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ABSTRACT

Developments in LFM-CW SAR for UAV Operation

Craig Stringham
Department of Electrical and Computer Engineering, BYU

Doctor of Philosophy

Opportunities to use synthetic aperture radar (SAR) in scientific studies and military
operations are expanding with the development of small SAR systems that can be operated
on small unmanned air vehicles (UAV)s. While the nimble nature of small UAVs make them
an attractive platform for many reasons, small UAVs are also more prone to deviate from
a linear course due autopilot errors and external forces such as turbulence and wind. Thus,
motion compensation and improved processing algorithms are required to properly focus the
SAR images. The work of this dissertation overcomes some of the challenges and addresses
some of the opportunities of operating SAR on small UAVs.

Several contributions to SAR backprojection processing for UAV SARs are devel-
oped including: 1. The derivation of a novel SAR backprojection algorithm that accounts
for motion during the pulse that is appropriate for narrow or ultra-wide-band SAR. 2. A
compensation method for SAR backprojection to enable radiometrically accurate image pro-
cessing. 3. The design and implementation of a real-time backprojection processor on a
commercially available GPU that takes advantage of the GPU texture cache. 4. A new auto-
focus method that improves the image focus by estimating motion measurement errors in
three dimensions, correcting for both amplitude and phase errors caused by inaccurate mo-
tion parameters. 5. A generalization of factorized backprojection, which we call the Dually
Factorized Backprojection method, that factorizes the correlation integral in both slow-time
and fast-time in order to efficiently account for general motion during the transmit of an
LFM-CW pulse.

Much of this work was conducted in support of the Characterization of Arctic Sea Ice
Experiment (CASIE), and the appendices provide substantial contributions for this project as
well, including: 1. My work in designing and implementing the digital receiver and controller
board for the microASAR which was used for CASIE. 2. A description of how the GPU
backprojection was used to improved the CASIE imagery. 3. A description of a sample SAR
data set from CASIE provided to the public to promote further SAR research.

Keywords: radar, SAR, UAV, GPU, autofocus, backprojection, fast-factorized backprojec-
tion, LFM-CW
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Chapter 1

Introduction

The need for remote monitoring continues to increase in nearly all fields of science,

defense, and security. The use of synthetic aperture radar (SAR) continues to expand in

all of these areas. SAR can monitor an area regardless of solar illumination conditions.

Compared to optical imaging systems, SAR systems operate at much longer wavelengths so

that many systems can see through clouds and some systems penetrate through foliage and

even some layers of the ground. Thus SAR can provide information that is unobtainable

with optical systems.

Historically SAR systems have been both large and expensive, but due to advances

in technology, both the size and the cost of SAR systems have been drastically reduced.

The BYU microSAR developed in 2004 was revolutionary in being able to generate quality

imagery in a package small enough to fit on a very small unmanned air vehicle (UAV)

[1]. While the microSAR was very useful, it has many limitations, and so building on the

microSAR design, BYU helped design the microASAR to overcome these challenges [2, 3].

With SAR systems small enough to fit on UAVs the opportunities to use SAR in scientific

research and military missions has drastically increased because UAV carrying SARs can

obtain high-quality high-resolution information over areas too difficult, dangerous, or costly

to reach in manned aircraft.

While the nimble nature of small UAVs provides many new opportunities to use

SAR, small UAVs are also much more susceptible to external forces, thus significant motion

compensation is required in order to properly focus SAR images. Low-altitude operation

further complicates motion compensation of stripmap SAR images, due to the large range of

incidence angles and increased range cell migration. In many cases SAR backprojection can

be used to sufficiently focus the images; however, because of the considerable computational
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burden there has been little development of backprojection and accompanying SAR focusing

algorithms. Fortunately the recent advances in signal processing capabilities available in

desktop computers, and particularly in recent graphics processing unit (GPU) architectures,

give opportunities to overcome the high computational burden.

This dissertation addresses some of the challenges and opportunities of operating SAR

on small UAVs. It includes novel contributions to the field with the design and implemen-

tation of hardware enabling operation on a small UAV, processing algorithms designed to

compensate for platform motion even during a pulse, and an autofocus algorithm that can

estimate three dimensional motion, which is necessary for low-altitude operation.

Several contributions to SAR backprojection processing for UAV SARs are devel-

oped including: 1. The derivation of a novel SAR backprojection algorithm that accounts

for motion during the pulse that is appropriate for narrow or ultra-wide-band SAR. 2. A

compensation method for SAR backprojection to enable radiometrically accurate image pro-

cessing. 3. The design and implementation of a real-time backprojection processor on a

commercially available GPU that takes advantage of the GPU texture cache. 4. A new

autofocus method that improves the image focus by estimating motion measurement errors

in three dimensions, correcting for both amplitude and phase errors caused by inaccurate

motion parameters. 5. A generalization of factorized backprojection methods, which we call

the Dually Factorized Backprojection method, that factorizes the correlation integral in both

slow-time and fast-time in order to efficiently account for general motion during the transmit

of an LFM-CW pulse.

1.1 Contributions

Specifically, the contributions of this work include:

1. The derivation of a novel SAR backprojection algorithm that accounts for motion

during the pulse, extending the work by Ribalta [4] and Zaugg [5] to ultra wide-

band (UWB) SAR.

2. A compensation method for SAR backprojection to enable radiometrically accurate

processing. Traditional backprojection methods do not account for the pointing of
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the aircraft or the number of samples that contribute to a pixel. To account for the

unequal weighting, an additional summation of the weightings from the apodization

windows and the propagation loss are calculated.

3. The design and implementation of a real-time backprojection processor on a GPU

that includes the previous two contributions. This processor takes advantage of the

unique architecture of an NVIDIA GPU, including the texture cache. This work also

describes how any convolutional interpolation method can be accelerated using the

GPU’s texture cache.

4. An autofocus method designed to account for unmeasured motion of a low-altitude

aircraft to improve the focus of the SAR image. This extends mapdrift autofocus

methods to handle three dimensional motion, which can be estimated because of the

wide range of incidence angles that are contained in a low altitude SAR image scene.

5. A generalization of factorized backprojection methods that accounts for motion during

the transmit of a pulse. This method factorizes the correlation processing in both slow-

time and fast-time resulting in fast and accurate image formation for ultra-wide band,

ultra-wide beam SAR with general motion over the synthetic aperture and during a

single pulse.

6. A spectral analysis of stripmap SAR collected on a platform with oscillatory motion

that investigates the possibility of estimating scene topography by applying interfero-

metric techniques. This analysis extends previous work for spot-light SAR to stripmap

SAR. The motion requirements for applying interferometery to single channel stripmap

SAR are considered, and are shown to be impractical for typical fixed wing aircraft

operation.

In addition to these academic contributions, in the appendices I include the following

three additional contributions to the SAR community:

1. With the development and application of some novel techniques, I was able to greatly

improve the imagery from the Characterization of Arctic Sea Ice Experiment (CASIE) [6].
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This required aligning an unsynchronized motion record to the SAR data, correcting

GPS biases, and using the GPU backprojection method described in Chapter 3.

2. A description and example processing methods for the CASE SAR data, which is

published on the BYU MERS website. This is one of the few publicly available SAR

data sets, and to our knowledge the only available dataset that is from an LFM-CW

SAR or collected on a UAV.

3. The design and implementation of an advanced digital receiver and controller sub-

system for an LFM-CW SAR. This system is highly configurable for a variety of oper-

ations including airborne, UAV, and land based operation.

1.2 Outline

Following this introductory chapter this work is organized as follows: Chapter 2 pro-

vides an overview of the concepts needed to understand this work, including a review of

the terminology and geometry for airborne SAR imaging and an introduction to LFM-CW

SAR. Chapter 3 describes the design and implementation of a real-time SAR backprojection

processor that utilizes unique features of an NVIDIA GPU. Chapter 4 explores the require-

ments for applying interferometric techniques to data collected with a single antenna from a

flight with oscillatory motion. Chapter 5 presents an autofocus method for low altitude SAR

when the geometry parameters are not well known. Chapter 6 presents the derivation and

implementation of a novel SAR processing algorithm called the Dually Factorized Backpro-

jection (DFBP) method. And finally, Chapter 7 provides a conclusion and suggestions for

future work. Additionally three appendices are included that respectively describe improved

processing of the CASIE data, a sample CASIE data set and processing code, and the design

of the digital receiver and control subsystem for the microASAR.
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Chapter 2

Background

This section provides the background material necessary to understand the concepts

later described in this work. Specifically this chapter introduces the fundamentals of syn-

thetic aperture radar (SAR) imaging and then describes the system design of a linear fre-

quency modulated continuous wave (LFM-CW) SAR system. Lastly traditional time-domain

correlation and backprojection algorithms are presented. For a more complete introduction

to SAR see [7–13].

2.1 Notation and geometry

First it is useful to establish some notation and review the geometry of SAR. The

transmit and receive signals are given by st(η, t) and sr(η, t) respectively, where the terms η

and t are slow-time and fast-time respectively, which is typical of SAR notation. Slow-time

varies discretely with each pulse and fast-time repeats over the range (0, Tp), where Tp is

the pulse transmit interval. As the data is recorded at regular time intervals and digitized,

square brackets are used to denote discrete time, i.e.

s[m,n] = s(mTp, n/fs), (2.1)

where m is the slow-time index, n is the fast-time index and fs is the sampling frequency.

The geometry of a typical SAR data collection is illustrated in Fig. 2.1. Because SAR

data collections are from a straight path, the geometry for a SAR data collection is typically

described in two dimensions: azimuth angle and slant range, which are frequently referred to

as azimuth and range respectively. The arrow extending from the nose of the aircraft denotes

the direction of the flight and is referred to as the azimuth direction. The azimuth angle
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Figure 2.1: Geometry of a typical SAR data collection. The terms R, R0, θ, θg, ψ, and
ψ0 respectively denote the range, slant range, azimuth angle, ground azimuth angle, incidence
angle, and broadside incidence angle.

is measured with reference to plane orthogonal to the direction of flight as denoted by θ in

Fig. 2.1. For a single pulse the range is given by the Euclidean distance from the antenna

as denoted by R in the illustration. The slant range is given by the distance orthogonal to

the flight direction, denoted R0 in Fig. 2.1. The reduced geometry is useful because for a

straight flight all objects with the same slant range are viewed over the same range of ranges

during the collection. These concepts are discussed further in the following sections.

2.2 Introduction to airborne radar imaging

Synthetic aperture radar is an advanced form of airborne radar imaging. Similar to

how a bat calls out and listens to the echoes in order to guide its flight, a radar transmits an

electro-magnetic signal and receives the backscattered signal from objects within the antenna
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illumination. The received signal can be described as an integral of attenuated, time delayed

copies of the transmit signal, written as

sr(η, t) =

∫
X

I(x)Ax(η, t)st(η, t− τx(η, t)) dx, (2.2)

where I is the imaging scene, Ax is an amplitude function due to the antenna pattern,

incidence angle, the distance to the scatterer, τx(η, t) is the round-trip propagation time of

the radar signal, which consist of the time for the pulse to travel from the transmit antenna

to the position x plus the time for the backscatter to radiate back to the receive antenna

on the aircraft, and X is the area to be imaged. Because the motion of the aircraft is many

orders of magnitude slower than the speed of light, c0, and the transmit and receive antennae

are only separated by a small distance, the propagation time is approximated as

τx(η, t) =
2R

c0

=
2‖p(η, t)− x‖

c0

, (2.3)

where p is the position of the radar.

First consider a simple radar that transmits a signal of the form

sn(η, t) = exp {−j (2πf0 + φ(η, t))}Π(t/T ), (2.4)

where f0 is the carrier frequency, Π is the rect function given by

Π(t) =

0 if |t|> 1
2

1 if |t|≤ 1
2

, (2.5)

and φ(η, t) is a random phase term which may vary with time. The phase term can be

suppressed by taking the magnitude of a single pulse. Because the phase of the signal is

ignored this type of radar is called non-coherent. From a single pulse a radar can only

measure the distance to objects within the antenna illumination and the strength of the

cumulative backscatter from all the objects at that range within the antenna beamwidth.

An image can be created using a narrow beam antenna pointed to the side of an aircraft

7



and repeatedly transmitting pulses and stacking the amplitude of the received echoes into a

two dimensional array. This type of radar is called side-looking airborne radar (SLAR) and

is the predecessor of SAR.

The quality of any radar image is typically measured by the resolution and signal to

noise ratio (SNR). The resolution is determined by how far apart two point targets need to

be separated in order to be resolved separately. For simple SLAR system with the transmit

signal given by Eq. (2.4), the azimuth resolution is limited to the beamwidth of the antenna,

and the range resolution is determined by the length of the pulse. Outside of the efficiency

of the antennae, the SNR is largely determined by energy in the transmit signal, which

is approximately given by the product of the peak transmit power and the length of the

transmitted pulse. The difficulty with SLAR is that in order to achieve high resolution and

high SNR a very long antenna and very powerful transmitter are required.

SAR systems overcome the challenges of the previous system by ensuring that the

system is coherent, which means that either φ(η, t) is known and can be accounted for or that

it is stationary. To alleviate the need for a very powerful transmitter, a SAR system uses a

relatively long modulated pulse. The most common modulation scheme is linear frequency

modulation (LFM) described as

st(η, t) = exp
{
−j
(
2πf0t+ πkrt

2 + ϕ
)}

Π(t/Tl), (2.6)

where kr is the chirp rate, Tl is the pulse length, and ϕ describes the random phase, which

for this discussion is considered stationary. With a LFM signal, often called a chirp, the

range resolution is determined by the bandwidth of the transmit signal and for a narrow

band signal is given by

∆r =
c0

2Bw

, (2.7)

where Bw is the bandwidth of the modulation given by

Bw = krTp. (2.8)
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With a coherent receiver, a SAR system is able to accurately combine overlapping pulses to

achieve very high resolution in the azimuth direction. The azimuth resolution is limited by

the extent of the azimuth viewing angles, approximately written as

∆a =
c0

2fcθ0

=
λc
2θ0

, (2.9)

where λc is the wavelength of the center frequency and θ0 is the azimuth angle extent over

which a point in the image scene is viewed.

2.2.1 SAR operating modes

The most notable SAR operational modes are spotlight and stripmap [10, 14]. In

spotlight SAR the antenna is controlled to point at the same patch of ground during the flight;

whereas with stripmap SAR the side-looking antenna has fixed pointing. In spotlight mode

processing, objects in the imaging scene are visible during the entire data collection (with the

exception of shadowed objects obstructed by other objects in the imaging area). Whereas

in stripmap mode, the imaged scene is constantly progressing. This leads to fundamental

differences in the processing algorithms for the two operation modes.

Other specialized operating modes exist including interferometric SAR, ScanSAR,

TOPSAR, and SweepSAR. The latter three modes are designed to image a large swath

width by changing the pointing of the antennae for each azimuth look. As the roots of the

word “interferometry” suggest, interferometric SAR uses multiple receive antennae to infer

the angle of the source of a received signal. There are two main modes of interferometric

SAR, namely along-track and cross-track interferometry. In along-track interferometery

two receive antennae are separated by an along-track baseline, and likewise in cross-track

interferometry the two antennae are separated in the cross-track. Along-track interferometry

allows for the detection and estimation of moving targets such as vehicles or ocean waves.

Cross-track interferometry allows for the estimation of topography with very high accuracy.
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2.3 LFM-CW SAR

The work in this dissertation is primarily applied to linear frequency modulated con-

tinuous wave (LFM-CW) SAR. An LFM-CW SAR is designed to achieve maximum signal

to noise ratio (SNR), which improves image quality for a given peak transmit power. This is

accomplished by extending the pulse length Tl of Eq. (2.6) to be equal to the pulse transmit

interval Tp, so that the radar is continuously transmitting. Typically the rect function is

dropped and the LFM-CW transmit signal is written as

st(η, t) = exp
{
−j
(
2πf0t+ πkrt

2 + ϕ
)}
. (2.10)

Fig. 2.2 shows a high-level flow diagram for a typical LFM-CW SAR system. The frequency

Figure 2.2: (a) A high-level flow diagram for a typical homodyne LFM-CW SAR system.

modulated chirp is generated via a direct digital synthesizer (DDS) or by a voltage controlled

oscillator (VCO) and mixed up to a carrier frequency and transmitted. Unlike traditional

pulsed SAR systems, an LFM-CW SAR receiver is on during transmit. Although a separate

antenna is typically used for the receive channel, the non-ideal isolation of the physical
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Figure 2.3: A time frequency representation of LFM-CW operation and the dechirped signal.

transmit and receive channels (in the RF system and the antennas) introduces feed-through

of the transmit signal that dominates the radar echoes.

To remove the feed-through and to reduce the bandwidth of the echoes, the received

signal is “dechirped”. Dechirping consists of mixing the received signal with the transmit

signal. The resulting signal contains the sum and difference frequencies of the transmit and

receive signals. As shown in Fig. 2.2, using a bandpass filter the sum frequencies and the

feed-through are removed and the resulting signal can be represented by

(2.11)sdc(η, t) = rx(η, t)s∗t (η, t)

= Ax(η, t)σx exp{j
(
2πkrτx(η, t)t− πkrτx(η, t)2 + 2πf0τx(η, t)

)
}.
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Because LFM-CW SAR is typically operated from low altitude, the imaging scene is narrow

enough that the dechirped signal occupies much less bandwidth than the transmit signal.

This enables a significant reduction in the data storage requirements and the required speed

of the instrument’s analog to digital converter (ADC).

Fig. 2.3 illustrates the transmit, receive and dechirp signals in a time versus frequency

plot. The transmit chirp, represented by the solid line, starts at the minimum frequency and

increases linearly with a slope given by the chirp rate (kr) up to the maximum frequency

and then drops to the minimum frequency. The echoes are copies of the transmit signal

occupying the same range of frequencies but are delayed in time. The process of dechirping

translates the time delay into a frequency difference, as shown in the lower portion of Fig. 2.3.

Because the chirp rate determines the frequency separation of targets, the selection of the

PRF is directly connected to the width of the bandpass filter and the ADC.

2.4 Time-domain backprojection

Traditionally LFM-CW stripmap SAR image processing is performed with frequency

domain algorithms such as the Range Doppler Algorithm (RDA), the Frequency Scaling

Algorithm (FSA), and the Ω-k algorithm [9, 10, 15, 16]. Frequency domain algorithms use

the assumption that the aircraft does not deviate from a straight line in order to efficiently

perform convolution operations with FFTs. There are a number of modifications to these

algorithms that compensate for some non-linear motion [17–19], but these methods com-

plicate the original algorithms and their performance has limitations [13]. In contrast, the

SAR backprojection algorithm described below is a time-domain algorithm that inherently

compensates for non-linear flight paths and surface topography. The improved focusing

capability of backprojection has been noted in a number of studies [20–22]; however, back-

projection increases the computational burden of generating SAR images.

In the following, the development of a backprojection method for stripmap LFM-CW

SAR is given following the development described in [4]. The received signal can be written

as the integral of the dechirped signal, Eq. (2.11), from a single target over the imaging area

s(η, t) =

∫
R

I(x)Ax(η, t)ej(2πkrtτx(η,t)+τx(η,t)2πf0−πkrτ2x(η,t)) dx, (2.12)
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where R is the imaging area, and kr is the chirp rate. The simplest method for recon-

structing the SAR image, albeit highly computationally demanding, is discrete time-domain

correlation, described as

Î(x) =
M−1∑
m=0

N−1∑
n=0

Wx[m,n]s[m,n]s∗x[m,n], (2.13)

where Î(x) is the reconstructed SAR image, sx is the reference signal for a target at pixel

location x, W is an apodization window, N is the number of samples in a pulse, and M is

the number of pulses over which the backprojection is calculated. To simplify, a phase-only

reference signal is used yielding

Î(x) =
M−1∑
m=0

N−1∑
n=0

Wx[m,n]s[m,n] · exp{−j
(
2πkrtnτx[m,n] + 2πf0τx[m,n]− πkrτ 2

x[m,n]
)
}.

(2.14)

Using minimal approximations Eq. (2.14) generates the ideal reconstructed image; however it

is computationally intensive, on the order of O(MNLaLr) where La and Lr are respectively

the number of azimuth and range pixels in the image, M is the number of pulses, and N is

the number of samples in each pulse.

To reduce computation the pulses are first range-compressed. In order to perform

range compression, the range from the radar to the target is approximated as stationary

during a pulse via the stop-and-hop approximation, i.e.

τx[m,n] ≈ τx[m, 0]. (2.15)

By selecting an apodization window that can be separated into range and azimuth windows

W a and W r, Eq. (2.14) can be written as

Î(x) ≈
M−1∑
m=0

W a
x [m] exp{−jφα[m]} ·

N−1∑
n=0

W r
x [n]s[m,n] · exp{−jφr[n]}, (2.16)

where

φα[m] = 2πf0τx[m, 0]− πkrτ 2
x[m, 0], (2.17)
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and

φr[n] = 2πkrtnτx[m, 0]. (2.18)

The latter summation in Eq. (2.16) describes a Fourier transform yielding

Î(x) ≈
M−1∑
m=0

W a
x [m] exp {−j (φα[m])} · Sm

(
N

fs
(krτx[m, 0])

)
, (2.19)

where Sm is the Fourier transform of Wr[n]s[m,n], which is the range compressed data.

Range compression is accomplished via a Fourier transform of the dechirped data because

in the dechirped data each scatterer is represented by a single frequency related to the time-

delay using the stop-and-hop assumption. Using the range-compressed data instead of the

dechirped data greatly reduces the computational complexity to the order of O(MLaLr +

MN log2(N)).

2.5 Summary

This ends the review of the fundamental concepts of SAR imaging that are necessary

to understand the remainder of this work. For a more thorough and detailed introduction

see [7–13].
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Chapter 3

GPU Backprojection for UAV Based SAR

This chapter presents the development, implementation, and analysis of a real-time

GPU based SAR backprojection processor for UAV based SAR. While several implementa-

tions of backprojection on GPUs have been described in the literature, most notably [23–25]

and [21], these papers focus on the simplest form of spotlight mode SAR backprojection

and are not directly applicable to stripmap SAR. This chapter begins with an introduction

into the NVIDIA GPU architecture. This is followed by a new derivation of backprojection

that accounts for the motion of the aircraft during the pulse and for the antenna pointing

variation for stripmap SAR. This new derivation enables radiometrically accurate backpro-

jection SAR imaging. Then a discussion of the interpolation of the range compressed data is

given. It is demonstrated that compared to traditional polynomial interpolation paired with

zero-padding, the non-equispaced result fast Fourier transform (NERFFT) provides superior

interpolation accuracy for interpolating bandlimited signals like the dechirped SAR data.

Then the implementation of the backprojection processor on an NVIDIA GPU is presented.

In order to achieve accurate and real-time processing, it is shown how the hardware linear

interpolation provided by the GPU’s texture cache can be used to accelerate the NERFFT.

Finally resulting imagery processed using this processor is presented and analyzed. It is

shown that processor is faster than real-time for the CASIE data. It is also shown using

simulated data that the derived correction for the motion of the aircraft during the pulse

accurately reconstructs the image.

3.1 GPU architecture

GPUs have anywhere from tens to thousands of processing cores, enabling the fast

and efficient processing of billions of math operations per second on a single device. While
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Figure 3.1: Illustration of the NVIDIA GTX 285 GPU architecture.

there are several different GPU architectures, the key aspects important to our discussion

can be found in nearly all recent GPUs. As an illustration we use an NVIDIA GTX 285 GPU

whose architecture is shown in Fig. 3.1. An NVIDIA GPU is broken into groups of processing

cores which NVIDIA calls multiprocessors. The number of multiprocessors is dependent on

the particular GPU. Multiprocessors contain three types of sub-processors including single

precision units (SPU), special function units (SFU), and double precision units (DPU).

Floating point operations including multiply, add, and fused multiply-add are performed

by the SPUs and DPUs for 32-bit and 64-bit values respectively. The SFUs perform 32-

bit transcendental operations such as inverse, inverse square root, sine, and cosine. The

64-bit transcendental operations are performed by software routines. The number of each

type of processing units is also dependent on the GPU. Each multiprocessor includes an
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instruction unit which controls which processing units operate at a given time. All of the

operating units execute the same instruction on different data, much like a single instruction

multiple data (SIMD) architecture, but because the instruction unit controls which units are

operating, the processing streams, or “threads”, are allowed to branch independently.

In terms of memory, the GPU device has a large amount of dedicated off-chip memory

termed global memory. Each multiprocessor has a large bank of 32-bit registers, a block of

shared memory, and constant and texture caches. These resources are shared among the pro-

cessors within a multiprocessor. It is important to understand the types of memory available

because with the vast amount of compute power of the GPU, the achievable performance

gains are frequently determined by the memory accesses of the threads, because memory

accesses are typically serial operations and cannot benefit from pipelined architectures. Ta-

ble 3.1 illustrates the latency and throughput of different GPU operations, from which it

is clear that global memory accesses are drastically more expensive than other operations.

The cost of global memory accesses can be minimized by performing global memory accesses

infrequently by rearranging the program structure to copy data from global memory to local

shared memory in large coalesced reads and vice versa for writes to global memory [26].

Table 3.1: Latency of GPU operations in number of clock cycles for the NVIDIA T10
architecture (GTX 285) [27].

Operation Latency (cycles) Throughput (ops/cycle)

multiply 24 11.2
add,sub,max,min,mad 24 7.9

divide 137 1.5
square-root 56 2.0
sine,cosine 48 2.0

shared memory access 38 N/A
global memory access ∼ 436-443 N/A

texture cache read 261 N/A

The texture cache is a unique GPU feature. It provides read-only access to global

memory, and is optimized for spatial locality for one, two, or three dimensional arrays. It

has hardware built in to provide linearly-interpolated values with virtually no performance
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cost. The linear interpolation provided by the texture cache is performed using only 8 bits of

fractional precision, but it is shown later in this chapter how using the texture cache as part

of the NERFFT provides higher accuracy than cubic interpolation with full double precision

arithmetic for the interpolation of the SAR signal. The method used to incorporate the

texture cache as part of the NERFFT can also be applied to accelerate other interpolation

methods and is explained later.

In order to utilize the compute capabilities of the GPU, NVIDIA provides the Com-

pute Unified Device Architecture (CUDA) which augments the C programming language.

CUDA adds a kernel construct which ties a groups of threads to multiprocessors, where

each thread executes the same function virtually in parallel. Each thread maintains its own

program counter and branches can diverge during execution. If the branches diverge the

independent branches are executed serially. In this case the processor is not fully utilized.

Thus it is important to avoid branch divergence to achieve optimal performance.

3.2 Backprojection processing for UAVs

In this section we develop a SAR backprojection method that accounts for platform

motion during the pulse and the attitude changes of the antenna. The method is suitable

for UAV based stripmap SAR.

In LFM-CW SAR, the motion of the aircraft during a pulse can be significant as

noted by [4] and [28]. In this section a backprojection method is developed for stripmap

LFM-CW SAR that includes an extension for ultra-wide-band (UWB) SAR. This derivation

follows a similar methodology to [4]. The received signal can be written as the integral of

the dechirped signal, Eq. (2.11), from a single target over the imaging area

s(η, t) =

∫
R

I(x)Ax(η, t)ej(2πkrtτx(η,t)+τx(η,t)2πf0−πkrτ2x(η,t)) dx, (3.1)

where R is the imaging area, kr is the chirp rate, and I is the image scene. The simplest

method for reconstructing the SAR image, albeit highly computationally demanding, is
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discrete time-domain correlation, described as

Î(x) =
M−1∑
m=0

N−1∑
n=0

Wx[m,n]s[m,n]s∗x[m,n], (3.2)

where Î(x) is the reconstructed SAR image, sx is the reference signal for a target at pixel

location x, W is an apodization window, N is the number of samples in a pulse, and M is

the number of pulses over which the backprojection is calculated. Square braces are used to

indicate discrete samples such that

s[m,n] = s(ηm, tn) = s(mTp, n/fs), (3.3)

where Tp is the pulse length and fs is the ADC sampling frequency. To simplify we use a

phase-only reference signal yielding

Î(x) =
M−1∑
m=0

N−1∑
n=0

Wx[m,n]s[m,n] · exp{−j
(
2πkrtnτx[m,n] + 2πf0τx[m,n]− πkrτ 2

x[m,n]
)
}.

(3.4)

Using no approximations Eq. (3.4) generates the ideal reconstructed image; however it is

computationally intensive, on the order of O(MNLI) where LI is the number of pixels in

the image, M is the number of pulses, and N is the number of samples in each pulse.

To reduce computation we first range-compress the samples. In order to perform

range compression, the range from the radar to the target is traditionally approximated as

stationary during a pulse. However, because LFM-CW SAR uses a much longer pulse we

approximate τx as having linear motion during the pulse i.e.

τx[m,n] ≈ τx[m, 0] + vx[m]tn, (3.5)

where

(3.6)
vx[m] =

dτx(ηm, 0)

dt

=
2〈v,p(ηm, 0)− x〉
c0‖p(ηm, 0)− x‖

,
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where v is a vector of the velocity components. By selecting an apodization window that

can be separated into range and azimuth windows W a and W r, Eq. (3.4) can be written as

Î(x) ≈
M−1∑
m=0

W a
x [m] exp{−jφα[m]} ·

N−1∑
n=0

W r
x [n]s[m,n] · exp{−jφr[n]}, (3.7)

where

φα[m] = 2πf0τx[m, 0]− πkrτ 2
x[m, 0], (3.8)

and

φr[n] = 2πkrtnτx[m, 0]+2πkrvx[m]t2n+2πf0vx[m]tn−πkr(2τx[m, 0]vx[m]tn+v2
x[m]t2n). (3.9)

The t2n terms in Eq. (3.9) prevent us from replacing the second summation with the range-

compressed data. Ribalta’s derivation accomplishes this task by noting that the linear terms

2πkrtnτx and 2πf0vxtn dominate the summation in many imaging scenarios, and discards the

other terms. However, to improve upon this approximation we instead use the least squares

approximation

t2n ≈ Tptn −
T 2
p

6
. (3.10)

The error induced by the approximation in Eq. (3.10) is minimal for low-altitude aircraft

with typical speeds. Using Eq. (3.10) in Eq. (3.7) yields

Î(x) ≈
M−1∑
m=0

W a
x [m] exp

{
−j
(
φα[m]− πkrv2

x[m]
T 2
p

6
+ 2πkrvx[m]

T 2
p

6

)}
· Sm

(
N

fs

(
krτx[m, 0] + f0vx[m] + krTpvx[m]− kr

2
vx[m](2τx[m, 0] + Tpvx[m])

))
,

(3.11)

where Sm is the Fourier transform of Wr[n]s[m,n], which is the range compressed data.

Range compression is accomplished via a Fourier transform of the dechirped data because

each object is represented by a single frequency related to the time-delay using the stop-

and-hop assumption in the dechirped data, Eq. (2.11). Using the range-compressed data

instead of the dechirped data greatly reduces the computational complexity to the order of

O(MLI +MN log2(N)).
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By analyzing a point at the far end of the range swath for a particular radar’s imaging

parameters, further simplifications can be made. For example the fourth term phase is only

beneficial for extremely high-bandwidth and long pulses which are difficult to realize in

practice, and the third phase term and the last term on the range index can be neglected

because vx << 1, which is a ratio of the aircraft speed and the speed of light. The third

range index is only beneficial at extreme ranges that are not typical in LFM-CW imaging.

With these small approximations Eq. (3.11) simplifies to

Î(x) ≈
M−1∑
m=0

W a
x [m] exp {−jφα[m]}Sm

(
N

fs
(krτx[m, 0] + f0vx[m] + krTpvx[m])

)
. (3.12)

The first term in indexing Sm is found in traditional backprojection methods and the second

term partially compensates for the motion during the pulse and was identified by Ribalta [4].

The third term, which we call the UWB correction, is not included in Ribalta’s study;

however,we show that in ultra-wide-bandwidth operation the third term can be significant.

3.2.1 Compensated backprojection

The phase-only backprojection described in Eq. (3.11) works well for data sets col-

lected on platforms where the antenna attitude is fairly constant, such as satellites and large

aircraft; however, a small UAV is very susceptible to external forces often resulting in un-

dulating motion. Thus some pixels are calculated using more samples and different antenna

gains than others resulting in SAR images with varying intensity. In this discussion we do

not address the effects of incidence angle which are addressed in detail in [29].

In order to remove the variation of intensity due to the motion and attitude of the

aircraft we examine the backprojection filter. The complex gain Ax from Eq. (2.11) is given

by the radar equation and can be written as

Ax =

(
B

G2
x(η)

‖p(η)− x‖4
σ0
x

)1/2

, (3.13)

where B is a constant that accounts for all the radar parameters that are independent of

flight and position such as the transmit power, receiver gain, system losses, etc., Gx(η) is
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the antenna gain (assuming mono-static operation), and σ0
x is the normalized backscatter.

Using Eq. (3.13) we relate the magnitude of Eq. (3.12) to the normalized backscatter as

σ0 ≈ |Î(x)|2

B(
∑

mWa(m) G2
x(η)

‖p(η)−x‖4 )
. (3.14)

If all of the system parameters are precisely known this derivation produces fully-calibrated

images and even when the parameters are not fully known the correction is often good within

a scale factor.

3.2.2 Interpolation

Note that Eq. (3.4) uses continuous values of the range-compressed data; however,

because the range-compressed data is discrete, the data must be interpolated. The selec-

tion of the interpolation method can dramatically affect both the speed and accuracy of

the processor. In order to produce high-quality images, backprojection implementations

use some form of interpolation; although it is not always explicitly stated. Ideal interpo-

lation is achieved using the DTFT of the dechirped data or Dirichlet interpolation of the

discrete range-compressed values. Both of these approaches are computationally demand-

ing. Because of the simplicity of implementation, some backprojection methods use linear

interpolation [23] while others significantly zero-pad the range-compression FFT to approx-

imately apply Dirichlet interpolation at discrete points [20, 24]. Combining zero-padding

and polynomial interpolation methods increases the accuracy; however, the non-equispaced

result FFT (NERFFT) provides even better performance. The NERFFT is related to the

non-uniform FFT (NFFT or NUFFT). The NERFFT applies a window to the dechirped

data prior to using the FFT such that the DTFT results can be obtained using only a small

number of range-compressed samples [25,30]. The NERFFT and an efficient implementation

of it on GPUs is explored in Section 3.3.

3.2.3 Sub-Aperture processing

Another important function of a SAR processor is to provide multi-looking to reduce

speckle. In multi-look processing, sub-aperture images are created using subsets of the
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data partitioned by the azimuth angle or Doppler frequency. The subsets can be created

using azimuth filters, but, as discussed in the next section, in backprojection processing it is

more effective to apply azimuth windows. The final multi-looked image is created by power

summing the sub-aperture images. Each sub-aperture image is effectively created with a

narrower beamwidth than the physical antenna beamwidth resulting in a lower-resolution

image. With the separate sub-aperture images formed from different portions of the SAR

data, the speckle statistics are independent for non-overlapping sup-apertures. Averaging

the magnitude of the sub-aperture images reduces the image noise and makes it easier for

users to interpret the images [13].

3.3 NERFFT

The NERFFT reconstructs a non-equispaced Fourier transform using a windowed and

zero-padded discrete Fourier transform [25, 30]. The key principle of the NERFFT is that

the complex exponential in the DFT summation can be rewritten as

e−ixω =
1√

2πφ(x)

∑
m∈Z

φ̂(ω −m)e−imω, (3.15)

where φ and φ̂ are a window function and its Fourier transform, and Z is the support of φ̂.

Using Eq. (3.15), the interpolated range-compressed data can be described as

(3.16)

S(ω) =
1√
2π

∑
m∈Z

φ̂

(
ω − 2πm

cN

) N/2−1∑
k=−N/2

e−im
2πk
cN

s[k]

φ(2πk
cN

)

=
1√
2π

∑
m∈Z

φ̂

(
ω − 2πm

cN

)
Sc

[
bωcN

2π
c+m

]
,

where Sc is the FFT of s[k]

φ( 2πk
cN

)
with a zero-padding factor c. A proof of Eq. (3.16) is given

in [30]. To illustrate, let φ be a rect window so that φ̂ is the Dirichlet kernel. Eq. (3.15)

then yields Dirichlet interpolation. Note that the summation over k in Eq. (3.16) is centered

around 0 denoting a centered FFT. This both simplifies the development and results in both

φ and φ̂ being real, which reduces the number of multiplies required; however, most software

routines for the FFT perform an uncentered FFT. A centered FFT can be performed by

circularly shifting the input data to an uncentered FFT.
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In Eq. (3.16), a Kaiser-Bessel window is used to concentrate the energy of the signal

into a short summation over m. The Kaiser-Bessel window and its Fourier transform are

given by

φ(x) =
I0(K

√
α2 − x2)

I0(Kα)
, (3.17)

φ̂(ω) =


√

2
π

sinh(α
√
K2−ω2)√

K2−ω2I0(Kα)
, ω ≤ α

0, ω > α,

(3.18)

where

α = π(2− 1/c)− 0.01, (3.19)

I0 is the zeroth order modified Bessel function of the first kind, and 2K is the length of

the support of φ̂. It has been shown by [25] and [30] that in the case c = 2, a six point

window, K = 3, can reduce the interpolation error down to the precision of single floating

point arithmetic. In Section 3.3.2 we compare several interpolation methods with a range

of zero-padding factors in order to navigate the tradeoffs of memory, speed, and accuracy of

the interpolation stage.

3.3.1 Accelerating interpolation using GPU texture cache

In [31], a method to accelerate cubic interpolation on GPUs is presented that casts

linear interpolation as part of the cubic interpolation. This concept is extended to be used

as part of any convolutional interpolation scheme. The finite fractional precision of the GPU

hardware linear interpolation incurs some accuracy loss; however, when used to accelerate

the NERFFT, in many cases the resulting accuracy is much better than other common

interpolation methods, including nearest neighbor, linear, and cubic interpolation.

A convolutional interpolation scheme is defined by

SI(x) =
K∑

m=−K+1

S[bxc+m]cm(h), (3.20)
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where h = x − bxc, and the functions cm(h) are not necessarily linear. In the form of

Eq. (3.20), traditional linear interpolation has the coefficient functions

c0(h) = (1− h), (3.21)

c1(h) = h. (3.22)

Cubic spline interpolation can also be described in this form. In order to take advantage of

the GPU hardware linear interpolation we rewrite Eq. (3.20) with linear interpolation as an

intermediate step. Consider Eq. (3.20) written as a summation in pairs

(3.23)

SI(x) =
K∑

m=−K+1

S[bxc+m]cm(h)

=
K−1∑
r=0

S[bxc+ ν]cν(h) + S[bxc+ ν + 1]cν+1(h),

where ν = 2r−K+ 1. With some manipulation the pairs can be written in terms of a linear

interpolation. First we multiply Eq. (3.23) by a unitary fraction yielding

(3.24)

SI(x) =
K−1∑
r=0

cν(h) + cν+1(h)

cν(h) + cν+1(h)
(S [bxc+ ν] cν(h) + S [bxc+ ν + 1] cν+1(h))

=
K−1∑
r=0

(cν(h) + cν+1(h)) ·
(

cν(h)

cν(h) + cν+1(h)
S [bxc+ ν]

+
cν+1(h)

cν(h) + cν+1(h)
S [bxc+ ν + 1]

)
.

Equation (3.24) describes two linear interpolations multiplied by a scale factor, written as

(3.25)

SI(x) =
K−1∑
r=0

(cν(h) + cν+1(h)) ((1− b)S [bxc+ ν] + bS [bxc+ ν + 1])

=
K−1∑
r=0

C(h)SL (bxc+ ν +B(h)) ,

where B(h) = cν+1(h)
cν(h)+cν+1(h)

and C(h) = cν(h)+cν+1(h). Equation (3.25) effectively applies the

window weightings cm for two memory accesses by shifting the h of the linear interpolation.

Using the texture cache’s linear interpolation, a pair of memory accesses is aggregated into

one, effectively cutting the memory accesses in half and reducing the overall processing time.
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3.3.2 Interpolation error comparison

In order to create a SAR backprojection processor that appropriately balances the

tradeoff of speed and accuracy we need to select an interpolator that balances computational

accuracy and complexity. Up to this point we have discussed the error of the interpolators

generally. In this section we quantify the interpolation error of several interpolators for use

on a GPU. In order to capture the effects of the GPU hardware interpolation and single

precision arithmetic accurately, we use a Monte Carlo approach to compare the RMS error

of the interpolation schemes previously discussed.

The goal of the interpolator is to provide both magnitude and phase accurate range-

compressed samples at non-integer indices. The data is simulated as a band-limited signal

using a Gaussian random number generator. The points at which the range-compressed

data is interpolated are simulated with a uniform random number generator, which closely

matches the distribution of range samples. We then pass the data and the points to each

of the interpolators and calculate the RMS error compared to the DTFT of the data at the

points. We average the results of multiple realizations so that the error statistics do not

significantly change with more realizations.

Figure 3.2 shows the RMS interpolation error for the interpolators on a log-log plot

with the RMS error in dB on the y axis and the zero-padding factor on the x axis. The error

of the nearest neighbor, linear, and cubic spline interpolation methods drops log-linearly with

the zero-padding factor each with slightly steeper slope, which equates to lower error. The

reduction in error for these methods is due to higher zero-padded data being smoother. In

contrast the NERFFT error drops quickly with small zero-padding factors and then trends

to leveling out. Thus the motivation for higher zero-padding factors is greatly reduced when

using the NERFFT. With wider windows (higher K), the NERFFT is considerably more

accurate. Note that the number of memory accesses for K = 1 and K = 2 is equivalent to

linear and cubic interpolation respectively. The K = 1 NERFFT has lower error than linear

interpolation with zero-padding factors less than 4; however, the window applied to the raw

data increases the quantization noise introduced during the FFT which limits the achievable

accuracy gains for the NERFFT with higher zero padding.
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Figure 3.2: RMS error for different range-compressed data interpolation methods with several
zero-padding factors. In this plot there are two versions of the NERFFT. The ones denoted
“tex” are accelerated using hardware linear interpolation.

Two versions of the NERFFT are used in Fig. 3.2, the latter of them being accelerated

using the hardware linear interpolation. The accelerated versions are denoted “tex” in the

legend. For the K = 1 NERFFT, the accelerated and non-accelerated results are identical.

The acceleratedK = 2 NERFFT has slightly increased error compared to the non-accelerated

version, but the accelerated K = 3 NERFFT has even slightly higher error than the K = 2

NERFFT. This demonstrates the limited accuracy available from the texture cache’s linear

interpolation. Note that the NERFFT K = 2 case is of the same computational complexity

as the cubic spline and has dramatically lower error. Using the NERFFT both reduces the

error and lowers the memory storage requirements.

3.4 GPU implementation

As shown in Eq. (3.12), backprojection image formation can be independently com-

puted for individual pixels. This makes it easy to parallelize the computation; however,

27



simple parallelization does not lead to a real-time processor in most imaging scenarios. Be-

cause the UAV is constantly moving and the antenna is not steered as in spotlight mode

SAR, different areas are illuminated during each pulse. As a result, each pixel of backpro-

jection image only needs a subset of the collected pulses in its calculation, but each pixel

needs a unique subset. Therefore, if not carefully implemented, the backprojection calcula-

tions are performed for pulses that do not contribute to a pixel’s final value. The ability to

compute the backprojection image in real-time is largely achieved by reducing unnecessary

computations.

3.4.1 Overall implementation

The structure of the backprojection processor is outlined in the pseudo-code shown

in Algorithm 1. Stripmap SAR collections frequently result in very long strip images. It is

neither reasonable nor desirable to process a flight’s collection as a single image. Therefore

the backprojection processing is broken into multiple images. To begin, we take a section

of data of reasonable size resulting in an image that fits in the GPU memory. The image

is oriented along the flight direction, allowing efficient use of the GPU thread structure to

break up the backprojection calculation.

Each section is broken into small groups or batches of pulses. A window is applied

to the dechirped data to provide the desired range apodization and the NERFFT window.

Then the FFT is computed using the NVIDIA CUFFT library on the GPU. Concurrently,

the CPU is used to calculate the 3-axis heading of the aircraft, simplifying the calculation

of the azimuth angle that is used for the apodization window and multi-look processing.

The azimuth bins that are visible during the batch are determined using the first and last

antenna positions. This information is used in the backprojection kernel to reduce the

number of calculations performed for pixels outside of the radar beamwidth during a batch.

The size of the batch has considerable effect on the performance of the algorithm. A large

batch reduces the number of global memory accesses, but a small batch reduces the number

of pixels included in the backprojection calculations that receive negligible contribution from

a pulse. Finding the optimal batch size for a given velocity, PRF, and beam-width is found
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Algorithm 1 Pseudo-code for GPU stripmap SAR backprojection

1 Break data collection into sections
2 For each section
3 Allocate memory for the image section
4 Allocate memory for a batch of pulses
5 For each batch of pulses
6 Copy batch of pulses to GPU memory
7 Apply apodization window
8 Apply NERFFT window
9 Compute FFT

10 Rotate position data
11 For each thread group
12 Copy position and attitude to shared memory
13 Call backprojection kernel
14 For each thread
15 For each pulse in batch
16 Calculate distance and angle
17 Calculate expected phase
18 Interpolate range−compressed
19 For each sub−aperture
20 Calculate azimuth apodization
21 Multiply sample by apodization and phase
22 Accumulate the results
23 Accumulate the apodization and
24 antenna weights
25 Copy the image and apodization weights from the GPU
26 Save the complex image
27 Average the power of the pixels
28 Divide by weightings
29 Save the multi−looked image

with some experimentation. The backprojection kernel is then executed for each batch of

pulses.

At the beginning of the backprojection kernel, the antenna positions are copied to the

shared memory so that each block of threads only access the global memory for the radar

positions once. Using shared memory for variables accessed by multiple threads greatly

reduces the kernel runtime. The backprojection kernel calculates the distance and angle

from the pixel to each antenna position. The angle is used to calculate azimuth apodization

windows for the full aperture and the sub-apertures. The distance is used to calculate the

expected phase of each pulse’s contribution and to interpolate the range-compressed data.

To further reduce the runtime, local variables are used to accumulate the pixel contributions
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so that writes to global memory only occur once during each batch. The following describes

key portions of the backprojection algorithm, including the interpolation and sub-aperture

processing steps.

3.4.2 NERFFT implementation

Using the results of the error analysis given in Fig. 3.2, we select the accelerated

NERFFT K = 2 for the range compression because of its high accuracy, lower memory usage,

and potentially lower computational cost. In order to optimally take advantage of the GPU

resources described in the background, transcendental functions and memory accesses need

to be reduced when possible. In the GPU implementation of the NERFFT described in [25]

each NERFFT access requires 2K memory accesses and 2K evaluations of the hyperbolic

sine and square root operations. We reduce the required computations and increase the speed

by approximating the combined Bessel functions C(h) and B(h) shown in Eq. (3.25) using

polynomials. These approximations effectively cut the memory access and computational

burden of the NERFFT in half.

3.4.3 Sub-Aperture processing

It was suggested in [23] that sub-aperture processing can be achieved by running the

backprojection kernel multiple times with different sections of the data. While such a method

keeps the code simple, it is more efficient to calculate all of the sub-aperture images within

the same thread. Calculating the sub-apertures within the same thread avoids duplicate

memory accesses and recalculations for overlapping sub-apertures. The inclusion of the sub-

apertures in the processing adds another memory layout choice. The sub-aperture image

pixels can either be assigned as discrete images or one conglomerate image with the sub-

apertures for each pixel occupying a contiguous slot in memory. In our experiments, we find

that with a significantly large batch size and a small number of sub-apertures, either layout

performs equally well because the writing of the image pixels only occurs once during each

batch.
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3.5 Results

This section demonstrates the effectiveness of the motion corrected backprojection

and the GPU implementation using simulated data and data collected as part of the Char-

acterization of Arctic Sea Ice Experiment (CASIE) [6].

3.5.1 Example CASIE imagery

The CASIE SAR data was collected using the microASAR, a small, LFM-CW, C-

band SAR system on board the NASA SIERRA UAV [3,32]. During the CASIE mission the

microASAR operated with a 160MHz bandwidth and an 11 degree beamwidth resulting in

approximately 1m×15cm single-look resolution. To improve the visual quality of the image

we reduce the speckle using 7 sub-apertures with 50 percent overlap. The resulting images

are produced with 50cm×50cm pixel spacing. For a more complete description of the CASIE

mission and the data processing used see Appendix A and Appendix B.

Figure 3.3 is an example of the imagery produced using the backprojection implemen-

tation described in this paper. The data was collected over sea ice in the Arctic ocean north

of Svalbard Norway. The UAV flies along the top edge from left to right. The low-altitude

of this image results in a very wide range of incidence angles as illustrated on the right side

of the image, and the backscatter roll-off due to incidence angle can be seen in the far range.

To illustrate the effectiveness of the compensated backprojection a portion of an image

created during a maneuver is shown in Fig. 3.4. In this image the aircraft is finishing a climb

from an altitude of 270m to 350m. As with any maneuver, there are significant attitude

changes which are typically unaccounted for in traditional SAR processing methods. In

contrast to Fig. 3.4a the compensated image in Fig. 3.4c only has a slight residual variation.

The image shown in Fig. 3.3 was processed using a 2008 Mac Pro desktop equipped

with 2x3.2 GHz quad-core Intel Xeon processors, 16 GB of memory, and a NVIDIA GTX

285 Video card. The image collection time is 100s. Including the time to load the data

and write the image to disk, the backprojection processing takes 85s using nearest neighbor

interpolation without the texture cache, 70s for the K = 2 NERFFT interpolation, and 60s

using the K = 1 NERFFT interpolation. The speedup achieved by the NERFFT imple-
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Figure 3.3: An example image of sea ice processed with the GPU SAR backprojection. The
left y axis specifies the ground range in meters, and the right y axis is the incidence angle.

(a) (b) (c)

Figure 3.4: An example of the improvement made using the compensated backprojection:
Fig. 3.4a shows the uncompensated image, Fig. 3.4b shows the weighting function, and Fig. 3.4c
shows the compensated image.

mentations comes mainly from utilizing the GPU’s texture cache and because the NERFFT

implementations require less memory allowing for better locality of memory accesses. Note

that because the texture cache is used as part of the NERFFT, the NERFFT interpolation

effectively requires only one memory access in the K = 1 case and two in the K = 2 case.
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As shown earlier in Fig. 3.2, the implementations using the NERFFT with a zero-padding

factor of 2 are more accurate than the nearest interpolation with a zero padding factor of

16 and we see that the runtime for both NERFFT implementations is also better than the

nearest neighbor implementation. Also note all of the GPU implementations are faster than

real-time, whereas CPU implementations typically take hours to complete.

3.5.2 Simulation of compensation during a pulse

Due to the narrow band operating parameters of the microASAR during the CASIE

mission, the algorithm runtime does not clearly demonstrate the improved processing result-

ing from the motion correction described by Eq. (3.12). Since there is significant interest

in UHF UWB SAR imagery [33–35], we simulate data for an UHF radar (800MHz cen-

ter frequency) with 500MHz bandwidth and aircraft velocity of 150 m/s. We note that

in a practical imaging scenario, the transmit signal at this frequency would be notched to

avoid conflicting bands; however the notching does not significantly alter the results of the

simulation.

In Fig. 3.5 the range compressed signal received from a single point target at a 45
◦

squint is represented by the thick line. The thin line represents the signal received as if the

aircraft were stationary as assumed with stop-and-hop. The dashed vertical lines represent

the three indexing calculations discussed: from right to left the lines describe the indexing

term using the stop-and-hop assumption, Ribalta’s correction, and the indexing term given

in Eq. (3.11).

In this scenario the UWB correction described in Eq. (3.11) is needed in order to

index the peak of the range compressed data and properly focus the radar image. The ratio

of Ribalta’s correction and additional UWB correction is the ratio of the carrier frequency

and the bandwidth of the radar. So for narrow band SAR imaging, where the bandwidth

is much smaller than the carrier frequency, Ribalta’s correction is sufficient for focusing the

SAR image.

To illustrate the image quality improvement achieved with the motion corrections

we simulate a scene of with a single point target depicted using the same radar parameters
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Figure 3.5: An illustration of range-compressed data for a point target observed by a moving
aircraft (thick plot) and a stationary aircraft (dashed plot) and the available indexing terms.
The indexing terms are represented by the vertical dashed lines. From right to left, the lines
respectively represent the indexing term using the stop-and-hop assumption, Ribalta’s correc-
tion, and the indexing term given in Eq. (3.12). The simulation is for an UHF radar with a
500MHz bandwidth and a target at a 45◦ squint.

given above. In this simulation shown in Fig. 3.6 the radar has a 60◦ beamwidth with fixed

pointing.

As shown in Fig. 3.6a, using the stop-and-hop assumption smears and warps the

impulse response. In [4], Ribalta’s correction is shown to almost perfectly correct for the

motion in the non-UWB imaging scenario; however, as shown in Fig. 3.6b it only slightly

improves the impulse response for an UWB radar. The UWB correction derived in this work

results in the improved response shown in Fig. 3.6c.

To further improve the impulse response, the motion of the aircraft can be approxi-

mated as piecewise linear during a pulse. This can be applied by breaking the dechirped data

into disjoint sets in fast-time. Each subset represents a lower resolution SAR image with

slightly differing center frequencies. The UWB correction can be applied to the sub-band

data during backprojection and the final image is the sum of all of the sub-band images.

Applying the correction in this manner results in the nearly ideal impulse response shown

in Fig. 3.6d.
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(a) (b)

(c) (d)

Figure 3.6: Single point target response of a UWB wide-beam SAR using (a) the stop-and-hop
approximation, (b) Ribalta’s correction, (c) the UWB correction, and (d) the UWB correction
applied to sub-band images.

3.6 Summary

Using small LFM-CW SAR on unmanned air systems can provide unprecedented

information for scientific and military missions. The low-altitude geometry and significant

motion typical of small UAV operation requires significant motion compensation to generate

high quality imagery. This work presents an efficient backprojection processor that provides

excellent motion compensation for UAV-based stripmap SAR using consumer-grade GPUs.
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We developed a stripmap backprojection algorithm from spatial coordinates accounting for

the un-steered antenna and for the motion of aircraft during the long duration of an LFM-

CW pulse, extending previous work by Ribalta [4] to handle UWB scenarios. The processor

takes advantage of the unique processing hardware of the GPU to produce quality images

faster than real-time for the CASIE mission.
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Chapter 4

A Spectral Analysis of Single Antenna Interferometry

4.1 Introduction

SAR interferometry is a powerful tool that exploits the coherence of two complex

images created from slightly differing aspect angles to infer further information of the scene

such as topography or the detection of moving targets. Traditional SAR interferometry uses

images collected using narrow beam antennae with a linear flight track from high altitude

platforms. These assumptions make it easy to analyze the SAR operation in the spectral

domain, and have enabled the development of computationally efficient algorithms for image

compression [13, 36, 37]; however, with the recent availability of raw computational power

from GPUs it has become desirable to forgo the computational efficiency of Fourier based

methods and use time domain backprojection due to the simplicity of implementation and

ability to handle wide-beam antennae and arbitrary flight paths. The dynamic motion of

the small UAV used in CASIE, illustrated in Fig. 4.1, necessitated the motion compensation

available using the time-domain backprojection in order to properly focus the images, which

processing is described in Chapter 3.

It was suggested that it might be possible to use sub-aperture images from different

altitudes along the aircraft flight path to perform interferometry and infer information about

the topography of the sea ice. This chapter explores this proposal and extends the spectral

analysis developed for traditional SAR interferometry [13,38] to backprojection images and

determines the requirements for single antenna interferometry to infer topography. Further-

more the requirements for coherence between two SAR images is clarified. It is shown that

the motion of the aircraft during the CASIE mission is insufficient for the purpose.
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Figure 4.1: An example SAR image collected during CASIE-09, and a diagram of the alti-
tude variation during the data collection of this image. The image resolution is 1m and the
dimensions are roughly 650m x 3km.

4.2 Coherence and rough surface model

To begin, we review the definition of signal coherence and describe the rough surface

model used in interferometry. Coherence is a measure of the linear dependence of two signals

and is defined as

Cxy =
‖Gxy‖
GxxGyy

, (4.1)

where Gxy is the cross-spectral density and Gxx and Gyy are the auto-spectral densities. The

coherence of two signals is maximized when the signals are identical. In this discussion, the

coherence of a signal is used to measure the overlap of the signal spectra. For an alternate yet

detailed consideration of the correlation of SAR pixels from the perspective of time-domain

backprojection see [39].

Interferometric estimation of topography relies on the assumption that the imaging

scene g(x, y, z) can be described as a rough surface

g(x, y, z) = r(x, y)δ(z − h(x, y)), (4.2)

where h(x, y) is the topography of the surface and r(x, y) is the surface reflectivity function,

and δ is the Dirac delta function. It is also assumed that h(x, y) is smooth compared to the
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resolution of the SAR. The surface reflectivity function, r(x, y) is modeled as a wide sense

stationary (WSS) random process, where each resolution cell contains multiple indepen-

dently positioned point scatterers. This results in an exponential distribution of the received

power, which is typical of natural surfaces [13,40]. Because r(x, y) is a WSS random process

its Fourier transform R(ωx, ωy) is also WSS, and samples of R(ωx, ωy) are statistically inde-

pendent. Therefore disjoint portions of the surface spectrum used in generating the images

leads to incoherence. It is apparent that in order for images to be coherent, the images must

be spatially co-located and of similar shape. Image registration techniques can be applied to

achieve the spatial co-location, but in order for the phase of the signal to be coherent, the

pixels also need to be generated from the same portions of the surface spectrum R(ωx, ωy).

In the following work, it is shown that the portion of the spectra contained in a SAR

image pixel is given by the transmit frequency and bandwidth and the ranges of grazing

and azimuth angles of the data collection. The discussion begins by describing the spectral

sampling in two dimensions and introduces the projection slice theorem, and then extends the

analysis to three dimensions. Afterwards, the principles discussed in the three dimensional

spectral sampling are applied in the analysis of the single antenna interferometer.

4.3 Spectral sampling of a rough surface in two dimensions

Consider the two dimensional imaging scenario diagrammed in Fig. 4.2. The image

cell in the scene is covered by multiple point scatterers as described in Section 4.2. Using

the Born approximation the radar return is described as a convolution of the radar signal

with the imaging scene within the beamwidth of the antenna, modelled mathematically as

(4.3)
sr(r) =

∫ Rmax

0

st(r − τ)

∫
Bψ

g(τ sin(ψ + l) + x, τ cos(ψ + l) + z) dl dτ

st(r) ∗
∫
Bψ

g(r sin(ψ + l) + x, r cos(ψ + l) + z) dl ,

where the antenna location is given by (x, z), r is the distance from the antenna, Rmax is the

maximum imaging range, ψ is the angle of the scene to the antenna, and Bψ is the antenna

elevation beamwidth. Because we are interested in pixel to pixel correlation of images, we

can constrain our analysis to a single range compressed sample. Only a small portion of Bψ
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Projection onto ψ

ψ

ψ′

Figure 4.2: Two dimensional SAR imaging scene.

is considered, which we designate as L. Because the imaging scene is much smaller than the

distance to the target we can apply the small angle approximation. Using the small angle

approximation for functions of l, yields

(4.4)
sr(r) = st(r) ∗

∫
L

g (r (sinψ cos l + cosψ sin l) + x, r (cosψ cos l − sinψ sin l) + z) dl

= st(r) ∗
∫
L

g (r (sinψ + l cosψ) + x, r (cosψ − l sinψ) + z) dl .

Equation (4.4) describes an orthographic projection of g onto a line with an elevation angle

ψ. The reader may note that the orthographic projection is only valid for small angle ranges,

thus this analysis may not be valid for an image formation procedure for airborne SAR where

the range of grazing angle is large; however, this analysis is valid in evaluating which portions

of the spectrum are used in creating a pixel value.

The spectral sampling of the radar pulse given in Eq. (4.3) is defined by its Fourier

transform; however, by the projection slice theorem, this is approximately equivalent to tak-

ing a slice of the two dimensional Fourier transform of the two dimensional image spectrum.
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ω
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Figure 4.3: Illustration of the spectral sampling of a single pulse from two different observation
angles. The background represents the spectrum of a surface contained on the x axis, thus the
spectrum is constant in ωz. The center frequency, fc and the bandwidth, Bw, of the radar
determines the sampled portion of the one dimensional slice.

This is illustrated by looking at the slice of the spectrum taken along the ωx axis

(4.5)

G(ωr, 0) =

∫ ∫
g(x, z)e−j2πxωrdx dz

=

∫ [∫
g(x, z)dz

]
e−j2πxωx dx

=

∫
px(x)e−j2πxωxdx

= F{px} ,

where the px is the orthographic projection of g(x, z) onto the x axis. This extends to a slice

at an arbitrary angle because the Fourier transform of a rotated space is equal to the rotated

Fourier transform of the non-rotated space. Note that the spectral slices always extend from

the origin of the spectral space. The spectral sample is illustrated in Fig. 4.3 for two different

grazing angles. The background image represents the spectrum of a surface contained on the
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x axis, thus the spectrum is constant in ωz. The observation angle of the radar determines

the angle of the slice through the two dimensional spectrum. The center frequency, fc, and

the bandwidth, Bw, of the radar determine the sampled portion of the one dimensional slice.

Note that the discrete samples illustrated by the colored dashes in Fig. 4.3 can be considered

the raw data samples of a LFM pulse or the Fourier transform of the range compressed data.

The spectrum in Fig. 4.3 is constant in the ωz direction because the scatterers are contained

on a line in the two dimensional imaging space. Likewise if the surface extended along an

angle α, then the spectrum is constant along α + π
2
, or equivalently the slice is taken along

ψ + α of the non-rotated spectrum. Thus by the spectral slice theorem, the portion of the

surface spectrum sampled by the radar at angle ψ is equivalent to the portion sampled by a

radar with 0 degree grazing angle and a lowered center frequency and bandwidth.

4.4 Spectral sampling in three dimensions

The previous analysis is easily extended to three dimensions because the projection

slice theorem is applicable to any number of dimensions. As explained in Section 4.3, the

contribution of a single resolution cell to a radar pulse can be described by the convolution

of the radar transmit signal with an orthographic projection of the imaging cell onto a line

proceeding from the radar to the center of the imaging cell, and by the projection slice the-

orem the spectral contribution contained in this pulse is approximately the one dimensional

slice of the three dimensional spectrum taken at the same angles as the projection. To illus-

trate this refer to the geometry shown in Fig. 4.4 of two squinted SAR collections from two

different altitudes. Note that the aircraft at the higher altitude effectively has a somewhat

narrower beamwidth because the target is viewed from the same span of ground azimuth

angles.

Figure 4.5 illustrates the spectral sampling of the SAR data collections illustrated in

Fig. 4.4. The sampling lines extend at the same angles as the angles traveled by the SAR

during the data collection in reference to the center of the pixel. The samples are made along

one dimensional slices as specified by the radar operating frequencies. Because the scene of

interest is contained on the surface of the x-y plane, the spectrum is constant in ωz thus

the two collections effectively sample the portions shown in Fig. 4.5b. Note that like the
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Figure 4.4: Illustration of squinted SAR geometry from two different altitudes. The blue and
red planes respectively identify the ends of a SAR data collection. The azimuth and grazing
angle, respectively θ and ψ, along with the radar transmit frequencies determine the portion
of the surface spectrum that is sampled, as shown in Fig. 4.5. Note that the aircraft at the
higher altitude effectively has a slightly narrower beamwidth because the target is viewed from
only the same span of ground azimuth angles.

two dimensional imaging scenario, the difference in grazing angle shifts the sampling of the

ground spectrum along the ground azimuth angle. However because the shift is only along

the ground azimuth angle, it is necessary to view the scene from the same range of azimuth

angles in order for the collections to have azimuth spectral overlap.
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(a)

(b)

Figure 4.5: Illustration of spectral sampling in three dimensions for the flights diagramed in
Fig. 4.4. For clarity an isometric (a) and plan (b) view are provided. Like the background shown
in Fig. 4.3, the gray background represents the spectrum of a pixel. The surface spectrum is
invariant along the z axis because the pixel surface is contained in the x-y plane. The red and
blue dots note the portion of the 3D spectrum that is sampled according to the geometry of
the collection and the operating frequencies.
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4.5 Cross-track interferometry

Topography estimation is performed using cross-track interferometry where two radars

(or alternatively, two simultaneous receivers and one radar transmitter) are placed at dif-

ferent elevations, resulting in different grazing angles ψ and ψ′ as illustrated in Fig. 4.3

and Fig. 4.5. In this example the radars have the same center frequency and bandwidth.

The radars sample slightly different portions of the surface spectrum as illustrated by the

projection of the samples onto the surface. Consider the case where the image scene only

consists of a single planar patch of a rough surface. Because, as illustrated in Fig. 4.3, the

grazing angle of a radar shifts the portion of the spectrum that is sampled, the difference

of the grazing angles of the radars can be identified by the peak of the cross-correlation of

the sample spectrum. This coupled with prior knowledge of the separation of the antennae

allows for the angle to the patch to be estimated, which fully describes the topography of

the scene.

With a full stripmap SAR imaging scene, the spectrum of a patch cannot be directly

compared because the collected data contains spectra from all of the targets in the image

scene. Instead the phase of the image scenes is compared. The phase difference of the

images is directly related to the frequency shift of the images. Because a shift in the frequency

domain is equivalent to a modulation in the spatial domain, the pixel phase difference can be

considered the DC component of the modulation plus noise. The noise of the phase difference

is greatly caused by what has been referred to in the literature as geometric decorrelation,

which is a result of disjoint portions of the spectrum being included in generating the pixels.

The geometric decorrelation can be completely removed, increasing the coherence of the

two images, by filtering off the disjoint portions of the spectrum. This can be done by

applying windows in the spectral domain. For LFM-CW SAR the filtering may be done by

windowing the dechirped data before range compression. Alternatively the decorrelation can

be overcome by “tunable systems”, which can adjust their operating frequencies as suggested

in [38].
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Figure 4.6: Diagram of a flight geometry that allows for azimuth spectral overlap.

4.6 Analysis of single antenna interferometry

With the principles developed in the previous sections, we can analyze the opportunity

for applying interferometric techniques to data collected along an oscillatory path. First

consider the case of an aircraft approaching the imaging scene where the scene of interest

is to the right of the initial heading of the aircraft. We choose the reference frame origin

to proceed from the scene center and to measure the ground azimuth angle between the

projections of the pointing angle to the receive antenna and the angle orthogonal to the

aircraft heading pointing toward the aircraft as shown in Fig. 4.6.
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Consider an aircraft that has received a collection of pulses along a relatively straight

flight path. Because the aircraft must traverse some of the same azimuth angles in order

to achieve spectral overlap, then the aircraft must either reverse direction or the heading of

the aircraft must turn significantly to the right. The turn must make the projection of the

heading onto the ground plane cross to the other side of the imaging scene, as illustrated in

Fig. 4.6. If the platform is capable of this turn, the length of the interferometric baseline

is determined by the airplane turning radius, which in most imaging scenarios results in

a significant change in the incidence angle, thus requiring a very wide range of transmit

frequencies as well. I note that if the surface rises away from the aircraft the requirements

may be lower.

These motion requirements are impractical for a fixed wing aircraft except at very

high squint angles. However, even at a high squint angle it is very difficult to collect an

appropriate data set, because in making the maneuvers required for spectral overlap, the

scene of interest likely moves from the right side of the aircraft to the left. Thus this

method would either require a very wide and forward pointing antenna (resulting in difficult

ambiguities to resolve) or to be able to be steered from one side of the aircraft to the other.

4.7 Conclusions and summary

With this analysis it is clear that interferometric techniques cannot be used with

the CASIE SAR mission to estimate topography. It is argued that in order for traditional

interferometric techniques to be used with a single antenna that the heading of the aircraft

must cross the pixels to be used. This work extends the spectral analysis for interferometry

using narrowband narrow beam spotlight SAR in [13,38] to wide-beam stripmap SAR. It is

hoped that this analysis acts as a useful tool to help the SAR community to understand the

difficult but insightful concepts resulting from a spectral analysis of SAR.
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Chapter 5

Autofocus for Low Altitude SAR

Autofocus methods attempt to improve image focus caused by unknown variables,

including unknown motion and atmospheric conditions. While many autofocus methods

have been proposed and implemented, there continues to be a need for improved methods

to address the particular defocus errors that arise in different scenarios and work with dif-

ferent SAR processing methods. This chapter describes autofocus from a matched filtering

perspective, gives a brief review of previous autofocus methods, and develops a new auto-

focus method for low-altitude high-resolution SAR. By using mapdrift techniques applied to

sub-images, this method accounts for defocus due to three dimensional motion error in the

aircraft position. The aims of this algorithm are similar to the recently proposed Factorized

Geometrical Algorithm (FGA) [41] but by employing mapdrift techniques the computation

is greatly reduced.

Many traditional autofocus methods attempt to find a set of phase corrections that

improve the focus of the image. The phase adjustments account for a variety of errors in-

cluding motion, but correcting for phase errors corrects for only part of the defocus. This

is particularly true for ultra-wide band systems where the amplitude errors caused by in-

accurate motion can be as significant to defocus as the phase errors. Because geometry

errors can be the major cause of defocus for low-altitude UAV SAR systems, the goal of the

autofocus method is to find adjustments to the antenna positions that maximize the focus of

the image. Fortunately, low-altitude SAR systems have the unique opportunity to identify

three dimensional motion because they often image scenes with incidence angles ranging

from 0 − 75◦. FGA uses a direct approach to autofocus by directly making adjustments to

the image processing to find the motion parameters that improve the focus metric; however,

the computational load of a direct method is tremendous. So tremendous in fact that only a
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single parameter was varied in the FGA paper [41]. This work attempts to make the goals of

FGA tenable by reducing the search space using mapdrift techniques. As an alternative to

directly evaluating motion parameters in FGA, in this chapter, I use mapdrift techniques to

estimate the motion of the aircraft from shifts of sub-images. mapdrift methods exploit the

fact that incorrect motion parameters not only defocus the image but warp the sub-aperture

images relative to one another. In the past, mapdrift autofocus has only been applied to

along-track velocity and acceleration errors, and this work extends it to three dimensional

motion errors. In some ways this work is similar to [42], but uses both the range sphere and

the Doppler cone and is designed for time-domain backprojection.

5.1 SAR defocus: a time-domain perspective

Before describing the new autofocus framework I review SAR image formation and

the types and causes of image degradation. Following which I then give an overview of

existing autofocus methods.

5.1.1 SAR image formation

The backprojection filter for SAR image formation is described in Chapter 2, but for

convenience it is repeated here in a slightly different form

I(x, y) =
∑
m

W [m](f(p[m]), ψ[m], x, y)Sm (p[m], x, y) e−jφ(p[m],x,y)), (5.1)

where m is the pulse number, W [m] is an apodization window, Sm is the range compressed

data, f is an interpolation method acting on p[m] which is the position of the aircraft, ψ[m]

is the attitude of the antennae, (x, y) is the pixel coordinates, and φ is the expected phase

function. In some cases the indexing of Sm may factor in the aircraft velocity as discussed

in Chapter 3, but for many cases it is a simple linear function of the range to the target. For

simplicity, it is assumed to be a linear function of range in this discussion.

Inaccuracies in the measurements of the motion of the aircraft p[m] cause errors in

the selection of the range compressed data and the calculation of the expected phase. Phase

errors cause defocus but can be tolerated to an extent dependent on the base frequency,
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beamwidth, and bandwidth of the radar [9, 12, 43]. Inaccuracies in the indexing of the

range compressed data are more complicated and can degrade the resulting image due the

incorrect data selection. However, with only a few exceptions, autofocus algorithms only

correct for phase errors, leaving significant noise introduced by the incorrect data selection.

This is particularly true for ultra-wide band SAR. The autofocus algorithm presented in this

chapter accounts for defocus and noise introduced by both phase inaccuracies and incorrect

data selection by estimating the correct motion parameters.

5.1.2 Image degradation

For the purposes of this discussion, I classify three types of image degradation that

may occur in a SAR image, including defocusing, warping, and decreased signal to noise

ratio (SNR). Warping is a shifting, skewing, or rotation of part or all of the image. Defocusing

is a broadening and smearing of part or all of the focused image caused by phase inaccuracies.

Whereas decreased SNR of the image is characterized by a lower ratio of the scatterer peaks

to the background noise, which in the SAR image formation process can be attributed to

amplitude errors. The amplitude errors could be a result of inaccurate range compressed

data selection or apodization window weighting due to inaccurate knowledge of the antenna

pointing direction.

The following describes the major sources of image degradation and the accompanying

degradations that occur. Note that the sources of image degradation usually cause multiple

types of degradation. The stated goal of an autofocus method is to reduce the defocusing

of the image; however, an autofocus method can be designed to improve the SNR as well.

Because there is not an independent measure for image warping without a reference, image

warping may still remain in focused images.

Oscillator jitter and drift

SAR systems are designed with strict coherence requirements, but despite efforts to

maintain a stable clock, there always exists residual phase jitter and drift in the system

oscillator. This incoherence results in defocusing of the SAR image.
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Atmospheric conditions

The speed of electromagnetic waves vary depending on the transmission medium, as

a result atmospheric conditions such as precipitation, clouds, or even temperature variations

cause changes in the speed of propagation. For space-borne systems, this can be a significant

challenge, while with low-altitude systems the distance to the ground is too small for the

slight variation of medium to significantly affect the image quality.

Inaccurate geometry

The effects of inaccurate geometry parameters on the SAR image processing are com-

plex and not fully described in the literature. A typical SAR data collection, with the

exception of circular SAR, is along a nearly straight path from a high altitude observing sur-

faces with smooth topography. With SAR operating wavelengths ranging from centimeters

to millimeters, errors in motion measurements on the order of only millimeters can cause

phase errors large enough to cause defocusing. It is important to note that although the

relative accuracy of the motion measurements is critical to focusing, a gradual drift results in

a warping of the image rather than a defocusing as caused by errors in the relative accuracy.

Later in section Section 5.3.2 the full effects of geometry errors are discussed.

It is known that if the synthetic aperture is along a straight track then all objects in

the image scene properly focus in some slant range position, and thus appear in focus for

any topography used in backprojection [13]. However, when the synthetic aperture deviates

from a single dimension then inaccurate topography results in defocusing. The amount of

defocusing may be negligible depending on the SAR system and the magnitude of the drift

from a straight path. If backprojection processing is used with an accurate digital elevation

model (DEM) and motion record, the entire image focuses properly.

Errors in the antenna pointing also degrade the image. The SNR is degraded if the

antenna is mispointed and can be reduced to near zero if antenna pointing errors are off

by more than the beamwidth of the antenna. An autofocus method can be designed to

maximize the SNR by correcting antenna pointing and pattern errors. However, these errors

are typically handled separately using Doppler centroid estimation techniques [9, 44].
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5.2 Review of previous autofocus methods

Over the years a host of autofocus algorithms have been developed for different imag-

ing scenarios. The algorithms can be categorized in different ways. Autofocus methods vary

by the adjustments made and what metric is used in order to improve the image focus. The

earliest autofocus methods were prominent point processing (PPP) and mapdrift. Later the

popular phase gradient autofocus (PGA) was introduced. The most recent autofocus meth-

ods are posed as the optimization of an image metric such as minimum entropy or maximum

contrast. In this section I describe several of these methods.

5.2.1 Prominent point processing

Prominent point processing (PPP), also known as inverse filtering, uses the phase

of an isolated point target to estimate the phase that maximizes the entire image; however

not all images contain isolated point targets, rendering this method unusable in these sit-

uations. Multiple prominent point processing (MPPP) is an extension of PPP that uses

multiple points to improve the phase estimate [12, 13]. MPPP and PPP are closely related

to inverse SAR (ISAR) processing methods. In theory, with enough prominent points in a

non-planar orientation, MPPP can be used to estimate all of the motion parameters with-

out the assistance of a navigation unit; however, it has been noted that this has yet to be

demonstrated [45].

5.2.2 Mapdrift

Mapdrift (MD) methods compare sub-aperture images to determine a polynomial

phase function that can improve the focus. The phase difference that mapdrift methods can

detect are limited to smooth function whereas methods like PPP can detect finer changes.

However mapdrift can incorporate all of the range data in the estimate and are thereby less

susceptible to noise than PPP. Traditionally the comparison between sub-apertures is done

using the magnitude of the images only. An alternative approach has been proposed called

coherent mapdrift (CMD) [46]. The coherent mapdrift autofocus has been shown to have

super-convergence for estimating the velocity [47].
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5.2.3 Phase gradient autofocus

Phase Gradient Autofocus (PGA) is a non-parametric method that is considered by

many to be the industry standard for autofocus methods [12–14]. The key steps of PGA

are iteratively applied. First the data is circularly shifted such that the brightest target in

each range bin is centered. Then an azimuth window is applied. In the final step, the phase

common to all the range bins is estimated [13]. The PGA uses a target in each range bin

and a maximum-likelihood phase estimator.

Thompson et. al describe a method for extending the phase gradient autofocus method

to low-altitude stripmap SAR [48]. In order to handle the low-altitude geometry a range

dependent phase estimator is proposed using weighted least squares instead of the traditional

maximum likelihood estimator. Also, a stripmap to spotlight conversion is presented that

handles the range dependence of low-altitude SAR [48]. A weakness of this method may

be that the phase error is posed purely in the cross-range dimension; however, it has been

argued by many that phase errors in azimuth (acceleration errors) are a more critical source

of defocus [12,49].

Another extension of the PGA is described in [50] that builds off of Thompson’s

method and accounts for both the cross-range and azimuth motion error. Their approach

involves a multi step approach to compensate for motion error as well as non-range dependent

errors potentially caused by atmospheric effects or clock drift and jitter.

5.2.4 Image metric optimization

Various image metric optimization autofocus methods have been proposed. The ad-

vantage of these autofocus methods is that they can use the entire received data set, they can

easily be applied to stripmap SAR including backprojection SAR, and they are not limited

to phase corrections. Different image metrics have been found to emphasize different image

features and the selection of the image metric can have significant effect on the autofocus

performance [51]. Frequently the deciding factor for the chosen metric is computation. For

this reason maximum image intensity and minimum entropy methods are particularly popu-

lar, since the derivatives of the metric have well known solutions. Kragh’s minimum entropy

autofocus [52] is a good example of state-of-the-art autofocus algorithms. It uses a coor-
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dinate descent optimization within the optimization transfer framework which guarantees

convergence. It is shown that this method is slower than PGA, but that it improves the

focus.

I make note of another autofocus method, recently proposed by Ash [53], because it

is one of the select few methods that can be incorporated with backprojection processing.

Ash’s autofocus method uses the maximum intensity metric within a coordinate descent

optimization method. Using the intensity metric allows for the update step to be calculated

analytically, which greatly reduces the computation. However, this method is limited to

phase corrections.

5.2.5 Factorized Geometrical Algorithm

While it may be considered an image metric autofocus, the Factorized Geometrical

Algorithm (FGA) [41] is by far the most complete autofocus method for accounting for mo-

tion measurement errors and deserves a separate description. It differs significantly from

traditional autofocus methods [41, 45, 49] because it works within the framework of Fast

Factorized Backprojection (FFBP) and attempts to estimate the unknown motion param-

eters by maximizing the correlation magnitude when merging sub-apertures. The motion

parameters considered are:

1. the altitude of the merged sub-apertures

2. the angles between the ground plane and the vector for the merged sub-aperture

3. the angle between sub-apertures

4. the length of the two sub-apertures

5. the length of the merged aperture.

In each step of the FGA, the merging of sub-aperture images are warped according to two

nonlinear transformations using a set of potential motion parameters enumerated above.
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These parameters apply linear adjustments to the sub-apertures, but this requires a non-

linear transformation of the image, and so the FGA effectively performs a non-linear cross-

correlation at each step. This computation explains why the authors note that the slow

runtime precludes it from regular usage.

On a side note, although not identified by the authors, the listed motion parameters

are only sufficient for imaging near-planar surfaces that do not require the use of a digital

elevation model. In a SAR imaging scenario with significant topography variation, an ele-

vation model is required in the image generation if the synthetic aperture is non-linear. As

a result, three additional parameters need to be accounted for in the model, including the x

and y position of the first sub-aperture and the angle of the first sub-aperture around the

vertical axis.

5.3 3D Mapdrift

In this section I present the design of a new autofocus method that, like the FGA,

can estimate three dimensional motion, but requires significantly less computation. This is

accomplished using mapdrift methods such that the non-linear image transformations are

not needed. To begin I give an overview of the autofocus method, which is presented as the

solution to an inverse problem, and then derive the forward model for the image shifts.

5.3.1 Method overview

As described earlier, mapdrift methods take advantage of the image warping that

occurs due to the incorrect motion parameters in order to estimate the motion measurement

errors that caused the defocus. In the past this has been done only for azimuth motion

errors. I extend this concept to three dimensional motion. This is accomplished using a

novel forward model for the shift of a point target, which shift is caused by inaccurate

motion parameters. This forward model is then used within a minimization framework to

identify potential motion parameters that can improve the focus of the image. Like many

inverse problems, estimating the motion parameters is ill-posed and in many cases the true

motion parameters are not found, but as shown in the results section of this chapter, the

estimated motion parameters still greatly improve the image focus.
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The forward model described in the following subsection calculates the shift of a

single point target. Recall that we are interested in low-altitude broad-swath operation.

The model is used to describe the shift of the center of SAR image sub-sections. The sub-

sections are referred to as panels. Unlike traditional mapdrift techniques that measure the

shift of two images using cross-correlation only in the azimuth dimension, a two dimensional

cross-correlation is used, measuring the shift of the panel centers in both azimuth and range.

By segmenting the panels in range, range motion errors can be differentiated from altitude

motion errors because altitude errors have a greater shift near nadir than farther out in

the swath, whereas range errors are consistent across the swath. Segmenting the panels in

azimuth allows for the motion error to be measured over time. The size of the panels affects

the magnitude and contrast of the cross-correlations and the resilience to the noise, but it

also affects the number of shifts that are estimated. In order to reduce the error of the

shift estimates and to have a greater number of shift estimates, the panels can be chosen

to overlap in both in range and azimuth. This enables the panels to be of sufficient size to

provide a good estimate of the shift and provides many reference points.

Traditional mapdrift methods use the peak of the cross-correlation in a simple model

of the image shifts to estimate velocity and acceleration errors in the azimuth direction.

Following a similar design to traditional mapdrift methods, the motion can be estimated

as follows. After the sub-aperture shifts have been measured for each sub-aperture, an

optimization method is employed to find a set of motion parameters that minimize the

least-squares difference with the measured shifts. This can be done with the minimization

problem

arg min
∆

L−1∑
l=0

K−1∑
k=0

W (l, k)
(
(ξx(∆)[k]− ξ̄x[k])2 + (ξy(∆)[k]− ξ̄y[k])2

)
, (5.2)

where L is the number of panels, K is the number of combinations of sub-apertures, W is

a weighting function, ξ̄ are the measured shifts, and ξ(∆) are the estimated shifts given the

motion error parameters ∆. The choice of the weighting function can be a function of the

magnitude of the correlation and of the relation of the compared sub-apertures. However,
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because this is an ill-posed problem, the solution to Eq. (5.2) is very sensitive to noise, and

requires significant regularization in order to avoid overfitting the solution.

Alternatively, a method that is less sensitive to noise can be developed by using the

cross-correlation of the panels as the cost function, instead of estimating the shifts from the

cross-correlation peaks. Consider the cost maximization problem

arg max
∆

L−1∑
l=0

K−1∑
k=0

W (l, k)Xl,k (ξx(∆)[k], ξx(∆)[k]) , (5.3)

where Xl,k is the normalized cross-correlation for panel l and sub-aperture combination

number k.

The optimization method used to maximize the objective function, Eq. (5.3), greatly

determines the speed and accuracy of the autofocus method. The brute-force method used

by [41] performs an exhaustive search over all of the motion parameters. The advantage

of exhaustive search methods are the simplicity of implementation and the guarantee of

finding the global minimum if the search spacing is appropriate. However, the accuracy of

the minimization is limited by the quantization of the search used and, as has been noted

in [41], an exhaustive search method is prohibitively time consuming. Thus alternative

methods are used. Section 5.4 demonstrates the improved focus that can be achieved using

this model, but first I describe the forward model for the image shifts.

5.3.2 Motion error forward model

To describe the three dimensional autofocus, I first present the forward model of the

image warping. This novel development extends traditional mapdrift to three dimensions.

The forward model for the shifts is used in an optimization framework to estimate motion

parameters that improve the image focus. Mapdrift methods utilize sub-aperture processing.

Because each sub-aperture image is of the same portion of ground, but is generated from

a different portion of the azimuth beamwidth, the data is collected at different positions

along the synthetic aperture. This is frequently termed multi-look processing. For l =

0, 1, ..., L where L is the number of looks or sub-aperture images, multi-look processing can

be represented in the matched filter with the inclusion of an additional apodization window,
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Wl, written as

Il(x, y) =
∑
m

Wl[m](p[m], ψ[m], x, y)W [m](p[m], ψ[m], x, y) · Sm (p[m], x, y) e−jφ(p[m],x,y)).

(5.4)

With the correct motion parameters, sub-aperture images align spatially, and accumulating

of the magnitude of the sub-aperture images reduces the speckle of a SAR image. On the

other hand, motion errors defocus and warp the sub-aperture images relative to one another.

Consider the backprojection processing for a point on the imaging surface, (x, y),

when the incorrect motion parameters are used. This situation can be modeled by including

an additional term ~∆ that accounts for the incorrect motion parameters into the sub-aperture

matched filter described by Eq. (5.1). This is written as

Il(x, y) =
∑
m∈Z

Sm

(
g
(
p[m] + ~∆[m], x, y)

))
e−jφ(p[m]+~∆[m],x,y), (5.5)

where p[m] + ~∆[m] are the positions of the aircraft used in the matched filter, and Z is

the support of the sub-aperture apodization window. I have ignored the magnitude of the

apodization windows in order to simplify the analysis. This does not significantly alter the

analysis because the windows are slowly changing amplitude-only functions. To show the

warping effect of the incorrect motion parameters on a single sub-image, the motion errors

are separated into two components described by

~∆[m] = ~∆l + ~∆d[m], (5.6)

where ~∆l is the average position error over the sub-aperture l, and ~∆d is the difference of

the actual position and the average position. Incorporating Eq. (5.6) into the phase term of

Eq. (5.5) results in

(5.7)

Il(x, y) =
∑
m∈Z

Sm

(
g
(
p[m] + ~∆l + ~∆d[m], x, y)

))
e−jφ(p[m]+~∆l+~∆d[m],x,y)

=
∑
m∈Z

Sm

(
g
(
p[m] + ~∆l + ~∆d[m], x, y)

))
e−jφ(p[m]+~∆l,x,y)e−jφ(~∆d[m]) .
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The phase error due to the average position changes the phase of the result, but does not

cause defocus of the image. Thus if the motion error is small, the sub-aperture image can

be approximated as a warped copy of the properly focused image Îl, described as

Il(x, y) ≈ Îl(x+ δx, y + δy)G(x, y), (5.8)

where G is a blurring caused by last phase term in Eq. (5.7) and the incorrect range com-

pressed data selection. The shifts (δx, δy) in Eq. (5.8) are a function of the aircraft positions

and the imaging surface topography.

The location of a target in an image is based on the relative geometry of the synthetic

aperture and the target. In modeling the effects of inaccurate motion measurements on the

image, first consider the case where the aircraft flies a linear path. With a linear path, the

return from a target is identical to any other target with the same range from the center of

the synthetic aperture and the same cylindrical angle relative the axis of motion. Thus the

target location is ambiguous. The ambiguity of the target location is described by a circle

perpendicular to the axis of motion. The offset of the circle is determined by the average

squint of the data collection. This has been described previously in the literature as the

intersection of the range sphere and Doppler cone [12, 13, 54]. The placement of a target in

a sub-aperture image is given by the intersection of the range sphere, Doppler cone, and the

surface used in the SAR processing. These equations are given by

R2 = ‖p− x‖, (5.9)

cos(ψ) =
〈p− x,v〉
R‖v‖

, (5.10)

z = g(x, y), (5.11)

where the aircraft position and velocity components are given by the vectors p = [px, py, pz]
T

and v = [vx, vy, vz]
T , respectively, and the target position is given by x = [x, y, z]T .

For a single point the warping can be described by a 2D shift. This shift (δx, δy) is

given by substituting x′ = x + [δxδy0]T , p′ = p + ~∆, and v′ = v + v̂, where v̂ is the average

velocity error vector over the sub-aperture, into Eq. (5.7) and solving for (δx, δy). The solution
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to the shift can be easily found in closed form with a computer algebra system (CAS) such

as Sympy [55], but is not printed here because it is very complex and is not necessary for

this discussion. For clarity we describe the shift as the function

f(x,p,v, ~∆, v̂) = [δx, δy]
T . (5.12)

In order to measure absolute shift caused by motion errors, the sub-aperture images must be

compared to a “global” reference image generated with the correct motion parameters, as was

performed in [42] for bistatic SAR where one of the platforms also operated as a monostatic

SAR. In the case without a global reference, only the relative shifts between two sub-aperture

images can be measured. The equations for the relative shifts are no less complicated than

the absolute shifts and can similarly be found in closed form with a CAS using two instances

of Eq. (5.7), each instance having a different sub-aperture position and velocity respectively,

(pa,va) and (pb,vb). The relative shift used in Eq. (5.3) can be described in functional form

as

ξ̂(x,pa, ~∆a,pb, ~∆b,va, v̂a,vb, v̂b) = f(x,pa,va, ~∆a, v̂a)− f(x,pb,vb, ~∆b, v̂b). (5.13)

The following section demonstrates the effectiveness of this autofocus method using this

forward model with an optimization method.

5.4 Implementation and example application

To describe the implementation and demonstrate the efficacy of the autofocus algo-

rithm this section is organized as follows: first an overview of the algorithm is provided,

followed by a description of the data used in the demonstration. This is followed by a

description of the cross-correlation calculations. Then the implementation of the forward

model and the optimization is described. Finally the improved imagery is shown.

5.4.1 Implementation overview

The autofocus algorithm is described by Eq. (5.3), and its implementation consists of

using the cost function with an appropriate optimization method that iteratively evaluates
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potential motion parameters until the maximum is found. Evaluations of the cost function

described in Eq. (5.3), begin by using the forward model to estimate the shift of panel

centers that result from processing a SAR image with the initial motion parameters when

the proposed parameters were correct. The normalized cross-correlation panels are then

interpolated to the point specified by the shift and the resulting cost is the accumulation of

the interpolated points.

So far in this discussion, the motion measurement errors have been referred to as

motion parameters. This implies some model for the motion error, which greatly influences

the performance of the autofocus method. The model should properly represent the motion

errors that cause the defocus, but if a very high order model is used the optimization may

not converge in a reasonable time. Also some motion models may be overcomplete, such that

there are many parameters that cause the same shifts. This is true for linear motion error

because with linear motion the location of a target in range is ambiguous around the flight

path. Thus when a motion model allows both range and azimuth velocities to be varied,

the image shifts depend only on the net velocity error. For this demonstration the motion

parameters in all dimensions are given by low order polynomials. To avoid ambiguities

resulting from by linear-only motion errors, the model can be constrained to point in the

initial azimuth direction.

The selection of the optimization method is critical to the performance and accuracy

of the method. While the maximization problem described by Eq. (5.3) is not guaranteed

to be smooth or have a single maximum, for our purposes, we have found that the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm, which is included in the

SciPy library [56], provides good results in a reasonable amount of time without requiring

the derivative of the cost function. The calculation of the cost function derivative could

significantly speed up the convergence of the method, but since the computation time of

the optimization method on a desktop computer is similar to the processing time for the

GPU backprojection processing of the image, processing time is not considered a significant

concern for our use.
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Figure 5.1: A well focused SAR image, processed using accurate motion parameters.

5.4.2 Example blurred image

In order to demonstrate the effectiveness of an implementation of this new autofocus

method, a section of data collected as part of CASIE is used. In this demonstration 7 sub-

apertures are used with 50% overlap. Figure 5.1 shows the well focused multi-looked image

processed with motion estimated onboard a UAV with a high quality inertial navigation unit.

During the data collection of this image, the UAV flight was fairly stable with a velocity

around 30m/s. In order to clearly demonstrate the defocusing of the SAR image due to

inaccurate motion parameters, the motion of the aircraft is adjusted with motion errors,

resulting in the image shown in Fig. 5.2. The quadratic motion errors are chosen to highlight

the ability of the algorithm to estimate three dimensional motion. The errors represent both

velocity and acceleration mismatch from a non-linear flight path. The blurred image resulting

from the incorrect motion parameters is shown in Fig. 5.3. While the induced motion error is

a bit exaggerated from what is typically experienced by an aircraft, the simulation provides

an excellent demonstration of the autofocus method’s capabilities. Smaller and more linear

errors can be estimated as well, but the effect of the defocus is difficult to see.
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Figure 5.2: Induced motion error respectively in x, y, and z. The vertical axes are measured
in meters and the horizontal axes in seconds. Over the course of this data segment, the aircraft
flew a nominal 30 m/s.
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Figure 5.3: A blurred SAR image resulting from using incorrect motion parameters in the
image processing.
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5.4.3 Calculation of cross-correlation panels

To begin the autofocus method, the defocused image is broken into panels as shown

for sub-apertures 2 and 5 in Fig. 5.4. Next, the normalized cross-correlations of the panels are

Figure 5.4: Example of the image panels for sub-apertures 2 and 5. The components of tuple
above the image indicates the sub-aperture number and the range and azimuth panel indicies,
respectively. Note that there is fifty percent overlap of the panels in range and azimuth.

computed. Care must be taken so that overlapping sub-apertures are not used in the cross-

correlations, because the resulting cross-correlations are biased to zero by the overlapping
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data used to generate the panels. However, even though neighboring sub-apertures cannot be

compared, a sub-aperture can be compared with sub-apertures that overlap each other. This

provides finer temporal sampling than the comparison of only non-overlapping sub-apertures.

The calculation of the cross correlation begins with a zero-padded FFT of the panel

magnitudes. One of the resulting spectrum panels is multiplied by the complex conjugate

of the other. This is followed by an inverse DFT matrix multiply and a normalization

window multiply. The DFT matrix multiply is used in order to efficiently calculate only

a portion of the cross-correlation and it allows for sinc interpolation of the resulting cross-

correlation. Alternatively a zero-padded inverse FFT could be used, but would require more

computation because the shifts can be expected in a confined area. Figure 5.5 is an example

of the normalized cross-correlation of the sub-aperture panels shown in Fig. 5.4. The x and y

Figure 5.5: Example cross correlation panels of the panels for sub-aperture 2 and 5, which are
shown in Fig. 5.4. The x and y axes, measured in meters, specify the shift in azimuth and range
respectively. Note that the cross-correlations are only a portion of the full cross-correlation.
The ’x’ markers identify where the peak of the cross-correlation is expected as determined using
the forward model on the induced motion shown in Fig. 5.2.
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axes, measured in meters, specify the shift in azimuth and range respectively. Note that the

cross-correlations are only a portion of the full cross-correlation. The ’x’ markers identify

where the peak of the cross-correlation is expected as determined using the forward model

on the induced motion shown in Fig. 5.2. In most cases the marker lines up with the peak of

the cross-correlation. The bottom right cross-correlation is an exception resulting from the

lack of contrasting features in that panel.

5.4.4 Implementation of the forward model

As described by Eq. (5.13), the implementation of the forward model requires the

position and velocity of the aircraft at the time the panel center is imaged. To provide this

the backprojection kernel is modified to also calculate the effective image creation time for

each pixel. This calculation is similar to the compensated backprojection, Eq. (3.14), and is

given by

t0(x) ≈
∑M−1

m=0 W
a
x [m]t[m]∑

mW
a
x [m]

, (5.14)

where W a
x [m] is the effective sub-aperture apodization window used in the backprojection

processing, and t[m] is the time at pulse m. The pulse time can be easily calculated within

the GPU backprojection kernel with little performance penalty; however, care must be taken

to avoid quantization effects from floating point calculations. With the effective imaging time

for each sub-aperture image, the position and velocity parameters can be interpolated from

the motion record. These are then used to calculate the expected relative shifts, described

in Section 5.3.2, of each panel for all of the combinations of sub-apertures.

5.4.5 Results

Using the implementation of the forward model of the shift functions and an appro-

priate optimization method, motion parameters that could cause the defocus are found as

shown in Fig. 5.6 and compared with the induced motion. The estimated motion parameters

differ from the induced parameters, but have a similar shape. While the geometry causing

the defocus is non-linear, the underlying data is collected along a nearly linear path so that

the method’s ability to uniquely identify the induced motion error is limited due to the ill-
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Figure 5.6: Estimated motion correction compared to the induced motion error.
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Figure 5.7: Refocused image using the estimated motion.

posedness of the problem. Although the estimated motion parameters do not exactly match

the true parameters, using the estimated motion parameters to reprocess the data results

in the well focused image shown in Fig. 5.7. Experimentally, we find this to be generally

true. The refocused imagery demonstrates that the three dimensional mapdrift autofocus
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method presented in this chapter can be effective in overcoming defocus caused by motion

measurement errors. Further experiments are needed to understand the bias of the estimated

parameters from the true parameters.

5.5 Summary

In this chapter a novel autofocus algorithm is developed with a new forward model

for the warping of an image caused by geometry errors. This method estimates motion

parameters that improve the focus of the image, correcting both magnitude and phase errors.

A demonstration of the effectiveness of the algorithm is provided using induced motion error

on the CASIE SAR data.
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Chapter 6

Dually Factorized Backprojection

For LFM-CW SAR systems with a fixed transmit and receive bandwidth, the max-

imum imageable range is proportional to the chirp length. Thus it can be desirable to

have a long pulse; however, this violates the stop-and-hop assumption that is used in most

traditional processing algorithms. Frequency domain and time domain methods have been

developed to account for the motion during the pulse [4, 5, 57–59] including the work pre-

sented in Chapter 3; however these methods approximate the motion of the aircraft as linear

during the pulse. This chapter presents a novel time-domain method that factorizes the

correlation integral in both fast-time and slow-time, resulting in fast and accurate inversion

accounting for general motion over the synthetic aperture and during a single pulse.

In the past, factorization of the SAR processing has been shown to be effective in

reducing the computation of the SAR processing, but the factorization has only been done in

azimuth [60]. In order to account for the motion of the aircraft during the chirp, in this work

we explore factorizing in both range and azimuth. Factorizing in both range and azimuth

allows for fast and accurate compensation of the motion during the chirp for LFM-CW

SAR. Because this algorithm is factorized in both range and azimuth we call it the Dually

Factorized Backprojection (DFBP). This work may be seen as a generalization of the Fast

Factorized Backprojection (FFBP) formulation described in [60] and the FFBP is a special

case of the DFBP.

6.1 Background

For convenience and clarity we begin with a slightly different presentation of the

LFM-CW SAR signal and time-domain correlation processing. As described in Section 2.4
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the recorded signal for an LFM-CW SAR is given by

s(η, t) =

∫
I
I(x)Ax(η, t) exp{j(2πkrtτx(η, t) + τx(η, t)2πf0 − πkrτ 2

x(η, t))}δx. (6.1)

The dechirped signal, Eq. (6.1), is bandpass filtered, which suppresses the transmit signal,

reduces the data storage requirements, and effectively range gates the signal. In this form

the visible range is a function of the bandpass filter and the chirp-rate. Thus in scenarios

where the maximum transmit bandwidth is desired, the visible range is proportional to the

chirp length. The time-domain correlation processor given by Eq. (2.14) correctly accounts

for arbitrary motion during the pulse. For convenience, Eq. (2.14) is written in tensor form

as

I =
M−1∑
m=0

N−1∑
n=0

s[m,n] · exp{−jφx[m,n]}, (6.2)

where

φx[m,n] = 2πkrn/fsτx[m,n] + 2πf0τx[m,n]− πkrτ 2
x[m,n]. (6.3)

Using virtually no approximations Eq. (6.2) generates the ideal reconstructed image; however

it is also very computationally intensive, on the order of O(MNLaLr) where La and Lr are

respectively the number of azimuth and range pixels in the image, M is the number of pulses,

and N is the number of samples in each pulse.

Previous work has shown how the summation over the fast-time index n can be

separated using approximations to the motion of the aircraft resulting in a modified back-

projection method [4, 58]. This chapter presents a method that accounts for the motion

of the aircraft and greatly reduces computational burden of the SAR processing through a

re-factorization of the correlation processing.

6.2 Dually Factorized Backprojection

This section describes a backprojection method that is factorized both in slow-time

and fast-time, which we call Dually Factorized Backprojection (DFBP). As described in

this section DFBP achieves significant computational advantages by refactoring the problem

such that many computations may be combined in a similar manner to the Fast Fourier
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Transform (FFT) and to the Fast Factorized Backprojection method [60], which performs

a factorization in azimuth. For simplicity we represent the SAR image as I, dropping the

index for the pixel location.

To describe the factorization used to accelerate the processing while maintaining the

exact calculation, consider the following rearrangements of Eq. (6.2). First we define a

notation to describe an image created with only a subset of the data as

I
(C,D)
(c,d) =

((c+1)C−1)∑
m=c·C

((d+1)D−1)∑
n=d·D

s[m,n] · exp{−jφx[m,n]}, (6.4)

where the superscripts C and D denote the size of the data subset and c and d are the

slow-time and fast-time subset indices. In this notation the full image is described as I
(M,N)
(0,0) .

Suppose that the subsets are selected such that the data is broken into K slow-time and L

fast-time sections each of length C and D respectively, where M = KC and N = LD, the

full image can also be described as a summation of the subset images

(6.5)

I = I
(M,N)
(0,0)

=
K−1∑
k=0

L−1∑
l=0

IC,D(k,l) .

Extending this idea further, we describe the subset images recursively as summations of

smaller subsets. In the case that M and N are factors of K and L we can define the

recursion relation

IC,D(c,d) =
K−1∑
k=0

L−1∑
l=0

I
C/K,D/L
cK+k,DL+l. (6.6)

With the recursion relation the full image is generated with a maximum of the greater of

logK(M) or logL(N) steps, where the lowest level I1,1
(c,d) represents an image created from a

single sample of the SAR data. Note that at this point no approximations have been made

to the correlation and Eq. (6.6) represents a refactoring of the summations; however, the

refactoring of the correlation provides insights that can accelerate the processing.
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6.2.1 Computational advantage

Each image described by Eq. (6.4) uses only a portion of the azimuth and modula-

tion bandwidth such that they represent much lower resolution images than the full image.

With much lower bandwidth, a fraction of the pixels contain the information necessary to

reconstruct the other pixels, thus there is no need to perform the calculation of every pixel

in the full image. Instead the subset images can be generated with much lower pixel density

and then, because they have lower range and azimuth bandwidth, they can be interpolated

to a higher pixel density with a fraction of the computation required to perform the full

calculation. Furthermore with the recursion relation, the lower resolution images can be

successively merged into higher resolution images until the full resolution image is created.

This can lead to orders of magnitude computational advantages.

To explore the computational advantage, consider the generation of an image of di-

mensions P × P from radar data with M pulses each with M samples and the factorization

size of K is used in both range and azimuth. At the initial stage the M2 samples are

processed using the time domain correlation described by Eq. (6.2) to generate M2/K2 sub-

images each with H2K2 pixels, where H is an up-sampling factor used to provide better

interpolation (like zero padding in an FFT). Thus the first stage requires M2K2H2 evalua-

tions of the correlation kernel. At the second stage K2 adjacent sub-resolution images are

each interpolated to a grid with K4H2 pixels, and because the number of pixels increases

by the same factor that the number of subset images decreases, the number of computations

required remains the same. This process is repeated for at most logK P stages until all of

the data has been merged or the desired image resolution is achieved. The total number

of calculations is on the order of O(M2H2K2 logK P ), which is orders of magnitude lower

than computational order of O(P 2M2) required by direct correlation processing. Thus the

speed-up over full correlation is lower bounded by the ratio

P 2M2

M2H2K2 logK P
=

P 2

H2K2 logK P
, (6.7)

which is near the same speed-up available from traditional FFBP methods. The lower

bound is not achieved because, as discussed in the next section, the range interpolation
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is significantly more complex than the correlation processing. However, the speed-up over

correlation processing can be several orders of magnitude as shown in Section 6.5.

6.3 Interpolation

Interpolation is key to the performance of DFBP both in terms of run-time and accu-

racy. Azimuth interpolation has been thoroughly discussed in the Fast Factorized Backpro-

jection literature most notably [60–62], where it has been shown that traditional polynomial

interpolation methods are satisfactory as long as the initial grid is generated with more az-

imuth pixels than necessary because the extra pixels act like zero padding. But the discussion

of range interpolation is typically avoided due to the high carrier phase. In this section we

derive interpolation methods based on the full time-domain correlation processing in order

to accurately reconstruct the signal. We begin by discussing the spectral support of a SAR

data collection in order to properly derive an accurate interpolation method for merging the

sub-apertures.

Consider a pixel of a subset image in polar coordinates I
(C,D)
(c,d) (r, φ), where r and φ are

the range and azimuth angle from the center of the effective sub-synthetic aperture given

by the average of the antenna position. For this analysis we use the approximation that the

aircraft speed is negligible to the speed of light. Let

r[m,n] = ‖p[m,n]− x(r,φ)‖, (6.8)

where x(r,φ) is the location (r, φ) transformed to the three dimensional coordinates. Using

Eq. (6.8), a single pixel in Eq. (6.4) can be written as

I
(C,D)
(c,d) (r, φ) =

((c+1)C−1)∑
m=c·C

((d+1)D−1)∑
n=d·D

s[m,n] · e−j
4π
c0

(
krn
fs

r[m,n]+f0r[m,n]−r[m,n]2 kr
c0

)
. (6.9)

Each sample in a lower resolution image contains some information about a value outside

of the pixel center. This is because the radar samples a finite frequency band and so the

spatial sampling is described by a sinc function whose support is infinite. Let us consider the

contribution of a point target at an offset range position, r′, described in a slightly different
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form from Eq. (6.1) as

sr′ [m,n] = I
(C,D)
(c,d) (r′, φ)A(r′,φ)[m,n] · exp

{
j

4π

c0

(
krn

fs
r′[m,n] + f0r

′[m,n]− r′[m,n]2
kr
c0

)}
,

(6.10)

where r′ = r + δr. Substituting Eq. (6.10) into Eq. (6.9) describes the contribution of a

target at r′ to the generated pixel centered at r described as

(6.11)

I
(C,D)
(c,d) (r, φ)

=

((c+1)C−1)∑
m=c·C

((d+1)D−1)∑
n=d·D

sr′ [m,n]·exp

{
−j 4π

c0

(
krn

fs
r[m,n]+f0r[m,n]−r[m,n]2

kr
c0

)}
.

By limiting the slow-time extent we can use the small angle approximation

(6.12)r′[m,n] = r[m,n] + δr .

Substituting Eq. (6.12) into Eq. (6.10) yields

(6.13)
sr′ [m,n] = I

(C,D)
(c,d) (r′, φ)A(r′,φ)[m,n]

· exp

{
j

4π

c0

(
krn

fs
(r[m,n] + δr) + f0(r[m,n] + δr)− (r[m,n] + δr)

2kr
c0

)}
.

For convenience we ignore the amplitude function A and substitute Eq. (6.13) into Eq. (6.11)

yielding

I
(C,D)
(c,d) (r, φ) =

((c+1)C−1)∑
m=c·C

((d+1)D−1)∑
n=d·D

I
(C,D)
(c,d) (r′, φ)
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4π

c0

(
krn
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(r[m,n] + δr) + f0(r[m,n] + δr)− (r[m,n] + δr)

2kr
c0

)}
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{
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c0

(
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kr
c0

)}
= I
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((d+1)D−1)∑
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{
j

4π

c0

n

(
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− (2r[m,n]δr + δ2
r)
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(
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)}
.

(6.14)
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To make the next step we approximate the r[m,n] term by the nominal range r from the

center of the sub-aperture to the pixel and pull it out of the summation resulting in

I
(C,D)
(c,d) (r, φ) ≈ I

(C,D)
(c,d) (r′, φ)

((c+1)C−1)∑
m=c·C

exp

{
j

4π

c0

(
f0δr − (δ2

r + 2rδr)
kr
c0

)} ((d+1)D−1)∑
n=d·D

e
j 4π
c0

( krnfs δr)

≈ I
(C,D)
(c,d) (r′, φ)C exp

{
j

4π

c0

(
f0δr − (δ2

r + 2rδr)
kr
c0

)} ((d+1)D−1)∑
n=d·D

e
j 4π
c0

( krnfs δr)

≈ I
(C,D)
(c,d) (r′, φ)C exp

{
j

4π

c0

(
f0δr − (δ2

r + 2rδr)
kr
c0

)}

· exp

{
j

4π

c0

(
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fs

(dD + (D − 1)/2) δr

)} D−1
2∑

k=
−(D−1)

2

e
j 4π
c0

( krkfs δr) ,

(6.15)

where the final summation is over half integers and results in a Dirichlet kernel given by

DN(x) =
sin ((N/2)x)

sin (x/2)
, (6.16)

i.e.

I
(C,D)
(c,d) (r, φ) ≈ I

(C,D)
(c,d) (r′, φ)C exp

{
j

4π

c0

(
fD,dδr − (δ2

r + 2rδr)
kr
c0

)}
DD
(

4π

c0

kr
fs
δr

)
, (6.17)

where fD,d = f0 + kr
fs

(dD + (D − 1)/2) is the effective center frequency for the data segment.

In deriving Eq. (6.17) the small angle approximation is applied multiple times; however,

the effect on the final image is small because the approximation is applied locally to each

pixel rather than the entire beam. Furthermore, the initial matched filtering includes all

the generality of the time-domain correlation processing, and this derivation is only for the

interpolation method. Using Eq. (6.17) we derive several interpolation methods as described

in the following.
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6.3.1 Nearest neighbor interpolation

Nearest neighbor interpolation results from solving Eq. (6.17) for I
(C,D)
(c,d) (r′, φ) and

ignoring the amplitude of the Dirichlet kernel is written as

I
(C,D)
(c,d) (r′, φ) ≈ I

(C,D)
(c,d) (r, φ)C exp

{
−j 4π

c0

(
fD,dδr − (δ2

r + 2rδr)
kr
c0

)}
. (6.18)

The nearest neighbor interpolation simply consists of finding the nearest neighboring value

and applying a phase factor to account for the range difference.

6.3.2 Higher order interpolation

For better interpolation multiple points may be used with a least squares approach.

The expression in Eq. (6.17) can be used with any r and δr to describe a number of points;

however to ease the calculation we manipulate Eq. (6.17) as follows
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(
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(6.19)
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In this form, we can write an expression for multiple points in matrix form as
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...
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+N ,

(6.20)

where P is the order of the interpolation schemed and N is a noise term that includes the

approximation error and the contributions from other targets in the imaging scene. We

use the system of equations given in Eq. (6.20) to generate an interpolation scheme by

solving Eq. (6.20) for the least squares solution. (Alternative solutions may be used, but

least squares is simple and gives a unique closed form solution). For a standard system of

equations described by Ax = b, the least squares solution is given by the Moore-Penrose

psuedoinverse for overdetermined equations and is written as

b = (AHA)−1AHx, (6.21)

where the superscript H denotes a Hermitian transpose. Using Eq. (6.21) with Eq. (6.20) a

multiple point interpolation scheme can be written as
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(6.22)

In this form note that the complex exponential in the numerator summation effectively shifts

the image signal to base band while the complex exponential outside of the summation shifts
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the signal back so that the recursive sum can continue. Equation (6.22) represents a trun-

cated Dirichlet interpolation, which gives the idea that the interpolation can be accomplished

via FFTs; however, because the interpolation points are not equally spaced and the full sub-

image may not contain the full support of the Dirichlet kernel, a simple application of an FFT

followed by a zero padded IFFT is not sufficient for the desired interpolation. Fortunately,

both of these challenges have known solutions. The former challenge is addressed by the

Chirp-Z transform [63] and the latter by the NERFFT [30]. It is likely that a combination

of the two algorithms could overcome these challenges, but because we have used a small

angle approximation in developing this scheme it may be more important to keep the order

of the interpolation small in order to minimize the approximation error.

6.3.3 Modified polynomial interpolation

In the form described by Eq. (6.22) the phase correction is separate from the mag-

nitude interpolation. By processing the first stage of the images at a higher density than

required to maintain the signal integrity, we increase the number of samples within the main

lobe of the Dirichlet kernel. Because the main lobe of the Dirichlet kernel is smooth the

interpolation of the kernel main lobe can be performed with any traditional interpolation

method, which can be much more computationally efficient than Dirichlet interpolation. A

custom spline interpolation can be calculated to improve the accuracy using the main lobe of

the Dirichlet kernel. However as we show later, traditional spline interpolation methods are

sufficient when paired with upsampling the initial stage of the DFBP, which has the effect

of zero-padding the processing.

6.3.4 Polar coordinates

The major task of factorized backprojection methods is the interpolation of lower

resolution images onto higher resolution grids as shown for polar coordinates in Fig. 6.1.

The interpolation can be performed on rectangular grids, but because the parameters of the

Dirichlet kernel are related to the range, it can be more efficient to generate the images in

polar coordinates so that interpolation to higher resolution images is easily accomplished.

In DFBP we must account for the range change, as shown in the previous section. In this
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section we describe the polar grids and how the grids can be calculated while accurately

accounting for the non-linear flight path of the platform. Because there are many levels of

sub-apertures, in the following discussion we refer to the sub-aperture to be generated as the

aperture and the sub-apertures that are used to generate the higher resolution aperture as

sub-apertures.

The polar grids used for interpolation are shown in Fig. 6.1. A polar grid is equally

Figure 6.1: Example polar geometry for merging two sub-apertures (red and blue) to a higher
resolution aperture (gray) in DFBP.

spaced in azimuth angle and range from a chosen reference point and axis. The mean of the

sub-aperture positions is selected as the center of the polar grid for the aperture to be created

because it is the approximate phase center for new synthetic aperture. The orientation of

the grid is chosen to be parallel to the line between the first and last sub-apertures.

The generation of a higher resolution image is accomplished by interpolating each of

the lower resolution images to a higher resolution grid. This involves calculating the polar

coordinates of the higher resolution images in each of the sub-aperture images’ reference

frame. In the case of nearly linear flight where the sub-aperture centers and their respective

reference axes lie on a line, the polar coordinates can be found using the law of cosines as

described in [60]. The geometry for this simplified case is shown in Fig. 6.2. The range is

given by

rα =
√
α[m,n]2 + r2 − 2α[m,n]r cos(π/2− ψ), (6.23)
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where α is the distance between the new aperture center and the sub-aperture, r is the

range from the aperture center, rα is the range from the sub-aperture reference frame. The

azimuth angle from the sub-aperture reference is given by the law of sines as

sin (π/2− ψα) = r
sin
(
π
2
− ψ

)
rα

, (6.24)

which can be rewritten as

cos (ψα) = r
cos (ψ)

rα
. (6.25)

Thus the angle is given by

ψα = cos−1

(
r

cos (ψ)

rα

)
. (6.26)

Figure 6.2: Simplified geometry for a linear aperture

For more general trajectories the topography of the scene must be accounted for in

order to accurately focus the imaging scene. To account for the topography with a polar

grid, the polar coordinates are transformed into Cartesian coordinates as mentioned in [64];

however, the grid spacing remains equally spaced in range and azimuth. The transformation

of the two dimensional polar coordinates to three dimensional Cartesian coordinates is non-

linear, and when scene has significant topography, the mapping is not unique. (The case
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of non-unique mapping results in what is referred to as layover in the literature). In the

case of a planar imaging surface, a closed form expression can be found by the intersection

of the range sphere, Doppler cone, and imaging plane. Ignoring layover areas, a greedy

algorithm can be used to solve for the locations of a general surface, using a piecewise planar

surface model to initialize the algorithm. Once the Cartesian coordinates for the grid have

been found, the distances from each of the sub-aperture images can be done in Cartesian

coordinates to the new polar grid.

As demonstrated by the FFBP methods, the use of a polar coordinate system can

greatly reduce the computational burden. But as described in this section, in order to

account for non-linear motion, the computational advantage of polar coordinates is greatly

reduced because the image must be transformed into cartesian coordinates.

6.4 Implementation

The implementation of DFBP can be accomplished in many different ways for various

criteria. The main decision is in the selection of the coordinate system and interpolation

methods. In this section we describe and implementation using cartesian coordinates. The

cartesian coordinate implementation has the advantage of easily accounting for the topog-

raphy and non-linear motion of the aircraft, while a polar coordinate version could be more

computationally efficient for nearly linear flight paths. A combination of these two imple-

mentations is possible, potentially resulting in a fast and accurate algorithm for flight paths

that are nearly linear for short sections. The recursion relation set by Eq. (6.6) gives a

framework for either implementations. After describing how Eq. (6.6) is implemented, we

describe some key aspects of the implementation in order to achieve reasonable accuracy and

run-time performance.

The implementation for the DFBP is outlined in the non-executable Python code in

Algorithm 2. The DFBP process follows by taking the full data and recursively splitting the

data into K azimuth data sections and L range segments until the data segments are each K

by L in size. At the base case full correlation processing is performed as described by Eq. (6.2)

to HKK by HLL pixels, where HK and HL are factors that increase the pixel spacing of

the initial grid. Upon return of the recursion each sub-resolution image is interpolated to a

81



Algorithm 2 Non-executable Python code for Dually Factorized Backprojection.

1 def dfbp(data, pos, patch, K, L, upK=4, upL=8, m0=0, n0=0):
2 M,N= data.shape
3 if data.shape == (K,L):
4 # base case: correllation processing
5 subpatch= patch.interp(M*upK,N*upL))
6 subimg, subcenter= correlationProcessing(subpatch, data,
7 pos, m0= m0, n0= n0 )
8 return subimg, subcenter, subpatch
9 #recursive case

10 C= int(M/K)
11 D= int(N/L)
12 for m in range(K):
13 for n in range(L):
14 subimgs[m,n], subcenters[m,n], subpatchs[m,n]= dfbp(
15 data[m*C:(m+1)*C, n*D:(n+1)*D],
16 pos, patch, m0= m0+m*C, n0= n0+n*D )
17 # interpolate and add the images together into a new patch
18 newcenter/= K * L
19 newpatch= patch.interp( subimg[0,0].shape * [K,L] )
20 img= zeros( newpatch.shape[:2], dtype=complex)
21 for m in range(K):
22 for n in range(L):
23 upsubimg =sarinterp(subimgs[m,n], n0+n*D, D,
24 subcenters[m,n], subpatchs[m,n],
25 newpatch)
26 img+= upsubimg
27 return img, newcenter, newpatch
28

29 def sarinterp(img, n0, D, center, oldpatch, newpatch):
30 fd= calculateCenter( n0 , D )
31 oldR= sqrt( sum( (center − oldpatch)**2 ) )
32 oldphase= calculate phase( fd, oldR )
33 newR= sqrt( sum( (center − newpatch)**2 ) )
34 newphase= calculate phase( fd, newR )
35 return (newphase**−1) * interpolate( oldphase * img )

higher resolution by the factors K and L and the interpolated images are combined. The

combined image is then returned to the parent process.

6.4.1 Factorization step sizes

The factorization step sizes K and L have a significant effect on the runtime and

accuracy of the processing. This is analogous to how the factorization size, or “radix”, of

an FFT implementation can have a dramatic effect on performance. Similar to the cur-
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sory analysis given in [65] the factorization K = 2 maximizes the speed-up factor given by

Eq. (6.7); however, like the selection of an optimal FFT radix, there are many other de-

tails that must be considered to identify the optimal factorization [66]. For example, the

initialization of the interpolation method was not considered as a computational cost in the

analysis in Section 6.2.1 but it is not insignificant. Also to minimize the error due to the

small angle approximation used in the interpolation stage, it is advantageous to process the

range direction faster than the azimuth direction. Furthermore, the shape of the data is

not typically square and so the factorization steps differ at some point in the processing.

A full analysis of the factorization is beyond the scope of this work, but in practice it has

been found that factorization step sizes of K = 2 and L = 4 perform well. It is expected

that similar to the FFT, optimal performance is found with both compile-time and runtime

optimizations.

Also note that in the analysis, the data subsets are assumed to be of equal size but

that this is not a limitation of the method. In the implementation of the method, the data

subsets may differ in order to accomodate non-rectangular data sets as well as cases where

M and N are not factorable by small integers.

6.4.2 Image surface interpolation

At each stage of the processing, the image is progressively generated at a higher

resolution. For the Cartesian coordinate implementation the grid is a representation of the

imaging surface. We implement the interpolation with a rectangular bivariate spline with

three knots on each side. In order to minimize the runtime of the grid interpolation the

interpolation function is “memoized”, meaning the results of the interpolation are saved so

that on subsequent DFBP calls for the same stage of processing, the interpolation of the

grid is not recalculated.

6.4.3 SAR data interpolation

For the cartesian implementation, the SAR data is interpolated with the modified

polynomial interpolation without consideration for the shape or orientation of the Dirich-

let kernel. This makes the interpolation easy to implement, but the interpolation error is
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significant if the samples are spaced too sparsely. Thus it is critical to upsample the initial

image grids. Also because only the main lobe of the Dirichlet kernel is smooth, the number

of useful knots in a polynomial interpolation method is limited by the upsampling factors.

An advantage of the polar formatting is that the calculation of the range and the

phase terms are identical for all of the range lines in a sub-resolution image as well as for

each of the sub-resolution images when the flight path is nearly linear. Thus in the range

interpolation, the square root and exponential calculations are negligible.

6.4.4 Multi-look image generation

The generation of multi-look images is important for many SAR applications. Among

many uses, multi-look images can be used to identify moving targets and reduce speckle. As

shown in [67] sub-azimuth beam images can be performed simultaneously in traditional

backprojection; however due to the structure of the DFBP this is not feasible for stripmap

SAR. The sub-azimuth images can be generated by running the DFBP with several different

azimuth windows. For example, to generate four independent sub-aperture images the DFBP

is run with four azimuth windows equally spaced in the full SAR beamwidth, each having

only a quarter of the full azimuth beamwidth. Alternatively another form of multi-looking

can be applied in which the image is generated at the maximum azimuth resolution and then

adjacent pixels are used similarly to the adjacent beam images.

6.5 Simulation

To demonstrate the effectiveness of the DFBP, we simulate a UHF radar (800MHz

center frequency) with 500MHz bandwidth and aircraft velocity of 150 m/s similar to the

simulation in [58]. Figure 6.3 shows the reconstruction of a simulated scene with a single

point target with four time-domain algorithms. Figure 6.3d is processed with correlation

processing, which provides the ideal image, but has a tremendous computational burden.

As seen in Fig. 6.3c the impulse response function for the DFBP is nearly identical to the

correlation processing. For comparison the image processed using traditional backprojection

using the stop-and-hop assumption and using the UWB correction from [58] is shown in

Fig. 6.3a and Fig. 6.3b respectively.
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Figure 6.3: Single target response of an UWB wide-beam width SAR using (a) the stop-
and-hop approximation, (b) the UWB correction described in [58], (c) the DFBP, and (d) full
correlation processing.

6.5.1 Performance evaluation

If the interpolation and correlation processing stages are equally complex, the speed-

up achievable by the DFBP formulation is given by the ratio of the operations required by

correlation processing and the DFBP; however, due to the simplicity of correlation processing

the speed up is only achieved for large images. In order to evaluate the speed-up achieved, a

larger image area is simulated as shown in Fig. 6.4. The speed-up achieved is dependent on

the product of the upsampling factors as shown in Fig. 6.5a. On the other hand as illustrated
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Figure 6.4: Example large simulation.
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Figure 6.5: Speed-up and maximum error of the DFBP implemenation in cartesian coordi-
nates over correlation processing as a function of the upsampling factors.

in Fig. 6.5b, the error of the reconstructed image lowers when the increase of the upsampling

factors is balanced.

86



6.6 Summary

This chapter describes the DFBP, a novel SAR image formation algorithm based on

factorizing correlation processing in slow-time and fast-time. The method fully accounts

for the motion of the antenna during a pulse. The motion of the aircraft is not restricted

to straight paths, and the algorithm can be directly applied to non-linear flights including

circular SAR. Furthermore, the algorithm is suitable for ultra-wide-band ultra-wide-beam

SAR systems. This work generalizes the FFBP, and like FFBP methods, theoretically, the

computation order the algorithm is on nearly on par with frequency domain methods. The

effectiveness of the algorithm is demonstrated via simulation of a UWB SAR system, and

it is shown that the difference between the DFBP and full time-domain correlation can be

made negligible with appropriate upsampling.
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Chapter 7

Conclusion

The chapters of this dissertation address some of the challenges and opportunities of

operating SAR on small UAVs; however this work is also very applicable to manned and

satellite based SAR systems as well. Throughout this work, careful consideration has been

made for ultra-wide band SAR. Chapter 1 introduces the work of this dissertation, and

Chapter 2 provides the background of SAR imaging necessary to understand the following

chapters. Chapter 3 presented the design and implementation of a SAR backprojection pro-

cessor that takes into account all of the parameters necessary to produce high-resolution,

radiometrically accurate stripmap SAR images from a UAV. Careful attention in the imple-

mentation was given to achieve real-time performance utilizing the unique architecture of

a GPU. Chapter 4 explored the requirements for estimating topography from a single SAR

channel, extending the spectral analysis techniques used in spotlight SAR to stripmap SAR,

and it was found that the motion requirements are impractical for operation from fixed wing

aircraft. In Chapter 5 a novel autofocus method was presented that estimates three dimen-

sional motion parameters that improve the image focus. This is accomplished by extending

mapdrift autofocus methods to three dimensions, using a novel forward model for the relative

shifts induced by motion errors. By estimating motion parameters, the autofocus method

can correct for both errors in magnitude and phase, which is particularly important for UWB

SAR. Finally, Chapter 6 presented the Dually Factorized Backprojection method, which is

a generalization to factorized backprojection methods and provides motion compensation

during a pulse. Much of this work was conducted to support the Characterization of Arctic

Sea Ice Experiment (CASIE), and the appendices provide substantial contributions for this

project as well, including: 1. My work in designing and implementing the digital receiver

and controller board for the microASAR which was used for CASIE. 2. A description of how
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the GPU backprojection was used to improved the CASIE imagery. 3. A description of a

sample SAR data set from CASIE provided to the public to promote further SAR research.

7.1 Contributions

In greater detail, the contributions of this dissertation are summarized as follows:

7.1.1 Backprojection for UAV operation

Traditional frequency domain SAR processing algorithms fail to fully compensate for

the motion of a small UAV. While traditional backprojection processing can fully compen-

sate for the motion pulse to pulse; motion during the pulse is neglected resulting in image

distortion. This work extends work by Ribalta [4] and Zaugg [5] to ultra wide-band SAR in

order to account for linear motion of the aircraft during a pulse.

The significant motion of the aircraft experienced by a UAV causes some pixels in an

image to be reconstructed from more samples and, due to gain variations, greater contribu-

tions from some pixels than other pixels. This results in varying intensity across an image.

In order to remove the variation of intensity, a compensation factor is derived based on the

radar equation and the backprojection kernel that results in a calibrated σ0 image. The

compensation factor is a summation of the product of the apodization window weighting,

the antennae gains weightings, and the propagation loss weighting for each pulse, and can

be calculated along side the backprojected image. This compensation factor allows for the

generation of calibrated and radiometrically accurate images.

7.1.2 Real-time GPU implementation of backprojection

While backprojection imaging provides superior focusing, it has been avoided in the

past due to its high computational cost; however, in many operations the backprojection

computation can be performed in real-time with the use of modern GPUs. While other

researchers have provided GPU implementations, Chapter 3 describes an implementation of

real-time backprojection on an NVIDIA GPU that is appropriate for UAV stripmap SAR,

and provides a novel implementation of the NERFFT utilizing the GPU texture cache,
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providing a fast and accurate reconstruction of the SAR image scene. The performance of

the GPU backprojection processor is faster than real-time for the CASIE data.

7.1.3 Exploration of cross-track single antenna interferometry

It was suggested that it may be possible to use sub-aperture images from different

altitudes along the aircraft flight path with oscillatory motion, similar to the CASIE flights,

to perform interferometry and infer the topography of the sea ice. Chapter 4 explores this

proposal and extends the spectral analysis developed for traditional spotlight SAR interfer-

ometry [13,38] to backprojection images and determines the requirements for single antenna

interferometry to infer topography. The requirements for coherence between two SAR im-

ages is clarified, and it is shown that the requirements for single antenna interferometry are

impractical for a fixed wing aircraft.

7.1.4 Three dimensional mapdrift autofocus

The accuracy of the available motion measurements for an aircraft flight limits the

ability to properly focus a SAR image. This is particularly true for small UAVs where large

inertial navigation units cannot be used. In order to improve the focus of the image, the

autofocus method presented in Chapter 5 estimates the motion errors in three dimensions in

order to improve the focus of the image. This extends traditional mapdrift methods to three

dimensional motion errors. This method is particularly useful in UWB SAR imaging, where

the amplitude errors caused by the motion errors are as significant as the phase errors.

7.1.5 Dually Factorized Backprojection

As the length of an LFM-CW pulse is extended, even the linear motion approxima-

tion during a pulse leads to image distortion. Chapter 6 describes a novel factorization of

correlation processing in both range and azimuth. We call this method the Dually Factorized

Backprojection method, because it generalizes factorized backprojection methods by factor-

izing in fast-time as well as slow-time. This leads to a fast and accurate SAR processing

method that accounts for general motion during the pulse.

90



7.1.6 Characterization of Arctic Sea Ice Experiment

The previously described work represents the main contributions of this dissertation,

but because much of this work was developed in connection to CASIE, the appendices pro-

vide a substantial contribution as well. Appendix A describes how the GPU backprojection

was used with the CASIE data to greatly improve the imagery. Appendix B is a descrip-

tion of a sample CASIE SAR data set and example processing methods published on the

BYU MERS website. This is one of the few publicly available SAR data sets, and to our

knowledge the only available dataset that is from an LFM-CW SAR or collected on a UAV.

Finally Appendix C presents my work in designing and implementing the digital receiver and

controller sub-system for an LFM-CW SAR. This FPGA based system is highly configurable

and has been used for a variety of operations including airborne, UAV, and land based.

7.2 Suggested future research

While working on the research described in this dissertation many other novel research

avenues were identified, and the following are suggested for future work:

• This work shows that modern GPUs can be used to perform backprojection processing

in real-time in many cases, but there remains a need for more efficient algorithms

because the order of the backprojection computation is higher. As the number of

image pixels or samples increases the number of operations required by backprojection

increases significantly faster than required by Fourier domain methods. While fast

factorized backprojection methods have the same big-O complexity, the Fourier domain

methods still remain significantly faster. In order to design a SAR processor that is

both efficient and accurate it is likely that hybrid methods can be designed that use the

Fourier domain methods when appropriate and use time domain methods to combine

lower level images into the final product.

• While it was shown in Chapter 4 that the topography of a scene cannot be estimated

using interferometric techniques from a single fly-by, single beam SAR, because un-

known topography of a scene results in defocus of the image from a non-straight flight

path, it may be possible to infer the topography using autofocus techniques. In the case
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that the flight path can be accurately approximated as piecewise linear, topography es-

timation could use stereometric techniques. However, the stereometric techniques and

analyses would need to be extended because stereometry has typically been performed

with either parallel or perpendicular flight paths [54].

• In computer vision it is known that while two cameras with known separation allow for

the three dimensional estimation of a object, with three cameras both the position of

the object and the cameras can be estimated. Similarly autofocus and interferometry

might be combined to estimate both the topography of the scene and the motion of

the platform. Because the phase difference of properly focused SAR images is near

zero [68], a combination of an along-track and multiple cross-track baselines might

allow for both motion errors and topography to be estimated.

• What waveform a radar should transmit has been an ongoing question since the early

beginnings of radar imaging. While the LFM-CW radars have many attractive features

including high-resolution and low power and that the feed-through component can be

filtered off in analog hardware, there are other signal modulation schemes that are often

desirable. For example in some cases it may be desirable to use a communications link

as the transmit waveform, or a more general pseudo-random waveform may be desired

due to its thumbtack ambiguity function and because it would be more difficult for

an outside observer to detect. A radar system designed along the same design as the

recently proposed full-duplex radio [69] could allow for arbitrary waveform selection.

• Motion compensation for bistatic SAR is even more necessary for proper focusing of

the SAR image than it is for monostatic SAR, and the DFBP could be modified to

enable improved focusing of bistatic SAR images.

• While pseudo random waveforms have many desirable features, many of the features

such as the thumbtack ambiguity function require that the image be processed with

correlation processing, which is extremely computationally expensive. It is likely that

the DFBP can be extended to some forms of pseudo-random waveforms.
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7.3 Closing remarks

The field of SAR imaging is an exciting field of research, and is greatly expanding

with developments including the contributions of this dissertation. Furthermore, as the

suggested future work describe, the field is ripe for many contributions for many years to

come. To help support future work, we provide a sample data set of real LFM-CW SAR

data from CASIE with example processing code to the public at http://www.mers.byu.

edu/microASAR/CASIE_sample/
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Appendix A

Improved Processing of the CASIE SAR Data

Working with real data commonly brings unforeseen challenges. This appendix
presents methods used to improve the processing of the data collected as part of the Charac-
terization of Arctic Sea Ice Experiment (CASIE). During 31 flight hours at altitudes ranging
from 1000 to 1500 feet, it carried the C-band (5.4 GHz) microASAR, a small LFM-CW SAR,
which collected data over most of this period. The microASAR design and its role in the
CASIE09 mission have been well described in [6, 32]. Limitations in the motion measure-
ments stored with the microASAR data during the CASIE09 mission originally precluded
full motion compensation; however, motion data collected for other CASIE sensors can be
employed to improve the SAR image focus and calibration.

The 160 MHz bandwidth microASAR is an LFM-CW SAR operated in a bistatic
antenna configuration, where the transmit and receive lines are continuously employed. Due
to the simultaneous transmit and receive, the received signal is contaminated with a strong
signal (feed-through) of the transmit signal due to the proximity of the transmit antenna.
To suppress the feed-through component, the received signal is “de-chirped” by mixing the
received signal with the transmit signal, followed by a high pass filter. This is effective in
suppressing feed-through to enable digital recording of SAR data. However, the residual
feed-through component can be exploited to estimate the system time delay. In addition,
the nadir return can be used to improve the height estimate and remove GPS altitude
biases. Coupling these estimates with the time-aligned motion data enables better SAR
image focusing and calibration. This appendix summarizes how these estimates are made
and how they are used in processing the CASIE09 data to improve SAR image quality and
accuracy.

A.1 CASIE focusing

The microASAR images were originally formed using the Range Doppler Algorithm
(RDA), which provided good results considering the relative sparsity of the GPS position
data that was included in the microASAR data stream. However, the particular flight
characteristics of the UAS during CASIE09 unexpectedly caused degradation of the overall
SAR image quality. Fortunately, an alternate source of higher-rate GPS and attitude data,
recorded for other sensors on the CASIE09 platform, became available. To take advantage
of the attitude and position data, an algorithm to temporally align it with recorded data is
developed.
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A.1.1 Motion measurement alignment

The original GPS data recorded with the SAR data was synchronized with a software
interrupt which introduced some variability in the time alignment of raw SAR data and the
GPS positions. After some experimentation, it was determined that sufficient time accuracy
can be obtained by linear regression of the PRF and GPS time tags and then interpolating
the GPS data to the start of each LFM chirp. In the initial regression, the average time-
delay between the recorded SAR data and the GPS time tags is chosen by visually matching
altitude changes in the GPS data to the nadir line in the SAR range compressed data. Fine
tuning of the alignment is accomplished by minimizing the entropy of a small image section
using a range of values near the visual alignment. The new motion data is then interpolated
based on the interpolated GPS time of each LFM chirp. To further enhance the signal time-
of-flight precision, thereby improving the image focusing, estimates of the system cable delay
and the range to nadir are extracted from the SAR data.

A.1.2 Estimating the system delay

The system delay includes the time delay due to the cables in the transmit and receive
lines, as well as the time delay caused by the RF components of the SAR system. The cable
delay is usually estimated by the length of the cables. However, the RF component delay
exhibits some variation with temperature. In this case the system delay can be estimated
from the data collected during the flight using the residual feed-through.

The transmit feed-through component is dominated by the signal coupling from the
transmit antenna into the receive antenna over the fixed, short distance separating the
antennas. In the dechirped data, this small distance shows up as a low-frequency sinusoid.
This signal component can be isolated using a low-pass filter. The sinusoid frequency is
related to the measured antenna spacing and the system delay by the chirp rate. Hence, the
system delay can be computed from the estimated frequency of the dechirped feed-through.

Conventional FFT-based methods for estimating the feed-through are limited by the
range resolution of the SAR system (about 1m); however, the feed-through component is
dominated by a single sinusoid so it can be accurately estimated with much finer resolution
using the MUSIC algorithm [70].

Fig. A.1 illustrates the isolated feed-through component and the sinusoid computed
from the estimated frequency. We note that the impulse response of the processing filter
creates an artifact at the start of the signal. To prevent this from adversely affecting the
estimate, the sinusoid fit is made using only the last 85% of the data. As illustrated in
Fig. A.2, the system delay varies somewhat over a flight. Though this variation is small,
estimating this delay and compensating for it in the processing improves the image focus
because the slant range is more accurately determined.

A.1.3 Altitude improvement using nadir return

The quality of the SAR image is impacted by the accuracy of the platform height.
Due to the limitations of the geoid used by GPS, the elevation of the aircraft in reference to
the imaging surface is unknown, but because the CASIE09 flights were all conducted over
open ocean and low-topography sea ice, the platform height can be estimated accurately
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Figure A.1: Plot of the microASAR feed-through signal (line with kink at left) and the
estimated sinusoid (smooth curve).
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Figure A.2: Plot of the feed-through distance estimate over a 4.5 hour in-flight data collection.
The time variation is attributed to the temperature dependence of the RF components.

from the SAR data [20]. Such height estimates can be used to correct for biases in the GPS
altitude measurements. Linear regression is used to estimate the altitude bias error. Prior
to aligning the new motion data, the nadir altitude bias is removed. To minimize noise in
the altitude bias estimates, the bias estimates are first smoothed using a median filter.
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Figure A.3: Two examples of the improved imagery. The left y axis specifies the ground
range in meters, and the right y axis is the incidence angle.

A.2 Results

Using the GPU based implementation described in Chapter 3, over 2000 km of SAR
images were generated. Fig. A.3 shows a sample of the improved images. The flight track
is at the top of the images, with the direction of travel from left to right. Both images were
collected at an average altitude of approximately 450m. The new images have much better
defined ice edges and even though there is considerable aircraft motion, the images are well
focused. We note that the rolloff in the far range is due to lower surface backscatter due to
the incidence angle increase and the reduction of antenna gain.
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A.3 Summary

This appendix has presented the methodology used to improve the image processing of
the CASIE-09 SAR data set. This process has required the application of several estimation
techniques in order to align the GPS data with the SAR data, to account for a time variant
system delay, and to correct for GPS altitude biases. The achieved improvement was made
possible by the GPU backprojection implementation and the accurate alignment of the high-
precision GPS data to the SAR data. The improvement thus made enhances the scientific
research into the characterization of Arctic sea ice.
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Appendix B

Sample BYU CASIE-09 MicroASAR Dataset

B.1 Introduction

This appendix describes a sample SAR data set collected by the BYU/Artemis mi-
croASAR system as flown as part of the Characterization of Arctic Sea Ice Experiment 2009
(CASIE-09). This data set is made available as a public service to the wider community to
further interest in low-cost SAR applications. Sample Matlab scripts to process the data
set into images using both the Range Doppler Algorithm (RDA) and the backprojection
algorithm are also provided.

In the summer of 2009, a small, low power SAR was flown on a small, unmanned
aircraft system (UAS) as part of the Characterization of Arctic Sea Ice Experiment 2009
(CASIE-09) [71] over the Arctic Ocean from Svalbard Island. The goal of the mission was
to measure ice roughness in support of research monitoring ice thickness and ice age. The
C-band SAR instrument, known as microASAR, collected 19.8 hours of high resolution SAR
image data over 32.4 hours of UAS flight time in six UAS flights of varying length. The UAS
was the NASA Sensor Integrated Environmental Remote Research Aircraft (SIERRA) [72].
As configured for operation on CASIE-09, the microASAR [2] collected data to on-board flash
disk for later processing on the ground. The full dataset is considered proprietary. However,
in the interest of furthering the application of SAR systems, a sample raw SAR data set
from this mission is being made available for research. This document briefly describes the
microASAR, the data set, and provides some examples of the processed images.

B.2 MicroASAR and the Sierra UAS

Synthetic aperture radar (SAR) can be a useful tool for sea ice observation, but SAR
sensors have traditionally been large and expensive. The compact microASAR builds on the
design of the BYU microSAR [1], but is a much more robust and flexible system [2]. The
microASAR uses a linear frequency-modulated continuous-wave (LFM-CW) transmit signal
generated by a direct digital synthesizer (DDS). The system is pseudo-monostatic, i.e. it
uses separate transmit and receive antennas that that are placed closely together. This pro-
vides isolation between the transmit and receive channels and enables long transmit chirps
which maximize the SNR while minimizing peak transmit power. The return signal is mixed
down with a frequency-shifted copy of the transmit signal (this is known as analog dechirp),
digitized, and processed with an all-digital final IF stage. Internal filtering minimizes trans-
mit/receive signal feed-through. Raw data is stored to compact flash (CF) disk along with
GPS timing and position data. Using 32 GB CF disks, over two hours of SAR data can be
recorded. Table B.1 provides a summary of the microASAR hardware specifications. For
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the CASIE experiment, the microASAR transmit bandwidth is set to 170 MHz, yielding a
maximum ideal range resolution of approximately 90 cm, although the effective resolution
is reduced in processing. The transmit center frequency is 5.42876 GHz. After hardware
presumming, the effective PRF is 307.292 Hz.

Table B.1: General microASAR Specifications

Physical Specifications
Supply Power < 35 W

Supply Voltage +15 to +26 VDC
Dimensions 22.1×18.5×4.6 cm

Weight 2.5 kg
Radar Parameters

Transmit Power 30 dBm
Modulation Type LFM-CW

Operating Frequency Band C-band
Transmit Center Frequency 5428.76 MHz

Signal Bandwidth 80-200 MHz (variable)
PRF 7-14 kHz (variable with

optional hardware presumming)
Radar Operating Specifications

Theoretical Resolution 0.75 m (@ 200 MHz BW)
Operating Velocity 10-150 m/s
Operating Altitude 500-3000 ft

Swath Width 300-2500 m (alt. dependent)
Collection Time (for 10GB) 30-60 min (PRF dependent)

Antennas (2 used)
Type 2 × 8 Patch Array
Gain 15.5 dB (peak)

3dB Beamwidth 11◦ (Azimuth) × 42◦ (Elevation)
Size 35 × 12 × 0.25 cm

A key goal of CASIE-09 is to provide fine spatial resolution over difficult to access
locations in the high Arctic. Satellites cannot provide the desired simultaneous combination
of sensor types and resolution. Piloted aircraft typically fly too high and too fast to yield
the fine-scale sampling rates and mapping patterns required by our project. UAS-based
measurements can be made at low speed and low altitude in dangerous Arctic conditions
without putting humans in manned aircraft at risk.

In CASIE-09 a microASAR was flown aboard the NASA SIERRA UAS. With a rela-
tively large payload capacity, efficient mission planning software, and in-flight programmable
autopilot, the SIERRA is well-suited for the long-duration missions used in the CASIE-09
experiment. Some of the other sensors on the UAS included two optical cameras, two pyrom-
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eters, an up/down-looking shortwave spectrometer, high-quality inertial measurement unit
(IMU), and a laser profilometer system consisting of two down-pointing lasers, a medium-
quality IMU, and differential-capable GPS receiver [2].

The UAS provided GPS position data via a serial data stream to the microSAR
where it was included in the data storage. During CASIE-09 a video camera was mounted
to view in the same direction as the microASAR, providing optical imagery coincident with
the SAR swath (this data is not included with the sample data set). The UAS was flown at
low altitude, typically between 600’ and 1500’. While the low altitude limits the microSAR
swath width, it also benefits the SAR measurement SNR. The low altitude operation results
in an extremely wide range of incidence angles across the obseration swath.

The processed CAISE-09 SAR images show a variety of surface features from open
ocean to dense pack ice. Features visible in the SAR imagery, as confirmed by the corre-
sponding video, include ridges, rubble fields, brash ice, leads, and melt ponds. A particular
microASAR image is shown in Fig. B.1.

Figure B.1: Sample microASAR image from CASIE-09. Nadir is along the top. The UAS
flew from left to right, viewing the surface to the right of the flight track as viewed from the
aircraft (downward in the figure). The incidence angle varies from zero at the top to well over
72◦ at the bottom of the image. The image has been range compensated. Most of the surface
is covered with ice floes with the dark areas corresponding to open water and melt ponds. The
vertical banding is caused by antenna gain variations due to periodic rolling motion of the
UAS. The image shows an area approximately 3.5 km long by about 1.2 km wide.

B.3 MicroASAR data

The microASAR can be programmed for operation in different modes and resolutions.
For CASIE-09 raw data is divided into 1 min segments and separately processed into multi-
looked image segments typically 3.5 km long in the along-track dimension by 1.2 km wide in
the cross-track dimension. The sample data set made available for public distribution [73]
consists of a 13 sec portion of one of these segments (segment 9, collected on 25 July 2009),
which was arbitrarily selected. Figure B.2 shows a screen shot of a GoogleEarth window
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illustrating the full image segment shown as a georectified image. The sample data set
corresponds to a portion near the center of the image. Due to the low altitude operation,
the far-range is at an extreme incidence angle, and is thus not useful due to low SNR. (This
area appears bright due to range compensation in this image.) The primary observation
swath is defined to be from just off nadir to an incidence angle of about 72 deg. Many of
the images shown later are clipped to this incidence angle range. Note that the surface is
essentially flat and at sea-level for this data set. The average horizontal velocity during the
sample data set collection is 30.1938 m/s at an average height of 346.5029 m.

Figure B.2: Image segment 20090725 9 shown as a backprojected image in GoogleEarth. The
UAS flight track is indicated with the blue path and nadir is along the bottom. MicroASAR-
recorded GPS positions are in yellow. The UAS flew from lower-right to upper-left, viewing
the surface to the right. The incidence angle varies from zero at nadir track near GPS track
to over 72◦ at the top of the SAR image.

For distribution the sample CASIE-09 microASAR data is provided in a single Matlab
“MAT-file”, “flight9 9 sample.mat”, containing arrays for the sampled raw dechirped data
(named “dat”) and the geometry data (named “geom”). Each of the 3885 columns of the
arrays “dat” and “geom” represent the dechirped SAR data and the aircraft location inter-
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polated for each pulse, respectively. The four rows of “geom” are the SAR pulse number,
latitude in degrees, longitude in degrees, and altitude in m.

The following describes microASAR details and settings as used for the CASIE-
09 experiment for the sample data set and how the data can be processed into images.
Additional detail can be found in the sample Matlab processing scripts.

After digital IF processing in the microASAR hardware, the effective sample rate of
the dechirped data is 24.485 MHz. To maximize the SNR for CASIE, the microASAR was
set to use a high rate repeating chirp (i.e., a high PRF) with a LFM frequency ramp rate
of 1.5972563681e12 Hz/s. To reduce the data rate for the CASIE-09 experiment onboard
storage, the microASAR employed hardware presumming, which consists of coherently aver-
aging several sequential pulses together, resulting in an effective PRF of 307.292 Hz (see [3]
for additional detail).

Recall that in an LFM-CW radar range compression can be accomplished by com-
puting a zero-padded FFT of each LFM chirp. (Technically, the microASAR is not strictly
CW, as there are small gaps between the individual transmitted chirps, though this does
not alter the processing.) In range compressing the CASIE microASAR data note that the
start portion (the first 30 samples) of each LFM chirp (for convenience a single LFM chirp
is referred to as a ‘pulse’) should be zeroed to avoid artifacts induced by transient RF sig-
nals caused by the switching of the transmitter. The dechirped pulse length is truncated
to 1702 dechirped samples prior to onboard storage. Note that zeroing and truncation have
the side effect of reducing the theoretical range resolution of the range compressed data to
1.35 m/sample. After zero-padding each chirp to 4096 values and computing the FFT, the
redundant negative frequency half of the range compressed data can be discarded.
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Figure B.3: Magnitude images of the range-compressed sample data set computed by zero
padding and using a 4096 point FFT. Nadir is at the top of the red area and the platform
moves from left to right.
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Figure B.3 shows the range-compressed image created from the sample dataset. Note
that zero padding changes the meters per pixel in the range-compressed image, though the
effective resolution is unchanged. In this image the nadir return occurs at approximately
range bin 800 in this example. Range bins prior to the nadir return (which are in the blue
area at the top of the image) contain no useful information. The primary swath shows as
red and light blue. The internal cabling delay corresponds to approximately 1.2 m. For this
data collection, the platform height offset described in [20] has already been applied to the
GPS altitude data recorded in the geom array.

Each pulse has a unique pulse counter number. Due to limitations of the data storage
system there are occasional missing pulses. These can be identified by gaps in the sequential
pulse counter. For range-Doppler processing such gaps need to be filled (e.g., by interpola-
tion) to avoid introducing azimuth artifacts. See Matlab code for details.

B.4 SAR image formation

To encourage further research and development of SAR imaging techniques, we pro-
vide a Matlab script, “casie sample code.m” that creates focused SAR images of the sample
data set using RDA and backprojection. Note that azimuth compression of an LFM-CW
SAR includes an additional phase term compared to a conventional pulsed SAR system,
see [74] and Chapter 3.

B.4.1 Range Doppler processing

In RDA, a range-dependent azimuth filter is required to minimize aliasing and the
effects of the platform’s rapid attitude variation. An example of a single-look azimuth
compressed image created using RDA without range migration or motion compensation
is shown in Fig. B.4a. To approximately compensate for range roll-off in this image, the
image pixel values are scaled by r3. In addition the images are displayed in Decibels with
an arbitrarily selected grayscale range. No compensation for the antenna gain pattern is
included. Note that the backscatter response from sea ice is incidence angle dependent, but
this not compensated for. In this and following images, the image is clipped to nadir at the
left and an incidence angle of 72◦ at the right.

To optimize the focus when creating the RDA image using the low altitude CASIE
data we find it advantageous to use a hyperbolic azimuth chirp rather than the traditional
RDA parabolic azimuth chirp. A conventional parabolic azimuth chirp Az(m) used for RDA
azimuth compression at range ra can be expressed as

Az(m) = exp

{
−j
(
fcm

2v2

craPRF2 −
2fcv

2m

c2PRF

)}
, (B.1)

where m = [−Np/2..Np/2] is the pulse index where Np is the number of pulses, fc is the
carrier frequency, c is the speed of light, PRF is the pulse repetition frequency, and v is the
along-track velocity. For a hyperbolic version, we define

τ(m) = 2
√
r2
a + (mv/PRF )2, (B.2)
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Figure B.4: Magnitude of the single look (a) and multi-looked (b) RDA images. Note that
the single look image is compressed vertically to display it here. This has the effect of making
the displayed image appear multi-looked and reducing the appearane of speckle.

where the azimuth displacement is mv/PRF and

Az(m) = exp
{
−j
(
2πfcτ(m) +Krτ

2(m)
)}
, (B.3)
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where Kr is the LFM frequency ramp rate. Of course, an appropriate azimuth window
should be applied.

Since the single look azimuth resolution (1/2 the antenna length) is much smaller than
the range resolution, spatially square pixels can be generated by generating an image with
high azimuth resolution and incoherently averaging (multi-looking) pixels in the azimuth
direction to reduce the azimuth resolution and speckle noise. A multi-looked (in azimuth)
image generated from the image in Fig. B.4a shown in Fig. B.4b. There is a reduction in
the speckle level and the increased contrast in the multi-looked image.
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Figure B.5: Georectified RDA magnitude image. (Normally the left few image lines would
be clipped from the image).

Note that Figs B.4a and B.4b are in slant range. Using the multi-looked azimuth
compressed image and the height information an example of a georectified image is shown in
Fig. B.5. This is in cross-track distance, or ground range, i.e. it represents a map view from
above. For this image a simple nearest-neighbor range interpolation is used to convert from
slant range to ground range. The low altitude emphasizes the variations in range resolution
of the ground range image. Note the expected effective resolution loss in range resolution
near nadir.

B.4.2 Backprojection processing

Backprojection is a deceptively simple approach for generating images from raw syn-
thetic aperture radar (SAR) data. SAR backprojection implements the azimuth matched

112



filter for each pixel, and accounts for both range cell migration and the motion of the aircraft.

The time domain backprojection algorithm is an exact algorithm for creating im-
ages from SAR data. The algorithm computes the radar cross-section over a grid of pixels
in ground range on the surface. For a pixel located (x0, y0, z0), the SAR backprojection
algorithm for an LFM-CW radar can be approximately expressed as

A(x0, y0) =
∑
n

S(n, d[n])P (d[n]) exp{−j4π(d[n]/λ− d2[n]Kr/c
2)}, (B.4)

where A(x0, y0) is the complex pixel value (the complex SAR image), λ is the wavelength of
the transmit frequency at the center of the SAR band, d[n] is the distance between (x0, y0, z0)
and the antenna phase center of the SAR antenna (x[n], y[n], x[n]) for pulse number n. The
distance d[n] is defined as

d[n] =
√

(x[n]− x0)2 + (y[n]− y0)2 + (z[n]− z0)2. (B.5)

A range-dependent azimuth window S(n, d[n]), which is pulse index (n) dependent, is in-
cluded in the processing to enable sub-aperture processing and/or reduce azimuth sidelobes.
In Eq. (B.4) P (d[n]) is the range-compressed SAR data interpolated to slant range d[n]. The
summation is over the pulses which for which the azimuth and elevation gain of the antenna
are significant. An image is created by varying the horizontal positions x0 and y0 over a
grid. The height z0 of the surface at (x0, y0) is typically computed from a digital elevation
map (DEM). Since the CASIE-09 images are at the surface z0 = 0.

The challenge of time-domain backprojection is that is computationally intensive;
however it can be parallelized to achieve real-time performance in many cases as described in
Chapter 3. While the implementation of backprojection included in the Matlab code sample
uses Matlab GPU constructs in order to speed up the processing if a GPU is available, the
implementation of the backprojection algorithm provided in the sample code is written for
simplicity and clarity rather than computational efficiency. The implementation includes the
phase term required to compensate for motion of the platform during the transmit pulse for
an LFM-CW SAR as described in Chapter 3.

Single and multi-look images generated using backprojection are shown in Fig. B.6.
Note that the backprojected images are inherently in ground range, i.e. they are georectified.
We note an increase in visible detail in comparison to the images generated with RDA due
to the fact that backprojection accounts for range migration and platform motion.
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Figure B.6: Magnitude of the single look (a) and multi-looked (b) backprojection complex
images. (Note that the single look image is compressed vertically to display it here. This has
the effect of making the displayed image appear multi-looked and reducing the appearane of
speckle.)
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B.5 Example Matlab processing code

The sample data and reference Matlab implementations of the RDA and backpro-
jection algorithm are available at http://www.mers.byu.edu/microASAR/CASIE_sample/,
and are printed here.

1 % (c) Copyright David Long, Brigham Young University, 2011.
2 % All rights reserved.
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % This Matlab script illustrates how to process the BYU CASIE−09
6 % sample data set using the range−Doppler algorithm (RDA) and
7 % time−domain backprojection (BP) algorithm
8 %
9 % Written by Craig Stringham and David G Long, BYU 2011.

10 %
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12

13 % close all, clear all;
14 PLOT=1; % flag to enable plotting of images
15 RUNBP = 1; % flag to enable computation of backprojection
16 updateTime = 5; % time between backprojection processing status updates
17 aresScale = 1; % az resolution scale for BP. values>1 reduce
18 % resolution and computation time
19 USEGPU = 1; % flag to enable use of GPU on capable platforms, zero
20 % value disables use of GPU
21 matver = sscanf(version,'%d.%d.%d');
22 if matver(1) ≤ 7 && matver(2) < 12
23 warning('This version of matlab does not support use of GPU')
24 USEGPU = 0;
25 end
26

27 if USEGPU
28 cgpuArray = @(x) single(gpuArray(x));
29 cgather = @(x) gather(x);
30 else
31 cgpuArray = @(x) x;
32 cgather = @(x) x;
33 end
34

35 %% Set up microASAR SAR and processing parameters
36 c0 = 299702547; % speed of light in the atmosphere (m/s)
37 actual samples=1702; % number of samples/chirp
38 PRF = 307.292; % effective pulse repetition frequency (Hz)
39 azBW=0.1920; % 3dB antenna azimuth beamwidth (rad) (3dB to 3dB)
40 cabledelay = −1.2; % system and cable delay (m)
41 f adc = 24485000; % adc sample rate (Hz)
42 bw = 170000000; % transmit bandwidth (Hz)
43 fc = 5.42876e9; % carrier frequency (Hz)
44 kr = 1.597249139246997e12; % chirp rate
45 fftsize = 4096*4; % size of fft to use for backprojection
46 % range compression
47 N = ceil(fftsize/2);
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48 delrad = c0*f adc/(4*kr*pi); % meters per radian
49 delsamp = delrad*2*pi/actual samples; % meters per real sample
50 delrsamp = delsamp*(actual samples/fftsize); % meters per
51 % interpolated sample
52 max range = c0*f adc/(4*kr); % maximum range without aliasing
53 lambda=c0/fc; % carrier wave length
54 ares = lambda/(2*azBW)*aresScale; % azimuth resolution
55 rres = c0/(2*bw); % slant range resolution
56

57 %% load the BYU CASIE−09 sample data
58 load('flight9 9 sample.mat')
59 numpulses = size(dat,2);
60

61 %% range compress the data using a range window and zero padding
62 % Note that the first 30 samples are set to zero. A Taylor window
63 % with NBar=4, SSL=−226 minimizes range sidelobes, but other windows
64 % can be used.
65 rc = fft(dat.*([zeros(30,1); taylorwin(actual samples−30,4,−26)] ...
66 * ones(1,numpulses)),fftsize,1);
67 % discard duplicated half of the spectrum
68 rc = [rc(1:N,:); zeros(1,size(rc,2))];
69

70 % plot the range compressed data
71 if PLOT
72 figure(1), imagesc(abs(rc),[0 5e4]),
73 title('Magnitude range compressed image')
74 ylabel('range index');
75 xlabel('azimuth index');
76 end
77

78 %% plot visuals of the flight geometry
79 t = (geom(1,:)−geom(1,1))/PRF; % time axis
80 if PLOT
81 figure(2),
82 th(1) = subplot(3,1,1);
83 subplot(3,1,1), plot(t,geom(2,:))
84 title('latitude')
85 th(2) = subplot(3,1,2);
86 subplot(3,1,2), plot(t,geom(3,:))
87 title('longitude')
88 th(3) = subplot(3,1,3);
89 subplot(3,1,3), plot(t,geom(4,:))
90 linkaxes(th,'x')
91 title('altitude')
92 end
93

94 %% project lat lon onto a local tangent plane (northing easting surface)
95 RefLat=mean(geom(2,:)); % select a reference latitude
96 Conv=1852.23 * 60.0; % latitude conversion factor
97 Lconv=Conv*cos(RefLat*pi/180); % longitude conversion factor
98 northing = geom(2,:)*Conv;
99 easting = geom(3,:)*Lconv;

100 z = geom(4,:)−cabledelay ; % correct height by cabledelay;
101
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102 if PLOT
103 figure(1),
104 hold on, plot(z/delrsamp), hold off
105 end
106

107 %% rotate and move the gps data to a local reference
108 rotAngle = ...

−atan2((easting(end)−easting(1)),(northing(end)−northing(1)))+pi/2;
109 cang = cos(rotAngle);
110 sang = sin(rotAngle);
111 l northing = (northing−northing(1));
112 l easting = easting−easting(1);
113 r = cang*l northing−sang*l easting;
114 a = sang*l northing+cang*l easting;
115 %%
116 if PLOT
117 figure(3)
118 plot(a(1),r(1),'gs',r(end),a(end),'rs',l northing(1),l easting(1), ...
119 'gx',l northing(end),l easting(end),'rx'),
120 figure(4)
121 subplot(3,1,1), plot(a−a(end).*(t./t(end))), ...
122 title('azimuth deviation'), ylabel('(m)' )
123 subplot(3,1,2), plot(r), title('ground range deviation'), ylabel('(m)')
124 subplot(3,1,3), plot(z−mean(z)), title('altitude deviation'), ...
125 ylabel('(m)'), xlabel('time index')
126 end
127

128 %% Backprojection Processing
129 if RUNBP
130 disp('Beginning Backprojection processing')
131 % set up grid for backprojection
132 ground range = sqrt(max range.ˆ2−mean(z).ˆ2);
133 y = cgpuArray(([ares:ares:a(end)]−ares/2).');
134 x = cgpuArray([rres+30:rres:ground range]−rres/2);
135 z = cgpuArray(z);
136 z2 = z.ˆ2;
137 % define image grid
138 [X,Y] = meshgrid(x,y);
139 % pre−compute constants in exponent
140 betapic=4*pi*kr/c0.ˆ2;
141 lambda4pi=4*pi/lambda;
142 % define output image and phase arrays
143 img = cgpuArray(single(complex(zeros(size(X)),0)));
144 pphase = cgpuArray(single(complex(zeros(size(X)),0)));
145 % perform backprojection
146 % use clock tick to measure CPU time
147 inittic = tic;
148 updr = inittic;
149 if PLOT
150 figure(10)
151 end
152

153 %% backprojection loop
154 for k = 1:numpulses
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155 ty = Y−a(k);
156 tx = X+r(k);
157 tx2 = tx.ˆ2;
158 D2 = (ty.ˆ2+tx2+z2(k));
159 D = sqrt(D2); % distance from antenna to each pixel
160 % get the azimuth angle estimate
161 mz = sqrt(tx2+z(k).ˆ2).*sign(tx); % can approximate by using ...

mean(z) to lower computation
162 az = atan2(ty,mz); % azimuth angle to each pixel
163 ids = round(D./delrsamp);
164 ids(ids>N) = N+1;
165 pphase = exp(−1i*(betapic*D2−D*lambda4pi)); % calculate the ...

expected phase
166 % multiply and accumulate image value
167 img = img+pphase.*reshape(rc(ids,k),size(ids,1),size(ids,2)) ...
168 .* (abs(az)<(azBW/2)).*exp(−az.ˆ2*30);
169 % plot an updated image
170 tdr = toc(updr);
171 if tdr > updateTime
172 fprintf(1,['%d of %d complete, %fs elapsed, %fs ' ...
173 'estimated\n'], k, numpulses, toc(inittic), ...
174 toc(inittic) * (numpulses−k)/k )
175 updr = tic;
176 %
177 if PLOT
178 dimg = db(cgather(img));
179 dimg(¬isfinite(dimg)) = 0;
180 rangescale = mean(dimg(1:find(cgather(y)−a(k)>0,1, ...
181 'first' ), :), 1 );
182 rangescale = max(rangescale)./rangescale;
183 rangescale(rangescale > 500) = 500;
184

185 dimg = dimg.*(ones(length(y),1)*rangescale);
186 imgMin = prctile(dimg(dimg>0),10);
187 imgMax = prctile(dimg(dimg>0),99.99);
188 set(0,'CurrentFigure',10);
189 imagesc(x,y,dimg,[imgMin imgMax]), %colorbar
190 set(gca,'YDir','normal'), colormap('gray')
191 drawnow
192 title('Single Look BP image')
193 end
194 end
195 end
196

197 %%
198 if PLOT
199 figure(10)
200 imagesc(x,y,dimg,[imgMin imgMax]), colormap('gray')
201 set(gca,'YDir','normal')
202 title('Single Look BP image')
203 xlabel('ground range (m)'); ylabel('azimuth (m)');
204 drawnow
205 end
206 %%
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207 img = cgather(img); % bring the gpuArray back to the cpu memory
208

209 %% create multi−look backprojection image
210 NazLook=4;
211 mimg=zeros([floor(size(img,1)/NazLook) size(img,2)]);
212 for k=1:NazLook:size(img,1)−NazLook
213 kk=(k−1)/NazLook+1;
214 mimg(kk,:)=sum(abs(img(k:k+NazLook−1,:)).ˆ2,1)/NazLook;
215 end
216

217 %% plot a multi look image
218

219 if PLOT
220 dmimg = db(cgather(mimg));
221 dmimg(¬isfinite(dmimg)) = 0;
222 rangescale = mean(dmimg,1);
223 rangescale = max(rangescale)./rangescale;
224 rangescale(rangescale > 500) = 500;
225 dmimg = dmimg.*(ones(size(dmimg,1),1)*rangescale);
226 mimgMin = prctile(dmimg(dmimg>0),10);
227 mimgMax = prctile(dmimg(dmimg>0),99.99);
228 figure(11)
229 imagesc(x,y,dmimg,[mimgMin mimgMax]), colormap('gray')
230 set(gca,'YDir','normal')
231 title('Multilook BP image')
232 xlabel('ground range (m)'); ylabel('azimuth (m)');
233 drawnow
234 end
235 disp('Backprojection processing completed')
236 end
237

238 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
239 %% RDA Processing
240 disp('Beginning RDA processing')
241 rdafftsize = 4096;
242

243 %% RDA processing needs evenly spaced pulses data. Since there are gaps
244 % we first need to fill in the missing pulses. What follows is a simple
245 % but effective interpolation method for the CASIE−09 SAR data.
246 pulsen = geom(1,:)−geom(1,1)+1;
247 dat1 = zeros(actual samples,pulsen(end));
248 dat1(:,pulsen) = dat;
249 dpulsen=diff(pulsen)−1;
250 skips = pulsen(dpulsen 6 0);
251 dpulsen = dpulsen(dpulsen 6 0);
252 for k = 1:length(skips)
253 dat1(:,skips(k)+1:skips(k)+dpulsen(k)) = dat1(:, skips(k) − ...
254 dpulsen(k) + 1:skips(k));
255 end
256 Naz = size(dat1,2);
257

258 %% interpolate the rest of the data
259 t1 =(1:pulsen(end))./PRF;
260 a1 = interp1(t,cgather(a),t1,'spline');
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261 r1 = interp1(t,cgather(r),t1,'spline');
262 z1 = interp1(t,cgather(z),t1,'spline')+cabledelay;
263

264 %% range compress the data
265 % Note that the first 30 samples are set to zero. A Taylor window
266 % with NBar=4, SSL=−226 minimizes range sidelobes, but other windows
267 % can be used.
268 rc1 = fft(dat1.*([zeros(30,1); taylorwin(actual samples−30,4,−26)] ...
269 * ones(1,Naz)),rdafftsize,1);
270 % discard duplicated half of FFT output
271 rc1 = rc1(1:rdafftsize/2,:);
272

273 % compute the slant range per sample
274 rdadelrsamp = delsamp*(actual samples/rdafftsize);
275

276 %% find the mean linear velocity of the aircraft
277 vel = a1(end)./t1(end);
278

279 ran = (0:rdafftsize/2−1)*rdadelrsamp+cabledelay;
280 azm = ([1:Naz]−Naz/2−1)*vel/PRF;
281 % meshgrid az and range vars
282 [AZ RA] = meshgrid(azm,ran);
283

284 disp('calculating azimuth chirp')
285 % conventional parabolic azimuth chirp
286 % M = exp(−j*(fc*2/c0*(AZ.ˆ2./(2*RA))−2*fc*vel*AZ./(c0.ˆ2)));
287 % hyperbolic azimuth chirp
288 tau r=2*sqrt(RA.ˆ2+AZ.ˆ2)/c0;
289 M=exp(−1i*(2*pi*fc*tau r+kr*tau r.ˆ2));
290

291 % azimuth window (rect) based on antenna beamwidth
292 M(abs(AZ) > 0.5*RA*azBW) = 0.;
293 % simple tapered azimuth window
294 azwin=−600.0;
295 M=M.*exp(azwin*(AZ./RA).ˆ2);
296

297 % fft shift to center frequency at origin
298 M=fftshift(M,2);
299

300 % convert azimuth chirp to frequency domain
301 M=fft(M,[],2);
302

303 % Take range compressed data to the range Doppler domain
304 A4=fft(rc1,[],2);
305

306 % Multiply by fft of azimuth chirp to do matched filtering
307 A4 = A4.*conj(M);
308

309 % Finish the process using ifft
310 A4 = ifft(A4,[],2);
311

312 % Apply an approximate range compensation for image display
313 rcomp=(ran').ˆ3;
314 for k=1:size(A4,2)
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315 A4(:,k)=A4(:,k).*rcomp;
316 end
317

318 %% generate a georectified RDA image
319 grange = sqrt(([1:rres:sqrt((max range−2)ˆ2−mean(z1).ˆ2)]).ˆ2 + ...

mean(z1).ˆ2);
320 grange = grange(find(grange>mean(z1)+5,1,'first'):end);
321 gA4 = interp1([1:size(A4,1)]*rdadelrsamp,A4,grange);
322

323 % generate multilook image
324 NazLook=8;
325 C=zeros([size(A4,1) floor(size(A4,2)/NazLook)]);
326 gC=zeros([size(gA4,1) floor(size(gA4,2)/NazLook)]);
327 for k=1:NazLook:size(A4,2)−NazLook
328 kk=(k−1)/NazLook+1;
329 C(:,kk)=sum(abs(A4(:,k:k+NazLook−1)).ˆ2,2)/NazLook;
330 gC(:,kk)=sum(abs(gA4(:,k:k+NazLook−1)).ˆ2,2)/NazLook;
331 end
332

333 imrange = ceil((mean(z1)+1)/rdadelrsamp):floor((max range−2)/rdadelrsamp);
334 %% plot the RDA images
335 if PLOT
336 % display single look image
337 myfigure(102)
338 dA4 = db(rot90(A4(imrange,:)));
339 r1low = prctile(dA4(:),5);
340 r1high = prctile(dA4(:),99.9);
341 azdis = [−vel*t(end)/2 vel*t(end)/2];
342 imagesc(imrange*rdadelrsamp,azdis,dA4,[r1low r1high]);
343 xlabel('slant range (m)'); ylabel('azimuth (m)');
344 title(sprintf('Single look RDA image'))
345 colormap('gray'), %colorbar
346 % display multi look image
347 myfigure(104)
348 dC = db(rot90(C(imrange,:)));
349 rmlow = prctile(dC(:),3);
350 rmhigh = prctile(dC(:),99.99);
351 imagesc(imrange*rdadelrsamp,azdis, dC,[rmlow rmhigh]);
352 %colorbar
353 xlabel('slant range (m)'); ylabel('azimuth (m)');
354 colormap('gray')
355 title(sprintf('Multilook RDA image'))
356 %% plot georectified multilook image
357 myfigure(105)
358 dgC = db(rot90(gC));
359 rgmlow = prctile(dgC(:),3);
360 rgmhigh = prctile(dgC(:),99.9);
361 imagesc(sqrt(grange.ˆ2−mean(z1)ˆ2),azdis,dgC, [rgmlow rgmhigh]);
362 %colorbar
363 xlabel('ground range (m)'); ylabel('azimuth (m)');
364 colormap('gray')
365 title(sprintf('Georectified Multilook RDA image'))
366 end
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Appendix C

Digital Receiver Design for Offset IF LFM-CW SAR

In 2004, the Microwave Earth Remote Sensing (MERS) lab at Brigham Young Uni-
versity (BYU) developed the microSAR, demonstrating a small and low-cost LFM-CW SAR
system [1]. Building on this experience, BYU partnered with Artemis Inc. to develop the
microASAR, a more robust and capable system, that overcomes many of the limitations of
the microSAR design [2]. A key feature of the microASAR design is an oversampled digital
receiver. The oversampling provides three main benefits, namely: the de-chirped signal can
be at an arbitrary intermediate frequency (IF), enabling better RF filtering; quantization
noise is reduced via digital filtering; and the flexibility to enable the SAR to operate in both
de-chirped and pulsed modes.

C.1 Offset IF LFM-CW SAR

The LFM-CW system outlined in Section 2.3 is the basis for the BYU microSAR,
which worked adequately, but it was found that the high-Q filter used to suppress the feed-
through causes distortion to the echo data due to the filter’s long impulse response. This
distortion can be avoided using an offset de-chirp. We term this system an offset IF LFM-CW
SAR.

The flow diagram for an offset IF LFM-CW SAR is shown in Fig. C.1. To generate
the dechirp signal, the transmit signal is first partially mixed down using ωIF and filtered.
This signal is then mixed with the received signal, the resulting difference components are
similar to the ones in the traditional LFM-CW but are at an offset IF. With the signal of
interest at a higher IF frequency, it is easier to find a high-Q filter that has linear phase,
sharp cutoff frequencies, and better suppresses the feed-through.

C.2 Digital IF SAR

The design of the digital receiver for offset IF LFM-CW SAR system can follow
traditional LFM-CW receiver design if another mix down stage is added to mix down the
offset dechirp signal or if the sampling frequency and analog to digital converter (ADC) are
carefully selected to sub-sample the offset dechirp signal; however, improved performance
and flexibility can be achieved when using a high-speed ADC and an FPGA. Choosing an
ADC that can sample the full bandwidth of the received chirp enables pulse mode operation
as well as dechirp operation at an arbitrary IF. Incorporating an FPGA further enhances
the design by providing enough I/O ports to integrate a large number of components and
communication devices. The FPGA provides for various modes of operation. This section
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Figure C.1: A high-level flow diagram for an offset IF homodyne LFM-CW SAR. The received
signal is mixed down with a frequency shifted version of the transmit signal. The resulting
signal is at an offset IF. The higher IF center frequency enables the use of a better filter without
distorting the signal.

describes the principles of oversampling and filtering used in implementing the microASAR.
The FPGA implementation is described in the next section.

C.2.1 Oversampling

When the relative power consumption costs can be neglected and the ADC resolutions
are comparable, it is best to sample the received signal at the highest rate possible to enable
quantization noise reduction. Because the quantization noise is independent of sampling
frequency, sampling the signal at a higher rate spreads the noise spectrum over a wider
bandwidth and thereby lowers the quantization noise power over the signal bandwidth.

Introductory digital signal processing courses often neglect the effects of amplitude
quantization; however, in a LFM-CW system the quantization of the incoming signal is often
the major source of noise. When a sufficiently random signal is quantized at a step size q, it
is equivalent to the addition of uniform white noise in the range of ± q

2
(see [75]). By applying

an appropriate filter after sampling the signal, the quantization noise to signal ratio (QNSR)
is decreased by approximately 3dB for every factor of 2 the signal is oversampled.

Figure C.2 illustrates the SNR benefit available by oversampling. In Fig. C.2a a
simulated LFM-CW echo is sampled at a rate just above Nyquist. The separation between
the signal and the quantization noise is about 64dB. The signal in Fig. C.2b is oversampled
by a factor of approximately 18 with the same number of bits as in Fig. C.2a. The separation
between the signal and noise is now about 75dB. By appropriately applying a bandpass filter,
oversampling enables a 11dB QNSR decrease.
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Figure C.2: Plots depicting the spectrum of the subsampled(a) and oversampled(b) signal
with the respective quantization noise. Note that the oversampled signal has a larger signal to
noise separation of approximately 11dB. Note that the signal spectrum has the same bandwidth
in both plots but the frequency scaling of the plots is different.

C.2.2 Data rate reduction

Once the signal is sampled, the next step is to reduce the data rate (decimate) without
compromising the integrity of the data. There are two steps in the process. The first is to
filter the quantization noise and bring the signal to baseband such that the filtered signal
sampling frequency can be reduced. All of the filters implemented are digital polyphase
filters, which combine the operation of a filter and a decimator enabling a reduction in
FPGA resources. The second step in reducing the data rate is presumming. Presumming
consists of adding sequential echoes together and has the effect of low pass filtering the
Doppler spectrum. Presumming can be used on the microASAR data because the high PRF
used to separate the feed-through and the first target, as explained in Appendix C.1, is much
higher than required by the Doppler bandwidth of the signal.

The order of the presumming and filtering are interchangeable from a signal processing
point of view, but the order greatly affects the memory and hardware requirements of the
implementation, as discussed in the following section. Also it should be noted that after every
signal processing operation the bitwidth of the data path is increased to prevent overflow [76].

C.3 FPGA implementation

In order to achieve the desired system flexibility and high performance obtainable
using the principles described in the previous section, the microASAR digital receiver is
equipped with a 12-bit 500MHz ADC and a Xilinx Virtex-5 FX-30T FPGA. This combina-
tion enables the microASAR to sample the full 200MHz bandwidth of the transmitted signal
as well as operate in various dechirp modes. This section briefly describes the general design
of the FPGA implementation for dechirp operation and outlines the design strategy used.
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Figure C.3: Block diagram of the FPGA implementation. Note that the order of signal data
path can change depending on design parameters.

The general outline of the FPGA implementation is shown in Fig. C.3. The embedded
PowerPC processor on the FPGA is used to control and coordinate the operation of the
complete digital receiver, and most operational parameters can be set by communicating
with the powerPC via ethernet. The normal signal data path goes from the ADC to the
filter subsystem and then through a buffer to the compact flash cards. Alternatively, the
data path can be interrupted and streamed across the ethernet port. The data from the
ADC is immediately broken into two interleaved data paths such that the filter clock rate
can be reduced by a factor of two to ease timing constraints. The two data streams are 180
degrees out of phase with each other and are recombined following the presum stage.

The filter subsystem includes all the filtering, presumming, and decimation steps, and
can be configured for differing operational parameters. In order to handle a large range of
operations and to reduce FPGA resources, the filter subsystem consists of a polyphase filter
followed by the presummer. The polyphase filter reduces quantization noise and limits the
signal spectrum such that the signal can be translated to DC by decimating the digitally
sampled data. For the microASAR this is done by applying a 12MHz wide BPF starting
at the ωIF and decimating by a factor of 20, providing approximately 3.3 bits of increased
resolution. This effectively brings the effective number of bits (ENOB) of the signal equiv-
alent to 16bit ADCs that are only available for lower sampling rates. The presumming is
performed after the filter in order to reduce memory requirements so that presumming can
be computed in on-chip memory.

Alternatively, performing presumming first reduces the multipliers required in filter-
ing. In most cases though, this requires an external high-speed memory, increasing power
consumption and development time. Replacing the single polyphase filter with a polyphase
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filter followed by a mixer and a polyphase low pass filter enables a larger bandwidth to be
stored and the “empty” spectrum due to the distance from the SAR to the nearest target
to be discarded. Also, instead of the mixer and low-pass filter an FFT could be used. Both
of these methods require more FPGA resources and add noise to the signal due to the fixed
point multiplies and sine/cosine lookup tables.

This simple setup minimizes the FPGA resources and can be operated for a variety
of applications simply by varying the PRF. Decreasing the PRF decreases the chirp rate,
compressing the targets in the dechirped data. The analog and digital filters effectively
range gate the dechirped data. So by varying the PRF from 7-14 kHz the SAR can be
operated with altitudes of 5-1000 m, a maximum swath width of 30-2500 m, and a velocity
of 0-150 m/s. For a more detailed explanation see [2]. Some values of these parameters are
obviously impractical for airborne operation, but the microASAR can be used for ground
based systems as well.

C.4 Summary

This appendix describes my work with the design and implementation of the digital
receiver and controller subsystem for the microASAR. Using a high-speed ADC and an
FPGA, allows for the system to be used both for LFM-CW and pulsed SAR in various modes
of operation. With the oversampling design, the dechirped signal can be be at an arbitrary IF
and the quantization noise is reduced with the application of appropriate digital filters. The
images generated from data collected with this system are shown in various chapters of this
work, and they demonstrate that the design and implementation of this system have helped
make the microASAR an effective tool for a variety of scientific and military applications.
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