planes to approximate spheres introduces

some error into the results. When radii of the spheres are large then

this estimate is relatively accurate locally around b. The approximation

is less accurate when the target is farther from the radial line passing

through the a priori estimate. This section quantifies that error.

Using this algorithm, the correct position is calculated when the

measured pseudodistanced 𝑑𝑖 is adjusted to match the projection of the

target’s true position onto the radial vector. The measured pseudodis-

tance represents the slant range to the target, which is the hypotenuse

of a right triangle with the projected distance as one of its legs. The

difference between these two distances is the planar approximation error,

or planar error 𝑒𝑖 , as shown in Fig. 4.3.

The distance to the target is 𝑑𝑖 = |a − p𝑖 | = |𝑟𝑖 + 𝑐 | and the length of

the projection of a − p𝑖 = 𝑟𝑖 + 𝑐 onto 𝑟𝑖 is

�̃�𝑖 =
⟨𝑟𝑖 + 𝑐, 𝑟𝑖⟩

|𝑟𝑖 |
. (4.11)

The planar error is

𝑒𝑖 = 𝑑𝑖 − �̃�𝑖 = |𝑟𝑖 + 𝑐 | −
⟨𝑟𝑖 + 𝑐, 𝑟𝑖⟩

|𝑟𝑖 |

𝑒𝑖 =
√
⟨𝑟𝑖 + 𝑐, 𝑟𝑖 + 𝑐⟩ −

⟨𝑟𝑖 + 𝑐, 𝑟𝑖⟩
|𝑟𝑖 |

𝑒𝑖 =

√
|𝑟𝑖 |2 + 2 ⟨𝑟𝑖 , 𝑐⟩ + |𝑐 |2 − |𝑟𝑖 | −

⟨𝑟𝑖 , 𝑐⟩
|𝑟𝑖 |

. (4.12)
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Figure 4.3: The planar error and pseudodistance for a single receiver. The planar error 𝑒𝑖
in this figure is exaggerated by the small value of |𝑟𝑖 | and relatively large displacement

between the target a and the radial vector 𝑟𝑖 .

eThe algorithm is not suitable when

|𝑟𝑖 | ≫ |𝑐 | is not true. The worst case

considered in this paper is shown in

Fig. 4.6 where the average value of |𝑟𝑖 |/|𝑐 |
is 10/

√
3. In that scenario, the algorithm

in Eq. 4.5 is unable to reduce the standard

deviation of the error in the calculated

position below 100 m.

The radical term can be approximated by factoring out |𝑟𝑖 |2 and using

the binomial expansion

(1 + 𝑎)𝑛 = 1 + 𝑛𝑎 + 1

2!

𝑛(𝑛 − 1)𝑎2 + 1

3!

𝑛(𝑛 − 1)(𝑛 − 2)𝑎3 + · · · . (4.13)

Because |𝑟𝑖 | ≫ |𝑐 |, the first order terms and the first half of the second

order terms are sufficient to estimate the errore.

𝑒𝑖 ≈ |𝑟𝑖 |
(
1 + ⟨𝑟𝑖 , 𝑐⟩

|𝑟𝑖 |2
+ |𝑐 |2

2 |𝑟𝑖 |2
− ⟨𝑟𝑖 , 𝑐⟩2

2 |𝑟𝑖 |4

)
− |𝑟𝑖 | −

⟨𝑟𝑖 , 𝑐⟩
|𝑟𝑖 |

𝑒𝑖 ≈ |𝑐 |2 − ⟨𝑟𝑖 , 𝑐⟩2

2 |𝑟𝑖 |
. (4.14)

This is equal to the square of the length of the component of 𝑐 that is

orthogonal to 𝑟𝑖 . Since |𝑐 | ≥ |⟨𝑟𝑖 , 𝑐⟩|, the planar error is within the range

0 ≤ 𝑒𝑖 ≤
|𝑐 |2

2 |𝑟𝑖 |
(4.15)

If 𝑐 follows a 𝐷-dimensional multivariate normal distribution with

variance 𝜎2

𝑐 , i.e., each element of 𝑐 follows a normal distribution with
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zero mean and variance 𝜎2

𝑐 , then the expected value of 𝑒𝑖 is

𝐸 (𝑒𝑖) = 𝐸

(
|𝑐 |2 − ⟨𝑟𝑖 , 𝑐⟩2

2 |𝑟𝑖 |

)
=

1

2 |𝑟𝑖 |
[
𝐸

(
|𝑐 |2

)
− 𝐸

(
⟨𝑟𝑖 , 𝑐⟩2

)]
=

1

2 |𝑟𝑖 |
[
𝐷𝜎2

𝑐 − 𝜎2

𝑐

]
=

(𝐷 − 1)𝜎2

𝑐

2 |𝑟𝑖 |
. (4.16)

This agrees with the mean of a chi-squared distribution with𝐷−1 degrees

of freedom [161, pp.62-63], scaled by 𝜎𝑒𝑖 , and agrees with the way that

Eq. 4.14 subtracts one degree of freedom from the𝐷-dimensional normal

distribution of 𝑐. The variance of the planar error is given by scaling the

chi-squared variance of 2(𝐷 − 1) by 𝜎2

𝑒𝑖
to get

𝜎2

𝑒𝑖
=

(𝐷 − 1)𝜎4

𝑐

2 |𝑟𝑖 |2
. (4.17)

When 𝐷 = 3, this gives 𝜎𝑒𝑖 = 𝜎2

𝑐/|𝑟𝑖 |.
When solving the equations, the 𝑑′𝑎 term should account for any bias

due to the mean value of 𝑒𝑖 . The degradation of the calculated position

is due to the variance of the error terms, 𝜎2

𝑒𝑖
. This combines with the

variance of the measurement error, 𝜎2

𝑑𝑖
, to produce the total error in the

calculated position. This means that the position error is dominated by

the planar error when 𝜎2

𝑑𝑖
< 𝜎2

𝑒𝑖
, which creates a performance floor which

can be seen in Figs. 4.4-4.9. The floor occurs at the level where the planar

error limits the accuracy of the measured position, which corresponding

to 𝜎𝑑 ≥ 𝜎𝑒𝑖 , as seen in Fig. 4.4.

4.3.3 Statistical optimization
To improve the performance of this algorithm, we consider the statistical

effects of measurement noise and planar error on the computations.

Let the noisy measurements be �̃�𝑖 = 𝑑𝑖 +𝑛𝑖 + 𝑒𝑖 where 𝑛𝑖 is a Gaussian

random variable representing the noise, and let n = [𝑛1 , . . . , 𝑛𝑁 ]T be a

vector of the measurement noise. The noisy measurement also includes

the planar error term, which can be concatenated to form the planar error

vector e = [𝑒1 , . . . , 𝑒𝑁 ]T. We can assume that the measurement noise is

zero mean and uncorrelated with the planar error, with covariance

E(nnT) = Q𝑛 . (4.18)

The mean of e is

𝝁e = E(e) =


(𝐷−1)𝜎2

𝑐

2|𝑟1 |
...

(𝐷−1)𝜎2

𝑐

2|𝑟𝑁 |

 =
𝐷 − 1

2

𝜎2

𝑐 r′, (4.19)
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Figure 4.4: Simulations of planar noise with 4 receivers and different levels of 𝜎𝑐 . The

theoretical minimum measurement error is marked by the horizontal dotted lines. The

receivers are located in a tetrahedron, centered on the transmitter, with each receiver

7.5 km from the transmitter.

fE(|𝑐 |4) = (2𝐷 + 𝐷2)𝜎4

𝑐 = 𝐷(𝐷 + 2)𝜎4

𝑐 ,

E(|𝑐 |2 ⟨𝑟𝑖 , 𝑐⟩2) = (𝐷 + 2)𝜎4

𝑐 , and

E(⟨𝑟𝑖 , 𝑐⟩2
〈
𝑟𝑗 , 𝑐

〉
2) = (2

〈
𝑟𝑖 , 𝑟𝑗

〉
2 + 1)𝜎4

𝑐 .

The first value is derived from the

variance and mean of the chi square

distribution. The others are determined

experimentally.

where r′ = [|𝑟1 |−1 , . . . , |𝑟𝑁 |−1]T. Because the planar error has a non-

zero mean we need the correlation matrix R𝑒 = 𝐸[eeT] rather than the

covariance matrix Q𝑒 = 𝐸[(e − 𝝁𝑒)(e − 𝝁𝑒)T]. The elements of R𝑒 aref

𝑅𝑒 ,𝑖 𝑗 = 𝐸[𝑒𝑖𝑒 𝑗] = E

[
|𝑐 |2 − ⟨𝑟𝑖 , 𝑐⟩2

2 |𝑟𝑖 |
|𝑐 |2 −

〈
𝑟 𝑗 , 𝑐

〉
2

2

��𝑟 𝑗 ��
]

=
1

4|𝑟𝑖 | |𝑟 𝑗 |
E

[
|𝑐 |4 − |𝑐 |2

(
⟨𝑟𝑖 , 𝑐⟩2 +

〈
𝑟 𝑗 , 𝑐

〉
2

)
+

⟨𝑟𝑖 , 𝑐⟩2
〈
𝑟 𝑗 , 𝑐

〉
2

]
=

𝜎4

𝑐

4|𝑟𝑖 | |𝑟 𝑗 |
(
2𝐷 + 𝐷2 − 2(𝐷 + 2) + 2

〈
𝑟𝑖 , 𝑟 𝑗

〉
2 + 1

)
=

𝐷2 − 3 + 2

〈
𝑟𝑖 , 𝑟 𝑗

〉
2

4|𝑟𝑖 | |𝑟 𝑗 |
𝜎4

𝑐 . (4.20)
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This noise model changes Eq. 4.5 to

A =


𝑟T

1
1

...
...

𝑟T

𝑁
1


x =

[
a′
�̃�′𝑎

]
y =


𝑑1 + ⟨p1 , 𝑟1⟩

...

𝑑𝑁 + ⟨p𝑁 , 𝑟𝑁⟩

 + n + e

Ax = y

(4.21)

where x, a, �̃�𝑎 , y are the noisy versions of x, a, 𝑑𝑎 , y respectively.

The position error is therefore equal to

𝝍 = x − x = x + A†(n + e) − x = A†(n + e) (4.22)

where A†
is the inverse or pseudoinverse of A. The expected value of

this error is

E(𝝍) = A†[E(n) + E(e)]
= A†𝝁e.

(4.23)

The variance of the position error can be expressed as

E(𝝍𝝍T) = E

[
A†(n + e)(n + e)TA†T

]
= A†Q𝑛A†T + A†Q𝑒A†T

. (4.24)

Using weighted least squares (WLS), this is

E(𝝍𝝍T) = (ATWA)−1ATW(Q𝑛 + Q𝑒)WA(ATWA)−1. (4.25)

This suggests that the total error can be minimized by applying WLS

with

W = (Q𝑛 + R𝑒)−1

(4.26)

and

x =

(
ATWA

)−1

ATWy. (4.27)

In practice, incorporating the R𝑒 planar error correlation does not

significantly improve the calculated position estimate, as shown in Fig. 4.5.

In some cases, where 𝜎2

𝑑
is small and 𝜎2

𝑐/|𝑟𝑖 | is large, the Q𝑛 + R𝑒 matrix

is ill-conditioned. Therefore, we suggest using W = Q−1

𝑛 rather than

the value from Eq. 4.26, and address the effects of planar error by the

iterative approach presented in Sec. 4.3.4.

The equations in this algorithm are nearly identical to those used by

Lee [37] to determine the geometric dilution of precision (GDOP) of a
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Figure 4.5: Demonstration of weighted least squares solution accuracy, with 10 receivers

randomly distributed as shown and 𝜎𝑐 = 10 m. Note that the weighted solutions are

identical when the measurement error dominates (𝜎𝑑 > 0.01 m), and that including R𝑒

in the weighting only makes relatively small gains except in cases with extremely low

measurement errors (𝜎𝑑 < 1 mm).
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multilateration scenario. The only difference is that Lee used the true

position of the target while this uses an approximation. This means that

when the estimate error 𝜎2

𝑐 is small the measurement error asymptotically

approaches the GDOP. For multilateration where the pseudodistance

errors are zero mean Gaussian variables, the Cramér-Rao lower bound

(CRLB) is equal to the GDOP [162].

4.3.4 Multi-pass algorithm
The planar bias error can be reduced by using the calculated position to

adjust the pseudodistances and then recalculate. This can be done using

the direct calculation in Eq. 4.12 or the approximation in Eq. 4.14, using

a′ to determine an estimate of 𝑐, which in turn is used to estimate the

errors. The updated pseudodistances are 𝑑′
𝑖
= 𝑑𝑖 − 𝑒𝑖 and the updated

position a′′ is given by

x′ =
[

a′′
𝑑′′𝑎

]
y′ =


𝑑′

1
+ ⟨p1 , 𝑟1⟩
...

𝑑′
𝑁
+ ⟨p𝑁 , 𝑟𝑁⟩


Ax′ = y′

(4.28)

Because A is unchanged from the original algorithm, the second pass

can reuse the same A†
from the first pass, which reduces the computa-

tional cost of performing multiple passes. The second pass reduces the

minimum measurement error by a factor of roughly 𝜎𝑐/|𝑟𝑖 |.
This step can be iterated more than once. Each time the original

distances are updated using the new calculated position.

𝑑
(𝑛+1)
𝑖

= 𝑑𝑖 −
(���a(𝑛) − p𝑖

��� − 〈
a(𝑛) − p𝑖 , 𝑟𝑖

〉)
. (4.29)

As the algorithm is iterated, the average error is reduced. Fig. 4.6 shows

the algorithm’s performance against a target with 𝜎𝑐 = 1 km and four

receivers in a tetrahedral formation at a distance of 10 km from the

reference point. The results are shown for 1 through 10 passes of the

algorithm. After eight iterations (the first pass and seven update passes)

the average planar error is less than the level for 𝜎𝑐 = 10 m with one

pass under the same conditions. If the multi-pass algorithm is used

then it should be stopped when |a(𝑛+1) − a(𝑛) | < 𝜖 for some value of 𝜖, or

after some number of iterations, whichever comes first. The multi-pass

algorithm should only be used when the variance of the measurement

error is very small.

4.4 Performance verification
To evaluate the performance of this algorithm we compare it to the linear

multilateration approach from [22], using the optimal weighting as given
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Figure 4.6: Improvements in position from iterating the algorithm. The receivers are

located in a regular tetrahedron centered on and 10 km away from the estimate point.

The position accuracy is 𝜎𝑐 = 1 km.

in equations (11) through (14a). This is compared to the single-pass

method as given in Eq. 4.27.

We apply these methods to three different scenarios, each using five

receivers, showing horizontal and vertical errors on separate graphs. The

scenarios are:

• spherically uniform, with receivers spread equally around a sphere [163]

centered on the transmitter, shown in Fig. 4.7,

• circular, with receivers spread evenly in a circle around the trans-

mitter, which is above the center of the circle, with some random

vertical perturbation to prevent both algorithms from having sin-

gular matrices, shown in Fig. 4.8, and

• random, with receivers randomly distributed in a box of size

30 km × 30 km × 500 m, shown in Fig. 4.9.

The specific receiver locations are given in Table 4.1. The transmitter

is located at a = [0, 0, 0]T in the spherically uniform scenario and at

a = [0, 0, 1000]T meters in the other two scenarios.

In every scenario, when the measurement noise variance was greater

than the variance of the planar error the proposed algorithm performed

better than traditional linear multilateration. The performance difference

was especially pronounced in the circular scenario where the receivers

are nearly coplanar and traditional linear multilateration has very poor

accuracy vertically [164, 165].
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Figure 4.7: Comparison of the differential multilateration algorithm with traditional

multilateration with spherically uniform receivers. The new algorithm matches or

exceeds performance except when planar error exceeds the measurement error.
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Figure 4.8: Comparison of the differential multilateration algorithm with traditional

multilateration with receivers in a nearly planar circular arrangement. This scenario

is ill-conditioned for both methods, with only the small vertical deviations in receiver

locations preventing both algorithms from producing singular matrices. The conventional

multilateration algorithm became unstable with 𝜎𝑑 > 100 m.
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Figure 4.9: Comparison of the differential multilateration algorithm with traditional

multilateration with receivers randomly located in a 30 km×30 km×500 m box, centered

1 km below the estimated target position a. The new algorithm performed significantly

better whenever the planar error was not the dominant source of measurement variance.
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Table 4.1: Receiver locations for performance verification scenarios. All figures are given

in meters.

Spherical

point 𝑥 𝑦 𝑧

p1 0 0 8000

p2 12000 0 0

p3 -5500 9526 0

p4 -4500 -7794 0

p5 0 0 -10000

Circular

point 𝑥 𝑦 𝑧

p1 9500 0 -3

p2 3090 9511 -9

p3 -8090 5878 12

p4 -8090 -5878 6

p5 3090 -9511 9

Random

point 𝑥 𝑦 𝑧

p1 12653 -1716 108

p2 7384 14813 67

p3 7896 6170 -99

p4 9637 -7515 182

p5 6563 2165 -36

4.5 Conclusion

The algorithm presented here improves on traditional mutlilateration

algorithms at obtaining an accurate 3-dimensional position in typical

wide area multilateration scenarios. This comes at the cost of requiring

an initial measurement and a target tracking algorithm to maintain the

quality of the estimate. It more numerically stable in typical wide area

multilateration scenarios than traditional multilateration. This method

reduces the number of measurements required by one, allowing for

3-dimensional localization with only four measurements instead of at

least five for linear TDOA multilateration.

The key benefit of this algorithm is that it is well-suited for incorpo-

ration into a tracking algorithm. At any point in time the calculation of

the estimate is linear, allowing for tracking with a simple Kalman filter

rather than one of the non-linear extensions. It can also be employed for

tracking swarms of objects where a central point within the swarm can

act as an estimate for the position of an individual transmitter, and each

calculated transmitter location contributes to the estimate of the swarm

position.

To implement this algorithm, an a priori estimate for the location of a

target must be available. As such it requires that an initial position be

available. This can be acquired with a different multilateration algorithm

or by using some other sensor such as a radar. The accuracy of the
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algorithm is limited when the estimate is not accurate enough. The

statistics, in Eq. 4.17, and simulations, in Fig. 4.6, show that in a wide area

multilateration scenario the variance of the estimate error can be quite

large without irreparably degrading the performance of the algorithm.

With its initial estimate and linear equations, this is naturally suited

for use in a tracking algorithm. It uses an estimate of the current position

of an object to calculate an updated position, and all the calculations are

linear functions. A Kalman filter should be able to both track the target

and provide quality estimates of updated positions for use with future

samples.

This algorithm could be used to measure and possibly track individual

objects in a swarm. A traditional radar may not be able to distinguish

individual objects in a swarm, but by using the radar’s position as the

estimate for the swarm as a whole, and then applying this algorithm

to signals sent between members of the swarm, it may be possible to

determine the positions of individual objects.





5

aThe first and only instance I found of a

combined TDOA/1AOA algorithm was

in a conference paper [127] published less

than two months after my paper.

Conclusion

5.1 Contributions and Publications
This dissertation clarifies and expands on the algorithms for linear

localization. This is done by performing a broad review of the local-

ization approaches since linear multilateration was introduced in 1994,

covering both the equations employed in localization algorithms and

the applications for those algorithms. I develop two new localization

algorithms to aid with wide area multilateration. One combines TDOA

and vertical AOA measurements to improve the accuracy of the vertical

position estimate. The other uses an a priori estimate to create a linear

approximation of the localization problem.

The literature review provides the a unique, clear catalog of linear

TOA, TDOA, AOA, and FDOA equations. It shows how the equations

relate geometrically to the general, non-linear localization problem. This

relationship is key to building a strong, intuitive understanding of linear

localization algorithms. That, in turn, aids in identifying scenarios

where linear localization algorithms are numerically or geometrically

unstable. The linear equations identified can be combined to form hybrid

localization algorithms. This includes the option of using fewer or

simpler measurements than might seem obvious at first, such as using

1AOA to measure vertical position rather than measuring both azimuth

and elevation AOA. The literature review has been submitted for peer

review [4].

I present a review of passive localization applications in the literature.

This covers a wide range of scenarios and of approaches used to address

those scenarios. This includes a brief survey of passive multistatic radar

applications.

This dissertation presents a unique approach to combining TDOA

and AOA measurements to reduce vertical angle error. The combination

of TDOA and vertical AOA, rather than 2-angle AOA, was unique in the

literature, Vertical-only AOA algorithms are uncommon in the literaturea.

This algorithm is unique in that it explicitly constrains the vertical position

to the AOA measurement. The algorithm performs significantly better

than linear TDOA in wide area multilateration scenarios. This paper has

been published in a peer-reviewed journal [2].

The second algorithm is a novel variation of the multilateration

problem. The TDOA measurements normally constrain the solution to

lie at the intersection of several spheres. In this approach, an a priori
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estimate is used to approximate those spheres as planes, producing

linear equations. When the approximation is sufficiently close to the true

position of the target, the resulting equations are at least as accurate as

conventional TDOA multilateration, and performs significantly better

when the scenario employs receiver locations that are nearly coplanar. An

iterative variation is presented that can improve the calculated position

estimate when the original estimate is far enough from the true position

that it contributes to the calculated position error. This algorithm is

well-suited for use in tracking algorithms. This has been published in a

peer-reviewed journal [3].

5.2 Future Work
The work presented in this dissertation suggests several areas for future

research:

• The analysis in Ch. 2 focuses on a geometric understanding of the

noise-free localization problem, including identifying similarities in

the equations employed in solving the passive localization problem.

The analysis of the problem with measurement noise is a significant

undertaking in the papers cited in that chapter. There is significant

commonality between the statistical analyses presented in those

papers. This commonality can be explored and the statistical

problem may potentially be generalized, which would make it easier

to exploit the benefits of linear localization equations in general

localization problems. Ideally this generalization would encompass

the common TOA, TDOA, and AOA equations separately and

together. This type of generalization has been done before for

a more general localization problem [38, 39], which was later

simplified into a more intuitive linear form [37].

• The literature review in this dissertation barely touched the massive

body of work being produced on multistatic radars. It would be

very beneficial for me to expand that review and identify the

approaches, applications, implementations, and limitations of

multistatic radar, and especially passive multistatic radar.

• The hybrid multilateration algorithm of Ch. 3 only works when the

sensors are all oriented in the same direction. This is a reasonable as-

sumption across relatively small areas where the local vertical only

diverges slightly. Over larger areas, this divergence becomes much

more pronounced. An alternative to the hybrid multilateration

algorithm here would use a more arbitrary sensor orientation, such

as the one described in [105]. This would be a more conventional

TDOA/AOA algorithm, but I am unaware of any algorithm that

employs that particular combination of measurements. This would

be very similar to the approach in [127]. That paper is quite short

and would benefit from a clearer presentation and more detailed
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analysis, including analyzing how the spacing and orientation of

the sensors affect the accuracy of the algorithm.

• The algorithm in Ch. 4 is merely the foundation of a more general

tracking algorithm. The linear localization algorithm is well-suited

for incorporation into a Kalman filter, which would need some work

to develop explicitly. Some work would be required to determine

an approach for swarm tracking using this algorithm, including the

rules for updating both the individual object tracks and the swarm

center estimate. This approach can also be combined with AOA or

FDOA to create an even better estimate for tracking a target.

• It may be possible to apply the approach from the hybrid multilat-

eration algorithm to the a priori algorithm presented here.

• The a priori algorithm can be combined with AOA or FDOA mea-

surements in a more conventional concatenated linear system.

Adding FDOA measurements, producing a direct estimate of the

target velocity, would be a natural choice if the equations are

incorporated into a tracking algorithm.





cited on p. 1

cited on pp. 2, 3, 11, 16, 21, 27,

49, 69

cited on pp. 2, 4, 49, 70

cited on pp. 2, 3, 5, 69, 89

cited on pp. 5, 22

cited on p. 6

cited on p. 6

cited on p. 6

cited on p. 6

cited on p. 6

cited on pp. 6, 11

cited on pp. 6, 49

References

1 Grant, R., The Radar Game: Understanding Stealth and Aircraft Survivability,

ser. Next American century series. IRIS Independent Research, 1998.

2 Widdison, E. and Long, D. G., “Hybrid Multilateration and Triangulation,”

Positioning, vol. 12, 2021, pp. 1–15. DOI: 10.4236/pos.2021.121001

3 Widdison, E. and Long, D. G., “Multilateration Using A Priori Position

Estimates,” IEEE Transactions on Radar Systems, vol. 1, 2023, pp. 455–462.

DOI: 10.1109/trs.2023.3305471

4 Widdison, E. and Long, D. G., “A Review of Linear Multilateration

Techniques and Applications,” IEEE Access, 2023, In Review.

5 106th Congress, Public Law 106-81, January 1999. Url: https://www.

congress.gov/106/plaws/publ81/PLAW-106publ81.htm.

6 Iliev, N. and Paprotny, I., “Review and Comparison of Spatial Localization

Methods for Low-Power Wireless Sensor Networks,” IEEE Sensors Journal,
vol. 15, no. 10, 2015, pp. 5971–5987. DOI: 10.1109/jsen.2015.2450742

7 Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp,

W., Weckenmann, A., Estler, W., and Kunzmann, H., “Measurement

technologies for precision positioning,” CIRP Annals, vol. 64, no. 2, 2015,

pp. 773–796. DOI: 10.1016/j.cirp.2015.05.009

8 Yang, T., Cabani, A., and Chafouk, H., “A Survey of Recent Indoor

Localization Scenarios and Methodologies,” Sensors, vol. 21, no. 23, 2021.

DOI: 10.3390/s21238086

9 Tahat, A., Kaddoum, G., Yousefi, S., Valaee, S., and Gagnon, F., “A Look at

the Recent Wireless Positioning Techniques With a Focus on Algorithms

for Moving Receivers,” IEEE Access, vol. 4, 2016, pp. 6652–6680. DOI:

10.1109/access.2016.2606486

10 Zhang, Q., Zhang, Q., Wu, Z., Zhao, Y., Li, H., and Pan, W., “Application

overview and development trend of passive radar in civil aviation,”

The Journal of Engineering, vol. 2019, no. 20, 2019, pp. 6737–6740. DOI:

10.1049/joe.2019.0577

11 Marquardt, D. W., “An Algorithm for Least-Squares Estimation of Nonlin-

ear Parameters,” Journal of the Society for Industrial and Applied Mathematics,
vol. 11, no. 2, 1963, pp. 431–441. DOI: 10.1137/0111030

12 FOY, W. H., “Position-Location Solutions by Taylor-Series Estimation,”

IEEE Transactions on Aerospace and Electronic Systems, vol. AES-12, no. 2,

1976, pp. 187–194. DOI: 10.1109/taes.1976.308294

73

https://books.google.com/books?vid=ISBN9781892799005
https://dx.doi.org/10.4236/pos.2021.121001
https://doi.org/10.4236/pos.2021.121001
https://dx.doi.org/10.1109/TRS.2023.3305471
https://dx.doi.org/10.1109/TRS.2023.3305471
https://doi.org/10.1109/trs.2023.3305471
https://www.congress.gov/106/plaws/publ81/PLAW-106publ81.htm
https://www.congress.gov/106/plaws/publ81/PLAW-106publ81.htm
https://dx.doi.org/10.1109/JSEN.2015.2450742
https://dx.doi.org/10.1109/JSEN.2015.2450742
https://doi.org/10.1109/jsen.2015.2450742
https://dx.doi.org/10.1016/j.cirp.2015.05.009
https://dx.doi.org/10.1016/j.cirp.2015.05.009
https://doi.org/10.1016/j.cirp.2015.05.009
https://dx.doi.org/10.3390/s21238086
https://dx.doi.org/10.3390/s21238086
https://doi.org/10.3390/s21238086
https://dx.doi.org/10.1109/ACCESS.2016.2606486
https://dx.doi.org/10.1109/ACCESS.2016.2606486
https://dx.doi.org/10.1109/ACCESS.2016.2606486
https://doi.org/10.1109/access.2016.2606486
https://dx.doi.org/10.1049/joe.2019.0577
https://dx.doi.org/10.1049/joe.2019.0577
https://doi.org/10.1049/joe.2019.0577
https://dx.doi.org/10.1137/0111030
https://dx.doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://dx.doi.org/10.1109/TAES.1976.308294
https://doi.org/10.1109/taes.1976.308294


74 REFERENCES

cited on p. 6

cited on p. 7

cited on pp. 7, 49

cited on pp. 7, 11, 49

cited on pp. 7, 23

cited on pp. 7, 19, 20, 49

cited on pp. 7, 19, 49

cited on pp. 7, 19

cited on pp. 7, 19

cited on pp. 7, 11, 20, 24, 25, 28,

34, 49, 61, 89

cited on p. 8

cited on pp. 8, 11

cited on p. 8

cited on pp. 8, 11

13 McClarren, R. G., Chapter 13 - open root finding methods, Computational
Nuclear Engineering and Radiological Science Using Python, McClarren,

R. G., Ed., Academic Press, 2018, pp. 229–249. DOI: 10.1016/b978-0-12-

812253-2.00015-7

14 Milnor, J., “On the concept of attractor,” Communications in Mathematical
Physics, vol. 99, no. 2, 1985, pp. 177–195. DOI: 10.1007/bf01212280

15 Kennedy, J. and Eberhart, R., “Particle swarm optimization,” Proceedings
of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995,

1942–1948 vol.4. DOI: 10.1109/icnn.1995.488968

16 Fresno, J. M., Robles, G., Martínez-Tarifa, J. M., and Stewart, B. G., “Survey

on the Performance of Source Localization Algorithms,” Sensors, vol. 17,

no. 11, 2017. DOI: 10.3390/s17112666

17 Bin, Y. Z., Lei, W., Qun, C. P., and Nan, L. A., “Passive satellite localization

using TDOA/FDOA/AOA measurements,” IEEE Conference Anthology,

2013, pp. 1–5. DOI: 10.1109/anthology.2013.6784815

18 Bancroft, S., “An Algebraic Solution of the GPS Equations,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. AES-21, no. 1, 1985, pp. 56–59.

DOI: 10.1109/taes.1985.310538

19 Bucher, R. and Misra, D., “A Synthesizable VHDL Model of the Exact Solu-

tion for Three-dimensional Hyperbolic Positioning System,” VLSI Design,

vol. 15, no. 2, 2002, pp. 507–520. DOI: 10.1080/1065514021000012129

20 Smith, J. and Abel, J., “Closed-form least-squares source location estima-

tion from range-difference measurements,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 35, no. 12, 1987, pp. 1661–1669. DOI:

10.1109/tassp.1987.1165089

21 Friedlander, B., “A passive localization algorithm and its accuracy analy-

sis,” IEEE Journal of Oceanic Engineering, vol. 12, no. 1, 1987, pp. 234–245.

DOI: 10.1109/joe.1987.1145216

22 Chan, Y. and Ho, K., “A simple and efficient estimator for hyperbolic

location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, 1994,

pp. 1905–1915. DOI: 10.1109/78.301830

23 Bishop, A. N., Fidan, B., Doğançay, K., Anderson, B. D., and Pathirana,

P. N., “Exploiting geometry for improved hybrid AOA/TDOA-based

localization,” Signal Processing, vol. 88, no. 7, 2008, pp. 1775–1791. DOI:

10.1016/j.sigpro.2008.01.015

24 Chen, J., Hudson, R., and Yao, K., “Maximum-likelihood source localiza-

tion and unknown sensor location estimation for wideband signals in

the near-field,” IEEE Transactions on Signal Processing, vol. 50, no. 8, 2002,

pp. 1843–1854. DOI: 10.1109/tsp.2002.800420

25 Gaarder, N., “On estimating the location of a signal source,” IEEE
Transactions on Information Theory, vol. 15, no. 5, 1969, pp. 570–576. DOI:

10.1109/tit.1969.1054362

https://dx.doi.org/10.1016/B978-0-12-812253-2.00015-7
https://doi.org/10.1016/b978-0-12-812253-2.00015-7
https://doi.org/10.1016/b978-0-12-812253-2.00015-7
https://dx.doi.org/10.1007/BF01212280
https://doi.org/10.1007/bf01212280
https://dx.doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://dx.doi.org/10.3390/s17112666
https://dx.doi.org/10.3390/s17112666
https://doi.org/10.3390/s17112666
https://dx.doi.org/10.1109/ANTHOLOGY.2013.6784815
https://dx.doi.org/10.1109/ANTHOLOGY.2013.6784815
https://doi.org/10.1109/anthology.2013.6784815
https://dx.doi.org/10.1109/TAES.1985.310538
https://doi.org/10.1109/taes.1985.310538
https://dx.doi.org/10.1080/1065514021000012129
https://dx.doi.org/10.1080/1065514021000012129
https://doi.org/10.1080/1065514021000012129
https://dx.doi.org/10.1109/TASSP.1987.1165089
https://dx.doi.org/10.1109/TASSP.1987.1165089
https://doi.org/10.1109/tassp.1987.1165089
https://dx.doi.org/10.1109/JOE.1987.1145216
https://dx.doi.org/10.1109/JOE.1987.1145216
https://doi.org/10.1109/joe.1987.1145216
https://dx.doi.org/10.1109/78.301830
https://dx.doi.org/10.1109/78.301830
https://doi.org/10.1109/78.301830
https://dx.doi.org/10.1016/j.sigpro.2008.01.015
https://dx.doi.org/10.1016/j.sigpro.2008.01.015
https://doi.org/10.1016/j.sigpro.2008.01.015
https://dx.doi.org/10.1109/TSP.2002.800420
https://dx.doi.org/10.1109/TSP.2002.800420
https://dx.doi.org/10.1109/TSP.2002.800420
https://doi.org/10.1109/tsp.2002.800420
https://dx.doi.org/10.1109/TIT.1969.1054362
https://doi.org/10.1109/tit.1969.1054362


REFERENCES 75

cited on pp. 8, 11, 36, 49, 89

cited on pp. 8, 12

cited on pp. 8, 12, 14

cited on pp. 8, 11, 24

cited on pp. 8, 14, 20, 49

cited on pp. 8, 14, 20, 49

cited on pp. 8, 11, 14, 24

cited on pp. 8, 11, 14, 24, 25

cited on pp. 8, 11, 14

cited on pp. 8, 14, 24, 25

cited on pp. 9, 27, 50, 59, 70

26 Norrdine, A., “Direkte Lösung des räumlichen Bogenschnitts mit Metho-

den der Linearen Algebra,” Allgemeine Vermessungs-Nachrichten (AVN),
vol. 1, 2008, pp. 7–9.

27 Norrdine, A., “An Algebraic Solution to the Multilateration Problem,”

2012 International Conference on Indoor Positioning and Indoor Navigation,

November 2012.

28 Bakhoum, E. G., “Closed-form solution of hyperbolic geolocation equa-

tions,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 4,

2006, pp. 1396–1404. DOI: 10.1109/taes.2006.314580

29 Heydari, A. and Aghabozorgi, M., “Joint RSSD/AOA Source Localization:

Bias Analysis and Asymptotically Efficient Estimator,” Wireless Personal
Communications, vol. 114, 3 2020, pp. 2643–2661. DOI: 10.1007/s11277-

020-07495-9

30 Wang, J., Qin, Z., Gao, F., and Wei, S., “An Approximate Maximum

Likelihood Algorithm for Target Localization in Multistatic Passive

Radar,” Chinese Journal of Electronics, vol. 28, no. 1, 2019, pp. 195–201.

DOI: 10.1049/cje.2018.02.018

31 Zhou, Y., Wang, Y., Nie, R., Cheng, Q., and Zhu, G., “Optimal Location

Method of Spontaneous Data Fusion based on TDOA / AOA,” 2021 OES
China Ocean Acoustics (COA), 2021, pp. 885–889. DOI: 10.1109/coa50123.

2021.9519960

32 Liu, Z., Zhao, Y., Jin, K., Hu, D., Wang, R., and Zhao, Y., “Algebraic

distributed source localisation algorithm using TDOA and AOA mea-

surements,” The Journal of Engineering, vol. 2019, no. 19, 2019, pp. 5962–

5966. DOI: 10.1049/joe.2019.0372

33 Huang, D., Zhao, Y., Hu, D., and Zhao, Y., “3D TDOA/AOA Localization

in MIMO Passive Radar with Transmitter and Receiver Position Errors.”

Mathematical Problems in Engineering, 2022, pp. 1–15. DOI: 10.1155/2022/

9964332

34 Kazemi, S. A. R., Amiri, R., and Behnia, F., “Efficient Convex Solution for 3-

D Localization in MIMO Radars Using Delay and Angle Measurements,”

IEEE Communications Letters, vol. 23, no. 12, 2019, pp. 2219–2223. DOI:

10.1109/lcomm.2019.2948175

35 Amiri, R., Behnia, F., and Zamani, H., “Efficient 3-D Positioning Using

Time-Delay and AOA Measurements in MIMO Radar Systems,” IEEE
Communications Letters, vol. 21, no. 12, 2017, pp. 2614–2617. DOI: 10.1109/

lcomm.2017.2742945

36 Huang, G. and Zhu, Y., “Robust Localization in Distributed MIMO

Radar Using Delay and Angle Measurements with Impulsive Noise

Robust TD/AOA Localization in Impulsive Noise,” International Journal
of Antennas and Propagation, vol. 2021, Alejos, A., Ed., 2021, p. 1 531 234.

DOI: 10.1155/2021/1531234

37 Lee, H. B., “Accuracy of Range-Range and Range-Sum Multilateration

Systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-

11, no. 6, 1975, pp. 1346–1361. DOI: 10.1109/taes.1975.308191

https://dx.doi.org/10.1109/TAES.2006.314580
https://dx.doi.org/10.1109/TAES.2006.314580
https://doi.org/10.1109/taes.2006.314580
https://dx.doi.org/10.1007/s11277-020-07495-9
https://dx.doi.org/10.1007/s11277-020-07495-9
https://doi.org/10.1007/s11277-020-07495-9
https://doi.org/10.1007/s11277-020-07495-9
https://dx.doi.org/10.1049/cje.2018.02.018
https://dx.doi.org/10.1049/cje.2018.02.018
https://dx.doi.org/10.1049/cje.2018.02.018
https://doi.org/10.1049/cje.2018.02.018
https://dx.doi.org/10.1109/COA50123.2021.9519960
https://dx.doi.org/10.1109/COA50123.2021.9519960
https://doi.org/10.1109/coa50123.2021.9519960
https://doi.org/10.1109/coa50123.2021.9519960
https://dx.doi.org/10.1049/joe.2019.0372
https://dx.doi.org/10.1049/joe.2019.0372
https://dx.doi.org/10.1049/joe.2019.0372
https://doi.org/10.1049/joe.2019.0372
https://dx.doi.org/10.1155/2022/9964332
https://dx.doi.org/10.1155/2022/9964332
https://doi.org/10.1155/2022/9964332
https://doi.org/10.1155/2022/9964332
https://dx.doi.org/10.1109/LCOMM.2019.2948175
https://dx.doi.org/10.1109/LCOMM.2019.2948175
https://doi.org/10.1109/lcomm.2019.2948175
https://dx.doi.org/10.1109/LCOMM.2017.2742945
https://dx.doi.org/10.1109/LCOMM.2017.2742945
https://doi.org/10.1109/lcomm.2017.2742945
https://doi.org/10.1109/lcomm.2017.2742945
https://dx.doi.org/10.1155/2021/1531234
https://dx.doi.org/10.1155/2021/1531234
https://dx.doi.org/10.1155/2021/1531234
https://doi.org/10.1155/2021/1531234
https://dx.doi.org/10.1109/TAES.1975.308191
https://dx.doi.org/10.1109/TAES.1975.308191
https://doi.org/10.1109/taes.1975.308191


76 REFERENCES

cited on pp. 9, 70

cited on pp. 9, 70

cited on p. 11

cited on pp. 11, 14, 22, 49

cited on pp. 11, 14, 21

cited on pp. 11, 14, 24

cited on pp. 11, 22

cited on pp. 11, 22

cited on pp. 11, 14, 20

cited on pp. 11, 14, 22

cited on pp. 11, 23

cited on pp. 11, 14, 22

38 Lee, H. B., “A Novel Procedure for Assessing the Accuracy of Hyperbolic

Multilateration Systems,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-11, no. 1, 1975, pp. 2–15. DOI: 10.1109/taes.1975.308023

39 Lee, H. B., “Accuracy Limitations of Hyperbolic Multilateration Systems,”

IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 1,

1975, pp. 16–29. DOI: 10.1109/taes.1975.308024

40 Wang, X., Wang, Z., and O’Dea, B., “A TOA-based location algorithm

reducing the errors due to non-line-of-sight (NLOS) propagation,” IEEE
Transactions on Vehicular Technology, vol. 52, no. 1, 2003, pp. 112–116. DOI:

10.1109/tvt.2002.807158

41 Cong, L. and Zhuang, W., “Hybrid TDOA/AOA mobile user location

for wideband CDMA cellular systems,” IEEE Transactions on Wireless
Communications, vol. 1, no. 3, 2002, pp. 439–447. DOI: 10.1109/twc.2002.

800542

42 Bachevsky, S. V., Fokin, G. A., Simonov, A. N., and Sevidov, V. V., “Posi-

tioning of radio emission sources with unmanned aerial vehicles using

TDOA-AOA measurement processing,” Journal of Physics: Conference Se-
ries, vol. 1368, no. 4, November 2019, p. 042 040. DOI: 10.1088/1742-

6596/1368/4/042040

43 Wang, J., Qin, Z., Bi, Y., Wei, S., and Luo, F., “Target localisation in

multistatic radar using BR, TDOA, and AOA measurements,” The Journal
of Engineering, vol. 2019, no. 19, 2019, pp. 6052–6056. DOI: 10.1049/joe.

2019.0128

44 Chan, Y.-T., Tsui, W.-Y., So, H.-C., and Ching, P.-c., “Time-of-arrival based

localization under NLOS conditions,” IEEE Transactions on Vehicular
Technology, vol. 55, no. 1, 2006, pp. 17–24. DOI: 10.1109/tvt.2005.861207

45 Soleimani, M. A. and Sharafat, A. R., “A novel geometric approach for

mitigating NLOS effects in wireless location estimation,” 2011 19th Iranian
Conference on Electrical Engineering, 2011, pp. 1–6.

46 Chang, A.-C. and Chang, J.-C., “Robust Mobile Location Estimation Using

Hybrid TOA/AOA Measurements in Cellular Systems,” Wireless Personal
Communications, vol. 65, no. 1, 2012, pp. 1–13. DOI: 10.1007/s11277-011-

0224-8

47 Telung-Pan, Chang, J.-C., and Shen, C.-C., “Hybrid TOA/AOA mea-

surements based on the Wiener estimator for cellular network,” 2015
IEEE 12th International Conference on Networking, Sensing and Control, 2015,

pp. 405–409. DOI: 10.1109/icnsc.2015.7116071

48 Jheng, S.-L., Jan, S.-S., Chen, Y.-H., and Lo, S., “1090 MHz ADS-B-Based

Wide Area Multilateration System for Alternative Positioning Navigation

and Timing,” IEEE Sensors Journal, vol. 20, no. 16, 2020, pp. 9490–9501.

DOI: 10.1109/jsen.2020.2988514

49 Zhang, V. Y., Wong, A. K.-s., Woo, K. T., and Ouyang, R. W., “Hybrid

TOA/AOA-Based Mobile Localization with and without Tracking in

CDMA Cellular Networks,” 2010 IEEE Wireless Communication and Net-
working Conference, 2010, pp. 1–6. DOI: 10.1109/wcnc.2010.5506585

https://dx.doi.org/10.1109/TAES.1975.308023
https://dx.doi.org/10.1109/TAES.1975.308023
https://doi.org/10.1109/taes.1975.308023
https://dx.doi.org/10.1109/TAES.1975.308024
https://doi.org/10.1109/taes.1975.308024
https://dx.doi.org/10.1109/TVT.2002.807158
https://dx.doi.org/10.1109/TVT.2002.807158
https://doi.org/10.1109/tvt.2002.807158
https://dx.doi.org/10.1109/TWC.2002.800542
https://dx.doi.org/10.1109/TWC.2002.800542
https://doi.org/10.1109/twc.2002.800542
https://doi.org/10.1109/twc.2002.800542
https://dx.doi.org/10.1088/1742-6596/1368/4/042040
https://dx.doi.org/10.1088/1742-6596/1368/4/042040
https://dx.doi.org/10.1088/1742-6596/1368/4/042040
https://doi.org/10.1088/1742-6596/1368/4/042040
https://doi.org/10.1088/1742-6596/1368/4/042040
https://dx.doi.org/10.1049/joe.2019.0128
https://dx.doi.org/10.1049/joe.2019.0128
https://doi.org/10.1049/joe.2019.0128
https://doi.org/10.1049/joe.2019.0128
https://dx.doi.org/10.1109/TVT.2005.861207
https://dx.doi.org/10.1109/TVT.2005.861207
https://doi.org/10.1109/tvt.2005.861207
https://dx.doi.org/10.1007/s11277-011-0224-8
https://dx.doi.org/10.1007/s11277-011-0224-8
https://doi.org/10.1007/s11277-011-0224-8
https://doi.org/10.1007/s11277-011-0224-8
https://dx.doi.org/10.1109/ICNSC.2015.7116071
https://dx.doi.org/10.1109/ICNSC.2015.7116071
https://doi.org/10.1109/icnsc.2015.7116071
https://dx.doi.org/10.1109/JSEN.2020.2988514
https://dx.doi.org/10.1109/JSEN.2020.2988514
https://dx.doi.org/10.1109/JSEN.2020.2988514
https://doi.org/10.1109/jsen.2020.2988514
https://dx.doi.org/10.1109/WCNC.2010.5506585
https://dx.doi.org/10.1109/WCNC.2010.5506585
https://dx.doi.org/10.1109/WCNC.2010.5506585
https://doi.org/10.1109/wcnc.2010.5506585


REFERENCES 77

cited on pp. 11, 12, 14

cited on pp. 11, 14, 22

cited on pp. 11, 14, 22, 27

cited on pp. 11, 14, 20, 22

cited on pp. 11, 14, 20, 22

cited on pp. 11, 14, 22, 27, 90

cited on pp. 11, 14, 20

cited on pp. 11, 14, 21

cited on pp. 11, 14, 21

cited on pp. 11, 14, 20

cited on pp. 11, 14, 20

cited on pp. 11, 14, 21, 27

50 Chan, Y., Chan, F., Read, W., Jackson, B., and Lee, B., “Hybrid localization

of an emitter by combining angle-of-arrival and received signal strength

measurements,” 2014 IEEE 27th Canadian Conference on Electrical and
Computer Engineering (CCECE), 2014, pp. 1–5. DOI: 10.1109/ccece.2014.

6900968

51 Chen, C.-L. and Feng, K.-T., “An efficient geometry-constrained location

estimation algorithm for NLOS environments,” 2005 International Confer-
ence on Wireless Networks, Communications and Mobile Computing, vol. 1,

2005, 244–249 vol.1. DOI: 10.1109/wirles.2005.1549417

52 Chen, C.-L. and Feng, K.-T., “Hybrid location estimation and tracking

system for mobile devices,” 2005 IEEE 61st Vehicular Technology Conference,
vol. 4, 2005, 2648–2652 Vol. 4. DOI: 10.1109/vetecs.2005.1543815

53 Abdul-Latif, O., Shepherd, P., and Pennock, S., “TDOA/AOA Data Fusion

for Enhancing Positioning in an Ultra Wideband System,” 2007 IEEE
International Conference on Signal Processing and Communications, 2007,

pp. 1531–1534. DOI: 10.1109/icspc.2007.4728623

54 Feng, K.-T., Chen, C.-L., and Chen, C.-H., “GALE: An Enhanced Geometry-

Assisted Location Estimation Algorithm for NLOS Environments,” IEEE
Transactions on Mobile Computing, vol. 7, no. 2, 2008, pp. 199–213. DOI:

10.1109/tmc.2007.70721

55 Tseng, P.-H. and Feng, K.-T., “Hybrid Network/Satellite-Based Location

Estimation and Tracking Systems for Wireless Networks,” IEEE Trans-
actions on Vehicular Technology, vol. 58, no. 9, 2009, pp. 5174–5189. DOI:

10.1109/tvt.2009.2023222

56 Noroozi, A. and Sebt, M. A., “Algebraic solution of source location

estimation using TDOA and AOA measurements,” 2017 Iranian Conference
on Electrical Engineering (ICEE), 2017, pp. 1609–1614. DOI: 10 .1109/

iraniancee.2017.7985303

57 Fokin, G., “Passive Geolocation with Unmanned Aerial Vehicles using

TDOA-AOA Measurement Processing,” 2019 21st International Conference
on Advanced Communication Technology (ICACT), 2019, pp. 360–365. DOI:

10.23919/icact.2019.8702023

58 Nguyen, N. H. and Doğançay, K., “Closed-Form Algebraic Solutions

for Angle-of-Arrival Source Localization With Bayesian Priors,” IEEE
Transactions on Wireless Communications, vol. 18, no. 8, 2019, pp. 3827–3842.

DOI: 10.1109/twc.2019.2918516

59 Ma, C., Klukas, R., and Lachapelle, G., “An enhanced two-step least

squared approach for TDOA/AOA wireless location,” IEEE International
Conference on Communications, 2003. ICC ’03. Vol. 2, 2003, 987–991 vol.2.

DOI: 10.1109/icc.2003.1204495

60 Li, W., Tang, Q., Huang, C., Ren, C., and Li, Y., “A New Close Form

Location Algorithm with AOA and TDOA for Mobile User,” Wireless
Personal Communications, vol. 97, 2 2017, pp. 3061–3080. DOI: 10.1007/

s11277-017-4661-x

https://dx.doi.org/10.1109/CCECE.2014.6900968
https://dx.doi.org/10.1109/CCECE.2014.6900968
https://dx.doi.org/10.1109/CCECE.2014.6900968
https://doi.org/10.1109/ccece.2014.6900968
https://doi.org/10.1109/ccece.2014.6900968
https://dx.doi.org/10.1109/WIRLES.2005.1549417
https://dx.doi.org/10.1109/WIRLES.2005.1549417
https://doi.org/10.1109/wirles.2005.1549417
https://dx.doi.org/10.1109/VETECS.2005.1543815
https://dx.doi.org/10.1109/VETECS.2005.1543815
https://doi.org/10.1109/vetecs.2005.1543815
https://dx.doi.org/10.1109/ICSPC.2007.4728623
https://dx.doi.org/10.1109/ICSPC.2007.4728623
https://doi.org/10.1109/icspc.2007.4728623
https://dx.doi.org/10.1109/TMC.2007.70721
https://dx.doi.org/10.1109/TMC.2007.70721
https://doi.org/10.1109/tmc.2007.70721
https://dx.doi.org/10.1109/TVT.2009.2023222
https://dx.doi.org/10.1109/TVT.2009.2023222
https://doi.org/10.1109/tvt.2009.2023222
https://dx.doi.org/10.1109/IranianCEE.2017.7985303
https://dx.doi.org/10.1109/IranianCEE.2017.7985303
https://doi.org/10.1109/iraniancee.2017.7985303
https://doi.org/10.1109/iraniancee.2017.7985303
https://dx.doi.org/10.23919/ICACT.2019.8702023
https://dx.doi.org/10.23919/ICACT.2019.8702023
https://doi.org/10.23919/icact.2019.8702023
https://dx.doi.org/10.1109/TWC.2019.2918516
https://dx.doi.org/10.1109/TWC.2019.2918516
https://doi.org/10.1109/twc.2019.2918516
https://dx.doi.org/10.1109/ICC.2003.1204495
https://dx.doi.org/10.1109/ICC.2003.1204495
https://doi.org/10.1109/icc.2003.1204495
https://dx.doi.org/10.1007/s11277-017-4661-x
https://dx.doi.org/10.1007/s11277-017-4661-x
https://doi.org/10.1007/s11277-017-4661-x
https://doi.org/10.1007/s11277-017-4661-x


78 REFERENCES

cited on pp. 11, 14, 23

cited on pp. 11, 22

cited on pp. 11, 17, 19, 49

cited on pp. 11, 12, 22

cited on pp. 11, 22, 27

cited on pp. 11, 23

cited on pp. 11, 21, 22

cited on pp. 11, 22

cited on pp. 11, 14, 22

cited on pp. 11, 14, 20

cited on pp. 11, 14, 20, 27

61 Zhang, F., Sun, Y., and Wan, Q., “Calibrating the error from sensor

position uncertainty in TDOA-AOA localization,” Signal Processing, vol.

166, 2020, p. 107 213. DOI: 10.1016/j.sigpro.2019.07.006

62 Zhang, Z., Lin, Y., and Jin, B., “Underwater TDOA/AOA joint localization

algorithm based on hybrid invasive weed optimization algorithm,” IET
Communications, vol. 15, no. 19, 2021, pp. 2376–2389. DOI: 10.1049/cmu2.

12277

63 Abdulla, Y., El-Hennawy, H., and Mahrous, S., “The effect of base stations

configurations on the accuracy of hyperbolic position location in macro-

cellular and microcellular GSM systems,” Proceedings of the Eighteenth
National Radio Science Conference. NRSC’2001 (IEEE Cat. No.01EX462),
vol. 1, 2001, 303–313 vol.1. DOI: 10.1109/nrsc.2001.929240

64 Ho, K. and Xu, W., “An accurate algebraic solution for moving source

location using TDOA and FDOA measurements,” IEEE Transactions on
Signal Processing, vol. 52, no. 9, 2004, pp. 2453–2463. DOI: 10.1109/tsp.

2004.831921

65 Mahajan, S. and Singh, Y. N., “Enhanced mobile station localization

using a hybrid TOA/AOA map-matching algorithm,” TENCON 2009 -
2009 IEEE Region 10 Conference, 2009, pp. 1–6. DOI: 10.1109/tencon.2009.

5396198

66 Chen, C.-Y. and Wu, W.-R., “Three-Dimensional Positioning for LTE

Systems,” IEEE Transactions on Vehicular Technology, vol. 66, no. 4, 2017,

pp. 3220–3234. DOI: 10.1109/tvt.2016.2593697

67 Zhang, L., Zhang, T., Shin, H.-S., and Xu, X., “Efficient Underwater

Acoustical Localization Method Based On Time Difference and Bearing

Measurements,” IEEE Transactions on Instrumentation and Measurement,
vol. 70, 2021, pp. 1–16. DOI: 10.1109/tim.2020.3045193

68 Wu, S., Feng, Q., Huang, W., and Xu, K., “Linear Cooperative Localization

Algorithm with TOA/ AOA/ AOD and Multipath,” 2021 World Conference
on Computing and Communication Technologies (WCCCT), 2021, pp. 47–51.

DOI: 10.1109/wccct52091.2021.00016

69 Son, J., Keum, I., Ahn, Y., and Shim, B., “D-TLoc: Deep Learning-aided

Hybrid TDOA/AOA-based Localization,” 2022 IEEE VTS Asia Pacific
Wireless Communications Symposium (APWCS), 2022, pp. 47–50. DOI:

10.1109/apwcs55727.2022.9906489

70 Chen, H.-Y. and Chou, T.-Y., “Hybrid TDOA/AOA Mobile User Location

with Artificial Neural Networks,” 2008 IEEE International Conference on
Networking, Sensing and Control, 2008, pp. 847–852. DOI: 10.1109/icnsc.

2008.4525334

71 Nur-A-Alam, M. and Haque, M. M., “A least square approach for

TDOA/AOA wireless location in WCDMA system,” 2008 11th Inter-
national Conference on Computer and Information Technology, 2008, pp. 686–

690. DOI: 10.1109/iccitechn.2008.4803072

https://dx.doi.org/10.1016/j.sigpro.2019.07.006
https://dx.doi.org/10.1016/j.sigpro.2019.07.006
https://doi.org/10.1016/j.sigpro.2019.07.006
https://dx.doi.org/10.1049/cmu2.12277
https://dx.doi.org/10.1049/cmu2.12277
https://doi.org/10.1049/cmu2.12277
https://doi.org/10.1049/cmu2.12277
https://dx.doi.org/10.1109/NRSC.2001.929240
https://dx.doi.org/10.1109/NRSC.2001.929240
https://dx.doi.org/10.1109/NRSC.2001.929240
https://doi.org/10.1109/nrsc.2001.929240
https://dx.doi.org/10.1109/TSP.2004.831921
https://dx.doi.org/10.1109/TSP.2004.831921
https://doi.org/10.1109/tsp.2004.831921
https://doi.org/10.1109/tsp.2004.831921
https://dx.doi.org/10.1109/TENCON.2009.5396198
https://dx.doi.org/10.1109/TENCON.2009.5396198
https://doi.org/10.1109/tencon.2009.5396198
https://doi.org/10.1109/tencon.2009.5396198
https://dx.doi.org/10.1109/TVT.2016.2593697
https://dx.doi.org/10.1109/TVT.2016.2593697
https://doi.org/10.1109/tvt.2016.2593697
https://dx.doi.org/10.1109/TIM.2020.3045193
https://dx.doi.org/10.1109/TIM.2020.3045193
https://dx.doi.org/10.1109/TIM.2020.3045193
https://doi.org/10.1109/tim.2020.3045193
https://dx.doi.org/10.1109/WCCCT52091.2021.00016
https://dx.doi.org/10.1109/WCCCT52091.2021.00016
https://doi.org/10.1109/wccct52091.2021.00016
https://dx.doi.org/10.1109/APWCS55727.2022.9906489
https://dx.doi.org/10.1109/APWCS55727.2022.9906489
https://doi.org/10.1109/apwcs55727.2022.9906489
https://dx.doi.org/10.1109/ICNSC.2008.4525334
https://dx.doi.org/10.1109/ICNSC.2008.4525334
https://doi.org/10.1109/icnsc.2008.4525334
https://doi.org/10.1109/icnsc.2008.4525334
https://dx.doi.org/10.1109/ICCITECHN.2008.4803072
https://dx.doi.org/10.1109/ICCITECHN.2008.4803072
https://doi.org/10.1109/iccitechn.2008.4803072


REFERENCES 79

cited on p. 12

cited on p. 12

cited on pp. 12, 49

cited on pp. 12, 14

cited on pp. 12, 14, 23

cited on pp. 12, 14

cited on p. 12

cited on pp. 12, 23

cited on pp. 12, 21

cited on pp. 14, 23

cited on pp. 14, 22

cited on pp. 14, 20

72 Xinghu, Z., Tan Sihong, S., and Yew Hong, T., “An integrated closed-form

fusion algorithm for TDOA/AOA,” 2016 19th International Conference on
Information Fusion (FUSION), 2016, pp. 1622–1629.

73 Chaitanya, D. E. and Rao, G. S., “Unknown Radio Source Localization

Based on a Modified Closed form Solution Using TDOA Measurement

Technique,” Procedia Computer Science, vol. 87, 2016, pp. 184–189. DOI:

10.1016/j.procs.2016.05.146

74 Ketabalian, H., Biguesh, M., and Sheikhi, A., “A Closed-Form Solution for

Localization Based on RSS,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 56, no. 2, 2020, pp. 912–923. DOI: 10.1109/taes.2019.2929998

75 Ho, K. C. and Sun, M., “Passive Source Localization Using Time Differ-

ences of Arrival and Gain Ratios of Arrival,” IEEE Transactions on Signal
Processing, vol. 56, no. 2, 2008, pp. 464–477. DOI: 10.1109/tsp.2007.906728

76 Luo, J.-A., Zhang, X.-P., and Wang, Z., “A new passive source localization

method using AOA-GROA-TDOA in wireless sensor array networks

and its Cramér-Rao bound analysis,” 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013, pp. 4031–4035. DOI:

10.1109/icassp.2013.6638416

77 Ji-An, L., Si-Wei, P., Dong-Liang, P., Zhi, W., and Yan-Jun, L., “Source

Localization in Acoustic Sensor Networks via Constrained Least-Squares

Optimization Using AOA and GROA Measurements.” Sensors (14248220),
vol. 18, no. 4, 2018, p. 937. DOI: 10.3390/s18040937

78 Li, W., Wang, L., Xiao, M., Li, Y., and Zhang, H., “Closed Form Solution

for 3D Localization Based on Joint RSS and AOA Measurements for

Mobile Communications,” IEEE Access, vol. 8, 2020, pp. 12 632–12 643.

DOI: 10.1109/access.2019.2962811

79 Sun, T. and Dong, C., “Efficient source positioning method based on two

stations using GROA and AOA measurements,” IET Signal Processing,

vol. 14, no. 2, 2020, pp. 56–63. DOI: 10.1049/iet-spr.2019.0003

80 Luo, J.-A., Zhang, X.-P., Wang, Z., and Lai, X.-P., “On the Accuracy of

Passive Source Localization Using Acoustic Sensor Array Networks,”

IEEE Sensors Journal, vol. 17, no. 6, 2017, pp. 1795–1809. DOI: 10.1109/

jsen.2017.2657646

81 Le, A. T., Tran, L. C., Huang, X., Ritz, C., Dutkiewicz, E., Phung, S. L.,

Bouzerdoum, A., and Franklin, D., “Unbalanced Hybrid AOA/RSSI Lo-

calization for Simplified Wireless Sensor Networks.” Sensors (14248220),
vol. 20, no. 14, 2020, p. 3838. DOI: 10.3390/s20143838

82 Zeng, Y. and Li, O., “A new algorithm for signal emitter recognition,”

2010 International Conference on Image Analysis and Signal Processing, 2010,

pp. 446–449. DOI: 10.1109/iasp.2010.5476079

83 Deligiannis, N. and Louvros, S., “Hybrid TOA–AOA Location Positioning

Techniques in GSM Networks,” Wireless Personal Communications, vol. 54,

2 2010, pp. 321–348. DOI: 10.1007/s11277-009-9728-x

https://dx.doi.org/10.1016/j.procs.2016.05.146
https://dx.doi.org/10.1016/j.procs.2016.05.146
https://dx.doi.org/10.1016/j.procs.2016.05.146
https://doi.org/10.1016/j.procs.2016.05.146
https://dx.doi.org/10.1109/TAES.2019.2929998
https://dx.doi.org/10.1109/TAES.2019.2929998
https://doi.org/10.1109/taes.2019.2929998
https://dx.doi.org/10.1109/TSP.2007.906728
https://dx.doi.org/10.1109/TSP.2007.906728
https://doi.org/10.1109/tsp.2007.906728
https://dx.doi.org/10.1109/ICASSP.2013.6638416
https://dx.doi.org/10.1109/ICASSP.2013.6638416
https://dx.doi.org/10.1109/ICASSP.2013.6638416
https://doi.org/10.1109/icassp.2013.6638416
https://dx.doi.org/10.3390/s18040937
https://dx.doi.org/10.3390/s18040937
https://dx.doi.org/10.3390/s18040937
https://doi.org/10.3390/s18040937
https://dx.doi.org/10.1109/ACCESS.2019.2962811
https://dx.doi.org/10.1109/ACCESS.2019.2962811
https://dx.doi.org/10.1109/ACCESS.2019.2962811
https://doi.org/10.1109/access.2019.2962811
https://dx.doi.org/10.1049/iet-spr.2019.0003
https://dx.doi.org/10.1049/iet-spr.2019.0003
https://doi.org/10.1049/iet-spr.2019.0003
https://dx.doi.org/10.1109/JSEN.2017.2657646
https://dx.doi.org/10.1109/JSEN.2017.2657646
https://doi.org/10.1109/jsen.2017.2657646
https://doi.org/10.1109/jsen.2017.2657646
https://dx.doi.org/10.3390/s20143838
https://dx.doi.org/10.3390/s20143838
https://doi.org/10.3390/s20143838
https://dx.doi.org/10.1109/IASP.2010.5476079
https://doi.org/10.1109/iasp.2010.5476079
https://dx.doi.org/10.1007/s11277-009-9728-x
https://dx.doi.org/10.1007/s11277-009-9728-x
https://doi.org/10.1007/s11277-009-9728-x


80 REFERENCES

cited on pp. 14, 22

cited on pp. 14, 23

cited on pp. 14, 19, 20

cited on pp. 14, 20, 22

cited on pp. 14, 21

cited on pp. 14, 19, 22, 49

cited on pp. 14, 19

cited on pp. 14, 21

cited on pp. 14, 19

cited on pp. 14, 20

cited on pp. 14, 16

84 Dhara, S., Koley, C., and Chakravorti, S., “Methods for Localization of

Partial Discharge Sources within Air Insulated Electrical Substation,”

2018 20th National Power Systems Conference (NPSC), 2018, pp. 1–6. DOI:

10.1109/npsc.2018.8771788

85 Luo, R., Yan, L., Deng, P., and Kuang, Y., “Hybrid TOA/AOA Virtual

Station Localization Based on Scattering Signal Identification for GNSS-

Denied Urban or Indoor NLOS Environments,” Applied Sciences, vol. 12,

no. 23, 2022. DOI: 10.3390/app122312157

86 Liu, Z., Stevens, N., and Conde, M. H., “Visible Light Positioning Using

Arrays of Time-of- Flight Pixels,” 2022 IEEE Sensors, 2022, pp. 1–4. DOI:

10.1109/sensors52175.2022.9967030

87 McDonald, K. and Kuklinski, W., “Track maintenance and positional

estimation via ground moving target indicator and geolocation data

fusion,” Proceedings of the 2001 IEEE Radar Conference (Cat. No.01CH37200),
2001, pp. 239–245. DOI: 10.1109/nrc.2001.922984

88 Zhang, V. Y. and Wong, A. K.-S., “Combined AOA and TOA NLOS

Localization With Nonlinear Programming in Severe Multipath Environ-

ments,” 2009 IEEE Wireless Communications and Networking Conference,
2009, pp. 1–6. DOI: 10.1109/wcnc.2009.4917631

89 Shao, H.-J., Zhang, X.-P., and Wang, Z., “Novel closed-form auxiliary

variables based algorithms for sensor node localization using AOA,” 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014, pp. 1414–1418. DOI: 10.1109/icassp.2014.6853830

90 Ramlall, R., Chen, J., and Swindlehurst, A. L., “Non-line-of-sight mobile

station positioning algorithm using TOA, AOA, and Doppler-shift,”

2014 Ubiquitous Positioning Indoor Navigation and Location Based Service
(UPINLBS), 2014, pp. 180–184. DOI: 10.1109/upinlbs.2014.7033726

91 Yin, J., Wan, Q., Yang, S., and Ho, K. C., “A Simple and Accurate TDOA-

AOA Localization Method Using Two Stations,” IEEE Signal Processing
Letters, vol. 23, no. 1, 2016, pp. 144–148. DOI: 10.1109/lsp.2015.2505138

92 Kalpana, R. and Baskaran, M., “TAR: TOA-AOA Based Random Trans-

mission Directed Localization,” Wireless Personal Communications, vol. 90,

2 2016, pp. 889–902. DOI: 10.1007/s11277-016-3237-5

93 Sun, Y., Zhou, Z.-p., Tang, S.-l., Ding, X. K., Yin, J., and Wan, Q., “3D

hybrid TOA-AOA source localization using an active and a passive

station,” 2016 IEEE 13th International Conference on Signal Processing
(ICSP), 2016, pp. 257–260. DOI: 10.1109/icsp.2016.7877836

94 Hao, B., Zhao, Y., Li, Z., and Wan, P., “A sensor selection method for

TDOA and AOA localization in the presence of sensor errors,” 2017
IEEE/CIC International Conference on Communications in China (ICCC),
2017, pp. 1–6. DOI: 10.1109/iccchina.2017.8330350

95 Wang, Y. and Ho, K. C., “TDOA Positioning Irrespective of Source Range,”

IEEE Transactions on Signal Processing, vol. 65, no. 6, 2017, pp. 1447–1460.

DOI: 10.1109/tsp.2016.2630030

https://dx.doi.org/10.1109/NPSC.2018.8771788
https://dx.doi.org/10.1109/NPSC.2018.8771788
https://doi.org/10.1109/npsc.2018.8771788
https://dx.doi.org/10.3390/app122312157
https://dx.doi.org/10.3390/app122312157
https://dx.doi.org/10.3390/app122312157
https://doi.org/10.3390/app122312157
https://dx.doi.org/10.1109/SENSORS52175.2022.9967030
https://dx.doi.org/10.1109/SENSORS52175.2022.9967030
https://doi.org/10.1109/sensors52175.2022.9967030
https://dx.doi.org/10.1109/NRC.2001.922984
https://dx.doi.org/10.1109/NRC.2001.922984
https://dx.doi.org/10.1109/NRC.2001.922984
https://doi.org/10.1109/nrc.2001.922984
https://dx.doi.org/10.1109/WCNC.2009.4917631
https://dx.doi.org/10.1109/WCNC.2009.4917631
https://dx.doi.org/10.1109/WCNC.2009.4917631
https://doi.org/10.1109/wcnc.2009.4917631
https://dx.doi.org/10.1109/ICASSP.2014.6853830
https://dx.doi.org/10.1109/ICASSP.2014.6853830
https://doi.org/10.1109/icassp.2014.6853830
https://dx.doi.org/10.1109/UPINLBS.2014.7033726
https://dx.doi.org/10.1109/UPINLBS.2014.7033726
https://doi.org/10.1109/upinlbs.2014.7033726
https://dx.doi.org/10.1109/LSP.2015.2505138
https://dx.doi.org/10.1109/LSP.2015.2505138
https://doi.org/10.1109/lsp.2015.2505138
https://dx.doi.org/10.1007/s11277-016-3237-5
https://dx.doi.org/10.1007/s11277-016-3237-5
https://doi.org/10.1007/s11277-016-3237-5
https://dx.doi.org/10.1109/ICSP.2016.7877836
https://dx.doi.org/10.1109/ICSP.2016.7877836
https://dx.doi.org/10.1109/ICSP.2016.7877836
https://doi.org/10.1109/icsp.2016.7877836
https://dx.doi.org/10.1109/ICCChina.2017.8330350
https://dx.doi.org/10.1109/ICCChina.2017.8330350
https://doi.org/10.1109/iccchina.2017.8330350
https://dx.doi.org/10.1109/TSP.2016.2630030
https://doi.org/10.1109/tsp.2016.2630030


REFERENCES 81

cited on pp. 14, 20, 49

cited on pp. 14, 21

cited on pp. 14, 16

cited on pp. 14, 16

cited on pp. 14, 21

cited on pp. 14, 22

cited on pp. 14, 21

cited on pp. 14, 23

cited on pp. 14, 20

cited on pp. 14, 21, 34, 70

cited on pp. 14, 21

cited on p. 15

96 Zhao, Y., Li, Z., Hao, B., Si, J., and Wan, P., “Bias reduced method for

TDOA and AOA localization in the presence of sensor errors,” 2017
IEEE International Conference on Communications (ICC), 2017, pp. 1–6. DOI:

10.1109/icc.2017.7997043

97 Hung Nguyen, N. and Doğançay, K., “Improved Weighted Instrumental

Variable Estimator for Doppler-Bearing Source Localization in Heavy

Noise,” 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 3529–3533. DOI: 10.1109/icassp.2018.

8461284

98 Wang, Y. and Ho, K. C., “Unified Near-Field and Far-Field Localization

for AOA and Hybrid AOA-TDOA Positionings,” IEEE Transactions on
Wireless Communications, vol. 17, no. 2, 2018, pp. 1242–1254. DOI: 10.1109/

twc.2017.2777457

99 Wang, Y., Ho, K., and Wang, G., “A Unified Estimator for Source Position-

ing and DOA Estimation Using AOA,” 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 3201–3205.

DOI: 10.1109/icassp.2018.8461492

100 Zhao, Y., Qi, W., Liu, P., Chen, L., and Lin, J., “Accurate 3D localisation

of mobile target using single station with AOA–TDOA measurements,”

IET Radar, Sonar & Navigation, vol. 14, no. 6, 2020, pp. 954–965. DOI:

10.1049/iet-rsn.2019.0600

101 Zhou, R., Chen, J., Tan, W., Yan, Q., and Cai, C., “Optimal 3D Angle of

Arrival Sensor Placement with Gaussian Priors,” Entropy, vol. 23, no. 11,

2021. DOI: 10.3390/e23111379

102 Xiang, P., Wang, G., and Ho, D. K. C., “Bias Reduced Semidefinite

Relaxation Method for AOA Object Localization in 3-D,” 2022 IEEE 12th
Sensor Array and Multichannel Signal Processing Workshop (SAM), 2022,

pp. 91–95. DOI: 10.1109/sam53842.2022.9827814

103 Zhou, R., Chen, J., Tan, W., and Cai, C., “Sensor Selection for Optimal

Target localization with 3-D Angle of Arrival Estimation in Underwater

Wireless Sensor Networks,” Journal of Marine Science and Engineering, vol.

10, no. 2, 2022. DOI: 10.3390/jmse10020245

104 Imani, S., Peimany, M., Hasankhan, M. J., and Feraidooni, M. M., “Bi-

static target localization based on inaccurate TDOA-AOA measurements,”

Signal, Image and Video Processing, vol. 16, 1 2022, pp. 239–245. DOI:

10.1007/s11760-021-01985-4

105 Sun, Y., Ho, K. C., Gao, L., Zou, J., Yang, Y., and Chen, L., “Three

Dimensional Source Localization Using Arrival Angles from Linear

Arrays: Analytical Investigation and Optimal Solution,” IEEE Transactions
on Signal Processing, vol. 70, 2022, pp. 1864–1879. DOI: 10.1109/tsp.2022.

3163889

106 Zou, J., Sun, Y., and Wan, Q., “A Novel 3-D Localization Scheme Using

1-D Angle Measurements,” IEEE Sensors Letters, vol. 4, no. 6, 2020, pp. 1–4.

DOI: 10.1109/lsens.2020.2992704

https://dx.doi.org/10.1109/ICC.2017.7997043
https://dx.doi.org/10.1109/ICC.2017.7997043
https://doi.org/10.1109/icc.2017.7997043
https://dx.doi.org/10.1109/ICASSP.2018.8461284
https://dx.doi.org/10.1109/ICASSP.2018.8461284
https://dx.doi.org/10.1109/ICASSP.2018.8461284
https://doi.org/10.1109/icassp.2018.8461284
https://doi.org/10.1109/icassp.2018.8461284
https://dx.doi.org/10.1109/TWC.2017.2777457
https://dx.doi.org/10.1109/TWC.2017.2777457
https://doi.org/10.1109/twc.2017.2777457
https://doi.org/10.1109/twc.2017.2777457
https://dx.doi.org/10.1109/ICASSP.2018.8461492
https://dx.doi.org/10.1109/ICASSP.2018.8461492
https://doi.org/10.1109/icassp.2018.8461492
https://dx.doi.org/10.1049/iet-rsn.2019.0600
https://dx.doi.org/10.1049/iet-rsn.2019.0600
https://doi.org/10.1049/iet-rsn.2019.0600
https://dx.doi.org/10.3390/e23111379
https://dx.doi.org/10.3390/e23111379
https://doi.org/10.3390/e23111379
https://dx.doi.org/10.1109/SAM53842.2022.9827814
https://dx.doi.org/10.1109/SAM53842.2022.9827814
https://doi.org/10.1109/sam53842.2022.9827814
https://dx.doi.org/10.3390/jmse10020245
https://dx.doi.org/10.3390/jmse10020245
https://dx.doi.org/10.3390/jmse10020245
https://doi.org/10.3390/jmse10020245
https://dx.doi.org/10.1007/s11760-021-01985-4
https://dx.doi.org/10.1007/s11760-021-01985-4
https://doi.org/10.1007/s11760-021-01985-4
https://dx.doi.org/10.1109/TSP.2022.3163889
https://dx.doi.org/10.1109/TSP.2022.3163889
https://dx.doi.org/10.1109/TSP.2022.3163889
https://doi.org/10.1109/tsp.2022.3163889
https://doi.org/10.1109/tsp.2022.3163889
https://dx.doi.org/10.1109/LSENS.2020.2992704
https://dx.doi.org/10.1109/LSENS.2020.2992704
https://doi.org/10.1109/lsens.2020.2992704


82 REFERENCES

cited on p. 15

cited on p. 16

cited on pp. 19, 20, 49

cited on pp. 19, 24, 25

cited on pp. 19, 24

cited on pp. 19, 24

cited on pp. 19, 24, 25

cited on pp. 19, 24, 25

cited on pp. 19, 24

cited on pp. 19, 24

cited on pp. 19, 24

107 Lee, Y. W., Kim, J. S., and Chung, W. G., “Position location error analysis

by AOA and TDOA using a common channel model for CDMA cellular

environments,” VTC2000-Spring. 2000 IEEE 51st Vehicular Technology
Conference Proceedings (Cat. No.00CH37026), vol. 3, 2000, 2394–2397 vol.3.

DOI: 10.1109/vetecs.2000.851701

108 Kim, J. and Chung, W., “A spatio-temporal channel model for position

location techniques via AOA and TDOA,” IEEE VTS 53rd Vehicular
Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202), vol. 1,

2001, 233–237 vol.1. DOI: 10.1109/vetecs.2001.944838

109 Sun, Y., Ho, K. C., and Wan, Q., “Eigenspace Solution for AOA Localization

in Modified Polar Representation,” IEEE Transactions on Signal Processing,

vol. 68, 2020, pp. 2256–2271. DOI: 10.1109/tsp.2020.2981773

110 Ho, K. and Chan, Y., “Geolocation of a known altitude object from TDOA

and FDOA measurements,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 33, no. 3, 1997, pp. 770–783. DOI: 10.1109/7.599239

111 Shi, Y. F., Park, S. H., and Song, T. L., “Multitarget tracking in cluttered

environment for a multistatic passive radar system under the DAB/DVB

network,” EURASIP Journal on Advances in Signal Processing, vol. 2017,

no. 1, 2017, p. 11. DOI: 10.1186/s13634-017-0445-4

112 Hack, D. E., Patton, L. K., Kerrick, A. D., and Saville, M. A., “Direct

Cartesian detection, localization, and de-ghosting for passive multistatic

radar,” 2012 IEEE 7th Sensor Array and Multichannel Signal Processing
Workshop (SAM), 2012, pp. 45–48. DOI: 10.1109/sam.2012.6250538

113 Jie, S., Fu-qing, C., Cai-sheng, Z., and You, H., “Experimental results of

maritime moving target detection based on passive bistatic radar using

non-cooperative radar illuminators,” The Journal of Engineering, vol. 2019,

no. 20, 2019, pp. 6763–6766. DOI: 10.1049/joe.2019.0586

114 Li, X., Zhao, C., Lu, X., and Wei, W., “DA-PMHT for Multistatic Passive

Radar Multitarget Tracking in Dense Clutter Environment,” IEEE Access,
vol. 7, 2019, pp. 49 316–49 326. DOI: 10.1109/access.2019.2907789

115 Lyu, X. and Wang, J., “Sequential Multi-Sensor JPDA for Target Tracking

in Passive Multi-Static Radar With Range and Doppler Measurements,”

IEEE Access, vol. 7, 2019, pp. 34 488–34 498. DOI: 10.1109/access.2019.

2905265

116 Tong, J., Gaoming, H., Wei, T., and Huafu, P., “Cramér–Rao Lower Bound

Analysis for Stochastic Model Based Target Parameter Estimation in

Multistatic Passive Radar With Direct-Path Interference,” IEEE Access,
vol. 7, 2019, pp. 106 761–106 772. DOI: 10.1109/access.2019.2926353

117 Zhao, Z., Zhou, X., Weng, T., Zhou, X., and Zhang, K., “Target detection

approach for DRM-based passive bistatic radar,” The Journal of Engineering,

vol. 2019, no. 21, 2019, pp. 7868–7871. DOI: 10.1049/joe.2019.0657

118 Zaimbashi, A. and Greco, M. S., “Multistatic Passive Radar Target De-

tection Under Uncalibrated Receivers With Direct-Path Interference,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 6, 2022,

pp. 5443–5455. DOI: 10.1109/taes.2022.3171532

https://dx.doi.org/10.1109/VETECS.2000.851701
https://dx.doi.org/10.1109/VETECS.2000.851701
https://dx.doi.org/10.1109/VETECS.2000.851701
https://doi.org/10.1109/vetecs.2000.851701
https://dx.doi.org/10.1109/VETECS.2001.944838
https://dx.doi.org/10.1109/VETECS.2001.944838
https://doi.org/10.1109/vetecs.2001.944838
https://dx.doi.org/10.1109/TSP.2020.2981773
https://dx.doi.org/10.1109/TSP.2020.2981773
https://doi.org/10.1109/tsp.2020.2981773
https://dx.doi.org/10.1109/7.599239
https://dx.doi.org/10.1109/7.599239
https://doi.org/10.1109/7.599239
https://dx.doi.org/10.1186/s13634-017-0445-4
https://dx.doi.org/10.1186/s13634-017-0445-4
https://dx.doi.org/10.1186/s13634-017-0445-4
https://doi.org/10.1186/s13634-017-0445-4
https://dx.doi.org/10.1109/SAM.2012.6250538
https://dx.doi.org/10.1109/SAM.2012.6250538
https://dx.doi.org/10.1109/SAM.2012.6250538
https://doi.org/10.1109/sam.2012.6250538
https://dx.doi.org/10.1049/joe.2019.0586
https://dx.doi.org/10.1049/joe.2019.0586
https://dx.doi.org/10.1049/joe.2019.0586
https://doi.org/10.1049/joe.2019.0586
https://dx.doi.org/10.1109/ACCESS.2019.2907789
https://dx.doi.org/10.1109/ACCESS.2019.2907789
https://doi.org/10.1109/access.2019.2907789
https://dx.doi.org/10.1109/ACCESS.2019.2905265
https://dx.doi.org/10.1109/ACCESS.2019.2905265
https://doi.org/10.1109/access.2019.2905265
https://doi.org/10.1109/access.2019.2905265
https://dx.doi.org/10.1109/ACCESS.2019.2926353
https://dx.doi.org/10.1109/ACCESS.2019.2926353
https://dx.doi.org/10.1109/ACCESS.2019.2926353
https://doi.org/10.1109/access.2019.2926353
https://dx.doi.org/10.1049/joe.2019.0657
https://dx.doi.org/10.1049/joe.2019.0657
https://doi.org/10.1049/joe.2019.0657
https://dx.doi.org/10.1109/TAES.2022.3171532
https://dx.doi.org/10.1109/TAES.2022.3171532
https://doi.org/10.1109/taes.2022.3171532


REFERENCES 83

cited on pp. 19, 25

cited on p. 19

cited on p. 19

cited on p. 20

cited on p. 20

cited on pp. 20, 22

cited on pp. 20, 22

cited on p. 21

cited on pp. 21, 27, 69, 70

cited on p. 21

cited on p. 21

cited on p. 21

cited on p. 21

119 Malanowski, M. and Kulpa, K., “Two Methods for Target Localization in

Multistatic Passive Radar,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 48, no. 1, 2012, pp. 572–580. DOI: 10.1109/taes.2012.6129656

120 Malanowski, M., Signal Processing for Passive Bistatic Radar. Artech House,

2019.

121 Nicholas J., W., Bistatic Radar. SciTech Publishing, 2005.

122 Rui, L. and Ho, K. C., “Bias analysis of source localization using the

maximum likelihood estimator,” 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 2605–2608. DOI:

10.1109/icassp.2012.6288450

123 Loyez, C., Bocquet, M., and Haddadi, K., “Six-Port Technology for 5G

Millimeter-Wave Localization Systems,” 2018 International Conference on
Electromagnetics in Advanced Applications (ICEAA), 2018, pp. 272–275. DOI:

10.1109/iceaa.2018.8520353

124 Hu, B., Tian, H., and Fan, S., “Millimeter Wave LOS/NLOS Identification

and Localization via Mean-Shift Clustering,” 2019 IEEE 30th Annual In-
ternational Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2019, pp. 1–7. DOI: 10.1109/pimrc.2019.8904260

125 Xu, C., Wang, Z., Wang, Y., Wang, Z., and Yu, L., “Three Passive TDOA-

AOA Receivers-Based Flying-UAV Positioning in Extreme Environments,”

IEEE Sensors Journal, vol. 20, no. 16, 2020, pp. 9589–9595. DOI: 10.1109/

jsen.2020.2988920

126 Le, A. T., Tran, L. C., Huang, X., Ritz, C., Dutkiewicz, E., Bouzerdoum,

A., and Franklin, D., “Hybrid TOA/AOA Localization with 1D Angle

Estimation in UAV-assisted WSN,” 2020 14th International Conference on
Signal Processing and Communication Systems (ICSPCS), 2020, pp. 1–6. DOI:

10.1109/icspcs50536.2020.9310043

127 Hu, Q., Peng, Y., Wan, Q., Hu, Z., Wang, Z., and Zhu, Y., “A Novel 3-D

Localization Scheme Using 1-D AOA and TDOA Measurements,” 2021
IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1–5.

DOI: 10.1109/vtc2021-fall52928.2021.9625269

128 Tu, X., Zhang, H., Cui, X., and Gulliver, T. A., “3-D TDOA/AOA location

based on Extended Kalman Filter,” Proceedings of the 9th International
Symposium on Antennas, Propagation and EM Theory, 2010, pp. 473–476.

DOI: 10.1109/isape.2010.5696504

129 Chen, M., Mao, X., and Zhao, C., “Direct Localization of Emitters Based

on Sparse Bayesian Learning,” IEEE Transactions on Vehicular Technology,

vol. 68, no. 6, 2019, pp. 5769–5781. DOI: 10.1109/tvt.2019.2910831

130 Zhang, H., Cui, X., An, B., and Gulliver, T. A., “A distance and angle

estimated method based on single UWB station,” 2013 IEEE International
Conference on Signal Processing, Communication and Computing (ICSPCC
2013), 2013, pp. 1–6. DOI: 10.1109/icspcc.2013.6663885

https://dx.doi.org/10.1109/TAES.2012.6129656
https://dx.doi.org/10.1109/TAES.2012.6129656
https://doi.org/10.1109/taes.2012.6129656
https://books.google.com/books?vid=ISBN9781630816629
https://books.google.com/books?vid=ISBN9781891121456
https://dx.doi.org/10.1109/ICASSP.2012.6288450
https://dx.doi.org/10.1109/ICASSP.2012.6288450
https://doi.org/10.1109/icassp.2012.6288450
https://dx.doi.org/10.1109/ICEAA.2018.8520353
https://dx.doi.org/10.1109/ICEAA.2018.8520353
https://doi.org/10.1109/iceaa.2018.8520353
https://dx.doi.org/10.1109/PIMRC.2019.8904260
https://dx.doi.org/10.1109/PIMRC.2019.8904260
https://doi.org/10.1109/pimrc.2019.8904260
https://dx.doi.org/10.1109/JSEN.2020.2988920
https://dx.doi.org/10.1109/JSEN.2020.2988920
https://doi.org/10.1109/jsen.2020.2988920
https://doi.org/10.1109/jsen.2020.2988920
https://dx.doi.org/10.1109/ICSPCS50536.2020.9310043
https://dx.doi.org/10.1109/ICSPCS50536.2020.9310043
https://doi.org/10.1109/icspcs50536.2020.9310043
https://dx.doi.org/10.1109/VTC2021-Fall52928.2021.9625269
https://dx.doi.org/10.1109/VTC2021-Fall52928.2021.9625269
https://doi.org/10.1109/vtc2021-fall52928.2021.9625269
https://dx.doi.org/10.1109/ISAPE.2010.5696504
https://dx.doi.org/10.1109/ISAPE.2010.5696504
https://doi.org/10.1109/isape.2010.5696504
https://dx.doi.org/10.1109/TVT.2019.2910831
https://dx.doi.org/10.1109/TVT.2019.2910831
https://doi.org/10.1109/tvt.2019.2910831
https://dx.doi.org/10.1109/ICSPCC.2013.6663885
https://dx.doi.org/10.1109/ICSPCC.2013.6663885
https://doi.org/10.1109/icspcc.2013.6663885


84 REFERENCES

cited on p. 21

cited on p. 22

cited on p. 22

cited on pp. 22, 49

cited on p. 22

cited on p. 22

cited on p. 23

cited on p. 23

cited on pp. 23, 27

cited on pp. 23, 27

cited on pp. 23, 25

131 Osa, V., Matamales, J., Monserrat, J. F., and López, J., “Localization in

Wireless Networks: The Potential of Triangulation Techniques,” Wireless
Personal Communications, vol. 68, no. 4, 2013, pp. 1525–1538. DOI: 10.

1007/s11277-012-0537-2

132 Le, T.-K. and Ho, K. C., “Joint Source and Sensor Localization by Angles

of Arrival,” IEEE Transactions on Signal Processing, vol. 68, 2020, pp. 6521–

6534. DOI: 10.1109/tsp.2020.3037412

133 Meng, W., Xie, L., and Xiao, W., “Communication Aware Optimal Sensor

Motion Coordination for Source Localization,” IEEE Transactions on
Instrumentation and Measurement, vol. 65, no. 11, 2016, pp. 2505–2514. DOI:

10.1109/tim.2016.2596078

134 Dai, Z., Wang, G., and Chen, H., “Sensor Selection for TDOA-Based Source

Localization Using Angle and Range Information,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 57, no. 4, 2021, pp. 2597–2604. DOI:

10.1109/taes.2021.3061826

135 Caffery, J. and Stuber, G., “Overview of radiolocation in CDMA cellular

systems,” IEEE Communications Magazine, vol. 36, no. 4, 1998, pp. 38–45.

DOI: 10.1109/35.667411

136 Ballal, T. and Bleakley, C. J., “3D location and orientation estimation

using Angle of Arrival,” 2009 IEEE International Symposium on Intelligent
Signal Processing, 2009, pp. 21–26. DOI: 10.1109/wisp.2009.5286580

137 Xie, Y., Wang, Y., and You, X., “Closed-form location estimator from

TOA/AOA/AOD measurements in MIMO communication systems,”

2009 IEEE Sarnoff Symposium, 2009, pp. 1–6. DOI: 10.1109/sarnof.2009.

4850277

138 Chang, Y. T., Wu, C. L., and Cheng, H. C., “Integrated Cross-Correlation

and Genetic Algorithm to Improve TDOA-Based Locating System in

Preventing Radio Interference,” 2014 International Symposium on Computer,
Consumer and Control, 2014, pp. 1078–1081. DOI: 10.1109/is3c.2014.281

139 Chang, Y.-T., “Simulation and Implementation of an Integrated TDOA/AOA

Monitoring System for Preventing Broadcast Interference,” Journal of
Applied Research and Technology, vol. 12, no. 6, 2014, pp. 1051–1062. DOI:

10.1016/s1665-6423(14)71665-7

140 Kakubari, Y., Koga, T., Miyazaki, H., Shimada, H., and Nihei, S., “En-

hancement of Passive Surveillance System for Airport Surface Movement,”

Electronics & Communications in Japan, vol. 97, no. 3, 2014, pp. 24–30. DOI:

10.1002/ecj.11525

141 Filip-Dhaubhadel, A., Bellido-Manganell, M. A., Gräupl, T., and Schnell,

M., “Feasibility Assessment of LDACS-Based Wide Area Multilateration,”

2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), 2022,

pp. 1–10. DOI: 10.1109/dasc55683.2022.9925808

142 Mandlik, M. and Nemec, Z., “An accurate Time-Difference measurement

method for passive radar applications,” 2013 23rd International Conference
Radioelektronika (RADIOELEKTRONIKA), 2013, pp. 406–409. DOI: 10.

1109/radioelek.2013.6530953

https://dx.doi.org/10.1007/s11277-012-0537-2
https://dx.doi.org/10.1007/s11277-012-0537-2
https://doi.org/10.1007/s11277-012-0537-2
https://doi.org/10.1007/s11277-012-0537-2
https://dx.doi.org/10.1109/TSP.2020.3037412
https://dx.doi.org/10.1109/TSP.2020.3037412
https://doi.org/10.1109/tsp.2020.3037412
https://dx.doi.org/10.1109/TIM.2016.2596078
https://dx.doi.org/10.1109/TIM.2016.2596078
https://doi.org/10.1109/tim.2016.2596078
https://dx.doi.org/10.1109/TAES.2021.3061826
https://dx.doi.org/10.1109/TAES.2021.3061826
https://doi.org/10.1109/taes.2021.3061826
https://dx.doi.org/10.1109/35.667411
https://dx.doi.org/10.1109/35.667411
https://doi.org/10.1109/35.667411
https://dx.doi.org/10.1109/WISP.2009.5286580
https://dx.doi.org/10.1109/WISP.2009.5286580
https://doi.org/10.1109/wisp.2009.5286580
https://dx.doi.org/10.1109/SARNOF.2009.4850277
https://dx.doi.org/10.1109/SARNOF.2009.4850277
https://doi.org/10.1109/sarnof.2009.4850277
https://doi.org/10.1109/sarnof.2009.4850277
https://dx.doi.org/10.1109/IS3C.2014.281
https://dx.doi.org/10.1109/IS3C.2014.281
https://dx.doi.org/10.1109/IS3C.2014.281
https://doi.org/10.1109/is3c.2014.281
https://dx.doi.org/10.1016/S1665-6423(14)71665-7
https://dx.doi.org/10.1016/S1665-6423(14)71665-7
https://doi.org/10.1016/s1665-6423(14)71665-7
https://dx.doi.org/10.1002/ecj.11525
https://dx.doi.org/10.1002/ecj.11525
https://doi.org/10.1002/ecj.11525
https://dx.doi.org/10.1109/DASC55683.2022.9925808
https://doi.org/10.1109/dasc55683.2022.9925808
https://dx.doi.org/10.1109/RadioElek.2013.6530953
https://dx.doi.org/10.1109/RadioElek.2013.6530953
https://doi.org/10.1109/radioelek.2013.6530953
https://doi.org/10.1109/radioelek.2013.6530953


REFERENCES 85

cited on pp. 23, 27

cited on p. 23

cited on p. 23

cited on p. 23

cited on p. 23

cited on p. 23

cited on p. 23

cited on p. 24

cited on p. 24

cited on p. 24

cited on pp. 24, 25

143 Alia, L., Italiano, A., and Pozzi, F., “Advanced tools to analyze the ex-

pected performance of multilateration and wide area multilateration,”

2014 Tyrrhenian International Workshop on Digital Communications - En-
hanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), 2014, pp. 82–86.

DOI: 10.1109/tiwdc-esav.2014.6945453

144 Kwon, S., Choi, Y., Moon, S., You, C., Liu, H., Kim, J.-H., Kim, D. J.,

Park, H., Kim, J. Y., and Hwang, I., “Performance Enhancement of Hy-

brid TDOA/AOA Using Multipath Delay Estimation,” Wireless Personal
Communications, vol. 115, 3 2020, pp. 2551–2568. DOI: 10.1007/s11277-

020-07696-2

145 Kwon, S., Choi, Y., Moon, S., You, C., Liu, H., Kim, J.-H., Kim, D. J.,

Park, H., Kim, J. Y., and Hwang, I., “Performance Enhancement of Hy-

brid TDOA/AOA Using Multipath Delay Estimation,” Wireless Personal
Communications, vol. 115, 3 2020, pp. 2551–2568. DOI: 10.1007/s11277-

020-07696-2

146 Chen, Y. and Kobayashi, H., “System design and analysis of repeating

GPS,” ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings
(Cat. No.01TH8585), 2001, pp. 2–5. DOI: 10.1109/itsc.2001.948619

147 LI, W., CHEN, R., GUO, Y., and FU, C., “Closed form algorithm of

double-satellite TDOA + AOA localization based on WGS-84 model,”

Chinese Journal of Aeronautics, vol. 32, no. 10, 2019, pp. 2354–2367. DOI:

10.1016/j.cja.2019.05.016

148 Hanh, N. Q., Reju, V. G., and Khong, A. W. H., “Impact Localiza-

tion on Rigid Surfaces Using Hermitian Angle Distribution for Hu-

man–Computer Interface Applications,” IEEE Transactions on Multimedia,

vol. 20, no. 6, 2018, pp. 1448–1461. DOI: 10.1109/tmm.2017.2772441

149 Zhou, R., Chen, J., Tan, W., Yuan, H., and Cai, C., “Sensor Selection for

Hybrid AOA-TOA Localization with Correlated Measurement Noise in

Underwater Wireless Sensor Networks,” Wireless Communications and
Mobile Computing, vol. 2022, Esmaiel, H., Ed., 2022, p. 2 779 760. DOI:

10.1155/2022/2779760

150 Wang, G. and Ho, K. C., “Accurate Semidefinite Relaxation Method for

3-D Rigid Body Localization Using AOA,” ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 4955–4959. DOI: 10.1109/icassp40776.2020.9054338

151 Wang, G., Ho, K. C., and Chen, X., “Bias Reduced Semidefinite Relaxation

Method for 3-D Rigid Body Localization Using AOA,” IEEE Transactions
on Signal Processing, vol. 69, 2021, pp. 3415–3430. DOI: 10.1109/tsp.2021.

3086360

152 Rui, L. and Ho, K. C., “Elliptic Localization: Performance Study and

Optimum Receiver Placement,” IEEE Transactions on Signal Processing,

vol. 62, no. 18, 2014, pp. 4673–4688. DOI: 10.1109/tsp.2014.2338835

153 Huang, J. H., Barr, M. N., Garry, J. L., and Smith, G. E., “Subarray

processing for passive radar localization,” 2017 IEEE Radar Conference
(RadarConf), 2017, pp. 0248–0252. DOI: 10.1109/radar.2017.7944206

https://dx.doi.org/10.1109/TIWDC-ESAV.2014.6945453
https://dx.doi.org/10.1109/TIWDC-ESAV.2014.6945453
https://doi.org/10.1109/tiwdc-esav.2014.6945453
https://dx.doi.org/10.1007/s11277-020-07696-2
https://dx.doi.org/10.1007/s11277-020-07696-2
https://doi.org/10.1007/s11277-020-07696-2
https://doi.org/10.1007/s11277-020-07696-2
https://dx.doi.org/10.1007/s11277-020-07696-2
https://dx.doi.org/10.1007/s11277-020-07696-2
https://doi.org/10.1007/s11277-020-07696-2
https://doi.org/10.1007/s11277-020-07696-2
https://dx.doi.org/10.1109/ITSC.2001.948619
https://dx.doi.org/10.1109/ITSC.2001.948619
https://doi.org/10.1109/itsc.2001.948619
https://dx.doi.org/10.1016/j.cja.2019.05.016
https://dx.doi.org/10.1016/j.cja.2019.05.016
https://doi.org/10.1016/j.cja.2019.05.016
https://dx.doi.org/10.1109/TMM.2017.2772441
https://dx.doi.org/10.1109/TMM.2017.2772441
https://dx.doi.org/10.1109/TMM.2017.2772441
https://doi.org/10.1109/tmm.2017.2772441
https://dx.doi.org/10.1155/2022/2779760
https://dx.doi.org/10.1155/2022/2779760
https://dx.doi.org/10.1155/2022/2779760
https://doi.org/10.1155/2022/2779760
https://dx.doi.org/10.1109/ICASSP40776.2020.9054338
https://dx.doi.org/10.1109/ICASSP40776.2020.9054338
https://doi.org/10.1109/icassp40776.2020.9054338
https://dx.doi.org/10.1109/TSP.2021.3086360
https://dx.doi.org/10.1109/TSP.2021.3086360
https://doi.org/10.1109/tsp.2021.3086360
https://doi.org/10.1109/tsp.2021.3086360
https://dx.doi.org/10.1109/TSP.2014.2338835
https://dx.doi.org/10.1109/TSP.2014.2338835
https://doi.org/10.1109/tsp.2014.2338835
https://dx.doi.org/10.1109/RADAR.2017.7944206
https://dx.doi.org/10.1109/RADAR.2017.7944206
https://doi.org/10.1109/radar.2017.7944206


86 REFERENCES

cited on p. 24

cited on p. 24

cited on p. 25

cited on p. 25

cited on p. 25

cited on p. 49

cited on p. 49

cited on p. 57

cited on p. 61

cited on p. 62

cited on p. 62

cited on p. 62

154 Daun, M., Nickel, U., and Koch, W., “Tracking in multistatic passive radar

systems using DAB/DVB-T illumination,” Signal Processing, vol. 92, no. 6,

2012, pp. 1365–1386. DOI: 10.1016/j.sigpro.2011.09.005

155 Lü, M., Yi, J., Wan, X., and Liu, Y., “Experimental research of drone

monitoring using multi-static passive radar,” The Journal of Engineering,

vol. 2019, no. 20, 2019, pp. 6795–6798. DOI: 10.1049/joe.2019.0580

156 Renzo, M. D., Debbah, M., Phan-Huy, D.-T., Zappone, A., Alouini, M.-S.,

Yuen, C., Sciancalepore, V., Alexandropoulos, G. C., Hoydis, J., Gacanin,

H., Rosny, J. de, Bounceu, A., Lerosey, G., and Fink, M., “Smart Radio

Environments Empowered by AI Reconfigurable Meta-Surfaces: An Idea

Whose Time Has Come,” EURASIP Journal on Wireless Communications
and Networking, vol. 2019, 2019, pp. 1–20. DOI: 10.48550/arxiv.1903.08925

157 Bazzi, A. and Chafii, M., RIS-Enabled Passive Radar towards Target Localiza-
tion, 2022

158 Loschmidt, P., Gaderer, G., Simanic, N., Hussain, A., and Moreira, P.,

“White rabbit - sensor/actuator protocol for the CERN LHC particle

accelerator,” SENSORS, 2009 IEEE, 2009, pp. 781–786. DOI: 10.1109/

icsens.2009.5398529

159 Mantilla-Gaviria, I. A., Leonardi, M., Balbastre-Tejedor, J. V., and de

los Reyes, E., “On the application of singular value decomposition and

Tikhonov regularization to ill-posed problems in hyperbolic passive

location,” Mathematical and Computer Modelling, vol. 57, no. 7, 2013,

pp. 1999–2008. DOI: 10.1016/j.mcm.2012.03.004

160 Pourkhaatoun, M. and (Reza) Zekavat, S. A., “TOA estimation techniques:

A comparison,” Handbook of Position Location. John Wiley & Sons, Ltd,

2018, ch. 7, pp. 237–267. DOI: 10.1002/9781119434610.ch7

161 Scharf, L. and Demeure, C., Statistical Signal Processing: Detection, Estima-
tion, and Time Series Analysis, ser. Addison-Wesley series in electrical and

computer engineering. Addison-Wesley Publishing Company, 1991.

162 Chaffee, J. and Abel, J., “GDOP and the Cramer-Rao bound,” Proceedings
of 1994 IEEE Position, Location and Navigation Symposium - PLANS’94, 1994,

pp. 663–668. DOI: 10.1109/plans.1994.303374

163 Musin, O. R. and Tarasov, A. S., “The Tammes Problem for N = 14,”

Experimental Mathematics, vol. 24, no. 4, 2015, pp. 460–468. DOI: 10.1080/

10586458.2015.1022842

164 Fontanelli, D., Shamsfakhr, F., and Palopoli, L., “Cramer–Rao Lower

Bound Attainment in Range-Only Positioning Using Geometry: The

G-WLS,” IEEE Transactions on Instrumentation and Measurement, vol. 70,

2021, pp. 1–14. DOI: 10.1109/tim.2021.3122521

165 Michael Buehrer, R. and Venkatesh, S., “Fundamentals of time-of-arrival-

based position location,” Handbook of Position Location. John Wiley & Sons,

Ltd, 2018, ch. 6, pp. 199–236. DOI: 10.1002/9781119434610.ch6

https://dx.doi.org/10.1016/j.sigpro.2011.09.005
https://dx.doi.org/10.1016/j.sigpro.2011.09.005
https://doi.org/10.1016/j.sigpro.2011.09.005
https://dx.doi.org/10.1049/joe.2019.0580
https://dx.doi.org/10.1049/joe.2019.0580
https://doi.org/10.1049/joe.2019.0580
https://dx.doi.org/10.48550/arXiv.1903.08925
https://dx.doi.org/10.48550/arXiv.1903.08925
https://dx.doi.org/10.48550/arXiv.1903.08925
https://doi.org/10.48550/arxiv.1903.08925
https://dx.doi.org/10.1109/ICSENS.2009.5398529
https://dx.doi.org/10.1109/ICSENS.2009.5398529
https://doi.org/10.1109/icsens.2009.5398529
https://doi.org/10.1109/icsens.2009.5398529
https://dx.doi.org/10.1016/j.mcm.2012.03.004
https://dx.doi.org/10.1016/j.mcm.2012.03.004
https://dx.doi.org/10.1016/j.mcm.2012.03.004
https://doi.org/10.1016/j.mcm.2012.03.004
https://dx.doi.org/10.1002/9781119434610.ch7
https://dx.doi.org/10.1002/9781119434610.ch7
https://doi.org/10.1002/9781119434610.ch7
https://books.google.com/books?vid=ISBN9780201190380
https://books.google.com/books?vid=ISBN9780201190380
https://dx.doi.org/10.1109/PLANS.1994.303374
https://doi.org/10.1109/plans.1994.303374
https://dx.doi.org/10.1080/10586458.2015.1022842
https://doi.org/10.1080/10586458.2015.1022842
https://doi.org/10.1080/10586458.2015.1022842
https://dx.doi.org/10.1109/TIM.2021.3122521
https://dx.doi.org/10.1109/TIM.2021.3122521
https://dx.doi.org/10.1109/TIM.2021.3122521
https://doi.org/10.1109/tim.2021.3122521
https://dx.doi.org/10.1002/9781119434610.ch6
https://dx.doi.org/10.1002/9781119434610.ch6
https://doi.org/10.1002/9781119434610.ch6


Appendices





AThe General TOA/TDOA Linear Equation

This appendix is from from a paper entitled “A Review of Linear Multi-

lateration Techniques and Applications” that is in review at the journal

IEEE Access [4]. I hereby confirm that the use of this article is compliant

with all publishing agreements.

The two classic linear solutions to TOA [27] and TDOA [22] mul-

tilateration problems can both be derived from the same set of linear

equations. The key step in [27] is to add a nuisance variable to represent

the non-linear terms related to the unknown variable u in Eq. 2.5, with

the assumption that 𝑑𝑢 = 0. Applying this same approach, but keeping

𝑑𝑢 , we get the equation

𝑥2

𝑖 + 𝑦
2

𝑖 + 𝑧
2

𝑖 − 𝑑
2

𝑖 = 2𝑥𝑖𝑥𝑢 + 2𝑦𝑖𝑦𝑢 + 2𝑧𝑖𝑧𝑢 − 2𝑑𝑖𝑑𝑢 − 𝐾 (A.1)

where 𝐾 = 𝑥2

𝑢 + 𝑦2

𝑢 + 𝑧2

𝑢 − 𝑑2

𝑢 . This is a system of equations with five

unknowns, which can be written as

A𝑔x𝑔 = b𝑔 (A.2)

where

A𝑔 =


2𝑥1 2𝑦1 2𝑧1 −2𝑑1 1

...
...

...
...

...

2𝑥𝑛 2𝑦𝑛 2𝑧𝑛 −2𝑑𝑛 1


b𝑔 =


𝑥2

1
+ 𝑦2

1
+ 𝑧2

1
− 𝑑2

1

...

𝑥2

𝑛 + 𝑦2

𝑛 + 𝑧2

𝑛 − 𝑑2

𝑛


x𝑔 =


𝑥𝑢
𝑦𝑢
𝑧𝑢
𝑑𝑢
𝐾


.

(A.3)

The linear equations in Sec. 2.2.1 can be obtained from this by the

transformation

ATOA = A𝑔


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1


(A.4)
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and then truncating x𝑔 by removing the 𝑑𝑢 term.

The linear equations in Sec. 2.2.1 are created using the matrix

ATDOA =


−1 1 0 . . . 0

−1 0 1 . . . 0

...
...

...
. . . 0

−1 0 0 . . . 1

 . (A.5)

This allows for the creation of

ATDOA = ATDOAA𝑔


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


(A.6)

and bTDOA = ATDOAb𝑔 . The TDOA equations also require truncating x𝑔
by removing the 𝑡 term. This transformation explains why the TDOA

equations in Sec 2.2.1 require at least five measurements even though

they only use four unknowns. Matrix ATDOA is of rank 𝑛 − 1, so an extra

set of measurements is required.

There is no benefit to using Eq. A.3. The truncated forms given in

Eqs. A.4 or A.6, utilize the same data and only require inverting a 4 × 4

matrix rather than a 5 × 5 matrix. Consequently, equations that include

both 𝑑𝑢 and 𝐾 nuisance variables are rarely seen in the literature, an

example being [55].
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