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ABSTRACT

WIND/RAIN BACKSCATTER MODELING AND WIND/RAIN

RETRIEVAL FOR SCATTEROMETER AND

SYNTHETIC APERTURE RADAR

Congling Nie

Department of Electrical and Computer Engineering

Doctor of Philosophy

Using co-located space-borne satellite (TRMM PR, ESCAT on ERS 1/2) mea-

surements, and numerical predicted wind fields (ECMWF), the sensitivity of C-band

backscatter measurement to rain is evaluated. It is demonstrated that C-band radar

backscatter can be significantly altered by rain surface perturbation, an effect that

has been previously neglected. A low-order wind/rain backscatter model is developed

that has inputs of surface rain rate, incidence angle, wind speed, wind direction, and

azimuth angle. The wind/rain backscatter model is accurate enough for describing

the total backscatter in raining areas with relatively low variance. Rain has a more

significant impact on measurements at high incidence angles than at low incidence

angles. Using three distinct regimes, the conditions for which wind, rain, and both

wind and rain can be retrieved from scatterometer backscatter measurements are

determined.





The effects of rain on ESCAT wind-only retrieval are evaluated. The additional

scattering from rain causes estimated wind speeds to be biased high and estimated

wind directions to be biased toward the along-track direction in heavy rains. To

compensate for rain-induced backscatter, we develop a simultaneous wind/rain re-

trieval method (SWRR), which simultaneously estimates wind and rain from ESCAT

backscatter measurements with an incidence angle of over 40 degrees. The perfor-

mance of SWRR under typical wind/rain conditions is evaluated through simulation

and validation with collocated TRMM PR and ECMWF data sets. SWRR is shown

to significantly improve wind velocity estimates and the SWRR-estimated rain rate

has relatively high accuracy in moderate to heavy rain cases.

RADARSAT-1 ScanSAR SWA images of Hurricane Katrina are used to re-

trieve surface wind vectors over the ocean. Collocated H*wind wind directions are

used as the wind direction estimate and the wind speed is derived from SAR σ◦ by

inversion of a C-band HH-polarization Geophysical Model Function (GMF) that is

derived from the VV-polarization GMF, CMOD5, using a polarization ratio model.

Because existing polarization models do not fit the ScanSAR SWA data well, a recali-

bration model is proposed to “recalibrate” the ScanSAR SWA images. Validated with

collocated H*wind wind speed estimates, the mean difference between SAR-retrieved

and H*wind speed is small and the root mean square (RMS) error is below 4 m/s.

Rain effects on the ScanSAR measurements are analyzed for three different incidence

angle ranges using collocated ground-based Doppler weather radar (NEXRAD) rain

measurements. Compared with the scatterometer-derived model, the rain-induced

backscatter observed by the ScanSAR at incidence angles 44◦ − 45.7◦ is consistent

with the scatterometer-derived model when the polarization difference between HH

and VV polarizations is considered.
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Chapter 1

Introduction

Oceans contain the bulk of the water on Earth and cover approximately 70%

of the Earth’s surface. Since water has a significantly higher heat capacity than air

or rocks, the majority of the thermal energy at the Earth surface is stored in the

oceans; hence the large thermal inertia of the oceans is a key factor in stabilizing

Earth’s climate. Due to the important role of oceans in global energy circulation,

meteorological observations including winds, rain rate, and surface pressure over the

ocean are essential for understanding the global climate and setting up numerical

weather prediction models.

Since conventional observations provided by ships and buoys are extremely

limited and have sparse coverage, space-borne microwave remote sensing instruments,

including scatterometers, provide a better understanding of the global ocean surface

winds. A scatterometer is an instrument designed to provide high quality near-surface

wind estimates over the ocean. The radar backscattering cross-section measurements

acquired by the scatterometer are related to near-surface wind speed and direction.

Current scatterometers cover 90% of the Earth’s surface each day. Microwaves pen-

etrate cloud over and are independent of solar illumination, providing accurate, all-

weather measurements night and day.

Previous and contemporary scatterometers operate in Ku-band and C-band.

The SeaWinds scatterometers on-board QuickSCAT and the Advanced Earth Ob-

serving Satellite (ADEOS II), launched in 1999 and 2003, respectively, are conically

scanning Ku-band (14 GHz) radars. The C-band 5.3 GHz scatterometer mode (ES-

CAT) on European Remote Sensing (ERS) satellite utilizes fixed fan-beam antennas.

ESCAT has a narrow swath (500 km), providing near-surface winds at 50 km res-
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olution [1]. The newly launched Advanced Scatterometer Instrument (ASCAT) on

Metop-A satellite uses a similar design but the swath width is extended to 1000 km.

Sensors, such as synthetic aperture radar (SAR), have been conventionally

used to study coastal processes, currents, and sea ice at high spatial resolution. Over

the ocean, SAR measurements can be related to the near-surface wind velocity using

a model similar to that used in scatterometery. Compared to a scatterometer, SAR

lacks azimuth diversity and thus wind speed and direction cannot be estimated di-

rectly. However, SAR has higher resolution and is thus useful for studying micro-scale

weather events such as rain cells, currents, and tropical cyclones over the ocean.

1.1 Description of the Problem

For fair weather conditions (average sea state and absence of rain), a scat-

terometer backscatter measurement is mainly from wind-driven gravity-capillary waves

(Bragg waves). The normalized radar backscattering cross-section is related to wind

speed and wind direction through an empirical model, known as the Geophysical

Model Function (GMF). Near-surface wind speed and direction can be determined

by inversion of the GMF from radar backscatter measurements. The winds retrieved

by the scatterometers have been shown to be highly accurate in areas with moderate

wind speeds and no rain.

However, in a raining area the wind-induced scatterometer backscatter mea-

surements are altered by rain. Rain has two effects on the scatterometer signal. First,

in the atmosphere the scatterometer signal is attenuated and scattered by the rain-

drops. Second, raindrops striking the water alter the Bragg wave over the ocean,

inducing additional surface backscatter. Since the GMF does not consider the atten-

uation and backscatter induced by rain, the wind estimates in raining areas can be

degraded.

For a Ku-band scatterometer, rain is well-known to be a major factor that

contaminates the wind retrieval process. Globally, rain is estimated to affect be-

tween 4% and 10% of the SeaWinds data [2] [3]. A significant amount of work has

already been peformed to study the rain effects on Ku-band scatterometer measure-
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ment [4] [5] [6]. Huddleston and Stiles developed a multi-dimensional histogram

(MUDH) rain flagging technique for SeaWinds [2]. To improve rain contaminated

wind estimates, Draper and Long developed a new wind/rain GMF accounting for rain

using collocated Tropical Rain Measurement Mission (TRMM) Precipitation Radar

(PR) and SeaWinds measurements. Using the wind/rain GMF, a new method has

been developed to simultaneously estimate corrected wind estimates and integrated

rain rate [7] [8].

Unlike Ku-band scatterometers, however, C-band scatterometer signals are

traditionally considered to be immune to rain. The radar backscattering and atten-

uation by raindrops in the atmosphere is negligibly small in low to moderate rains.

However, recent studies from laboratory experiments and from C-band SAR mea-

surements reveal that the surface effects caused by rain may significantly modify the

total backscatter of the C-band radar signal [7] [9]. Therefore, evaluating the vari-

ous surface effects of rain is imperative for improving the accuracy of C-band wind

estimation in raining areas.

Compared with scatterometers, SAR measurements are more vulnerable to

rain events due to their high resolution. Rain cells can be observed in C-band SAR

images. In the past, several investigations have analyzed the SAR signatures of rain

cells over the ocean. Melshimer et al. [10] analyzed the SAR signatures of rain cells

over the ocean using C- and X-band SAR measurements, showing that rain generally

damps the surface backscatter at low incidence angles and enhances the backscatter

at high incidence angles [11]. However, no quantitative analysis has been made for

C-band SAR measurements.

1.2 Research Contributions

In this dissertation, rain effects on C-band scatterometer and SAR backscat-

ter measurements are modeled. The wind/rain backscatter model is employed to

develop a new wind retrieval method to improve rain-contaminated wind estimates

and provide rain rate estimates. To achieve this goal, space-borne and ground-based

precipitation radar rain measurements are collocated with scatterometer or SAR mea-

3



surements, providing rain observation comparison data. Numerical predicted wind

fields from the European Centre for Medium Range Weather Forecasts (ECMWF) or

Hurricane Research Division (HRD) at the National Oceanic and Atmospheric Ad-

ministration (NOAA) are used in this study as the true near-ocean surface winds.

A low-order wind/rain backscatter model for multiple incidence angles is developed

and validated. The wind/rain backscatter model is shown to be accurate enough to

represent the rain-contaminated radar signal. Based on the wind/rain backscatter

model, a C-band simultaneous wind/rain retrieval (SWRR) method is developed for

incidence angles above 40◦. The SWRR can significantly improve wind velocity esti-

mates and estimate rain rate with surprisingly high accuracy in moderate to heavy

rains. In addition, a recalibration model is developed to recalibrate RADARSAT

ScanSAR data, and wind retrieval is performed using the recalibrated data. The

recalibration model improves the wind speed estimates in hurricanes. Complicated

rain effects on C-band SAR images of hurricane Katrina are quantitatively analyzed

and studied.

Valuable contributions are made by this dissertation in modeling rain effects

on C-band scatterometer and SAR signals over the ocean and improving wind/rain

retrieval from C-band scatterometer and SAR data. These contributions are discussed

in the following paragraphs.

First, by using co-located TRMM PR, ESCAT on ERS, and ECMWF data,

we develop and evaluate a simple low-order wind/rain backscatter model which has

inputs of surface rain rate, radar incidence angle, wind speed, wind direction, and az-

imuth angle. By applying the model to the co-located data set, we demonstrate that

the wind/rain backscatter model is accurate enough for describing the total backscat-

ter in raining areas with relatively low variance. We also show that the rain surface

perturbation is a dominating factor of the rain-induced backscatter. Using three dis-

tinct regimes, we identify under what conditions wind and rain can be retrieved from

the measurements. In regime 1 where rain dominates, only rain information may

be retrieved from the measurements. In regime 3 where wind dominates, only wind

information can be retrieved. In regime 2 where rain and wind are comparable, wind
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and rain information may be simultaneously retrieved from the measurements. In

regime 1 and regime 2, wind-only retrieval methods are inadequate for retrieving the

correct wind information. Therefore, the rain model should be incorporated into the

retrieval algorithm. For incidence angle bins 40◦ to 44◦, 44◦ to 49◦, 49◦ to 53◦, and

53◦ to 57◦, about 0.9%, 1.3%, 1.74%, and 1.67% of all the co-located ESCAT mea-

surements are affected by rain (falling in regime 1 or 2). We also show that rain has

more impact on C-band measurements at higher incidence angles. This study is pub-

lished in the IEEE Transactions on Geoscience and Remote Sensing [11]. Although

the same underlying phenomenological backscatter model is used in both Ku-band

and C-band rain model, the two frequencies are radically different. For Ku-band,

rain atmospheric attenuation and atmospheric back-scattering are dominant while

they are insignificant for C-band rain. Rain surface perturbation dominates the to-

tal rain-induced back-scatter at C-band, which makes the behavior of C-band model

fundamentally different from the Ku-band rain model. The C-band rain model pro-

vides an accurate estimate of rain surface perturbation whereas the Ku-band model

cannot. Furthermore, rain surface effects on C-band signal are much more compli-

cated than Ku-band. For a C-band signal at low incidence angles the total effect

of rain on surface wave spectrum is damping while rain enhances the total surface

backscatter at high incidence angle. At moderate incidence angle, the total rain effect

can be damping and enhancing, varying with rain type, drop size distribution, wind

speed and other parameters. The dissertation analyzes the behavior of rain surface

effects for C-band at various incidence angles and develops a multi-incidence-angle

rain back-scatter model. The dissertation also reveals for the first time that rain can

dominate the C-band total signal which was thought negligible before.

The next contribution of the research is developing a new simultaneous wind/rain

retrieval method for C-band scatterometers. Using collocated TRMM PR, ESCAT

on ERS-1/2, and ECMWF data, rain effects on ESCAT wind-only retrieval are eval-

uated and analyzed. Wind speed retrieved by wind-only retrieval is biased high due

to the rain-induced backscatter. Rain contamination causes the wind direction es-

timates to be biased toward the along-track directions under heavy rain conditions,
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no matter what the true wind direction. Rain effects on the wind-only retrieval vary

with incidence angles. The higher the incidence angle, the more significant the rain

impact is on the wind-only retrieval. To compensate for rain-induced backscatter, we

develop a simultaneous wind/rain retrieval method for a C-band scatterometer for

incidence angle > 40◦ based on a wind/rain backscatter model. Through simulation

and validation with collocated ESCAT, TRMM PR, and ECMWF data, we find that

SWRR can significantly improve wind speed and wind direction estimates in regimes

1 and 2 where rain and wind-induced backscatter are on the same order or rain dom-

inates the total backscatter. In addition, SWRR can retrieve rain rate from ESCAT

measurements. The rain estimates have relatively high accuracy in regimes 1 and 2.

In regime 3 where the wind-induced backscatter dominates the total backscatter, the

accuracy of SWRR-retrieved rain rates is degraded and spurious rain rates may be

derived. SWRR does not perform well when the wind direction aligns with the along-

track direction. In regime 3, the performance of SWRR is close to that of wind-only

retrieval, though it is somewhat noisier due to introduction of a new parameter (the

rain) to the retrieval. Therefore, SWRR wind/rain should only be used when the rain

ratio τ is over a specific threshold. This work has been accepted for publication in

the IEEE Transactions on Geoscience and Remote Sensing. Although the big idea

is similar to Draper’s Ku-band SWRR, the C-band SWRR is totally reformulated

due to different behavior of the C-band rain model, instrument geometry, and noise

model. As a result, the behavior of the two methods are quite different. Ku-band

SWRR retrieves rain with relatively high accuracy, while Ku-band SWRR does not

significantly improve the rain-contaminated wind vectors. On the other hand, C-band

SWRR significantly improves the rain-contaminated wind speed and wind direction,

while the rain estimates are relatively less accurate. Moreover, the dissertation sys-

tematically evaluates the effect of rain on the conventional wind-only retrieval and

analyzes the reason causing these effects, which has never been done before.

RADARSAT-1 ScanSAR SWA images of Hurricane Katrina are used to re-

trieve surface wind vectors over the ocean. Collocated H*wind wind directions are

used as the wind direction estimate. The wind speed is derived from σ◦ by inversion
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of a C-band HH-polarization Geophysical Model Function (GMF), which is derived

from the C-band VV-polarization GMF, CMOD5, using a polarization ratio model.

Because existing polarization models do not fit the ScanSAR SWA data well, a new

recalibration model is proposed to “recalibrate” the ScanSAR SWA images. The co-

efficients of the recalibration model are “tuned” using collocated H*wind surface wind

fields. To validate the SAR-retrieved wind speed, the mean and the RMS difference

between SAR-retrieved and H*wind wind speed estimates are calculated. The mean

of difference is negligibly small and the RMS difference is below 4 m/s. Except for the

influence of rain, the largest errors occur at high wind speed (over 25 m/s), which is

due to the saturation of the GMF. While wind speed estimates over 25 m/s are noisy,

no obvious bias is found, suggesting that the wind retrieval algorithm can work under

hurricane conditions. Using the “recalibrated” ScanSAR SWA measurements, collo-

cated ground-based Doppler weather radar (NEXRAD) measurements and collocated

H*wind wind fields, the complicated rain effects on the ScanSAR SWA measurements

are studied. Rain effects on ScanSAR SWA measurements include atmospheric ef-

fects (attenuation and backscattering) and surface effects. Rain surface effects on C-

band SAR measurements can dominate the surface backscatter in moderate to heavy

rains. For C-band, the rain surface effect varies with incidence angle. Using a simple

wind/rain backscatter model and the collocated data set, we quantitatively analyze

different rain effects on the ScanSAR measurements for three different incidence an-

gle ranges and estimate the model coefficients. Compared with scatterometer-derived

model, the rain-induced backscatter observed by the ScanSAR measurements at inci-

dence angles 44◦ − 45.7◦ is consistent with the scatterometer-derived model, consid-

ering the polarization difference between HH and VV polarizations. While only three

typical rain cells are considered in this dissertation, more rain cells on the ScanSAR

SWA images can be analyzed by the same approach, and a more accurate model

can be developed. This work is soon to be submitted to the IEEE Transactions on

Geoscience and Remote Sensing. High resolution SAR rain modeling is a brand-new

idea which is important for accurate modeling the complicated C-band surface effects

of rain. As mentioned above, rain surface effects on C-band signal include damping
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and enhancing. The high resolution of SAR provides a good opportunity to model

different rain effects on C-band signal separately. It is the first time to quantitatively

model these different effects using collocated SAR measurements and weather radar

data. The results is consistent with the scatterometer-derived model. The disserta-

tion also proposes a new method for re-calibrating SAR measurements in hurricane,

which significantly improves the SAR wind retrieval in hurricane.

1.3 Outline of the Dissertation

This dissertation provides a study of modeling the rain effect on C-band scat-

terometer and SAR measurements, developing simultaneous wind/rain retrieval meth-

ods for a C-band scatterometer, and wind retrieval using SAR data in hurricanes. A

brief outline of each chapter is noted below.

Chapter 2 provides a general background into wind scatterometry and SAR

wind retrieval. An overview of the sensors including, ESCAT on ERS satellite and

RADAR-SAT ScanSAR, are presented. Data processing of NEXRAD measurements

is briefly discussed.

Chapter 3 evaluates the rain effects on ESCAT measurements and develops a

C-band wind/rain backscatter model. The accuracy of the model is validated with

collocated data sets. Three distinct regimes are defined to represent the wind/rain

retrieval performance.

Chapter 4 evaluates the rain-induced errors on ESCAT conventional wind

retrieval. A simultaneous wind/rain retrieval method is developed using the wind/rain

backscatter model in Chapter 3. The performance of the simultaneous wind/rain

retrieval method is evaluated using simulation and collocated data sets.

Chapter 5 develops a recalibration method for ScanSAR SWA wind retrieval

and models the rain effects on ScanSAR data at various incidence angles. Several

rain cells are analyzed in detail.

Conclusions are reached in Chapter 6 and future research is discussed.
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Chapter 2

Background

In order to help the readers to understand the contributions made by this

dissertation, this chapter reviews some fundamentals of wind scatterometry and prin-

ciples of weather radar. This is accomplished by first describing the scatterometer

instrument and the Geophysical Model Function (GMF) relating a measurement of

normalized radar cross section, σ◦ to wind speed and direction over the ocean. Then,

a statistical model of the backscatter measurements and wind retrieval method is

presented. Finally, Doppler weather radar, the TRMM PR radar and rain estimation

are reviewed.

2.1 Wind Scatterometry and Scatterometer

Wind scatterometry is a technique used to estimate near surface wind over

the ocean by radar. A scatterometer is an active instrument designed to measure the

backscatter of the ocean surface, as shown in Fig. 2.1. The scatterometer transmits

electromagnetic pulses to the ocean surface and measures the energy scattered off the

target. The normalized radar cross section, σ◦, is calculated from the return power

using the radar equation [12]

σ◦ =
(4π)3R4

PtG2λ2A
Pr (2.1)

where R is the distance from the scatterometer to the ocean surface, Pt is the power

transmitted, G is the gain of the transmitting antenna, λ is the wavelength of the

electromagnetic wave, A is the effective illuminated area, and Pr is the returned

power. Scatterometer measurements are acquired at moderate to high incidence an-
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gles, between 20 and 60 degrees. At these incidence angles, the main backscattering

mechanism of the ocean’s surface is Bragg resonance from capillary and short gravity

waves, known as Bragg waves. Bragg resonance occurs when the returned signals

backscattered from the ocean waves are added in phase. The condition for Bragg

resonance is written in the form [13]

2L

λ
sin θ = n, n = 0, 1, 2, ... (2.2)

where L is the water wavelength, λ is the radar wavelength, and θ is the radar

incidence angle. Although the resonant power received is insignificant for radars with

a small footprint, the Bragg resonance effect dominates the returned signal for space-

borne scatterometers with a footprint measured in thousands of square meters or

more. The Bragg-induced backscatter is related to the amplitude and orientation of

the small Bragg waves.

For fair weather conditions (average sea state and absence of rain), Bragg waves

on the ocean surface are mainly induced by wind. The wind transfers momentum

into the ocean by forming and sustaining these small Bragg waves. The transfer of

momentum from the wind to the ocean is via the wind stress, which is drag force

per unit area. Under neutral stability conditions, the near-surface wind speed is

related to the wind stress and the wind stress is a function of the amplitude of

capillary waves. The Bragg-induced backscatter can be modeled as a function of

the vector neutral stability wind. Several studies have been made to develop the

function relating scatterometer measurement to vector wind. These studies have

revealed the difficulties in developing a theoretical function to relate σ◦ with wind

speed and direction. Instead, an empirical Geophysical Model Function (GMF) is

used to represent the relationship between wind and σ◦. The GMF may be expressed

as

σ◦ = M(U, φ, θ, f, p) (2.3)
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Scatterometer

Returned energy

Transmitted energy

L

Figure 2.1: Demonstration of scatterometer operation over the ocean surface. Ocean
waves are generated by surface wind.

where U is the wind speed, φ is the relative azimuth angle between the wind direction

and the radar azimuth angle, θ is the radar incidence angle, f is the frequency of

the radar, and p is the electromagnetic polarization of the transmitted signal. The

frequency and polarization are usually fixed for a particular instrument. Therefore,

the GMF is often expressed as

σ◦ = M(U, φ, θ). (2.4)

Two approaches are often used to represent the GMF. One approach uses

a multi-dimensional table to store the empirically-derived data points and interpo-

lates intermediate values. This approach is implemented in deriving the GMF of

the Ku-band scatterometer, SeaWinds on QuikSCAT and ADEOS II. The other ap-

proach uses a functional form to represent the GMF, such as CMOD5 for the C-band

scatterometer ESCAT on the ERS 1/2 satellites. The second approach is used in
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this dissertation. The GMF only considers the wind influence on the backscatter.

However, other factors including sea temperature, salinity, long gravity waves, and

especially rain also affect the relationship.

2.1.1 ESCAT Scatterometer and CMOD5

The scatterometer mode of the active microwave instrument (termed ESCAT)

operated on the European Remote Sensing (ERS) satellites launched by the European

Space Agency in 1991 (ERS-1) and 1995 (ERS-2). ESCAT is a fan-beam scatterom-

eter operating at 5.3 GHz (C-band) VV-polarization. The geometry of ESCAT is

shown in Fig. 2.2. ESCAT processing co-registers the backscatter measurements

onto a rectangular grid of wind vector cells (WVCs). While ESCAT measurements

are sampled at 25 km × 25 km, the effective resolution is 50 km × 50 km. With a

500 km swath, ESCAT has 19 WVCs along the cross-track direction. Ten of these

WVCs correspond to center points of 50 km × 50 km cells spanning the swath. The

other 9 WVCs are placed between these ten WVCS, generating 19 WVCs spaced on

25 km centers. At each WVC, σ◦ measurements of the fore, mid, and aft antenna

beam are provided along with the geometric parameters and noise parameters. To

Satellite
Track

�WVC1 WVC19

500 km

Swath

Mid Beam

Fore Beam
45

135

Aft Beam

Figure 2.2: Measurement geometry for ESCAT on ERS-1/2
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enable sufficient azimuthal diversity, ESCAT has three side-looking antennas with

the beams pointed at angles of 45◦, 90◦, and 135◦ from the satellite ground track

on the starboard side. The incidence angles of each antenna vary across the swath,

between 22◦ and 56◦ for the fore and aft antenna, and between 18.2◦ and 42◦ for the

mid antenna [14]. Figure 2.3 shows the typical incidence angles of the three beams.

ESCAT transmits approximately 5 kW peak power, resulting a high signal-to-noise

ratio.
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Figure 2.3: Typical incidence angles of the fore, mid, and aft beams of ESCAT on
ERS-1/2. Note that the fore and aft antennas have the same incidence configuration.

As mentioned, the GMF developed for ESCAT is based on a functional form to

represent the relationship between σ◦ and vector wind. The latest GMF for C-band

is called CMOD5. The functional form of the CMOD5 model is [15]

σ◦ = B0(1 + B1 cos χ + B2 cos 2χ)1.6 (2.5)
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where B0, B1 and B2 are functions of wind speed and incidence angle, or alterna-

tively, (θ− 40)/25. The coefficients of CMOD5 are estimated using ESCAT measure-

ments and numerical predicted winds from the European Centre for Medium-Range

Weather Forecasts (ECMWF).

Figure 2.4 shows plots of the CMOD5 σ◦ versus relative azimuth angle, χ, for

several values of wind speed and incidence angle. The cos(2χ) dependence on χ can

be found in all the plots. There is also a general trend of decreasing σ◦ for increasing

incidence angle. Figure 2.5 shows plots of the CMOD5 σ◦ versus speed with χ = 45

degrees and θ = 20, 30, and 40 degrees. σ◦ increases as wind speed increases at low to

moderate wind speeds. For wind speeds over 25 m/s, σ◦ saturates. The relationship

between σ◦ and wind speed becomes flat. Therefore, wind retrieval of high winds is

seriously degraded for a C-band scatterometer.

2.2 Wind Retrieval

Once suitable σ◦ measurements are collected, they are used to estimate or

“retrieve” the near-surface wind. The wind retrieval procedure involves inversion of

the GMF given the measurements. As shown in Fig. 2.4, multiple wind speeds and

directions can be mapped to the same value of σ◦; hence a unique wind vector cannot

be estimated from a single σ◦. In order to estimate wind vector from scatterometer

measurements, multiple measurements of σ◦ from various azimuth angles must be

acquired. To visualize the wind retrieval procedure of ESCAT, the locus of wind

velocities that give rise to a single σ◦ for fixed radar incidence and azimuth angles is

plotted in Fig. 2.6(a) for three sets of radar angles representative of simulated data

from the ESCAT scatterometer for WVC 19. These plots are generated by choosing

a wind speed and direction and calculating the σ◦ values using CMOD5. For each

set of radar incidence and azimuth angles, all the wind speeds and directions that

induce the specific σ◦ are plotted as a single curve. As shown in Fig. 2.6(a), the three

measurements without noise from the fore, mid, and aft beams have an intersection

corresponding to the true wind velocity. Due to the upwind/downwind similarity,

there is a near intersection point about 180◦ from the true wind direction. In the
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Figure 2.4: Plots of σ◦ versus relative azimuth angle, χ for various incidence angles
and wind speeds. The incidence angles chosen are θ = 20◦, 30◦, 40◦, and 50◦. The wind
speeds chosen are 5, 15, and 25 m/s.

presence of noise, as shown in Fig. 2.6(b), it is difficult to distinguish the 180◦ alias

from the true wind velocity. Therefore, the wind retrieval process often results in

several possible wind vector solutions, called ambiguities.

In general, the standard wind estimation procedure, known as point-wise wind

retrieval, is based on minimization of an objective function derived from maximum

likelihood estimation (MLE) techniques. The scatterometer measurement can be

modeled as corrupted independent Gaussian noise. The variability of the scatterom-

eter measurement is contributed by two sources. First, the GMF has uncertainties

due to ignoring other factors affecting σ◦ beyond wind velocity. The true σ◦, σ◦t , can
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Figure 2.5: Plots of σ◦ versus wind speed for various incidence angles with χ = 40
degrees. The incidence angles chosen are 20◦, 30◦, and 40◦.

be modeled as a Gaussian random variable with mean equal to the GMF predicted

σ◦, σ◦m,

σ◦t = σ◦m(1 + Kpmv1) (2.6)

where v1 is a standard Gaussian random variable and Kpm is the normalized standard

deviation of the GMF. Second, σ◦t is corrupted by instrument noise and background

noise. This source of uncertainty can be modeled by [16]

σ◦meas = σ◦t (1 + Kpcv2) (2.7)

where σ◦meas is the measured σ◦, v2 is a standard Gaussian random variable, and Kpc

is the normalized standard deviation of the instrument and background noise.

With the above model, the scatterometer measurement, σ◦meas, is a Gaussian

random variable with mean σ◦m and variance ς. The probability of the σ◦ measure-
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Figure 2.6: Visualization of the wind retrieval procedure for data in WVC 19
(θfore/aft ≈ 56.6◦ and θmid ≈ 45.4◦). The intersections of the three curves corre-
spond to the true wind velocity and ambiguities called “aliases”. The arrow in the
plots point to the two major ambiguities. (a) The wind retrieval from measurements
without noise. (b) Measurements with random noise. The true wind speed is 7 m/s
and the true wind direction is 35◦.

ments at a given point, σ̂◦meas, given the wind speed and direction, p(σ̂◦meas|s, d), is

p(σ̂◦meas|s, d) =
K∏

i=1

1√
2πςi

exp

{
−

(σ◦meas(i) −Mi(s, d))2

2ς2
i

}
(2.8)

where K = 3 for ESCAT and ς2
i is the measurement variance. Using the above noise

model, the total variance of σ◦meas is given by

ς2(s, d) = (K2
pc + K2

pm + K2
pcK

2
pm)M2(s, d) (2.9)
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where Kpc has the form

Kpc =

√
α +

β

σt

+
γ

σ2
t

. (2.10)

The α, β, and γ are coefficients depending on fading characteristics of the surface

scatters and the signal to noise ratio (SNR) at the receiver [1] [17]. The Kpc of

ESCAT measurement is calculated and stored with the σ◦ measurements in standard

data products.

With the probability of the measurements given the wind, the objective func-

tion used in wind retrieval is formed by ignoring the 1√
2πςi

and taking the negative

logarithm, yielding

MLE(σ̂◦meas|s, d) =
3∑

i=1

(
σ◦meas(i) −M(s, d, φi, θi)

)2

(
ςi(s, d)

)2 . (2.11)

The wind retrieval procedure is to find the s and d that minimizes this objective

function.

Due to the symmetry inherent in the GMF, minimization of the objective

function results in 1 to 4 local minima (ambiguities), which represent possible wind

vector solutions. The two primary ambiguities correspond to the two most likely

solutions, typically differing by about 180◦ in direction. The occurrence and location

of the other ambiguities often depend on the normalization [18]. A method proposed

by Stoffelen and Anderson transforms the measurements to a z′-space of the form

z′ = (σ◦)0.625 and results in a circular distribution that is ideal for inversion [18].

During wind retrieval procedure, the ambiguities are ordered by increasing objective

function value and termed as the first or the second ambiguity and so forth. Although

the first ambiguity is the most likely to be the correct solution, any of the ambiguities

may be the closest estimate; hence an ambiguity removal algorithm is necessary to

choose a unique wind vector field.
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The ambiguity removal procedure uses median filtering and nudging techniques

to choose the best solution. For ESCAT wind-only retrieval, a selection filter is

implemented to iteratively select the ambiguity at each WVC, based on a weighted

average of the differences from the surrounding WVCs. At each WVC, the selection

filter is nudged by the ECMWF Model First Guess At Appropriate Time (FGAT)

wind vectors.

2.3 NEXRAD Rain Estimation

NEXRAD is a ground-based weather radar that measures rainfall. NEXRAD

measures radar reflectivity and Doppler shift by employing a rotating 8.5-m paraboloid

antenna with a output power of 750 kW. NEXRAD radar operates at S-band (2.7-

3.0 GHz). During storm events, NEXRAD uses an operational data collection mode

known as Volume Coverage Pattern (VCP) 11. The VCP 11 is designed to sample se-

vere and non-severe precipitation events. As shown in Fig. 2.7, the radar successively

scans 360◦ in azimuth angle in 1◦ increments and from 0.5◦ to 6.2◦ in 0.95◦ increments

in elevation angle. Additional circular scans at a 7.5◦, 8.7◦, 10.0◦, 12.0◦, 14.0◦, 16.7◦,

and 19.5◦ elevation angle are performed. Since the beam-width of NEXRAD is about

0.95◦, the first seven scans continuously cover the sampling space.

The raw data from NEXRAD is stored in Plan Position Indicator (PPI) mode

as shown in Fig. 2.7. To compare NEXRAD measurements with other data, the raw

data are converted to Constant Altitude Plan Position Indicator (CAPPI) model.

Due to the refraction of atmosphere, the radar path or ray is not a straight line. The

ray path is computed using “four-thirds earth radius model”. The following equations

relate the height h and distance s to radar range r and elevation angle θe [19]

h=
√

r2 + (kea)2 + 2rkea sin θe − kea (2.12)

and

s = kea sin−1
( r cos θe

kea + h

)
(2.13)
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Figure 2.7: NEXRAD operation using VCP 11 and the “four-thirds earth radius
model”. The dark gray regions represent the cross-sectional are spanned by the radar’s
beam-width. The light gray area illustrate the difference between PPI bins and CAPPI
bins.

where a is the radius of earth and ke = 4/3. NEXRAD estimates reflectivity, Z, from

reflected power measurements, Pr, using

Z =
210(ln 2)

π3c

λ2r2Pr

PtτG2θ2|K|2 (2.14)

where Z is the reflectivity, c is the speed of light, λ is the transmitted wavelength, Pt

is the transmitted power, τ is the pulse duration in seconds, G is the antenna gain, θ

is the 3dB antenna beam-width, r is the range to target, and K is the complex index

of refraction for water or snow [12]. Using VCP 11, Z is estimated at 1 km intervals

over the range of 1 to 460 km from the radar.

The reflectivity Z is related to rain rate R (mm/hr) with (Z-R) relationship,

Z = aRb mm6/m3 (2.15)
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where a and b are constants. The constants a and b depends on the drop-size distri-

bution. For stratiform rain

Z = 200R1.6 mm6/m3 (2.16)

has proved to be quite accurate. For summer convective rain

Z = 300R1.4 mm6/m3 (2.17)

is optimum. Comparison between the two Z-R relationship is shown in Fig. 2.8. The

difference between the two relationship is less than 25% for rain rate less than 30

mm/hr. Rain rate R can be estimated by inversion of Z-R relationship

R = (Z/a)−b mm/hr. (2.18)

2.4 TRMM

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in

1997 and orbits at a low inclination angle of 35◦, providing coverage of the tropics.

The objectives of TRMM are to measure rainfall and energy exchange of tropical

and subtropical regions of the earth. The TRMM Precipitation Radar (PR) instru-

ment on the TRMM satellite is the first space-borne instrument designed to provide

three-dimensional radar maps of storm structure. The TRMM PR has a horizontal

resolution at the ground of about 4.5 km and a swath width of 220 km [20]. The

TRMM PR antenna scans within 17◦ of the nadir. The latitudes of TRMM PR

measurements are between ±36◦ [20].

TRMM PR radar data are archived as level 1 products. All geophysical prod-

ucts, including 3D rain rate maps, qualitative rain characteristics, and statistics of

surface scattering cross sections are computed from the level 1 products. Level 2A25

21



0 10 20 30 40 50
0

2

4

6

8

10

12
x 10

4

Rain rate (mm/hr)

Z
 (

m
m

6
/m

3
)

 

 

0 10 20 30 40 50
0

5

10

15

20

25

30

35

Rain rate (mm/hr)

(Z
s
tr

a
t

c
o

n
v
)/

Z
s
tr

a
t 
%

stratiform
convective

Figure 2.8: Comparison between Z-R relationship for stratiform rain and convective
rain. (a) Z-R versus rain rate and (b) The normalized difference between Z-R versus
rain rate for stratiform and convective case.

product providing 3D rain rate maps are used in the dissertation [21]. The geometry

of the TRMM PR and ESCAT on ERS are shown in Figure 2.9.

As a summary, scatterometers provide high quality global-scale ocean surface

winds for fair weather conditions. Unfortunately the wind estimates are degraded in

raining areas. In the following chapters, I study the effect of rain on scatterometer

and SAR wind retrieval using the rain measurements from space-borne or ground-

based rain radars to develop a new method that improves the wind retrieval in raining

areas.
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Chapter 3

A C-band Wind/Rain Backscatter Model

The previous chapter shows that backscatter in non-raining and moderate

wind speed areas is mainly from the wind-roughened ocean surface. In this chap-

ter, rain effects on C-band scatterometer data is studied and a C-band wind/rain

backscatter model is introduced. For a Ku-band scatterometer, rain is believed to a

major factor in contaminating the wind retrieval process. Unlike Ku-band, the C-

band scatterometer signal is traditionally considered rain transparent. It is reported

that the radar backscattering by raindrops for the C-band signal is negligibly small

and the attenuation exceeds 1 dB only when the rain rate is above 50 mm/hr [22] [23].

However, recent studies reveal that surface effects by rain may significantly modify

the total backscatter of both Ku-band and C-band scatterometers [7] [24] [9], and

hence influence the wind retrieval process. Therefore, evaluating the various surface

effects of rain on ERS scatterometer measurements is necessary for improving the ac-

curacy of ERS wind estimation in raining areas. Furthermore, under some conditions,

it may be possible to retrieve rain rate information from the C-band scatterometer

measurements.

In a raining area, the wind-induced scatterometer backscatter signature is

altered by rain. Rain striking the water creates splash products including rings, stalks,

and crowns from which the signal scatters [25]. The contribution of each of these

splash products to the backscattering varies with incidence angle and polarization.

At VV-polarization, rain-generated ring-waves are the dominant feature for radar

backscattering at all incidence angles. At HH-polarization, with increasing incidence

angles the radar backscatter from ring-waves decreases while the radar backscatter

from non-propagating splash products increases [24]. Similar results are found in
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experiments done with a VV-polarized Ku-band system [25]. Raindrops impinging

on the sea surface also generate turbulence in the upper water layer which attenuate

the short gravity wave spectrum [9] [26]. A study by Melsheimer et al. [9] shows

that the modification of the sea surface roughness by impinging raindrops depends

strongly on the wavelength of water waves: the net effect of the impinging raindrops

on the sea surface is a decrease of the amplitude of those water waves which have

wavelengths above 10 cm and an increase of the amplitude of those water waves

which have wavelengths below 5 cm [9]. But the critical transition wavelength at

which an increase of the amplitude of the water wave turns into decrease is not well

defined. It depends on the rain rate, the drop size distribution, the wind speed

and the temporal evolution of the rain event [9]. Thus, in the transition wavelength

regime, raindrops impinging on sea surface may increase or decrease the amplitude

of the Bragg waves. In addition to the modification of the sea surface roughness

by the impact of raindrops, the sea surface roughness is also affected by the airflow

associated with the rain event [9]. The scatterometer signal is additionally attenuated

and scattered by the raindrops in the atmosphere.

To evaluate the effect of rain on C-band ESCAT σ◦ observations, we use a

simple phenomenological backscatter model, similar to the one used in developing a

Ku-band wind/rain backscatter model for SeaWinds [7]. To estimate the rain-induced

parameters of the model, we use co-located Precipitation Radar (PR) data from

the Tropical Rainfall Measuring Mission (TRMM) satellite. Each co-located region

contains the overlapping swaths in which the time difference between the TRMM PR

time tags and the ERS time tags is less than ±15 minutes. Since co-located regions

between ESCAT and TRMM PR are relatively rare, we processed 16 months of data

from August 01, 1999 to December 31, 2000. About 82181 co-locations are found in

this period. To improve the accuracy of the estimated model parameters, we use only

the co-located regions where the overlapping PR swath contains more than 2.5% of

the measurements flagged as rain-certain in the TRMM 2A25 files.

Before illustrating the derivation of the model, we describe the data in Section

3.1. In Section 3.2, we define the wind/rain model and estimate the the model
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coefficients. In Section 3.3, we validate the wind/rain backscatter model and estimate

the influence of rain using regimes. Conclusions are reached in the Section 3.4. We

illustrate that the wind/rain backscatter model is accurate enough for describing the

total backscatter in raining areas with relatively low variance. We also show that

the rain surface perturbation is a dominating factor of the rain-induced backscatter.

Using three distinct regimes, we show under what conditions wind, rain, and both

wind and rain can be retrieved from the measurements. We find that the effect of

rain has a more significant impact on the measurements at high incidence angles than

at low incidence angles.

3.1 Data

To derive the wind/rain backscatter model, we use co-located ESCAT backscat-

ter, rain data from TRMM PR, and predicted wind fields from European Center for

Medium-Range Weather Forecasts (ECMWF) [27]. We describe these data in this

section.

As mentioned in Chapter 1, ESCAT on the ERS-1 and ERS-2 satellites is

designed to measure ocean winds. The C-band scatterometer collects σ◦ measure-

ments at 5.3 GHz VV-polarization. After collecting backscatter measurements, wind

retrieval is performed by inverting the GMF, based on multiple σ◦ measurements

at different azimuth angles and incidence angles for each wind vector cell (WVC).

To allow sufficient azimuthal diversity, ERS has three side-looking antenna with the

beams pointed at angles of 45◦, 90◦, and 135◦ from the satellite ground track on the

starboard side. The incidence angles of each antenna vary across the swath, between

22◦ and 56◦ for the fore and aft antenna, and between 18.2◦ and 42◦ for the mid an-

tenna [14]. The swath width of ESCAT is 500 km. The effective resolution of ESCAT

is 50× 50 km [14]. The σ◦ measurements have a Hamming window spatial response

function. Because measurements with different incidence angles may have different

characteristics, it is necessary to analyze them separately.

The numerical weather prediction wind fields from ECMWF provides surface

wind estimates without consideration of rain. We use the ECMWF predicted winds to
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estimate the wind-induced σ◦. The ECMWF winds are trilinearly interpolated (both

in space and time) from a 1◦ × 1◦ latitude-longitude grid with a temporal resolution

of 6 hours to the ESCAT data times and locations. ECMWF predicted σ◦, computed

using the improved geophysical model function CMOD5, are on average 0.08 dB lower

than ESCAT measured σ◦ [15]. This introduces a region-dependent bias ε, which is

estimated in Section 3.2.

TRMM PR data is used to estimate rain. The TRMM satellite was launched

in 1997 and orbits at a low inclination angle of 35◦, providing coverage of the tropics.

The TRMM PR instrument on the TRMM satellite has a horizontal resolution at the

ground of about 4 km and a swath width of 220 km [20]. The TRMM PR antenna

scans within 17◦ of the nadir. The latitudes of TRMM PR measurements are between

±36◦ [20]. Because both the viewing geometry and the operating frequency (13.8

GHz for TRMM PR versus 5.3 GHz for ESCAT) of TRMM PR and ESCAT are

not the same, the effects of rain on the backscatter (atmospheric attenuation and

backscattering) are different. We estimate the atmospheric effects of rain on the

ESCAT signal by using the three dimensional rain rate estimation from TRMM PR

level 2A25 product [21]. The co-location geometry of the TRMM PR and ESCAT

on ERS are shown in Figure 3.1. Due to the different orbit geometry and the narrow

swath of ESCAT and TRMM PR, the co-locations are relatively rare.

3.2 Model Measured σ◦ in Rain and Wind

Rain drops impinging on the sea surface, airflow associated with rain rough-

ening the sea surface, and rain-generated turbulence affect the surface backscattering

of the scatterometer signal. Since we only care about the bulk effect of rain on the

Bragg wave field, we combine all these contributions together into a single rain surface

perturbation backscatter term, σsurf. Assuming that σsurf is additive with the wind-

induced surface backscatter, we use a simple additive model for the total backscatter,

following the Ku-band wind/rain backscatter model of [7]. The rain-modified mea-
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Figure 3.1: Swath geometry of the TRMM PR and ESCAT on ERS instruments in
colocating regions.

sured backscatter, σm, is

σm = (σwind + σsurf)αatm + σatm (3.1)

where σm is the ESCAT-measured σ◦, σwind is the wind-induced surface backscatter

predicted by the ECMWF, σsurf is the rain-induced surface perturbation backscatter,

αatm is the two-way rain-induced atmospheric attenuation, and σatm is rain-induced

atmospheric backscatter.

The wind/rain backscatter model can be further simplified by summing the

attenuated surface perturbation and the atmospheric scattering terms, creating a

single effective rain backscatter parameter, σeff. The combined rain effect model

is [7]

σm = σwindαatm + σeff (3.2)
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where

σeff = σsurfαatm + σatm. (3.3)

The rain-induced backscatter and attenuation are related to the rain intensity,

r, and incidence angle, θ. The wind-induced backscatter is function of wind speed, s,

wind direction, d, azimuth angle, χ, and incidence angle. Thus, the total backscatter,

σm, can be expressed as a function F of these parameters,

σm = F (r, s, d, χ, θ). (3.4)

There are two metrics for rain intensity: integrated rain rate (km mm/hr) and sur-

face rain rate (mm/hr). Because the rain is not uniformly distributed along the slant

path, these two metrics are non-linearly related. In the Ku-band wind/rain backscat-

ter model, integrated rain rate is used as the metric [7] since contributions of the

rain-induced surface backscatter and the rain-induced atmospheric backscatter are

comparable. For the C-band model, the rain-induced surface backscatter dominates

the rain-generated backscatter, and thus surface rain rate (mm/hr) is selected as the

rain intensity metric. Also, since the beam of TRMM PR and ESCAT only overlap

on the ocean surface, using surface rain rate is expected to introduce smaller errors

than using integrated rain rate.

Because the spatial response function gain is not uniform over the ESCAT

footprint, the contribution of rainfall varies with the location in the footprint. Thus,

the ESCAT observed surface rain is a weighted-average of the surface rain. We define

the weighted-averaging function as

PESCAT =

∑N
i=1 G(i)PPR(i)∑N

i=1 G(i)
(3.5)

where PESCAT is the ESCAT observed parameter after the weighted averaging (such

as ESCAT observed surface rain rate Rsurf(ant)), G(i) is the ESCAT spatial response
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function gain at the ith PR measurement, N is the number of PR data points within

ESCAT 3-dB antenna pattern contour, and PPR(i) is the parameter to be averaged,

corresponding to the ith PR measurements (such as PR measured surface rain rate

Rsurf(PR)(i)). To estimate ESCAT observed surface rain rate Rsurf(ant), TRMM

PR level 2A25 surface rain rate Rsurf(PR) is averaged over the ESCAT footprint

using Equation (3.5). Due to non-uniform beam filling (NUBF) and the ESCAT

non-uniform spatial response gain pattern, there is a difference between the ESCAT

gain-weighted average surface rain rate and the uniform-weighted average rain rate.

This beam-filling variability is also noted in the Ku-band scatterometer rain/wind

backscatter model [7]. We estimate the NUBF effect on surface rain rate by com-

puting the normalized error ε = (Rsurf(ant) − Rsurf(uni))/Rsurf(uni) between the

antenna-weighted average rain rate Rsurf(ant) and the uniform-weighted average rain

rate Rsurf(uni) for each ESCAT measurement. Although the PR-measured rain also

contains beam-filling error, we ignore its effect for simplicity. The uniform-weighed

average surface rain rate Rsurf(uni) is computed by averaging the PR measured sur-

face rain rates Rsurf(PR) within the 3-dB ESCAT footprint with uniform weights

G(i) = 1
N

. We calculate the statistics of ε with significant rain rates (≥ 0.8 mm/hr)

for the entire co-located data set. The mean of ε is 0.002, which is negligible, while

the standard deviation is 0.152. This suggests that the NUBF does not introduce bias

to the rain rate estimates, but it increases variability of the estimates. A histogram

of the antenna-weighted average surface rain rates Rsurf(ant) of the co-located data

set is shown in Figure 3.2. It is noted that the maximum of Rsurf(ant) is about 40

mm/hr, while the mean is about 0.4 mm/hr.

3.2.1 Estimating Model Parameters

To estimate the surface perturbation backscatter σsurf, we need to know the

rain-induced atmospheric backscatter σatm, the attenuation αatm, and the wind-

induced surface backscatter σwind. We estimate σatm and αatm by using co-located

TRMM PR level 2A25 three dimensional rain rate.
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Figure 3.2: Histogram of ESCAT response-function-weighted surface rain rate
Rsurf(ant) derived from TRMM PR observations of the co-located data set, consist-
ing of 82181 collocations with rain-certainty exceeding 2.5% over August 01, 1999 to
December 31, 2000.

To calculate the two-way atmospheric attenuation αatm, we first estimate the

atmospheric attenuation factor ka at the ESCAT wavelength (5.7 cm) using the ka−R

relation, which relates ka and the rain rate (mm/hr) [28],

ka = 2KR dB km−1/mm hr−1 (3.6)

where K = 0.0033 for 5.7 cm wavelength and R is TRMM PR level 2A25 three

dimensional rain rate in mm/hr. Following the method in [7], the path integrated

attenuation (PIA) in dB at the ESCAT wavelength for each TRMM PR measurement

PIAPR(i) is computed by integrating ka through the PR antenna beam to the lowest

no-surface-clutter range. The two-way atmospheric attenuation factor seen by ESCAT

at the ith TRMM PR measurement αPR(i) is estimated by adjusting PR slant range

to ESCAT slant range and converting PIAPR(i) to normal space,

αPR(i) = 10
− sec θ(ESCAT ) cos θ(PR)PIAPR(i)/10

(3.7)
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where θ(ESCAT ) is the incidence angle of the ESCAT measurement, θ(PR) is the in-

cidence angle of ith TRMM PR measurement. The attenuation observed by ES-

CAT αatm is calculated by averaging αPR(i) over the ESCAT footprint using Equa-

tion (3.5). The ESCAT observed PIA PIAatm is

PIAatm = −10 log10 αatm. (3.8)

ESCAT atmospheric backscatter (σatm) is estimated by the following proce-

dure. First, the effective reflectivity of the atmospheric rain (Ze) is calculated by the

Z −R relation [28],

Ze = ARb mm6/m3 (3.9)

where R is the TRMM PR level 2A25 three-dimensional rain rate (mm/hr). The

value of A and b depend on the type of rain. We assume typical stratiform rain value

A = 210 and b = 1.6 [28] in this paper. The volume backscattering coefficient without

atmospheric attenuation σvc(i) can be computed from [13]

σvc(i) = 10−10π5

λ4◦
|Kw|2Ze m−1 (3.10)

where λ◦ = 5.7 cm is the wavelength of ESCAT, and |Kw|2 is a function of the

wavelength λ◦ and the physical temperature of the material. Kw is assumed to be

0.93 in this paper. The quantity σvc represents physically the backscattering cross-

section (m2) per unit volume (m3).

By following the method in [7], the volume backscatter cross-section observed

by the ESCAT is adjusted by the ESCAT-observed two-way atmospheric attenua-

tion factor. The total atmospheric rain backscatter observed by the ESCAT at each

TRMM PR measurement σPR(i), is then calculated by integrating adjusted volume

backscatter cross-section through the PR antenna beam to the lowest no-surface-
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clutter range. The ESCAT observed atmospheric backscatter σatm is calculated by

averaging σPR(i) using equation (3.5).

The wind-induced surface backscatter σwind is estimated from co-located

winds from ECMWF winds. As mentioned in Section 3.1, the ECMWF wind fields are

interpolated in time and space to the center of each ESCAT measurement using cubic

spline interpolation of the zonal and meridional components of the wind. We compute

the speed and direction of the wind in meteorological convention and calculate the

σ◦ for three antennas of each ESCAT WVC through ERS GMF (CMOD5),

σwind(ECMWF) = CMOD5(s, d, χ, θ) (3.11)

where the definition of the inputs of CMOD5 is the same as in equation (3.4). The

wind-induced backscatter σwind(ECMWF) predicted by ECMWF has a bias ε intro-

duced by prediction errors. Since the ECMWF wind fields are interpolated from low

resolution to ESCAT resolution, the bias of ECMWF wind fields are spatially corre-

lated in a ESCAT swath. To reduce the effect of the spatial correlation and contamina-

tion of rain on the measurements, we use a large data set (from Jan 01, 2000 to Dec 31,

2000) to estimate the ECMWF/ESCAT bias. The bias varies with incidence angle and

antenna look direction, and it may change with wind speed and geophysical locations.

Thus, we estimate ε for a specific look direction and incidence angle for each wind

speed bin by making a nonparametric estimate of ε = σm(ESCAT)−σwind(ECMWF)

as a function of wind speed at evenly spaced wind speed bins (from 0 m/s to 20 m/s

with a bin-width of 1 m/s) by using an Epanechnikov kernel with a bandwidth of

3 m/s in wind speed. Only the co-located ECMWF and ESCAT data between lat-

itude −40◦ and 40◦ are used to estimate the bias. Figure 3.3 shows the mean of ε

for fore, mid, and aft antennae at different cross-swath WVC positions and different

wind speed bins. Note that the bias is positive at low wind speed and is negative

at high wind speed. The standard deviations of the bias ε for three antennae are

less than 0.0074 for incidence angles greater than 40◦. The estimate of wind-induced

backscatter σwind is then represented by ECMWF-predicted wind-induced backscat-
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Figure 3.3: Mean biases between ECMWF predicted σ◦ and ERS scatterometer mea-
sured σ◦ for fore, mid, and aft antenna at different cross-swath WVC positions and
different wind speed bins.

ter σwind(ECMWF) and bias ε,

σwind = σwind(ECMWF) + ε. (3.12)

Based on the above parameters, we estimate the surface perturbation backscatter

σsurf by

σsurf = α−1

atm(σm − σatm)− (σwind(ECMWF) + ε). (3.13)

3.2.2 Selecting Model Function and Estimating Model Coefficients

We seek an empirical model function for equation (3.4). Power law (linear or

quadratic log-log) models are sufficient to relate the three parameters with rain rate

in Ku-band wind/rain backscatter model [7]. Similar functional forms work well at C-

band. Thus, αatm, σatm, and σsurf for a specific incidence angle θ can be expressed
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as polynomial functions of rain rate,

10 log10(PIAatm(θ))=10 log10(−10 log10 αatm(θ))

≈fa(RdB) =
N∑

n=0

xa(n)Rn

dB, (3.14)

10 log10(σatm(θ)) ≈ fr(RdB) =
N∑

n=0

xr(n)Rn

dB, (3.15)

and

10 log10(σsurf(θ)) ≈ fsr(RdB) =
N∑

n=0

xsr(n)Rn

dB (3.16)

where RdB = 10 log10(Rsurf(ant)), xa(n), xr(n), and xsr(n) are the corresponding

model coefficients. N = 1 for the linear model, and N = 2 for the quadratic model.

Because the estimate of σsurf is relatively noisy and may be negative, we first make

a nonparametric estimate of σsurf as a function of RdB at regular logarithmically-

spaced rain rate bins using an Epanechnikov kernel [29] with a 3 dB bandwidth in

RdB. Then, we estimate the model coefficients xsr(n) for the linear/quadratic model

using a robust linear least-squares fit. We use a similar method in estimating xa(n)

and xr(n). Since the atmospheric parameters and surface perturbation backscatter

are uncorrelated with the azimuth look-direction of the antenna, we combine the data

from all antennae during the coefficient estimation. To ensure sufficient data for each

model fit, we use an incidence angle bin size approximately equal to 4◦. Because the

incidence angles of the ESCAT measurements are not uniformly distributed, the bin

size is slightly increased where measurements at the incidence angle range are more

rare.

In the analysis, we observe that for incidence angles less than 30◦, the sur-

face rain perturbation is not a monotonic function of surface rain rate. It cannot

adequately be modeled by a linear or quadratic model. A hypothesis for the reason
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Table 3.1: C-band model coefficients (linear and quadratic) of PIAatm(θ).
θ (◦) xa(0) xa(1) xa(2)
40-44 Linear -18.23 1.25

Quadratic -18.18 1.25 -0.00060
44-49 Linear -17.89 1.25

Quadratic -17.79 1.24 -0.0016
49-53 Linear -17.44 1.26

Quadratic -17.39 1.25 -0.00081
43-57 Linear -17.12 1.25

Quadratic -17.05 1.24 -0.0012

is that the contributions of ring waves and upper surface turbulence are comparable

under such conditions. For incidence angles greater than 30◦, the surface rain pertur-

bation is monotonically increasing with surface rain rate, suggesting the contribution

of ring waves dominate the surface effects of rain. We note that the Bragg wavelength

of ESCAT at incidence angles higher than 30◦ is shorter than 5.8 cm, which is close to

the wavelength condition mentioned previously. For incidence angles between 30◦ and

40◦, the variance of the estimation of σsurf is relatively large, which makes the model

coefficients unreliable. Thus, in this paper we only describe the model coefficients

for incidence angles greater than 40◦. It is noted that due to the inhomogeneity of

rain events in a ESCAT footprint, only total surface effect of rain in the backscatter

measurements can be described by the model.

Graphics showing the non-parametric fits to the estimated PIAatm(θ) and

σatm(θ) with respect to RdB for incidence angles between 40◦ and 57◦ are shown in

Figures 3.4 and 3.5. The dashed line is the non-parametric fit. The corresponding

estimated coefficients for xa(n) and xr(n) for both robust fit and quadratic fit are

given in Tables 3.1 and 3.2. From these two tables, we note that all the second order

coefficients of the quadratic model are negligibly small, suggesting that PIAatm(θ)

and σatm(θ) is almost a linear function of surface rain rate in log-log space.

In the derivation of σsurf(θ), error is introduced by several sources. One

of them is the prediction error of the ECMWF predicted wind-induced backscatter

σwind. The procedure for estimating αatm and σatm from TRMM PR level 2A25
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Figure 3.4: Non-parameric fit to estimated PIAatm(θ) with respect to RdB for differ-
ent incidence angle bins. Estimated PIA is displayed in scatter plot. RdB is between
−15 dB and 15 dB.

Table 3.2: C-band model coefficients (linear and quadratic) of σatm(θ).
θ (◦) xr(0) xr(1) xr(2)
40-44 Linear -41.79 1.33

Quadratic -41.76 1.33 -0.00030
44-49 Linear -41.46 1.32

Quadratic -41.44 1.32 -0.00020
49-53 Linear -41.03 1.33

Quadratic -41.07 1.33 0.00090
53-57 Linear -40.69 1.32

Quadratic -40.66 1.32 -0.00060
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Figure 3.5: Non-parameric fit to estimated σatm(θ) with respect to RdB for different
incidence angle bins. Estimated σatm is in normal space, which is displayed in scatter
plot. RdB is between −15 dB and 15 dB.

three dimensional rain rate introduces additional errors due to the error of the empir-

ical model functions, NUBF, and the temporal and spatial mismatch of ESCAT and

TRMM PR measurements. We do not analyze all these errors in detail here. Instead,

we evaluate the sensitivity of σsurf(θ) to the error introduced by σatm. We adopt

the combined rain model of equation (3.2) to reduce the influence of the error.

To evaluate sensitivity of σsurf(θ) to σatm, following [7] we introduce a variable

calibration parameter γ to equation (3.13)

σsurf = α−1

atm(σm − γσatm)− (σwind(ECMWF) + ε). (3.17)
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Using the method described above, we calculate the linear/quadratic model coeffi-

cients of σsurf(θ) for each γ between 0 and 3.2 with a step of 0.1. When γ is greater

than 3.2, σsurf(θ) may become negative. We pick the optimum γ by defining a least

squares objective function f(γ) with respect to γ

f(γ) =
∑

i

(σi
m − σi

m(model)(γ))2 (3.18)

where i is the ith data in the data set, and σm(model)(γ) is the σ◦ calculated with

the quadratic model coefficients with respect to the corresponding γ. The value of

γ that minimizes f(γ) is the optimum value γopt. For all the measurements with

incidence angles between 40◦ and 57◦, γopt = 1.2, suggesting that the estimates of

σatm are slightly underestimated. The estimated coefficients of σsurf(θ) are plotted

as a function of the calibration parameter γ for different incidence angle bins in

Figure 3.6. We note that none of the three terms are particularly sensitive to the

value of γ, suggesting that the influence of the σatm-induced error is insignificant as

expected. We list the values of xsr(n) corresponding to γopt in Table 3.3. Compared

with the counterparts in Table 3.2, it is noted that the constant term of σsurf(θ) is

significantly higher than the constant term of σatm(θ), while the linear and quadratic

terms of σsurf(θ) are on the same order of magnitude as the linear and quadratic terms

of σatm(θ).

To further compare the contribution of the surface perturbation and the at-

mospheric backscatter, we compute the ratio of the attenuated surface perturbation

αatmσsurf(θ) to the calibrated atmospheric rain backscatter γσatm with respect to

RdB for different incidence angle bins, which is shown in Figure 3.7. For γopt, the

ratio αatmσsurf/γσatm(θ) for different θ is always greater than 3, suggesting that

the surface rain backscatter always dominates the total rain-induced backscatter (but

not necessarily the total backscatter).
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Figure 3.6: xsr(n) for the quadratic model as a function of the rain backscatter
calibration parameter γ for different incidence angle ranges.

Table 3.3: Model coefficients of surface perturbation backscatter σsurf(θ).

θ xsr(0) xsr(1) xsr(2)
40-44 Linear -27.45 0.68

Quadratic -27.78 0.7 0.0004
44-49 Linear -27.59 0.74

Quadratic -27.85 0.74 0.0031
49-53 Linear -28.13 0.769

Quadratic -28.24 0.74 0.0031
53-57 Linear -28.582 0.846

Quadratic -29.14 0.773 0.0116
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Table 3.4: Model coefficients of effective rain backscatter σeff(θ).

θ xeff(0) xe(1) xe(2)

40-44 Linear -27.21 0.703
Quadratic -27.60 0.728 0.0016

44-49 Linear -27.37 0.759
Quadratic -27.61 0.76 0.0030

49-53 Linear -27.87 0.797
Quadratic -27.96 0.768 0.0034

53-57 Linear -28.19 0.851
Quadratic -28.78 0.791 0.0109

It is noted that we only care about the total effect of rain in wind retrieval.

The corresponding power law model of σeff is

10 log10(σeff(θ)) ≈ fe(RdB) =
N∑

n=0

xe(n)Rn

dB. (3.19)

The coefficients of xe(n) are calculated using the same method mentioned before,

shown in Table 3.4, and plotted in Figure 3.8. The estimated σeff(θ) is shown in

the density plot. The dashed line is the non-parametric fit. Figure 3.9 shows the

non-parametric fit and linear/quadratic fits in log-log space.

We further investigate the relationship between σeff(θ) and incidence angle θ

by plotting the σeff(θ) with respect to θ for a specific surface rain rate in Figure 3.10.

We use the quadratic model coefficients to estimate σeff(θ) for θ between 40◦ and 57◦.

At a low rain rate, the magnitude of σeff generally decreases with incidence angle. At

a moderate rain rate, the σeff almost remains constant for all incidence angles. At a

heavy rain rate, σeff increases with incidence angle. It is also noted that wind-induced

backscatter σwind(θ) decreases with incidence angle. Thus, rain-induced backscatter

has more impact on the C-band scatterometer measurements at high incidence angle

than at low incidence angle.
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Figure 3.8: Non-parametric fits to the effective rain backscatter σeff in log-normal
space for different incidence angle bins. The dashed line is the non-parametric fit. Data
is shown in a density plot.

3.3 Model Validation and Data Regimes

In this section, we validate the rain/wind model by comparing the model

estimated backscatter σm(model)(θ) to actual ESCAT backscatter measurements

σm(ESCAT)(θ) for different surface rain rate bins in Figures 3.12 and 3.14. σm(model)(θ)

is estimated using the quadratic model. To illustrate the difference in using the

wind/rain model, we also show a scatter-plot of σm(ESCAT)(θ) with respect to

ECMWF predicted wind-only backscatter σwind(ECMWF)(θ) + ε for the same rain

rate bin and incidence angle bin in Figures 3.11 and 3.13. It is noted that rain

introduces a bias to the backscatter, with the bias increasing with rain rate and

incidence angle. After applying the wind/rain model, the rain-induced bias is elim-

inated. For θ ranging from 40◦ to 49◦, 95% of the model predicted backscatter is

within 3 dB of the ESCAT measured backscatter, while the standard deviation of log
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error, σm(model)(θ)− σm(ESCAT)(θ), is 1.4 dB. For θ ranging from 49◦ to 57◦, the

percentage is 91% and the standard deviation is 1.6 dB.
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Figure 3.11: ESCAT measured backscatter σm(ESCAT) plotted as a function of
wind-only backscatter σwind(ECMWF) + ε for incidence angles 40◦ − 49◦ for different
rain rate bins. A nonparametric fit is also plotted.

To further validate the model, we compute a non-parametric estimate of both

σm(ESCAT)(θ) and σm(model)(θ) on a regular grid with axes of σwind(ECMWF)+ε

and RdB using a two-dimensional Epanechnikov kernel with a bandwidth of 3 dB

for different incidence angle bins. σm(model)(θ) is calculated using the quadratic

combined rain model. The log error is computed as σm(model)(θ)− σm(ESCAT)(θ)

in dB. Figure 3.15 shows nonparametric estimates of σm(ESCAT)(θ), σm(model)(θ),

and the log error with respect to σwind(ECMWF)+ε and the surface rain rate (mm/hr

dB) for different incidence angle bins. For the two incidence angle bins shown, the

model estimated backscatter is very close to the ESCAT measured backscatter, with

a log error within ±2dB. It is noted that the largest error occurs at high rain rates

due to less data.
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Figure 3.12: ESCAT measured backscatter σm(ESCAT) plotted as a function of of
model estimated backscatter σm(model) with the quadratic model for incidence angles
40◦ − 49◦ for different rain rate bins. A nonparametric fit is also plotted.

−30 −20 −10 0

−30

−20

−10

0

0 − 0.05 mm/hr
−30 −20 −10 0

−30

−20

−10

0

0.05 − 0.1 mm/hr
−30 −20 −10 0

−30

−20

−10

0

0.1 − 0.2 mm/hr
−30 −20 −10 0

−30

−20

−10

0

0.2 − 0.4 mm/hr

−30 −20 −10 0

−30

−20

−10

0

0.4 − 0.8 mm/hr
−30 −20 −10 0

−30

−20

−10

0

0.8 − 1.6 mm/hr
−30 −20 −10 0

−30

−20

−10

0

1.6 − 3.2 mm/hr
−30 −20 −10 0

−30

−20

−10

0

3.2 − 6.4 mm/hr

−30 −20 −10 0

−30

−20

−10

0

6.4 − 13 mm/hr
−30 −20 −10 0

−30

−20

−10

0

13 − 26 mm/hr

 

 
Data
σ

x
=σ

y

Non−parametric

σ
m

(E
S

C
A

T
) (

d
B

)

σ
wind(ECMWF)

+ε (dB)

Figure 3.13: ESCAT measured backscatter σm(ESCAT) plotted as a function of
wind-only backscatter σwind(ECMWF) + ε for incidence angles 49◦ − 57◦ for different
rain rate bins. A nonparametric fit is also plotted.
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Figure 3.14: ESCAT measured backscatter σm(ESCAT) plotted as a function of
model estimated backscatter σm(model) with the quadratic model for incidence angles
49◦ − 57◦ for different rain rate bins. A nonparametric fit is also plotted.
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Figure 3.15: Nonparametric estimates of σm(ESCAT)(θ), σm(model)(θ), and the dif-
ference are plotted with respect to σwind(ECMWF )+ε and surface rain rate R(mm/hr dB)
for incidence angles in range of a) 40◦ − 49◦ and b) 49◦ − 57◦.
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To understand the effect of rain on the scatterometer measurements for dif-

ferent incidence angles, following [7] we define three distinct backscatter regimes.

In regime 1, rain-induced backscatter dominates the total backscatter. Regime 2

is where the rain-induced backscatter and the wind-induced backscatter are on the

same order of magnitude. In regime 3, wind-induced backscatter dominates the total

backscatter. It is noted that wind and rain information may be simultaneously re-

trieved from regime 2, while in regime 1 or regime 3, only the dominating parameter

(wind or rain) can be retrieved. We identify these regimes by thresholding the ratio

τ = σeff/σm. We define regime 1 by τ > 0.75, regime 3 as τ < 0.25, and regime

2 as 0.75 ≥ τ ≥ 0.25. In Figure 3.16, we plot the τ computed using the combined

wind/rain model with respect to surface rain rate RdB and wind-only backscatter

σwind, with the three regimes shown in different colors. We also plot contours of

predicted total backscatter σm. We choose the range of σwind for different incidence

angles using three standard deviations from the mean, accounting for roughly 95% of

the co-located data set. It is noted that with the increasing of surface rain rate, the

curve of σm deviates from the curve of σwind. As the incidence angle increases, the

area of regime 1 reduces while the area of regime 3 increases, suggesting that rain has

more significant impact on the ESCAT measurements at higher incidence angles.

We further investigate this by computing the percentage of co-located mea-

surements falling in each regime with significant rain (≥ 0.8 mm/hr) and ECMWF

wind speed greater than 2 m/s, listed in Table 3.5. It is noted that about 3% of

all the co-located ESCAT measurements observe significant rain (≥ 0.8 mm/hr). To

investigate the relationship between the data regimes, wind speed, and rain rate, we

plot mean τ with respect to ECMWF predicted wind speed and average surface rain

rate (mm/hr) for all the co-located measurements with significant rain (≥ 0.8 mm/hr)

and ECMWF wind speed grater than 2 m/s in Figure 3.17, with a bin width of 4

m/s for wind speed and a bin width of 4 mm/hr for surface rain rate. It is noted

that regime 1 (τ > 0.75) mostly happens at low wind speed and high rain conditions,

suggesting rain has a significant impact on the total backscatter in such conditions.
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Table 3.5: Percentage falling in each regime of co-located measurements with
significant rain (≥ 0.8 mm/hr) and ECMWF wind speed greater than 2 m/s.

θ(◦) Regime 1 Regime 2 Regime 3
40-44 0.64% 27.38% 71.98%
44-49 2.27% 41.38% 56.35%
49-53 5.17% 52.87% 41.96%
53-57 5.75% 49.74% 44.51%

Figure 3.16: Backscatter regimes for ESCAT as a function of rain rate and effective
wind backscatter for several incidence angles. Also plotted is a contour plot of the
combined rain effect model for σm (solid lines) and σwind (dotted lines).

3.4 Conclusions

With the confirmed existence of rain surface perturbation by recent studies,

the rain effect on C-band scatterometer measurements needs to be reevaluated. By

using co-located TRMM PR, ESCAT on ERS, and ECMWF data, we develop and

evaluate a simple low-order wind/rain backscatter model which inputs surface rain

rate, incidence angle, wind speed, wind direction, and azimuth angle. By applying

the model to the co-located data set, we demonstrate that the wind/rain backscatter

model is accurate enough for describing the total backscatter in raining areas with rel-
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Figure 3.17: Mean σeff/σm with respect to ECMWF predicted wind speed and
TRMM PR measured surface rain rate for different incidence angle bins. The wind
speed ranges from 2 m/s to 22 m/s with a bin width of 4 m/s. The surface rain rate
ranges from 0.8 mm/hr to 20.8 mm/hr with a bin width of 4 mm/hr.

atively low variance. We also show that the rain surface perturbation is a dominating

factor of the rain-induced backscatter.

Using three distinct regimes, we identify under what conditions wind and rain

can be retrieved from the measurements. In regime 1 where rain dominates, only

rain information may be retrieved from the measurements. In regime 3 where wind

dominates, only wind information can be retrieved. In regime 2 where rain and wind

are comparable, wind and rain information may be simultaneously retrieved from

the measurements. In regime 1 and regime 2, the current wind retrieval methods

are inadequate to retrieve the correct wind information. Therefore, the rain model

should be incorporated into the retrieval algorithm. For incidence angle bins 40◦ to
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44◦, 44◦ to 49◦, 49◦ to 53◦, and 53◦ to 57◦, about 0.9%, 1.3%, 1.74%, and 1.67% of all

the co-located ESCAT measurements are affected by rain (falling in regime 1 or 2).

We also show that rain has more impact on the C-band measurements at higher

incidence angles. Since the successor of ESCAT on ERS, the advanced scatterometer

instrument (ASCAT) on MetOp, has incidence angles ranging from 25◦ to 65◦, the

measurements of ASCAT are expected to be more sensitive to rain than ESCAT on

ERS.

Due to the beam-filling effect and variance of the ECMWF predicted σ◦, rel-

ative large variance is shown in the model for low rain data. But the majority of the

data (95% for 40◦ to 49◦ and 91% for 49◦ to 57◦) lies within 3dB of the model. This

illustrates how well the model performs. In fact, ESCAT retrieved wind vector are

mainly affected by mid to heavy rain at high incidence angles. The model is expected

to retrieve rain rate and improve retrieved wind vector in such situations. Chapter

4 introduces a C-band simultaneous wind/rain retrieval method using this wind/rain

backscatter model. This new method improves the rain-corrupted wind estimates and

retrieves the surface rain with relatively high accuracy in moderate to heavy rains.

The new method will also benefit wind retrieval for ASCAT.
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Chapter 4

A C-band Simultaneous Wind/Rain Retrieval Method

The previous chapter demonstrates that ESCAT measurements can be ad-

versely affected by moderate to heavy rains at high incidence angles due to the

surface effects of rain [11] [9] [30]. Because conventional wind-only retrieval does

not explicitly account for the sensitivity of backscatter measurements to rain, rain

contamination introduces errors to retrieved wind velocities, particularly at high in-

cidence angles. In order to prevent adverse rain impact on retrieved winds, Quality

Control (QC) methods [31] [32] [33] are used to discard rain contaminated measure-

ments which causes loss of coverage. Since the successor of ESCAT, the advanced

scatterometer instrument (ASCAT) on the MetOp-A satellite, has higher incidence

angle coverage than ESCAT, wind retrieval from ASCAT measurements is expected

to be more sensitive to rain. Hence evaluating the influence of rain on ESCAT wind

retrieval and developing improved wind retrieval methods are necessary for improving

the accuracy and coverage of C-band scatterometer wind estimations in raining areas.

Furthermore, rain rate information can be estimated simultaneously [7], which is a

side benefit of the new wind retrieval method. Based on the simultaneous wind/rain

retrieval method (SWRR) retrieved rain rate, an improved rain flagging method can

be developed for ESCAT.

Wind retrieval from scatterometer measurements over the ocean is generally

an inversion of the geophysical model function (GMF) which describes σ◦, the nor-

malized scatterometer backscattering cross-section, as a function of wind velocity,

incidence angle, and polarization. The inversion is generally based on maximum like-

lihood estimation (MLE). Due to symmetry in the GMF and noise, multiple solutions

(defined as “ambiguities”) are found when minimizing the MLE cost function. After
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applying an ambiguity removal algorithm, a unique wind estimate is selected for a

specific wind vector cell (WVC).

To evaluate the effects of rain on C-band wind-only retrieval, we use collocated

wind velocities from ESCAT wind-only retrieval, surface rain rates from the Tropical

Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), and numerical pre-

dicted wind velocities from European Medium-Range Weather Forecasts (ECMWF).

The ESCAT data and TRMM PR measurements are collocated within ±15 minutes.

About 82181 collocations are collected from a period of sixteen months between Au-

gust 01, 1999 and December 31, 2000. To ensure the quality of the analysis, only

the collocations where the overlapping PR swath contains more than 2.5% of the

measurements flagged as rain-certain in the TRMM level 2A25 data are used in the

study. The ECMWF-predicted wind fields are trilinearly interpolated in space and

time to the ESCAT data times and locations. The spatial resolution of the ECMWF

winds is 1◦ × 1◦ latitude-longitude with a temporal resolution of 6 hours.

To compensate for rain-induced backscatter, the C-band wind/rain backscatter

model proposed in Chapter 2 is applied in the wind retrieval process to develop a

simultaneous wind/rain retrieval method for ESCAT. The method retrieves surface

rain rates and wind vectors simultaneously using an adjusted MLE. Because the

backscatter model is only usable at incidence angle > 40◦, we implement SWRR for

data at WVC 13 − 19. Conventional wind-only retrieval is used at low incidence

angles.

In Section 4.1, degradation of the rain on the wind-only wind retrieval results is

evaluated and analyzed. Following that, we describe the methodology of simultaneous

wind/rain retrieval (SWRR) in Section 4.2. The normalized standard deviation of

rain-induced backscatter is estimated in Section 4.3. In Sections 4.4 and 4.5, we

evaluate the performance of SWRR by simulation and using the collocated data set.

In Section 4.6, a case study is presented. Conclusions are reached in Section 4.7.
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4.1 Rain Effects on ESCAT Wind-Only Wind Retrieval

In this section, we briefly describe the background of conventional wind-only

retrieval and analyze the impact of the rain on the wind retrieval procedure by simula-

tion. We then evaluate the real rain effect on wind-only retrieval using the collocated

data set.

4.1.1 Conventional Wind-only Retrieval

For ESCAT, the wind-only retrieval process involves inversion of the GMF

given σ◦ triplet measurements. Here, the wind-only GMF inversion method is based

on minimization of a simplified maximum likelihood estimator (MLE), assuming

Gaussian noise and independent samples,

MLE(z|s, d) =
3∑

i=1

(
σ◦i −M(s, d, φi, θi)

)2

(
ςi(s, d)

)2 (4.1)

where σ◦i is the measured σ◦ value, M is the GMF, s is the wind speed, d is the

wind direction, φi is the azimuth angle of the radar beam, and θi the incidence angle

of the radar beam. The index i indicates antenna beam position. ςi is the variance

of measurements, which is a measure of the noise in the σ◦ measurements. The

variance ςi is affected by many factors, including uncertainty in GMF, signal noise

due to fading, thermal noise, and beam-filling effects. It can be expressed as ςi(s, d) =

KpM(s, d, φi, θi) where Kp is the normalized standard deviation of the measurements.

Kp can be expressed as a combination of Kpm, the normalized standard deviation of

GMF, and Kpc, the normalized standard deviation of the communication or signal

noise [1]

Kp =
√

K2
pc + K2

pm + K2
pcK

2
pm. (4.2)
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In general, the term Kpc has the form

Kpc =

√
α +

β

σt

+
γ

σ2
t

(4.3)

where α, β, and γ are coefficients depending on fading characteristics of the surface

scatters and the signal to noise ratio (SNR) at the receiver [1] [17], and σt is the

true σ◦ of the ocean surface without communication noise. Since the measurement

SNR for ESCAT is very high, Kpc is small compared with the geophysical-modeling

error Kpm [16]. Lacking an accurate model for Kpc, Kpc is assumed to be constant

for ESCAT, typically 0.05. The geophysical-modeling error Kpm is caused by many

factors. One of them is the uncertainty of GMF, since the empirical GMF is not an

exact relationship. Many parameters not included in the GMF, such as local salinity,

temperature, and long waves, can change the observed σ◦ for a fixed wind velocity.

Beam filling, which is due to the wind variability within the resolution cell and the

non-uniform spatial averaging inherent in the radar measurements is another factor

for Kpm [7] [18].

Minimization of the MLE results in 1 to 4 local minima (ambiguities), which

represent possible wind vector solutions. The two primary ambiguities correspond to

the two most likely solutions, differing by about 180◦ in direction. The occurrence and

location of the other ambiguities often depend on the normalization [18]. A method

proposed by Stoffelen and Anderson transforms the measurements to a z space by the

form z = (σ◦)0.625 and results in a circular distribution that is ideal for inversion [18].

Due to multiple ambiguities, an ambiguity removal procedure must be imple-

mented to choose one unique solution. The ambiguity removal procedure uses median

filtering and nudging techniques to choose the best solution. For ESCAT wind-only

retrieval, a selection filter is implemented to iteratively select the ambiguity at each

WVC, based on a weighted average of the differences from the surrounding WVCs.

At each WVC, the selection filter is nudged by the ECMWF Model First Guess at

Appropriate Time (FGAT) wind vectors [18].
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4.1.2 Analysis of Rain on Wind Retrieval

As mentioned in Chapter 4.2, rain surface backscatter can dominate the total

backscatter under conditions of low to medium wind speed and heavy rain at high in-

cidence angles. Using the C-band wind/rain backscatter model described in Equation

(3.2) and (3.3), we show how rain affects the conventional wind-only wind retrieval

process by simulation under typical low wind and heavy rain cases for WVCs with

high incidence angles. To visualize the wind retrieval procedure, we use the locus

of wind velocities that give rise to a single σ◦ for fixed radar incidence and azimuth

angles. Figure 4.1 shows a plot of σ◦ for three sets of radar angles representative of

simulated data with rain (in (a)-(d)) and without rain (in (e)-(f)) from the ESCAT

scatterometer for WVC 13 and 19. These plots are generated by choosing a wind

speed and direction and calculating σ◦ values using the wind/rain backscatter model.

For each set of radar incidence and azimuth angle, all the wind speeds and directions

that induce the specific σ◦ are plotted as a single curve.

As shown in Fig. 4.1(a)-(d), the three measurements without noise from the

fore, middle, and aft beams have an intersection corresponding to the true wind veloc-

ity. Due to upwind/downwind similarity, there is a near intersection point about 180◦

from the true wind direction. In the presence of rain, the magnitude of backscatter

increases and tends toward isotropic. Because of the viewing geometry of ESCAT

measurements, under the condition of heavy rain the two primary minima tend to

be at approximately 180◦ ± 14◦ direction and 360◦ ± 14◦ regardless of the true wind

speed. These directions correspond to the along swath direction, as shown in Fig.

4.1(e)-(h). Figure 4.1(b) also shows that the wind speeds corresponding to the in-

tersections are biased high. Comparing the plots for WVC 13 (with incidence angle

48.5◦ for fore and aft beam, and 37.7◦ for mid beam) and WVC 19 (with incidence

angle 57◦ for fore and aft beam, and 45◦ for mid beam), the speed bias becomes more

serious for higher incidence angles. To demonstrate this phenomenon, noise-free σ◦

at WVC 19 for three antenna beams under rain-free and rain-dominant conditions

are compared in Fig. 4.2. In Fig. 4.2(a), the triplet σ◦ are plotted at the true relative

wind direction. The GMF corresponding to true wind speed (7 m/s) is plotted as a
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function of relative wind direction χ. The triplet measurements show azimuth and

incidence angle dependence, which is important for wind retrieval. In Fig. 4.2(b),

the three rain-altered σ◦ are plotted at the relative wind directions corresponding

to along-cross directions. The GMF corresponding to a wind speed of 17.5 m/s for

three beams are plotted. When rain dominates the backscatter, the σ◦ from the three

beams is close to isotropic. As shown in Fig. 4.2(b), the markers representing σ◦

agree with the corresponding GMF lines. Hence the selected direction ambiguity is

always at along-track directions. Similar results are found for rain-corrupted wind

estimates from Ku-band scatterometers [2] [34], though the direction estimate aligns

cross-track in this case. The different wind direction features of the rain-corrupted

estimates from the two scatterometers are mainly due to the different antenna viewing

geometries of the two instruments.

4.1.3 Rain Effects on Wind-Only Vectors

After a brief theoretical analysis, we evaluate the effect of rain on the wind-

only retrieved wind estimates using the collocated data set. To illustrate the influence

of rain, we investigate the statistics of the wind speed and the wind direction retrieved

from rain-free and rain-corrupted σ◦ measurements for different WVC positions and

rain rate ranges. Fig. 4.3 shows the mean of the difference between the selected wind

speed ambiguity and the collocated ECMWF wind speed (sERS − sECMWF ) for rain-

free and rain corrupted (rain rate > 3 mm/hr) cases at WVCs of 1−5, 6−11, 12−15,

and 16 − 19. As a reminder, the incidence angles of triplet measurements increase

with WVC number. The selected wind speeds have no obvious bias under rain-free

condition. Under moderate to heavy rains, the selected wind speeds are biased high

and the bias in the wind speed increases from low WVC to high WVC, revealing that

the rain impact on wind speed estimation becomes more significant with incidence

angle.

We compare the normalized histograms of selected wind speed and wind direc-

tion for rain-free and rain-corrupted conditions and ECMWF wind speed for rain-free

data in Figs. 4.4 and 4.5(a) for the same WVCs. The normalized histograms of se-
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Figure 4.1: Visualization of the wind retrieval procedure for data in WVC 13 (left
panel, θfore/aft ≈ 48.6◦ and θmid ≈ 37.7◦) and 19 (right panel, θfore/aft ≈ 56.6◦ and
θmid ≈ 45.4◦). The intersections of the three curves correspond to the true wind velocity
and aliases. The arrows in the plots point to the two major ambiguities. (a)-(d) shows
the wind retrieval procedure for rain-free data, while (e)-(h) shows the procedure for
rain-corrupted data. The true wind speed is 7 m/s. The true wind directions are 35◦

and 240◦. The true wind vector is shown as “+” in the plots. The true rain rate is 31.6
mm/hr. When the backscatter is dominated by rain, intersections tend to be associated
with along track directions.
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Figure 4.2: Illustration of the rain effect on ESCAT backscatter during a rain domi-
nant case at WVC 19. The true wind speed is 7 m/s. The true wind direction is 35◦.
(a) Shows the noise-free backscatters (simulated using CMOD5) for fore, mid, and aft
beams, plotted with GMF as a function of relative wind direction. The dashed line is
the GMF for mid beam, while the solid line is the GMF for fore/aft antennas, assum-
ing the fore/aft antennas have the same azimuth angle. (b) Plots the rain-corrupted
backscatter (simulated using the C-band wind/rain backscatter model) at the azimuth
angles corresponding to the along-track directions. The GMF corresponding to s = 17.5
m/s for mid and fore/aft beams are plotted in dashed and solid lines, respectively. Note
that rain-domination makes the backscatter almost isotropic, which agree with the cor-
responding σ◦ at d = 180◦ − 14◦. Hence the retrieved wind direction is at along-track.

lected wind speed and ECMWF wind speed are consistent for rain-free conditions.

The speed densities of the rain-corrupted data gradually shift to the right from WVC

with low to high incidence angles, which is consistent with the results in Fig. 4.3. For

wind directions, the histogram of the rain-free selected wind directions agrees well

with the collocated ECMWF wind direction. With the presence of rain, peaks de-

velop, revealing that the rain-corrupted wind directions are gradually biased toward

the along-track direction. The along-track direction bias becomes more serious with

increasing incidence angles.

To evaluate the performance of wind-only MLE, we show the normalized his-

togram of the wind ambiguity closest to the collocated ECMWF wind for the same

rain conditions and WVC. We plot the normalized histogram of the wind direction

ambiguity closest to the collocated ECMWF wind for rain-free and rain-corrupted

cases at WVCs of 1−5, 6−11, 12−15, and 16−19 in Fig. 4.5(b). For rain-corrupted
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measurements at WVCs with high incidence angles, most of the closest wind direc-

tion ambiguities align with the along-track or cross-track directions. For these cases

wind-only MLE cannot retrieve the correct wind direction.
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Figure 4.3: The mean of the difference between the wind-only retrieval method se-
lected wind speed ambiguity and collocated ECMWF wind speed under conditions of
rain-free, and over 3 mm/hr rain rate for different WVC bins. Error bar in the figure
represents the standard deviation.

4.2 Simultaneous Wind/Rain Retrieval

As we have shown, conventional wind-only retrieval can be adversely affected

by moderate to heavy rains at high incidence angles. To compensate for rain-induced

backscatter, a simultaneous wind/rain retrieval (SWRR) method for ESCAT is de-

veloped in this section.
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Figure 4.4: Normalized histogram of the wind-only-retrieval selected wind speed am-
biguities for rain-free (ERS R=0 mm/hr) and over 3 mm/hr rain rate (ERS R > 3
mm/hr) and collocated ECMWF wind directions (ECM R=0 mm/hr) for different
WVC bins 1-5 (a), 6-11 (b), 12-15 (c), and 16-19 (d).

4.2.1 Methodology

The SWRR method is based on a simple additive wind/rain backscatter model

proposed in [7] [11], which represents the rain-modified measured backscatter σm as

σm = σwindαatm + σeff (4.4)

where σm is the ESCAT-measured σ◦, σwind is the wind-induced surface backscatter,

αatm is the two-way rain-induced atmospheric attenuation, and σeff is the effective

rain backscatter due to the attenuated surface perturbation and the rain-induced

atmospheric scattering [4] [7] [11] [35]. αatm and σeff are related to the surface rain

rate R in mm/hr by empirically derived linear or quadratic log-log models [11] as

shown in Equations (3.15) and (3.19). The coefficients of the power law models are

given in Table (3.1) and (3.4). Applying the rain model with the conventional wind
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Figure 4.5: Normalized histogram of the wind-only-retrieval selected wind directions
(in (a)) and the direction ambiguities closest to the collocated ECMWF wind directions
(in (b)) for rain-free (ERS R=0 mm/hr) and over 3 mm/hr rain rate (ERS R > 3
mm/hr) and collocated ECMWF wind directions (ECM R=0 mm/hr) for different
WVC bins.
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GMF function CMOD5, the wind/rain GMF is

σ◦ = CMOD5(s, d, θ, φ)αatm(R, θ) + σeff (R, θ). (4.5)

Then, the MLE likelihood function of equation (4.1) is written as

MLE′(z|s, d, R) =
3∑

i=1

(σ◦i −M′(s, d, φi, θi, R))2

(ς ′i(s, d))2
(4.6)

where M′ is the wind/rain GMF in equations. ς ′ is the variance of the rain-contaminated

measurement, which is estimated in the next subsection. Wind velocity and rain rate

estimates are retrieved simultaneously by minimizing the new MLE for s, d, and R

given the triplet σ◦ measurements. For simplicity, the normalization method pro-

posed in [18] is not applied in this paper, though the normalization method may

further improve the accuracy of SWRR. Similar to the wind-only retrieval method,

minimization of the SWRR MLE results in multiple ambiguities with corresponding

wind speed, wind direction, and surface rain rates. Here, we use an adjusted median-

filter-based method based on the method proposed in [36] to select a final estimate.

The adjusted median filter weights each ambiguity by the exponential of its likelihood

value. Collocated ECMWF wind fields are used for nudging.

4.2.2 Variance of the Rain-contaminated Measurements

Before deriving the variance model of the rain-contaminated measurements,

some assumptions are required. The noise in the measurement is assumed to be white

Gaussian noise. The communication noise Kpc and wind-only GMF uncertainty Kpm

are assumed unchanged under raining conditions. Kpm, Kpa (the uncertainty of αatm),

and Kpe (the uncertainty of σeff ) are assumed independent. Under these assumptions,

the noisy wind/rain backscatter measured by the scatterometer instrument can be
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modeled as

σmeas=[σwind(1 + v1Kpm)αatm(1 + v2Kpa)

+σeff (1 + v3Kpe)](1 + Kpcv4) (4.7)

where σwind can be approximately represented by the wind only GMF, M. v1, v2, v3,

and v4 are zero-mean Gaussian random variables. Because Kpa is negligible compared

with Kpe [8], Kpa is ignored in the derivation of V ar(σmeas). The variance of the

measured σ◦, V ar(σmeas), is

V ar(σmeas)≈(1 + K2
pc)(M

2α2
atmK2

pm + σ2
effK

2
pe)

+K2
pc(σeff + Mαatm)2. (4.8)

Kpc is available for each WVC in the ESCAT product, and is about 0.05. Kpm is

considered insignificant except for low wind speeds [18][37]. The Kpe term for ESCAT

has never been studied, but is analyzed and estimated in the following section.

4.3 Estimation of Kpe

Many factors contribute to Kpe, including uncertainty in the rain backscatter

model and variability caused by the non-uniform beamfilling (NUBF) effect. The

value of Kpe can be roughly estimated in the range of 0.38− 0.45 from validation of

the wind/rain backscatter model, where the normalized standard deviations due to

uncertainty in the model is 1.4 dB and 1.6 dB for θ = 40◦−49◦ and θ = 49◦−57◦ [11],

respectively. However, this value of Kpe may be overestimated due to the variability of

the temporal collocation, the inherent uncertainty of the ECMWF predicted winds,

and the errors in the TRMM PR estimated surface rain rates. In this section, we

first evaluate the contribution to Kpe by the NUBF effect. Then we adopt a practical

method to seek an optimal Kpe for the wind/rain retrieval process. Finally, the impact

of the value of Kpe on the wind/rain retrieval process is investigated.
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4.3.1 Kpe Due to the Beam-filling Effect

The size of a typical rain cell is on the order of 5 km [38], which is rela-

tively small compared with the 50 km 3 dB spatial response function of ESCAT.

Hence, the variability due to NUBF is a considerable factor for Kpe. To estimate

the NUBF-induced variability, we estimate the standard deviation of the normalized

error between the model-predicted rain effective backscatter σm
e calculated from the

antenna-weighted-average TRMM-PR rain rate and the ESCAT-observed effective

backscatter σe
e. σe

e can be approximately estimated by averaging the ESCAT-observed

effective backscatter σ′e at each TRMM PR cell in the ESCAT footprint, σ′e, over the

3 dB spatial response function of ESCAT, i.e.,

σe
e =

∑N
i=1 G(i)σ′e(i)∑N

i=1 G(i)
(4.9)

where G(i) is the ESCAT spatial response function gain at the ith PR measurement,

and N is the number of PR data points within the ESCAT 3-dB antenna pattern

contour.

σ′e is estimated by projecting the TRMM PR surface rain rate through a rain

backscatter model unweighted by the spatial response function of ESCAT. The model

has the same form as Equation (4.4) but different coefficients from the weighted rain

backscatter model in [11]. To estimate the coefficients of the unweighted model,

we estimate σe
e for varying values of model coefficients of the unweighted model.

Comparing σe
e with the corresponding σm

e , we choose the model coefficients that yield

the lowest root mean-square (RMS) error overall. An estimate of Kpe is obtained by

taking the standard deviation (STD) of the normalized error between σm
e and σe

e,

Kpe
∼= STD(

σe
e − σm

e

σm
e

) (4.10)

for all surface rain rate observations above a rain rate threshold.

The resulting value is Kpe ≈ 0.07 for rain rate ≥ 0.8 mm/hr and Kpe ≈ 0.19

for rain rate < 0.8 mm/hr, showing that the model uncertainty due to the beam filling
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effect is more significant for low rain rates than for moderate-to-high rain rates. We

note that for relatively large footprints and moderate-to-high rain rates, rain fields

often appear relatively uniform. Also, the shape of rain backscatter model function is

relatively flat. For these reasons, the model variability due to the beam-filling effect

is relatively small for moderate-to-high rain rates.

4.3.2 Seeking Optimal Kpe for the Wind Retrieval Process

As mentioned above, many factors contribute to the model uncertainty. Ana-

lyzing all of them is beyond the scope of this paper. Here, we adopt a method proposed

in [34] to seek the optimal value of Kpe for the wind retrieval process. From Equation

(4.3), we know that the value of Kpe can affect the MLE. Hence, the wind/rain esti-

mation is affected by the value of Kpe. The optimal-Kpe-seeking method is to find the

value of Kpe for SWRR that yields the best wind speed estimates using the collocated

data set. To find the optimal value of Kpe, we perform SWRR for varying values of

Kpe. RMS wind speed error between SWRR-retrieved wind and ECMWF predicted

wind for each Kpe are evaluated over the collocated data set.

The wind speed bias between wind-only-retrieved winds with CMOD5 and

ECMWF winds is about −0.2 m/s [15], which is compensated for in the computation

of the RMS wind speed error. When Kpe = 0.21, the RMS error is at a minimum for

measurements with rain rate > 0 mm/hr; hence, we choose this value for Kpe.

To understand the impact of Kpe on simultaneous wind/rain retrieval, we

illustrate the RMS error of the wind speed retrieval in Fig 4.6. The standard deviation

of the RMS wind speed error for various Kpe is 0.0191 m/s, showing that the impact

of Kpe on simultaneous wind/rain retrieval is insignificant.

With an estimated Kpe, we have all the parameters for SWRR. To validate

and evaluate the performance of SWRR, we use both simulation and real collocated

data sets, which are illustrated in the following sections.
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Figure 4.6: RMS error between SWRR-retrieved and ECMWF wind speeds as a
function of Kpe for rain rate > 0 mm/hr. The optimum value of Kpe is indicated.

Table 4.1: Wind speeds, wind directions, and rain rates for simulations.
Wind Speeds (m/s) 4 8 12 16 20 24
Wind Directions (degree) 0 20 40 ... 340
Rain rates (mm/hr) 0 1 3 10 30

4.4 Simulations

In this section, we evaluate the performance of SWRR under various wind/rain

conditions by simulation. To achieve this goal, SWRR and wind-only retrieval are

performed using synthetic σ◦ measurements created by Monte-Carlo simulation under

specific wind/rain conditions for WVCs 13, 15, 17, and 19.

4.4.1 Simulation Method

To create simulated σ◦ measurements, we project the various wind speeds,

wind directions, and rain rates through the wind/rain backscatter model in Equation

(4) with typical measurement geometries at each ESCAT WVC. Zero-mean Gaussian

random noise with the variance given in Equation (10) is added to σ◦. The wind

speeds, wind directions, and rain rates used for simulations are listed in Table 4.1.

For each condition, 500 noise realizations are created for each case. After performing

SWRR and wind-only retrieval over the realizations, ambiguities closest to the true

wind vectors are selected.
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4.4.2 Results and Analysis

To aid in analyzing the results from the simulations, we introduce a parameter,

the rain ratio τ [7] [11], to indicate how severely the rain alters the backscatter. The

rain ratio shows the average percentage of the rain-induced backscatter relative to

the total effective backscatter σt,

τ =
1

k

k∑

l=1

σl
e

σl
t

(4.11)

where k is the number of measurements and σe is the rain-induced effective backscat-

ter. As in [11], we define three distinct regimes using τ . In regime 1 (τ < 0.25),

wind-induced backscatter dominates and rain information cannot be accurately esti-

mated from the measurements. Wind and rain-induced backscatter are on the same

order of magnitude in regime 2 (0.25 ≤ τ ≤ 0.75), and wind and rain information

can be simultaneously estimated. In regime 3, rain-induced backscatter dominates

the total backscatter (τ > 0.75); hence only rain rate can be accurately retrieved.

To compare the performance of SWRR and wind-only retrieval under varying

regimes, we show the mean and standard deviation of the difference between SWRR

and wind-only retrieved and true wind speed, Errs = sretrieved − strue, for a typical

wind and rain case in each regime for WVCs 13, 15, 17, and 19 in Fig. 4.7. Due to the

varying incidence angles at different WVC, the value of τ varies at different WVCs

under the same wind and rain conditions. The corresponding true wind speed is 8

m/s, close to the mean wind speed over the ocean, while the true rain rates are 0,

10, and 30 mm/hr, respectively. In regime 1 (left most column), Errs of both SWRR

and wind-only retrieval are close to zero mean, showing that wind speed estimation is

almost unbiased for both methods. Errs of SWRR is slightly noisier than wind-only

retrieval and is biased slightly low, especially at cross/along swath directions. This

is likely due to the introduction of rain rate to MLE. In regime 2 and 3, the mean

of Errs for SWRR-retrieved wind speeds is close to zero, while Errs for wind-only

retrieval is biased high, especially in regime 3. When rain-induced backscatter highly

dominates the backscatter (τ > 0.9), the Errs for SWRR is slightly biased high, as
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shown in regime 3 at WVCs 17 and 19 (right most column). Under the conditions

of high rain domination, the standard deviation of Errs is relatively high, confirming

that it is difficult to accurately estimate wind speed in this case.

Furthermore, we compare the mean and standard deviation of SWRR and

wind-only error, Errd = dretrieved − dtrue, for the same conditions in Fig. 4.8. Similar

to the wind speed performance, the Errd for wind-only retrieval and SWRR are close

to zero-mean in regime 1, while Errd for SWRR is somewhat noisier than for wind-

only retrieval. In regime 2, the zigzag shape bias in Errd for wind-only retrieval

shows that wind directions are biased toward along-track directions, while the Errd

for SWRR is still close to zero-mean except for along-track directions. In regime 3

where rain dominates, wind-only retrieval is biased significantly toward the along-

track direction, while SWRR performs relatively well at WVCs 13 and 15. At WVCs

17 and 19, high domination by rain degrades the wind direction estimates, especially

at the along-track direction close to 180◦. We examine the performance of SWRR-

retrieved rain rate by plotting the mean and standard deviation of the difference of

the SWRR-retrieved and the true rain rate, Errr = rretrieved − rtrue, as a function of

wind direction for a typical case in the three regimes for WVCs 13, 15, 17, and 19 in

Fig. 4.9. The true rain rate is 10 mm/hr. In regime 1 where wind dominates, SWRR

rain estimation performs poorly. Rain rate cannot be accurately retrieved, especially

for low incidence angle WVCs 13 and 15 where the backscatter measurements are

less sensitive to rain. In regime 2, the retrieved rain rate is close to zero-mean at

WVCs 13 and 15 with a slight bias at along-track directions, while Errr is biased low

at WVCs 17 and 19. In regime 3, Errr is close to zero-mean, and is slightly biased

low at WVCs 15, 17, and 19.

Next, we demonstrate the speed performance for SWRR and wind-only re-

trieval by plotting the mean and standard deviation of Errs as a function of wind

speed under varying rain rate conditions for WVCs 13, 15, 17, and 19 in Fig. 4.11.

Significant biases exist for low-to-moderate wind speed retrieved by the wind-only

method, while the SWRR retrieved wind speed is close to zero-mean at low incidence

angle WVCs 13 and 15. Under heavy rain rate conditions, SWRR slightly overesti-

70



0 100 200 300

0

5
Regime 1 Spd= 8 m/s Rain= 0 mm/hr

0 100 200 300

0

5
Regime 2 Spd= 8 m/s Rain= 3 mm/hr

0 100 200 300

0

5

10
Regime 3 Spd= 8 m/s Rain= 30 mm/hr

0 100 200 300

0

5

0 100 200 300

0

5

0 100 200 300

0

5

10

0 100 200 300

0

5

0 100 200 300

0

5

0 100 200 300

0

5

10

0 100 200 300

0

5

0 100 200 300

0

5

0 100 200 300

0

5

10

 

 Wind only
SWRR

A
ve

ra
g

e
 w

in
d

 s
p

e
e

d
 e

rr
o

r 
(m

/s
)

WVC 13

WVC 15

WVC 17

WVC 19

True wind direction (degree)

Figure 4.7: Statistics of wind speed error between retrieved and true wind speeds
from simulations as a function of true wind direction for three regime cases with true
wind speed of 8 m/s for WVCs 13, 15, 17, and 19. In each plot, the results of SWRR
is plotted as a dashed line, while the results of wind-only method is plotted as a solid
line. Notice the scale differences of the plots. Error bars in the figure represent the
standard deviation.

mates the wind speed at high incidence angle WVCs 17 and 19. The small bias in the

wind speed estimate causes the rain estimate to be biased low in regime 1 and regime

2, which is shown in Fig. 10 by plotting the normalized mean rain rate error as a

function of rain ratio τ . The bias in the rain estimate can be corrected by adjusting

the wind/rain backscatter model coefficients in the wind retrieval.

4.5 Validation

We next compare SWRR and wind-only retrieval using actual ESCAT mea-

surements. Wind vectors retrieved from the two methods are validated using collo-

cated ECMWF wind fields. Figures 4.12(a) and 4.12(b) show scatter density plots of
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Figure 4.8: Statistics of wind direction error between retrieved and true wind direc-
tions from simulations as a function of true wind direction for three regime cases with
true wind speed of 8 m/s for WVCs 13, 15, 17, and 19. In each plot, the results of
SWRR is plotted in blue, while the results of wind-only method is plotted as a red
dashed line. Notice the scale differences of the plots. Error bars in the figure represent
the standard deviation.

retrieved wind speed (wind-only and SWRR) and ECMWF wind speed for different

rain rate (R) bins. In each plot, non-parametric fit between the retrieved and the

ECMWF wind speeds is plotted. When R < 0.8 mm/hr, the performance of the two

methods is similar. The RMS of the SWRR retrieved wind speed is slightly larger

than the wind-only retrieval, showing that the wind speed estimates of SWRR are

somewhat noisier than wind-only retrieval. When R ≥ 0.8 mm/hr, the wind-only

retrieved wind speed is biased high, while the SWRR-retrieved wind speed is close

to unbiased. When R ≥ 10 mm/hr, wind speed of wind-only retrieval is significantly

biased high and has larger RMS than SWRR. Thus SWRR provides more accurate

wind estimates than wind-only retrieval when significant rain is present.
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Figure 4.9: Statistics of rain rate error between retrieved and true rain rates from
simulations as a function of true wind direction for three regime cases with true surface
rain rate of 10 mm/hr for WVCs 13, 15, 17, and 19. The line represents the mean error
while the error bar represents the standard deviation.

To demonstrate a compact comparison of the wind direction retrieval perfor-

mance of wind-only retrieval and SWRR, scatter density plots of the retrieved wind

direction (wind-only retrieval and SWRR) and ECMWF predicted wind direction for

varying R bins (the same as in Figs. 4.12(a) and 4.12(b)) are presented in Figs. 4.13(a)

and 4.13(b). Similar to the wind speed performance, the performance of wind-only

retrieval and SWRR is close for R < 0.8 mm/hr, while the SWRR retrieved wind

direction is somewhat noisier. When R ≥ 0.8 mm/hr, the selected wind direction

in wind-only retrieval is biased to along-track directions. When R ≥ 10 mm/hr, the

wind direction of the wind-only retrieval is significantly biased to along-track direc-

tions and has larger RMS than SWRR. For R ≥ 10, SWRR retrieved wind direction

is close to unbiased but is noisy.
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Figure 4.10: Mean (lines) and standard deviation (error bars) of wind speed error
between retrieved (SWRR and wind-only) and true wind speed from simulations as a
function of true wind speed for various rain cases at WVCs 13 (a), 15 (b), 17 (c), and
19 (d). The upper panel shows the results of SWRR while the lower panel shows the
wind-only results.

To validate the surface rain rates retrieved from SWRR, we show a scatter

density plot of SWRR retrieved and TRMM PR surface rain rates collocated within

±15 minutes in Fig. 4.14(a). Because the plot is in log-log space, zero rain rates

in either of the SWRR or TRMM PR datasets are not displayed. Of the rain rates

that are zero in either of the two datasets, over 95% have relatively small rain rates

(≤ 3 mm/hr) in the other dataset. The SWRR and TRMM PR estimated rain

rates have a relatively high correlation, although SWRR rain rates have considerable

scatter compared with TRMM PR rain rates. SWRR rain rate is biased high for low

74



0

1

2

3

4

5

N
or

m
al

iz
ed

 r
ai

n 
ra

te
 e

rr
or

 

 

node 13
node 15
node 17
node 19

Figure 4.11: Mean (lines) and standard deviation (error bars) of normalized rain error
between retrieved and true wind speed from simulations as a function of value of τ at
WVCs 13, 15, 17, and 19.

rain rates (approximately ≤ 0.8 mm/hr) and biased low for moderate to high rain

rates, which is consistent with results of the above simulation. Since the temporal

variability of rain events can significantly contribute to the variability between SWRR

and TRMM PR derived rain rates, we examine the relationship between the two rain

rates within ±2 minutes in Fig. 4.14(b). Here, the SWRR retrieved rain rate is

highly correlated with TRMM PR rain rates with a correlation coefficient of 0.89 and

RMS = 2.024, demonstrating the relatively high accuracy of SWRR retrieved rain.

In addition to a scatter-plot between the two rain rates, a histogram of rain rates

can be used as a statistical comparison method to validate SWRR-retrieved rain.

Fig. 4.14(c) shows histograms of the collocated rain rates estimated by both SWRR

(solid line) and TRMM PR (dashed line), where the histograms of the two rain rates

match relatively well for moderate to high rain rates, and the curve is biased low for

low rain rates.

Through validation, SWRR is shown to significantly improve wind estimates

in regimes where the wind and rain induced backscatter is on the same order. When

rain induced backscatter dominates the total backscatter, SWRR wind estimates are

noisy but almost unbiased. SWRR-retrieved rain rates have relatively high accuracy
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Figure 4.12: Scatter density plot of wind-only and SWRR-retrieved wind speeds
and collocated ECMWF wind speeds for various rain rate (R in mm/hr) bins. Non-
parametric fits are plotted as a dashed line. (a) Wind-only-retrieved wind speeds versus
collocated ECMWF wind speeds for several rain ranges. Bias develops when R is over
5 mm/hr. (b) SWRR-retrieved wind speeds versus collocated ECMWF wind speeds for
the same rain ranges. No obvious bias for all R ranges.

76



RMS=25.1528

R<0.8
0 100 200 300

0

200

0.8≤R<5

RMS=31.1139

0 100 200 300
0

200

RMS=37.3434

5≤R<10
0 100 200 300

0

200

0 100 200 300
0

200

R≥10

RMS=44.5504RMS=44.5504RMS=44.5504

W
in

d−
on

ly
 r

et
rie

ve
d 

w
in

d 
di

re
ct

io
n 

(d
eg

)

ECMWF wind direction(deg)a)

RMS=26.2443

R<0.8
0 100 200 300

0

200

RMS=30.9123

0.8≤R<5
0 100 200 300

0

200

RMS=32.3576

5≤R<10
0 100 200 300

0

200

0 100 200 300
0

200

RMS=38.1447

R≥10

RMS=38.1447RMS=38.1447

S
W

R
R

 r
et

rie
ve

d 
w

in
d 

di
re

ct
io

n 
(d

eg
)

ECMWF wind direction (deg)b)

Figure 4.13: Scatter density plot of wind-only and SWRR retrieved wind directions
and collocated ECMWF wind directions for various rain rate (R in mm/hr) bins. (a)
Wind-only-retrieved wind direction versus collocated ECMWF wind direction. Bias
along the along-track direction develops when R is over 5 mm/hr. (b) SWRR-retrieved
wind direction versus collocated ECMWF wind direction. No obvious bias exists for all
R ranges.
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Figure 4.14: Scatter density plot of SWRR rain rates versus TRMM PR antenna
weighted rain rates within ±15 minutes in log-log space in (a) and within ±2 minutes
in normal space in (b). Nonparametric fit and best quadratic fit to TRMM PR rain
rate in log-log space in (a) and best quadratic fit in normal space in (b) are also shown.
Error bars represent the standard deviation. Histograms of SWRR and TRMM PR
rain rates are shown in (c).

for moderate to high rain rates. SWRR retrieved rain rates are somewhat biased

but can be corrected. Unfortunately, since ESCAT is not specially designed for rain

detection, introduction of rain rate into wind retrieval makes SWRR wind estimates

noisier than wind-only retrieval and rain rate estimates are inaccurate in regime

where wind-induced backscatter dominates the total backscatter. Since the wind-only

retrieval method performs well in regime 1, SWRR is less useful here. Furthermore,

due to the geometry of ESCAT and limitations of MLE, SWRR does not perform
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Figure 4.15: An example of a SWRR retrieved wind/rain field. (a)-(c) show SWRR-
retrieved, wind-only-retrieved, and ECMWF wind vectors with corresponding wind
speeds plotted as background. (d)-(f) show SWRR-retrieved rain, TRMM PR antenna-
weighted rain, and TRMM PR retrieved rain. The TRMM PR swath is outlined by a
blue solid line, while the ESCAT swath is outlined by a dashed line. WVCs (13-19)
where SWRR is performed is outlined by two black solid lines.
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well at along-track wind directions, where SWRR often misidentifies wind and rain.

Thus, it is most useful to implement SWRR only in raining areas and use wind-only

retrieval in rain-free areas. SWRR-retrieved wind/rain can be used when rain ratio

τ is greater than a specific threshold. MLE-based QC methods [18] can be used for

rain thresholding to improve the accuracy of wind/rain estimates.

4.6 Case Study of SWRR Retrieved Wind/Rain Fields

To demonstrate the performance of SWRR under different circumstances, we

examine two typical cases of SWRR-retrieved wind/rain fields. The first case shows

a storm over the Pacific ocean at about latitude 35◦ and longitude 215◦ at UTC

08:13:47 on 12/25/2000. We compare the SWRR-retrieved wind/rain, wind-only

retrieved wind, ECMWF winds, and collocated TRMM PR rain rates in Fig. 4.15.

In (b), the wind-only wind fields exhibit many rain-contaminated features. In

the heavy rain area at the right bottom, dramatic wind speed inconsistency and along-

track wind directions are present, which is an indicator of severe rain contamination.

In (a), SWRR-retrieved wind vectors in the raining area are more consistent with

nearby rain-free WVCs. SWRR-retrieved wind vectors also agree with ECMWF

wind fields in (c) much better than the wind-only-retrieved wind vectors, showing

that SWRR significantly improve the wind estimates in this case. Comparing the

rain fields in (d) and (e), we find similar spatial rain patterns in the SWRR-retrieved

and TRMM PR antenna-weighted rain. While SWRR somewhat overestimates rain

rates in this case, SWRR-retrieved rain rate is highly correlated with the TRMM PR

antenna-weighted rain rates.

4.7 Conclusion

Using collocated TRMM PR, ESCAT on ERS 1/2, and ECMWF data, rain

effects on ESCAT wind-only retrieval are evaluated and analyzed. Wind speed re-

trieved by wind-only retrieval is biased high due to the rain-induced backscatter.

Rain contamination causes the wind direction estimates to be biased toward the

along-track directions under heavy rain conditions, no matter what the true wind
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direction. Rain effects on the wind-only retrieval varies with incidence angles. The

higher the incidence angle, the more significant the rain impact is on the wind-only

retrieval.

To compensate for rain-induced backscatter, we develop a simultaneous wind/rain

retrieval method for a C-band scatterometer for incidence angle > 40◦ based on a

wind/rain backscatter model. Through simulation and validation with collocated

ESCAT, TRMM PR, and ECMWF data, we find that SWRR can significantly im-

prove wind speed and wind direction estimates in regimes 2 and 3 where rain and

wind-induced backscatter are on the same order or rain dominates the total backscat-

ter. In addition, SWRR can retrieve rain rate from ESCAT measurements. The rain

estimates have relatively high accuracy in regimes 2 and 3. In regime 1 where wind-

induced backscatter dominates the total backscatter, the accuracy of SWRR-retrieved

rain rates is degraded and spurious rain rates may be derived. Due to limitation’s

in the MLE, SWRR does not perform well when the wind direction aligns along-

track directions. In regime 1 (which includes most high wind cases), the performance

of SWRR is close to that of wind-only retrieval, though it is somewhat noisier due

to introduction of a new parameter (the rain) to the retrieval. Therefore, SWRR

wind/rain should be used only when the rain ratio τ is over a specific threshold.

Although for ESCAT only about 1.5% of all the collocated measurements are

affected by significant rain [11], SWRR can enable accurate wind retrieval of a high

percentage of rain-contaminated measurements that would otherwise not be usable.

Since ASCAT on MetOP is expected to be more sensitive to rain due to its higher

incidence angle, SWRR can also benefit ASCAT wind retrieval.
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Chapter 5

RADARSAT ScanSAR Wind Retrieval and Rain Effects on
ScanSAR Measurements Under Hurricane Conditions

5.1 Introduction

Synthetic aperture radar (SAR) measurements have been conventionally used

to study coastal processes, currents, and sea ice with its high spatial resolution and

large spatial coverage. Recent studies confirm that SAR measurements can be used

in the retrieval of the near-ocean surface winds at ultra high resolution [39]. Similar

to scatterometry, the normalized radar cross section (σ◦) measured by SAR over the

ocean is mainly from wind-driven gravity-capillary waves (Bragg waves). Since SAR

has only one measurement for each geographic location, wind speed and direction can

not be simultaneously retrieved by direct inversion of the GMF, which is the general

method of the scatterometry. The wind direction can be estimated by measuring the

orientation of the wind-induced streaks visible in most SAR images [40] [39] [41], or

obtained from additional information such as numerical wind prediction. For SAR

wind speed retrieval, there are two main methods. One of them estimates wind speed

from the spectral width of the image spectrum in azimuth direction. The other one

estimates wind speed by inversion of the GMF from the measured σ◦, which is a

function of the incidence angle, azimuth angle, and wind direction.

Compared with other space-borne instruments, SAR can provide wind esti-

mates at finer resolution, as fine as several hundred meters, which is useful to study

the micro-scale weather events. Most of current SAR instruments used for wind

retrieval, such as ENVISAT and RADARSAT, operate at C-band. The Canadian

satellite RADARSAT-1 works at 5.3 GHz in HH polarization. The scanning SAR

(ScanSAR) wide A (SWA) mode of RADARSAT-1 provides coverage of a 500km

83



nominal ground swath at incidence angles between 20 and 49 degrees, with a spatial

resolution of 100 m [42].

Because ScanSAR SWA’s resolution is insufficient to implement the spectrum

method, the wind speed must be estimated by inversion of GMF. Unfortunately

there is no well-validated GMF model for HH polarization at C-band. Our general

approach to obtain a HH polarization GMF is to adjust the C-band VV polarization

GMF (CMOD) using a polarization ratio p. While several C-band polarization ratio

models have been proposed, none has been well verified in hurricane conditions.

Although C-band backscatter has been believed to be little affected by rain,

rain cells are often observed on C-band SAR images over the ocean [9] [43]. Rain-

induced backscatter is from two processes. One is from atmospheric attenuation and

scattering by falling rain drops, which are insignificant for C-band signal. The other

one is from rain -induced surface scattering on the ocean surface. Raindrops striking

the water and downdraft created by rain cells modify the roughness of the ocean

surface; and hence the surface backscatter. In the past, several investigations have

been performed to analyze SAR signatures of rain cells over the ocean. Melshimer

et al. analyzed SAR signatures of rain cells over the ocean using C- and X-band

SAR data, showing that rain generally damp the surface backscatter at low incidence

angles and enhance the backscatter at high incidence angles [9]. Nie and Long [11]

found that rain surface backscatter can dominate the total backscatter from the ocean

surface acquired by C-band radar in moderate to heavy rains by studying the rain

effects on ESCAT scatterometer measurements. However, quantitative study of rain

effects on SAR measurements has rarely been studied; hence it is necessary to analyze

it.

In this study, we analyze several important topics on SAR wind retrieval and

rain effects in a hurricane. First, we develop a “recalibration” model for RADARSAT-

1 ScanSAR SWA data and demonstrate that relatively reliable estimates of wind speed

can be obtained in hurricanes using SAR measurements. Second, complicated rain

effects on ScanSAR SWA data are quantitatively evaluated using collocated shore-
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based NEXRAD weather radar data. To achieve the above goals, we selected the

hurricane Katrina (August 2005 in the Atlantic ocean) as a test case.

In the next section, details of the data set used in the study are described. In

Section 5.3, the principles of SAR wind retrieval are illustrated and a recalibration

model is proposed for RADARSCAT-1 ScanSAR SWA data. The wind retrieval

results are analyzed and validated in Section 5.4. In the following section, rain effects

on C-band SAR measurements over the ocean are explained and a backscatter model

is proposed to model the rain effects. In Section 5.6, the rain effects are evaluated

using the collocated data sets. Conclusions are presented in the final section.

5.2 Data

Hurricane Katrina formed as Tropical Depression Twelve over the southeastern

Bahamas on August 23, 2005. Katrina attained Category 5 status on the morning

of August 28 and reached its peak strength at 1:00 p.m. that day. Approximately

mid-night of August 28, both RADARSAT-1 and SeaWinds on QuikSCAT flew over

Katrina with a time difference of several minutes, providing a good collocation of C-

and Ku-band measurements over ocean in a hurricane. During the same period, shore-

based NEXRAD and air-borne NOAA WP-3D radar also covered the Katrina from

different locations, acquiring 3 dimensional rain rates for the study. In this section,

these data sets are described. In Fig. 5.1, we show the path of the hurricane Katrina,

the outlines of the RADARSAT-1 ScanSAR SWA data and SeaWinds measurements,

the locations of NEXRAD weather radar stations and the moving path of NOAA

WP-3D airplane.

5.2.1 RADARSAT-1 ScanSAR SWA Data

Two 510 km × 510 km calibrated RADARSAT-1 ScanSAR SWA images were

acquired over the ocean around New Orleans at 23:49:05 and 23:50:50, on 28 August,

2005, during the period of Hurricane Katrina. These are the sources of the SAR

measurements used in this study to retrieve the near-surface vector winds over the

85



0 2 4 6 8 10

x 10
5

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

QuikSCAT
Swath

RADARSAT
SCANSAR
Swath

Katrina
best
track

NOAA
WP 3D
radar
path

NEXRAD
station

9/29/05
00 OTC

Mobile
New  Orleans

Vernon

Figure 5.1: Hurricane Katrina best track as determined by the Hurricane Research
Division, RADARSAT-1 ScanSAR SWA orbit, Seawinds on QuickSCAT orbit, and
the path of the NOAA WP-3D airplane. Three NEXRAD weather radar stations are
plotted as red circles. The stars and numbers indicate Katrina locations.

ocean. At the time of observation, the hurricane was a category 5 hurricane with a

fully developed eye.

RADARSAT-1 was launched in 1994 for environmental monitoring. The satel-

lite operates on a sun synchronous dawn-dusk orbit at an nominal altitude of 793 to

821 km [42]. Among the different working modes of RADARSAT-1, the ScanSAR

wide mode A (SWA) allows imaging of the widest swath of about 500 km, which is

ideal for monitoring hurricanes. SWA has a range of incidence angles between 20 to

49 degrees. To create an SWA product, RADARSAT combines four beams (W1, W2,

W3, and S7) during data collection, with each beam scanned sequentially. The image

processed by the Alaska Satellite Facility (ASF) is 510 km × 510 km with a pixel

spacing of 50 m. The range resolution of the four beams varies from 73.3 m to 162.7

m, while the azimuth resolution varies from 93.1 m to 117.5 m. The raw ScanSAR

SWA data was processed by the ASF into calibrated images. However, the radio-

metric calibration of ScanSAR SWA images is very difficult due to many limitations.
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Because of incorrect radiometric compensation for the azimuth antenna pattern, non-

zero yaw steering, and inaccurate center Doppler frequency, scalloping between the

bands may occur in some areas. Furthermore, saturation of the analog to digital

converter (ADC) leads to an underestimation of σ◦ [10]. Beam overlap regions can

occur due to incorrect radiometric compensation for the range antenna pattern and

roll angle ambiguity. It is also noted that the calibration at ASF is mainly “tuned” to

high latitude areas, which may result in degraded calibration for low latitude areas.

The accuracy of the ASF-calibrated SWA images has not been well studied. In [44],

the relative radiometric accuracy for SWA is estimated to be about 0.47dB. The geo-

graphic location accuracy of the ScanSAR SWA images is still not available, though

the overall relative location error for a similar product, ScanSAR SWB, is about 135

m.

To retrieve vector winds, the parameters needed for wind retrieval process are

estimated from the SAR image. The SAR images are projected to the Earth’s surface

using the Universal Transverse Mercator coordinate system. The incidence angle for

each image pixel is calculated from ScanSAR SWA data using a method proposed by

Shepherd in [45]. Because the format of ASF processed ScanSAR SWA data is not

the same as CDPF products, the normalized radar cross section σ◦ is calculated from

the digital number (DN) of each pixel using

σ◦ = 10 log10[(DN2
j + A3)/A2j] dB (5.1)

where A2j is the scaling gain value for the jth pixel, and A3 is the fixed offset to

compensate for the noise floor. Since information is unavailable to calculate a nominal

noise vector for ScanSAR SWA product, A3 is set to 0 for all ASF calibrated ScanSAR

SWA products.

In the two ScanSAR images, rain bands exist next to the eyewall of Katrina

and several long rain cell clusters span a wide range of incidence angles, providing a

good data source to study rain effects on measurements at various incidence angles.
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5.2.2 NOAA Hurricane Research Division H*wind Data

To validate the SAR retrieved wind fields and calculate the wind-induced

backscatter, coincident H*wind surface wind fields [46] are used in the study. The

H*wind Surface Wind Analysis System is an experimental high resolution hurricane

research tool developed by the Hurricane Research Division (HRD) at the National

Oceanic and Atmospheric Administration (NOAA). The H*wind system assimilates

and synthesizes disparate observations into a consistent wind field. The H*wind

system uses all available surface weather observations including NOAA P3 and G4

research aircraft measured data, retrieved winds from SSM/I radiometer, ERS and

QuikSCAT scatterometers, and TRMM radiometer, and GOES cloud drift winds to

predict surface wind fields. All data are processed to conform to a common framework

for 10 m height, the same exposure, and the same averaging period using accepted

methods from micrometeorology and wind engineering [47]. The analysis provides the

maximum sustained 1-minute wind speed. Due to the limited coverage of the obser-

vations and the smoothing effect of the analysis process, fine scale details of the ocean

surface winds are filtered out. The spatial resolution of H*wind estimates is 0.0542

degree in latitude and longitude, while the time resolution is 3 hours. The H*wind-

predicted wind fields are trilinearly interpolated in space and time to RADARSAT-1

ScanSAR SWA data times and locations.

5.2.3 NEXRAD Doppler Weather Radar Data

Since the center of Hurricane Katrina is close to coastal line at the time

when the RADARSAT-1 data was acquired, collocated NEXRAD-derived three-

dimensional rain rates are used to evaluate the effects of rain on the SAR measure-

ments. NEXRAD measures radar reflectivity and Doppler shift by employing a rotat-

ing 8.5-m paraboloid antenna with a output power of 750kW. NEXRAD radar oper-

ates at S-band (2.7-3.0 GHz). During storm events, NEXRAD uses a pre-programmed

set of scanning elevations, Volume Coverage Pattern (VCP) 11, to acquire data. The

radar successively scans 360◦ in azimuth angle in 1◦ increments and from 0.5◦ to 6.2◦

in 0.95◦ increments in elevation angle. Additional circular scans at a 7.5◦, 8.7◦, 10.0◦,
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12.0◦, 14.0◦, 16.7◦, and 19.5◦ elevation angle are performed. The rotating speed of

NEXRAD is about 3.4 rpm; hence, a volume scan is be completed in approximately

5 minutes.

In general, rain rates are derived from NEXRAD measurements of reflectivity

Z by inversion of the reflectivity to rain rate (Z-R) relationship,

Z = aRb (5.2)

where constants a and b are dependent on drop-size distribution. The optimal Z-R

constants determined by Jorgensen and Willis in mature hurricanes is a = 300 and

b = 1.35. The NEXRAD Z measurements are estimated at 1 km resolution over the

range of 1-460 km from the radar. NEXRAD level II data provided by the NOAA

Radar Operations Center contains Z measurements.

To collocate the NEXRAD rain measurements with RADARSAT-1 ScanSAR

SWA data, the NEXRAD measurements are converted from Plan Position Indicator

(PPI) to Constant Altitude Plan Position Indicator (CAPPI) with 1 km × 1 km

resolution in the horizontal and 1 km resolution in the vertical. Interpolation is used

to project the measurements from PPI to CAPPI. The ray path is computed using the

“four-thirds earth radius model” [19]. The NEXRAD rain rates are then projected

to UTM coordinates.

As shown in Fig. 5.1, NEXRAD data from stations at New Orleans (LIX),

Mobile (MOB), and Tallahassee (EVX and TLH) are used. In the overlapping area

of two radars, we select the rain estimates from the nearest station. To ensure the

quality of the rain estimates, we limit the maximum range of NEXRAD radar data

subjectively to a 200 km radius.

5.3 SAR Wind Retrieval

As mentioned in Section 1, the wind direction can be derived from the ori-

entation of wind-induced streaks, such as boundary layer rolls in the atmosphere,

which are visible in many SAR images. In such images the spectrum method can be
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implemented to estimate the wind direction. However, this method has not proved

applicable to these RADARSAT-1 ScanSAR images, due to the inadequate spatial

resolution of the images [10]. Therefore, additional information such as numerical

predicted wind fields must be used to estimate of the wind direction. For a hurricane,

the wind direction can also be estimated by combining the SAR images with hurri-

cane dynamic models. In this study, the collocated H*wind direction field is used as

the wind direction for SAR wind retrieval.
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Figure 5.2: Scatter density plot of the σ◦ from re-calibrated SAR image A and σ◦

calculated from collocated H*wind. Both σ◦ axes are in normal space. The resolution
of σ◦ is 1 km × 1 km.

Knowing the wind direction, the wind speed can be derived from the σ◦ by

inversion of the GMF with input of the incidence angle θ, and the azimuth angle, and

the wind directions. Lacking a well-validated GMF for C-band HH polarization, the

GMF for C-band VV polarization is modified using the C-band polarization ratio to
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Figure 5.3: Scatter density plot of the σ◦ from re-calibrated SAR image A and σ◦

calculated from collocated H*wind. Both σ◦ axes are in log space.

estimate the σ◦. The polarization ratio p is defined as

p =
σ◦HH

σ◦V V

(5.3)

where σ◦HH and σ◦V V are the σ◦ in HH and V V polarization, respectively. The

polarization ratio is less than one for moderate incidence angles (20◦ to 70◦). For

C-band, polarization ratio p is dependent on the incidence angle [48]. For low wind

speed, p has some dependency on wind speed, while the variation of p with wind

speed is quite small for medium to high wind speeds. A wind direction dependency

is also observed by Mouche et al. [49] for the incidence angle of 45◦. Several C-

band polarization models have been proposed using different data sets. Thompson et

al. [50] developed a model for the polarization ratio

p =
(1 + α tan2 θ)2

(1 + 2 tan2 θ)2
(5.4)
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Figure 5.4: Two selected sub-areas of SAR image A. σ◦ is plotted with the collocated
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where θ is the incidence angle, and α is a constant. The value of α was determined to

be 0.6 by fitting the model to the data measured with an airborne SCAT by Unal et

al. [48] for several moderate incidence angles with low to medium wind speeds. The

value α = 0.6 ensures that the proposed model is consistent with both the theoretical

polarization ratio for Bragg scattering with α = 0 and the Kirchhoff scattering with

α = 2. The α = 0.6 was verified by Monaldo et al. [51] [52] using RADARSAT-1 data

and in situ data, while Vachon and Dboson [40] found that using Thompson’s model

with α = 0.6 leads to a wind speed overestimate, especially for high wind speeds.

The value of α recommended by their study is 1.

Another model for the polarization ratio was proposed by Elfouhaily [53]

p =
(1 + 2 sin2 θ)2

(1 + 2 tan2 θ)2
. (5.5)

The model is obtained by transforming the effective scattering Frensnel coefficient

of vertical polarization to horizontal polarization. Using dual-polarization measure-

ments from airborne radar observations, Mouche et al. [54] proposed an empirical
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model

p = AeBθ + C. (5.6)

where A = 0.008, B = 0.1255, and C = 0.9973.

Because each model mentioned above is not well-validated and the model

coefficients have a dependency on the specific data set, we compared different models

using our data. The σ◦ estimates from SAR image DN values are compared with

the σ◦ computed from H*wind wind estimates projected through CMOD5 and the

polarization model. It is found that the Thompson’s model fits image A relatively

well, which was acquired on 23:49:05, while the other two models both underestimate

the σ◦. But all three models do not fit image B well, which was acquired on 23:50:50

UTC. Image B was acquired over the transition area between ocean and land, which

may be the reason for the degraded calibration. To compensate for the limitations

of the calibration procedure, we adopt a backscatter adjustment model proposed

in [55] to recalibrate the SAR measurements. The model coefficients are “tuned” for

optimum performance using collocated H*wind wind fields projected through CMOD5

and Thompson’s polarization model [50].

The re-calibrated σ◦re can be expressed as

σ◦re = σ◦esG(θ)M + O (5.7)

where σ◦es is the σ◦ estimates from DN value using equation (1), G(θ) is a parameter

dependent on incidence angle, M is a power correction parameter, and O is an offset

correction parameter. G(θ) can be expressed as

G(θ) = sinn(θ) (5.8)

where n is a real number. Since ScanSAR SWA combines data from four different

beams, each with different incidence angles and different radiometric characteristics,

the coefficients of the recalibration model are separately “tuned” for different inci-
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dence angle ranges. Table 5.1 shows the recalibration coefficients of image A and B for

three incidence angle bins of 22-31 degrees, 31-41 degrees, and 41-47 degrees, respec-

tively. The scatter plots between the two σ◦ estimates (the re-calibrated ScanSAR σ◦

and the σ◦ estimated using H*wind) in normal space and log-log space for image A

are shown in Figs. 5.2 and 5.3. It is noted that except for the incidence angle range

22-31 degrees, the coefficients of the recalibration model are very similar for each case,

showing the recalibration model is consistent for different SAR image segments.

Table 5.1: Coefficients of the recalibration model.
Image name incidence angle (degree) n M O

A 22 - 31 -1.12 0.34 0.032
B 22 - 31 -1.7 0.22 0.002
A 31 - 41 -1.2 0.32 0.01
B 31 - 41 -1.18 0.27 0.008
A 41 - 47 -1.11 0.33 0.003
B 41 - 47 -1.115 0.33 0.0055

5.4 Wind Retrieval Results and Analysis

In this section, the vector winds retrieved from the two ScanSAR SWA images

are presented. Wind retrieval is done at 1 km × 1 km by inversion of the GMF

using recalibrated σ◦. In Fig. 5.4, portions of both re-calibrated σ◦ and collocated

H*wind wind direction vectors of image A are shown. Since the magnitude range of re-

calibrated σ◦ is large, we display the re-calibrated σ◦ of image A in two sub-images.

It is noted that the color-map of sub-image a) and b) are different. Visually, the

H*wind wind directions agree well with the key features in the SAR image. Since the

magnitude of re-calibrated σ◦ decreases with increasing incidence angle for a specific

wind speed and direction, pixels generally becomes darker from left to right, since

incidence angle decreases from left to right. Rain bands and rain cells are visible in

σ◦ field. For the C-band SAR signal, the effects of rain on σ◦ vary with incidence
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angle. At high incidence angles (approximately θ > 40◦), rain generally enhances the

backscatter, while rain reduces the backscatter at low incidence angles. At moderate

incidence angles (approximately 35◦ < θ < 40◦), the effect of rain is complex. In Fig.

5.4, one can observe dark spiral rain bands around the hurricane eye, which is due

to diminution of σ◦ by rain. While rain adversely affects the wind accuracy, it is not

considered in the wind retrieval. We evaluate the rain effect on SAR measurements

in Section 5.5.

To validate the SAR-derived wind speeds, we show scatter density plots be-

tween the SAR retrieved wind speed fields and the collocated H*wind wind speed

fields for image A in Fig. 5.5. Overall, SAR-derived wind speeds agree well with

H*wind wind speeds. Except for the influence of rain, the largest errors of wind

speed occur at high wind speed (over 25 m/s), where the SAR-derived wind speeds

have considerable scatter in comparison to the H*wind wind speeds. These errors are

mainly due to the saturation of the C-band GMF CMOD5. Another reason is the

inaccuracy of CMOD5 for high wind speed. As shown in Fig. 5.7(c), the shape of σ◦

as an function of wind speed becomes flat over 25 m/s and different wind speeds may

produce the same σ◦, as shown in 5.7(b). As a result, the wind retrieval becomes

very sensitive to noise for high wind speed and variability of the wind estimates is

increased. Figure 5.7(a) shows the percentage of SAR-retrieved wind speeds with a

error between SAR-retrieved and H*wind wind speed (|ssar − sH∗wind|) over 15 m/s

and collocated H*wind estimated wind speed over 25 m/s, plotted versus wind di-

rection. Compared with Fig. 5.7(b), the largest error percentage corresponds to the

wind direction where the σ◦ curves tangle with each other, suggesting that the wind

retrieval skills of SAR varies for various wind directions. This limitation of SAR wind

retrieval may be improved by using a model-based wind retrieval in hurricane condi-

tions or by developing a wind ambiguity selection algorithm similar to scatterometer

wind retrieval in the future.

We show the compact comparison between the two wind speed estimates for

image A in Fig. 5.6. As mentioned above, the SAR-retrieved wind speed is noisier

in high wind areas (near the hurricane eye). Wind speeds are possibly overestimated
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in an area near the eye wall. Also due to “recalibration”, scallops can be observed

along the azimuth direction near subswath edges. Effects of rain are also noticeable

in the SAR-retrieved wind speed field.

The mean error (SAR retrieved wind - H*wind wind) and RMS error between

the two wind speed estimates are listed in Table 5.2. The ScanSAR SWA retrieved

wind speed has a small bias, which is possibly caused by rain contamination. The

overall root mean squared (RMS) error is below 6 m/s and RMS error for wind

speed less than 25 m/s is below 4 m/s, demonstrating relatively high accuracy of

SAR-retrieved wind speeds in hurricanes.

Table 5.2: Mean error and RMS errors between the SAR retrieved and H*wind speeds.
Image Mean error (m/s) RMS (overall) (m/s) RMS(<25 m/s) (m/s)

A -0.21 4.53 2.5
B 0.38 5.7 3.5

5.5 Rain Effects on RADARSAT ScanSAR SWA Measurements

As mentioned in Section 5.1, in raining areas the wind-induced SAR backscat-

ter signature is altered by rain. In this section, we explore these effects.

5.5.1 Rain Effects on C-band SAR Measurements Over the Ocean

In the atmosphere, rain-induced volume-scattering increases the total power

backscattered to the SAR, while the SAR signal is also attenuated by the raindrops.

Besides rain atmospheric effects, raindrops striking the water create various splash

products including rings, stalks, and crowns from which the signal scatters. The

contribution of each of these splash products to the backscattering varies with inci-

dence angle and polarization. Ring waves are found to be the dominant features for

VV-polarization. For HH-polarization, the radar backscatter from non-propagating

splash products increases with increasing incidence angles while the radar backscat-

99



ter from ring waves decreases. Raindrops impinging on the ocean surface also gen-

erate turbulence in the upper water layer which attenuate the short gravity wave

spectrum. Using multi-frequency SIR-C/X-SAR data and ERS 1/2 SAR(C band,

VV-polarization) data, Melsheimer et al. [9] demonstrate that the modification of

the sea surface roughness by falling raindrops mainly depends on the wavelength of

water waves. The net effect of the raindrops on the ocean surface is a decrease of the

amplitude of water waves which have wavelengths above 10 cm and an increase of the

amplitude of water waves with a wavelength below 5 cm. For waves with wavelengths

between 5 cm and 10 cm, rain may increase or decrease the amplitude of the Bragg

waves, while the critical transition wavelength at which increase turns to decrease

is not well defined [9]. The critical wavelength is believed to depend on rain rate,

drop size distribution, wind speed, and the temporal evolution of the rain event. The

various rain effects on the ocean surface are illustrated in Fig. 5.8.

In addition to surface effects induced by raindrops, the sea surface roughness

is also affected by the airflow (downdraft) associated with the rain event as shown

in Fig. 5.8. When the downdraft reaches the sea surface, it spreads radially out-

ward as a strong local surface wind that increases the sea surface roughness. Note

that the gust front is the outer edge of the downdraft. When the mean ocean sur-

face wind is low, the downdraft is often visible on SAR images over the ocean as a

nearly circular bright pattern with a sharp edge [43] [56]. When the ocean surface

wind is strong, the airflow pattern is distorted; hence the SAR signature shows bright

and dark areas [57]. Using C-band scatterometer (ERS 1/2 VV-polarization) mea-

surements, Nie and Long quantitatively analyzed the rain surface effects on C-band

signal at incidence angles higher than 40◦. Their study demonstrates that rain sur-

face backscatter can dominate the total backscatter in moderate to heavy rains and

a simple phenomenological backscatter model can be used to represent rain backscat-

ter with relatively high accuracy [11]. RADARSAT-1 ScanSAR SWA measurements

cover wind incidence angle ranges between 20◦ and 50◦, providing a good opportunity

to study the complicated rain effects for C-band HH-polarization SAR measurements

at different incidence angles under hurricane conditions. To quantitatively analyze
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Figure 5.8: Schematic diagram of the various surface effects caused by a rain cell over
the ocean. In the splash area, raindrops striking the water create splash products. The
damped wave area is created by rain-generated turbulence in the upper water layer. The
blue arrows illustrate the airflow of the downdraft, which spreads over and roughens
the ocean surface.

the rain effects on SAR measurements, we use the simple backscatter model in [11],

which is covered in the next subsection. The SAR response model due to rain atmo-

spheric effects is developed in t he following subsection. Rain-induced atmospheric

attenuation and backscatter are estimated using collocated NEXRAD weather radar

data. Finally, rain surface perturbations are estimated and modeled.

5.5.2 Wind/Rain Backscatter Model for SAR

In raining areas, the measured normalized radar cross section by the SAR over

the ocean is affected by rain atmospheric effects and various surface effects including

splash products, turbulence, and downdraft. As shown in Fig. 5.8, the area affected

by downdraft and turbulence is larger than the rain core area. Furthermore, the
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effect of turbulence varies with the temporal evolution of the rain event. At the

beginning of the rain event, the wave damping effect induced by rain is insignificant

because surface turbulence is under development. The dampening grows during the

rain event then decays after the rain moves on. Since the turbulence decays slowly

due to the molecular viscosity of water and the length scales of the turbulence, the

damping effect can exist for some time after a rain event ends [9]. Unfortunately, the

lifetime of rain-induced turbulence in water has rarely been studied. As a reference,

the lifetime of votex rings generated by rain drops impinging the water surface is of

the order of a minute for a drop diameter of 1 mm [58]. In the analysis of the SAR

measurements, damping effect is still observed about five minutes after rain events.

Therefore, it is assumed that the lifetime of rain-induced surface turbulence is of the

order of several minutes.

A detailed model of each of the surface effects is beyond the scope of this dis-

sertation. Instead, we model the bulk effect of rain on the Bragg wave field in the rain

core area by combining all the surface contributions together into a single rain sur-

face perturbation term, σsurf . σsurf is assumed to be additive with the wind-induced

surface backscatter. The rain-modified measured backscatter, σm, is represented by

a simple additive model

σm = (σwind + σsurf )αatm + σatm (5.9)

where σwind is the wind-induced surface backscatter, σsurf is the rain-induced surface

perturbation backscatter, αatm is the two-way rain-induced atmospheric attenuation,

and σatm is rain-induced atmospheric backscatter.

As before, the σwind is estimated by projecting H*wind wind speeds (s) and

directions (d) through HH-polarization GMF,

σwind = CMOD5(s, d, χ, θ)p(θ) (5.10)

where χ is the azimuth angle of SAR measurements, θ is the incidence angle, and

p(θ) is the recalibrated Thompson’s polarization ratio model.
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5.5.3 Evaluation of Atmospheric Attenuation and Backscattering

The SAR measurement geometry is displayed in Fig. 5.9. For simplicity, we

x
x

y

Rain 

Snow 

RADARSAT

Radar Pulse
 wave front

R
S

o

Bright band rb
bs

Figure 5.9: Schematic diagram of the SAR scattering geometry for a rain cell. The
oblique lines represent the radar pulse under the approximation of plane wave incidence.

use a plane-wave incidence approximation to represent the synthetic aperture radar

pulse. we define a new coordinate system r − s. r is along the SAR slant range

and s is perpendicular to r. For the SAR surface backscatter at x◦, the atmospheric

attenuation is contributed by the raindrops along coordinate r from the surface to

the bright band altitude and by snow above the bright band. The typical altitude of

the bright band is about 5 km.

The attenuation coefficient of rain, Kr, can be estimated using the kr - R (R

is rain rate in mm/hr) relationship [28]

Kr = aRb dBkm−1 (5.11)

where a = 0.0018 dBkm−1 and b = 1.05 for a 5 cm SAR signal wavelength. R is the

rain rate in mm/hr. The attenuation coefficient of snow is related to snowfall rate

by [28]

Ks = 0.0222
R1.6

λ4
+ 0.34ε′′i

R

λ
dBkm−1 (5.12)
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where λ is the wavelength, ε′′i ' 10−3 at −1◦C. For λ = 5.6 cm, R = 100 mm/hr,

Ks = 0.04 dBkm−1, while Kr = 0.227 dBkm−1 under the same conditions. Therefore,

the attenuation due to snow is negligibly small and is ignored in the following analysis.

Then, the path integrated attenuation (PIA) in dB is equal to the integration of

Kr(r, s) through the R axis (s = 0), from the bright band altitude, rb (shown in

Fig. 5.9), to the ocean surface, 0,

PIA = 2

∫ rb

0

kr(r, 0)dr dB (5.13)

where kr(r, 0) = aR(r, 0)b. Since r = (x0 − x)/sin θ and kr(r, 0) = kr

(
x, (x0 −

x)/ tan θ
)
, the above equation can be expressed as

PIA = 2
1

sin θ

∫ x0

x0−rb sin θ

kr

(
x,

x0 − x

tan θ

)
dx dB. (5.14)

The two way atmospheric attenuation factor αatm is calculated by converting the PIA

to normal space,

αatm = 10−PIA/10. (5.15)

The atmospheric backscatter (σatm) observed by the SAR is estimated from the

rain rate obtained from the NEXRAD measurements. For a specific position on

coordinate s, the effective reflectivity of the atmospheric rain, Ze(0, s), is calculated

using Equation (5.2). The volume backscattering coefficient σvc can be computed

from [28]

σvc(0, s) = 10−10π5

λ4◦
|Kw|2Ze(0, s) m2/m3 (5.16)

where λ◦ = 5.6 cm is the wavelength of RADARSAT-1 SAR, and |Kw|2 is a function of

the wavelength λ◦ and the physical temperature of the material. Kw is assumed to be

0.93 for the water and 0.19 for snow in this paper [12]. The quantity σvc represents

physically the backscattering cross-section (m2) per unit volume (m3). According
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to [59], the Z-R relationship for snow is Z = 427R1.09. With the precipitation rate

equal to 10mm/hr, rain-induced backscattering is about 6 times the snow-induced

backscattering. In addition, the range of snow precipitation rates is several times

lower than that for rain because snowflakes fall at a much lower velocity than rain

drops do [12]. Hence, we do not consider the snow-induced volume backscattering in

this study.

The volume backscattering cross-section observed by the SAR is attenuated

by the two-way attenuation factor, αatm(0, s),

σvro(0, s) = σvc(0, s)αatm(0, s) (5.17)

where αatm(0, s) is the path integrated two-way attenuation at s on S axis. The total

atmospheric rain backscatter as seen by SAR is σvro(r, s) integrated through the radar

pulse plane (along the S axis where r = 0) from the bright band altitude on the S

axis (shown in Fig. 5.9), sb, to the ocean surface, 0,

σatm = sin θ

∫ sb

0

σvro(0, s)ds m2/m2 (5.18)

where θ is the incidence angle. Since s = (x− x0)/cos θ and σvro(0, s) = σvro

(
x, (x−

x0) tan θ
)
, the above equation can be transformed to coordinate x− y as

σatm = tan θ

∫ x0+sb cos θ

x0

σvro

(
x, (x− x0) tan θ

)
dx. (5.19)

After calculating σatm and αatm, we estimate the surface perturbation backscatter

σsurf by

σsurf = α−1
atm(σm − σatm)− σwind (5.20)

where the σsurf can be negative at low incidence angles, corresponding to the loss of

the wind-induced backscatter. A positive value is an increase in the net backscatter.
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5.6 Results and Analysis

Based on the methods mentioned above, we quantitatively analyze the radar

backscatter of several rain cells at different incidence angles as shown below.
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Figure 5.10: σ◦ of a rain cell located near the sea shore of New Orleans in hurricane
Katrina. The coast line is marked using solid lines and the red arrow shows the azimuth
direction of RADARSAT ScanSAR observation. The near-surface wind speed is ≈ 20
m/s.

5.6.1 Incidence Angle Between 22◦ and 23.6◦

Figure 5.10 displays the SAR σ◦ of a typical rain cell located near the sea shore.

The collocated H*wind speed and vectors are shown in Fig. 5.11. The incidence angles

of the SAR measurements are between 22◦ and 23.6◦. At this incidence angle, the

dominant rain effect is a dampening of the the surface backscatter; hence, the rain

cell looks darker than the surrounding rain free ocean in the SAR image. The H*wind

model predicts that the wind speed in this area is essentially constant. Since the LIX
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Figure 5.11: Wind speed and wind vectors for the collocated H*wind for the region
in Fig. 5.10.

NEXRAD station is the closest, radar data from LIX station is used to calculate the

rain rates.

Because the gain spatial response function is not uniform over the NEXRAD

footprint, the NEXRAD-observed rain is a weighted-average of the rain. To com-

pensate for this, the collocated SAR measurements are averaged over the NEXRAD

footprint by weighting with the NEXRAD spatial response function within the 3-

dB antenna pattern contour. Lacking accurate information for NEXRAD’s spatial

response function, we use a Gaussian radiation pattern in this study [19]. To mini-

mize the errors introduced by the SAR and NEXRAD data processing, the different

map projections, and the spatial and time differences between the two sensors, we

assume the rain is uniformly distributed in the vertical direction and use the vertically-

averaged rain rate as the surface rain rate.

Figure 5.12(a) and (b) displays the atmospheric attenuation and backscatter

induced by rain. Compared with the surface σ◦ at this incidence angle range, the

atmospheric backscatter is insignificant, while the atmospheric attenaution is signif-

icant in heavy rains. Due to the SAR geometry, the SAR measurements affected

by rain atmospheric attenuation and backscattering are not limited to the rain-cell

area. Figure 5.13(a) and (b) display the collocated σsurf and the NEXRAD surface

rain rate, respectively. In Fig. 5.13(c) and (d), the profiles of rain rate and σsurf are
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Figure 5.12: (a) Rain-induced atmospheric attenuation and (b) atmospheric backscat-
ter of the region in Fig. 5.10.
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Figure 5.13: (a) σ◦surf of the rain cell in Fig. 5.10. (b) The collocated NEXRAD rain
rate in mm/hr. (c) and (d) the profile of σ◦ and rain rate along the solid line plotted
in (a) and (b).
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Figure 5.14: (a) σ◦surf versus rain rate nonparametric fit. (b) Quadratic fit to σsurf

in log-log space compared to the non-parametric fit.

plotted along the red solid line in Fig. 5.13(a) and (b). These show that the σsurf

generally decreases as rain rate increases. Note that the profile of σsurf is wider than

the rain rate profile.

To relate the σsurf with rain rate, we use a power law model [11]. σsurf can

be expressed as polynomial function of rain rate,

10log10(σsurf(θ)) ≈ fsr(RdB) =
N∑

n=0

xsr(n)Rn

dB (5.21)

where RdB = 10log10(Rsurf(ant)), and xsr(n) are the corresponding model coefficients.

N = 1 for the linear model, and N = 2 for the quadratic model. Because the

estimate of σsurf is relatively noisy, we first make a nonparametric estimate of σsurf

as a function of RdB using an Epanechnikov kernel with a 2 mm/hr dB bandwidth

in rain rate as shown in Fig. 5.14(a). Then, we estimate the model coefficients for

the quadratic model using a linear least-squares fit as shown in Fig. 5.14(b). In the

following analysis of other rain cells, we use this same method.

5.6.2 Incidence Angle Between 28◦ and 31.7◦

Figure 5.15 displays the SAR signature of a rain cell over the ocean about

150 km from the MOB radar. At this incidence angle range, the damping effect of

110



Easting (m)

N
or

th
in

g 
(m

)

 

 

9.05 9.1 9.15 9.2 9.25 9.3 9.35

x 10
5

3.215

3.22

3.225

3.23

3.235

3.24

3.245

x 10
6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 5.15: σ◦ of a rain cell located near the sea shore of New Orleans in hurri-
cane Katrina. The red arrow shows the azimuth direction of RADARSAT ScanSAR
observation. The near-surface wind speed is ≈ 22 m/s.
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Figure 5.16: Wind speed and wind vectors for the collocated H*wind corresponding
to Fig. 5.15.
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Figure 5.17: (a) σ◦surf of the rain cell in Fig. 5.15. (b) The collocated NEXRAD rain
rate in mm/hr. (c) and (d) the profile of σ◦ and rain rate along the solid line plotted
in (a) and (b).
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Figure 5.18: (a) Nonparametric fit to σsurf . (b) Quadratic fit to the non-parametric
fit of σsurf in log-log space.
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rain is dominant. Figure 5.17 displays the rain effect, which is a negative “surface

backscatter”, and the collocated NEXRAD rain field. Figure 5.16 displays the collo-

cated H*wind speed and directions. Figure. 5.18(a) illustrates the non-parametric fit

to the estimated σsurf with respect to RdB and (b) displays the quadratic fit to the

non-parametric fit.

As shown in Fig. 5.18, the loss due to damping effect is as high as −7 dB when

R ≈ 63 mm/hr, which is significant compared to the wind-induced surface backscat-

ter. Due to relatively large number of collocated data points, the nonparametric fit

in Fig. 5.18(a) is smooth and the quadratic fit agrees well with the nonparametric fit

in Fig. 5.18(b).

5.6.3 Incidence Angle Between 44◦ and 45.7◦
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Figure 5.19: σ◦ of a rain cell located near the sea shore of New Orleans in hurricane
Katrina. The red arrow shows the azimuth direction of RADARSAT ScanSAR obser-
vation and the light blue arrow shows the wind direction. The near-surface wind speed
is ≈ 10 m/s.
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.

1.16 1.17 1.18 1.19

x 10
6

0

0.005

0.01

0.015

0.02

0.025

Easting (m)

� su
rf

c)

1.16 1.17 1.18 1.19

x 10
6

0

5

10

15

20

25

30

35

40

Easting (m)

S
ur

fa
ce

 r
ai

n 
ra

te
 (

m
m

/h
r)

d)

1.16 1.17 1.18 1.19

x 10
6

3.305

3.31

3.315

3.32

3.325

3.33

3.335

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

a)    
surf

 

 

0 0.02 0.04 0.06

1.16 1.17 1.18 1.19

x 10
6

3.305

3.31

3.315

3.32

3.325

3.33

3.335

x 10
6

Easting (m)

N
or

th
in

g 
(m

)
b) Rain rate (mm/hr)

 

 

0 20 40 60

Rain
enhancement

Damping

Rain

Figure 5.21: (a) σ◦surf of the rain cell in Fig. 5.19. (b) the collocated NEXRAD rain
rate in mm/hr. (c) and (d) display the profile of σ◦ and rain rate along the solid line
plotted in (a) and (b).
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Figure 5.22: (a) Nonparametric fit to σsurf for Fig. 5.19. (b) Quadratic and linear
fits to the non-parametric fits of σsurf in log-log space. Non-parametric fits are also
plotted.

Figure 5.19 displays the SAR signature of a rain cell over the ocean which

is about 70 km from the EVX radar. Through comparison between σsurf and rain

rate in Fig. 5.21, we find that the enhancing effect of rain is dominant within the

rain cells. However, damping areas (which are darker due to reduced σ◦) are found

next to the rain enhanced areas. The damping areas have shapes similar to the rain

cells but are shifted due to motion of the rain cell. Note that two negative peaks

exist in the profile of σsurf along the solid line, as shown in Fig. 5.21. Because the

wind direction is pointing in the west-northern direction, as shown in Fig. 5.20, the

rain cells is moving towards west-north, as shown in Fig. 5.24. The path of the rain

cells shown in Fig. 5.24(b) matches the damping areas shown in Fig. 5.24(a). As

discussed in Section 5.5.2, the damping effect continues after rain events. Hence the

damping area is the result of the rain previously falling in the area. Since the rain

cell is moving with the wind, it is leaving, in effect, a “trail” of damped wave surface.

Unfortunately, the life time of damping effect is rarely been studied, while it might

depend on many factors such as the type of rain, rain rate, drop size distribution,

wind speed, incidence angle, and so on. As shown in Fig. 5.24(a) and (b), the damping

area (near Easting 1.18 × 106 m) collocates with the rain measurements acquired 5
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and 10 minutes ago. Therefore, the life time of the damping effect is approximately

between 5 and 10 minutes, when wind speed is about 10 m/s, rain rate is about 70

mm/hr, and incidence angle is about 45 degree.
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Figure 5.23: Surface perturbation, σsurf , versus rain model comparison between SAR-
derived quadratic model with a plot of the scatterometer-derived model shown.

Figure 5.22(a) illustrates the non-parametric fit to the estimated σsurf with

respect to RdB, while Fig. 5.22(b) displays the quadratic and linear fits to the non-

parametric fit. In Fig. 5.22(b), the linear and quadratic model are close, suggesting

that σsurf is almost a linear function of surface rain rate in log-log space.

Figure 5.23 compares the scatterometer C-band VV polarization backscatter

model developed in Chapter 2 and the quadratic model derived from the HH polariza-

tion SAR measurements adjusted with the Thompson’s polarization model (Equation

5.4) for this rain cell. The two models are close, suggesting that the SAR-derived σsurf

versus rain is consistent with the scatterometer-derived model when the polarization

difference between HH and VV polarizations is considered. Unfortunately, systematic

comparison between these two models is impossible due to a lack of sufficient data.

5.6.4 Rain Model Coefficients

In the previous section, three typical rain cells at different incidence angles are

examined. The coefficients of the model for the three incidence angles are listed in

Table 5.3. σsurf versus rain rate at the different incidence angles is plotted in Fig. 5.25.

The σsurf versus rain model at high incidence angle is close to a linear model in log-
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Figure 5.24: (a) σsurf derived from RADARSAT image. (b) Overlay of the NEXRAD
measurements from (c)-(e). (c) NEXRAD measurements collocated with the SAR mea-
surement time. (d) NEXRAD measurements about 5 minutes prior to the SAR obser-
vation. (e) NEXRAD measurements about 10 minutes prior to the SAR observation.
The arrow shows the moving direction of the rain cells.
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log space. We further investigate the relationship between σsurf and incidence angle

by plotting the σsurf with respect to incidence angle for a specific surface rain rate

in Fig. 5.26. The magnitude of σsurf generally decreases with incidence angles. At

heavy rain rates, the decreasing ratio is smaller than at low to moderate rain rates.

Table 5.3: Coefficients of the σsurf model at three incidence angles.
Incidence angle (◦) p(0) p(1) p(2)

22 - 23 -14.6081 1.0563 -0.0295
28 - 31.7 -28.6799 2.1404 -0.0572
44 - 45.7 -34.79 0.5249 0.0332
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Figure 5.25: σsurf versus rain rate at different incidence angles. Note that for inci-
dence angle bins 22− 23 degree and 28− 31 degree −σsurf in dB is displayed (Due to
damping effect, σsurf is negative at these incidence angles).

As mentioned above, at low incidence angles loss of σsurf occurs due to the

damping effect of rain, while rain enhances the backscatter at high incidence angles.

As shown in Fig. 5.26, both the loss and enhancement of σsurf can be a significant
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Figure 5.26: σsurf versus incidence angle for various rain rates at different incidence
angles. Note that for incidence angle bins 22− 23 degree and 28− 31 degree −σsurf in
dB is displayed (Due to damping effect, σsurf is negative at these incidence angles).

component of the total backscatter in moderate to heavy rain rates. Hence modeling

the rain effects on C-band signals is very important for SAR wind retrieval.

5.7 Conclusion

RADARSAT-1 ScanSAR SWA images of Hurricane Katrina are used to re-

trieve the surface wind vectors over the ocean. Due to the inadequate spatial reso-

lution of the ScanSAR SWA images, the spectrum method cannot be implemented

to estimate the wind direction. Instead, collocated H*wind wind directions are used

as wind direction estimates. Using these direction estimates the wind speed is de-

rived from σ◦ by inversion of a C-band HH-polarization Geophysical Model Function

(GMF), which is derived from the C-band VV-polarization GMF, CMOD5, using a

polarization ratio model. Because existing polarization models do not fit the ScanSAR

SWA data well, a recalibration model is proposed to recalibrate the ScanSAR SWA

images. The coefficients of the recalibration model are tuned using collocated H*wind

surface wind fields. To validate the SAR-retrieved wind speed, the mean and the RMS

difference between SAR-retrieved and H*wind wind speed estimates are calculated.
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The mean of difference is negligible and the RMS difference is below 4 m/s. Except

for the influence from rain, the largest errors occur at high wind speed (over 25 m/s),

which is due to the saturation of the GMF. While wind speed estimates over 25 m/s

are noisy, no obvious bias is found, suggesting that the wind retrieval algorithm can

work under hurricane conditions.

Using the recalibrated ScanSAR SWA measurements, collocated ground-based

Doppler weather radar (NEXRAD) measurements, and collocated H*wind fields are

used to study the complicated rain effects on the ScanSAR SWA measurement. Rain

effects on ScanSAR SWA measurements include atmospheric effects (attenuation and

backscattering) and surface effects. Rain surface effects on C-band SAR measure-

ments can dominate the surface backscatter in moderate to heavy rains. For C-band,

the rain surface effect varies with incidence angle. Using a simple wind/rain backscat-

ter model and the collocated data set, we quantitatively analyze different rain effects

on the ScanSAR measurements for three different incidence angle ranges and esti-

mate the model coefficients. The SAR-derived σsurf is found to be consistent with

the scatterometer-derived model when the polarization difference between HH and

VV polarizations is considered. While only three typical rain cells are analyzed in

any detail in this chapter, more rain cells on the ScanSAR SWA images can be ana-

lyzed using the same approach to develop a more accurate model.
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Chapter 6

Summary and Conclusion

This dissertation addresses rain effects on C-band scatterometer and SAR

measurements, and presents a method for improving wind estimates in the presence

of rain. Chapter 1 briefly describes the motivation and contributions of this disserta-

tion. Chapter 2 provides background in scatterometry and describes rain estimation

using weather radar data. Rain effects on C-band scatterometer data are analyzed in

Chapter 3, and a wind/rain backscatter model is developed with the aid of TRMM

precipitation radar data. The model is validated to be accurate within 3 dB. Using the

wind/rain backscatter model, a method of simultaneously retrieving wind and rain

from scatterometer data is developed, evaluated, and validated in Chapter 4. The

rain effect on conventional wind-only retrieval is also described in the same chapter.

A recalibration method is developed for RADARSAT-1 ScanSAR wind retrieval using

the NOAA H*wind mode in Chapter 5. Using collocated NEXRAD rain observations,

rain effects on ScanSAR data at various incidence angles are analyzed and modeled.

The main conclusion of the dissertation is that rain surface effects on C-

band scatterometer and SAR measurements are significant and can be modeled by

a wind/rain backscatter model. Further, rain-induced error in the C-band wind re-

trieval process can be reduced by using a simultaneous wind/rain retrieval method.

These results are a significant contribution to C-band scatterometer wind retrieval

and SAR wind retrieval.

6.1 Future Research

There are a number of areas of future research that may improve the results

presented here. Some of these are described below.
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6.1.1 Improving Ambiguity Selection of SWRR

The ambiguity selection method introduced in Chapter 4 is designed for wind-

only retrieval without considering the rain information. Further research is needed to

add rain rate in the algorithm for optimal performance in raining areas.

6.1.2 Application of Rain Model to ASCAT on Met-Op A

The Met-Op A satellite, which carries the ASCAT instrument, provides high-

precision backscatter measurements over the ocean. Compared to ESCAT, ASCAT’s

measurements have higher incidence angles and are expected to be more sensitive to

rain. Applying SWRR in ASCAT wind retrieval can benefit ASCAT wind retrieval.

In this dissertation, the MLE retrieval method similar to Ku-band scatterome-

ter technique is used in the SWRR. A method of transformation to z space (z = σ0.625)

has been shown to be ideal for the wind-only inversion of C-band scatterometer wind

retrieval. A SWRR using this method would achieve better wind and rain estimates in

raining areas. In addition, Bayesian or MAP method can be implemented to improve

the SWRR.

As mentioned in Section 4, it is more beneficial to implement SWRR only

in raining areas. A Quality Control (QC) algorithm, which can determine raining

areas, has been developed for ESCAT. Combining SWRR with the QC algorithm can

provide an operational mode for implementing SWRR.

6.1.3 Exploratory Study of SAR Rain Retrieval in Hurricanes

The rain effect on SAR measurements is modeled at high and low incidence an-

gles. Based on this model, the rain retrieval method may be developed for hurricanes,

assuming the wind speed is almost constant in a small area. Although the proposed

model function is not well-validated, further exploratory study of rain retrieval from

SAR measurement over the ocean is very useful and necessary.
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6.1.4 Model-Based MLE SAR Wind Retrieval in Hurricanes

Due to the saturation of CMOD5, the performance of SAR wind retrieval is

degraded in high winds. In order to provide a more consistent wind field, a model-

based MLE can be developed based on parametric hurricane vortex models (such as

the Holland model). Model-based MLE would improve wind estimates in high winds

or raining areas, although fine-scale events may be smoothed.
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