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ABSTRACT

The traditional point-wise approach to the estimation of winds over the ocean from wind
scatterometer measurements relies only on the measurements associated with a given sample
point to estimate the wind at that sample point. Further, the nature of the relationship
between the scatterometer measurement and the wind vector leads to non-unique estimates of
the wind. A second step, known as dealiasing, is needed to select a single wind estimate. This
dissertation proposes a new model-based approach to wind estimation. In this fundamentally
new approach to wind estimation, the values of the parameters of a model of the wind field,
based on physical principles, are estimated from the noisy scatterometer measurements, and
then the wind field is computed from the estimated model parameters. The model-based
approach takes advantage of the inherent correlation in the wind field between sample points
to provide more accurate estimates of the wind field. This dissertation: provides proofs of
the identifiability of both point-wise and model-based wind estimation from scatterometer
measurements, describes the development of the wind field model, evaluates the modeling
error for the wind field model, formulates the model parameter estimation problem, describes
procedures for estimating the model parameters and computing the wind field estimate, and
provides a detailed comparison, via simulation, of the accuracy of the estimates obtained for
point-wise and model-based wind field estimation. The results indicate that the model-based
approach results in significantly improved estimates of the wind field.
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Glossary of Symbols

a: 1. Incidence angle and polarization dependent coefficient in Wentz geo-
physical model function. First used in Eq. (2.3).

2. Friction coefficient. First used in Eq. (A.16).

3. Empirical constant in wave number spectrum. Used in Eq. (A.52).

a(k): Time-independent term in measurement variance expression. First
used in Eq. (2.19).

a0: 1. Radian length, a0 = 2π/L. First used in Eq. (A.80).

2. Lowest-order coefficient in boundary polynomial parameterization.
First used in Section I.1.

a2: Second lowest-order coefficient in boundary polynomial parameteriza-
tion. First used in Section I.1.

ax(x, y): Component of A(x, y) vector field in the x directiuon. First used in
Eq. (C.45).

ay(x, y): Component of A(x, y) vector field in the y directiuon. First used in
Eq. (C.45).

A: 1. Target or resolution element area in radar equation. First used in
Eq. (A.61).

2. Coefficient in trigonometric model function expansion. First used in
Eq. (A.113).

A(x, y): General irrotational vector field. First used in Eq. (C.41).

A: Equivalent target or resolution element area in radar equation. First
used in Eq. (A.63).

1A: N2 ×N2 matrix. Defined in Eq. (4.61).

2A: N2 ×N2 matrix. Defined in Eq. (4.62).
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3A: N2 ×N2 matrix. Defined in Eq. (4.63).

4A: N2 ×N2 matrix. Defined in Eq. (4.64).

A0: Term in the definition of the Wentz geophysical model function. First
used in Eq. (2.2).

A1: Term in the definition of the Wentz geophysical model function. First
used in Eq. (2.2).

A2: Term in the definition of the Wentz geophysical model function. First
used in Eq. (2.2).

Ae: Antenna effective area. First used in Eq. (A.58).

An: Scattered field Fourier expansion coefficient. First used in Eq. (A.87).

Ax(kx, ky): Fourier coefficients of the x component of the field A(x, y). First used
in Eq. (C.54).

Ay(kx, ky): Fourier coefficients of the y component of the field A(x, y). First used
in Eq. (C.55).

Ac
f : Field-wise maximum likelihood estimate set. Defined in Eq. (5.22)

Ac
p: Point-wise maximum likelihood estimate set. Defined in Eq. (3.7)

b: 1. Incidence angle and polarization dependent coefficient in Wentz geo-
physical model function. First used in Eq. (2.3).

2. Isotropic energy spectrum power-law coefficient. Used in Eq. (A.34).

3. Empirical constant in wave number spectrum. Used in Eq. (A.52).

3. Term in Taylor series expansion of C(u). First used in Eq. (A.101).

b(k): Time-independent term in measurement variance expression. First
used in Eq. (2.19).

b(n): Function of wavenumber used in space harmonic expansion. First
used in Eq. (A.81).

bi,j: Element of the N ×N matrix B. Defined in Eq. (4.20).

bri,j: Element of the N ×N matrix Br. Defined in Eq. (4.26).

bru
i,j: Element of the N ×N matrix Bru. Defined in Eq. (I.1).

bui,j: Element of the N ×N matrix Bu. Defined in Eq. (4.24).
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bvi,j: Element of the N ×N matrix Bv. Defined in Eq. (4.25).

bx(x, y): Component of B(x, y) vector field in the x directiuon. First used in
Eq. (C.45).

by(x, y): Component of B(x, y) vector field in the y directiuon. First used in
Eq. (C.45).

B: 1. N × N matrix containing pressure field boundary conditions with
elements bi,j. First used in Eq. (4.17).

2. Coefficient in trionometric model function expansion. First used in
Eq. (A.113).

B(x, y): General non-divergent vector field. First used in Eq. (C.41).

Bn: Pertubation expansion constant. Defined in Eq. (A.84).

Br: N×N matrix containing part of the pressure field boundary conditions
with elements bri,j. First used in Eq. (4.23).

Bru: N×N matrix containing part of the pressure field boundary conditions
with elements bru

i,j. First used in Eq. (I.2).

Bu: N×N matrix containing part of the pressure field boundary conditions
with elements bui,j. First used in Eq. (4.23).

Bv: N×N matrix containing part of the pressure field boundary conditions
with elements bvi,j. First used in Eq. (4.23).

Bx(kx, ky): Fourier coefficients of the x component of the field B(x, y). First used
in Eq. (C.56).

By(kx, ky): Fourier coefficients of the y component of the field B(x, y). First used
in Eq. (C.57).

B: N2 element vector containing lexicographic-ordered B matrix. First
used in Eq. (4.30).

B: N2 element vector containing extrapolated B. First used in Eq. (I.23).

c: 1. Incidence angle and polarization dependent coefficient in Wentz geo-
physical model function. First used in Eq. (2.4).

2. Empirical constant in directional spectrum. Used in Eq. (A.53).

3. Vorticity parameter for the constant vorticity model. First used in
Eq. (F.4).

xv



c(k): Time-independent term in measurement variance expression. First
used in Eq. (2.19).

c(x, y): Curl field. First used in Eq. (C.48).

cm,n: Coefficient of wind field vorticity model. First used in Eq. (4.9).

cm,n: Coefficient of wind field vorticity model for region L1. First used in

Eq. (I.12).

C: 1. N ×N matrix with elements ηi,j containing wind field vorticity. First
used in Eq. (4.17).

2. Radar equation inversion factor. Defined in Eq. (A.61).

3. Coefficient in trionometric model function expansion. First used in
Eq. (A.113).

C(k): Radar equation inversion factor for kth measurement. First used in
Eq. (H.4).

Ĉ(k): Noisy value of radar equation inversion factor for kth measurement.
First used in Eq. (H.8).

C(u): Autocorrelation of a Gaussian random surface. First used in Eq. (A.99).

C(kx, ky): Fourier coefficients of the curl field c(x, y). First used in Eq. (C.58).

C(p, t): Space-time correlation function of the ocean’s surface. Defined in
Eq. (A.41).

CDn: Neutral stability drag coefficient. First used in (A.7).

CDn[10m]: Neutral stability drag coefficient at an altitude of 10 m. First used in
Eq. (A.9).

Cp: Coriolis parameter. First used in Eq. (C.27).

C: 1. N2 element vector containing the lexicographic-ordered C matrix.
First used in Eq. (4.30).

C: N×N vorticity field matrix for region L1. First used in Section (I.2.2).

2. Equivalent radar equation inversion factor. Defined in Eq. (A.61).

d: 1. Incidence angle and polarization dependent coefficient in Wentz geo-
physical model function. First used in Eq. (2.4).
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2. Divergence parameter for the constant divergence model. First used
in Eq. (F.4).

d(x, y): Divergence field. First used in Eq. (C.48).

dm,n: Coefficient of wind field divergence model. First used in Eq. (4.10).

ds
i,j: Elements of the Ds matrix. Defined in Eq. (4.40).

D: 1. N × N matrix with elements δi,j containing wind field divergence.
First used in Eq. (4.17).

2. Function used in the definition of the directional spectrum. Defined
in Eq. (A.56).

3. Thickness of the region of vertical motion. First used in Eq. (C.20).

D(kx, ky): Fourier coefficients of the divergence field d(x, y). First used in Eq. (C.59).

Ds Unit subdiagonalN×N matrix with elements ds
i,j. Defined in Eq. (4.41).

Dc
f : Field-wise true ambiguity set. Defined in Eq. (5.13).

Dc
p: Point-wise true ambiguity set. Defined in Eq. (3.1).

D(K, ω): Space-time power spectrum of the ocean’s surface. Defined in Eq. (A.40).

D: N2 element vector containing lexicographic-ordered D matrix. First
used in Eq. (4.31).

e: 1. Incidence angle and polarization dependent coefficient in Wentz geo-
physical model function. First used in Eq. (2.5).

2. Natural number. Used in Section A.1.

Ei: Incident electromagnetic field. First used in Section A.3.3.

Es: Reflected electromagnetic field. First used in Eq. (A.78).

Es: Scattered electromagnetic field. First used in Section A.3.3.

Ei(p): Incident electromagnetic field with polarization p. First used in Eq. (A.72).

Es(p): Scattered electromagnetic field with polarization p. First used in
Eq. (A.72).

E(kx, ky): Two-dimensional energy spectrum. First used in Eq. (A.25).

Ê(k): One-dimensional isotrophic energy spectrum. First used in Eq. (A.30).
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E[·]: Expectation operator. First used in Eq. (2.12).

f : 1. Incidence angle and polarization dependent coefficient in Wentz geo-
physical model function. First used in Eq. (2.5).

2. Coriolis parameter. First used in Eq. (4.6).

fi,j: Element of the matrix F . Defined in Eq. (4.101).

f ′i,j: Element of the matrix F ′. Defined in Eq. (F.42).

F : 1. 2N2 × (4N − 2) model matrix. First used in Eq. (4.68).

2. 2N2 ×Nu wind field model matrix (augmented form of definition 1).
First used in Eq. (4.101).

F1: 2N2 × (N − 1) matrix used to contruct F matrix. First used in
Eq. (4.69).

F ′
1: 2N2 ×N matrix used to contruct F matrix. First used in Eq. (4.98).

F2: 2N2 × (N − 1) matrix used to contruct F matrix. First used in
Eq. (4.69).

F3: 2N2 ×N matrix used to contruct F matrix. First used in Eq. (4.69).

F4: 2N2 × (N − 1) matrix used to contruct F matrix. First used in
Eq. (4.69).

Fcd: 2N2 × 4N wind field model matrix. Defined in Eq. (F.8).

Fr: 2N2 × (4N + 4) wind field model matrix. Defined in Eq. (4.91).

Fn,p: Element of the general matrix F . First used in Eq. (5.25).

Fs: Model matrix. First used in Section F.4.

Fu: One-dimensional u component spectrum. First used in Eq. (A.28).

Fv: One-dimensional v component spectrum. First used in Eq. (A.29).

F †: Pseudo-inverse of F . First used in Eq. (4.101).

F a: 2N2 × (4N − 2 +Nc +Nd) model matrix. Defined in Eq. (F.22).

F †
cd: 4N × 2N2 pseudo-inverse of Fcd. First used in Eq. (F.10).

F †
r : (4N + 4)× 2N2 pseudo-inverse of Fr. First used in Eq. (4.93).

F : 1. 2N2×Ml modelling matrix with elements fi,j. First used in Eq. (4.100).
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2. Force. First used in Eq. (C.3).

F ′: 2N2×Ml modelling matrix with elements f ′i,j. First used in Eq. (F.41).

g: Gravitational constant. First used in Eq. (A.2).

g∗: Modified gravitational constant. First used in Eq. (A.47).

g(·): Operator for number of unkowns in polynomial. Defined in Eq. (4.106).

G: 1. N2 ×N2 block Jordon-form matrix. Defined in Eq. (4.46).

2. Antenna Gain. First used in Eq. (A.58).

G: 1. Equivalent antenna gain used in radar equation. First used in Eq. (A.63).

G(θ, χ, p): Term in SASS1 model function definition. First used in Eq. (2.1).

h: 1. Sample grid spacing. First used in Eq. (4.11).

2. Height. First used in Eq. (A.2).

h2
h: Height variance. First used in Eq. (A.99).

h(x): One-dimensional surface height as a function of x. Used in Sec-
tion A.3.2.

h(x, y): Surface height as a function of x and y. Used in Section A.3.2.

h: Mean surface height. Defined in Eq. (A.65).

h2: Variance of surface height. Defined in Eq. (A.66).

H: 1. N2 ×N2 block tridiagonal matrix. Defined in Eq. (4.47).

2. Scale height. Defined in Eq. (A.4).

H(kx, ky): Two-dimensional cross-spectrum. First used in Eq. (A.35).

H(θ, χ, p): Term in SASS1 model function definition. First used in Eq. (2.1).

Ĥ(k): One-dimensional cross-spectrum. First used in Eq. (A.35).

i: Unit vector in the x or i direction. First used in Eq. (A.16).

I: General identity matrix. First used in Eq. (A.43).

IN : N ×N identity matrix. First used in Eq. (E.30).

IN2 : N2 ×N2 identity matrix. First used in Eq. (E.29).
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Im{·}: Imaginary part of argument. First used in Eq. (A.36).

j: Unit vector in the y or j direction. First used in Eq. (A.16).

J(a0, a1): Two-dimensional PBC model-based objective function. First used in
Section I.1.

J(X): Generic field-wise objective function of X. First used in Section 6.1.

J(θ): PBC model-based objective function as a function of angle between
lowest-order boundary polynomial coefficients. First used in Sec-
tion I.1.

JML(u, v): Point-wise maximum likelihood objective function. Defined in Eq. (2.23).

JWLS(u, v): Point-wise weighted least-squares objective function. Defined in Eq. (2.24).

Jf (u, v): Field-wise maximum likelihood objective function for x. Defined in
Eq. (5.9).

Jp(u, v): Point-wise maximum likelihood objective function for u and v. De-
fined in Eq. (3.6).

k: 1. Observation index. First used in Eq. (2.7).

2. Spatial spectrum wavenumber. Frist used in Section A.1.2.

k: Unit vector in z (vertical) direction. First used in Section 4.1.

kx: Wave number in the x direction. First used in Eq. (A.21).

ky: Wave number in the y direction. First used in Eq. (A.22).

kz: Wave number in the z direction. First used in Eq. (A.77).

K: 1. N2 ×N2 matrix. Defined in Eq. (4.32).

2. Magnitude of the wave number vector. First used in Eq. (A.44).

K: Wave number vector. First used in Eq. (A.40).

K1: N2 ×N2 matrix. First used in Eq. (E.32).

Kd: Wave number transition threshold. First used in Eq. (A.106).

Kp: Normalized standard deviation of σo measurement. Defined in Eq. (2.10).

Kpc(k): Normalized standard deviation of radar communication error in σo

measurement. First used in Eq. (H.6).
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Kpm(k): Normalized standard deviation of geophysical model error. First used
in Eq. (H.3).

Kpr(k): Normalized standard deviation of σo retrievel error. First used in
Eq. (H.8).

Kt: Wave number cutoff threshold. First used in Eq. (A.52).

K̂p: Weighting factor for point-wise weighted least-squares objective func-
tion. Defined in Eq. (2.25).

K−1: N2 × N2 matrix used for model extrapolation in the −j direction.
Defined in Eq. (I.24).

K+1: N2 × N2 matrix used for model extrapolation in the +j direction.
Defined in Eq. (I.41).

l: Region boundary sample index. Defined in Eq. (4.96).

l(X): Field-wise log-likelihood function for model parameter vectorX. First
used in Eq. (5.7).

L: 1. Scale length or characteristic length. First used in Section A.1.2.

2. Wave length. First used in Eq. (A.39).

Ln: Number of σo measurements at the lexicographic index sample point
n. First used in Eq. (5.7).

Lp(u, v): Point-wise log-likelihood function for u and v. Defined in Eq. (2.22).

L: Square region of interest for defining wind field model. First used in
Section 4.1.

L1: Second region overlapping L. First used in Section I.2.2.

Mc: Wind field vorticity model order. First used in Eq. (4.9).

Md: Wind field divergence model order. First used in Eq. (4.10).

Ml: Boundary polynomial model order. First used in Eq. (4.99).

M−1: Np ×Np model parameter extrapolation matrix for the −j direction.
First used in Eq. (I.31).

M+1: Np ×Np model parameter extrapolation matrix for the +j direction.
First used in Eq. (I.46).

M bb
−1: Ml×Ml extrapolation matrix for the−j direction. Defined in Eq. (I.33).
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M bb
+1: Ml×Ml extrapolation matrix for the +j direction. Defined in Eq. (I.48).

M bc
−1: Ml×Nc extrapolation matrix for the−j direction. Defined in Eq. (I.34).

M bc
+1: Ml×Nc extrapolation matrix for the +j direction. Defined in Eq. (I.49).

M cc
−1: Nc×Nc extrapolation matrix for the−j direction. Defined in Eq. (I.35).

M cc
+1: Nc×Nc extrapolation matrix for the +j direction. Defined in Eq. (I.50).

Mdd
−1: Nd×Nd extrapolation matrix for the−j direction. Defined in Eq. (I.36).

Mdd
+1: Nd×Nd extrapolation matrix for the +j direction. Defined in Eq. (I.51).

M: Geophysical model function relating wind and radar backscatter.

M{(u, v), k}: Geophysical model function relating the wind vector (u, v) to σo at
the observation angle k. First used in Eq. (2.7).

M′: Modified geophysical model function relating wind and radar backscat-
ter.

M′{(u, v), k}: Modified geophysical model function relating the wind vector (u, v)
to σo at the observation angle k. Defined in Eq. (2.14).

n: Lexicographic index corresponding to i, j. n = (j + 1)N + i.

n: Unit normal vector. First used in Eq. (A.73).

N : Size, in samples, of region of interest. First used in Section 4.3.

Nc: Number of parameters in polynomial vorticity model. Nc = (Mc +
1)(Mc + 2)/2. First used in Section 4.3.

Nd: Number of parameters in polynomial divergence model. Nd = (Md +
1)(Md + 2)/2. First used in Section 4.3.

Np: 1. Number of transmit pulses integrated into one observation of σo. Used
in Section 2.4.1.

2. Number of unknowns in the PBC wind field model. First used in
Section I.2.2.

Ns: Number of vectors in the set {U1,U2, . . . ,UNs}. First used in Eq. (6.1).

Nu: Number of unknowns in wind field model. First used in Eq. (4.106).

O(·): Order-of operator. First used in Eq. (C.9).
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p: 1. Polarization indicator in model function. First used in Eq. (2.1).

2. Geostrophic pressure field. First used in Eq. (4.6).

3. Magnitude of the vector p. First used in Eq. (A.95).

p: Position vector. First used in Eq. (A.40).

p′: Horizontal pressure gradient. First used in Eq. (C.22).

p’: Position vector. First used in Eq. (A.46).

p: Unit vector in the direction of p. First used in Eq. (A.95).

p(k): Polarization of kth observation of σo. First used in Eq. (3.2).

p(hx): Probability density of a Gaussian surface. First used in Eq. (110).

p(l): Pressure field along region boundary. First used in Section 4.4.

p′(r, θ, φ): Pressure field resulting from fluid motion. First used in Eq. (C.14).

pl: Pressure field along region boundary. Shorthand for p(l). First used
in Section 4.4.

pi,j: Value of pressure field at (i, j). First used in Eq. (4.20).

ps(r): Pressure field which exist without fluid motion. First Used in Eq. (C.14).

P : 1. N ×N matrix containing sampled pressure field with elements pi,j =
ψi,j. First used in Eq. (4.17).

2. Wave Period. First used in Eq. (A.39).

P (n): Fourier series coefficients for a periodic surface. First used in Eq. (A.79).

Pn: Radar noise-only power. First used in Eq. (H.7).

Pr: Received radar power. First used in Eq. (A.59).

Pr(k): True received signal power for the kth measurement. Defined in
Eq. (H.4).

P̂r(k): Noisy value of received signal power for the kth measurement. Defined
in Eq. (H.5).

Pt: Transmitted radar power. First used in Eq. (A.59).

P : N2 element vector containing lexicographic-ordered P matrix. First
used in Eq. (4.30).
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P : N ×N pressure field matrix for region L1. Defined in Eq. (I.7).

P : N2 element vector of lexicographic-ordered pressure field of region L1.
Defined in Eq. (I.9).

qi,j: Element of the N ×N matrix Q. First used in Eq. (4.19).

q−1
i,j : Element of the N ×N inverse matrix Q−1. First used in Eq. (E.6).

kqm,n: Element of the vector Qm,n. Defined in Eq. (4.82).

kq
c
m: Element of the vector Qc

m. Defined in Eq. (F.34).

kq
s
m: Element of the vector Qs

m. Defined in Eq. (F.33).

kq
c
m,n: Element of the vector Qc

m,n. Defined in Eq. (F.28).

kq
s
m,n: Element of the vector Qs

m,n. Defined in Eq. (F.27).

Q: N ×N matrix with elements qi,j. First used in Eq. (4.17).

Q1: N ×N matrix. First used in Eq. (E.32).

Qd: Energy dissipation in the energy transport equation. First used in
Eq. (A.48).

Qi: Input energy due to surface winds in the energy transport equation.
First used in Eq. (A.48).

Qm,n: N2 vector with elements kqm,n. First used in Eq. (4.80).

Qn: Energy exchange in the energy transport equation. First used in
Eq. (A.48).

Qc
m: N2 vector with elements kq

c
m. First used in Eq. (F.32).

Qs
m: N2 vector with elements kq

s
m. First used in Eq. (F.32).

Qc
m,n: N2 vector with elements kq

c
m,n. First used in Eq. (F.26).

Qs
m,n: N2 vector with elements kq

s
m,n. First used in Eq. (F.26).

r: 1. Distance from the earth’s center. First used in Eq. (A.11).

2. Radial distance for vector in polar form. First used in Section I.1.

r: Position vector. First used in Eq. (A.73).

r’: Position vector. First used in Eq. (A.73).
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r0: Radius of the earth. First used in Eq. (C.31).

r: Unit vector in the direction of r. First used in Eq. (A.73).

R: 1. Gas constant. First used in Eq. (A.1).

2. Empirical function of wind speed used in directional spectrum. De-
fined in Eq. (A.55).

3. Distance or range of target from radar. First used in Eq. (A.59).

RE: Radius of the earth. First used in Eq. (A.13).

Rc: 2N2 × N2 matrix relating wind field to curl field. First used in
Eq. (4.68).

Rd: 2N2×N2 matrix relating wind field to divergence field. First used in
Eq. (4.69).

R: Equivalent distance or range of target from radar. First used in
Eq. (A.63).

R
c
: 2N2 vector with elements R

c

k. First used in Eq. (4.85).

R
d
: 2N2 vector with elements R

d

k. First used in Eq. (4.85).

R
c

x: 2N2 vector with elements R
c

xk
. First used in Eq. (4.85).

R
c

y: 2N2 vector with elements R
c

yk
. First used in Eq. (4.85).

R
d

x: 2N2 vector with elements R
d

xk
. First used in Eq. (4.85).

R
d

y: 2N2 vector with elements R
d

yk
. First used in Eq. (4.85).

R2N2
: 2N2-dimensional space of real numbers. Used in Section 5.2.

RNu : Nu-dimensional space of real numbers. Used in Section 5.2.

s: Empirical constant in directional spectrum. Used in Eq. (A.53).

s(k): Modified measurement parameter. s2(k) = σo(k). Defined in Eq. (2.14).

sn(k): Modified measurement parameter at n. s2
n(k) = σo

n(k). First used in
Eq. (5.15).

st(k): Value of s(k) corresponding to true wind vector (ut, vt). Used in
Section 3.2.

snt(k): Value of sn(k) corresponding to true wind at n. First used in Eq. (5.17).
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S: 1. N ×N matrix with elements si,j = χi,j. First used in Eq. (4.17).

2. A closed surface. Used in Section A.3.3.

SNR: Measurement signal-to-noise ratio. Defined in Eq. (H.7).

Sx: Surface x dimension length. Used in Section A.3.2.

Sy: Surface y dimension length. Used in Section A.3.2.

SI : Scatterometer instrument skill. Used in Section 2.5.2.

S(K): Amplitude spectrum. First used in Eq. (A.44).

S: N2 element vector containing lexicographic-ordered S matrix. First
used in Eq. (4.31).

t: Time. First used in Eq. (A.13).

ti,j: Elements of the matrix T . Defined in Eq. (4.48).

T : 1. Length of measurement integration time. Used in Section 2.4.1.

2. N ×N matrix with elements ti,j. Defined in Eq. (4.48).

3. Temperature in degrees Kelvin. First used in Eq. (A.1).

Tg: Length of integration time for a single transmit pulse used for mea-
surement of σo. Used in Section 2.4.1.

u: 1. Component of wind vector in the x or i direction. First used in
Eq. (2.7).

2. Zonal component of the wind velocity. First used in Eq. (A.13).

3. Argument of autocorrelation function. First used in Eq. (A.99).

u: Wind velocity vector. First used in Eq. (C.2).

un: u component of wind vector at lexicographic index n. First used in
Eq. (5.4).

ut: u component of true wind vector. First used in Eq. (3.1).

ui,j: u component of wind vector at sample index (i, j). First used in
Eq. (5.2).

u∗: Friction velocity of the wind at the ocean’s surface. First used in
Eq. (A.5).
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uH : Horizontal wind velocity vector. First used in Eq. (C.2).

U : 1. N × N matrix containing u-components of wind vector field. First
used in Eq. (4.38).

2. Wind speed. First used in Eq. (2.1).

U(h): Wind speed profile. First used in Eq. (A.5).

Un: Wind speed at lexicographic index sample point n. Defined in Eq. (5.27).

U : N2 element vector containing lexicographic-ordered U matrix. First
used in Eq. (4.42).

U12.5: Wind speed at 12.5 m in a neutral stability atmosphere. First used
in Eq. (A.55).

U19.5: Wind speed at 19.5 m in a neutral stability atmosphere. First used
in Eq. (A.50).

U: Wind vector U= (u, v)T . First used in Section 4.2.

v: 1. Component of wind vector in the y or j direction. First used in
Eq. (2.7).

2. Meridonal component of the wind velocity. First used in Eq. (A.14).

Ui: ith vector of the set {U1,U2, . . . ,UNs}. First used in Eq. (6.1).

Um: Median vector. First used in Eq. (6.1).

vn: v component of wind vector at lexicographic index n. First used in
Eq. (5.4).

vt: v component of true wind vector. First used in Eq. (3.1).

vi,j: v component of wind vector at sample index (i, j). First used in
Eq. (5.3).

V : N × N matrix containing v-components of wind vector field. First
used in Eq. (4.39).

V (k): Variance corresponding to s(k). First used in Eq. (3.9).

Vn(k): Variance corresponding to sn(k). First used in Eq. (5.14).

Vt(k): True variance corresponding to st(k). First used in Eq. (3.8).
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V : N2 element vector containing lexicographic-ordered V matrix. First
used in Eq. (4.43).

V: Horizontal velocity vector. First used in Eq. (A.16).

V(x, y): Vector velocity field. First used in Eq. (A.1.2).

Vg: Geostrophic wind velocity vector. Defined in Eq. (A.19).

w: 1. Ratio of u and v components of wind. Defined in Eq. (5.30).

2. Vertical component of the wind velocity. First used in Eq. (A.15).

w1(k): Zero-mean Gaussian random noise term associated with σo2 used in
σo measurement model. First used in Eq. (2.13).

w2(k): Zero-mean Gaussian random noise term associated with σo used in σo

measurement model. First used in Eq. (2.13).

w3(k): Zero-mean Gaussian random noise term used in σo measurement model.
Used in Eq. (2.13).

ws: Median-filter-based ambiguity removal (dealiasing) algorithm window
size. First used in Section 6.3.2.

W : 2N2 element vector consisting of the concatenation of the wind field
component vectors U and V . Defined in Eq. (4.67).

W
b
: 2N2 element vector of the lexicographic wind field due only to bound-

ary conditions. First used in Eq. (4.76).

W
c
: 2N2 element vector of the lexicographic wind field due only to vorticity

field. First used in Eq. (4.76).

W
d
: 2N2 element vector of the lexicographic wind field due only to diver-

gence field. First used in Eq. (4.76).

W t: 2N2 element true wind field vector. First used in Section 4.5.

x: Unit vector in the x direction. First used in Section C.1.

xi: Sample index location xi = ih. First used in Eq. (4.11).

xc
m: Coefficient of the isotropic discrete Fourier series vorticity model.

First used in Eq. (F.30).

xd
m: Coefficient of the isotropic discrete Fourier series divergence model.

First used in Eq. (F.31).
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xc
m,n: Coefficient of the discrete Fourier series vorticity model. First used in

Eq. (F.24).

xd
m,n: Coefficient of the discrete Fourier series divergence model. First used

in Eq. (F.25).

X: 1. Lexicographic-ordered boundary conditions. Defined in Eq. (4.65).

2. GeneralNu-dimensional model parameter vector for polynomial bound-
ary conditions. Defined in Eq. (4.97).

Xcd: 4N element vector of consisting of X augmented by the constant vor-
ticity and divergence model coefficients c and d. Defined in Eq. (F.7).

Xr: 1. 4N + 4 model parameter vector. Defined in Eq. (4.92).

2. rth element of X. First used in Eq. (5.29).

3. Augmented model parameter vector. First used in Section F.4.

X t: Nu-dimensional true model parameter vector. First used in Eq. (5.13).

X
a
: (4N − 2 + Nc + Nd)-dimensional model parameter consisting of the

concatenation of X, X
c
, and X

d
. Defined in Eq. (F.21).

X
b
: Vector consisting of cancatenation of Y , X

c
, and X

d
. Defined in

Eq. (I.30).

X
c
: Nc-dimensional vector of the vorticity polynomial coefficients. First

used in Eq. (F.16).

X
d
: Nd-dimensional vector of the divergence polynomial coefficients. First

used in Eq. (F.16).

X
c
: Nc-dimensional vector of the extrapolated vorticity polynomial coef-

ficients. First used in Eq. (I.21).

X
d
: Nd-dimensional vector of the extrapolated divergence polynomial co-

efficients. First used in Eq. (I.21).

y: Unit vector in the y direction. First used in Section C.1.

yj: Sample index location yj = jh. First used in Eq. (4.13).

yc
m: Coefficient of the isotropic discrete Fourier series vorticity model.

First used in Eq. (F.30).
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yd
m: Coefficient of the isotropic discrete Fourier series divergence model.

First used in Eq. (F.31).

yc
m,n: Coefficient of the discrete Fourier series vorticity model. First used in

Eq. (F.24).

yd
m,n: Coefficient of the discrete Fourier series divergence model. First used

in Eq. (F.25).

Y (k): Time-independent portion of variance corresponding to s(k). First
used in Eq. (3.13).

Yt(k): True time-independent portion of variance corresponding to st(k).
First used in Eq. (3.12).

z: Unit vector in the z direction. First used in Section C.1.

z(k): Noisy measurement of σo(k). Defined in Eq. (2.9).

zn(k): Noisy measurement of σo
n(k). First used in Eq. (5.6).

Z(ω): Frequency spectrum of the ocean’s surface. First used in Eq. (A.42).

Z0: Surface roughness length. First used in Eq. (A.6).

Zp: Point-wise σo measurement vector. First used in Eq. (2.21).

α(k): 1. Coefficient in Kp expression. First used in Eq. (2.11).

2. Arbitrary constant. First used in Section A.1.2.

α1(k): Term in variance expression. First used in Eq. (H.18).

αH : Horizontal polarization function of incidence angle. Defined in Eq. (A.93).

αP : Function of incidence angle for polarization P . First used in Eq. (A.92).

αV : Vertical polarization function of incidence angle. Defined in Eq. (A.93).

β(k): Coefficient in Kp expression. First used in Eq. (2.11).

β1(k): Term in variance expression. First used in Eq. (H.18).

βa: Coefficient in power-law expansion of trigonometric expansion of model
function. First used in Eq. (A.114).

βb: Coefficient in power-law expansion of trigonometric expansion of model
function. First used in Eq. (A.115).
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βc: Coefficient in power-law expansion of trigonometric expansion of model
function. First used in Eq. (A.116).

γ(k): 1. Coefficient in Kp expression. First used in Eq. (2.11).

2. Ratio of surface tension to water density. First used in Section A.1.2.

γ1(k): Term in variance expression. First used in Eq. (H.18).

γa: Coefficient in power-law expansion of trigonometric expansion of model
function. First used in Eq. (A.114).

γb: Coefficient in power-law expansion of trigonometric expansion of model
function. First used in Eq. (A.115).

γc: Coefficient in power-law expansion of trigonometric expansion of model
function. First used in Eq. (A.116).

δ: Divergence. First used in Eq. (4.2).

δ(x, y): Divergence field. First used in Eq. (4.10).

ε: 1. Dielectric constant. First used in Section A.3.2.

2. Rossby number. Defined in Eq. (C.1).

ζ: Vorticity. First used in Eq. (4.1).

ζ(x, y): Vorticity field. First used in Eq. (4.9).

ζi,j: Vorticity field in region L1. First used in Eq. (I.11).

η0: Impedence of free space. First used in Eq. (A.73).

θ: 1. Incidence angle of radar at ocean’s surface.

2. Angle of vector in polar form. First used in Section I.1.

λ: 1. Longitude. First used in Eq. (A.11).

2. Wavelength of radar. First used in Eq. (A.11).

λ(k): Short-hand for λk,k. First used in Eq. (E.8).

λq(k): Element of main diagonal of the matrix Λq and an eigenvalue of the
Q matrix. First used in Eq. (E.8).

λK−1
(k): Eigen value of the matrix K−1. First used in Eq. (E.10).

λK−1

k,k : Eigen value of the matrix K−1. First used in Eq. (E.10).
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λk,k: Eigenvalue of the K matrix and a diagonal element of the matrix Λ.
Defined in Eq. (E.8).

Λ: N2 × N2 diagonal matrix with diagonal elements λk,k. First used in
Eq. (E.7).

Λq: N ×N diagonal matrix. Defined in Eq. (E.5).

ν(k): σo(k) measurement noise. First used in Eq. (2.9).

ν1(k): Normal random variable. First used in Eq. (H.3).

ν2(k): Normal random variable. First used in Eq. (H.5).

ν3(k): Normal random variable. First used in Eq. (H.8).

ρ: Density. First used in Eq. (A.1).

ρ(t): Normalized autocorrelation of a one-dimensional surface. Defined in
Eq. (A.68).

ρ′(r, θ, φ): Density resulting from fluid motion. First used in Eq. (C.15).

ρs: Atmospheric density. First used in Eq. (4.6).

ρs(r): Density without fluid motion. First used in Eq. (C.15).

σ: Standard deviation of the surface height. Defined in Eq. (A.67).

σo: Normalized radar backscatter. First used in Section 1.1.

σo
c : Crosswind value of σo. First used in Eq. (A.119)

σo
d: Downwind value of σo. First used in Eq. (A.118)

σo
u: Upwind value of σo. First used in Eq. (A.117)

σo(k): True value of kth observation of σo. First used in Eq. (2.7).

σo(θ): σo as a function of incidence angle θ. First used in Eq. (A.100).

σo(θ, χ, p): Normalized radar backscatter as a function of incidence angle, relative
azimuth angle, and polarization. First used in Eq. (A.72).

σo
m(k): Value of σo(k) computed from geophysical model function. Defined

in Eq. (H.2).

σo
q(θ): Large-scale scattering (σo) as a function of incidence angle θ. First

used in Eq. (A.108).
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σo
s(θ): Small-scale scattering (σo) as a function of incidence angle θ. First

used in Eq. (A.109).

σo
H(θ): Horizontal polarization σo as a function of incidence angle θ. First

used in Eq. (A.90).

σo
P (θ): σo as a function of incidence angle θ for polarization P . First used in

Eq. (A.92).

σo
V (θ): Vertical polarization σo as a function of incidence angle θ. First used

in Eq. (A.91).

σo: Equivalent σo used in radar equation. First used in Eq. (A.63).

τ : 1. Time. First used in Eq. (A.41).

2. Time scale of motion. First used in Section C.1.

τ c
−1: Nc × Nc vorticity coefficient extrapolation matrix for −j direction.

First used in Eq. (I.14).

τ c
+1: Nc ×Nc vorticity coefficient extrapolation matrix for +j direction.

τ d
−1: Nd ×Nd divergence coefficient extrapolation matrix for −j direction.

First used in Eq. (I.22).

τ d
+1: Nd ×Nd divergence coefficient extrapolation matrix for +j direction.

First used in Eq. (I.51).

Υ: N2×Ml matrix relating boundary polynomial coefficients to pressure
field. First used in Eq. (I.3).

Υc: N2 ×Nc matrix relating the polynomial coefficient vector to the vor-
ticity field matrix. Defined in Eq. (F.17).

Υd: N2 × Nd matrix relating the polynomial coefficient vector to the di-
vergence field matrix. Defined in Eq. (F.18).

Υru: N2×Ml matrix relating boundary polynomial coefficients to a portion
of the pressure field. First used in Eq. (I.3).

Υu: N2×Ml matrix relating boundary polynomial coefficients to pressure
field. First used in Eq. (I.4).

φ: 1. Wind direction. First used in Eq. (2.8).

2. Latitude. First used in Eq. (A.11).

3. Conservative potential. First used in Eq. (C.3).
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φn: Wind direction at lexicographic index sample point n. First used in
Eq. (5.28).

Φ: 1. Geopotential height. First used in Eq. (A.16).

2. Fourier Coefficient. Used in Section A.1.2.

Φ(φ): Directional spectrum. First used in Eq. (A.44).

Φu(kx, ky): Two-dimensional spatial Fourier coeffieint. First used in Eq. (A.21).

Φv(kx, ky): Two-dimensional spatial Fourier coeffieint. First used in Eq. (A.21).

χ: 1. Relative azimuth angle between radar illumination and wind direction.
See Eq. (2.8).

2. Velocity Potential. First used in Eq. (4.3).

χ(k): Relative azimuth angle between radar illumination and wind direction
for kth observation. First used in Eq. (3.2).

ψ: 1. Stream function. First used in Eq. (4.3).

2. Atmospheric stability. First used in Eq. (A.5).

ψ(k): Azimuth angle of radar illumination for kth observation. First used
in Eq. (3.2).

ψi,j Element of the sine transformation matrix Ψ. Defined in Eq. (E.3).

Ψ: 1. Azimuth angle of radar illumination. First used in Eq. (2.8).

2. N×N unitary sine transformation matrix with elements ψi,j. Defined
in Eq. (E.3).

Ψ(K): Wavenumber spectrum. Defined in Eq. (A.43).

Ψl(K): Large-scale component of wavenumber spectrum. Defined in Eq. (A.106).

Ψs(K): Small-scale component of wavenumber spectrum. Defined in Eq. (A.107).

ω: Radian frequency. First used in Eq. (A.40).

ω(K): Dispersion relationship. Used in Section A.1.2.

Ω: Angular velocity of rotation of the earth. First used in Section A.1.

Ω: Angular velocity vector of the earth. First used in Section C.1.

⊗: Kronecker or right-direct product. First used in Eq. (4.32).
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b · c: Lexicographic index operator, bkc = int[(k− 1)/N ] + 1. First used in
Eq. (4.82).

d · e: Lexicographic index operator, dke = mod(k− 1, N)+ 1. First used in
Eq. (4.82).

†: Matrix pseudo-inverse. First used in Eq. (4.95).

|| · ||2: L2 norm. First used in Section 5.2.

〈·〉: Statistical expectation. First used in Eq. (A.41).
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Chapter 1

Introduction

1.1 Background

While most of the planets in our solar system have some atmosphere, the oceans of planet
Earth make it one of the most unique. The oceans of the Earth work in concert with the
atmosphere to control and regulate the environment. Fed by the sun, the interaction of
land, ocean, and atmosphere produces the phenomenon we call weather. Meteorology is
the science of studying weather. For centuries, meteorologists have struggled to understand
the complexities of weather. Only in the past half century have meteorologists begun to
understand weather patterns well enough to produce relatively accurate, though limited,
forecasts of future weather patterns [2, 25]. One of the limitations of predicting future
weather is that meteorologists do not adequately know the current weather [40, 74]. An
accurate understanding of current weather patterns is required to predict future weather
patterns. Until recently, detailed local weather conditions were available only from sparsely
arrayed weather stations, ships on commercial shipping lanes and sparsely distributed ocean
bouys. Meteorological conditions over large regions of the ocean have been unavailable [99].

The advent of satellites for remote sensing has improved the situation significantly. Satel-
lite remote sensing has the potential to provide local weather conditions at an unprecedented
frequency and spatial resolution [1, 36]. Such information should significantly impact our
understanding of the world weather systems and improve the reliability of weather fore-
casting. Of primary import in the remotely sensed data, is the determination of accurate,
high resolution wind fields over the ocean’s surface [4, 6, 86]. Until recently such data
has been unavailable. In 1978 the experimental SeaSat radar scatterometer (SASS) first
demonstrated the ability to accurately infer vector winds over the ocean’s surface from space
[5, 13, 14, 23, 27, 37, 42, 47, 51, 106].

A wind scatterometer is an active radar remote sensing instrument which provides mea-
surements of the normalized radar backscatter (σo) at Ku-band (14 GHz) of the ocean’s
surface [1, 38, 81, 84, 87, 102]. From these noisy measurements of σo, the speed and direc-
tion of the wind over the ocean’s surface can be inferred using a relationship between the
wind vector and σo, known as the “geophysical model function” [24, 91, 93, 102, 105].

1



The early demise of the SeaSat satellite (due to a spacecraft power failure) limited the
data length from this pioneering instrument platform though SeaSat data is still being stud-
ied. The dramatic success of SASS [100] prompted NASA to design and build an advanced
scatterometer known as NSCAT (for NASA scatterometer) for flight in the 1990’s [75]. The
NSCAT scatterometer offers several significant design improvements over SASS, including
additional antennas and an onboard digital signal processor to permit better cell coregis-
tration and improved resolution [30, 60, 61, 68, 66]. While the feasibility of the method is
demonstrated for NSCAT, the method is applicable for other classes of scatterometers, e.g.,
[82].

1.2 Problem Motivation

The techniques for estimating winds developed for SASS are planned for use in processing
of NSCAT data. Unfortunately, the traditional approach to wind estimation has significant
limitations. Due to the nature of the geophysical model function relating σo and winds, the
traditional technique of estimating the wind results in a non-unique estimate of the wind
vector [3, 93, 109]. A second step, known as dealiasing, must be used to select a single vector.
This latter step is typically based on ad hoc considerations, is error-prone, and is difficult to
analyze.

The difficulties and limitations of this traditional approach have spurred interest in the
development of improved techniques for estimating the wind field from the scatterometer
measurements (see, for example, [43, 44]); the need for improved techniques is recognized
[3, 47, 108].

1.3 Solution Approach

In this dissertation, a new estimation-theory based approach to wind field estimation is
proposed; it uses a model of the underlying wind field that is based on fundamental physical
principles. In this model-based approach, the scatterometer measurements of σo are used to
estimate the parameters of the wind field model. The wind field estimate is then computed
from the estimated model parameters. This approach is fundamentally different from the
traditional point-wise approach to wind field estimation. Unlike the traditional approach,
the proposed model-based approach takes advantage of the inherent correlation in the wind
field at different sample points, giving significantly improved accuracy for the wind field
estimate.

1.4 Results Summary

In this research, the feasibility of model-based wind field estimation from wind scatterometer
measurements is demonstrated. As shown by simulation, the proposed model-based wind
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estimation approach produces more accurate estimates of the wind field than does the tradi-
tional point-wise approach. This accuracy improvement comes at the expense of additional
computation.

The specific contributions of this dissertation include: a proof of the set-wise identifia-
bility of the point-wise wind estimate, development of a descriptive model for near-surface
mesoscale wind fields, an evaluation of the model accuracy against realistic mesoscale wind
fields, formulation of the estimation problem for estimating the wind field model parame-
ters from the wind scatterometer measurements in terms of an objective function, a proof
of the identifiability of the model parameters from the wind scatterometer measurements,
an approach to optimization of the objective function based on a gradient-type search al-
gorithm, computation of initial values obtained from the point-wise wind estimates, and a
detailed comparison of accuracies of the wind field estimates obtained via the model-based
and point-wise wind field estimation approaches. The latter result is demonstrated using
simulated NSCAT measurements.

1.5 Dissertation Overview

In Chapter 2 a tutorial background in the fundamentals of wind scatterometry, includ-
ing a description of the operation of a spaceborne wind scatterometer, the measurement
model, and the traditional point-wise method of estimating the wind from the scatterometer
measurements, is given. A discussion on the short-comings of the traditional approach is
included.

In Chapter 3 a proof of the identifiability of point-wise wind estimation is given for the
first time. It is shown that point-wise wind estimation is set-wise identifiable.

In Chapter 4 a model for mesoscale wind fields over the ocean is developed. The model is
based on the geostrophic equation of wind motion and various assumptions on the wind field
vorticity and divergence. The modeling error versus model order is evaluated for realistic
wind fields and a model order is chosen.

In Chapter 5 a model-based approach is formulated for estimating the wind field over the
entire swath simultaneously. It takes advantage of the inherent correlation in the wind at
different points within the swath. Identifiability of the estimates is shown and the gradient
of the model-based objective function is derived.

In Chapter 6 optimization of the model-based estimation objective function, to obtain
the maximum likelihood estimate of the wind field model parameters, is considered. Various
methods of optimizing the multimodal objective function are described. A gradient-based
optimization approach is selected for this research. The gradient-based approach relies on the
selection of suitable initial values. Various methods of computing initial values, including
methods which first use a point-wise wind estimation, are considered. The limitations of
these approaches are described.

In Chapter 7 the performance of the model-based wind field estimation procedure is
compared against the point-wise approach. Using simulations, the accuracy of estimates of
the wind field, obtained by the traditional point-wise approach to wind estimation and the
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proposed model-based approach, is evaluated and compared.
Finally, in Chapter 8 conclusions are drawn and recommendations for future work are

given.
The Appendixes provide additional background, detailed derivations and results, and,

other supplementary information. Appendix A provides a brief tutorial on the fields of
meteorology, oceanography, and electromagnetic scattering theory. Appendix B provides
detailed derivations of various results required to show the set-wise identifiability of point-
wise wind estimates. Appendix C summarizes the derivation of the geostrophic equation
which forms the basis of the wind field model developed in this dissertation and considers
properties of the geostrophic wind field. Appendix D describes how simulated mesoscale
wind fields were developed for the evaluation of the wind field model. Simulated results were
used due to the limited availability of suitable “real” mesoscale wind field data. Appendix
E provides detailed proofs of various results required in the development of the wind field
model. Appendix F describes alternate formulations considered for the wind field model.
Appendix G provides detailed results for the modeling errors of various wind field modelling
options. Appendix H describes the NSCAT scatterometer simulation used to generate the
simulated σo measurements used to evaluate wind estimation accuracy. Appendix I describes
alternate approaches to determining initial values to begin the gradient-search optimization.
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Chapter 2

Fundamentals of Wind Scatterometry

2.1 Overview

The purpose of this chapter is to provide background in the field of wind scatterometry.
Historical background and more detailed information are included in Appendix A. This
chapter is organized in the following manner: Section 2 introduces the concepts related to
mesoscale wind fields over the ocean and provides a backdrop for the interaction of winds
and waves. Section 3 discusses the relationship of winds and waves to radar backscatter
and describes several of the most common geophysical model functions relating wind and
backscatter. Section 4 describes the operation of a wind scatterometer and describes the
sampling scheme and measurement model. Section 5 describes the traditional point-wise
approach for wind estimation. Section 6 discusses the short-comings of this traditional
point-wise approach to wind estimation.

2.2 Ocean Winds

Meteorologists traditionally have separated the vertical and horizontal motions of the atmo-
sphere. Vertical motions of the atmosphere are termed updrafts or downdrafts while horizon-
tal air motions are called winds [104]. Meteorologists and oceanographers commonly talk
about the zonal (east-west) and meridonal (north-south) components of the wind velocity.
Positive zonal winds are called westerlies (from the west) with negative zonal winds called
easterlies (from the east). Positive and negative meridional winds are called southerly and
northerly, respectively. On wind field maps, it is common to use streamlines to indicate the
wind direction. Streamlines are arbitrarily spaced lines that are everywhere parallel to the
horizontal velocity vector [104].

Horizontal motions of the planetary atmosphere are divided into a number of more or
less distinct scales of motion. The definitions are not precise and depend on context. The
very broadest features of the global circulation patterns, at scales comparable to oceans
and continents, are termed planetary-scale motions. Synoptic-scale motions, while smaller
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than planetary-scale motions, consist of weather patterns large enough to be resolved by
conventional weather station sampling with stations spaced several hundred kilometers apart.
Weather maps displayed on the evening news are generally synoptic-scale. What we consider
daily weather is primarily associated with synoptic-scale motions. Mesoscale motions range
in size from 10 km to 1000 km. Generally, mesoscale motions are too small to be resolved
by conventional weather stations and are much less well understood. However, mesoscale
motions are of prime interest in weather forecasting.

Until recently, weather forecasting relied exclusively on subjective analysis of synoptic
weather charts. The development of computers permitted meteorologists to employ numer-
ical solutions of the equations of motion in their analysis. While the numerical prediction
models are far superior to earlier techniques, the lack of a complete knowledge of the current
weather conditions still limit their usefulness [104]. Numerical weather prediction (NWP)
modeling is based on a set of primitive equations derived from Newton’s laws of motions,
atmospheric continuity constraints, and the laws of thermodynamics. The measurement ac-
curacy and spatial sampling characteristics of the initial weather conditions used to initialize
the NWP models dictate the accuracy of the NWP results. Recent study results point to the
improvements in forecast accuracy by use mesoscale weather data, including surface wind
fields, to initialize the NWP models (see [5, 38, 43, 44, 86]). Mesoscale wind fields are also
important in the study of various oceanographic, climatological, and meteorological studies
[3, 35, 47, 53, 84, 107].

Early scatterometers were airborne instruments [49]. The first space-borne wind scatter-
ometer, known as SASS, was flown on the the Seasat spacecraft in the late 1970’s [29, 48, 81,
102]. SASS first demonstrated that accurate measurements of winds over the ocean could
be obtained from space [47, 51, 99, 100]. NASA is currently constructing an advanced wind
scatterometer, known as NSCAT, for launch in the mid 1990’s [60, 61].

Since wind scatterometers are the only instruments which can provide vector measure-
ments of winds under all weather conditions, they are considered an essential ingredient
in future plans for Earth remote sensing instruments (e.g., NASA’s Earth Remote Sensing
[EOS] program) [84].

2.3 The Geophysical Model Function

As wind blows over the ocean’s surface, friction between the lower layers of the atmosphere
(known as the surface boundary layer, the top of which may be from tens to many hundreds of
meters above the earth’s surface), transfers energy from the wind to the ocean surface. This
slows the wind flow at the surface and induces currents and waves on the ocean’s surface.
Wind generated waves vary in size from the smallest capillary waves (less than 10 cm) to
very long wavelength gravity waves [54]. The radar backscatter of the ocean’s surface is
sensitive to the capillary waves generated by the air flow over the surface in a manner which
makes it possible to infer the speed and direction of the wind over the ocean’s surface from
measurements of the radar backscatter of the surface. The relationship between the wind
and the radar backscatter is known as the geophysical model function and will be denoted
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by M.

The theory of the scattering of electromagnetic (EM) radiation from the ocean’s surface
is complex. The relationship between winds and radar backscatter has been widely studied
[11, 24, 28, 49, 50, 62, 91, 93, 105, 108]. A brief summary and historical background on the
development of the geophysical model function are given in Appendix A. In the following
sections, the most widely accepted forms of the geophysical model function relating winds to
radar backscatter at 14 GHz are described. These are known as the SASS1 and the Wentz
or SASS2. A number of other geophysical model functions have been proposed, e.g., [91].
While the model functions differ in detail, they share a cos 2χ dependence on wind direction
(discussed below).

2.3.1 The SASS1 Model Function

Based primarily on empirical observations of σo from space and from aircraft measurement,
but also including the two-scale scattering theory (see Appendix A), the science working team
for the SeaSat scatterometer, developed the SASS1 model function. The SASS1 has been
the most commonly used geophysical model function. The SASS1 model function expresses
σo in a tabular power-law formulation known as a G/H Table [11, 52], i.e.,

σo = G(θ, χ, p) UH(θ, χ, p) (2.1)

where U is the wind speed, θ is the incidence angle of the microwave radiation on the
ocean’s surface, χ is the relative azimuth angle between the microwave radiation and the
wind direction, and p indicates the polarization of the radar.

The tabulated G and H coefficients exhibit a cos 2χ dependence on the wind direction.
Fig. 2.1 illustrates the relationship between σo, χ, θ, and U for SASS1. The cos 2χ depen-
dence of σo on wind direction is evident. The SASS1 model function has been extensively
studied and evaluated (see Appendix A).

2.3.2 The Wentz Model Function

Analysis of the winds measured using the SeaSat scatterometer against conventional ship
and bouy measurements has shown that the SASS1 model function has a slight 0.5 m/s wind
speed bias [33]. Recently, Wentz [105] proposed a variation of the model function which,
although producing very similar σo values for given χ and θ, does not exhibit the wind speed
bias. The Wentz model function, known either as the Wentz or SASS2 model function, is
expressed [105],

σo = A0 + A1 cosχ+ A2 cos 2χ (2.2)
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Figure 2.1: σo versus χ for θ = 30◦ (SASS1 model function, vertical polarization).
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with

A0 = a Ud (2.3)

A1 = A0(b+ e logU) (2.4)

A2 = A0(c+ f logU) (2.5)

where a, b, c, d, e, and f are tabulated functions of incidence angle θ and polarization p.
Since, in general, A2 � A1, the cos 2χ dependence of σo on wind direction is apparent.

2.3.3 NSCAT Tabular Model Function

To provide the greatest possible processing flexibility, the NSCAT project will not be assum-
ing that M has any particular form, but will tabularize σo as a function of wind speed (U),
relative azimuth angle (χ), incidence angle (θ), and polarization (p), i.e.,

σo = TAB(U, χ, θ, p) (2.6)

where TAB(U, χ, θ, p) consists of a table of values which is interpolated. The table of values
is currently determined by evaluating the SASS1 model function or the Wentz model function
at the desired points in the parameter space. The hope is that later basic research into the
relationship between σo and the wind will permit refinement of the table values. Throughout
this research the NSCAT tabular form of the model function is used.

2.4 Wind Scatterometer Theory

The scatterometer does not directly measure the wind, but infers the normalized radar
backscatter σo from noisy measurements of the radar backscatter from the ocean’s surface
(see Appendix A and Appendix H). Essentially, the radar scatterometer transmits a radar
pulse of known power towards the ocean’s surface. A portion of this power is reflected, or
backscattered, toward the radar. This reflected “signal” power is measured by the scattero-
meter. The amount of power which is received is a function of the known radar parameters
and σo which is a function of the wind blowing over the ocean surface. Unfortunately, the
measured power is corrupted by additive noise power. A separate measurement of the noise-
only power is made and subtracted from the signal+noise power measurement. This provides
the measurement of the backscattered signal power. The σo measurement is obtained from
the signal power measurement using the well-known radar equation [102]. σo is related to
the wind by the geophysical model function M.

Since M has a multi-valued inverse, several measurements of σo from different azimuth
angles must be used to determine the wind vector [102]. SASS used two fan-beam antennas
on either side of the spacecraft to provide two azimuth-angle observations of each resolution
element [48]. The NSCAT design will use three antennas on each side of the spacecraft to
provide three azimuth-angle observations of each resolution element, or cell. NSCAT will
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provide measurements of σo at 25 km resolution over a 600 km wide swath on either side of
the spacecraft ground track as diagrammed in Fig. 2.2. Details of the SASS design may be
found in [48] while the NSCAT design is described in [60, 61, 68].

The advanced NSCAT design has a number of significant advantages over the SASS
design. An important difference is the uniformity of the σo sampling grid. The design of
SASS resulted in very non-uniform sampling of σo (see [68]). The NSCAT design will be
assumed throughout the majority of the dissertation (see Appendix H).

2.4.1 The Scatterometer Measurement Process

The wind scatterometer provides essentially instantaneous measurements of σo over a grid of
sample points in each of the measurement swaths (refer to Fig. 2.2). For NSCAT, the sample
points, or “cells”, as they are often referred to in literature, are separated by 25 km. At each
sample point, noisy measurements, denoted z(k), of the true σo, denoted σo(k), are obtained
for each of 3 azimuth angles. For NSCAT, the center antenna beam is dual-polarized so that
there are 3 azimuth angles but four observations of σo; hence, k ranges from 1 to 4 [21, 70].

σo(k) is related to the wind at the sample point by the geophysical model function,

σo(k) = M{(u, v), k} (2.7)

where u and v are the components of the wind at the sample point and the k index in M
subsumes the dependence of σo on the antenna observation azimuth angle Ψ, the incidence
angle θ, and polarization p. Note that the relative azimuth angle χ is

χ = Ψ− φ (2.8)

where φ is the wind direction. σo is always positive for any wind or k.

Let us consider the measurement process for a particular azimuth angle observation k at
a particular sample point. The noise model for the noisy measurement z(k) of the true σo

value may be expressed, as
z(k) = σo(k) + ν(k) (2.9)

where ν(k) is a zero mean Gaussian random variable whose variance is dependent on the
true σo, σo(k), and the time length T of the measurement [102].

A commonly accepted metric for evaluating the noise-level in the scatterometer measure-
ment is the so-called Kp parameter [19, 34], which is defined as the normalized standard
deviation of the σo measurement. The Kp of z(k), denoted Kp(k), is,

Kp(k)
4
=

{
V ar[z(k)]

}1/2

σo(k)
. (2.10)

The variance of the signal power measurement (and hence the σo measurement) is a
quadratic function of σo(k) [19, 34]. The variance of z(k) can be expressed, as [21] (see also
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Figure 2.2: Diagram of the NSCAT measurement Swath
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Appendix H)

Var[z(k)] = K2
p(k)σo2(k) = α2(k)σo2(k) + β2(k)σo(k) + γ2(k) (2.11)

where α(k), β(k), and γ(k) depend on the known observation azimuth angle and the length
T = NpTg of the integration, where Np is the number of pulses summed and Tg is the energy
integration period length. When only radar communication noise is considered, α(k), β(k),
and γ(k) are all proportional to 1/

√
T (see Appendix H). We note that,

E[z(k)] = σo(k) (2.12)

where E[·] denotes the expectation operation. Typical values for α(k), β(k) and γ(k) coef-
ficients are shown in Table 2.1. Note that V ar[z(k)] can only be computed when σo(k) is
available and hence only when the true wind vector is known.

Table 2.1: α(k), β(k) and γ(k) values in the noise variance expression

Near Swath Cells Mid Swath Cells Far Swath Cells
α β γ α β γ α β γ

k ×10−2 ×10−3 ×10−3 ×10−2 ×10−5 ×10−6 ×10−2 ×10−5 ×10−6

1 4.58 1.87 1.67 4.84 7.44 1.05 5.29 6.96 4.93
2 4.80 3.08 1.48 5.04 12.5 1.76 5.18 5.12 1.88
3 4.80 3.08 1.48 5.04 12.5 1.76 5.18 5.12 1.88
4 4.57 1.87 1.67 4.84 7.44 1.05 5.31 7.40 5.21

The general noise model for the measurements may be expressed, as

z(k) = σo(k) + ν(k) = σo(k)[1 + w1(k)] +
√
σo(k)w2(k) + w3(k) (2.13)

where w1(k), w2(k), and w3(k) are independent, zero mean Gaussian random variables with
known variances α2(k), β2(k), and γ2(k), respectively.

To simplify the notation, s(k) is defined, as

s(k)
4
=

√
σo(k) = M′{(u, v), k} =

√
M{(u, v), k} (2.14)

Using this definition, Eq. (2.13) can be written in terms of the modified measurement
parameter s(k), as

z(k) = s2(k)[1 + w1(k)] + s(k)w2(k) + w3(k) (2.15)

Since the noise sources are independent, the mean and variance of z(k) are,

E[z(k)] = s2(k) (2.16)

and
Var[z(k)] = α2(k)s4(k) + β2(k)s2(k) + γ2(k). (2.17)
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The conditional probability distribution of z(k) given s(k) is

p(z(k)|s(k)) =
1√
2π

1

[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]1/2
· (2.18)

exp{−1

2
[z(k)− s2(k)]2/[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]}.

The measurement z(k) is a random variable due to the presence of the noise. Since α2(k),
β2(k), and γ2(k) can be expressed, as

α2(k) =
1

T
a(k)

β2(k) =
1

T
b(k) (2.19)

γ2(k) =
1

T
c(k)

where a(k), b(k), and c(k) are positive constants that are independent of T , we see that
as T → ∞, α2(k) → 0, β2(k) → 0, and γ2(k) → 0. This corresponds to reducing the
measurement noise to zero, which is equivalent to reducing Kp. Because,

Var[z(k)] =
1

T

[
a(k)s4(k) + b(k)s2(k) + c(k)

]
(2.20)

is non-negative for all T , it follows that Var[z(k)] → 0 as T →∞; hence, z(k) converges in
probability to the deterministic quantity s2(k) = σo(k). This fact will be utilized in the next
chapter to show that the wind vector is identifiable from wind scatterometer measurements.

2.5 Traditional Wind Estimation

Traditionally, estimation of wind fields from wind scatterometer measurements has involved
a two step process. The first step consists of point-wise estimation of the wind at each sample
point. As will be shown in the next chapter, point-wise wind estimation is non-unique and
a number of ambiguous solutions are produced. To resolve this ambiguity, the second step
consists of various ad hoc schemes to select a single vector from the set of possible solutions at
each sample point by examining neighboring points so that a unique wind field is produced.
Each step in this process is considered in the following sections.

2.5.1 Step One: Point-Wise Wind Estimation

Historically, wind estimation (or retrieval as it is commonly called in wind scatterometry
literature) has been done only on a point-wise basis, i.e., the relationship between adjacent
sample points is ignored in the wind estimation algorithm. Only the set of σo measurements
at each sample point is used to estimate the wind vector at that sample point.
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In the traditional approach to estimating the wind at a given sample point, the wind
vectors which minimize an objective function, that is formed from the σo measurements, are
determined. The most commonly used objective functions are based on maximum-likelihood
(ML) and weighted least-squares (WLS). Due to computational requirements, the WLS
approach has been most commonly used, although the ML approach is considered the best
[21].

The Point-Wise ML Objective Function

The ML objective function, JML, is defined as the negative of the log-likelihood function for
the σo measurements occurring at a single measurement point. Minimization of JML must
be numerically performed over the two-dimensional space of u and v (or, equivalently, wind
speed and wind direction). The amount of computation required for minimization of JML is
significant. This has led to the common use of the WLS algorithm. In this research, however,
all point-wise results are based on the ML objective function.

To evaluate the point-wise log-likelihood function, let Zp be the vector of σo measurements
at a single point, i.e., Zp = (z(1), . . . , z(N))T ; its elements are statistically independent.
From Eq. (2.18) the conditional probability of Zp given (u, v) is

p(Zp|u, v) =
∏

k

1√
2π

1

[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]1/2
· (2.21)

exp{−1

2
[z(k)− s2(k)]2/[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]}

The log-likelihood function [78] Lp(u, v) is given, as

Lp(u, v) =
∑

k

{
−1

2
log[α2(k)s4(k) + β2(k)s2(k) + γ2(k)] (2.22)

−1

2
[z(k)− s2(k)]2/[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]

}
The ML objective function, JML, is defined, as

JML(u, v)
4
= −Lp(u, v) (2.23)

The Point-Wise WLS Objective Function

Historically, the WLS objective function, which is known as the sum-of-squares (SOS) algo-
rithm in the wind scatterometer literature, has been the most widely used. It was used to
process the SeaSat Scatterometer data set in the late 1970’s. The WLS algorithm is based
on the first-order approximation log(1 + x) ≈ x for small x. Using this approximation, the
noise model is approximately Gaussian in the log domain [21].

Using the approximate noise model and associated variance, JWLS is just the weighted
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least squares [21] objective function for log σo(k). The weights are K̂p

2
(k); i.e.,

JWLS(u, v) =
∑

k

[
log z(k)− log σo(k)

Kp(k)

]2

∀ z(k) > 0 (2.24)

where K̂p

2
is [21]

K̂p

2 4
= α2(k)z2(k) + β2(k)z(k) + γ2(k). (2.25)

When minimizing JWLS, there is a closed form for the wind speed solution at a given wind
direction φ, when the SASS1 model function is used. The minimum over wind direction
is evaluated numerically. Thus, minimization of JWLS is essentially one dimensional and
requires much less computation than minimization of JML. As a result, the WLS algorithm
has been most widely used.

For large Kp(k) (corresponding to low SNR), the approximations used in deriving the
JWLS are not very good [21]. Furthermore, when Kp(k) is large, z(k) can be negative. Since
negative measurements [due to log z(k)] can not be used, the estimated wind is biased [32].

2.5.2 Multiple Solutions and Ambiguity Removal

Due to the nature ofM, the point-wise wind estimation objective function J (either JML(u, v)
or JWLS(u, v)) has a number of local minima and may have several global minima. In the
traditional point-wise approach, all of the values of (u, v) which correspond to local minima
of J are determined and used in a later step known as dealiasing. Collectively, the set of
(u, v) vectors which maximize J will be termed the noisy ambiguity set. Typically, members
of the noisy ambiguity set have similar wind speed but differ widely in direction. In the next
chapter, the identifiability of the wind vector from the scatterometer measurements is shown.
Historically, the set of wind vectors corresponding to the set of local minima of the objective
function (the noisy ambiguity set) are also called the “wind retrieval” or “ambiguity” set.
The members of the noisy ambiguity set are termed ambiguities or aliases [56, 59, 94, 109].

Associated with each ambiguity is the value of its objective function which can be used
to rank them. The ambiguity with the smallest objective function is the 1st alias, with the
rest following in sequence. Note that J often has multiple global minima so that there may
be several “1st aliases”. This difficulty arises due to the harmonic nature of M.

From an estimation point of view, the 1st alias(es) is (are) “the most likely”; however,
since the other aliases have very similar objective functions, and due to the sinusoidal nature
of the σo predicted by the model function, the 1st alias is not always, intuitively, the “best”.
Consequently, the entire ambiguity set has been historically used as the result of the wind
estimation process rather than just the 1st alias. Later processing has been used to “select”
the ambiguity thought to be closest to the true wind. This last step has been termed
dealiasing [94, 109].

To gain insight into the reasoning for why this has been done, consider the following
discussion of a “typical” wind estimation situation using JWLS. Similar conclusions can be
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drawn using JML. Fig. 2.3 depicts curves of the possible wind speeds and directions for
each of the σo measurements corresponding to a true wind speed of 10 m/s with a true wind
direction of 45 deg. For these σo measurements zero noise is added. A sketch of the value
of the WLS objective function JWLS is also shown (see caption for detailed discussion). As
is evident, there are two local minima of the objective function and thus two aliases. One
alias occurs at the correct wind direction of 45 deg while the other alias occurs at 225 deg.

Some combinations of true wind direction and added noise produce additional aliases.
A plot similar to the previous plot for a true wind direction of 0 degrees is shown in Fig.
2.4. Note that there are 4 local minima in the the objective function of which two are global
minima. Depending on the realization of the noise up to four aliases can be produced. From
these plots, the following observation can be made: the set of wind vector ambiguities can
be thought of as “a correct” vector and a set of spurious vectors of similar wind speed but
widely dispersed directions.

Similar statements can be made about the ML objective function JML. In fact, the
number of aliases, their wind directions and speeds obtained using the ML objective function
are very similar to those obtained using the WLS objective function. A plot of JML for a
true wind direction of 0 deg is illustrated in Fig. 2.5.

There is no method for choosing the alias which is closest to the direction of the true
wind vector, unless the closest alias is “always” the 1st alias; however, this is not always the
case. Figs. 2.6, 2.7 and 2.8 give plots of directional histograms of the aliases produced by
simulating scatterometer measurements at a particular sample point. The simulation was
conducted by choosing a true wind speed and direction, determining the true σo(k) values
for each azimuth angle k, and then simulating the measurement process by adding a gaussian
random value of the appropriate variance, as indicated in Eq. (2.11), to the true σo(k) value.
Using the ML objective function, the ambiguity set was determined. The realizations of the
noise were repeated a total of 5000 times to produce 5000 ambiguity sets. The ambiguity
sets were classified by the number of aliases in each set. The directional histograms for each
alias in each class were produced. The true wind speed was 10 m/s and the true direction
was 0 deg. The values of α, β, γ, θ, and p correspond to NSCAT at near swath. Of the
5000 realizations, none produced ambiguity sets with only one alias, 665 produced ambiguity
sets with two aliases, 326 produced ambiguity sets with three aliases, and 4006 produced
ambiguity sets with four aliases. For 3 realizations an ambiguity set could not be determined.
Typically, the aliases are about 180 deg apart for the 2 alias case, and about 90 deg apart of
the 4 alias case. The percentage of time that the 1st alias is the closest alias to the “true”
wind direction of all the aliases in the ambiguity set (as determined by counting the number
of times the 1st alias is the closest alias to the true for a large number of ambiguity sets
generated from Monte Carlo realizations of simulated noisy σo measurements) is known as
the scatterometer instrument skill and is denoted by SI . As indicated in Table 2.2, the 1st
alias is the closest alias to the true wind direction only about 53 percent of the time, i.e.,
the instrument skill is 53 %.

These results are typical for all true wind directions and speeds. For a true wind direction
of 180 deg, the frequency histograms are essentially “flipped over” or mirrored about the 90
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Figure 2.3: Plot illustrating point-wise WLS wind estimation. The true wind speed is 10
m/s while the true wind direction is 45 deg.

This plot was generated by computing the values of σo(k) for k = 1, 2, 3, 4 given the known
wind vector (u, v). No noise was added, i.e., z(k) = σo(k). The WLS objective function,
JWLS, was computed. The wind speed which minimized JWLS as a function of wind direction
is shown as a dotted line. The value of JWLS at this minimum wind speed is plotted as a
function of direction as the dashed line. Note that there are 2 global minima. The four curves
with symbols (corresponding to k = 1, 2, 3, 4) were generated by determining the u and v
for which M{u, v, k} = z(k). Note the double sinusoidal nature of these curves. JWLS is
minimized at the wind speeds and directions at which these four curves all intersect. For this
case, this occurs at the true wind speed of 10 m/s and the true wind direction of 45 deg and
again at a wind speed of 10 m/s with the wind direction of 230 deg. Intuitively, when noise
is added, the σo curves (lines with symbols) shift vertically relative to one another. This
leads to inexact intersections with spurious near-intersections possibly occurring at other
wind directions (e.g., 30 and 210 deg for this case).
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Figure 2.4: Plot illustrating point-wise WLS wind estimation for a 0 deg true wind. Refer
to the caption of Fig. 2.3 for a detailed explanation about the construction and meaning of
the plots.
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Figure 2.5: Plot of the JML likelihood function for 45 deg true wind. For clarity, a perspective
plot of −JML is shown in (a). The triangles on the contour plot of JML in (b) mark the
trajectory of a ravine search used to find the local minima. The crosses off to the right of the
plot indicate the value of the objective function along the ravine search path. The contour
intervals are arbitrary.
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to 270 deg line.

Table 2.2: Ambiguity set statistics.

Number of Number of Number of Times the First Alias Instrument
Aliases Occurrences is the Closest to True Wind Skill (%)

2 665 359 54
3 326 216 66
4 4006 2060 51

Totals 4997 2635 53

The previous observations motivated earlier experimenters to always retain all the aliases,
rather than using only the “most likely” 1st alias, and, then to use later processing to
“choose” the alias which corresponds to the “best” wind direction. Typically, this has
been done by comparing the ambiguity sets from adjacent sample points, applying heuristic
real-world constraints, and attempting to manually identify weather patterns. From this a
plausible selection of one ambiguity from the ambiguity set at each sample set is determined
to generate a wind vector field. This process of “dealiasing” has traditionally been done by
human experts [94, 109].

This wind estimation approach is not well founded in theory and is essentially ad hoc
in nature. It does, however, work reasonably well as computer simulations and SeaSat
Scatterometer experience have demonstrated [94, 109].

2.5.3 Step Two: Dealiasing (Ambiguity Removal)

Application of point-wise wind estimation to each sample point of the wind field produces
an ambiguity set at the sample points. The purpose of the “dealiasing” procedure is to
select a single vector from each ambiguity set to produce a unique wind field estimate.
Typically, dealiasing relies on various ad hoc considerations for selection of a unique wind
vector. Dealiasing is error-prone.

As an illustration, Fig. 2.9 shows an example wind field. Using a simulation of NSCAT,
σo measurements were generated and the noisy ambiguity set at each sample point was
determined. The noisy ambiguity sets are shown in Fig. 2.10. The closest ambiguity to the
true wind is shown as a solid vector, while the other ambiguities are shown as dotted vectors.
For this example wind field, the ambiguity removal algorithm was unable to correctly select
the ambiguities closest to the true wind direction. The resulting dealiased wind field, which
is the point-wise wind field estimate, is shown in Fig. 2.11.

Previous work on the removal of ambiguous wind directions from scatterometer measure-
ments has been done using SASS data [47] and simulated scatterometer data [94, 109]. Data
from SASS was manually processed by a team of experts to select unambiguous wind fields
in conjunction with the JASIN experiment, an intensive ocean/atmosphere study conducted
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in the northeast Atlantic in 1978 [47] (see also [109]). Pattern recognition of significant
meteorological wind patterns (see Fig. 2.12 [109]) was employed by researchers to aid in
manual selection of the “correct” wind direction. Results indicated that “correct” wind so-
lutions (as compared to ship and bouy measurements of the wind direction) of high quality
SASS data could be selected most of the time. The manual method, however, is unsuited
for an operational scatterometer (such as NSCAT) due to the amount of man-time required
to process the data [47, 109].

In the early 1980’s NASA sponsored a study to develop an automated wind vector se-
lection algorithm for a proposed scatterometer (which has since been canceled) known as
NOSS [94]. The NOSS scatterometer was similar to SeaSat but had higher resolution. A
computer simulation of NOSS was used to generate a number of data sets for algorithm
development. Three different algorithms were developed by various organizations: the Uni-
versity of Wisconsin, the University of Kansas, and the Remote Sensing Systems Corporation
(RSS). Developers were given a number of simulated data sets to “tune” their algorithm;
then, each of the algorithms were rigorously compared using a number of independent data
sets. Overall results indicated that ambiguities could be correctly removed almost all of the
time when SI was small. No study of the effects of larger SI values was conducted. Each
of the 3 approaches showed both strengths and weaknesses. A discussion of each approach
follows. Additional information is given in [3] and [94].

The Wisconsin method ranked the ambiguous vectors by residual and used the very lowest
residual vectors to define an initial streamline field pattern (a streamline is a line of constant
wind direction). A low-pass filter was used to weight each vector ambiguity with respect to
direction. The weighted ambiguity closest to the streamline was selected to feed into the next
iteration of filtering and selection. The low-pass filter technique was designed to smooth the
wind field and minimize the error due to incorrect ambiguity choices. Unfortunately, it also
tends to smooth the resultant wind field. One advantage of this technique was the ability
to extend the streamlines beyond the data swath to interpolate gaps between measurement
swaths. Most errors were close to the edges of the measurement swath, indicating that the
lack of data beyond the swath edge degraded performance.

The Kansas method consisted of histogram analysis, averaging, and curve fitting in a
simplified pattern recognition approach. Histograms of wind speed, direction and gradient
were computed over 10 by 10 processing grids. For regions of small wind variations, the
lowest residual ambiguities were selected. For regions of high wind variation, a least-squares
method of fitting the lowest residual ambiguities to streamlines of typical wind patterns
was used. In these high variation regions the ambiguity closest to the resulting pattern
was selected. The algorithm failed to select a unique vector 15% of the time with errors
concentrated in large regions along the swath edges.

The RSS method selects the “mostly likely” ambiguity by minimizing both the wind
direction difference and the residual between adjacent measurements. The wind direction
was assumed to be correlated within 30 degrees over 50 km. Several fields which minimized
the selection criteria were often produced. When this occurred, the field with the smallest
total residual was selected. Performance was strongly dependent on the contents of the
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wind field. The algorithm often “locked on” to vectors 180 degrees out of phase to the true
direction over extended regions.

Most recently, a median filtering algorithm has been used to “de-alias” simulated NSCAT
data [95, 96]. An iterative median filter is initialized by the lowest residual wind vectors.
On each pass, the median vector is replaced by the ambiguity closest to the median vector.
Depending on the variation of SI , 10-20 iterations were required for convergence. This
algorithm works remarkably well under most conditions, but may exhibit poor performance
in regions of low wind speed and/or instrument skill. The performance of this algorithm has
led to its being selected for use in processing NSCAT data. It has been used for generating
the point-wise wind field estimates in this research (e.g., see Fig. 2.11). A more detailed
description of the algorithm is given in Chapter 6. Only limited direct comparisons with
other methods have been published [3, 96].

Recently, Hoffman [43, 44] developed a technique of assimilating the point-wise ambi-
guity sets into numerical weather prediction models with simultaneous dealiasing. While
his research demonstrated the utility of his approach, the accuracy of the dealiasing was
inconclusive.

Using Ekman boundary layer dynamics, Yu [110] developed a technique for deducing the
wind direction from measurements of the wind speed over a region. He applied his tech-
nique to measurements made by both the Seasat altimeter and scatterometer. His method,
however, is limited to low resolution estimates of the wind field, i.e., it does not resolve
subsynoptic scale features of the wind field [110]. His method also does not use the fact that
the scatterometer measurements are sensitive to the wind direction as well as wind speed.

2.6 Short-Comings of Point-Wise Wind Estimation

The traditional two-step point-wise wind estimation approach results in multiple solutions
at each sample point in the first step which must be resolved by dealiasing. This second
dealiasing step, which traditionally has been based either on manual methods or on various
ad hoc considerations, is error-prone and may result in estimates of the wind field with large
regions of significant directional errors, due to selection of the wrong alias. Although much
research effort has been expended on the development of improved dealiasing algorithms (e.g.,
[3, 109]), the difficulties remain unsolved. Because of the ad hoc nature of the dealiasing
step, error analysis of the wind estimates is difficult. Even when the dealiasing is perfect
(i.e., the alias closest to the true wind direction is always selected), the point-wise approach
often produces very noisy estimates of the wind field due to the high noise levels in the
σo measurements. This is often resolved by spatial averaging of the resulting wind field
estimates [90]; however, this reduces the spatial resolution of the results.
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Figure 2.6: Directional histogram from simulated wind retrieval — 2 alias case
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Figure 2.7: Directional histogram from simulated wind retrieval — 3 alias case
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Figure 2.8: Directional histogram from simulated wind retrieval — 4 alias case
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Figure 2.9: An example of a wind field at 50 km resolution.
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Figure 2.10: Ambiguity sets generated from simulated NSCAT σo measurements of the wind
field in Fig. 2.9. Solid vectors are the ambiguities closest to the true wind field.
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Figure 2.11: Dealiased wind field corresponding to Fig. 2.10. The NSCAT median filter-
based ambiguity removal algorithm was used.
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Figure 2.12: Typical wind field features.
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Chapter 3

Identifiability in Point-Wise Wind
Estimation

The estimation theory concept of “identifiability” indicates whether or not an estimated
quantity can be uniquely determined from the available measurements [26, 78]. In this chap-
ter, the identifiability of the wind vector estimated from wind scatterometer measurements
of the radar backscatter of the ocean’s surface is shown. Due to the nature of the relationship
between backscatter and the wind vector, traditional wind estimation approaches produce
multiple estimates of the wind direction, which occur at the local minima of an objective
function formed from the noisy backscatter measurements.

In this chapter wind vector estimation is shown to be set-wise identifiable, i.e., there is
a unique set of wind vectors that could have given rise to the observed backscatter values.
Within this set, there is no way to select a unique wind vector estimate from the measure-
ments at a single sample point. This provides a theoretical basis for dealiasing. This is a
new result. Details of the proof presented in this chapter are used in Chapter 5 to show the
indentifiability of model-based wind field estimation.

3.1 The Relationship Between σo and the Vector Wind

In this Chapter we will assume that the relationship between the wind and σo is precisely
known, i.e., the geophysical model error is zero. The cos 2χ dependence of σo on the wind
direction for the SASS1 geophysical model function has been noted. While other model
functions (e.g., [24, 91, 105]) differ in detail, they share a similar cos 2χ dependence on wind
direction. This characteristic of the model function is primarily responsible for the difficulties
in obtaining unique estimates of the wind vector from σo measurements.

In the traditional point-wise approach, the estimate of the wind vector is obtained by
minimizing an objective function, typically based on maximum likelihood, formed from the
σo measurements. Due to the double cosine nature of M, the objective function has several
local minima with similar wind speed but differing direction. The wind vectors corresponding
to these local minima are called the noisy ambiguity set. Members of this set are commonly
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termed “aliases” [109]. From the noisy ambiguity set a single wind vector is selected in a post-
estimation “de-aliasing” step, using a variety of tactics including continuity considerations
(see [94, 109]). To-date, no one has shown that the wind is uniquely identifiable using this
two-step approach. We will show that, whereas the wind estimate is not unique in the
first step, it is set-wise identifiable, i.e., there is a unique set of wind vectors corresponding
to the observed σo values, which can not be distinguished from one another using only σo

measurements. Identifiability for the second dealiasing step can not be shown since it relies
on information not present in the σo measurements.

Due to the nature of M and the fact that σo is observed from only a small set of azimuth
angles, there may be several wind vectors which give rise to the same set of σo values (one
value for each observation azimuth angle). Define Dc

p to be the set of all possible true wind
velocity vectors, denoted by (ut, vt), which give rise to the same set of σo(k)’s, i.e.,

Dc
p

4
=

{
(u, v)

∣∣∣M{(u, v), k} = M{(ut, vt), k} ∀ k
}

(3.1)

Note that by definition, (ut, vt) ∈ Dc
p.

Because members of the set Dc
p produce exactly the same set of σo(k) values, they can not

be distinguished from one another even if the measurements are noise free. We refer to Dc
p as

the true ambiguity set. The membership in the set Dc
p depends on the model function, the set

of relative azimuth angles (and the corresponding incidence angles and polarizations of the
antenna beams), and the true wind vector. Depending on these factors, Dc

p will contain one
or more members. The fact that Dc

p may contain multiple members is a property inherent
to the model function and the measurement geometry.

In effect, the geophysical model function is a many-to-one mapping of wind velocity
vectors to the set of σo(k)’s corresponding to the observed azimuth angles. The best we
can ever expect to do is identify all members of Dc

p. Selection of a unique wind vector
from Dc

p requires additional information not contained in the σo measurements for a single
sample point of the ocean’s surface; hence, the need for dealiasing in which data from other
sample points (or, from other sources) are used in conjunction with dynamical constraints,
continuity considerations, etc., to select a wind vector field which (hopefully) is “close” to
the true field [94, 109].

To illustrate the membership of Dc
p for various true wind vectors, let us consider the

well-known SASS1 model function [93], for which M is expressed, as

σo(k) = M{(u, v), k} = G(θ(k), χ(k), p(k))UH(θ(k), χ(k), p(k)) (3.2)

where U = |(u, v)| is the wind speed, χ(k) = ψ(k) − φ where φ = tan−1(v/u) is the wind
direction and ψ(k) is the azimuth angle of the kth antenna beam, and p(k) is the radar
polarization. χ is known as the relative azimuth angle. G and H are tabular functions. For
given values of θ and p, G(θ, χ, p) ∼ cos 2χ and H(θ, χ, p) ∼ 2 [93]. For given values of σo(k),
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χ(k), θ(k), and p(k), U can be computed, as

U = exp

{
1

H(θ(k), χ(k), p(k))
ln

[
σo(k)

G(θ(k), χ(k), p(k))

]}
(3.3)

Consider the SASS antenna configuration with two azimuth angles (both vertically po-
larized in this example) separated by 90◦. For the true wind vector (ut, vt), the set of true
σo values are denoted σo(k = 1) = M{(ut, vt), k = 1} and σo(k = 2) = M{(ut, vt), k = 2}.
Now consider the two curves in wind vector space (u, v), defined by M{(u1, v1), 1} = σo(1)
and M{(u2, v2), 2} = σo(2). These curves are depicted in Fig. 3.1 for a true wind speed
of 3 m/s and a true wind direction of 0◦ where the wind vector (u, v) has been converted
to speed and direction relative to the antenna azimuth angle for plotting. k = 1 corre-
sponds to the relative observation azimuth angle of 0◦, while k = 2 corresponds to 90◦.
To generate this curve for k = 1 given σo(1) and the respective ψ(1), θ(1), and p(1) val-
ues, for each possible value of φ, a wind speed U was computed using Eq. (3.3) such that
M{(U cosχ(1), U sinχ(1)), 1} = σo(1). The curve for k = 2 was similarly computed.

These curves intersect several times. The points along these curves for which (u1 =
u2, v1 = v2) at which the curves intersect, define the true ambiguity set Dc

p. Curves for other
true wind directions are also shown in Figs. 3.2-3.5. Note, that depending on the wind
direction, the number of elements in Dc

p varies from 1 to 4.

Figures 3.6 and 3.7 show maps of Dc
p for a true wind speed of 3 m/s at two different

incidence angles. To prepare Fig. 3.6, a true wind direction (along the horizontal axis) was
first selected and Dc

p for that true wind direction was computed. The wind direction of each
of the elements of Dc

p (the directions of each of the elements of the “true ambiguity set”)
was then marked along the vertical corresponding to the true wind direction. This process
was repeated for each true wind direction. The result graphically illustrates how Dc

p changes
with true wind direction for the SASS1 model function. The vertical lines labeled (a)-(e)
correspond to the plots shown in Figs. 3.1-3.5, respectively. Figure 3.7 was generated in a
similar manner, but for a different incidence angle.

For the purpose of comparison, Figs. 3.8 and 3.9 were prepared in the same manner
as Figs. 3.6 and 3.7 but for the three-azimuth-angle NSCAT scatterometer configuration,
with all vertically polarized antennas. Note, that the additional azimuth angle reduces the
number of intersections at a given true wind direction to 1 or 2.

Figures 3.6 through 3.9 can be misleading since they show the true ambiguity set. The
true ambiguity set can only be obtained from noise-free σo measurements. In the real world,
the σo measurements are always noisy. When the σo measurements are noisy, additional
intersections may be produced, or the curves may not intersect at all. When the mea-
surements are noisy, an objective function [21] (such as the maximum-likelihood objective
function given in Section 4) is formulated from the measurements and minimized to pro-
vide estimates of the wind vector [21]. In the noisy case, the wind vectors corresponding
to the local minima of the objective function define the noisy ambiguity set. The number
of minima depends on the true wind, observation angles, etc. To contrast the difference
between the true and noisy ambiguity sets, Figs. 3.10 through 3.13 were prepared with Figs.
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Figure 3.1: Illustration of multiple solutions for point-wise estimation for a true wind di-
rection of 0◦. The curves in (u, v) space, along which M{(u, v), k} = M{(ut, vt), k} for
k = 1, 2 where (ut, vt) is the true wind vector are shown. The wind vector (u, v) has been
converted to speed and direction relative to the antenna azimuth angle for plotting. (ut, vt)
is the true wind with speed of 3 m/s and azimuth angle (relative to the first antenna beam)
of 0◦ where the observation azimuth angles are 0◦ and 90◦, for k = 1 and k = 2, respectively.
Both antennas were vertically polarized with an incidence angle of 40◦. The SASS1 model
function was used to generate this plot.
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Figure 3.2: Illustration of multiple solutions for point-wise estimation for a true wind direc-
tion of 45◦. See the caption for Fig. 3.1 for explanation of curves.
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Figure 3.3: Illustration of multiple solutions for point-wise estimation for a true wind direc-
tion of 90◦. See the caption for Fig. 3.1 for explanation of curves.
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Figure 3.4: Illustration of multiple solutions for point-wise estimation for a true wind direc-
tion of 135◦. See the caption for Fig. 3.1 for explanation of curves.
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Figure 3.5: Illustration of multiple solutions for point-wise estimation for a true wind direc-
tion of 180◦. See the caption for Fig. 3.1 for explanation of curves.
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Figure 3.6: The true ambiguity set map for 3 m/s wind speed and the SASS configuration
with an incidence angle of 40◦. The labeled vertical lines correspond to results from the
plots shown in Figs. 3.1-3.5, respectively. Two observation azimuth angles, at 0◦ and 90◦

(SASS configuration), both vertically polarized, were used with the SASS1 model function
(see text).
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Figure 3.7: The true ambiguity set map for 3 m/s wind speed and the SASS configuration
with an incidence angle of 20◦. Two observation azimuth angles, at 0◦ and 90◦ (SASS
configuration), both vertically polarized, were used with the SASS1 model function (see
text).
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Figure 3.8: The true ambiguity set map for 3 m/s wind speed, the NSCAT configuration
and an incidence angle of 40◦. Same as Fig. 3.6, but for the three observation azimuth angle
(0◦, 65◦, and 90◦) NSCAT configuration (all vertically polarized).
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Figure 3.9: The true ambiguity set map for 3 m/s wind speed, the NSCAT configuration
and an incidence angle of 20◦. Same as Fig. 3.7, but for the three observation azimuth angle
(0◦, 65◦, and 90◦) NSCAT configuration (all vertically polarized).
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3.10 and 3.11 corresponding to the SASS antenna configuration, and Figs. 3.12 and 3.13 to
the NSCAT configuration. Figures 3.10 and 3.11 should be compared with Figs. 3.6 and
3.7, respectively, whereas Figs. 3.12 and 3.13 should be compared with Figs. 3.8 and 3.9,
respectively. Figures 3.10 through 3.13 were prepared as follows. For a given true wind
direction, the true σo set was computed. Noisy σo measurements were simulated by Monte
Carlo methods and the noisy ambiguity set corresponding to each realization of the noisy
σo sets was determined [21]. While details vary with choice of objective function (see [21]),
the general characteristics remain the same. A histogram of the direction of the elements of
the noisy ambiguity sets was computed. This was repeated for each true direction and the
results were plotted. For a given true wind direction, the average number and location of
the wind directions corresponding to the noisy ambiguity set can be seen. Note that there
are typically 2 to 4 members of the noisy ambiguity set regardless of the number of members
of the true ambiguity set.

The increased number of elements of the noisy ambiguity set relative to the true ambiguity
set is due to the presence of noise. We will show, that, as the measurement noise level is
reduced (by increasing measurement time) the noisy ambiguity set (corresponding to the
maximum-likelihood objective function) converges to the true, multi-membered ambiguity
set. Even if we could choose the observation angles to ensure that the true ambiguity set
Dc

p contains a single member for all true winds, the noisy ambiguity set will most likely be
multi-membered. In either case, if a unique wind estimate is desired, dealiasing is required.

3.2 Identifiability of the Set Dc
p

Let us consider the identifiability of u and v (or, equivalently, the wind speed and direc-
tion). As mentioned above, (ut, vt) is the true wind vector and Dc

p is the corresponding true
ambiguity set. By definition, (ut, vt) ∈ Dc

p. Let Zp = (z(1), . . . , z(N))T ; its elements are
statistically independent. From Eq. (2.18) the conditional probability of Zp given (u, v) is

p(Zp|u, v) =
N∏

k=1

1√
2π

1

[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]1/2
· (3.4)

exp
{
−1

2
[z(k)− s2(k)]2/[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]

}
.

The log-likelihood function [78] Lp(u, v) is given, as

Lp(u, v) =
N∑

k=1

{
−1

2
log[α2(k)s4(k) + β2(k)s2(k) + γ2(k)] (3.5)

−1

2
[z(k)− s2(k)]2/[α2(k)s4(k) + β2(k)s2(k) + γ2(k)]

}
.
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Figure 3.10: Histogram of the directions of the aliases in the noisy ambiguity sets versus true
wind direction for the SASS Configuration for an incidence angle of 40◦ created by Monte
Carlo simulations of noisy σo measurements using the WLS (SOS) objective function. The
true wind speed is 3 m/s. Vertically polarized antenna beams in the SASS configuration
with the SASS1 model function were used. For clarity, (a) shows a perspective plot while
(b) shows a contour plot.
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Figure 3.11: Histogram of the directions of the aliases in the noisy ambiguity sets versus true
wind direction for the SASS Configuration for an incidence angle of 20◦. See the caption of
Fig. 3.10 for an explanation of the plots.
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Figure 3.12: Histogram of the directions of the aliases in the noisy ambiguity sets versus
true wind direction for the NSCAT Configuration for an incidence angle of 40◦. Same as
Fig. 3.10, but for the NSCAT configuration with all vertically-polarized beams.
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Figure 3.13: Histogram of the directions of the aliases in the noisy ambiguity sets versus
true wind direction for the NSCAT Configuration for an incidence angle of 20◦. Same as
Fig. 3.11, but for the NSCAT configuration with all vertically-polarized beams.
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The maximum-likelihood objective function, Jp(u, v), is defined, as

Jp(u, v)
4
= −Lp(u, v). (3.6)

To show identifiability of the point-wise estimation scheme, we need to show that as T →
∞ [corresponding to a longer and longer measurement (for which the noise variance goes to
zero)] the locations of global minima of Jp(u, v) converge in probability to the members of Dc

p

[26]. To show convergence in probability we will show that: (A) Jp(u, v)/T converges in the
mean-squared sense (which is stronger than convergence in probability) to the deterministic
function E[Jp(u, v)/T ] and (B) the set of maximum-likelihood estimates of u and v converge
in probability to the location of the minimum of E[Jp(u, v)/T ]. Doing this is equivalent to
showing that the set, Ac

p, of the (u, v) which minimize Jp(u, v)/T for T →∞ is equal to Dc
p,

where Ac
p is defined as [18, 26]

Ac
p =

{
(u1, v1)

∣∣∣∣ lim
T→∞

E

[
Jp(u1, v1)

T

]
= min

u,v
lim

T→∞
E

[
Jp(u, v)

T

]}
. (3.7)

If Jp(u, v)/T converges in mean-square to the function E[Jp(u, v)/T ] (which is deter-
ministic), the location of the minima of Jp(u, v)/T converge in probability to the location
of the minima of E[Jp(u, v)/T ], which is equivalent to saying that the maximum-likelihood
estimates of u, v converge in probability to the locations of the minima of E[Jp(u, v)/T ] [26].
The set Ac

p is the set of maximum-likelihood estimates of (u, v) as T →∞. If Ac
p = Dc

p, the
maximum-likelihood estimate is consistent and the unknowns are identifiable [26].

To show (A), we first compute E[Jp(u, v)]. To clarify and simplify notation we define

st(k) = M′{(ut, vt), k} =
√
M{(ut, vt), k} to be the true value of s(k) corresponding to the

kth observation of the true wind (ut, vt). Additionally, we define.

Vt(k)
4
= α2(k)s4

t (k) + β2(k)s2
t (k) + γ2(k) (3.8)

and
V (k)

4
= α2(k)s4(k) + β2(k)s2(k) + γ2(k) (3.9)

where Vt(k) is the true variance of the kth measurement z(k) (which depends on the true
value, st(k), of s(k)). Non-subscripted V (k) and s(k) are place holders for the estimated
V (k) and s(k), whereas a t subscript is used to denote the true values of V (k) and s(k).
From Eq. (2.19) we note that Vt(k) and V (k) can also be written, as

Vt(k) =
1

T
Yt(k) (3.10)

and

V (k) =
1

T
Y (k) (3.11)
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where
Yt(k)

4
= a(k)s4

t (k) + b(k)s2
t (k) + c(k) (3.12)

and
Y (k)

4
= a(k)s4(k) + b(k)s2(k) + c(k) (3.13)

Applying these definitions, and noting the independence of the noise terms, we find that

E[z(k)] = s2
t (k) = σo(k) (3.14)

E[z2(k)] = (1 + α2(k))s4
t (k) + β2(k)s2

t (k) + γ2(k)

= Vt(k) + s4
t (k) (3.15)

Var[z(k)] = Vt(k) (3.16)

E[z(j)z(k)] = s2
t (j)s

2
t (k) ∀j 6= k (3.17)

The point-wise objective function Jp(u, v) can be expressed, as

Jp(u, v) =
N∑

k=1

{
1

2
log V (k) +

1

2
[z(k)− s2(k)]2/V (k)

}
(3.18)

Taking the expectation of (3.18) and using Eq. (B.8) [Appendix B], we find that

E[Jp(u, v)] = E

[
N∑

k=1

{1

2
log V (k) +

1

2
[z(k)− s2(k)]2/V (k)

}]

=
1

2

N∑
k=1

{
log V (k) + E

[
[z(k)− s2(k)]2/V (k)

]}
=

1

2

N∑
k=1

{
log V (k) +

[
Vt(k) + [s2

t (k)− s2(k)]2
]
/V (k)

}
(3.19)

which is deterministic. Using Eqs. (3.10) through (3.13), we can write E[Jp(u, v)] explicitly
in terms of T , as

E[Jp(u, v)] =
1

2

N∑
k=1

{
log Y (k)− log T + T

[
Yt(k)/T + [s2

t (k)− s2(k)]2
]
/Y (k)

}
(3.20)

so that

E

[
1

T
Jp(u, v)

]
=

1

2

N∑
k=1

{ 1

T
log Y (k)− 1

T
log T +[

Yt(k)/T + [s2
t (k)− s2(k)]2

]
/Y (k)

}
(3.21)
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Taking the limit of Eq. (3.21) as T →∞, we obtain

lim
T→∞

E

[
1

T
Jp(u, v)

]
=

1

2

N∑
k=1

[s2
t (k)− s2(k)]2/Y (k) (3.22)

We now wish to show, that

lim
T→∞

E

{[
1

T
Jp(u, v)−

1

T
E[Jp(u, v)]

]2
}

= 0 (3.23)

We first note that,

E

{[
1

T
Jp(u, v)−

1

T
E[Jp(u, v)]

]2
}

= E

[
1

T 2
J2

p (u, v)

]
−

2E

[
1

T 2
Jp(u, v)E[Jp(u, v)]

]
+

1

T 2
E2 [Jp(u, v)] (3.24)

Substituting Eqs. (B.12), (B.13), and (B.17) from Appendix A into Eq. (3.24), and taking
the limit as T →∞, we find that all terms cancel; hence,

lim
T→∞

E

{[
1

T
Jp(u, v)−

1

T
E[Jp(u, v)]

]2
}

= 0 (3.25)

which proves the desired result (A).

We now must show (B). Since Jp(u, v)/T converges in the mean-square to the determinis-
tic function E[Jp(u, v)/T ], the locations of the minima of Jp(u, v)/T converge in probability
to the minima of E[Jp(u, v)/T ]. We need only show that Ac

p = Dc
p.

From Eq. (3.22),

lim
T→∞

E

{
Jp(u, v)

T

}
=

N∑
k=1

[s2
t (k)− s2(k)]2/Y (k) ≥ 0. (3.26)

Equality occurs only when
N∑

k=1

[s2
t (k)− s2(k)]2 = 0. (3.27)

which is the minimum value of Eq. (3.26). It follows that s2(k) = s2
t (k) for all k is the

minimum of limT→∞E
{

Jp(u,v)

T

}
; hence, the set of (u, v), Ac

p, which minimize Jp(u, v) in the

limit, is, by definition, the set Dc
p. This proves result (B).
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Wind vector estimation is therefore identifiable to the multimember set Dc
p. The wind

estimate will be uniquely identifiable (i.e., to a single (u, v) estimate) if and only if Dc
p

contains a single member.

3.3 Summary

In this Chapter the identifiability of wind vectors estimated from wind scatterometer mea-
surements of σo is considered. It has been shown that wind vectors are set-wise identifiable.
Due to the nature of M, there will be a set of wind solutions which minimize the maximum-
likelihood objective function. This is the first time that an estimation-theory-based expla-
nation has been given for why several ambiguities arise in wind vector estimation from wind
scatterometer measurements; this provides a theoretical foundation for why dealiasing is
needed.
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Chapter 4

Development of the Wind Field Model

In this Chapter a parametric descriptive model for near-surface mesoscale wind fields over
the ocean, suitable for use in a new estimation-theory-based approach to estimating the wind
vector field from scatterometer measurements, is developed.

In this Chapter, the requirements for the wind field model are first described, and then
the assumptions used to derive the wind field model are presented. This is followed by
the mathematical development of the wind field model. Two model options are considered.
Finally, the ability of the resulting model to describe “realistic” near-surface mesoscale wind
fields is evaluated. Additional model options are considered in Appendix F. Appendix G
contains additional model error analysis for the various model options.

4.1 Wind Field Model Requirements

For model-based wind field estimation we need a mathematical model for describing and/or
representing the wind field. This model must be capable of representing near-surface mesoscale
wind fields. Since other data sources are not always available, we require that the model use
only scatterometer data. To be useful for wind field estimation, the model must be compu-
tationally tractable and lend itself to a model parameter estimation formulation [65, 67, 77].
Note that, while we will base the model formulation on physical principles, the model does
not necessarily have to be based on atmospheric dynamics, since the model is used only
for describing a snapshot of the near-surface wind field and not for propagating winds (see
[63, 64]).

In this paper we present a particularly simple wind field model that is based on the
geostrophic equation and some rather simplistic assumptions regarding the divergence and
curl of the horizontal wind field. We show that this model is adequate for use in wind field
estimation.

We require that the wind field model must: (1) be capable of accurately describing
near-surface mesoscale wind fields; (2) be based only on scatterometer data (i.e., no other
instrument or in situ data is assumed to be available); (3) be computationally tractable; and
(4) lend itself to a model parameter estimation formulation.
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Table 4.1: Summary of the S3Wind measurement accuracy requirements for future space-
borne wind scatterometers

Wind Speed Range Speed Accuracy Direction Accuracy Resolution
< 3 m/s — — —
3-6 m/s ± 2 m/s ± 20 deg 100 km

6-100 m/s ± 2 m/s or ± 20 deg ≤ 50 km
10% of wind speed

The role of the wind field model in model-based wind field estimation is to provide a
description of the wind field over the scatterometer measurement swath at a fixed instant of
time and a resolution of from 25 to 50 km (corresponding to the scatterometer sampling);
hence, our wind field model need only be for a sampled wind field. To simplify matters we
restrict our attention to limited-area regions with a maximum spatial extent of approximately
600 km (corresponding to the maximum scatterometer swath width [60, 61]).

Based on experience with the SEASAT scatterometer data, the Satellite Surface Stress
(S3) working group [84] recommended wind estimate accuracy requirements for use in the
next generation of scatterometers. Their requirements are summarized in Table 4.1. Based
on these requirements and the performance of the model-based wind estimation approach
presented in subsequent chapters, we have been able to show that only relatively mild re-
quirements are needed on the accuracy of the wind field model. For example, an acceptable
RMS wind direction modeling error of < 6 deg and an RMS wind speed error of < 7.5 % are
considered acceptable for use in scatterometer wind estimation. These mild requirements
permit us to use a very simple parametric wind field model, one with only a small number
of parameters. This simplifies the use of the model in the wind field estimation process.

4.2 Wind Field Model Assumptions

Denote the near-surface horizontal wind field of interest (e.g., the neutral stability wind
at 19.5 m) by U = (u, v)T . We are interested in a mathematical model that provides a
reasonably accurate description of U over a (limited-area) region L. The vorticity ζ and
divergence δ of U are defined, as

ζ = k · ∇ ×U (4.1)

δ = ∇ ·U. (4.2)

Using the Helmholtz Theorem, U may be defined by a streamfunction ψ and velocity
potential χ, according to

U = k×∇ψ +∇χ (4.3)

where k×∇ψ is a nondivergent vector field and ∇χ is a curl-free vector field [10].
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Taking the divergence and curl, respectively, of Eq. (4.3) we obtain Poisson equations
for ψ and χ [72],

∇2ψ = ζ (4.4)

∇2χ = δ (4.5)

These equations appear in the classic problems of partitioning a given wind field into
its rotational and non-divergent components and reconstructing a wind field from specified
vorticity and divergence [10, 41, 72, 97]. For this latter problem, Lynch [72] argues that the
reconstruction is not unique over a limited domain; an arbitrary harmonic function may be
added to χ, provided ψ is also altered, to produce the same wind field. From this he concludes
that the boundary values of χ may be set arbitrarily. He shows that setting the boundary
values of χ to zero minimizes the divergent component of the kinetic energy. Choosing χ = 0
on the boundary ensures a unique reconstruction of the wind field.

Following this line of reasoning, our first modeling assumption is to assume that χ = 0
on the boundary of L which corresponds to assuming that the wind field has a minimum
of divergent kinetic energy. Assuming that χ = 0 on the boundary, Eqs. (4.4) and (4.5),
the vorticity and divergence fields, and the boundary conditions for ψ, are sufficient for
describing the wind vector field.

To obtain simple boundary conditions we make a second major modeling assumption by
attributing ψ to geostrophic motion. This second assumption is that the streamfunction ψ
is proportional to the geostrophic pressure field p, i.e.,

ψ =
1

ρsf
p (4.6)

where ρs is the density and f is the Coriolis parameter. This represents a departure from
Lynch’s [72] direct method for reconstructing a wind field from the normal velocity com-
ponent along the boundary and the vorticity and divergence fields. Our approach allows
further simplification of the model at a later step.

Note that in a strictly geostrophic formulation, the wind field would be non-divergent and
χ would be identically zero. Mesoscale winds, however, may exhibit non-zero divergence;
hence, we adopt a more general formulation in which χ is not set to zero. Instead, χ is
attributed to the ageostrophic component of the wind. This generalization allows us to
apply the model to mesoscale wind fields which depart from strict geostrophy. Inclusion of
the ageostrophic flow permits the model to span a wider space in describing the wind field.
Note that in applying the wind field model, ψ and χ will be determined from the observed
wind field.

By making our second modeling assumption, we are able to specify the boundary values
for Eqs. (4.4) and (4.5) in terms of the geostrophic pressure field. This avoids the difficulties
of using velocity boundary conditions, which may yield an overdetermined system (see the
discussion in [72]).

Our third modeling assumption is that, over the region of interest, ρsf is essentially
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constant (i.e., an f -plane approximation); we do this to simplify the mathematics. Again,
to simplify the mathematics, we normalize the pressure field by ρsf so that ψ = p. Applying
this pressure field normalization, Eq. (4.3) can be written in component form, as

u = −∂p
∂y

+
∂χ

∂x
(4.7)

v =
∂p

∂x
+
∂χ

∂y
(4.8)

These two equations, along with Eqs. (4.4) (in which ψ = p) and (4.5) form the basis of our
wind field model.

To complete the wind-field model, descriptions of the vorticity and divergence fields are
needed. Our fourth and final modeling assumption is that the vorticity and divergence fields
are continuous, relatively smooth, and vary slowly over the region of interest, L; hence, the
vorticity and divergence fields can be parameterized using only a small number of unknowns.
This is consistent with some of the limited data available [14, 16, 39, 73, 89, 90, 92, 107].

We have considered a number of different parameterizations of the curl and divergence
fields (see Appendix F) and have found that for our application (wind estimation from wind
scatterometer measurements), bivariate polynomial approximations for these fields result in
adequate accuracy, i.e.,

ζ(x, y)
4
=

Mc∑
m=0

Mc∑
n=0

m+n≤Md

cm,nx
myn (4.9)

δ(x, y)
4
=

Md∑
m=0

Md∑
n=0

m+n≤Md

dm,nx
myn (4.10)

where Mc and Md are the model orders and cm,n and dm,n are vorticity and divergence
coefficients. Note that the coefficients of the polynomials will be derived from the observed
wind fields.

The model orders can be selected arbitrarily (depending on the desired accuracy of the
model); however, we have found, based on the results presented below, that Mc = Md = 2
is adequate for wind estimation.

4.3 Model Development

To further develop our simple wind field model, for the purposes of wind field estimation
from scatterometer measurements, we discretize Eqs. (4.4), (4.5), and (4.7) - (4.10), on an
N ×N equally-spaced grid with spacing h over the region L. For our purposes the value of
h is selected to correspond to the 25-50 km sampling resolution of the wind scatterometer.
The swath is segmented into abutting along-track regions (see Figure 1). In the case of
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NSCAT, N = 24 and h = 25 km will cover the entire left or right swath width [30, 60, 61].
By further segmenting the swath into adjacent cross-track regions N may be chosen to be
less than 24. In this case, the Nh × Nh dimensions of the region L are reduced. We have
found that choosing N = 8 or 12 provides a good tradeoff between the number of unknowns
in the model and the model’s accuracy.

The discretization of Eqs. (4.4), (4.5), and (4.7) - (4.10) is stable and will converge
assuming that the boundary conditions of the pressure fields are bounded and have bounded
higher-order derivatives [80, 85].

We will show below that a simple linear equation can be used to relate the wind vector
field at the sample points to the boundary conditions for ψ (i.e., the geostrophic pressure
field along the region boundary) and the parameters of the vorticity and divergence field
models.

Applying the first-order difference approximations [80],

∂

∂x
a(x)

∣∣
x = ih ≈ 1

h
[a(xi)− a(xi−1)] (4.11)

∂2

∂x2
a(x)

∣∣
x = ih ≈ 1

h2
[a(xi+1)− 2a(xi) + a(xi−1)] (4.12)

to Eqs. (4.4), (4.5), (4.7), and (4.8) and scaling by the discretization interval h, we obtain
the following finite-difference equation (FDE) system,

u(xi, yj) = −[p(xi, yj)− p(xi, yj−1)] + [χ(xi, yj)− χ(xi−1, yj)] (4.13)

v(xi, yj) = [p(xi, yj)− p(xi−1, yj)] + [χ(xi, yj)− χ(xi, yj−1)] (4.14)

ζ(xi, yj) = p(xi+1, yj) + p(xi, yj+1)

+p(xi−1, yj) + p(xi, yj−1)− 4p(xi, yj) (4.15)

δ(xi, yj) = χ(xi+1, yj) + χ(xi, yj+1) + χ(xi−1, yj)

+χ(xi, yj−1)− 4χ(xi, yj) (4.16)

where i = 1, . . . , N and j = 1, . . . , N , and where, for convenience, ζ(xi, yi) and δ(xi, yi)
have been scaled by an additional factor of h. The boundary conditions for the p field are
the geostrophic pressure field p(x0, yj) and p(xN+1, yj) for j = 1, . . . , N and p(xi, y0) and
p(xi, yN+1) for i = 1, . . . , N (refer to Fig. 4.1). The boundary conditions of the χ field are
assumed to be zero.

For notational simplicity we write the discretized streamfunction p(xi, yj) as pi,j, where
xi = ih and yj = jh. A similar notation will be used for the velocity, vorticity, divergence,
and potential velocity fields.

Collecting the finite-difference equations for the streamfunction and potential velocity
fields at each point of the square lattice covering L, Eqs. (4.15) and (4.16) can be written
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Figure 4.1: A diagram showing the region sample grid for N = 6 with boundary conditions
and coordinate system. The dark sample points and open circles are the locations of the
samples in the region of interest. The grey samples points indicate the locations of the
boundary conditions for the pressure field (see text).
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as two matrix equations, i.e.,

QP + PQ =
1

4
B +

1

4
C (4.17)

QS + SQ =
1

4
D (4.18)

where P , S, C, and D are N ×N matrices with elements pi,j, χi,j, ζi,j and δi,j, respectively;
Q is an N ×N tridiagonal, symmetric, Toeplitz matrix with elements qi,j [45, 46], where,

qi,j =


1
2
, if i = j

−1
4
, if |i− j| = 1

0, otherwise;

(4.19)

and, B is a matrix containing only the p field boundary values (the geostrophic pressure field
p along the boundary), i.e., the elements bi,j of B are,

bi,j =



pi,0 if 2 ≤ i ≤ N − 1 and j = 1

pi,N+1 if 2 ≤ i ≤ N − 1 and j = N

p0,j if i = 1 and 2 ≤ j ≤ N − 1

pN+1,j if i = N and for 2 ≤ j ≤ N − 1

p1,0 + p0,1 if i = 1 and j = 1

p0,N + p1,N+1 if i = 1 and j = N

pN,0 + pN+1,1 if i = N and j = 1

pN,N+1 + pN+1,N if i = N and j = N

0 otherwise.

(4.20)

For clarity, Q and B are,

Q =
1

4


2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 . . . 0 −1 2

 (4.21)

and

B =


p0,1 + p1,0 p0,2 . . . p0,N−1 p0,N + p1,N+1

p2,0 0 . . . 0 p2,N+1
...

...
. . .

...
...

pN−1,0 0 . . . 0 pN−1,N+1

pN,0 + pN+1,1 pN+1,2 . . . pN+1,N−1 pN,N+1 + pN+1,N

 . (4.22)
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We will see that the solution for the p field can be written as the sum of two independent
fields; one which is solely a function of the boundary conditions for p and one which is solely
a function of the ζ field. Given that the boundary conditions for the χ field are zero, the
solution for the χ field depends only on the δ field.

For later convenience we decompose B into 3 N ×N matrices,

B = Bv +Bu +Br (4.23)

where the elements of each matrix are,

bui,j =

{
pi,0 if j = 1, i = 1, . . . , N

0 otherwise
(4.24)

bvi,j =

{
p0,j if i = 1, j = 1, . . . , N

0 otherwise
(4.25)

bri,j =


pi,N+1 if 1 ≤ i ≤ N − 1 and j = N

pN+1,j if i = N and for 1 ≤ j ≤ N − 1

pN,N+1 + pN+1,N if i = N and j = N

0 otherwise

(4.26)

For clarity,

Bu =

 p1,0 0 . . . 0
...

...
. . .

...
pN,0 0 . . . 0

 , (4.27)

Bv =


p0,1 . . . p0,N

0 . . . 0
...

. . .
...

0 . . . 0

 , (4.28)

and

Br =


0 . . . 0 p1,N+1
...

. . .
...

...
0 . . . 0 pN−1,N+1

pN+1,1 . . . pN+1,N−1 pN,N+1 + pN+1,N

 . (4.29)

Using an overbar to denote an N2×1 vector of lexicographic-ordered (row order) elements
of an N ×N matrix, Eqs. (4.17) and (4.18) can be reexpressed, as

KP =
1

4
B +

1

4
C (4.30)

KS =
1

4
D (4.31)
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where K is an N2 ×N2 Toeplitz matrix defined, as

K
4
= I ⊗Q+Q⊗ I (4.32)

where ⊗ is the Kronecker-product [12, 46]. It can be shown that K is invertible and has a
simple closed form (see Appendix E).

Since K is invertible, Eqs. (4.30) and (4.31) have the unique solutions,

P =
1

4
K−1[B + C] (4.33)

=
1

4
K−1(B

u
+B

v
+B

r
) +

1

4
K−1C (4.34)

S =
1

4
K−1D (4.35)

Starting with the first two equations of the FDE system, (4.13) and (4.14), reexpressed
as

ui,j = −(ψi,j − ψi,j−1) + (χi,j − χi−1,j) (4.36)

vi,j = (ψi,j − ψi−1,j) + (χi,j − χi,j−1), (4.37)

where i = 1, . . . , N and j = 1, . . . , N , we can relate the p and χ fields to the velocity field. To
write Eqs. (4.36) and (4.37) in matrix form, let U and V be N ×N matrices with elements
ui,j and vi,j, respectively. These equations can then be written, as

U = [P (Ds − I)T +Bu] + (I −Ds)S (4.38)

V = [(I −Ds)P −Bv]− S(Ds − I)T (4.39)

where Ds is an N × N matrix which has a unity sub-diagonal and is zero everywhere else,
i.e.,

ds
i,j =

{
1, if j = i− 1

0, else
(4.40)

For clarity,

Ds =


0 . . . . . . 0

1 0
. . .

...

0
. . . . . . . . .

...
. . . . . . . . .

...
0 . . . 0 1 0

 (4.41)
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Using lexicographic-ordered vectors, Eqs. (4.38) and (4.39) can be written, as

U = [GP +B
u
] +HS (4.42)

V = [HP −B
v
]−GS (4.43)

where the N2 ×N2 matrices G and H are defined, as

G
4
= I ⊗ [Ds − I] (4.44)

H
4
= [I −Ds]⊗ I. (4.45)

By using the properties of the Kronecker product and the definition of D it can be shown
that G is the block Jordan-form matrix,

G =


Ds − I 0 . . . 0

0 Ds − I
. . .

...
...

. . . . . . 0
0 . . . 0 Ds − I

 (4.46)

while H is a block tridiagonal matrix,

H =


I 0 0 . . . 0
−I I 0 . . . 0

0 −I I
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −I I

 (4.47)

Both G and H are full rank and invertible. It can be readily verified that the matrix T ,
with elements ti,j, where

ti,j =

{
1, if j ≤ i

0, otherwise
(4.48)

is the inverse of the matrix (I −Ds), i.e., (I −Ds)−1 = T ; hence,

G−1 = I ⊗ T (4.49)

H−1 = T ⊗ I. (4.50)

Note that B
u

and B
v

are N2 element vectors with a maximum of N non-zero elements
whereas B

r
is an N2 element vector with a maximum of 2N − 1 non-zero elements. Conse-

quently, there are a maximum of 4N − 1 non-zero parameters in the B vector.

We note that the wind velocity is proportional to the partial derivatives (or, in this
formulation, first-order differences) of the p and χ fields. An arbitrary constant can be
added or subtracted from the p and χ fields without affecting the results; hence, a constant
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can be added to or subtracted from the boundary condition vectors without affecting the
results. Since this additive constant is arbitrary and is unimportant, we can normalize the
boundary condition vectors B

u
, B

v
, and B

r
so that the first element of B

u
, ψ0,1, is zero. This

effectively eliminates one non-zero parameter, reducing the number of non-zero parameters
in B

u
, B

v
, and B

r
from 4N − 1 to 4N − 2.

With this normalization accomplished, B
u

and B
v

will be linearly independent since they
have no corresponding non-zero elements. With the exception of the (n1 = N)th element,
where

B
v

n1
= p0,N (4.51)

and
B

r

n1
= p1,N+1, (4.52)

the vectors B
v

and B
r

have no corresponding non-zero elements. Similarly, With the excep-
tion of the (n2 = N2 −N + 1)th element, where

B
u

n2
= pN,0 (4.53)

and
B

r

n2
= pN+1,1, (4.54)

the vectors B
u

and B
r

have no corresponding non-zero elements.

Note, also, that the last element of B
r

is the sum of two boundary values, pN,N+1 and
pN+1,N ; hence, we do not need to separately identify these values and so we need only identify
the sum.

Substituting Eqs. (4.33) and (4.35) into Eqs. (4.42) and (4.43), we obtain

U =

[
1

4
GK−1(B + C) +B

u
]

+
1

4
HK−1D (4.55)

=
1

4

[
GK−1(B

r
+B

v
+ C) + (GK−1 + 4I)B

u]
+

1

4
HK−1D (4.56)

V =

[
1

4
HK−1(B + C)−B

v
]
− 1

4
GK−1D (4.57)

=
1

4

[
HK−1(B

r
+B

u
+ C) + (HK−1 − 4I)B

v]− 1

4
GK−1D (4.58)

To write Eqs. (4.56) and (4.58) as a single equation, observe that they have the general
form,

U = 1A(B
r
+ C) + 1AB

v
+ 2AB

u
+ 3AD (4.59)

V = 3A(B
r
+ C) + 3AB

u
+ 4AB

v − 1AD (4.60)
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where the jA matrices are defined, as

1A =
1

4
GK−1 (4.61)

2A =
1

4

[
GK−1 + 4I

]
(4.62)

3A =
1

4
HK−1 (4.63)

4A =
1

4

[
HK−1 − 4I

]
. (4.64)

Let X be a 4N − 2 element vector of the non-zero elements of B
r
, B

u
, and B

v
, where

the nth element, xn, of X is,

xn =


B

v

n+1 1 ≤ n < N

B
u

(n−N)N+1 N ≤ n < 2N

B
r

(n−2N+1)N 2N ≤ n < 3N

B
r

n−4N+N2+1 3N ≤ n ≤ 4N − 2

(4.65)

For clarity,

X =



x1

x2
...

xN−1

xN

xN+1

xN+2
...

x2N−1

x2N

x2N+1
...

x3N−2

x3N−1

x3N
...

x4N−2



=



p0,2

p0,3
...

p0,N

p1,0

p2,0

p3,0
...

pN,0

p1,N+1

p2,N+1
...

pN−1,N+1

pN,N+1 + ψN+1,N

pN+1,1
...

pN+1,N−1



=



B
v

2

B
v

3
...

B
v

N

B
u

1

B
u

N+1

B
u

2N+1
...

B
u

N2−N+1

B
r

N

B
r

2N
...

B
r

N2−N

B
r

N2

B
r

N2−N+1
...

B
r

N2−1



(4.66)

Define the N2 element vector W as the concatenation of U and V , i.e.,

W =

[
U
V

]
. (4.67)
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Then, the wind field model, Eqs. (4.59) and (4.60), can be expressed as the single equation,

W = FX +RcC +RdD (4.68)

where F is a 2N2 × (4N − 2) matrix and Rc and Rd are 2N2 ×N2 matrices. F , Rc and Rd

are composed of columns of the A matrices in Eqs. (4.61) through (4.64).

For convenience in defining F , we partition F into 4 rectangular submatrices,

F =
[
F1 F2 F3 F4

]
(4.69)

where the Fi matrices are defined, as

F1 =

[
1A2 1A3 . . . 1AN

4A2 4A3 . . . 4AN

]
(4.70)

F2 =

[
2A1 2AN+1 . . . 2AN2−N+1

3A1 3AN+1 . . . 3AN2−N+1

]
(4.71)

F3 =

[
1AN 1A2N . . . 1AN2

3AN 3A2N . . . 3AN2

]
(4.72)

F4 =

[
1AN2−N+1 1AN2−N+2 . . . 1AN2−1

3AN2−N+1 3AN2−N+2 . . . 3AN2−1

]
(4.73)

where jAi is the ith column of the jth A matrix in Eqs. (4.61) through (4.64). The matrices
F1 and F4 are 2N2 × (N − 1) while F2 and F3 are 2N2 ×N . The matrix Rc is defined, as

Rc =

[
1A

3A

]
(4.74)

whereas the matrix Rd is defined, as

Rd =

[
3A
−1A

]
(4.75)

Eq. (4.68) provides a single matrix-vector equation relating the wind field velocity com-
ponents contained in the 2N2 element vector W to the 4N − 2 element boundary condition
vector X and the N2 element vorticity and divergence field vectors C and D, respectively.

Note that Eq. (4.68) can be expressed, as

W = W
b
+W

c
+W

d
(4.76)
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where

W
b 4

= FX (4.77)

W
c 4

= RcC (4.78)

W
d 4

= RdD (4.79)

The wind field W can therefore be expressed as the sum of a field W
b

which depends only
on the boundary conditions in X, a field W

c
which depends only on the vorticity field in C,

and a field W
d

which depends only on the divergence field in D.

From our fourth modeling assumption, we assume that the vorticity and divergence
fields can be parameterized (or modeled) by a small number of unknown but deterministic
parameters which are the coefficients of the bivariate polynomials in Eqs. (4.9) and (4.10).
Using this parameterization, the wind field model can then be formulated in terms of the
boundary conditions on the p field and the parameters of the vorticity and divergence field
model. The number of parameters in the vorticity and divergence field models are NC =
(Mc + 1)(Mc + 2)/2 and ND = (Md + 1)(Md + 2)/2, respectively.

Using this polynomial parameterization for the vorticity and divergence fields, Eq. (4.68)
can be written, as

W = FX +Rc

Mc∑
m=0

Mc∑
n=0

m+n≤Mc

cm,nQm,n +Rd

Md∑
m=0

Md∑
n=0

m+n≤Md

dm,nQm,n (4.80)

= FX +
Mc∑

m=0

Mc∑
n=0

m+n≤Mc

cm,nR
cQm,n +

Md∑
m=0

Md∑
n=0

m+n≤Mc

dm,nR
dQm,n (4.81)

where the kth element kqm,n of the N2 element vector Qm,n is,

kqm,n = bkcm + dken (4.82)

in which bkc 4
= int[(k − 1)/N ] + 1 and dke 4

= mod(k − 1, N) + 1. The constant vorticity or
divergence case corresponds to Mc = 0 or Md = 0, respectively. The case when the vorticity
or divergence is assumed to be identically zero will be denoted by Mc = −1 or Md = −1,
respectively.

A simple special case occurs for Mc = Md = 1; then,

ζi,j = c0,0 + c1,0i+ c0,1j (4.83)

δi,j = d0,0 + d1,0i+ d0,1j (4.84)

so that Eq. (4.68) can be written, as

W = FX + c0,0R
c
+ c1,0R

c

x + c0,1R
c

y + d0,0R
d
+ d1,0R

d

x + c0,1R
d

y (4.85)
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where R
c
, R

d
, R

c

x, R
c

y, R
d

x, and R
d

y are 2N2 vectors with elements R
c

k, R
d

k, R
c

xk
, R

c

yk
, R

d

xk
and

R
d

yk
defined, as

R
c

k =
N∑

i=1

N∑
j=1

rc
k,j+(i−1)N (4.86)

R
d

k =
N∑

i=1

N∑
j=1

rd
k,j+(i−1)N (4.87)

R
c

xk
=

N∑
i=1

i

N∑
j=1

rc
k,j+(i−1)N (4.88)

R
c

yk
=

N∑
j=1

j
N∑

i=1

rc
k,j+(i−1)N (4.89)

R
d

xk
=

N∑
i=1

i
N∑

j=1

rd
k,j+(i−1)N (4.90)

R
d

yk
=

N∑
j=1

j
N∑

i=1

rd
k,j+(i−1)N (4.91)

where rc
k,j and rd

k,j are the elements of Rc and Rd, respectively.

To express Eq. (4.85) in a simple form, we define a new 4N + 4 parameter vector Xr by
augmenting X with c0,0, c1,0, c0,1, d0,0, d1,0 and d0,1, i.e.,

Xr =



X
c0,0

c1,0

c0,1

d0,0

d1,0

d0,1


(4.92)

and let the 2N2 × (4N + 4) matrix Fr be the matrix created by column-augmenting the
matrix F with R, R

c

x, etc.; i.e.,

Fr =
[
F R

c
R

c

x R
c

y R
d
R

d

x R
d

y

]
. (4.93)

Equation (4.85) can then be written, as

W = FrXr (4.94)
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Since G, H and K are invertible, 1A and 3A are full rank (i.e., they have independent
columns) and invertible. It is shown that the columns of F are linearly independent in
Appendix E; hence, F is full rank. It follows from the definitions of Rc and Rd that the

columns of Rc and Rd are linearly independent. We note that R
c
, R

c
, R

c

x R
c

y, R
d

x and

R
d

y are linearly independent of each other (for N > 3) and, further, that these vectors are
independent of the columns of F . It follows that the columns of Fr are linearly independent
so that Fr is full rank; hence, there is a unique relationship between a given W and the
parameters Xr. Given W , a least-squares estimate of Xr is,

Xr = F †
rW (4.95)

where F †
r is the generalized inverse of Fr. Since the system of equations is overdetermined,

F †
r = (F T

r Fr)
−1F T

r .
The extension of this approach of augmenting the parameters of the vorticity and diver-

gence field models to the boundary conditions for higher-order polynomial orders is straight-
forward.

4.4 Parameterizing the Boundary Conditions

For a given choice of Mc and Md, the final wind field model has the form of Eq. (4.94); the
wind field is a simple linear function of the boundary conditions for p and the parameters of
the vorticity and divergence fields. This model is referred to as the normal boundary (NB)
wind field model.

Early in the testing of this wind field model, it became apparent that, since the geostrophic
pressure field tends to be very smooth at the mesoscale, the number of unknown boundary
values can be reduced by parameterizing the geostrophic pressure field around the region’s
boundary. While not a required part of our wind field model, minimizing the number of
unknown parameters in the model significantly reduces the CPU time required to determine
the optimum model parameters, when our model is applied to wind field estimation from
wind scatterometer measurements.

We note that the pressure field around the square region of interest will be continuous.
Since the boundary is closed, the pressure field along the boundary will be periodic. We
now parameterize the pressure p as a one-dimensional function along the boundary of the
region L. We write the pressure field around the boundary as p(l), where l is related to the
discretization grid indexes i and j clockwise around the boundary, according to

l =


j, i = 0, 0 ≤ j ≤ N + 1,

i+N + 1, j = N + 1, 0 < i ≤ N + 1,

2N + 2− j, i = N + 1, 0 ≤ j ≤ N + 1,

4N + 4− i, j = 0, 0 ≤ i < N + 1.

(4.96)

This formulation provides a one-to-one mapping from l to the region’s boundary. Observe
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that l runs from 0 to 4N + 4. For notational simplicity, we write p(l) as pl.

Since pl is “smooth” and must be periodic, a low-order Fourier series representation is
appropriate for it, i.e.,

pl = s0 +

(Ml−1)/2∑
k=1

[
sc

k cos

(
klπ

2(N + 1)

)
+ ss

k sin

(
klπ

2(N + 1)

)]
(4.97)

where Ml is the order of the pressure boundary condition model. We have already noted
that an arbitrary constant can be added to the pressure field without affecting the model
formulation, so we can ignore the s0 term. This requires that we modify the definition of F1

slightly to incorporate the boundary value p0,1. Let F ′
1 be the 2N2 ×N rectangular matrix

defined, as

F ′
1 =

[
1A1 1A2 . . . 1AN

4A1 4A2 . . . 4AN

]
=

[
1A1

4A1
F1

]
. (4.98)

Let the Ml element vector Y be defined, as

Y
4
=



sc
1

ss
1

sc
2

ss
2
...

sc
(Ml−1)/2

ss
(Ml−1)/2


(4.99)

Equations (4.59) and (4.60) can be then be written as,

W = FY +RcC +RdD (4.100)

where F is a 2N2 ×Ml rectangular matrix created from the Fj matrices and F ′
1. Let fi,j be
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the (i, j)th element of F and (Fk)i,j be the (i, j)th element of the Fk matrix; then,

fi,j =



N∑
k=1

{
(F ′

1)i,k cos[jkπ/(2N + 2)]

+(F2)i,k cos[j(2− k)π/(2N + 2)]

+(F3)i,k cos[j(1 + k)π/(2N + 2)]

+(F4)i,k cos[j(3− k)π/(2N + 2)]
}

for j odd

N∑
k=1

{
(F ′

1)i,k sin[jkπ/(2N + 2)]

+(F2)i,k sin[j(2− k)π/(2N + 2)]

+(F3)i,k sin[j(1 + k)π/(2N + 2)]

+(F4)i,k sin[j(3− k)π/(2N + 2)]
}

for j even.

(4.101)

The final parameterized boundary condition (PBC) wind field model is created by augment-
ing Y with the parameters of the vorticity and divergence field model, as previously done
for the NB model.

4.5 Evaluating the Wind Field Model

Both the NB and PBC wind field model options have the general form,

W = FX (4.102)

where W contains the components of the sampled wind field over the region L, F is a known
constant matrix, and X is the model parameter vector. We now consider how well these
models can represent realistic wind fields for different orders of the vorticity and divergence
field models and field size N .

To evaluate the modeling error: (1) a least-squares fit of the model parameters to a real
wind field was obtained; (2) the resulting “model” wind field was computed from the model
parameters; and, (3) the root-mean-square (RMS) difference between the true field and the
model field was computed.

The sampled “true” wind field over L is denoted by W t. The least-squares fit X of the
model parameters to W t is

X = F †W t (4.103)

where F † = (F TF )−1F T is the pseudo-inverse of F [58]. The wind field computed from the
model parameter vector, denoted W , is

W = FX. (4.104)
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Table 4.2: RMS difference between the true wind field in Fig. 4.2 and the field in Fig. 4.3.

Normalized Normalized
Vector Direction (deg) Speed
0.08 4.24 0.06

The vector error between W t and W is then,

W t −W = (I − FF †)W t = (I − F (F TF )−1F T )W t. (4.105)

To illustrate the model performance, consider Figs. 4.2 and 4.3. A simulated (described
below) mesoscale wind field, sampled at 25 km with N = 12, is shown in Fig. 4.2. A vector
length equal to the distance between samples corresponds to a wind speed of 15 m/s. The
model parameter vector X was computed using Eq. (4.103). The model wind field W was
then computed using Eq. (4.104) and is plotted in Fig. 4.3. For this example, the NB
model was used with Mc = Md = 2. The RMS differences between W t and W are tabulated
in Table 4.2. In this and succeeding tables, the RMS vector error is defined as the square
root of the mean squared magnitude of the vector difference between the true field and the
estimated field. The value shown is normalized by the RMS vector magnitude of the true
wind field. Similarly, the RMS wind speed error has been normalized by the RMS wind
speed of the true wind field. Note the close agreement between the true and model wind
fields.

To evaluate our model formulation we have used simulated mesoscale wind fields, since
little conventional mesoscale wind field data over the ocean is available. A detailed descrip-
tion of how these fields were created is given in Appendix D. A summary is provided here.
The test wind fields were generated by state-of-the-art numerical weather prediction models
at 1.875 deg resolution. The surface wind fields were interpolated to 10 km and non-divergent
small-scale variability with a ak−2 spectrum and random phase [9, 33] added. For a given
2000×2000 km region, the value of a was selected to be consistent with the spectrum within
the region [33]. The wind fields were selected to span a wide range of meteorological con-
ditions. An example of a portion of one of the test fields is shown in Fig. 4.4. Regions of
high vorticity and non-zero divergence are readily observable. The sampling interval is 80
km with a vector length corresponding to the sampling distance equivalent to 15 m/s.

To evaluate the modeling error for a wind field model of size N , each wind field was seg-
mented into N ×N regions. For each region segment, the model parameters were computed
using the approach described above, and the model wind field was computed from the model
parameters. The RMS of the error between the true and model fields was computed over all
possible regions within the original true wind field. The results for various model options
are described below.

As a general rule, for fixed N , as Mc and Md are increased, the modeling error is reduced.
For given values of Mc and Md, as N is increased, the modeling error increases. Since the
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Figure 4.2: An example of a wind field uniformly sampled with h = 50 km over a 600× 600
km region. A vector length equal to the sample spacing corresponds to 15 m/s.
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Figure 4.3: The “model” wind field resulting from fitting the NB model with Mc = Md = 4
and N = 12 to the wind field shown in Fig. 4.2. Plotting conventions and scale are the same
as in Fig. 4.2.

71



Figure 4.4: An example of the mesoscale wind fields used in evaluating the model accuracy.
The field was uniformly sampled with h = 80 km. A vector length equal to the sample
spacing corresponds to 15 m/s.
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Table 4.3: Wind-field-model error for the NB model, with Mc = Md = 2, as a function of N
for simulated mesoscale wind fields.

N Number of Unknowns Normalized RMS Error
in N ×N Region Vector Direction (deg) Speed

4 20 0.024 1.06 0.011
6 28 0.080 3.11 0.046
8 36 0.084 3.69 0.050
10 44 0.104 4.92 0.065
12 54 0.083 4.27 0.052
14 66 0.082 4.48 0.054
16 74 0.084 5.04 0.057

number of parameters is a function of Mc, Md, and N , there is room for tradeoff between the
number of model parameters and the accuracy of the wind field model We will be primarily
interested in values of N such as 8 or 12 which evenly divide the swath width.

4.5.1 NB Model Error

Let us first consider the performance of the NB model. For the NB model the number of
unknowns, Nu, in each N ×N region segment is related to N , Mc and Md by the formula,

Nu = 4N − 2 + g(Mc) + g(Md) (4.106)

where

g(M) =

{
0, M < 0,

(M + 1)(M + 2)/2, M ≥ 0.
(4.107)

Mc = −1 is used to denote the case when the vorticity field is identically zero. Similarly, Md

denotes the case when the divergence is identically zero.
Table 4.3 shows RMS modeling error versus N for polynomial vorticity and divergence

models with Mc = Md = 2. With the exception of a peak at N = 10, the modeling error
increases as N increases. Table 4.4 illustrates the effects of varying Mc and Md for N = 8.
Table 4.5 is similar to Table 4.4, but for N = 12. As Mc and Md increase, the modeling error
is reduced. To minimize the number of unknowns in the model, we desire to keep Mc and Md

small. While other values of Mc and Md can be choosen, our desired accuracy requirements
(see Section 4.1) will be met for N = 8 with Mc = Md = 0, i.e., for a constant vorticity
and divergence model over the region L, whereas for N = 12, Mc = Md = 1 will meet the
desired requirements. In the latter case, the vorticity and divergence files are bilinear over
the region L.
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Table 4.4: NB-model Error for N = 8, versus Mc and Md

Field Model Unknowns Normalized RMS Error
Mc Md Nu Vector Direction (deg) Speed
-1 -1 30 0.191 8.31 0.115
-1 0 31 0.171 7.22 0.099
-1 1 33 0.165 6.97 0.095
-1 2 36 0.163 6.95 0.093
-1 3 40 0.158 6.74 0.091
-1 4 45 0.144 6.17 0.084
0 -1 31 0.133 6.01 0.084
0 0 32 0.102 4.65 0.063
0 1 34 0.096 4.36 0.059
0 2 37 0.095 4.30 0.058
0 3 41 0.095 4.27 0.058
0 4 46 0.094 4.21 0.057
1 -1 33 0.129 5.79 0.080
1 0 34 0.097 4.35 0.058
1 1 36 0.090 4.01 0.054
1 2 39 0.090 3.96 0.053
1 3 43 0.089 3.92 0.053
1 4 48 0.089 3.91 0.053
2 -1 36 0.125 5.62 0.077
2 0 37 0.092 4.09 0.055
2 1 39 0.085 3.72 0.050
2 2 42 0.084 3.69 0.050
2 3 46 0.084 3.68 0.050
2 4 51 0.084 3.67 0.050
3 -1 40 0.125 5.60 0.077
3 0 41 0.091 4.06 0.055
3 1 43 0.084 3.70 0.050
3 2 46 0.084 3.66 0.049
3 3 50 0.084 3.65 0.049
3 4 55 0.084 3.64 0.049
4 -1 45 0.118 5.30 0.073
4 0 46 0.082 3.68 0.049
4 1 48 0.074 3.25 0.044
4 2 51 0.074 3.20 0.043
4 3 55 0.074 3.20 0.043
4 4 60 0.073 3.20 0.043
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4.5.2 PBC Model Error

The PBC model has the advantange of using a smaller number of unknowns than the NB
model, but at the expense of a somewhat higher modeling error. For the PBC model the
number of unknowns Nu in each N ×N region is related to Ml, Mc and Md by the formula,

Nu = 2Ml + g(Mc) + g(Md). (4.108)

Next we contrast the performance of the previous NB model results with those obtained
for the PBC model. Table 4.6 illustrates the effect of varyingMl forN = 8 andMc = Md = 2.
Table 4.7 presents the RMS errors for Ml = 8 and Mc = Md = 2 versus N . Table 4.7 should
be compared to Table 4.3; note that the errors are only slightly larger for the PBC case as
compared to the NB case. Table 4.8 shows the effects of varying Mc and Md for N = 8
and Ml = 8, whereas Table 4.9 presents similar results for N = 12. Table 4.8 should be
compared with Table 4.5, whereas Table 4.9 should be compared with Table 4.6. Observe
that for N = 8, setting Ml = 8 and Mc = Md = 1, permits us to meet our desired model
accuracy requirements. For N = 12 and Ml = 8, and Mc,Md = 2, the desired accuracy
requirements are met. Greater accuracy is achieved for larger Ml and/or larger Mc and Md.
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Table 4.5: NB-model Error for N = 12, versus Mc and Md

Field Model Unknowns Normalized RMS Error
Mc Md Nu Vector Direction (deg) Speed
-1 -1 46 0.234 11.21 0.148
-1 0 47 0.208 9.76 0.127
-1 1 49 0.199 9.23 0.120
-1 2 52 0.197 9.12 0.118
-1 3 56 0.196 9.07 0.117
-1 4 61 0.193 9.05 0.116
0 -1 47 0.163 8.03 0.108
0 0 48 0.123 6.26 0.082
0 1 50 0.109 5.63 0.073
0 2 53 0.106 5.46 0.070
0 3 57 0.105 5.44 0.069
0 4 62 0.107 5.55 0.071
1 -1 49 0.152 7.56 0.098
1 0 50 0.108 5.60 0.070
1 1 52 0.092 4.77 0.059
1 2 55 0.088 4.56 0.056
1 3 59 0.087 4.52 0.056
1 4 64 0.087 4.53 0.056
2 -1 52 0.149 7.44 0.096
2 0 53 0.104 5.43 0.067
2 1 55 0.087 4.52 0.055
2 2 58 0.083 4.27 0.052
2 3 62 0.083 4.23 0.051
2 4 67 0.083 4.24 0.052
3 -1 56 0.149 7.42 0.095
3 0 57 0.103 5.40 0.066
3 1 59 0.086 4.49 0.055
3 2 62 0.083 4.23 0.051
3 3 66 0.082 4.19 0.051
3 4 71 0.086 4.54 0.054
4 -1 61 0.147 7.34 0.094
4 0 62 0.101 5.26 0.065
4 1 64 0.085 4.46 0.054
4 2 67 0.082 4.30 0.052
4 3 71 0.080 4.13 0.050
4 4 76 0.080 4.10 0.050

76



Table 4.6: PBC-model Error for N = 8 and Mc = Md = 2, versus Ml

Ml Unknowns Normalized RMS Error
Nu Vector Direction (deg) Speed

2 14 0.237 10.98 0.153
4 16 0.160 7.48 0.111
6 18 0.116 5.11 0.076
8 20 0.106 4.80 0.068
10 22 0.097 4.40 0.059
12 24 0.096 4.32 0.058

Table 4.7: PBC-model error, with Ml = 8 and Mc = Md = 2, as a function of N for simulated
mesoscale wind fields.

N Number of Unknowns Normalized RMS Error
in N ×N Region Vector Direction (deg) Speed

4 20 0.057 2.14 0.032
6 20 0.099 4.12 0.060
8 20 0.106 4.80 0.068
10 20 0.107 5.02 0.072
12 20 0.110 5.64 0.075
14 20 0.112 5.91 0.078
16 20 0.116 6.56 0.082
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Table 4.8: PBC-model Error for N = 8 and Ml = 8, versus Mc and Md

Field Model Unknowns Normalized RMS Error
Mc Md Nu Vector Direction (deg) Speed
-1 -1 8 0.203 8.965 0.126
-1 0 9 0.185 7.964 0.112
-1 1 11 0.178 7.716 0.108
-1 2 14 0.177 7.657 0.106
-1 3 18 0.173 7.486 0.104
-1 4 23 0.162 6.998 0.098
0 -1 9 0.150 6.856 0.097
0 0 10 0.123 5.677 0.080
0 1 12 0.117 5.403 0.076
0 2 15 0.116 5.345 0.075
0 3 19 0.115 5.286 0.075
0 4 24 0.112 5.081 0.071
1 -1 11 0.146 6.640 0.094
1 0 12 0.118 5.426 0.076
1 1 14 0.112 5.113 0.072
1 2 17 0.111 5.049 0.071
1 3 21 0.110 5.004 0.071
1 4 26 0.106 4.783 0.067
2 -1 14 0.141 6.443 0.091
2 0 15 0.113 5.177 0.072
2 1 17 0.107 4.866 0.069
2 2 20 0.106 4.798 0.068
2 3 24 0.105 4.779 0.067
2 4 29 0.101 4.528 0.063
3 -1 18 0.140 6.447 0.089
3 0 19 0.111 5.186 0.070
3 1 21 0.106 4.880 0.066
3 2 24 0.105 4.832 0.066
3 3 28 0.104 4.800 0.065
3 4 33 0.099 4.496 0.061
4 -1 23 0.134 6.182 0.085
4 0 24 0.104 4.857 0.065
4 1 26 0.098 4.527 0.061
4 2 29 0.097 4.485 0.060
4 3 33 0.096 4.433 0.060
4 4 38 0.091 4.157 0.056
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Table 4.9: PBC-model error for N = 12 and Ml = 8, versus Mc and Md

Field Model Unknowns Normalized RMS Error
Mc Md Nu Vector Direction (deg) Speed
-1 -1 8 0.247 11.84 0.160
-1 0 9 0.222 10.51 0.141
-1 1 11 0.213 9.98 0.133
-1 2 14 0.211 9.85 0.131
-1 3 18 0.209 9.78 0.131
-1 4 23 0.206 9.63 0.128
0 -1 9 0.181 8.98 0.121
0 0 10 0.145 7.39 0.098
0 1 12 0.132 6.77 0.090
0 2 15 0.129 6.62 0.088
0 3 19 0.128 6.57 0.088
0 4 24 0.125 6.44 0.085
1 -1 11 0.170 8.43 0.114
1 0 12 0.132 6.73 0.089
1 1 14 0.118 6.03 0.080
1 2 17 0.114 5.86 0.078
1 3 21 0.113 5.80 0.078
1 4 26 0.110 5.63 0.075
2 -1 14 0.167 8.28 0.111
2 0 15 0.128 6.53 0.086
2 1 17 0.113 5.81 0.077
2 2 20 0.110 5.64 0.075
2 3 24 0.109 5.60 0.075
2 4 29 0.106 5.51 0.072
3 -1 18 0.166 8.30 0.110
3 0 19 0.127 6.56 0.085
3 1 21 0.112 5.81 0.075
3 2 24 0.109 5.65 0.073
3 3 28 0.108 5.59 0.073
3 4 33 0.104 5.39 0.070
4 -1 23 0.163 8.21 0.107
4 0 24 0.124 6.43 0.082
4 1 26 0.109 5.66 0.072
4 2 29 0.105 5.51 0.070
4 3 33 0.104 5.40 0.070
4 4 38 0.101 5.26 0.067
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4.6 Conclusion

In this Chapter the development of a model for near-surface mesoscale wind fields which
is suitable for use in model-based estimation of wind fields from wind scatterometer mea-
surements is presented. The modeling error is evaluated by means of simulation. Only a
summary of the modeling error computations has been shown here. A move complete set
of modeling error tables for various model options are presented in Appendix G. Other op-
tions for modeling the vorticity and divergence fields are considered in Appendix F and the
modeling error shown in Appendix G.

The parameterized boundary condition model with N = 8, Ml = 8, and Mc = Md = 1 or
N = 12, Ml = 8, and Mc = Md = 2 provides the desired model accuracy while minimizing
the number of unknowns. Larger values of Ml, Mc, and Md produce more accurate models.
N = 12 will be used in the sequel since this corresponds to the scatterometer swath width
at 50 km resolution.
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Chapter 5

Formulating Model-Based Wind Field
Estimation

The classic approach to model-based estimation is to form an objective function from the
measurements for the parameters of the model and optimize the objective function. The
model parameters corresponding to the global minima of the objective function are the
parameter estimates [78]. When the objective function is based on maximum likelihood, the
resulting estimates are the maximum likelihood estimates of the model parameters.

In this Chapter we consider the formulation of the maximum likelihood objective function
for model-based wind field estimation and show the identifiability of the model parameters.
For use in optimization of the objective function, the gradient of the objective function is
also computed. Optimization of the objective function is considered in the next Chapter.

5.1 Objective Function Formulation

The role of the wind field model in model-based wind field estimation is to provide a de-
scription of the wind field over the scatterometer measurement swath at a fixed instant of
time and a resolution of 25 km (corresponding to the scatterometer sampling). The wind
field model has the general form,

W = FX (5.1)

where W contains the components of the sampled wind field over the N×N region L, F is a
full rank 2N2×Nu dimension constant matrix with elements Fn,p, and X is a Nu-dimensional
model parameter vector. Typically, we choose N = 8 or N = 12. The value of Nu depends
on the order of the wind field model, though typically Nu = 20. This model form lends itself
to the parameter estimation formulation: the model parameters in X are directly estimated
from the noisy σo measurements and then the wind field is computed from the estimated
model parameters.

The components ui,j and vi,j of wind velocity vector (ui,j, vi,j) at the sample point (i, j)
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within the region are,

ui,j = W n = (FX)n (5.2)

vi,j = WN2+n = (FX)N2+n (5.3)

where n = (j − 1)N + i is the lexicographic index corresponding to i, j.

Following our estimation theory approach, we define an objective function for the model
parameters from the available measurements [78]. The parameter estimate is computed by
minimizing the objective function. The objective function formulation will be based on
maximum likelihood [78].

The true value of σo, denoted σo
n(k), corresponding to the kth observation of the sample

point identified by lexicographic index n, can be expressed, as

σo
n(k) = M{(un, vn), k}

= M{(W n,WN2+n), k}
= M{((FX)n, (FXN2+n)), k} (5.4)

which, for notational convenience, can be written, as

σo
n(k) = M{(FX)n, k}. (5.5)

As an aid in deriving the likelihood function for X, we note that the conditional proba-
bility distribution of the kth measurement of σo at n, zn(k), given X is [refer to Eq. (2.18)]

p(zn(k)|X) =
1√
2π

1

[α2
n(k)σo2

n (k) + β2
n(k)σo

n(k) + γ2
n(k)]1/2

· (5.6)

exp

{
−1

2
[zn(k)− σo

n(k)]2/[α2
n(k)σo2

n (k) + β2
n(k)σo

n(k) + γ2
n(k)]

}
where σo

n(k) is given by Eq. (5.5). There are Ln measurements available at the sample point
n. Ln may vary from its nominal value of 4 when there are missing σo measurements due to
calibration cycles and coregistration errors [68].

The measurement noise is assumed to be independent for each zn(k). It follows that the
log-likelihood function l(X), given all the measurements zn(k), is

l(X) =
N2∑
n=1

Ln∑
k=1

log p(zn(k)|X). (5.7)
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Disregarding any constants, l(X) can be written, as

l(X) = −
N2∑
n=1

Ln∑
k=1

{
log[α2

n(k)σo2
n (k) + β2

n(k)σo
n(k) + γ2

n(k)] (5.8)

+[zn(k)− σo
n(k)]2/[α2

n(k)σo2
n (k) + β2

n(k)σo
n(k) + γ2

n(k)]
}

where σo
n(k) is given by Eq. (5.5). We define the objective function Jf (X) as the negative

of the log-likelihood function omitting the constants of proportionality, i.e.,

Jf (X)
4
= −l(X)

=
N2∑
n=1

Ln∑
k=1

{
log[α2

n(k)σo2
n (k) + β2

n(k)σo
n(k) + γ2

n(k)] (5.9)

+[zn(k)− σo
n(k)]2/[α2

n(k)σo2
n (k) + β2

n(k)σo
n(k) + γ2

n(k)]
}

The maximum-likelihood estimate of X is obtained by minimizing Jf (X).

5.2 Identifiability of the Model Parameters

In Chapter 2 we studied the identifiability of winds estimated on a point-wise basis from
wind scatterometer measurements. These results will be used in showing the identifiability
of the model parameters from the scatterometer measurements. The wind field model relates
the 2N2 element wind field vector W to the Nu element model parameter vector X via the
linear equation, (repeated here for conveniance)

W = FX. (5.10)

where the 2N2 ×Nu constant matrix F has linearly independent columns.

The first question we need to address is, given a wind field U and V (i.e., given W ), can
we determine X? For an arbitrary W , since the system of equations represented by (5.10)
is overdetermined, there will be, in general, no solution for X; an arbitrary W is contained
in the space R2N2

while X spans only a Nu dimensional subspace RNu of R2N2
. However,

by the Projection Theorem, there is a unique element of RNu which is closest to W by
the square-norm ||W − FX||2 [58]. Such an element is the solution of the over-determined
least-squares problem,

F TW = F TFX. (5.11)

The solution for X in Eq. (5.11) is,

X = F †W = (F TF )−1F TW (5.12)
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where F † is the pseudo-inverse of F [58]. Since F is full rank (the columns of F are linearly
independent), there is only a single, unique solution to (5.11) [58]. We note that F † is a
fixed matrix which may be computed ahead of time using singular value decomposition. For
the range of N ’s of interest in this research (2 ≤ N ≤ 24), the singular values of F (which
correspond to the eigenvalues of a square matrix) lie within the range 1 to 0.2. The precise
structure of F depends on the order of the curl and divergence field models.

For an arbitrary W there exists a unique corresponding X = F †W , and, for a given
X, there is a corresponding W = FX; hence, the linear wind field model can be treated
as a “one-to-one” system. Consequently, showing that X is identifiable from the noisy σo

measurements is essentially equivalent to showing that W is identifiable from the noisy σo

measurements.

The proof of the identifiability of X can be shown using the same approach as the one
used in the point-wise case. Let X t be the true value of X with a corresponding true wind
field W t = FX t.

Just as in the point-wise case, there may be several possible wind fields (with correspond-
ing model parameter vectors) which could have given rise to the observed σo measurements.
Let the set Dc

f denote the set of all X which give rise to the same true σo observations, i.e.,

Dc
f

4
=

{
X

∣∣M{(FX)n, k} = M{(FX t)n, k} ∀ n, k
}
. (5.13)

As in the point-wise case, due to the nature of M, the set Dc
f may have more than one

member. In general, however, Dc
f will have only a single member. In order for Dc

f to have

multiple members, each of the wind fields corresponding to the different X must have wind
vectors at all corresponding sample points which produce exactly the same values of σo(k)
for all k and n. This is unlikely for most wind fields.

Based on the log-likelihood function, the field-wise objective function Jf (X) can be writ-
ten, as [see Eq. (5.9)]

Jf (X) =
1

2

N2∑
n=1

Ln∑
k=1

{
log Vn(k) + [zn(k)− s2

n(k)]2/Vn(k)
}

(5.14)

where
Vn(k) = α2

n(k)sLn
n + β2

n(k)s2
n(k) + γn(k) (5.15)

and s2
n(k) = σo

n(k) is given by Eq. (5.5).

To show identifiability of the model parameters in model-based wind field estimation,
we need to show that as T → ∞ (corresponding to a longer and longer measurement) the
locations of global minima of Jf (u, v) converge in probability to the members of Dc

f . To show
this we will, as in the point-wise case, show (A) that Jf (u, v)/T converges in mean-square
to E[Jf (u, v)/T ] and (B) the maximum likelihood estimates of X converge in probability to
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some element X1 ∈ Dc
f , i.e.,

lim
T→∞

E

[
Jf (X1)

T

]
= min

X
lim

T→∞
E

[
Jf (X)

T

]
. (5.16)

To show (A), let us first compute E[Jf (X)]. Taking the expectation of (5.14), we compute
E[Jf (u, v)] and find,

E[Jf (X)] =
1

2

N2∑
n=1

Ln∑
k=1

{
log Vn(k) +

[
Vnt(k) + [s2

nt(k)− s2
n(k)]2

]
/Vn(k)

}
(5.17)

where snt(k) is the true value of s(k) at the sample point n and Vnt(k) is the true value
of V (k) at the sample point n. Writing this equation explicitly in terms of T and letting
T →∞ we obtain a deterministic function,

lim
T→∞

E[Jf (X)/T ] =
1

2

N2∑
n=1

Ln∑
k=1

[s2
nt(k)− s2

n(k)]2/Yn(k) (5.18)

where Yn(k) is the Y (k) [see Eq. (3.13)] at the sample point n.

We want to show that the field-wise objective function Jf (X) converges in mean-square
to zero, i.e.,

lim
T→∞

E

{[
1

T
Jf (X)− 1

T
E[Jf (X)]

]2
}

= 0. (5.19)

We can take advantage of the detailed derivation for the point-wise case given in Chapter
3 by noting that since the noise is independent in both k and n, we can fold the location
index n into the k index in the point-wise case and let the k used in the point-wise derivation
correspond to k ⇐ k + 4(n − 1). Additionally, (u, v) is replaced by FX. Then the results
given in Chapter 3 and Appendix B for the point-wise case are valid for the field-wise case
by letting the limits on k go from k = 1 to k = 4N2. As in the point-wise case we note that,

E

{[
1

T
Jf (X)− 1

T
E[Jf (X)]

]2
}

= E

[
1

T 2
J2

f (X)

]
+

1

T 2
E2[Jp(X)]

−2E

[
1

T 2
Jf (X)E[Jf (X)]

]
(5.20)

Substituting the modified point-wise results from Appendix B into Eq. (5.20) and taking
the limit of the resulting expression as T → ∞, we find that all the terms cancel and we
have the desired result (compare the point-wise results given in Chapter 3),

lim
T→∞

E

{[
1

T
Jf (X)− 1

T
E[Jf (X)]

]2
}

= 0; (5.21)
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hence, (A) is shown.

We now consider result (B). Since Jf (X)/T converges in the mean-square to the determin-
istic function E[Jf (X)/T ], the locations of the minima of Jf (X)/T converge in probability
to the minima of E[Jf (X)/T ]. We need only show that set Ac

f ,

Ac
f =

{
X1

∣∣∣∣ lim
T→∞

E

[
Jf (X1)

T

]
= min

X
lim

T→∞
E

[
Jf (X)

T

]}
, (5.22)

is equal to Dc
f . As in the point-wise case, from Eq. (5.18) we see,

lim
T→∞

E

[
Jf (X)

T

]
=

N2∑
n=1

Ln∑
k=1

[s2
nt(k)− s2

n(k)]2/Yn(k) ≥ 0. (5.23)

Equality occurs only when
N2∑
n=1

Ln∑
k=1

[s2
nt(k)− s2

n(k)]2 = 0 (5.24)

which occurs at the minimum of limT→∞E
[

Jf (X)

T

]
. It follows that s2

n(k) = s2
nt(k) for all k

and n. Hence, the set Ac
f , which are the X which minimize Jf (X) (corresponding to the

sn’s), is, by definition, the set Dc
f (which correspond to the snt’s). This proves result (B).

Thus, field-wise estimation is identifiable to the multimember set Dc
f .

5.3 Gradient of the Objective Function

Since many numerical optimization algorithms require computation of the gradient of the
objective function, this section provides a derivation of the gradient of the ML objective
function Jf (X), i.e., ∇Jf (X).

We begin by noting that (un, vn) = (FX)n can be written as [refer to Eqs. (5.2) and
(5.3)]

un =
Nu∑
p=1

Fn,pXp (5.25)

vn =
Nu∑
p=1

Fn+N2,pXp; (5.26)

hence, the wind speed U2
n = |(un, vn)|2 at n and the wind direction φn = tan−1 vn/un at n
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can be written, as

U2
n = u2

n + v2
n

=
Nu∑
p=1

Nu∑
q=1

(Fn,pFn,q + Fn+N2,pFn+N2,q)XpXq (5.27)

φn = tan−1


Nu∑
p=1

Fn+N2,pXp

Nu∑
p=1

Fn,pXp

 . (5.28)

where the inverse tangent is four-quadrant (φn ∈ [−π, π]).

It follows that the partial of U2
n with respect to Xr is,

∂

∂Xr

U2
n(k) =

∂

∂Xr

Nu∑
p=1

Nu∑
q=1

(Fn,pFn,q + Fn+N2,pFn+N2,q)XpXq

= 2
Nu∑
p=1

(Fn,pFn,r + Fn+N2,pFn+N2,r)Xp (5.29)

To compute the partial of φn with respect to Xr define w as the ratio of the arguments of
the four-quadrant inverse tangent, i.e.,

w =

Nu∑
p=1

Fn+N2,pXp

Nu∑
p=1

Fn,pXp

; (5.30)

then,

∂

∂Xr

φn(k) =
∂

∂Xr

tan−1


Nu∑
p=1

Fn+N2,pXp

Nu∑
p=1

Fn,pXp

 (5.31)

=


1

1 + w2

∂

∂Xr

w 1st or 4th quadrant

− 1

1 + w2

∂

∂Xr

w 2nd or 3rd quadrant
(5.32)
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with

∂

∂Xr

w =

Fn+N2,r

Nu∑
p=1

Fn,pXp − Fn,r

Nu∑
p=1

Fn+N2,pXp[
Nu∑
p=1

Fn,pXp

]2 . (5.33)

We now compute the gradient of the objective function Jf (X). Starting with Eq. (5.9)
it can be shown, that

∂

∂Xr

Jf (X) =
∂

∂σo
n(k)

Jf (Xr)
∂

∂Xr

σo
n(k)

=
N2∑
n=1

Ln∑
k=1

∂

∂σo
n(k)

{
log[α2

n(k)σo2
n (k) + β2

n(k)σo
n(k) + γ2

n(k)]

+[zn(k)− σo
n(k)]2/[α2

n(k)σo2
n (k) + β2

n(k)σo
n(k)

+γ2
n(k)]

}∂σo
n(k)

∂Xr

=
N2∑
n=1

Ln∑
k=1

{[
2α2

n(k)σo
n(k) + β2

n(k)− 2(zn(k)− σo
n(k))

]
/

[α2
n(k)σo2

n (k) + β2
n(k)σo

n(k) + γ2
n(k)]

−[zn(k)− σo
n(k)]2[2α2

n(k)σo
n(k) + β2

n(k)]/

[α2
n(k)σo2

n (k) + β2
n(k)σo

n(k) + γ2
n(k)]2

} ∂

∂Xr

σo
n(k) (5.34)

For the SASS1, Wentz, and NSCAT tabular geophysical model functions, the partial of
σo

n(k) with respect to Xr can be written in terms of the partials of U2
n and φn, as

∂

∂Xr

σo
n(k) =

∂σo
n(k)

∂U2
n

∂U2
n

∂Xr

+
∂σo

n(k)

∂φn

∂φn

∂Xr

. (5.35)

For the SASS1 and NSCAT tabular geophysical model functions, the partials of σo
n(k) with

respect to U2
n and φn must be computed numerically. For the Wentz geophysical model

function a closed-form expression for the partial of σo
n(k) with respect to Xr exists [refer to
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Eq. (2.2)]. It is

∂

∂Xr

σo
n(k) =

∂σo
n(k)

∂U2
n

∂U2
n

∂Xr

+
∂σo

n(k)

∂φn

∂φn

∂Xr

= an(k)Udn(k)
n

{1

2

en(k) cos(φn + χn(k))

U2
n

+

1

2

cos[2(φn + χn(k))]

U2
n

[
(zn(k)− σo

n(k))2/

(αn(k)σo2
n (k) + βn(k)σo(k) + γn(k))

+ log(αn(k)σo2
n (k) + βn(k)σo(k) + γn(k))

]
+

1

2
an(k)dn(k)Udn(k)−2

n

[
1 + cos(φn + χn(k))

(
bn(k)

+
1

2
en(k) log(αn(k)σo2

n (k) + βn(k)σo(k) + γn(k))
)

+ cos[2(φn(k) + χn(k)]
(
cn(k) + logUn{(zn(k)− σo

n(k))2/

(αn(k)σo2
n (k) + βn(k)σo(k) + γn(k))

+ log(αn(k)σo2
n (k) + βn(k)σo(k) + γn(k))}

)]} ∂

∂Xr

U2
n

−
{(
bn(k) + en(k) logUn(k)

)
sin(φn + χn(k))− 2

(
cn(k)

+ logUn(k)
[
(zn(k)− σo

n(k))2/(αn(k)σo2
n (k) + βn(k)σo(k) + γn(k))

+ log(αn(k)σo2
n (k) + βn(k)σo(k) + γn(k))

])
sin[2(φn + χn(k))]

} ∂

∂Xr

φn (5.36)

Using these results, the gradient of Jf (X) can be computed.

5.4 Summary

In this Chapter we have formulated the maximum-likelihood objective function for the model
parameters in terms of the σo measurements. We have shown that the model parameters are
set-wise identifiable. Lastly, we have computed the gradient of the ML objective function.
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Chapter 6

Objective Function Optimization

In this Chapter the optimization of the objective function for the model parameter formulated
in the previous chapter is considered. The optimization approach described here is based on
a gradient-search algorithm with initialization obtained from the results of point-wise wind
estimation. As shown, this approach is sub-optimal but has the advantage of providing both
model-based and point-wise wind field estimates for comparision. Appendix I discusses other
optimization and initialization stratagies.

A detailed comparision of results obtained using the model-based and the point-wise wind
estimation approaches is provided in the next Chapter.

6.1 Optimization Considerations

Due to the tabular nature of M, a closed form for the minimum of J(X) is not available;
hence, J(X) must be numerically optimized. Unfortunately, the objective function can
be difficult to optimize due to the non-linear properties it inherits from the nature of M
and the dimensionality of the problem. The objective function has numerous local minima
with the possibility of several global minima. When multiple minima occur, the maximum-
likelihood estimate is a set. Selection of a single solution can not be obtained from just
the σo measurements, and an additional step is required to select a single solution. This
situation is discussed below.

Classic non-linear minimization algorithms include stochastic algorithms such as simu-
lated annealing [55, 76, 79], and various gradient-based search techniques [8, 71, 83]. Re-
cently, Slump and Hoenders [98] developed a technique capable of locating all of the global
minima of an objective function; however, the computation requirements of their method
for a large dimensional problem such as ours prohibits its use. While random optimization
techniques are able to locate globle minima, they require an excessive number of function
evaluations to find even a single global minimum [76]. Multiple global minima are deter-
mined by restarting several times. Gradient-based optimization algorithms can get stuck in
a local minimum and fail to find a global minimum. Starting the search at different initial
values can be used to find multiple minima with similar objective function values, though

90



there is often no way to determine if the minima are global.

In spite of its limitations, a gradient search algorithm can be used successfully if appro-
priate initial values can be determined. Such initial values can be computed for optimization
of the field-wise objective function using the results of the traditional point-wise approach
to wind field estimation. We will describe one such approach to initial value computation
in the sequel. This optimization technique is relatively simplistic; as will be shown, better
results can be obtained with more sophisticated initial value and optimization algorithms
(see also Appendix I). Even so, our model-based wind field estimates are more accurate than
the traditional point-wise wind field estimates. Our simple optimization approach is adopted
merely for the purpose of demonstrating the feasibility of model-based estimation.

6.2 Field-Wise Dealiasing

Due to the nature of the geophysical model function M, it is possible to have several global
minima of the objective function. When this occurs, the maximum-likelihood estimate is a
set and a single estimate can not be determined from the σo measurements alone. In this
event, an additional step is required to select a single solution. Such a procedure might be
termed “field-wise dealiasing” because of its seeming similarity to the “point-wise dealiasing”
which is always required by the point-wise wind estimation approach. There is, however, a
distinct difference between field-wise and point-wise dealiasing: in the point-wise case the
problem is to choose from 2-6 possible solutions at each sample point (of which there are N2

in an N ×N region), while in the field-wise case, we need only choose between a few fields.
The use of auxiliary data, climatological data, and/or continuity considerations can easily
resolve the field-wise ambiguity problem.

Since the occurrence of multiple global minima is very rare and our goal is only to show
the feasibility of the model-based wind estimation approach, we do not consider field-wise
dealiasing any further.

6.3 Initial Value Computation

In order to successfully use a gradient-search optimization algorithm in this application,
proper selection of the initial values is crucial. In this section, we describe a technique for
computing an initial value wind field based on a point-wise wind field estimate followed
by a median-filter-based dealiasing algorithm. The initial value model parameter vector
is computed using Eq. (5.12). Alternate initial value computation schemes are described
in Appendix I. While dealiasing errors can result in very poor qualitity initial values, this
approach is suitable for demonstrating the feasibility of model-based wind field estimation.
This approach has the additional advantage of providing both point-wise and model-based
wind field estimates for comparison purposes.
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6.3.1 Point-Wise Wind Estimation

In the traditional approach to wind estimation, only the measurements of σo associated with
each sample point of the measurement swath are used to estimate the wind vector at the
sample point, i.e, the wind is estimated on a point-wise basis. Unfortunately, on a point-wise
basis, the wind vector is only set-wise identifiable from the σo measurements, i.e, there is not
a unique wind estimate (see Chapter 3). Due to the nature of the σo-to-wind relationship
M, there are several (2-6) local minima (one or more are global minima) in the point-wise
maximum-likelihood objective function which are near-global. Collectively, the wind vectors
corresponding to these local minima are known as the noisy ambiguity set. The individual
vectors of the noisy ambiguity set are known as aliases or ambiguities [94, 109]. Typically,
the aliases have similar wind speed but differ widely in direction. While all of the aliases have
similar values of the objective function, they may be “ranked” according to the objective
function value; hence, the “first” alias (corresponding to the alias with the lowest objective
function value) would be the classic ML estimate of the wind. However, other members of
the ambiguity set are very often closer to the true wind than is the first alias. To select a
unique wind estimate a later step, known in the literature as dealiasing or ambiguity removal
is used. Traditionally, dealiasing has been based on various ad hoc considerations including
pattern recognition of significant wind field features, continuity considerations, etc. [94, 109].

One difficulty with point-wise estimation is that, when there are not enough σo measure-
ments at a sample point (due to cell coregistration errors, spacecraft attitude control error,
etc.), it is so inaccurate as to not be useful; hence, there may be sample points within the
swath at which a point-wise wind estimate is not available, resulting in gaps in the wind
field estimate.

As a graphic example of point-wise and model-based wind estimation, consider Fig. 6.1
which shows a section of a wind field, sampled at 25 km over a 300 × 300 region. This is
the true wind field. A least-squares fit of the model parameters to this true field can be
made using Eq. (5.12). The resulting model parameter vector is known as the “true model
parameters”. The wind field computed from these true model parameters, using Eq. (5.10),
termed the “true model field”, is illustrated in Fig. 6.2 which appears identical to the true
field shown in Fig. 6.1. The model used is the PBC model with N = 12, Mc = Md = 2,
and Ml = 10 (Nu = 20). Simulated σo measurements from this field were generated based
on the NSCAT scatterometer design; the resulting point-wise ambiguity sets are plotted in
Fig. 6.3.

6.3.2 Point-Wise Dealiasing

The point-wise dealiasing algorithm we have used is based on 2-d median filtering [95, 96]
(see below). Unlike a low-pass filter, the median filter does not smooth edges or boundaries
in the data.

Performance of the dealiasing algorithm is dependent on the underlying wind field, any
missing measurements, the σo measurements, and the median filter window size. Averaged
over a wide range of wind fields, the algorithm correctly selects the ambiguity closest to the
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Figure 6.1: An example of a simulated wind field uniformly sampled with h = 25 km over a
300× 300 km region. A vector length equal to the sample spacing corresponds to 15 m/s.

93



Figure 6.2: The “true model” wind field resulting from fitting the PB model with Mc =
Md = 2 and N = 8 to the wind field shown in Fig. 6.1. Plotting conventions and scale are
the same as in Fig. 6.1.
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Figure 6.3: Noisy ambiguity sets resulting from point-wise estimation of the wind field in
Fig. 6.1 using simulated σo measurements from NSCAT.
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true wind 90-98% of the time. Figure 6.4 illustrates the dealiased wind field corresponding
to Fig. 6.3. Careful examination will reveal that, in this example, the dealiasing algorithm
was unable to correctly select the ambiguity closest to the true wind vector at every sample
point. Compare the dealiased wind field in Fig. 6.4 to the true wind field in Fig. 6.3. Note
how “noisy” the wind field estimate appears.

While overall performance is good, ambiguity selection errors tend to be highly clustered,
particularily in low wind speed regions [96]. The clustering of the errors is sensitive to the
size of the median filter window; large windows result in alias selection errors associated with
small scale features while small windows lead to alias selection errors on large scale features.

The steps in the median-filter-based dealiasing algorithm we used are:

1. Initialize a working field by copying the first alias from each of the point-wise ambiguty
sets.

2. Repeat steps 3 and 4 until the working field estimate stabilizes.

3. Filter the working field with a vector median-err filter with a square window of size
Ws. Any missing data points are ignored. The definition of the “median” vector of the
set {U1,U2, . . . ,UNs} is defined as the vector Um which minimizes the squared error

Ns∑
i=1

|Um −Ui|2 . (6.1)

4. For each sample point, replace the median vector with the ambiguty from the corre-
sponding ambiguity set which is closest to the median vector using in the L2 norm.

5. The dealiased wind field is contained in the working field.

6.3.3 Model Parameter Initial Value Computation

The dealiasing algorithm is applied over as large a region as possible to minimize edge effects.
The dealiased field is segmented into adjacentN×N (typicallyN = 12) regions and the least-
squares fit of the model parameters for each region is computed using Eq. (5.12). Missing
dealiased wind estimates at a given sample point are filled with an average of adjacent
dealiased winds. For each region, the model parameters computed using this least-squares
fit to the dealiased wind field are referred to as “initial value model parameters”. These
are used as the initial values to begin the optimization of the objective function for the
model parameters for the particular region. The wind field computed from the initial value
parameters using Eq. (5.10) is known as the “initial wind field” The model-based estimate
of the wind field is computed from the optimized model parameters.

Figure 6.5 illustrates the initial wind field computed from the least-squares fit of the model
parameters to the dealiased wind field in Fig. 6.4. Compare this initial value wind field in
Fig. 6.5 to the true wind field in Fig. 6.2 and the dealiased wind field in Fig. 6.4. We note
that Fig. 6.5 makes a better estimate of the true wind field than Fig. 6.4 even without further
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Figure 6.4: The result of applying the median-filter-based dealiasing algorithm described in
the text to Fig. 6.3.

97



Figure 6.5: The initial value wind field computed from Fig. 6.4 (see text for explaination of
computational method).
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Figure 6.6: The wind field computed using the optimized model parameters.
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Table 6.1: Wind Field Estimate Error

Wind Figure RMS Error
Field Number Vector Direction Speed

(m/s) (deg) (m/s)
True Model 6.2 0.99 11.62 0.65
Point-wise Closest 6.3 1.33 21.63 0.58
Point-wise Dealiased 6.4 2.42 54.51 0.62
Initial Value 6.5 2.04 47.25 1.13
Model-based Estimate 6.6 1.16 13.81 0.74

Table 6.2: Wind Field Model Fit Error

Field RMS Model Fit Error
Vector (m/s) Direction (deg) Speed (m/s)

True Model 0.99 11.62 0.65
Initial Value 1.76 26.07 1.15

optimization. This observation can be used to reduce the computation required to obtain
the model-based wind field estimate (discussed below). Table 6.3.3 provides a summary of
the root-mean-square (RMS) difference in wind speed, direction, and the magnitude of the
vector difference between each case in Figs. 6.2-6.5 (and also Fig. 6.6, which is described in
the next section) and the true field in Fig. 6.1.

The difference (known as model-fit error) between the initial value wind field and the
dealiased wind field (from which the initial value wind was computed via a least squares fit
of the model parameters), provides a measure of the accuracy of the dealiasing. When the
dealiasing algorithm chooses the correct ambiguity at each sample point, initial value RMS
model-fit direction-error is generally small. However, when there are clustered dealiasing
errors, the initial value RMS model-fit direction-error is generally much larger. This leads to
a simple threshold-based dealiasing algorithm accuracy check. When the RMS initial value
model-fit direction-error is above a threshold (typically, 15-20 deg, depending on wind speed
and resolution) the accuracy of the dealiasing for the region may be considered suspect.
Table 6.3.3 gives the model-fit error for the initial value wind field for the previous example.

6.4 Gradient-Search Optimization

Given initial values, a gradient-search-based algorithm has been used to perform the opti-
mization. For this purpose we have used the standard IMSL routine IMING for non-linear
optimization, which uses quasi-Newton gradient optimization. Starting with the initial value
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field in Fig. 6.5, the wind field computed from the optimized model parameters, known as the
“optimized wind field”, is shown in Fig. 6.6. Compare Fig. 6.6 with the true field in Fig. 6.1.
From Table 6.3.3 we see that the model-based estimate is superior to the point-wise estimate;
it is less “noisy” and has smaller RMS vector and direction error. The model-based estimate
has a slightly larger RMS speed error since the model-based approach effectively minimizes
the RMS vector error at the possible expense of the speed error; point-wise estimation can
provide slightly better estimates of the wind speed.

6.5 Resolution Considerations

The NSCAT instrument is designed to provide σo measurements at 25 km resolution. How-
ever, the wind is typically estimated at 50 km resolution by first resampling the 25 km
resolution σo measurements onto a 50 km grid. For each grid point, the wind is estimated
using point-wise wind estimation followed by dealiasing [60, 61]. Our method can be applied
to provide to wind estimation at both 25 km and 50 km resolution. In the next Chapter, we
will provide examples of wind estimates obtained at both 25 km and 50 km resolution.

Because of the higher “noise” level in the point-wise wind estimates at 25 km resolution
relative to the point-wise 50 km resolution wind estimates (there are more measurements
used for computing the 50 km resolution estimates), the dealiasing algorithm performance
at 25 km resolution is more often poor, resulting in poor-quality initial values. We have
found that better-quality initial values can be obtained by first computing the point-wise
wind estimates and dealiasing at 50 km resolution and using the dealiased 50 km resolution
field as a reference to select unique wind vectors for the point-wise wind estimates at 25 km
resolution. For the four 25 km sample points corresponding to the 50 km resolution dealiased
wind estimate, the ambiguities closest to the dealiased wind are selected. The resulting wind
vector field is termed the 50 km reference field. The initial value is computed by fitting the
model to the 50 km reference field using Eq. (5.12). This approach will be used for the
results given in the next Chapter.

6.6 Computational Considerations

A disadvantage of the model-based estimation approach is that it requires significantly more
computation than does the point-wise estimation approach. Most of this time is consumed in
optimizing the objective function. We have observed that if the initial value wind fields have
acceptable accuracy, we can save a significant amount of computation by not optimizing the
objective function, i.e., by just using the initial value wind field as our final the result. We
have observed that in general, this accuracy is achieved if: (1) the RMS of the estimated
wind speed is larger than 4 m/s and (2) the RMS direction difference between the initial
value field and the dealiased field is less than is less than a threshold value (about 15 deg
for 50 km resolution wind estimation). These conditions can be checked before starting the
optimization. If they are met, we can elect not to optimize, and thereby trade off accuracy
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of the estimate and computation time.

6.7 Summary

In this Chapter, the optimization of the field-wise objective function is considered. An
optimization approach, based on gradient-search with initial values obtained using the point-
wise estimation approach, has been described. This simplistic optimization approach is sub-
optimal but yields both point-wise and model-based wind field estimates for comparison.
Even with this simplistic optimization approach, model-based estimation results in more
accurate estimates of the wind than does the traditional wind estimation approach. A more
comprehensive comparison of the two estimation approaches is provided in the next Chapter.
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Chapter 7

Performance of Model-Based Wind
Field Estimation

In this Chapter the performance of the point-wise and model-based wind field estimates
are compared using the optimization approach presented in the previous Chapter. The
true wind fields used are those first discussed in Chapter 4 for evaluating the wind field
model. Greater detail is given in Appendix D. Simulated measurements of σo are based on
a simulation of the NSCAT Scatterometer. The state-of-the-art simulation of the NSCAT
instrument includes all of the effects of spacecraft attitude control errors, uncertainty in the
parameters of the radar equation used to compute σo from the power measurements made by
the scatterometer, and the uncertainty in the correct relationship between σo and winds (i.e.,
geophysical modeling error in M). The simulation is as realistic as possible (see Appendix
H). Examples of wind field estimates at both 25 km and 50 km resolution will be given.

A flow chart of the model-based estimation procedure is shown in Fig. 7.1.

7.1 50 km Resolution Results Example

The simulated σo measurements are used to compute the point-wise wind estimates (ambi-
guity sets). This is followed by point-wise dealiasing using the median-filter-based dealiasing
algorithm previously described to compute the initial values for the field-wise objective func-
tion optimization. For each region of the measurement swath initial value model parameters
are computed using a least-squares fit and the parameter vector optimized.

For model-based wind estimation, the left and right swaths are segmented in the along-
track direction into 12 × 12 (600 × 600 km) regions as indicated in Fig. 7.2. These region
segments are indicated with dotted lines in the following figures. No information sharing
between regions has been used. While the actual σo measurements are on a 25 km grid, for
wind estimation at 50 km resolution, the measurements are resampled onto the 50 km grid.
The fact that some of the σo associated with a 50 km resolution sample point may actually
be as much as 25 km apart is not utilized.

Figure 7.3 shows the wind field over both the left and right swaths with an along-track

103



Figure 7.1: Diagram of the model-based estimation procedure.
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Figure 7.2: Diagram of the region segmentation scheme for the 50 km resolution example.
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distance of 3000 km. The sample resolution is 50 km. This will be the “true” wind field
in the results that follow. Figure 7.4 shows the results of computing the least-square fit of
the model parameters to the true field and computing the resulting field on a region-by-
region basis. This true model field represents the best the model-based estimation technique
can achieve. For reference, Fig. 7.5 shows the closest alias to the true wind vector at
each sample point, obtained from the ambiguity set using point-wise wind estimation. The
results in Fig. 7.5 can only be obtained in a simulated example such as ours because this
field can only be obtained if the dealiasing is perfect; actual dealiased point-wise results are
worse due to dealiasing errors. The dealiased point-wise wind field estimate is shown in Fig.
7.6. Comparison of Figs. 7.3 and 7.6 reveals that in region F the dealiased wind field has
significant direction errors. Note that in many regions, the point-wise wind estimates (even
the closest ambiguity field) appear very noisy. Figure 7.7 shows the initial value wind field
computed from Fig. 7.6. The optimized wind field, which is the model-based estimate of the
wind field, is shown in Fig. 7.8. The RMS errors for each region are given in Tables 7.1-7.1.
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Figure 7.3: True wind field over both NSCAT observation swaths at 50 km resolution.
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Figure 7.4: True model field corresponding to Fig. 7.3.
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Figure 7.5: The closest alias to the true wind vector in point-wise noisy ambiguity sets
computed using simulated σo measurements from NSCAT. The true wind field is shown in
Fig. 7.3.
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Figure 7.6: Dealiased point-wise wind field estimate.
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Figure 7.7: Initial value wind field computed from Fig. 7.6.
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Figure 7.8: Optimized wind field (model-based wind field estimate) resulting from the initial
value wind field in Fig. 7.7. Compare Fig. 7.3 and Fig. 7.6.
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Table 7.1: Region A (at 1,73) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -5755.80 0.831 4.435 0.634
Point-wise Closest – 0.898 6.383 0.339
Point-wise Dealiased† – 0.898 6.383 0.339
Initial Value -5764.86 0.867 4.645 0.646
Optimized from:
Initial Value -5879.98 0.968 5.577 0.651
True Model -5951.15 0.967 5.576 0.651

† Perfect dealiasing in this region.

Table 7.2: Region B (at 13,73) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -5748.16 0.775 3.655 0.574
Point-wise Closest – 1.645 11.095 0.431
Point-wise Dealiased – 1.679 11.429 0.432
Initial Value -5692.19 1.103 6.508 0.640
Optimized from:
Initial Value -5808.44 1.432 9.510 0.539
True Model -5799.30 1.227 7.480 0.531

Table 7.3: Region C (at 1,85) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -6319.14 0.783 13.178 0.521
Point-wise Closest – 1.105 13.577 0.344
Point-wise Dealiased – 1.141 20.730 0.348
Initial Value -6280.93 0.858 13.343 0.553
Optimized from:
Initial Value -6428.33 1.076 15.757 0.617
True Model -6428.37 1.081 15.690 0.614
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Table 7.4: Region D (at 13,85) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -5791.83 0.741 7.898 0.552
Point-wise Closest – 1.260 10.327 0.513
Point-wise Dealiased – 1.361 24.953 0.528
Initial Value -5722.53 0.913 18.905 0.584
Optimized from:
Initial Value -5861.44 0.884 7.881 0.565
True Model -5861.44 0.884 7.880 0.565

Table 7.5: Region E (at 1,97) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -6341.67 0.727 13.916 0.487
Point-wise Closest – 0.757 9.221 0.313
Point-wise Dealiased – 0.813 17.673 0.321
Initial Value -6337.66 0.756 17.854 0.491
Optimized from:
Initial Value -6415.90 0.799 16.668 0.520
True Model -6413.92 0.783 13.243 0.518

Table 7.6: Region F (at 13,97) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

Model Fit -6740.41 0.691 26.257 0.444
Point-wise Closest – 0.872 23.012 0.344
Point-wise Dealiased – 2.567 89.739 0.555
Initial Value -5717.32 2.268 84.218 1.064
Optimized from:
Initial Value -6409.16 2.324 78.070 0.758
True Model -6841.41 0.811 27.058 0.446
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Table 7.7: Region G (at 1,109) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -6158.89 0.574 4.356 0.417
Point-wise Closest – 1.196 12.006 0.293
Point-wise Dealiased – 1.198 12.039 0.292
Initial Value -6128.49 0.711 6.056 0.440
Optimized from:
Initial Value -6219.37 0.734 6.266 0.445
True Model -6219.37 0.732 6.236 0.446

Table 7.8: Region H (at 13,109) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -5629.96 0.504 3.477 0.373
Point-wise Closest – 0.940 9.399 0.331
Point-wise Dealiased – 0.972 10.013 0.328
Initial Value -5628.41 0.643 6.245 0.427
Optimized from:
Initial Value -5670.99 0.639 5.030 0.417
True Model -5670.98 0.639 5.032 0.417
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Table 7.9: Region I (at 1,121) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -5480.57 0.514 2.544 0.393
Point-wise Closest – 0.877 5.540 0.354
Point-wise Dealiased† – 0.877 5.540 0.354
Initial Value -5483.03 0.627 3.409 0.415
Optimized from:
Initial Value -5532.36 0.717 4.339 0.398
True Model -5532.36 0.716 4.337 0.398

† Perfect dealiasing in this region.

Table 7.10: Region J (at 13,121) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -5298.27 0.609 2.852 0.472
Point-wise Closest – 0.678 4.467 0.332
Point-wise Dealiased† – 0.678 4.467 0.332
Initial Value -5293.66 0.659 3.352 0.470
Optimized from:
Initial Value -5349.96 0.808 4.336 0.503
True Model -5349.96 0.808 4.338 0.504

† Perfect dealiasing in this region.
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Table 7.11: Region K (at 1,133) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

True Model -4936.73 0.595 2.245 0.457
Point-wise Closest – 1.108 5.502 0.375
Point-wise Dealiased† – 1.108 5.502 0.375
Initial Value -4928.98 0.692 2.886 0.466
Optimized from:
Initial Value -4993.65 0.883 4.263 0.442
True Model -4993.65 0.882 4.254 0.442

† Perfect dealiasing in this region.

Table 7.12: Region L (at 13,133) Wind Estimation Performance

Field Obj Func RMS Err
Value Vector Direction Speed

Model Fit -5429.46 0.364 1.924 0.246
Point-wise Closest – 0.719 4.419 0.368
Point-wise Dealiased† – 0.719 4.419 0.368
Initial Value -5437.86 0.435 2.485 0.267
Optimized from:
Initial Value -5446.52 0.455 2.595 0.276
True Model -5446.52 0.455 2.595 0.276

† Perfect dealiasing in this region.
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Table 7.13: Total Wind Field Estimate Error

Field RMS Error
Vector Direction Speed
(m/s) (deg) (m/s)

True Model 0.669 10.033 0.485
Closest Ambiguity 1.038 10.777 0.366
Point-wise Dealiased 1.266 28.554 0.389
Initial Value 0.994 26.079 0.578
Optimized from Initial Value 1.098 24.243 0.539
Optimized from True Model 0.874 10.946 0.508
Point-wise Dealiased† 1.072 12.544 0.370
Initial Value† 0.781 9.856 0.511
Optimized from Initial Value† 0.907 9.331 0.514
Optimized from True Model† 0.880 8.009 0.513

† Region F has been excluded.

Again we note that the initial value field (Fig. 7.7) is a good estimate of the true wind
field even without further optimization everywhere except in region F. In fact, the optimized
field (shown in Fig. 7.8) does not look much different than the initial-value field everywhere
but in region F. This conclusion is strengthened by the RMS error summary given on a
region-by-region basis in Tables 7.1-7.1: with the exception of region F, just the process of
fitting the wind field model to the point-wise wind field estimate can dramatically improve
the RMS wind error. Optimization generally improves the RMS error though optimization
of the objective function may increase the RMS error slightly since the objective function
and the RMS error are different “cost” measures.

In region F, where large dealiasing errors were made, the initial model parameter vector
was of very poor quality. While optimization improved the objective function value, the
optimization algorithm stopped at a local minimum rather than at the global minimum.
In this region, the optimization algorithm finds a local minimum which results in a wind
field which differs somewhat from the true wind field. Even so, the model-based wind field
estimate is better than the point-wise dealiased estimate. In virtually all regions the model-
based estimates are better than the point-wise estimates even when perfect dealiasing occurs.
Table 7.1 contrasts the total RMS errors over all regions for the model-based and point-wise
estimation results. The values given in the lower half of Table 7.1 were computed with region
F excluded.

Since the wind estimates shown above are based on a gradient-search optimization al-
gorithm which uses a very simple technique for computing initial values, the optimization
algorithm may get stuck in a local minimum which, while “close” to the global minimum,
is not the global minimum; the actual global minimum is closer to the true wind field; thus,
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Table 7.14: Total Wind Field Estimate Error for Example 2

Field RMS Error
Vector (m/s) Direction (deg) Speed (m/s)

True Model 0.942 5.716 0.696
Closest Ambiguity 1.435 9.409 0.481
Point-wise Dealiased 1.460 9.794 0.483
Initial Value 0.941 5.192 0.667
Optimized from Initial Value 1.036 5.737 0.702
Optimized from True Model 1.036 5.737 0.702

these results represent an upper bound on the performance of the model-based estimation
technique. To demonstrate this, we used the true model parameters to initialize the gradient
search. In all cases, the optimization starting with the true model parameters either locates
the same minimum as previously found (starting with the initial value field) or it locates
a minimum with a lower value, which is closer to the true field than the initial value field;
see Tables 7.1-7.1. In these tables compare the RMS error and objective function values
after optimization starting with the initial value and the true model value, respectively. Of
particular interest is region F (Table 7.1). For clarity, the true wind field in region F is shown
in Fig. 7.9, the dealiased wind field in Fig. 7.10, the initial value field in Fig. 7.11, and
the optimized wind field in Fig. 7.12. The optimized wind field resulting from starting the
optimization with the true model parameters is shown in Fig. 7.13. These results indicate
that improved initialization/optimization approaches will yield even better estimates of the
wind field. Our simple approach to initialization and optimization is, however, adequate for
demonstrating the feasibility of model-based wind field estimation.

Another comparison of the model-based and point-wise wind field estimates is illustrated
in Figs. 7.12-7.14. Figure 7.12 shows a true wind field. Figure 7.13 shows the corresponding
dealiased wind field. For this example, there are fewer, more widely spaced dealiasing errors
than in the previous example in Figs. 7.3-7.8. As a result, the initial values were sufficiently
close to the global minimum of the objective function to insure that the optimization found
this minimum. Figure 7.14 shows the model-based wind field estimated. Table 7.1 summa-
rizes the total error. Again, the model-based wind field estimates are: (1) less noisy and (2)
exhibit better RMS vector and direction error than both the dealiased wind fields and the
closest ambiguity wind field.

7.2 25 km Resolution Results Example

Wind estimates obtained at 25 km resolution will have greater RMS errors than wind es-
timates at 50 km resolution due to the reduction in the number of measurements used to
obtain each estimate. Figures 7.15-7.19 illustrate 25 km resolution wind estimation. Figure
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Figure 7.9: Enlargement of region F of the true wind field in Fig. 7.3.
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Figure 7.10: Enlargement of region F of the dealiased wind field in Fig. 7.6.
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Figure 7.11: Enlargement of region F of the initial value wind field in Fig. 7.7.
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Figure 7.12: Enlargement of region F of the optimized wind field in Fig. 7.8.
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Figure 7.13: A second 50 km resolution example of a true wind field over both NSCAT
observation swaths. Plotting convention is similar to Fig. 7.3.
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Figure 7.14: Dealiased point-wise wind field estimate corresponding to Fig. 7.12.
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Figure 7.15: Optimized wind field (model-based wind field estimate) corresponding to Fig.
7.12.
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Table 7.15: Total Wind Field Estimate Error for the 25 km Resolution Example

Field RMS Error
Vector (m/s) Direction (deg) Speed (m/s)

True Model 1.012 14.532 0.718
Closest Ambiguity 1.778 21.747 0.667
Point-wise Dealiased 7.696 101.946 0.874
50 km Resolution Reference 1.895 29.560 0.675
Initial Value 1.256 20.823 0.835
Optimized from Initial Value 1.296 21.783 0.834
Optimized from True Model 1.336 20.026 0.828

7.15 shows a true wind field sampled at 25 km resolution. This example is the same under-
lying wind field as in Fig. 7.3. Figure 7.16 shows the closest ambiguity to the true wind
field. This would be the ideal point-wise wind estimate corresponding to perfect dealias-
ing. Figure 7.17 shows the actual point-wise wind estimated obtained by dealiasing at 25
km resolution. Figure 7.18 shows the 50 km reference field. The 50 km reference field is
computed by first using point-wise estimation and dealiasing at 50 km resolution. The 25
km resolution point-wise ambiguity which is closest to the corresponding 50 km resolution
dealiased wind vectors become the 50 km reference field. Figure 7.18 shows the initial value
field computed from Fig. 7.17. Figure 7.19 shows the model-based wind field estimate which
was optimized from the initial value in Fig. 7.17.

Table 7.2 summarizes the total error for the various fields including the errors for the 25
km resolution point-wise dealiased and the 50 km reference fields While, the 25 km resolution
wind estimates have larger RMS errors than the 50 km resolution wind estimates, the model-
based wind field estimates are: (1) less noisy and (2) exhibit better RMS vector and direction
error than both of the dealiased wind fields and the closest ambiguity wind field. For this
example, the initial values computed from the 50 km reference field were all good-quality
such that the optimization algorithm found the global minimum for each region.

7.3 Summary

In this Chapter we have shown that, even with simplistic initialization/optimization schemes,
the model-based estimates are more accurate than the point-wise wind estimates at both 25
km and 50 km resolution. We have shown that better results can be obtained by improved
initialization/optimization schemes. Several such schemes are described in Appendix I.
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Figure 7.16: A 25 km resolution example of a true wind field over both NSCAT observation
swaths. Plotting convention is similar to Fig. 7.3.
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Figure 7.17: Closest ambiguity to the true wind field in Fig. 7.15.
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Figure 7.18: Point-wise dealiased wind field estimate corresponding to Fig. 7.15. Dealiasing
was done at 25 km resolution.
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Figure 7.19: The 50 km reference field. This field was determined by first computing the
point-wise wind estimates and dealiasing at 50 km resolution. The 25 km resolution point-
wise ambiguities closest to the corresponding 50 km dealiased winds are shown.
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Figure 7.20: The 25 km resolution initial value field computed from Fig. 7.17
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Figure 7.21: Optimized wind field (model-based wind field estimate) corresponding to Fig.
7.17.
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Chapter 8

Conclusions and Recommendations
for Future Work

8.1 Conclusions

In this research we have: (1) demonstrated the identifiability of the point-wise wind esti-
mates (Chapter 3), (2) developed a model for near-surface mesoscale wind fields (Chap-
ter 4), (3) evaluated the model using realistic wind fields (Chapter 4), (4) formulated the
maximum-likelihood objective function for the wind field model parameters from the noisy
σo measurements (Chapter 5), (5) demonstrated the identifiability of the model parameters
(Chapter 5), (6) developed a simple method for optimizing the objective function based
on a gradient-search technique with initial values computed using the results of point-wise
wind estimation followed by dealiasing (Chapter 6), and (7) evaluated and compared the
accuracy of the wind field estimates obtained using point-wise and model-based wind field
estimation (Chapter 7). This work has demonstrated the feasibility of model-based wind
field estimation. While the simple approach for optimizing the objective function described
in Chapter 6 is sub-optimal, the comparisons given in Chapter 7 demonstrate that wind
field estimation using a model-based approach, even with this simple optimization approach,
yields more accurate estimates of the wind field than does the traditional two-step wind
estimation approach using point-wise estimation and dealiasing. When more sophisticated
optimization techniques are used in model-based wind field estimation, the accuracy of the
resulting wind field estimates are better.

8.2 Recommendations for Future Work

There are a number of potential avenues of research which can be derived from this research.
While the feasibility of model-based wind field estimation from wind scatterometer measure-
ments has been demonstrated using a simple initialization and optimization approach, we
have seen in Chapter 7 and Appendix I that better model-based wind field estimates are
possible using improved optimization techniques; hence, future work should give priority to
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the development of improved initialization and optimization algorithms. In particular, in
order to use model-based wind field estimation for the operational processing of wind scat-
terometer data, an efficient implementation of the initial value computation procedure and
the objective function optimization will be needed.

In this research, emphasis has been on demonstrating the feasibility of model-based wind
estimation based on simulated σo measurements obtained using the NSCAT scatterometer.
The application of model-based wind field estimation using σo measurements for the proposed
ScanScat, which is based on a scanning pencil-beam [81], should also be evaluated. In
addition, the model-based wind field estimation approach should be adapted for processing
of the σo measurements collected by SASS. In order to do this, our approach must be
modified to take into account the non-uniform sampling of the σo measurements obtained
by SASS. In particular, a different initialization scheme may be required. In addition, this
technique should be evaluated for processing the planned ERS-1 scatterometer. The ERS-
1 scatterometer differs from previous and planned scatterometers in that it operates at a
different frequency; hence, the model function may be quite different.

Lastly, the wind field model developed in this research is based on rather simplistic
assumptions on the vorticity and divergence fields; more sophisticated models should be
investigated.

In summary, future work in model-based wind field estimation from wind scatterometer
measurements should be done in the following areas: (1) improved initialization and opti-
mization techniques, (2) application of the approach to other classes of wind scatterometers,
(3) evaluation using SASS data, and (4) improved wind field models.

The methodology used in this research has application in other areas involving distributed
parameter systems. In wind estimation we started with a well-defined measurement equation
for a parameter (σo) which is related to the quantity of interest (the wind) via a model
function. Our approach to the estimation of the wind from measurements of σo is to view
the wind field as a distributed parameter system which can be approximately modeled using
partial differential equations. In effect, this system of equations provides constraints on the
estimate of the quantity of interest, thus permiting more accurate estimates.

The partial differential equation system is solved by converting it to a finite-difference
system which is then arranged to express the quantity of interest in terms of a set of unknown
parameters. This yields a simple model of the distributed parameter system. The quantity of
interest is estimated indirectly by first estimating the unknown parameters directly from the
measurements, then using the model to compute the quantity of interest from the estimated
model parameters.

As the results of this research indicate, this methodology can be successfully used even
when the relationship between the measured parameter and the desired quantity is non-
unique as is the case with the geophysical model function relating σo and winds.

This methodology has possible application in other remote sensing problems such as
estimation of atmospheric aerosols, surface topography, and wave height as well as down-to-
earth problems such as the thermal control of steel in rolling mills.
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Appendix A

Additional Background

In this Appendix are provided brief tutorials in the fields of meteorology, oceanography, and
scattering theory to provide background for the reader. Several section follow [28] closely
and are included for reference purposes.

A.1 Meteorology Fundamentals

Vertically, the atmosphere is divided into 4 distinct regions based on temperature profile
and pressure [104]. Wind scatterometry is primarily concerned with the lowest atmospheric
layer, the troposphere, which extends from sea level to approximately 10 km. The tropo-
sphere accounts for more than 80 % of the mass of the atmosphere. Meteorologists express
atmospheric pressure in millibars (mb) (1 millibar equals 1000 dynes per square centimeter).
At sea level, the average air pressure is 1013.25 mb or about 14.7 pounds per square inch. At
any given altitude and time the atmospheric pressure can vary depending on local conditions.

At middle and high latitudes, winds tend to blow parallel to the isobars with the low
pressure on the left in the northern hemisphere or on the right in the southern hemisphere.
At a given latitude the speed of the wind tends to be inverse proportional to the spacing
of the isobars. This tendency, due to the geostrophic relationship (further discussed below),
makes it possible to infer gross features of the wind field from pressure maps and visa versa
[104].

A.1.1 Atmospheric Thermodynamics

Temperature also drives atmospheric motion. When a volume of air is colder or contains
more moisture and is thus denser than the surrounding air mass, it sinks. Conversely, when
a volume of air is less dense than surrounding air due to a lower moisture content or warmer
temperature, it is more buoyant than the surrounding air and rises. When this occurs, the
atmosphere is termed unstable. As an air mass rises it cools due to adiabatic expansion and
becomes more dense than the surrounding air. This tends to cancel the effects of buoyancy.
When an air mass is less buoyant than the surrounding atmosphere it is termed stable. When
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there is no net buoyancy, the atmosphere is said to have neutral stability [25].

An important factor in determining atmospheric stability is the rate at which temperature
changes with height, called the lapse rate. As a volume of air ascends, it expands to maintain
its internal pressure equal to the pressure of the air surrounding it. This expansion requires
work which is extracted in the form of heat from the volume of moving air, cooling it. This is
called adiabatic cooling. If the rising air contains sufficient moisture, the humidity may reach
100 %, causing the moisture to condense into clouds and if conditions are right, precipitation.
The latent heat of vaporization is released into the air, warming it. On the other hand, as
a volume or air descends, it is compressed. This heats the air volume [104].

A change of temperature or moisture changes the air density. As the air density in a
column of air changes, the pressure at its base changes. The pressure gradient between
columns of air at different pressures produces winds. A modified form of the ideal gas law is
used to relate the pressure p, temperature T , and density ρ of the air.

p = ρRT (A.1)

where R is the gas constant. An adjusted value for R is used which considers the moisture
constant of the air. The relationship between pressure, height h, and density is known as
the hydrostatic equation,

dp

dh
= −gρ (A.2)

where g = 9.81ms2 is the gravitational constant. Since p(∞) = 0,

p(h) =

∫ ∞

h

gρdh. (A.3)

The height H required to decrease the pressure by a factor of e = 2.718 is known as the
scale height,

H =
RT

g
. (A.4)

As wind blows, friction with the earth’s surface tends to slow the wind at the surface
level. The lowest region of the troposphere, the portion most affected by the surface, is
known as the surface boundary layer, the top of which may be from tens to many hundreds
of meters above the surface. A wind scatterometer measures boundary layer winds. Within
the surface boundary layer the wind speed U profile as a function of height h above the
surface can be approximately expressed, as [28]

U(h) =
u∗
0.4

(
ln

h

Z0

+ ψ

)
m/s (A.5)

where u∗ is the friction velocity of the wind at the ocean surface, ψ is a function of the
atmospheric stability of the surface boundary layer, and Z0 is the roughness length of the

146



surface. Z0 can be related to u∗ by the empirical formula [28],

Z0 =
0.00684

u∗
+ 0.428u2

∗ − 0.000443 m. (A.6)

The friction velocity u∗ can be written, as [28]

u∗ =

√
CDnU

1−
√
CDnψ/0.4

(A.7)

where CDn is the drag coefficient for a neutral atmosphere. When the air temperature is
different than the ocean temperature, there is a heat flux between the sea and air, increasing
the turbulence in the atmosphere and producing and affecting atmospheric stability (ψ 6= 0).
ψ is positive in a stable atmosphere and negative in an unstable atmosphere. Under the
conditions of neutral stability, ψ = 0 and Eq. (A.7) for u∗ reduces to,

u∗ =
√
CDnU. (A.8)

An empirical expression for the neutral stability drag coefficient CDn at an altitude of
h = 10 m is [28],

CDn[10m] =

{
1.14× 10−3 4 < U ≤ 10 m/s

0.49 + 0.065U 10 < U < 26 m/s
(A.9)

For other altitudes in the boundary layer, the neutral stability drag coefficient can be ex-
pressed [28],

CDn(h) =
0.16CDn[10 m]

(
√
CDn[10 m] ln(h/10) + 0.4)2.

(A.10)

These formulas relate the wind at the ocean’s surface to the wind at an arbitrary height over
the ocean’s surface within the surface boundary layer. Keeping this relationship in mind,
h = 19.5 m has historically been used by meteorologists as the standard for specifying the
surface wind speed over the ocean.

Until recently, weather forecasting relied exclusively on subjective analysis of synoptic
weather charts. The development of computers permitted meteorologists to employ numer-
ical solutions of the equations of motion in their analysis. While the numerical prediction
models are far superior to earlier techniques, the lack of a complete knowledge of the current
weather conditions still limit their usefulness [104]. Numerical weather prediction (NWP)
modeling is based on a set of primitive equations derived from Newton’s laws of motions,
atmospheric continuity constraints, and the laws of thermodynamics.

The most commonly used coordinate system is a modified spherical system. The hori-
zontal coordinates are latitude φ and longitude λ. Cartesian coordinates are often used,

dx
4
= rdλ cosφ (A.11)

dy
4
= rdφ (A.12)
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where x and y are the distance east of the Greenwich meridian along a latitude line and the
distance north of the equator. r is the distance from the earth’s center. For motions in the
troposphere, r is invariably replaced by RE, the radius of the earth (6.36× 106 m). Rather
than use height, the pressure p is more commonly used for the vertical coordinate since this
simplifies the resulting expressions. For large scale motions (i.e. mesoscale and larger), there
is a monotonic and relatively simple relationship between height and pressure [104]. Since
wind scatterometery is primarily concerned with winds only in the surface boundary layer,
the distinction is minor.

The three velocity components of general atmospheric motion are,

u
4
=

dx

dt
= RE cosφ

dλ

dt
(A.13)

v
4
=

dy

dt
= RE

dφ

dt
(A.14)

ω
4
=

dp

dt
≈ −dr

dt

p

H
(A.15)

where H is the scale height. u is called the zonal velocity component. Positive zonal winds
are called westerlies (from the west) with negative zonal winds called easterlies (from the
east). v is called the meridional velocity component. Positive and negative meridional winds
are called southerly and northerly, respectively. On wind field maps, it is common to use
streamlines to indicate the wind direction. Streamlines are arbitrarily spaced lines that are
everywhere parallel to the horizontal velocity vector [104].

The forces acting on a moving volume of air include gravity, the “Coriolis” force, pressure,
and friction. The resulting acceleration is the sum of the effects of these forces. From these
effects the equation of horizontal motion can be written [104],

dV

dt
= −∇Φ− fk×V − aV (A.16)

where V
4
= ui + vj is the horizontal velocity vector, f is the Coriolis parameter f = 2Ω sinφ

where Ω = 7.292 × 10−5 rad/s is the angular velocity of rotation of the earth, Φ is the
geopotential height, or gravitational potential energy per unit mass, k is a unit vector in the
vertical direction, and a is the frictional coefficient, the magnitude of which varies according
to a myriad of effects including wind speed, ocean roughness and temperature, etc. For
large-scale motions the Coriolis force dominates the frictional term, which along with the
simplification,

k× (k×V) = −V (A.17)

produces,

V ≈ 1

f
k×∇Φ (A.18)

When this relationship is exactly satisfied, the wind is known as geostrophic. A more detailed
derivation of Eq. (A.18) is provided in Appendix C. The geostrophic wind velocity, Vg, can
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be written,

Vg
4
=

1

ρf
(k×∇p) (A.19)

where ρ is the atmospheric density. Near the ocean’s surface, the frictional term is significant,
causing the wind to be subgeostrophic. This dampens the surface wind speed and deflects
the velocity vector toward lows and away from highs. The analysis is complex and requires
many approximations. It is not normally included in numerical modeling for large scale wind
fields [104].

The geostrophic wind equation must be combined with the effects of thermal wind gradi-
ents. When there is no horizontal thermal gradient, the atmosphere is known as barotrophic
otherwise it is known as baroclinic. The thermal wind equation relates the the vertical shear
of the geostrophic wind to the horizontal temperature gradient.

Kinetic energy in the atmosphere is dissipated by frictional forces. Large scale motions
force lesser scale motions in the so-called energy cascade. The kinetic energy of the smaller
scales is ultimately dissipated through viscosity effects. Since rates of energy dissipation at
lower scales is much higher than at higher scales of motion, the energy cascade mechanism can
dissipate the energy of large atmospheric motions very rapidly. Instability and irregularities
in the earth’s surface also produce small scale eddies and disturbances which extract energy
from larger scale wind fields [104].

The energy cascade is important in the development of mesoscale wind fields from synop-
tic scale motions. It also is important in defining the spectrum of the wind fields. The energy
cascade not only occurs in the atmosphere but also is important in ocean wave propagation
and extinction.

A.1.2 Turbulence

From the point of view of synoptic-scale motions, mesoscale motions can be viewed as tur-
bulent disturbances in the larger scale motions [17, 57, 88]. The turbulence in the synoptic
measurement due to the mesoscale motion adversely affects the performance of numerical
weather prediction models. By properly measuring the mesoscale wind fields, the mesoscale
turbulence in the synoptic models can be accounted for, resulting in improved weather fore-
casts. This is one of the primary motivations in the development of wind scatterometers.

Long term empirical observations of the statistics of atmospheric turbulence have shown
that the statistics remain relatively stable. This is a distinctive characteristic of turbulent
flows. Although the details of the turbulent flow appear random, the statistics of the flow
parameters are stable and can be used to characterize it. Because turbulent flow is “ran-
dom”, deterministic models for the flow can not completely model it. This has lead to the
development of turbulence models of atmospheric motion [17, 33]. The turbulence models
predict an energy spectrum power-law dependence on the wavenumber due to the energy
cascade of the form αk−b where k is the spatial spectrum wavenumber k = 2π/L and α is a
constant [33].

Although the atmosphere is three-dimensional, the flow within the surface boundary layer

149



can be assumed to be an incompressible, two-dimensional flow for synoptic-scale motions
[17, 33, 57]. Conservation of mass dictates that the atmospheric flow will be essentially
nondivergent, i.e.,

∂

∂x
u(x, y) +

∂

∂y
v(x, y) = 0 (A.20)

where u(x, y) is the x-directed wind velocity component and v(x, y) is the y-directed veloc-
ity component of the velocity field V(x, y). When a fluid is confined to two-dimensional,
nondivergent flow, the fluid flow may be described by an enstrophy equation. Enstrophy is
defined as one-half the squared vorticity (curl).

Turbulence deals with the statistical properties of the solutions to the Navier-Stokes
equation which describes fluid flow. The solutions to the Navier-Stokes equation for two-
dimensional fluid flow require the use of statistical tensor analysis and will not be discussed
here (see [57]).

The primary application of turbulence flow models is the determination of the charac-
teristics of the atmospheric kinetic energy spectrum. The turbulent atmospheric flow model
discussed by Charney [17] and Leith [57] predicts that the kinetic energy spectrum of the
atmosphere has a power-law relationship with the spatial spectrum wavenumber.

The two-dimensional wind fields can be represented by the spatial Fourier coefficients,

Φu(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
u(x, y)e−j(kxx+kyy)dxdy (A.21)

Φv(kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
v(x, y)e−j(kxx+kyy)dxdy (A.22)

where kx and ky are the wave numbers in the x and y directions, respectively. The two-
dimensional component spectra are,

|Φu(kx, ky)|2 = Φu(kx, ky)Φ
∗
u(kx, ky) (A.23)

|Φv(kx, ky)|2 = Φv(kx, ky)Φ
∗
v(kx, ky) (A.24)

and the two-dimensional energy spectrum E(kx, ky) is,

E(kx, ky) = |Φu(kx, ky)|2 + |Φv(kx, ky)|2 (A.25)

For isotropic turbulence, E(kx, ky) will be rotationally invariant. It follows that E(kx, ky)
is a function only of k = (k2

x + k2
y)

1/2. Applying the nondivergence constraint in Eq. (A.20)
to the Fourier coefficients Φ(kx, ky) produces,∫ ∞

−∞

∫ ∞

−∞
(kxΦu(kx, ky) + kyΦv(kx, ky))e

j2π(kxx+kyy)dkxdky = 0 (A.26)
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It follows, that for nondivergent flow,

Φv(kx, ky) =

{
−kx

ky
Φu(kx, ky) ky 6= 0

0 ky = 0
(A.27)

This equation implies that for nondivergent flow, only the spectrum of one of the velocity
components is required to completely specify the velocity field V(x, y).

The one-dimensional component spectra can be computed from the two-dimensional com-
ponent spectra, as

Fu(kx) =

∫ ∞

−∞
|Φu(kx, ky)|2dky (A.28)

Fv(kx) =

∫ ∞

−∞
|Φv(kx, ky)|2dky. (A.29)

The one-dimensional isotropic energy spectrum Ê(k) is defined as,

Ê(k) = πkE(kx, ky) (A.30)

where k = (k2
x + k2

y)
1/2 as before. Ê(k) = πkE(kx, ky) is related to the one-dimensional

spectrum by the following,

Fu(kx) =
2

π

∫ ∞

kx

Ê(k)

√
k2 − k2

x

k2
dk (A.31)

Fv(kx) =
2k2

x

π

∫ ∞

kx

Ê(k)
1

k2
√
k2 − k2

x

dk. (A.32)

Since the two-dimensional isotropic energy spectrum obeys the power-law Ê(k) = αk−b as
predicted by Leith’s turbulence model, the one dimensional spectra will also obey a power-
law [33, 57]. Leith showed that

Fv(kx) = −kx
d

dkx

Fu(kx) (A.33)

from which follows,
Fv(kx)/Fu(kx) = b. (A.34)

The two-dimensional cross-spectrum H(kx, ky) is defined in terms of the component spec-
tra,

H(kx, ky) = Φu(kx, ky)Φ
∗
v(kx, ky). (A.35)

Since the field is non-divergent, the cross-spectrum must be real, i.e.,

Im[H(kx, ky)] = 0. (A.36)
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The one-dimensional cross-spectrum is defined by,

Ĥ(kx) =

∫ ∞

−∞
H(kx, ky)dky (A.37)

which, since the H(kx, ky) is real, is identically zero, i.e.,

Ĥ(kx) = 0. (A.38)

Although this derivation has assumed a non-divergent two-dimensional atmosphere, a
particular realization of a field may have limited regions of convergence or divergence. These
regions occur because the real atmosphere is three-dimensional and vertical transport into
upper layers of the atmosphere will appear as convergence zones in the two-dimensional field.

A.2 Oceanography Fundamentals

Nearly 75% of the Earth’s surface is covered with saltwater oceans. Since the beginning of
time man has struggled to understand the workings of the oceans. The study of the Earth’s
oceans is termed oceanography. Although the field of oceanography includes such diverse
topics as ocean currents and hydrology, we will be primarily interested in surface ocean
waves generated by the wind. Oceanographers classify waves principly by wave period P or
wavenumber k = 2π/L where L is the wave length with

L =
( g

2π

)
P 2. (A.39)

The smallest waves are known as capillary waves and range is size up to a centimeter
in length [54]. Wind scatterometers are sensitive primarily to capillary waves [99]. Grav-
ity waves, which range in size from about 1.5 m to 1.5 km, can distort the scatterometer
measurement [28].

The mathematical modeling and analysis of wave generation by the wind is complex. As
the wind blows over the ocean’s surface, friction between the upper layers of the water and
lower layers of the atmospheric boundary layer transfers energy from the wind to the ocean
surface. This slows the wind at the surface and induces currents and waves on the ocean’s
surface. Steady, long term winds over the ocean can establish synoptic scale ocean currents
which “pile up” the ocean against one shore, much as blowing over a glass of water piles up
the water to one side. When this wind suddenly fails, the ocean returns to a flat state by
reversing the current direction. This may be a factor in the reoccurring El Nino off the coast
of South America [2].

A light breeze over a calm surface, first produces small, ruffled patches of wavelets a few
centimeters in length. As the wind grows, larger and larger waves are formed. If no energy
were lost from the waves, the wind would continue to force them ever larger to an indefinite
size. Friction, however, dissipates the wave energy and limits the wave size. The maximum
wave size depends on water temperature, wind speed, wind duration, and fetch or length of
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ocean surface over which the wind blows [54].

A.2.1 Wind Generated Wave Spectrum

The mathematical modeling and analysis of wave generation is quite complex and is not
completely understood. For this discussion, we will not consider the exact mechanism for
wave generation but will consider the wave spectrum of the sea when the wave field is fully
developed. It will be shown that the wave spectrum is related to the wind frictional velocity
u∗ and hence by the boundary layer wind profile expression in Eq. (A.5) to the wind at
higher levels. Radar scattering theories use the wave spectrum in the scattering problem
formulation. Following [28], we outline the development of the wave spectrum.

The ocean’s surface is a time-varying rough surface. The space-time power spectrum of
the ocean surface is defined by [28, 54],

D(K, ω) =
1

(2π)3

∫ ∫ ∞

−∞
C(p, t)e−j(K·p−ωt) dpdt (A.40)

where K is the vector wavenumber, p is the position vector, and C(p, t) is the space-time
correlation function,

C(p, t) = 〈h(x, τ)h(x + p, t+ τ)〉. (A.41)

Using current techniques the space-time spectrum can not be measured. In general, only
the frequency spectrum Z(ω) can be measured [28, 54], where

Z(ω) =

∫ ∫ ∞

−∞
E(K, ω) dK. (A.42)

The wavenumber spectrum, which is used in radar scattering theory, is

Ψ(K) =

∫ ∞

−∞
E(K, ω)dω (A.43)

The wavenumber spectrum can not be computed without knowledge of the space-time spec-
trum; however, the dispersion relation between frequency and wave numbers ω = ω(K)
permits conversion between the frequency spectrum and the wavenumber spectrum. First,
we separate the wavenumber spectrum into an amplitude spectrum, S(K) and a directional
spectrum Φ(φ) [28],

Ψ(K)
4
= Ψ(K,φ) =

1

2π
S(K)Φ(φ) (A.44)

where K = |K| is the wavevector magnitude and φ is the wavevector direction,

K = (K cosφ,K sinφ). (A.45)

In terms of the frequency spectrum Z(ω) and the dispersion relationship w = w(K), the
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amplitude spectrum S(K) is

S(K) =
2

K

dω

dK
Z(ω)

∣∣∣∣
ω=ω(K)

. (A.46)

The dispersion relationship for surface waves can be expressed [28], as

ω2 = g∗K (A.47)

where g∗
4
= g + γK2. The constant γ = 7.25× 10−5 m3s−2 is the ratio of surface tension to

water density. For capillary waves, γK2 � 1. For smaller wave numbers (corresponding to
longer wavelength gravity waves) g∗ ≈ g [28].

When surface currents are ignored the wavenumber spectrum satisfies the energy trans-
port equation [28],

∂Ψ(K)

∂t
+
∂ω

∂K
· ∇Ψ(K) = Qi +Qn +Qd (A.48)

where Qi is the input energy due to surface winds, Qn is the energy exchange between
wavenumbers due to nonlinear resonant interactions, and Qd is the energy dissipation due
to wave breaking, etc. In a fully developed wave field the energy input by the wind is equal
to the energy dissipated and lost via the energy cascade mechanism, thus [28],

Qi +Qn +Qd = 0. (A.49)

Wind blowing across a smooth ocean surface generates wave first by pressure variations
due to turbulence in the air flow at the surface. Under these conditions, Qi is roughly
constant. Once small waves have been generated, the air flow changes and a turbulence
feedback mechanism develops. Under these conditions Qi is proportional to the ocean wave
spectrum.

The energy exchange Qn between resonant wavenumbers affects different regions of
the ocean wavenumber spectrum differently. Nonlinear interactions occur when several
wavenumber components combine to produce a new component of a different wavenumber.
This effects a transfer of energy between waves of different wave numbers. The interactions
are complex and non-linear.

The energy dissipation term, Qd, is due to wave breaking at lower wavenumbers (larger
waves) and viscosity for higher wavenumbers (capillary waves) [28].

Based on empirical observations, the frequency spectrum Z(ω) for wave frequencies up
to 1 Hz (capillary waves) can be expressed,

Z(ω) = 0.008
g2

2ω5
e−0.74 (g/(ωU19.5))4 (A.50)

where U19.5 is the wind speed at 19.5 m. Using ω2 = gK and transforming Z(ω) to the
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amplitude spectrum S(K) using Eq. (A.46) yields [28],

S(K) = 0.004
1

K4
e−0.74 (g/(KU2

19.5))2 . (A.51)

For higher wavenumbers in the capillary region, the energy transport equation and di-
mensional analysis define the wave number spectrum as,

S(K) = 0.004
1

K4

(
bK

g∗
u2
∗

)a ln K
Kt

(A.52)

where a and b are constants which must be determined by empirical observation. Based
on empirical observations, a = 0.025 and b = 2.25. Kt ≈ 2 m−1 is the wavenumber where
1 � Ku2

∗ is no longer satisfied [28].

The directional spectrum Φ(φ) can be written [28], as

Φ(φ) = 1 + c(1− e−sK2

) cos 2φ (A.53)

where s = 1.5× 10−4 m2 and c is of the form,

c =
(1−R)/(1 +R)

(1−D)
(A.54)

where R is an affine function of the wind speed at 12.5 m, U12.5,

R = 0.949 + 0.608 U12.5 (A.55)

and

D =

∫ ∞
0
K2S(K)e−sK2

dK∫ ∞
o
K2S(K)dK

. (A.56)

Combining the directional spectrum in Eq. (A.53) and the two expressions for the am-
plitude spectrum Eqs. (A.51) and (A.52), the wave number spectrum is [28],

Ψ(K,φ) =
0.004

2πK4

e
−0.74 ( g

K
1

U19.5
)2

[1 + c(1− e−sK2
)] cos 2φ K < 2[

bKu2
∗

g∗

]a ln(K/2)

[1 + c(1− e−sK2
)] cos 2φ K ≥ 2

. (A.57)

which is a function of the wind speed at 19.5 m and wind direction φ. Using the wind profile
equation [(A.5)], the wind speed at other altitudes in the atmospheric boundary layer can
be computed.

A.3 Scattering Theory

Radar is an acronym originally coined from its purpose, radio detection and ranging. Today,
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the term radar has a much broader meaning. For the purposes of this discussion, a radar
is an active microwave instrument which transmits a pulse of microwave energy toward a
target and receives the echo. We will only consider monostatic radars, that is, radars which
transmit and receive with the same antenna. A radar scatterometer is a radar designed to
measure the scattering properties of the target. It measures the returned echo power and
with the knowledge of the radar’s parameters such as transmit power, antenna gain, etc.
determines the radar cross-section. The radar cross-section is the equivalent area of the
target at microwave frequencies. The normalized radar cross-section σo is the radar cross-
section divided by the target area. In a wind scatterometer the σo of a region of the ocean’s
surface is measured. Since σo is related to the wind vector by a model function, appropriate
measurements of σo can be used to measured the wind over the ocean’s surface [99, 102].

A.3.1 The Radar Equation

The fundamental equation relating the receive echo, the target characteristics, and the radar
parameters is known as the radar equation. The radar transmits a signal with power Pt

through an antenna with one-way gain G (see Fig. A.1). At the target the transmitted
signal has been attenuated by the distance or range R to the target according to 1/(4πR2)
due to spreading loss. The power intercepted by the target is a function of its effective target
area A. Some of the transmitted power is absorbed by the target, some is reflected back
toward the radar, and the remainder is scattered in other directions. The amount of power
reflected back to the radar is the effective area times the normalized radar scattering cross-
section σo of the target. The σo of the target depends on many factors including incidence
and azimuth angle, target roughness, target dielectric constant, etc. The reflected power is
again attenuated by the distance to the target. At the radar, the received power is related
to the antenna’s effective area Ae and the radar wavelength λ by the expression,

Ae =
λ2G

4π
(A.58)

Combining these, the radar equation expresses the received power Pr as,

Pr =
Ptλ

2AG2σo

(4π)3R4
. (A.59)

In wind scatterometry, measurement of Pr are made. From the knowledge of the radar’s
location relative to the target, and the antenna gain pattern the radar equation can be
solved, or inverted, to determine σo.

σo = C Pr (A.60)

where C is

C =
(4π)3R4

λ2PtG2A
. (A.61)

While this expression is exact for the ideal case, many of the parameters are not constant
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Figure A.1: Schematic diagram of a wind scatterometer.
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over the entire target, e.g., antenna gain, σo, and R. In this case, the integral form of the
radar equation is used,

Pr =
λ2

(4π)3

∫
area illuminated

PtG
2σo

R4
dA. (A.62)

In this case the inversion of the equation is much more difficult. For inversion of the equation,
equivalent values for the antenna gain, G, target area, A, and range, R, are used, so that

σo =
Pr(4π)3R

4

Ptλ2G
2
A

2 = CPr. (A.63)

where C a function of the equivalent radar system parameters,

C =
(4π)3R

4

λ2G
2
PtA

. (A.64)

Additive white thermal noise from the radar system and emissive thermal noise in the
atmosphere and ocean surface further complicate the return power measurement. Typically,
a separate measurement is made of the noise-only power and subtracted from the signal
power measurement [68, 102].

A.3.2 Surface Scattering

Following Durden [28], this section will provide an intuitive look at scattering and surface
roughness. Scattering of electromagnetic energy from a surface depends on the characteristics
of the surface such as roughness, its dielectric constant, etc. and on the radar wavelength.
The degree to which a surface is rough greatly influences the scattering properties of the
surface. A surface which may appear rough at optical wavelengths can appear smooth at
microwave wavelengths. Qualitatively, the rougher the surface the more isotropic or non-
directional the scattering. An isotropic surface scatters energy equally in all directions. The
two most commonly used parameters used to characterize surface roughness are the standard
deviation of the surface height variation (or rms height) and the surface correlation length.

The standard deviation (σ) of the surface height and surface correlation length (l) describe
the statistical fluctuations of the “random” component of the surface height relative to a
reference surface. For a surface Sx × Sy in the x− y plane which has a height h(x, y) at the
point (x, y), the mean height and variance of the surface is,

h =
1

SxSy

∫ Sx

0

∫ Sy

0

h(x, y) dxdy (A.65)

h2 =
1

SxSy

∫ Sx

0

∫ Sy

0

h2(x, y) dxdy (A.66)
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The standard deviation of the surface height is,

σ =

√
h2 − h

2
. (A.67)

When h(x, y) is statistically independent of the angle from the x axis the equations can
be reduced to one-dimensional equations. The normalized autocorrelation ρ(t) of a one-
dimensional surface h(x) is defined as,

ρ(t) =

∫ Sx

0
h(x)h(x+ t) dx∫ Sx

0
h2(x) dx

. (A.68)

The surface correlation length is the length l for which ρ(l) = 1/e.

The two-dimensional surface wavenumber spectrum is defined

Ψ(Kx, Ky) =
1

4π2

∫ ∫ ∞

−∞
< h(x′, y′)h(x′ + x, y′ + y) > e−j(Kxx+Kyy) dxdy. (A.69)

The one-dimensional wavenumber spectrum is

Ψ(K) =
1

2π

∫ ∞

−∞
ρ(t)e−jKt dt. (A.70)

The Fraunhofer criterion for smoothness, states that the surface may be considered
smooth if the phase difference between two reflected waves is less than π/8 [102]. The
Fraunhofer criterion will be met if

σ <
λ

32 sin θ
(A.71)

where θ is the incidence angle [28]. In scattering theory, the rms surface height, σ, is expressed
in terms of the wavelength, λ. As a general guideline, a surface is considered smooth if the
quantity kσ (k = 2π/λ) is less than 0.02, and very rough if kσ > 1. The decorrelation
distance is also significant [28, 102].

The wave field on the ocean’s surface roughens the surface. If the area under consideration
is large enough, the surface appears random to the radar wave. In scattering studies, a
random ocean surface (subject to power spectrum constraints) is usually assumed [28].

The dielectric constant ε of the ocean’s surface is dependent on the water temperature,
the presence of surface films, salinity, etc. Averaged over a large enough area, however, ε
can be considered constant.

A.3.3 Scattering Theory

In terms of the incident Ei and scattered Es electromagnetic fields, σo can be expressed
(where the dependence on incidence angle θ and azimuth angle χ and polarization p is
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explicitly shown) [102], as

σo(θ, χ, p) =
4πR2|Es(p)|2

A|Ei(p)|2
(A.72)

where A is the illuminated area. If the surface and incident fields are known, the scattered
field |Es(p)| can be computed. No exact solution for the scattered field exists if the surface
is irregular; approximate solutions must then be resorted to [102].

The two most commonly applied approaches to surface-scattering theory are the Kirch-
hoff or the Physical Optics formulation and the Small Perturbation formulation. The small
perturbation formulation applies to surfaces which are slightly rough relative to the radar
wavelength, kσ < 0.3, while the physical optics formulation applies to surfaces which are
smooth relative to the radar wavelength, i.e., kσ > 6 [102].

In the physical optics formulation, an infinite tangent plane is constructed at each point of
the surface. The surface fields at the point are the fields produced by incident electromagnetic
wave on the tangent plane. Huygens’ principle is used to derive a relationship between the
scattered electric Es and magnetic Hs fields at a point r outside of a closed surface S to the
surface fields E and H (far-field approximation) [28, 102],

Es(r) =
−jke−jk|r|

4π|r|
r̂ ×

∮
S

(
− η0r̂ × (n̂×H) + n̂× E

)
e−jkbr·r′ dS (A.73)

Hs(r) =
−jke−jk|r|

4π|r|
r̂ ×

∮
S

( 1

η0

r̂ × (n̂× E) + n̂×H
)
e−jkbr·r′ dS (A.74)

where η0 is the impedence of free space, r̂ = r/|r|, n̂ is the unit normal to the surface, and
k = |k| is the magnitude of the wavevector in the scattering direction. By determination of
the tangent fields n̂× E and n̂×H the scattered fields can be computed. Solution of these
equations requires the use of two-dimensional Green’s functions [28, 102]. Following [28], the
discussion can be simplified by considering the scattering from a one-dimensional surface.
This allows us to consider the fields as scalars.

For a one-dimensional surface, the incident and scattered fields have the same polar-
ization. The scattered electric field for horizontal polarization (and the magnetic field for
vertical polarization) can be expressed [28], as

Es(p) =
e−j(3π/4+jk|p|)√

8πk|p|

∮ (
jk

p

|p|
· n̂φ− ∂φ

∂n̂

)
ejkp·p′/|p|dl (A.75)

where φ is the electric field for horizontal polarization or magnetic field for vertical polariza-
tion, p is the position vector of the radar, p′ is the position vector of a point on the surface,
and n̂ is the outward pointing surface normal of the one-dimensional surface h(x),

n̂ =
1√

1 + h2(x)

(
ẑ − h2(x)x̂

)
(A.76)

Once the surface fields are computed, these expressions can be used to compute the scattered
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field, and hence σo.
Both of the major scattering theories, small pertubation theory and physical optics the-

ory, will be summarized in the sections that follow. Since most real surfaces (and in par-
ticular the ocean’s surface) have properties of both smooth and rough surfaces, a two-scale
formulation, incorporating both scattering formulations will be discussed.

Small Perturbation Theory Formulation

For surfaces which are slightly rough relative to the electromagnetic wavelength, small per-
turbation theory can be applied to compute the radar backscatter coefficient. To simplify the
discussion, a perfectly conducting surface, rough in only one dimension will be considered.
The one-dimensional derivation given in [28] will be followed.

For a finite surface h(x) rough along the x axis on the x− z plane, the incident electric
field (horizontal polarization) can be written, as

Es = e−j(kxx−kzz) = 2je−jkxx sin kzz. (A.77)

where kx = k sin θ, kz = k sin θ, and θ is the angle of incidence. The reflected electric field
is,

Er = −e−j(kxx−kzz). (A.78)

Assuming a periodic surface with period L, we can expand it in terms of a Fourier series, as

h(x) =
∞∑

n=−∞

P (n)ej2πnx/L (A.79)

where the wavenumber spectrum of the suface and the Fourier coefficients P (n) are related
by

〈P (m)P ∗(n)〉 =

{
a0Ψ(na0) m = n

0 m 6= n
(A.80)

where a0 = 2π/L.
In terms of the periodic surface the scattered field can be expanded in terms of a space

harmonic expansion,

Es =
∞∑

n=−∞

Bne
−j(kx+a0n)x−jb(n)z (A.81)

where b(n)
4
= (k2 − (kx + a0n)2)1/2. The total field at the surface is sum of the incident and

the scattered fields,

E(x, z) = 2je−kxx sin kzz +
∞∑

n=−∞

Bne
−j(kx+a0n)x−jb(n)z. (A.82)

Ocean water is a reasonably good conductor. For simplicity we will assume it is a perfect
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conductor so that the tangential electric field at the ocean surface is zero.

E(x, z)|z=h(x) = 0 (A.83)

The Bn’s are determined using a perturbation expansion of the height of the surface [28, 103],

Bn = B(1)
n +B(2)

n + · · · (A.84)

Since the surface is only slightly rough, only the first-order term B
(1)
n can be retained. This

is substituted into Eq. (A.83) to obtain,

e−jkx

∞∑
n=−∞

B(1)
n eja0nx = 2je−jkxxkzh(x) (A.85)

which is substituted into the expression for the Fourier series expansion of h(x) [Eq. (A.79)].
Equating coefficients,

B(1)
n = 2jkzP (n). (A.86)

Substituting this expression for the approximate Bn coefficient in the total electric field
expression in Eq. (A.82), the electric field on the surface can be calculated. The resulting
expression is substituted into Eq. (A.75) to yield the scattered field,

Es =
jej(3π/4+kp)

√
8πkp

∞∑
n=−∞

AnL
sin((2kx + a0n)L/2)

(2kx + a0n)L/2
. (A.87)

where An
4
= Bnb(n) + k cos θBn.

In terms of the electric fields, the he normalized radar backscatter coefficient is defined,
as

σo = lim
L→∞

2πp〈EsEs
∗〉

L
. (A.88)

Taking the limit and simplifying, we obtain

σo = 2πk cos2 θ Ψ(−2kx)4k
2 cos2 θ. (A.89)

As a function of incidence angle, this can be expressed [28], as

σo
H(θ) = 8πk3 cos4 θΨ(−2k sin θ) (A.90)

which is the horizontal polarization σo for a perfectly conducting surface which rough in only
one dimension. A similar approach using the magnetic field for vertical polarization, yields
the vertically polarized σo, [28]

σo
V = 8πk3(1 + sin2 θ)2Ψ(−2k sin θ). (A.91)
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The analysis can be extended to a two-dimensional rough surface which is not a perfect
conductor. The results for each polarization P are:

σo
P = 16πk4 cos4 θΨ(−2k sin θ, 0)|αP |2 (A.92)

where αP for horizontal polarization (P = H) is,

αH =
(ε− 1)

(cos θ +
√
ε− sin2 θ)2

(A.93)

and for vertical polarization (P = V ),

αV =
(ε− 1)(ε sin2 θ + (ε− sin2 θ))

(ε cos θ +
√
ε− sin2 θ)2

(A.94)

In both the one- and two-dimensional surfaces, small perturbation theory results in a
σo which depends on the wavenumber spectrum evaluated at a single wavenumber. This
wavenumber is such that the paths from adjacent crests of the wave on the ocean’s surface
have a phase difference of 2π. This is known as Bragg scattering. Bragg scattering is
primarily responsible for the dependence of σo on wind speed and direction.

Physical Optics Formulation

The physical optics formulation, also known as the Kirchhoff formulation, models the field
on the surface at a point as the field which would exist at that point if the surface were an
infinite plane tangent to the surface at that point. Again, to simplify the discussion, a one-
dimensional surface h(x) will be assumed. The discussion presented in [28] will be followed.
Using a monostatic radar system at p with our previously defined one-dimensional surface
h(x), the electric field on the surface will be zero for horizontal polarization. Equation (A.75)
reduces to

Es(p, θ) =
e−j(3π/4+kp)

√
8πkp

∫
∂E

∂n̂
ejkbp·p′dl (A.95)

with p = |p| and p̂ = p/|p|.
Assuming the surface is an infinite plane at the point p′ allows approximation of the

derivative of the electric field, as

∂E

∂n̂
≈ 2jkp̂ · n̂′ejkbp·p′ (A.96)

Substitution of this derivative into the previous expression, yields

Es =
2jke−j(π/4+kp)

√
8πkp

∫
p̂ · n̂′e2jkbp·p′dl (A.97)

163



For vertical polarization the approximation for the magnetic field yields the same expression,

Hs =
2jke−j(π/4+kp)

√
8πkp

∫
p̂ · n̂′e2jkbp·p′dl (A.98)

Having derived the scattered fields, σo is obtained by computing the ensemble average
of the magnitude squared field over a surface of length L and letting L → ∞. Assuming
a Gaussian random surface with autocorrelation function C(u) and height variance h2

h =
〈h2(x)〉 the magnitude squared electric field is,

〈EsEs
∗〉 =

k

2πp cos2 θ

∫ L

−L

(L− |u|)e−4k2
xh2

h(1−C(u))e2jkxudu (A.99)

Taking the limit as L → ∞, σo as a function of incidence angle for both vertical and
horizontal polarization θ becomes

σo(θ) =
k

cos2 θ

∫ ∞

−∞
e−4k2

xh2
h(1−C(u))ekxudu. (A.100)

When the surface is very rough (4kxh
2
h � 1) the integral is dominated by the region near

u = 0 and C(u) can be approximated by a Taylor series about the origin, as

C(u) ≈ 1− b2u2

2
+ · · · (A.101)

where b2 = −C ′′(0). Keeping only the first two terms of the series, the integral can be
evaluated, to obtain

σo(θ) =

√
π

2

1

hhb cos3 θ
e− tan2 θ/2h2

hb2 . (A.102)

Since slope variance S2 of the surface is −h2
hC

′′(0) = h2
hb

2, we obtain

σo(θ) =

√
π

2

1

S2 cos3 θ
e− tan2 θ/2S2

. (A.103)

This formulation for σo is known as the quasispecular cross section since it can be physi-
cally interpreted as the cross section due to the quasispecular reflection of the surface which
is normal to the incident field.

For a slightly rough two-dimensional surface (1 � k2
xh

2
h), the physical optics formulation

produces,
σo(θ) = 8πk3Ψ(−2k sin θ). (A.104)

This expression is similar to the expression for the small perturbation theory but does not in-
clude the angular dependance term for the polarization. Since physical observations indicate
there is an angular dependence for a slightly rough sea, the small perturbation formulation
is used for slightly rough surfaces rather than the physical optics formulation. For a rough
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surface the physical optics formulation best matches empirical observations.

Two-Scale Formulation

Since the ocean surface is neither exclusively rough nor smooth, neither small perturbation
theory nor physical optics theory can be directly applied. However, we can consider the
surface to consist of two independent scales of roughness and apply each theory to the
appropriate scale. We will consider the ocean surface to consist of a small scale height
fluctuation hs and a large scale height fluctuation hl. Assuming independence between the
scales of roughness, the wavenumber spectrum can be separated, as

Ψ(K) = Ψl(K) + Ψs(K) (A.105)

where Ψl(K) is the large-scale spectra and Ψs(K) is the small-scale spectra, i.e.,

Ψl(K) = Ψ(K) K < Kd (A.106)

Ψs(K) = Ψ(K) K ≥ Kd (A.107)

where Kd is the transition wave number which separates the regions. The total scattering
is the sum of the scattering from the large-scale surface (small perturbation theory) and the
small-scale surface (physical optics formulation). The large-scale height variations will affect
the slope (and hence the Bragg scattering effects) of the small-scale surface scattering. First,
however, let us consider the effects of the small-scale roughness on the large-scale.

In the discussion of the physical optics formulation, this was already considered. When
1 � 4k2

xh
2
h the quasispecular σo is multiplied by an exponential term,

σo(θ) = e4k2h2
hσo

q(θ) (A.108)

where σo
q(θ) is the large-scale scattering from a surface without small-scale roughness [Eq.

(A.91) or Eq. (A.90)].

The effect of the large-scale slope variations (due to large gravity waves) on the small-
scale scattering as a function of height σo

s(θ, h(x)) is the expected value of σo over all surface
tilts [28],

σo(θ) =

∫ ∞

−∞
σo

s(θ, h(x))p(h(x))dh(x) (A.109)

where p(h(x)) is the slope probability density of the surface. For a Gaussian surface,

p(hx) =
1√
2πσ

eh2
x/2σ2

. (A.110)

Equation (A.109) becomes

σo(θ) =

∫
σo

s(θ + ψ)

cosψ
p(tanψ)d(tanψ). (A.111)
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The final, two-scale σo is the sum of the quasispecular large-scale scattering and small-
scale scattering with the cross-effects included,

σo(θ) = e−4k2h2
hσo

g(θ) +

∫
σo

s(θ + ψ)

cosψ
p(tanψ)d(tanψ). (A.112)

The choice of the transition wavenumber Kd is important to the accuracy of the results.
The two-scale formulation using Kd = 2 m has been very successful in predicting the effects
of wind on the ocean scattering coefficient σo compared to empirical measurements [28].

A.4 The Geophysical Model Function

The maze of modeling assumptions and equations relating wind to wave interaction and wave
to radar backscatter discussed in the previous sections can be avoided by the development
of a model which directly relates the wind vector over the ocean to the normalized radar
backscatter coefficient σo. The SASS1 G/H table is an example of this approach [11]. The
success of the SASS1 on the Seasat scatterometer data is considered to have validated this
technique [102].

This section will briefly review the historical background in relating wind to radar
backscatter and the development of a theory for the direct wind-to-backscatter model func-
tion as well as discuss the development of the direct wind-to-backscatter model function. A
discussion of the comparison wind vector measurements made by Seasat and conventional
wind measurements will also be given.

A.4.1 Historical Background

During the early development of radar for the detection of ships at sea it was noticed that the
“sea clutter” seemed to be dependent on the sea state which includes both wind and wave
height. This dependence was initially thought to be on the wave height, but it soon became
evident that the dependence was not on large waves, but on the wind speed. This became
more apparent after the development of a scattering theory which explained the scattering
coefficient in terms of the small capillary waves. This early work is summarized in [81].

The first serious work to quantify the dependence of radar backscatter at microwave fre-
quencies on wind speed was begun using the AAFE Radscat in the 1970’s. The Radscat was
an airborne pencil-beam scatterometer. Radscat data first demonstrated the wind direction
dependence of the radar backscatter [102]. Radscat and its successor AMSCAT were used
to empirically determine the coefficients of the wind-to-backscatter model function.

The first spaceborne scatterometer, a pencil beam scatterometer, was on Skylab [81].
The SeaSat scatterometer demonstrated that accurate measurements of wind speeds over the
ocean can be made from space [37, 48]. Other wind and radar scattering studies have been
conducted using wave tanks, tower-mounted scatterometers, and airborne scatterometers
[102].
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While quantitative results have differed slightly between the studies, the qualitative form
of the predicted model function have been similar.

A.4.2 Wind-to-Backscatter Modeling

The radar backscatter measurement is sensitive to capillary waves generated by the wind
over the ocean’s surface. The capillary waves ride on larger gravity waves which modulate
the response of the surface to the radar wave to a small degree by tilting the plane of
the capillary waves. While the distribution is not well understood, capillary waves are not
uniformly distributed over the surface. However, since wind scatterometers observe large
regions, the exact distribution is unimportant. Only the average statistics are considered
significant.

High winds over the ocean cause breaking waves and foaming. No current theories ade-
quately model the response to foaming and wave breaking, but empirical observations indi-
cate that the wind speed sensitivity remains about the same as for lower wind speeds. At
very high incidence angles, larger gravity waves tend to shadow the capillary waves, reducing
the sensitivity of σo to wind speed.

Using the wind-speed-dependent ocean wave spectrum previously discussed and applying
the two-scale formulation for scattering from a random surface, the σo response can be
calculated by averaging the scattering fields from statistical realizations of ocean waves based
on the wave spectrum. This analytical approach produces results which agree closely with
empirical observations [28].

The σo of the ocean’s surface depends primarily on the observation azimuth angle, inci-
dence angle, and wind speed. The variation in σo as a function of wind azimuth angle can
be expressed as a trigonometric function of the azimuth angle [11, 81, 102]

σo = A+B cosχ+ C cos 2χ. (A.113)

The azimuth angle χ between the radar observation angle and the wind vector is defined
such that χ = 0 when the vector pointing in the direction of the radar propagation is 180 deg
from the wind vector. The coefficients A, B, and C depend on the angle of radar incidence,
wind speed, and polarization. A plot of σo versus azimuth angle χ is shown in Fig. 2.1.

The coefficients A, B, and C as a function of wind speed can be expressed as power-law
functions of the wind speed [102],

A = βa(θ) U
γa(θ) (A.114)

B = βb(θ) U
γb(θ) (A.115)

C = βc(θ) U
γc(θ) (A.116)

Other similar forms for the coefficients have been proposed, e.g. [105].
In general, βa(θ) > βb(θ) > βc(θ). The γ coefficients vary from about 1.5 to 3. Evaluating

the γ coefficients either analytically or from empirical data is difficult and is error prone.
Instead, the coefficients A, B, and C are determined from upwind, downwind, and crosswind
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measurements of σo. This approach was used for deriving the SASS1 G/H table coefficients
from empirical measurements. The σo measurements at upwind, downwind, and crosswind
are,

σo
u = A+B + C (A.117)

σo
d = A−B + C (A.118)

σo
c = A− C (A.119)

where the subscripts indicate upwind u, downwind d, and crosswind c. Expressing these in
the power-law form,

σo
u = βu(θ) U

γu(θ) (A.120)

σo
d = βd(θ) U

γd(θ) (A.121)

σo
c = βc(θ) U

γc(θ). (A.122)

The coefficients A, B, and C are then,

A =
σo

u + 2σo
c + σo

d

4
(A.123)

B =
σo

u − σo
d

2
(A.124)

C =
σo

u − 2σo
c + σo

d

4
(A.125)

This modeling approach was used successfully as the basis for the SASS1 model function
[102].

A.5 The SASS1 Geophysical Model Function

Based primarily on empirical observations of σo from space and from aircraft measurement,
but also including the two-scale scattering theory, the science working team for the SeaSat
scatterometer developed the SASS1 model function. The SASS1 is currently the most com-
monly used wind-to-backscatter model function. Additional detail is provided in Chapter
2.

During the operation of SASS, an extensive comparison of winds, derived from SASS
measurements, was made with a special array of ships and bouys in the North Atlantic Ocean
known as the JASIN experiment [47]. This data, obtained early in the SeaSat mission, was
used to adjust the coefficients of the SASS1 model function to eliminate errors in the SASS
wind measurements.

Conventional wind measurements over the ocean are made by anemometers mounted
on ships or bouys. These measurements consist of fixed-length time averages of the wind
speed and direction at a single point. The scatterometer measurement is essentially an
instantaneous spatial average of the wind over a large area. A bouy measurement typically
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consists of an 8.6min average of the wind speed taken once every hour or so at a single spatial
point. The turbulent nature of the atmosphere over the micro-scale and mesoscale may
produce differences in the wind measurements due to the different techniques of averaging
employed [32].

Furthermore, observational errors in the surface wind measurements from instrument
calibration introduce additional uncertainty. An additional error is due to the micro-scale
turbulence of the surface wind over the temporal averaging period [32].

These problems make determining the “true” wind over the ocean’s surface very difficult.
The “true” wind is required to empirically determine the coefficients of the wind-to-radar
backscatter model function as well as for validating the model. Freilich [32] recently reported
a comprehensive comparison of the winds measured by SASS and a set of weather bouys.
His results, while validating the model function, showed that additional unmodelled effects
(for example, sea surface temperature) should be accounted for (see also [108]).
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Appendix B

Detailed Derivations for Point-Wise
Identifiability

In this appendix detailed derivations are provided for various equations used in the iden-
tifiability proof. Noting the independence of the various noise terms in the scatterometer
measurement noise model given in Chapter 2, one can easily show the following results,

E[z(k)] = s2
t (k) = σo(k) (B.1)

E[z2(k)] = (1 + α2(k))s4
t (k) + β2(k)s2

t (k) + γ2(k) (B.2)

= Vt(k) + s4
t (k) (B.3)

Var[z(k)] = Vt(k) (B.4)

E[z(j)z(k)] = s2
t (j)s

2
t (k) ∀j 6= k (B.5)

E[z2(j)z2(k)] = [Vt(j) + s4
t (j)][Vt(k) + s2

t (k)] ∀j 6= k (B.6)

As a reminder, non-subscripted V (k) and s(k) correspond to the estimated s(k) while the t
subscript denotes the true value. Using the equations (B.1) through (B.6), and noting the
independence of the noise terms, we can show that E[z(k)− s2(k)], E[(z(k)− s2(k))2], and
E[(z(j)− s2(j))2(z(k)− s2(k))2], are, respectively,

E[z(k)− s2(k)] = E[z(k)]− s2(k)

= s2
t (k)− s2(k) (B.7)

E[(z(k)− s2(k))2] = E[z2(k)]− 2E[z(k)]s2(k) + s4(k)

= Vt(k) + s4
t (k)− 2s2

t (k)s
2(k) + s4(k)

= Vt(k) + [s2
t (k)− s2(k)]2 (B.8)
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E[(z(j)− s2(j))2(z(k)− s2(k))2] = E[s4(j)s4(k) + s4(j)z2(k) + s4(k)z2(j)

+z2(j)z2(k)− 2s2(j)z(j)z2(k)

−2s2(j)s4(k)z(j)− 2s4(j)s2(k)z(k)

−2s2(k)z2(j)z(k)

+4s2(j)s2(k)z(j)z(k)]

= s4(j)Vt(k) + s4(j)s4(k) + s4(j)s4
t (k)

+s4(k)Vt(j) + s4(k)s4
t (j) + Vt(j)Vt(k)

+s4
t (j)Vt(k) + s4

t (j)s
4
t (k) + s4

t (k)Vt(j)

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)Vt(k)

−2s2(j)s2
t (j)s

4
t (k)− 2s4(j)s2(k)s2

t (k)

−2s2(k)s4
t (j)s

2
t (k)− 2s2(k)s2

t (k)Vt(j)

+4s2(j)s2(k)s2
t (j)s

2
t (k)

+4δijs
2(j)s2(k)Vt(k)

= [Vt(j) + s4
t (j)][Vt(k) + s4

t (k)]

+s4(j)[Vt(k) + s4
t (k)]

+s4(j)s4(k) + s4(k)[Vt(j) + s4
t (j)]

+4s2(j)s2(k)[δjkVt(k) + s2
t (j)s

2
t (k)]

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)[Vt(k)

+s4
t (k)]− 2s4(j)s2(k)s2

t (k)

−2s2(k)s2
t (k)[Vt(j) + s4

t (j)]

= [Vt(j) + (s2
t (j)− s2(j))2]

[Vt(k) + (s2
t (k)− s2(k))2] (B.9)

where δij is the Kronecker delta,

δij =

{
1 i = j

0 otherwise.
(B.10)
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We next compute E2[Jp(u, v)/T ] using Eq. (3.21), as

E2[Jp(u, v)/T ] =
1

4

[ N∑
k=1

{ 1

T
log Y (k)− 1

T
log T +[

Yt(k)/T + [s2
t (k)− s2(k)]2

]
/Y (k)

}]2

=
1

4

N∑
k=1

N∑
j=1

{ 1

T
log Y (j)− 1

T
log T

+
[
Yt(j)/T + [s2

t (j)− s2(j)]2
]
/Y (j)

}{ 1

T
log Y (k)

− 1

T
log T +

[
Yt(k)/T + [s2

t (k)− s2(k)]2
]
/Y (k)

}
=

1

4

N∑
k=1

N∑
j=1

{ 1

T 2
log Y (j) log Y (k) +

1

T 2
log2 T

+
1

Y (j)Y (k)

[
Yt(j)/T + [s2

t (j)− s2(j)]2
][
Yt(k)/T + [s2

t (k)

−s2(k)]2
]

+
1

T 2
log Y (j) log T +

1

T 2
log Y (k) log T

+
1

T
log Y (k)

[
Yt(j)/T + [s2

t (j)− s2(j)]2
]
/Y (j)

+
1

T
log Y (j)

[
Yt(k)/T + [s2

t (k)− s2(k)]2
]
/Y (k)

+
1

T
log T

[
Yt(j)/T + [s2

t (j)− s2(j)]2
]
/Y (j)

+
1

T
log T

[
Yt(k)/T + [s2

t (k)− s2(k)]2
]
/Y (k)

}
(B.11)

Taking the limit of Eq. (B.11) as T →∞ we obtain

lim
T→∞

E2[Jp(u, v)/T ] =
1

4

N∑
k=1

N∑
j=1

{ 1

Y (j)Y (k)

[
s2

t (j)− s2(j)
]2

[
s2

t (k)− s2(k)
]2}

(B.12)
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We now compute E[J2
p (u, v)/T 2], using the definitions in Eqs. (B.1) through (B.6), as

E[J2
p (u, v)/T 2] = E

{[∑
k

{1

2
log Vt(k) +

1

2
[z(k)− s2(k)]2/Vt(k)

}]2

/T 2
}

=
1

T 2
E

{1

4

∑
j

∑
k

[
log V (j) log V (k)

+ log V (j)[z(k)− s2(k)]2/V (k)

+ log V (k)[z(j)− s2(j)]2/V (j)

+[z(j)− s2(j)]2[z(k)− s2(k)]2/[V (j)V (k)]
]}

=
1

T 2

1

4

∑
j

∑
k

[
log V (j) log V (k) + log V (j)E

{
[z(k)− s2(k)]2

}
/V (k) + log V (k)E

{
[z(j)− s2(j)]2

}
/V (j)

+E
{
[z(j)− s2(j)]2[z(k)− s2(k)]2

}
/[V (j)V (k)]

}
=

1

T 2

1

4

∑
j

∑
k

[
log V (j) log V (k)

+ log V (j)[Vt(k) + (s2
t (k)− s2(k))2]/V (k)

+ log V (k)[Vt(j) + (s2
t (j)− s2(j))2]/V (j)

+
1

V (j)V (k)

[
[V (j) + s4

t (j)][V (k) + s4
t (k)] + s4(j)[V (k) + s4

t (k)]

+s4(j)s4(k) + s4(k)[V (j) + s4
t (j)]

+4s2(j)s2(k)[δijV (k) + s2
t (j)s

2
t (k)]

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)[V (k) + s4
t (k)]

−2s4(j)s2(k)s2
t (k)− 2s2(k)s2

t (k)[V (j) + s4
t (j)]

]}
=

1

T 2

1

4

∑
j

∑
k

{
[log Y (j)− log T ][log Y (k)− log T ]

+[log Y (j)− log T ]T [Yt(k)/T + (s2
t (k)− s2(k))2]/Y (k) +

[log Y (k)− log T ]T [Vt(j)/T + (s2
t (j)− s2(j))2]/Y (j)

+
T 2

Y (j)Y (k)

[
[Y (j)/T + s4

t (j)][Y (k)/T + s4
t (k)]

+s4(j)[Y (k)/T + s4
t (k)]

+s4(j)s4(k) + s4(k)[Y (j)/T + s4
t (j)]

+4s2(j)s2(k)[δijY (k)/T + s2
t (j)s

2
t (k)]

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)[Y (k)/T + s4
t (k)]

−2s4(j)s2(k)s2
t (k)− 2s2(k)s2

t (k)[Y (j)/T + s4
t (j)]

]}
(B.13)
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Taking the limit of Eq. (B.13) as T →∞, we obtain,

lim
T→∞

E[J2
p (u, v)/T 2] =

1

4

∑
j

∑
k

1

Y (j)Y (k)

[
s4

t (j)s
4
t (k) + s4(j)s4

t (k)

+s4(j)s4(k) + s4(k)s4
t (j)

+4s2(j)s2(k)s2
t (j)s

2
t (k)

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)s
4
t (k)

−2s4(j)s2(k)s2
t (k)− 2s2(k)s2

t (k)s
4
t (j)

]
(B.14)

We also need E[Jp(u, v)E[Jp(u, v)]/T
2]. From Chapter 3, the point-wise objective function

Jp(u, v) [see Eq. (3.18)] is

Jp(u, v) =
N∑

k=1

{1

2
log V (k) +

1

2
[z(k)− s2(k)]2/V (k)

}
(B.15)

from which it follows that

E[Jp(u, v)] = E
[ N∑

k=1

{1

2
log V (k) +

1

2
[z(k)− s2(k)]2/V (k)

}]
=

1

2

N∑
k=1

{
log V (k) + E

[
[z(k)− s2(k)]2/V (k)

]}
=

1

2

N∑
k=1

{
log V (k) +

[
Vt(k) + [s2

t (k)− s2(k)]2
]
/V (k)

}
. (B.16)
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From Eqs. (B.15) and (B.16) we have

E
[
Jp(u, v)E[Jp(u, v)/T

2]
]

=
1

4

[ N∑
k=1

{
log V (k) + [z(k)− s2(k)]2/V (k)

}]
[ N∑

k=1

{
log V (k) +

[
Vt(k) + [s2

t (k)− s2(k)]2
]

/V (k)
}]
/T 2

=
1

4

N∑
j=1

N∑
k=1

E
{

log V (j) log V (k)

+ log V (k)[z(k)− s2(k)]2/V (k)

+ log V (j)
[
Vt(k) + [s2

t (k)− s2(k)]2
]
/V (k)

+
1

V (j)V (k)
[z(j)− s2(j)]2[z(k)− s2(k)]2

+
1

V (j)V (k)

[
Vt(j) + [s2

t (j)− s2(j)]2
]

[
Vt(k) + [s2

t (k)− s2(k)]2
]}
/T 2

=
1

4

N∑
j=1

N∑
k=1

{
log V (j) log V (k)

+ log V (k)E
{

[z(k)− s2(k)]2
}
/V (k)

+ log V (j)
[
Vt(k) + [s2

t (k)− s2(k)]2
]
/V (k)

+
1

V (j)V (k)
E

{
[z(j)− s2(j)]2[z(k)− s2(k)]2

}
+

1

V (j)V (k)

[
Vt(j) + [s2

t (j)− s2(j)]2
]

[
Vt(k) + [s2

t (k)− s2(k)]2
]}
/T 2

=
1

T 2

1

4

N∑
j=1

N∑
k=1

{
log V (j) log V (k)

+ log V (k)
[
Vt(k) + [s2

t (k)− s2(k)]2
]
/V (k)

+ log V (j)
[
Vt(k) + [s2

t (k)− s2(k)]2
]
/V (k)

+
1

V (j)V (k)

{
[V (j) + s4

t (j)][V (k) + s4
t (k)]

+s4(j)[V (k) + s4
t (k)]

+s4(j)s4(k) + s4(k)[V (j) + s4
t (j)]

+4s2(j)s2(k)[δijV (k) + s2
t (j)s

2
t (k)]

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)[V (k) + s4
t (k)]

−2s4(j)s2(k)s2
t (k)− 2s2(k)s2

t (k)[V (j) + s4
t (j)]

}
+

1

V (j)V (k)

[
Vt(j) + [s2

t (j)− s2(j)]2
]

[
Vt(k) + [s2

t (k)− s2(k)]2
]}

=
1

T 2

1

4

N∑
j=1

N∑
k=1

{
[log Y (j)− log T ][log Y (k)− log T ]

+[log Y (k)− log T ]T
[
Yt(k)/T + [s2

t (k)− s2(k)]2
]

/Y (k) + [log Y (j)− log T ]T
[
Yt(k)/T +

[s2
t (k)− s2(k)]2

]
/Y (k)

+
T 2

Y (j)Y (k)

{
[Y (j)/T + s4

t (j)][Y (k)/T + s4
t (k)]

+s4(j)[Y (k)/T + s4
t (k)]

+s4(j)s4(k) + s4(k)[Y (j)/T + s4
t (j)]

+4s2(j)s2(k)[δijY (k)/T + s2
t (j)s

2
t (k)]

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)[Y (k)/T + s4
t (k)]

−2s4(j)s2(k)s2
t (k)− 2s2(k)s2

t (k)[Y (j)/T + s4
t (j)]

}
+

T 2

Y (j)Y (k)

[
Yt(j)/T + [s2

t (j)− s2(j)]2
]

[
Yt(k)/T + [s2

t (k)− s2(k)]2
]}

(B.17)
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Taking the limit as T →∞, we obtain

lim
T→∞

E
[
Jp(u, v)E[Jp(u, v)/T

2]
]

=
1

4

N∑
j=1

N∑
k=1

{ 1

Y (j)Y (k)

[
s4

t (j)s
4
t (k) + s4(j)s4

t (k)

+s4(j)s4(k) + s4(k)s4
t (j)

+4s2(j)s2(k)s2
t (j)s

2
t (k)

−2s2(j)s4(k)s2
t (j)− 2s2(j)s2

t (j)s
4
t (k)

−2s4(j)s2(k)s2
t (k)− 2s2(k)s2

t (k)s
4
t (j)

+[s2
t (j)− s2(j)]2[s2

t (k)− s2(k)]2
]}

(B.18)
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Appendix C

The Geostrophic Equation

In this appendix a detailed derivation of the geostrophic equation from the fundamental
equations of motion of the atmosphere is provided for background. This is followed by an
analysis of the divergence and curl of geostrophic wind fields.

C.1 Derivation of the Geostrophic Equations

In this section an outline of the development of the geostrophic approximation to the Navier-
Stokes equation is given. The approach follows Pedlosky [88]. Let L be the characteristic
length scale of motion and U be the horizontal velocity scale. Let τ = L/U be the time scale
of motion. The nondimensional Rossby number, denoted by ε and defined as

ε =
U

2ΩL
, (C.1)

where Ω = 7.3× 10−5 s−1 is the angular velocity of the earth’s rotation, is a measure of the
effects of the earth’s rotation on the atmosphere. For ε less than unity, the earth’s rotation
is a significant factor in the atmospheric motion. For wind scatterometry, L = 25 km and
U ≈ 3 m/s; hence, ε ≈ 0.8.

Assuming that there are no sources or sinks of mass, mass conservation considerations
lead to the generalized continuity equation,

∂

∂t
ρ+∇ · ρu = 0 (C.2)

where ρ is the fluid density (which in general varies with space and time), t is time, and
u = ux + vy + wz is the fluid velocity vector where x, y and z are unit vectors in the x, y,
and z directions respectively. We begin with Newton’s law of motion for fluid flow,

ρ
∂

∂t
u = −∇p+ ρ∇φ+ F(u) (C.3)
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where F is force and φ is the conservative potential (e.g., gravity). This is the generalized
Navier-Stokes equation. For Newtonian fluids, such as water or air, the force F is due only
to friction. When the thermodynamic state variables are constant, F is

F = µ∇2u + µ∇(∇ · u)/3. (C.4)

As we shall see, the geostrophic approximation neglects the frictional part of F and
considers only the potential due to the effects of gravity and the earth’s rotation. For an
observer in a uniformly rotating coordinate frame, Eq. (C.3) can be written, as

ρ

[
d

dt
u + 2Ω× u

]
= −∇p+ ρ∇Φ + F(u) (C.5)

where Ω is the planetary angular velocity vector (Ω = |Ω|), Φ = |Ω×u|2/2 is the magnitude
of the centripetal acceleration and 2Ω × u is Coriolis force on the atmosphere due to the
earth’s rotation. An order of magnitude estimate of the relative acceleration is,

d

dt
u = ρ

∂

∂t
u + (u · ∇)u = O(U/τ, U2/L) (C.6)

where the order is the larger of the two terms in parenthesis on the right. An estimate of
the order of magnitude of the Coriolis acceleration is,

2Ω× u = O(2ΩU). (C.7)

The order of magnitude estimate of the ratio is,

| d
dt
u|

|2Ω× u|
= O

(
1

2Ωτ
,
U

2ΩL

)
(C.8)

Both terms in the parenthesis are recognized as the Rossby number. When the Rossby
number is small, the relative acceleration du/dt is negligible. Using Eq. (C.4), an order of
magnitude estimate of F , is

F = O

(
νU

L2

)
(C.9)

where ν is the kinematic viscosity. This estimate is based on the assumption that a single
value of U characterizes the variation in u. When the friction force (and the Rossby number)
is sufficiently small, Eq. (C.5) can be approximated by,

ρ2Ω× u = −∇p+ ρ∇Φ (C.10)

The atmosphere is a relatively thin layer above the Earth’s surface. Within this layer ∇Φ
is essentially constant and is equal to the gravitational acceleration g normal to the Earth’s
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surface. In spherical coordinates, Eq. (C.10) is

ρ[−2Ωv sin θ + 2Ωw cos θ] = − 1

r cos θ

∂

∂φ
p (C.11)

ρ2Ωu sin θ = −1

r

∂

∂φ
p (C.12)

−ρ2Ωu cos θ = − ∂

∂r
p− ρg (C.13)

To understand the next step, it is helpful to partition the pressure p and density ρ fields
into two parts. If u = v = w = 0, then p and ρ must be independent of φ and θ and therefore
only a function of r, i.e.,

p = ps(r) + p′(r, θ, φ) (C.14)

ρ = ρs(r) + ρ′(r, θ, φ) (C.15)

where ps(r) and ρs(r) correspond to the fields which would exist without fluid motion and
p′ and ρ′ are due to the fluid motion. It then follows from Eq. (C.13), that

∂

∂r
ps = ρsg (C.16)

so that Eqs. (C.11) through (C.13) become,

(ρs + ρ′)[−2Ωv sin θ + 2Ωw cos θ] = − 1

r cos θ

∂

∂φ
p′ (C.17)

(ρs + ρ′)2Ωu sin θ = −1

r

∂

∂φ
p′ (C.18)

−(ρs + ρ′)2Ωu cos θ = − ∂

∂r
p′ − ρ′g (C.19)

Let D be the thickness of the region of vertical motion. In wind scatterometry D is at
most a few km. The ratio of the vertical to horizontal motion can be estimated, as

w

u
= O

(w
v

)
= O

(
D

L

)
� 1; (C.20)

hence, the cos θ term in Eq. (C.17) can be neglected. An order of magnitude estimate of the
vertical component of the Coriolis acceleration, ρ2Ωu cos θ, is

ρ2Ωu cos θ = O(ρ2ΩU). (C.21)

Since the horizontal pressure gradient must balance the Coriolis acceleration,

p′ = O(ρ2ΩUL) (C.22)
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The order of magnitude estimate of the vertical component of the pressure field gradient,
∂p′/∂r, is then

∂

∂r
p′ = O

(
p′

D

)
= O

(
ρ
2ΩUL

D

)
(C.23)

so that the ratio of the vertical component of the Coriolis acceleration and the vertical
pressure gradient is,

ρ2Ωu cos θ

∂p′/∂r
= O

(
D

L

)
� 1 (C.24)

Hence, the terms proportional to 2Ω cos θ in both vertical and horizontal equations can be
neglected, implying that only the locally normal component of the earth’s rotation, Ω sin θ,
is significant.

An upper bound on the magnitude of ρ′ is,

ρ′ ≤ O

(
p′

gD

)
= O

(
ρ
2ΩUL

gD

)
(C.25)

so that
ρ′

ρ
= O

(
U

2ΩL

)
4Ω2L2

gD
= ε

4Ω2L2

gD
(C.26)

The term 4Ω2L2/gD depends only on the geometric scale. For the surface wind fields of
interest, 4Ω2L2/gD < 1. So long as the Rossby number ε is small, ρ′/ρ ≤ O(e) � 1 and
ρ′ � ρs(r), so that (ρs + ρ′) can be approximated by ρs.

Based on these approximations, Eqs. (C.17) through (C.19) can be approximated, as

Cpv =
1

ρsr cos θ

∂

∂φ
p (C.27)

Cpu = − 1

ρsr

∂

∂θ
p (C.28)

ρg = − ∂

∂r
p (C.29)

where
Cp = 2Ω sin θ. (C.30)

Note that at exactly the equator (θ = 0) the geostrophic equation does not apply. Near the
equator Cp can be approximated by 2Ωθ.

The atmosphere is a very thin layer of fluid over the earth’s surface. If we define z = r−r0
where r0 is the radius of the earth’s surface and note that z � r, Eqs. (C.27) through (C.29)
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can be written, as

Cpv =
1

ρsro cos θ

∂

∂φ
p (C.31)

Cpu = − 1

ρsro

∂

∂θ
p (C.32)

ρg = − ∂

∂z
p (C.33)

These equations are known as the geostrophic approximation to the full momentum equa-
tion. The horizontal velocity is a balance between the horizontal pressure gradient and the
horizontal component of the Coriolis acceleration. In vector form, the first two equations in
the geostrophic approximation can be written, as

uH =
1

Cpρs

k×∇p (C.34)

where k is the unit vector perpendicular to the surface of the sphere and uH = (u, v)T is
the horizontal velocity vector. This equation is known as the geostrophic equation. The
geostrophic approximation provides no information about the vertical velocity w. Note that
the density field ρs is independent of the fluid motion since it corresponds to the density
field which would be present if the fluid were at rest (see Eq. (C.15)).

C.2 Divergence of the Geostrophic Wind Field

In a plane tangent to the earth’s surface, the geostrophic equation [Eq. (C.34)] can be
written in component form in rectangular coordinates, as

u = − 1

ρsCp

∂

∂y
p (C.35)

v =
1

ρsCp

∂

∂x
p (C.36)

Note that the value of Cp = 2Ω sin θ depends on the latitude θ of the tangent point.

The divergence ∇ · u and curl ∇ × u of a two-component vector field u = (u, v)T in
rectangular coordinates are, respectively,

∇ · u =
∂u

∂x
+
∂v

∂y
(C.37)

∇× u =

(
∂v

∂x
− ∂u

∂y

)
z, (C.38)

where z is a unit vector in the z direction.
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Taking the divergence of the geostrophic equation produces

∇ · u =
∂u

∂x
+
∂v

∂y
=

1

ρsCp

(
− ∂2

∂x∂y
+

∂2

∂x∂y

)
p = 0; (C.39)

hence, the geostrophic equation results in nondivergent wind fields.

If we take the curl of the geostrophic equation, we have,

∇× u =

(
∂v

∂x
− ∂u

∂y

)
z = − 1

ρsCp

(
∂2

∂x2
+

∂2

∂y2

)
pz (C.40)

which, in general, will be nonzero.

C.3 Curl of a Non-divergent, Isotropic Wind Field

In this section, some of the properties of the curl of the velocity field are considered. Following
Freilich [31], the curl spectrum of a non-divergent, isotropic wind field is derived. Consider
a general two-dimensional vector field u(x, y) with cartesian components u(x, y) in the x-
direction and v(x, y) in the y-direction. Let d(x, y) be the divergence of the field u(x, y) and
c(x, y) be the curl of the field.

The Helmholtz theorem states that the vector field u(x, y) can be written as the sum of
two other vector fields A(x, y) and B(x, y),

u(x, y) = A(x, y) + B(x, y) (C.41)

where A(x, y) is an irrotational or curl-free field such that

∇×A(x, y) = 0 (C.42)

and B(x, y) is a non-divergent field such that,

∇ ·B(x, y) = 0 (C.43)

For convenience, define the cartesian components of the fields as,

A(x, y)
4
= ax(x, y)x + ay(x, y)y (C.44)

B(x, y)
4
= bx(x, y)x + by(x, y)y (C.45)
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Thus, the divergence and curl of A and B are,

∂

∂x
ax(x, y) +

∂

∂y
ay(x, y) = d(x, y) (C.46)

∂

∂x
ay(x, y)−

∂

∂y
ax(x, y) = 0 (C.47)

∂

∂x
by(x, y)−

∂

∂y
bx(x, y) = c(x, y) (C.48)

∂

∂x
bx(x, y) +

∂

∂y
by(x, y) = 0 (C.49)

where d(x, y) is the divergence field of A and c(x, y) is the curl field of B.
By alternately cross-differentiating and adding the previous equations, we can produce a

set of second-order partial differential equations relating the components of the vector fields
to the directional partials of the curl and divergence fields, i.e.,

∂2

∂x2
ax(x, y) +

∂2

∂y2
ax(x, y) =

∂

∂x
d(x, y) (C.50)

∂2

∂x2
ay(x, y) +

∂2

∂y2
by(x, y) =

∂

∂y
d(x, y) (C.51)

∂2

∂x2
by(x, y) +

∂2

∂y2
by(x, y) =

∂

∂x
c(x, y) (C.52)

∂2

∂x2
bx(x, y) +

∂2

∂y2
bx(x, y) = − ∂

∂y
c(x, y) (C.53)

Solutions of these equations can be obtained using Fourier transforms. The component fields
can be defined in terms of their Fourier transforms, as

ax(x, y) =
1

4π2

∫ ∫
Ax(kx, ky)e

j(kxx+kyy)dkxdky (C.54)

ay(x, y) =
1

4π2

∫ ∫
Ay(kx, ky)e

j(kxx+kyy)dkxdky (C.55)

bx(x, y) =
1

4π2

∫ ∫
Bx(kx, ky)e

j(kxx+kyy)dkxdky (C.56)

by(x, y) =
1

4π2

∫ ∫
By(kx, ky)e

j(kxx+kyy)dkxdky (C.57)

c(x, y) =
1

4π2

∫ ∫
C(kx, ky)e

j(kxx+kyy)dkxdky (C.58)

d(x, y) =
1

4π2

∫ ∫
D(kx, ky)e

j(kxx+kyy)dkxdky (C.59)

where Ax, Ay, Bx, By, C, and D are the Fourier coefficients and kx and ky are the wavenum-
bers in the x-direction and y-direction respectively. In terms of the Fourier coefficients the
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second-order partial differential Eqs. (C.50) through (C.53) become,∫ ∫
{(k2

x + k2
y)Ax(kx, ky) + jkxD(kx, ky)}ej(kxx+kyy)dkxdky = 0 (C.60)∫ ∫

{(k2
x + k2

y)Ay(kx, ky) + jkxD(kx, ky)}ej(kxx+kyy)dkxdky = 0 (C.61)∫ ∫
{(k2

x + k2
y)By(kx, ky) + jkxC(kx, ky)}ej(kxx+kyy)dkxdky = 0 (C.62)∫ ∫

{(k2
x + k2

y)Bx(kx, ky)− jkxC(kx, ky)}ej(kxx+kyy)dkxdky = 0. (C.63)

The solutions to these equations are [31],

Ax(kx, ky) = −jkx

k2
x+k2

y
D(kx, ky) (C.64)

Ay(kx, ky) = −jky

k2
x+k2

y
D(kx, ky) =

ky

kx

Ax(kx, ky) (C.65)

By(kx, ky) = −jky

k2
x+k2

y
C(kx, ky) (C.66)

Bx(kx, ky) = jkx

k2
x+k2

y
C(kx, ky) = −kx

ky

By(kx, ky) (C.67)

Thus, given either the spectra of the divergence and curl or realizations of the divergence
and curl, the original vector field can be computed.

Using the non-divergent wind field predicted by the geostrophic equation, A(x, y) = 0
and u(x, y) = B(x, y). The two-dimensional energy spectrum E(kx, ky) of B(kx, ky), is,

E(kx, ky) = |Bx(kx, ky)|2 + |By(kx, ky)|2 =

(
1 +

k2
x

k2
y

)
|Bx(kx, ky)|2 (C.68)

In a paper on the properties of mesoscale wind fields, Freilich and Charney showed that
the one-dimensional kinetic energy spectrum of the wind field can be expressed as a power
law [33],

Ê(k) = αk−b (C.69)

where α is the variance of the wind field, k = (k2
x + k2

y)
1
2 and b ≈ 2. Assuming the two-

dimensional energy spectrum E(kx, ky) is isotropic, the energy spectrum will be circularly

symmetric and E(kx, ky) will be related to the one-dimensional energy spectrum Ê(k) by
[33],

Ê(k) = πkE(kx, ky) (C.70)

so that the power-law for the two-dimensional spectrum becomes,

E(kx, ky) =
α

π
k−3 (C.71)
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Using Eqs. (C.68) and (C.71), the coefficients |Bx(kx, ky)|2 are

|Bx(kx, ky)|2 =
α

π

k2
y

(k2
x + k2

y)
5/2
. (C.72)

It follows that the curl spectrum C(kx, ky) is,

|C(kx, ky)|2 =
α

π

1√
k2

x + k2
y

=
α

π

1

k
; (C.73)

hence, the curl energy spectrum is isotropic and is proportional to the inverse of the spectral
wavenumber. This information is useful in defining a model for the wind field curl. Note
that these results are for the average curl spectrum. The energy spectrum from wind fields
containing fronts may not adhere to the same power-law dependency [17, 33].
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Appendix D

Simulation of “Real” Mesoscale Wind
Fields

Since there is no existing mesoscale wind field data available at the scatterometer sampling
resolution, test wind fields must be generated by simulation. This appendix describes the
method used for generating the simulated mesoscale wind fields used in this research. The
method was developed by Beven and Freilich [9] for use in generating wind fields for eval-
uating NSCAT performance. The wind fields used in this research are these same fields
generated by Beven and Freilich for NSCAT. Following [9], a brief description of their tech-
nique is provided below.

D.1 Computation of “Realistic” Mesoscale Wind Fields

Wind fields at a resolution of 1.875 deg in latitude and longitude were obtained from the
European Center for Medium-Range Weather Forecasting (ECMWF). The ECMWF has
what is generally considered to be the best global numerical weather predection model in
operation. In 1986 and 1987, ECMWF generated 60 wind fields (two weeks at 6 hour
intervals) which assimilated subjectively dealiased SASS winds into their state-of-the-art
forecasting model. On plots of these wind fields, templates of the NSCAT swath were laid
out and orbit passes which covered significant meteorological features were selected. The
choices of the passes where based on a number of subjective criteria including features
absent in previous simulations of scatterometer performance such as small-scale cyclones,
sharp fronts, small-scale divergence, regions of both high and low wind speeds, etc. A total
of 24 passes were selected containing significant small-scale variability.

For each pass, the 1.875 deg wind field data was interpolated to 10 km resolution over
the observation swath of the scatterometer using a Laplacian-spline interpolation scheme.
Smaller scale variability was then added based on the work of Freilich and Chelton [33].
Freilich and Chelton showed that, assuming the wind was isotropic and non-divergent, the
kinetic energy spectrum fell off like k−2 (see Appendix C). For each pass, the interpolated
wind field was segmented into adjacent 2000 × 2000 km regions and the variance of the u
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and v components were computed separately. A random phase 2000 × 2000 km isotropic
non-divergent wind field with an energy spectrum of k−1 with scales of motions from 10
to 100 km was then computed using the Fourier approach described in the last section of
Appendix C (see also [32]). This wind field was scaled component-wise by the variances
previously computed. The scaled wind field was then added component-wise to the original
wind field.

This procedure preserves the small-scale variability of the original field and adds even
smaller-scale variability which has consistent kinetic energy spectrum. The result is felt to
be “realistic” mesoscale wind fields at 10 km resolution. For use in evaluating the wind field
model, the 10 km resolution wind fields were sampled to 25 km resolution after averaging of
adjacent 10 km resolution sample points. An example of the resulting wind field is shown in
Fig. 4.4.

D.2 The Divergence and Curl of “Realistic” Mesoscale

Wind Fields

At large synoptic scales the geostrophic equation is an excellent approximation. At this
scale the wind field is nondivergent. At the smaller mesoscale, however, the wind field may
contain regions of non-zero divergence. To illustrate this, the vorticity and divergence of the
simulated mesoscale wind fields were computed by approximating the directional partials by
the first-order finite-difference equation,

∂

∂x
a(x, y) ≈ 1

h
[a(xi, yi)− a(xi−1, yi)] (D.1)

where h is the sample spacing. Figures D.1 and D.2 illustrate the vorticity and divergence of
a section of one such field. In Fig. D.1, the vorticity is shown as a contour map superimposed
on the wind vector field. Similarly, Fig. D.2 shows the divergence superimposed on the wind
vector field. The spacing between vectors is approximately 80 km with a vector length
corresponding to the sample spacing of 15 m/s. The contour intervals, shown in the legend,
are in compatible, but arbitrary, units. Note that the ranges of divergence and curl have
nearly the same magnitude though the scales of variation differ. The divergence varies slowly
over large regions while the curl shows much more rapid change over shorter scales. The
absense of very small scale divergence is consistent with the generation of the wind fields
were the smallest scale variations were all non-divergent.

While we expect non-zero vorticity, these figures illustrate that mesoscale wind fields also
contain regions of non-zero divergence. Because the wind field contains non-zero divergence,
the geostrophic equation can not exactly model the field; hence, the wind field model should
be general enough to include (divergent) ageostrophic winds.
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Figure D.1: Example of the vorticity of a mesoscale wind field. The vorticity is shown as a
contour plot superimposed on a wind vector field map (see text).188



Figure D.2: Example of the divergence of a mesoscale wind field. The divergence is shown
as a contour plot superimposed on a wind vector field map (see text).189



Appendix E

Detailed Derivations for the Wind
Field Model

In this appendix, detailed derivations and proofs used in the derivation of the wind field model
are provided. This includes a proof of the invertibility of the K matrix, the computation of
K−1, and a proof of the linear independence of the columns of the F matrix.

E.1 Computation of K−1

The N2 ×N2 matrix K is defined, as

K = I ⊗Q+Q⊗ I (E.1)

where Q is an N ×N tridiagonal matrix with elements qi,j, where

qi,j =


1
2
, if i = j,

−1
4
, if |i− j| = 1,

0, otherwise

(E.2)

and I is an N ×N identity matrix.

We will exploit the well known fact [46, 80] that the unitary sine transform matrix Ψ
with elements ψi,j diagonalizes Q, where

ψi,j =

√
2

N + 1
sin

(
ijπ

N + 1

)
(E.3)

and
ΨQΨT = ΨQΨ = Λq (E.4)
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The off-diagonal elements of Λq are zero and the diagonal elements λq
i,i

4
= λq(i) of Λq are

λq(i) =
1

2

[
1− cos

(
iπ

N + 1

)]
(E.5)

This permits us to explictly compute the elements q−1
i,j of Q−1, as

q−1
i,j =

N∑
k=1

ψi,kψk,j/λ
q(i)

=
4

N + 1

N∑
k=1

[
sin

(
ikπ

N + 1

)
sin

(
jkπ

N + 1

)]
/

[
1− cos

(
kπ

N + 1

)]
]

=
2

N + 1

N∑
k=1

[
cos

(
k(i− j)π

N + 1

)
− cos

(
k(i+ j)π

N + 1

)]
/[

1− cos

(
kπ

N + 1

)]
(E.6)

The N ×N matrix Ψ can be used to diagonalize K. Using the elementary properties of
the Kronecker product and noting that ΨT Ψ = ΨΨ = I we see that,

(Ψ⊗Ψ)K(Ψ⊗Ψ) = (Ψ⊗Ψ)(I ⊗Q+Q⊗ I)(Ψ⊗Ψ)

= (Ψ⊗Ψ)(I ⊗Q)(Ψ⊗Ψ) + (Ψ⊗Ψ)(Q⊗ I)(Ψ⊗Ψ)

= (Ψ⊗Ψ)([IΨ]⊗ [QΨ]) + (Ψ⊗Ψ)([QΨ]⊗ [IΨ])

= ([ΨIΨ]⊗ [ΨQΨ]) + ([ΨQΨ]⊗ [ΨIΨ])

= I ⊗ (ΨQΨ) + (ΨQΨ)⊗ I

= I ⊗ Λq + Λq ⊗ I
4
= Λ (E.7)

Note that the matrices I ⊗ Λq and Λq ⊗ I are diagonal matrices with off-diagonal elements
zero so that Λ is also diagonal. It follows from (E.5) that the N2 eigenvalues of Λ (which
are also the eigenvalues of K) are,

λk,k
4
= λ(k) = λq(i) + λq(j) = 1− 1

2
cos[iπ/(N + 1)]− 1

2
cos[jπ/(N + 1)] (E.8)

where i = mod(k − 1, N) + 1 and j = int((k − 1)/N) + 1. Note that the eigenvalues of K
are strictly positive, i.e.,

0 < λ(k) < 2 for all k (E.9)

With strictly positive eigenvalues, K is invertible. The eigenvalues of K−1 are the inverse of
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the eigenvalues of K, i.e.,

λK−1

k,k

4
= λK−1

(k) =
1

λq(i) + λq(j)
=

2

2− cos[iπ/(N + 1)]− cos[jπ/(N + 1)]
(E.10)

We can explictly write the elements k−1
m,n of K−1, as

k−1
m,n =

N2∑
l=1

(Ψ⊗Ψ)m,lλ
K−1

(l)(Ψ⊗Ψ)l,n

=
N2∑
l=1

ψbmc,blcψdme,dleψbnc,blcψdne,dle/λ(l)

=
8

(N + 1)2

N2∑
l=1

sin

(
bmcblcπ
N + 1

)
sin

(
dmedleπ
N + 1

)
·

sin

(
bncblcπ
N + 1

)
sin

(
dnedleπ
N + 1

)
/ (E.11)[

2− cos

(
iπ

N + 1

)
− cos

(
jπ

N + 1

)]
where bic 4

= int((i− 1)/N) + 1 and die 4
= mod(i− 1, N) + 1.

E.2 Linear Independence of the Columns of F

In this section the linear independence of the columns of the F matrix is shown. For conve-
nience in defining F , F is partitioned into 4 submatrices,

F =
[
F1 F2 F3 F4

]
(E.12)

where the Fi matrices are defined, as

F1 =

[
1A2 1A3 . . . 1AN

4A2 4A3 . . . 4AN

]
(E.13)

F2 =

[
2A1 2AN+1 . . . 2AN2−N+1

3A1 3AN+1 . . . 3AN2−N+1

]
(E.14)

F3 =

[
1AN 1A2N . . . 1AN2

3AN 3A2N . . . 3AN2

]
(E.15)

F4 =

[
1AN2−N+1 1AN2−N+2 . . . 1AN2−1

3AN2−N+1 3AN2−N+2 . . . 3AN2−1

]
(E.16)
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in which jAi is the ith column of the jA matrix,

1A =
1

4
GK−1 (E.17)

2A =
1

4

[
GK−1 + 4I

]
(E.18)

3A =
1

4
HK−1 (E.19)

4A =
1

4

[
HK−1 − 4I

]
. (E.20)

where the N2 ×N2 matrices G and H are defined as,

G
4
= I ⊗ [Ds − I] (E.21)

H
4
= [I −Ds]⊗ I (E.22)

in which Ds is an N ×N matrix which has a unity sub-diagonal and is zero everywhere else,
i.e., the elements ds

i,j of Ds are

ds
i,j =

{
1, if j = i− 1

0, else
(E.23)

The matrices F1 and F4 are 2N2 × (N − 1) while F2 and F3, are 2N2 ×N .

Using the properties of the Kronecker product and the definition of Ds, it can be shown
that G is the block Jordan-form matrix,

G =


Ds − I 0 . . . 0

0 Ds − I
. . .

...
...

. . . . . . 0
0 . . . 0 Ds − I

 (E.24)

while H is a block tridiagonal matrix,

H =


I 0 0 . . . 0
−I I 0 . . . 0

0 −I I
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −I I

 (E.25)

Note that both G and H are full rank and invertible. It can be readily verified that the
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matrix T , with elements ti,j, where

ti,j =

{
1, if j ≤ i

0, otherwise
(E.26)

is the inverse of the matrix (I −Ds), i.e., (I −Ds)−1 = T ; hence,

G−1 = I ⊗ T (E.27)

H−1 = T ⊗ I (E.28)

Since G and H are invertible, it follows that 1A = GK−1 and 3A = HK−1 are full rank
with independent columns. From their definition it is readily apparent that the columns of
F3 and F4 are linearly independent since they are composed of different columns of 1A and

3A. In the following section we show that 2A = (GK−1 + 4I)/4 and 3A = (HK−1 − 4I)/4
are full rank. It then follows that the columns of F1 and and F2 are linearly independent.
Since no Fi matrix shares a column from the same jA matrix with any other Fk matrix, the
columns of the Fi matrices are linearly independent.

E.3 Rank of GK−1 + 4I and HK−1 − 4I

We want to show that GK−1 + 4IN2 is full rank. Note that,

GK−1 + 4IN2 = GK−1 + 4KK−1 = G(IN2 + 4K)K−1 (E.29)

where IN2 is the N2 × N2 identity matrix. Since both G and K−1 are full rank, the only
question is the rank of (IN2 + 4K). Using the definitions,

G = IN ⊗ [Ds − IN ] (E.30)

K = IN ⊗Q+Q⊗ IN (E.31)

where IN is the N ×N identity matrix, we see that

(IN2 + 4K) = (IN2 + 4IN ⊗Q+ 4Q⊗ IN)

= IN ⊗ IN + 4IN ⊗Q+ 4Q⊗ IN

=
1

2
IN ⊗ IN + 4IN ⊗Q+ 4Q⊗ IN +

1

2
IN ⊗ IN

=
1

2
IN ⊗ (IN + 8Q) +

1

2
(IN + 8Q)⊗ IN)

= IN ⊗Q1 +Q1 ⊗ IN
4
= K1 (E.32)
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where Q1 = 1
2
(IN + 8Q) is an N ×N tridiagonal, symmetric Toeplitz matrix,

Q1 =
1

2


5 1 0 . . . 0

1 5 1
. . .

...

0 1 5
. . . 0

...
. . . . . . . . . 1

0 . . . 0 1 5

 (E.33)

Q1 can be readily seen to be full rank and can be diagonalized using the Ψ matrix. Since
Q1 is full rank, it follows that K1 is full rank and therefore GK−1 + 4IN2 is full rank. Using
this same procedure it is easy to show that HK−1 − 4IN2 is full rank.
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Appendix F

Options for the Wind Field Model

In this Appendix, alternatives for the wind field model are considered. In Appendix G, the
modelling error for each of these alternatives is evaluated. Sections F.1 through F.5 provide
alternatives models for the vorticity and divergence fields. These are applicable for both the
normal boundary (NB) and parameterized boundary condition (PBC) models. Section F.6
considers an alternative model for the parameterization of the boundary conditions.

We begin with Eq. (4.68) from Chapter 4, repeated here for completeness,

W = FX +RcC +RdD (F.1)

where W contains the components of the wind field, X contains the pressure field boundary
values, and the 2N2 elements vectors C and D contain the lexicographic-ordered vorticity
and divergence fields, respectively. Rc and Rd are 2N2 ×N2 matrices.

F.1 Zero Vorticity, Zero Divergence Model

The simplest model for the wind field is obtained when the vorticity and divergence are
assumed to be identically zero. In this case, the wind field model in Eq. (F.1) reduces to,

W = FX (F.2)

Given W , the least-squares estimate of the boundary conditions X may be obtained, as

X = F †W (F.3)

where F † is the generalized inverse of F . Since the system of equations is overdetermined,
F † = (F TF )−1F T , and, since F is full-rank, the X vector will be identifiable (see Chapter
5).

Because mesoscale wind fields tend to have regions with both non-zero vorticity and
non-zero divergence, this model is generally unsuitable.
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F.2 Constant Vorticity, Constant Divergence Model

A slightly more general model for the vorticity and divergence fields is the case when the
vorticity is assumed to a constant c and the divergence is assumed to a constant d. In this
case Eq. (F.1) reduces to,

W = FX + cR
c
+ dR

d
(F.4)

where R
c

and R
d

are 2N2 element vectors with elements R
c

n and R
d

n which are the sum of
the elements rc

i,j and rd
i,j of the Rc and Rd matrices, respectively,

R
c

n =
2N2∑
j=1

rc
n,j (F.5)

R
d

n =
2N2∑
j=1

rd
n,j. (F.6)

To express the model in a simple form, define a new 4N parameter vector Xcd by augmenting
X by c and d, i.e.,

Xcd =

 X
c
d

 (F.7)

and let the 2N2 × 4N matrix Fcd be the matrix created by column-augmenting the matrix

F by R
c

and R
d
, i.e.,

Fcd =
[
F R

c
R

d
]
. (F.8)

Then Eq. (F.4) can be written, as
W = FcdXcd (F.9)

By construction, R
c

and R
d

will be linearily independent and will be linearily independent
of the columns of F . It follows that the columns of Fcd will be linearily independent so that
Fcd is full rank; hence, there is a unique relationship between a given W and the parameters
Xcd, as required for field-wise identifiability (see Chapter 5). Consequently, the parameters
in Xcd will be identifiable. Given W , a least-squares estimate of Xcd is,

Xcd = F †
cdW (F.10)

where F †
cd is the generalized inverse of Fcd. Since the system of equations is overdetermined,

F †
cd = (F T

cdFcd)
−1F T

cd.
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F.3 Polynomial Vorticity and Divergence

More general models of the vorticity and divergence fields can be obtained using bivariate
polynomials. This is the approach used in Chapter 4. For completeness, it is repeated and
expanded here.

The vorticity field ζi,j and divergence field δi,j may be parameterized as bivariate poly-
nomials, i.e.,

ζi,j =
Mc∑

m=0

Mc∑
n=0

m+n≤Mc

cm,ni
mjn (F.11)

δi,j =

Md∑
m=0

Md∑
n=0

m+n≤Md

dm,ni
mjn (F.12)

The number of parameters in each of the vorticity and divergence polynomials is Nc =
(Mc + 1)(Mc + 2)/2 and Nd = (Md + 1)(Md + 2)/2, respectively. Using the polynomial
parameterization, Eq. (F.1) can then be written, as

W = FX +Rc

Mc∑
m=0

Mc∑
n=0

m+n≤Mc

cm,nQm,n +Rd

Md∑
m=0

Md∑
n=0

m+n≤Md

dm,nQm,n (F.13)

= FX +
Mc∑

m=0

Mc∑
n=0

m+n≤Mc

cm,nR
cQm,n +

Md∑
m=0

Md∑
n=0

m+n≤Mc

dm,nR
dQm,n (F.14)

where the kth element kqm,n of the N2 element vector Qm,n is,

kqm,n = bkcm + dken (F.15)

in which bkc 4
= int[(k − 1)/N ] + 1 and dke 4

= mod(k − 1, N) + 1. The constant vorticity or
divergence case corresponds to Mc = 0 or Md = 0, respectively. The case when the vorticity
or divergence is assumed to be identically zero will be denoted by Mc = −1 or Md = −1,
respectively. In Chapter 4 the special case when Mc = Md = 1 is considered.

Equation (F.13) can be written, as

W = FX +RcΥcX
c
+RdΥdX

d
(F.16)

where X contains the pressure field boundary conditions [see Eq. (4.65)], X
c
and X

d
contain

the cm,n and dm,n parameters, respectively, in row order, and the N2 × Nc matrix Υc and
the N2 ×Nd matrix Υd are constructed from the Qm,n vectors, i.e., the kth column of Υc is
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Qm,n where k = m+ n(2Mc + 3− n)/2 + 1, i.e.,

Υc =
[
Q0,0 Q0,1 Q0,2 · · · Q0,Mc Q1,0 Q1,1 · · ·QMc,0

]
. (F.17)

Similarily, the kth column of Υd is Qm,n where k = m+ n(2Md + 3− n)/2 + 1, i.e.,

Υd =
[
Q0,0 Q0,1 Q0,2 · · · Q0,Md

Q1,0 Q1,1 · · ·QMd,0

]
. (F.18)

Note that if Mc = Md that Υc = Υd. For clarity,

X
c
=



c0,0

c0,1

c0,2
...
c1,0

c1,1
...

cMc,0


(F.19)

and

X
d

=



d0,0

d0,1

d0,2
...
d1,0

d1,1
...

dMc,0


. (F.20)

Let X
a

be defined as the concatenation of X, X
c
, and X

d
, i.e.,

X
a

=

 X

X
c

X
d

 . (F.21)

Define the 2N2 × (4N − 2 +Nc +Nd) matrix F a, as

F a =
[
F RcΥc RdΥd

]
. (F.22)

Then Eq. (F.16) can be expressed as,

W = F aX
a
. (F.23)
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F.4 Fourier Series Vorticity and Divergence

In Appendix C, it was shown that for a non-divergent wind field the spectrum of the curl
is inversely proportional to the wave number k; hence, only the first few Fourier series
coefficients can be considered to be significant. Based on this consideration, a deterministic
model for the vorticity and divergence fields based on a discrete Fourier series representation
can be developed using only the first few Fourier series coefficients. The vorticity field ζi,j
and divergence field δi,j are written, as

ζi,j =
M∑

m=0

M∑
n=0

[
yc

m,n sin

(
(mi+ nj)π

N

)
+ xc

m,n cos

(
(mi+ nj)π

N

)]
(F.24)

δi,j =
M∑

m=0

M∑
n=0

[
yd

m,n sin

(
(mi+ nj)π

N

)
+ xd

m,n cos

(
(mi+ nj)π

N

)]
(F.25)

Eq. (F.1) can then be written, as

W = FX +Rc

M∑
m=0

M∑
n=0

[
xc

m,nQ
s
m,n + yc

m,nQ
c
m,n

]
+Rd

M∑
m=0

M∑
n=0

[
xd

m,nQ
s
m,n + yd

m,nQ
c
m,n

]
(F.26)

where the kth elements kq
s
m,n and kq

c
m,n of the N2 element vectors Qs

m,n and Qc
m,n are,

kq
s
m,n = sin

(
(mbkc+ ndke)π

N

)
(F.27)

kq
c
m,n = cos

(
(mbkc+ ndke)π

N

)
(F.28)

in which bkc 4
= int[(k − 1)/N ] + 1 and dke 4

= mod(k − 1, N) + 1.

To express the model in a simple form, define a new parameter vector Xs by augmenting
X with the xc

m,n, xd
m,n, yc

m,n and xd
m,n parameters as before and column-augmenting the

matrix F to produce Fs. The Fs matrix will have linearily independent columns (for small
Mc and Md); so it will be of full rank; hence, there is a unique relationship between a
given W and the parameters Xs as required for field-wise identifiability. Consequently, the
parameters in Xs will be identifiable. Given W , a least-squares estimate of Xs is,

Xs = F †
sW (F.29)

where F †
s is the generalized inverse of Fs. Since the system of equations is overdetermined,

F †
s = (F T

s Fs)
−1F T

s .
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F.5 Isotropic Vorticity and Divergence

The previous Fourier series representation for the vorticity field did not take into account
the (presumed) isotropic nature of the curl. When the curl spectrum is isotropic then
xm1,n1 = xn2,m2 and ym1,n1 = yn2,m2 for all m2

1 + n2
1 = m2

2 + n2
2. Assuming an isotropic curl

and an isotropic divergence spectrum, the vorticity and divergence fields can be expressed,
as

ζi,j = xc
0 +

M∑
m=1

[
xc

m sin(mkπ/N) + yc
m cos(mkπ/N)

]
(F.30)

δi,j = xd
0 +

M∑
m=1

[
xd

m sin(mkπ/N) + yd
m cos(mkπ/N)

]
(F.31)

where k =
√
i2 + j2. Equation (F.1) becomes,

W = FX + xc
0R

c
+

M∑
m=0

[
xc

mQ
s
m + yc

mQ
c
m,

]
+xd

0R
d
+

M∑
m=0

[
xd

mQ
s
m + yd

mQ
c
m,

]
(F.32)

where the kth elements kq
s
m and kq

c
m of the N2 element vectors Qs

m and Qc
m are,

kq
s
m =

N∑
i=1

N∑
j=1

rk,j+(i−1)N sin
(mπ
N

√
i2 + j2

)
(F.33)

kq
c
m =

N∑
i=1

N∑
j=1

rk,j+(i−1)N cos
(mπ
N

√
i2 + j2

)
(F.34)

The X vectors are augmented with the xi parameters and the F matrix with the Q vectors
to produce a single equation.

F.6 Parameterization of the Boundary Conditions

Since the pressure field around the region boundary tends to be smooth, the number of
unknowns in the wind field model can be reduced by parameterizing the pressure field around
the region boundary. This can be done for all of the vorticity and divergence model options
discussed above.

Since the boundary is closed, the pressure field around the boundary will be periodic.
The boundary conditions for the pressure field for the wind field model are p(x0, yj) and
p(xN+1, yj) for j = 1, . . . , N and p(xi, y0) and p(xi, yN+1) for i = 1, . . . , N . For convenience,
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p will be parameterized as a one-dimensional function around the boundary. For the purposes
of this dissertaion, we will write the pressure field around the boundary as p(l) where l is
related to i and j clockwise around the boundary, according to

l =


j, i = 0, 0 ≤ j ≤ N + 1,

i+N + 1, j = N + 1, 0 < i ≤ N + 1,

2N + 2− j, i = N + 1, 0 ≤ j ≤ N + 1,

4N + 4− i, j = 0, 0 ≤ i < N + 1.

(F.35)

l runs from 0 to 4(N + 1). For notational simplicity, we will write p(l) as pl.

To formulate Eq. (F.1), when the boundary values are parameterized, the definition of
F1 must be modified slightly to incorporate the boundary value p0,1 which was ignored (set
to zero). Let F ′

1 be the 2N2 ×N rectangular matrix, defined as

F ′
1 =

[
1A1 1A2 . . . 1AN

4A1 4A2 . . . 4AN

]
(F.36)

(F.37)

where jAi is the ith column of the jth A matrix defined in the main text. Note that

F ′
1 =

[
1A1

4A1
F1

]
. (F.38)

Since pl is “smooth” and must be periodic, a low-order Fourier series representation of pl

is appropriate. This was the approach adopted in Chapter 4. An alternate approach is to use
Chebychev polynomials. When the boundary conditions are parameterized using Chebychev
polynomials, pl may be written, as

pl =

Ml∑
k=1

sk cos

[
k arccos

(
lπ

2(N + 1)

)]
, (F.39)

where Ml is the order of the pressure boundary condition model. We have already noted
that the DC value of the pressure field is arbitrary and so we can ignore the s0 term. The
number of unknowns is Ml. We can express the elements of X in terms of coefficients of the
pl model. Define the vector Y , as

Y =


s1

s2
...
sMl

 . (F.40)

The wind field model can be then be written, as

W = F ′Y +RcC +RdD (F.41)
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where F ′ is a 2N2 ×Ml rectangular matrix which is created from the Fj matrices. Let f ′i,j
be the (i, j)th element of F and (Fk)i,j be the (i, j)th element of the Fk matrix. Then,

f ′i,j =
N∑

k=1

(F ′
1)i,k cos{j arccos[k/(2N + 2)π]}

+
N∑

k=1

(F2)i,k cos{j arccos[(2− k)/(2N + 2)π]}

+
N∑

k=1

(F3)i,k cos{j arccos[(1 + k)/(2N + 2)π]}

+
N∑

k=1

(F4)i,k cos{j arccos[(3− k)/(2N + 2)π]} (F.42)

A procedure similar to the one described in Chapter 4 is used to augment the model param-
eters of the vorticity C and divergence D fields to the Y matrix (details not shown).
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Appendix G

Modeling Error for Various Model
Options

This Appendix contains modeling error tables for the various wind field model options. To
evaluate the modeling error, a least-squares fit of the model parameters to a real wind field
was obtained, the resulting “model” wind field was computed from the model parameters,
and the RMS difference between the true field and the model field was computed.

To evaluate the modeling error for a wind field model of size N , the wind field was
segmented into N × N regions with N − 1 sample overlap in both dimensions. For each
region segment, the model parameters were computed using the least-squares approach given
in Chapter 4, and the model wind field was computed from the model parameters. The RMS
of the error between the true and model fields was computed over all possible regions within
the original true wind field. In these tables, the column labeled “Ave” is the average of the
region vector error where, for a given region, the region vector error is the square root of the
mean-squared magnitude of the vector difference of the fields in that region. The column
labeled “RMS” is the square root of the mean-squared magnitude of the vector difference of
the fields. The column labeled “Direction” is the RMS of the difference in wind direction
in the fields. The column labeled “Speed” is the square root of the mean of the normalized
region speed error which, for a given region, is the RMS speed error normalized by the RMS
speed of the true wind in that region.

For each model option, the number of unknowns in an N × N region, Nu, is indicated.
The total number of unknowns Nu which must be determined to cover a 24 × 24, region
using non-overlapping regions is

Nu =

(
24

N

)2

Nu (G.1)

assuming that there is no information sharing between N × N subregions. When N is not
an exact factor of 24 the nearest integer number of unknowns is used and the value of Nt in
the tables is tagged with a tilde.

In these tables the designation Mc = −1 for the order of the vorticity model is used to
indicate that the model has zero vorticity. Similarly, Md = −1 is used to indicate that the
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divergence model has zero divergence.
Only a few examples of each model option are given for comparison purposes. The first

group of tables (i.e., G.1-G.5) shows the modeling error versus Md and Mc for various values
of N for the NB model which uses normal boundary conditions and polynomial vorticity
and divergence fields. The second group of tables (i.e., G.6-G.8) shows the modeling error
versus Md and Mc for various values of N for the normal boundary condition with isotropic
Fourier series for the vorticity and divergence fields. The third group of tables (i.e., G.9-G.12)
shows the modeling error versus Md and Mc for various values of N with Ml = 8 for the
PBC model which uses Fourier series boundary condition parameterization and polynomial
vorticity and divergence. The last table (i.e., G.13) shows the modeling error versus Md and
Mc for N = 8 and Ml = 8 when Chebychev polynomial boundary condition parameterization
and polynomial vorticity and divergence is used.

General conclusions drawn from these tables are that the wind field model fits well for
small N . The model error increases with N . Model error decreases as Mc and Md are
increased.

The NB model (Tables G.1-G.5) has the lowest model error for a given N and Mc and
Md. The PBC model (Tables G.9-G.12) minimizes the number of unknowns and provides
good model performance. Recommendations for which model options to use are provided in
Chapter 4.

205



Appendix H

Simulation of the NSCAT
Scatterometer

This Appendix describes the software simulation of the NSCAT system used for generating
the simulated σo measurements used in this dissertation. The simulation was developed
at NASA’s Jet Propulsion Laboratory for the NSCAT Project to perform design tradeoffs
and evaluate system performance. Since a description of this simulation is not available in
the open literature, this Appendix provides a summary description of the NSCAT instru-
ment measurement simulation model and the overall simulation procedure used to generate
simulated σo measurements. A description of the instrument design is provided in [68].

H.1 Instrument Measurement Simulation Model

A wind scatterometer does not directly measure σo, but instead, measures backscattered
power. This measurement is corrupted by noise. A separate measurement of the noise-only
power is made and subtracted from the signal+noise measurement to yield a backscatter
power “signal” measurement Pr. σ

o is computed from the signal power measurement using
the parameters of the radar equation [see Eqs. (A.60) and (A.63)]

σo = CPr (H.1)

where C is a function of the radar wavelength, transmit power, antenna gain, target range,
and target area [see Eqs. (A.61) and (A.64)].

In Chapter 2 the measurement noise model for a scatterometer measurement was dis-
cussed. This measurement model is based on the noise due to the radar communication
noise. In this section, a measurement model is derived which includes the uncertainty in the
geometric parameters, i.e., in C, and the uncertainty, or modeling error, in the geophysical
model function. This latter error is due to unmodelled effects such as sea surface temper-
ature, surface viscosity, etc., on σo. The measurement model given here has been used in
generating the simulated NSCAT σo measurements.
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Let the model σo, σo
m(k), be the value of σo computed for the true wind vector (ut, vt)

using the model function for the kth observation, i.e.,

σo
m(k) = M{(ut, vt), k}. (H.2)

A commonly used model for the actual value of σo, σo(k), observed by the scatterometer is

σo(k) = σo
m(k)[1 +Kpm(k)ν1(k)] (H.3)

where Kpm(k) is the normalized standard deviation of the error associated with the geophysi-
cal model function and ν1(k) is a normally-distributed Gaussian random variable. Typically,
a value of 17 % is used for Kpm(k) with the SASS1 model function. The true signal power
Pr(k) is related to the true σo by according to

Pr(k) = C(k)σo(k) (H.4)

where C(k) is the true value of C for the kth observation [see Eq. (H.1)]. The measured

signal power P̂r is corrupted by noise. The measurement noise model is

P̂r(k) = Pr(k)[1 +Kpc(k)ν2(k)] (H.5)

where ν2(k) is a normally-distributed Gaussian random variable and Kpc(k) is the normalized
standard deviation of the radar communication noise which is a function of the signal-to-noise
ratio (SNR) [19, 68, 66], i.e.,

K2
pc(k) = α2(k) +

β2(k)

SNR
+

γ2(k)

(SNR)2
(H.6)

with the SNR defined

SNR
4
=
Pr

Pn

(H.7)

where Pn is the noise-only power and where the constants α2(k), β2(k), and γ2(k) depend on
the time length T of the measurement, the measurement geometry, and on-board processor
design [19, 68]. α2(k), β2(k), and γ2(k) are inversely proportional to T .

In addition to geophysical model error and communication noise, there are uncertain-
ties in the quantities which go into the computation of C used for computing σo from the
instrument power measurement [see Eq. (H.1)]. The true value of C may differ from the

value Ĉ(k) assumed for C(k) due to instrument calibration errors and uncertainties in the

spacecraft attitude, position, and velocity. The model used for Ĉ(k) is

Ĉ(k) = C(k)[1 +Kpr(k)ν3(k)] (H.8)

whereKpr(k) is the normalized standard deviation of the error associated with the calculation
of C and ν3(k) is a zero-mean, unit-variance Gaussian random variable. The value of Kpr(k)
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can be computed using the instrument design parameters [68] and can be minimized by
proper calibration of the instrument.

The σo measurement, z(k), is computed from the power measurement by

z(k) =
P̂r(k)

Ĉ(k)
. (H.9)

Using Eqs. (H.4), (H.5), and (H.9) we have

z(k) = σo(k)
1 +Kpc(k)ν2(k)

1 +Kpr(k)ν3(k)
(H.10)

which can be approximated by

z(k) ≈ σo(k)[1 +Kpc(k)ν2(k)][1−Kpr(k)ν3(k)]

= σo(k)[1 +Kpc(k)ν2(k)−Kpr(k)ν3(k)

−Kpr(k)ν3(k)Kpr(k)ν3(k)] (H.11)

for Kpr � 1. Since ν2(k) and ν3(k) are independent, it follows from Eq. (H.11) that

E[z(k)|σo(k)] = σo(k). (H.12)

From Eqs. (H.6) and (H.11) we can write,

E[z2(k)|σo(k)] = σo(k)[1 +K2
pc(k)][1 +K2

pr(k)]

= [1 +K2
pr(k)]

{
[1 + α2(k)]σo2(k) + β2(k)

Pn

C(k)
σo(k)

+γ2(k)

(
Pn

C(k)

)2
}
. (H.13)

From Eq. (H.3) we see that
E[σo(k)] = σo

m(k) (H.14)

and
E[σo2(k)] = [1 +K2

pm(k)]σo2
m (k); (H.15)

hence, it follows from Eqs. (H.12) through (H.15) that

E[z(k)] = E[E[z(k)|σo(k)]] = E[σo(k)] = σo
m(k) (H.16)
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which is Eq. (2.12). Using this result and Eqs. (H.12) through (H.15) it follows that

E[z2(k)|σo(k)] = σo(k)[1 +K2
pc(k)][1 +K2

pr(k)]

= [1 +K2
pr(k)]

{
[1 + α2(k)]σo2(k) + β2(k)

Pn

C(k)
σo(k)

+ γ2(k)

(
Pn

C(k)

)2
}
.

= [1 +K2
pr(k)]

{
[1 + α2(k)][1 +K2

pm(k)]σo2
m (k)

+β2(k)
Pn

C(k)
[1 +Kpm(k)]σo

m(k)

+ γ2(k)

(
Pn

C(k)

)2
}
. (H.17)

The variance of z(k) can be written, as

Var[z(k)] = E[z2(k)|σo(k)]− E2[z(k)]

= {[1 +K2
pr(k)][1 + α2(k)][1 +K2

pm(k)]− 1}σo2
m (k)

+[1 +K2
pr(k)]β

2(k)
Pn

C(k)
[1 +Kpm(k)]σo

m(k)

+[1 +K2
pr(k)]γ

2(k)

(
Pn

C(k)

)2

= α2
1(k)σ

o2
m (k) + β2

1(k)σ
o
m(k) + γ2

1(k) (H.18)

[compare Eq. (2.11)] where α2
1(k), β

2
1(k), and γ2

1(k) are defined, as

α2
1(k) = [1 +K2

pr(k)][1 + α2(k)][1 +K2
pm(k)]− 1 (H.19)

β2
1(k) = [1 +K2

pr(k)]β
2(k)

Pn

C(k)
[1 +Kpm(k)] (H.20)

γ2
1(k) = [1 +K2

pr(k)]γ
2(k)

(
Pn

C(k)

)2

. (H.21)

We note that both β2
1(k) and γ2

1(k) will be inversely proportional to T ; hence, in the limit
as T →∞, β2

1(k) = 0 and γ2
1(k) = 0. In the limit as T →∞, α2

1(k) converges to

α2
1(k) = K2

pr(k) +K2
pm(k) +K2

pr(k)K
2
pm(k) (H.22)

which is a non-zero constant. To reduce the measurement variance to zero as T → 0 we
must also reduce Kpr(k) and Kpm(k) to zero. To reduce Kpr(k) to zero, the time-varying
uncertainty in the various instrument and geometric parameters must be eliminated. If we
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assume a perfect knowledge of the geophysical model function, Kpm(k) will be zero. With
these considerations the identifiability results given in Chapter 3 are applicable with this
measurement model.

H.2 Simulation Procedure

While the details of the simulation are complex, a brief outline of the procedure for simulating
σo measurements is outlined below. Details of the computational procedures are contained
in [69].

After initialization of the orbit computation, the following procedure is repeated for each
antenna beam once every 3.75 seconds. This is the length of time required for the spacecraft
subsatellite point to move 25 km along-track. A data loss of 3.75 seconds occurs once every
8 mins when a instrument calibration cycle occurs. For the k antenna beam the procedure
for computing the simulated σo measurements is:

1. Propagate the orbit to the sample time of the kth antenna beam measurement.

2. Compute the spacecraft position and velocity relative to the Earth.

3. Compute the spacecraft attitude with random variations in the attitude control.

4. For each of the 24 cross-track σo cells, do the following:

(a) Compute the Doppler frequencies for each of the σo cell measurement bandwidths
using a simulation of the on-board “binning algorithm”.

(b) Compute the antenna pointing vector including random variations due to thermal
effects in the antenna.

(c) Given the Doppler frequencies, compute the σo cell location.

(d) Compute needed geometric parameters including incidence angle θ(k), antenna
azimuth angle ψ(k), and the geometric parameters in the radar equation.

(e) Compute C(k).

(f) Interpolate the true wind field to compute the wind vector at the the center of
the σo measurement cell.

(g) Compute σo
m(k) from the true wind vector and the antenna pointing direction.

(h) Generate Monte Carlo realizations of ν1(k), ν2(k), and ν3(k).

(i) Compute σo(k).

(j) Compute Pn, Pr, and SNR.

(k) Given the instrument and various calibration parameters, compute Kpr(k).

(l) Compute the coefficients of Kpc(k), α(k), β(k), and γ(k).

(m) Compute α1(k), β1(k), and γ1(k).

(n) Compute z(k).
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Appendix I

Initial Value Computation Methods

Proper selection of initial values is critical to the performance of gradient-based optimization
in the presense of multiple local minima. In Chapter 6, a simple method for computing
initial values for gradient-based optimization of the model-based objective function was given.
When large regions of dealiasing errors occur, the initial values computed using this approach
may be of poor quality. In this Appendix, two additional methods for computing initial
values for the objective function optimization are discussed. The first is method is based on
an initial objective function optimization using only two dimensions. The second method
is based on model extrapolation. Both methods use the parameterized boundary condition
(PBC) wind field model.

I.1 The Two-Dimensional Optimization Method

The structure of the model-based objective function can be exploited to generate initial values
for optimization. There are numerous schemes which could be developed. The following is
a particularily simple scheme based on an initial optimization in two dimensions.

In the PBC model, the two lowest-order coefficients of the boundary condition polynomial
dictate the overall wind flow over the region of interest, while the higher-order coeficients
and the vorticity and divergence fields impart finer details. Using this fact, we can develop
a scheme for selecting initial values based on finding the minima in the objective function
with respect to the two lowest-order coefficients in the boundary condition polynomial with
all other model parameter unknowns set to zero. Once initial values for these first two coef-
ficients are selected, a gradient search-type algorithm can be used to optimize the objective
function with respect to all of the model parameters unknowns using these initial values.

In general, there are a number of local minima of the objective function with respect to
the lowest-order coefficients of the objective function; hence, several initial value vectors are
produced, each with similar objective function values. Each initial value vector is optimized
and the optimized parameter vector resulting in the lowest objective function value is selected
as the model parameter estimate. Alternatively, field-wise “dealiasing” can be used.

When all other unknowns are set to zero, the objective function J(X) with respect to
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the two lowest-order coefficients a0 and a1 is a two-dimensional function, denoted J(a0, a1).
This two-dimensional objective function is non-convex; there are a number of local minima,
all with similar objective function values. For wind fields with a general wind flow, the
lowest-order coefficients seem to account for most of the multiple minima behaviour of the
objective function. These local minima of the two-dimensional objective function can be
readily located using a ridge search. This may be expedited by expressing the position
vector (a0, a1)

T in polar form as (r, θ), i.e., by defining a line in (a0, a1) space, radiating from
the orgin at (a0 = 0, a1 = 0) with an angle θ with respect to the a0 axiss. Along this radial
line the objective function is generally convex with a monotonically increasing derivative and
has a single local minimum. Along this radial line, this minimum can be readily found using
a simple gradient-type algorithm. By varying the value of θ and choosing the radial distance
r which minimizes the objective function along the radial, a one-dimensional function J (θ)
is generated. The local minima of J (θ) are the local minima of J(a0, a1).

From empirical observations, the local behavior of the objective function J(X) near a
local minima of J(a0, a1) is generally convex; thus, a local minimum of J(X) can be found
using a gradient-based search starting with an initial value corresponding to the location of
the local minimum of J(a0, a1). Each of the local minima of J(a0, a1) are used as initial values
to optimize J(X). Choosing the value of X which gives the lowest value of the objective
function gives the global minimum.

This approach reasonablly well for wind fields in which there is a general trend in wind
direction over the region. However, when the wind field changes significantly over the region
(e.g., at a col point or a cyclone center), J(X) may not be convex in the region of the local
minima of J(a0, a1); there may be several local minima of J(X) with respect to the other
unknowns (e.g., the vorticity and divergence coefficients) given the (a0, a1) which locally
minimize J(a0, a1). In this event, a more sophisticated version of the initial ridge search
which uses multiple dimensions must be used to locate these multiple minima.

I.2 Model Extrapolation

From the results presented in Chapter 7 we can observe that initial values computed from
dealiased point-wise wind estimates are generally of good quality if the wind speed is suffi-
ciently high. When a region contains contains an area of low wind speed, dealiasing errors
may result in poor-quality initial values. Adjacent regions, however, are fine. With this in
mind, the following question arises: once we have determined the model parameters for a
given region, can we use this information to estimate the model parameters of an adjacent
or overlapping region? While there are a number of ways to address this question, we will
consider a particular technique which we have termed model extrpolation. In this approach,
the model parameters determined for a given N ×N region are extrapolated to an overlap-
ping region where the overlap is N − 1 points in one dimension. The extrapolated model
parameter vector can then be used as an initial value for optimization of the model-based
objective function for the new region.
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I.2.1 Preliminaries

Before proceeding, we need to introduce some additional notation to simplify later develop-
ment.

Let the elements bru
i,j of the N ×N matrix Bru be defined, as

bru
i,j =

{
pi,N+1 if 1 ≤ i ≤ N and j = N

0 otherwise.
(I.1)

For clarity,

Bru =

 0 . . . 0 p1,N+1
...

. . .
...

...
0 . . . 0 pN,N+1

 . (I.2)

Let B
ru

be the lexicographic-ordered vector corresponding to Bru.

In the PBC model, the pressure field boundary conditions in the vector X are parame-
terized using an Ml-order polynomial [see Eq. (4.97)] using the Ml element vector Y contain
the coefficients of the boundary polynomial [see Eq. (4.99)]. Define the N2 ×Ml matrix Υ
such that,

B = ΥY ; (I.3)

define the N2 ×Ml matrix Υu such that,

B
u

= ΥuY ; (I.4)

and define the N2 ×Ml matrix Υru such that,

B
ru

= ΥruY . (I.5)

General expressions for Υ, Υu, and Υru are complicated and so are not given here.

I.2.2 Model Parameter Vector Extrapolation

Consider an N × N region L1 which overlaps a given N × N region L by N − 1 points in
the j index (along-track) and is aligned in the i index (cross-track). This corresponds to a
region shifted just one sample in the j index (see Fig. I.1). We will consider both +1 or
−1 shifts. Essentially, we will be extrapolating the wind field along one edge just outside of
the region L from the wind field within the region. While this approach can be extended
for the normal boundary (NB) model, the development will be given for the parameterized
boundary (PBC) model.

The boundary conditions are the pressure field along the outside edge of the region
L boundary (see Fig. A.1). The vector B

u
contains the values of the pressure field at

(j = 0, i = 1, . . . , N). If we examine the region L1 which is one sample in the −j direction
(see Fig. I.1), we find that the boundary conditions in B

u
contain the values of the pressure
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Figure I.1: An illustration showing two N×N regions with N−1 overlap in the −j direction.
Note that the old Bu boundary conditions are now part of the pressure field in the region
of interest. New boundary conditions needed are indicated with open circles (see text).
Compare with Fig. 4.1
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field at the new location L1. Further, the pressure field in L at (i = N, j = 1, . . . , N)
are the boundary conditions at the new location L1 included in the vector B

r
for L1. The

only new boundary conditions needed are at (i = 0, j = 0), (i = 0, j = N + 1), and
(i = −1, j = 1, . . . , N). These we can compute from the known pressure field values at the
old location and the extropolated the vorticity and divergence fields at (i = 0, j = 1, . . . , N).

Let us start by assuming that we have the model parameter vector X at the starting
region L. Using the definition of X we can compute B = B

u
+ B

v
+ B

r
, C, and D. The

pressure field is computed using Eq. (4.33) (repeated here for clarity of presentation),

P =
1

4
K−1[B + C]. (I.6)

Quantities for region L1 (the new location) will be identified by an underline while no
underline indicates region L (the old location). The pressure field at the new location,
P , can be appropriately computed from Bu and P , i.e.,

P = PT T +Bu (I.7)

where the N × N matrix T with elements ti,j is defined in Eq. (4.48), (repeated here for
convenience),

ti,j =

{
1, if j ≤ i

0, otherwise.
(I.8)

Using lexicographic vectors and matrix notation, Eq. (I.7) can be written, as

P = (I ⊗ T )P +B
u

(I.9)

Note that, I ⊗ T = G+ IN2 .

The vorticity field at the new location L1, C, is computed by extrapolating the vorticity
bivariate polynomial. Our model for the vorticity field ζi,j may be expressed as

ζi,j =
Mc∑

m=0

Mc∑
n=0

m+n≤Mc

cm,ni
mjn. (I.10)

The number of parameters in the vorticity model is Nc = (Mc+1)(Mc+2)/2 and the number
of parameters in the divergence model is Nd = (Md + 1)(Md + 2)/2. The model parameter
vector has dimension Np = Ml +Nc +Nd for the PBC model.
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Table I.1: Extrapolated vorticity coefficients for region L1 in terms of the vorticity coefficients
for region L

cm,n ∀m
n (j − 1) case (j + 1) case
0 cm,0 − cm,1 + cm,2 − cm,3 + cm,4 cm,0 + cm,1 + cm,2 + cm,3 + cm,4

1 cm,1 − 2cm,2 + 3cm,3 − 4cm,4 cm,1 + 2cm,2 + 3cm,3 + 4cm,4

2 cm,2 − 3cm,3 + 6cm,4 cm,2 + 3cm,3 + 6cm,4

3 cm,3 − 4cm,4 cm,3 + 4cm,4

4 cm,4 cm,4

The vorticity field ζi,j at the new location will be

ζi,j =
Mc∑

m=0

Mc∑
n=0

m+n≤Mc

cm,ni
m(j − 1)n (I.11)

=
Mc∑

m=0

Mc∑
n=0

m+n≤Mc

cm,ni
mjn (I.12)

Equating powers of j, cm,n can be computed in terms of the coefficients cm,n. Table I.1
summaries the results for a given value of m. Results for both j − 1 and j + 1 are shown.

To obtain a matrix equation we note that the vorticity field C can be written, as

C = ΥcX
c

(I.13)

where Υc and X
c

are defined in Eq. (F.17) and Eq. (F.19), respectively (X
c

contains the
lexicographic-order vorticity field parameters cm,n). The shifted and extrapolated vorticity
field, C, can be written, as

C = ΥcT c
−1X

c
(I.14)

where the Nc × Nc matrix T c
−1 contains the transformation of parameter values indicated

above. Due to the complexity of a general definition of T c
−1, we give numerical examples of

T c
−1 for the range of Mc values of primary interest (Mc ≤ 4). For Mc = 0,

T c
−1 =

[
1

]
. (I.15)

For Mc = 1,

T c
−1 =

 1 0 −1
0 1 0
0 0 1

 . (I.16)
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For Mc = 2,

T c
−1 =


1 0 0 −1 0 1
0 1 0 0 −1 0
0 0 1 0 0 0
0 0 0 1 0 −2
0 0 0 0 1 0
0 0 0 0 0 1

 . (I.17)

For Mc = 3,

T c
−1 =



1 0 0 0 −1 0 0 1 0 −1
0 1 0 0 0 −1 0 0 1 0
0 0 1 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 −2 0 3
0 0 0 0 0 1 0 0 −2 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 −3
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


. (I.18)

For Mc = 4,

T c
−1 =



1 0 0 0 0 −1 0 0 0 1 0 0 −1 0 1
0 1 0 0 0 0 −1 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −2 0 0 3 0 −4
0 0 0 0 0 0 1 0 0 0 −2 0 0 3 0
0 0 0 0 0 0 0 1 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 −3 0 6
0 0 0 0 0 0 0 0 0 0 1 0 0 −3 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −4
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



. (I.19)

For shifts in the positive j direction, the signs of all the negative values in T c
−1 are changed
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to positive. For example, T c
+1, for Mc = 3 is,

T c
+1 =



1 0 0 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 2 0 3
0 0 0 0 0 1 0 0 2 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


. (I.20)

The new vorticity field parameters cm,n inX
c
can be expressed in terms of the old vorticity

field parameters cm,n in X
c
, as

X
c
= T c

−1X
c
. (I.21)

Similarily, the new divergence field parameters dm,n in X
d

can be expressed in terms of the

old divergence field parameters dm,n in X
d
, as

X
d

= T d
−1X

d
. (I.22)

Having obtained the vorticity field C at the new location, we can compute the new bound-
ary conditions. Note that we will compute all of the boundary conditions simultaneously
from the new pressure field and extrapolated vorticity field. The new boundary condition
vector B is,

B = 4KP − C

= 4K[(I ⊗ T )P +B
u
]− C

= K[(I ⊗ T )K−1(B + C) + 4B
u
]− C (I.23)

Let the N2 ×N2 matrix K−1 be defined, as

K−1
4
= K(I ⊗ T )K−1. (I.24)

The boundary condition vector B is,

B = ΥY , (I.25)

while the boundary condition vector B
u

is, the N2 ×Ml matrix Υu for which

B
u

= ΥuY . (I.26)
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Note that a least-squares estimate of Y given B is,

Y = Υ†B = (ΥT Υ)−1ΥTB (I.27)

where Υ† is the pseudo-inverse of Υ. Then Eq. (I.23) can be written, as

B = K−1(B + C) + 4KB
u − C

= K−1(ΥY + ΥcX
c
) + 4KΥuY −ΥcT c

−1X
c

= K−1(Υ + 4KΥu)Y + (K−1Υ
c −ΥcT c

−1)X
c
. (I.28)

The least-squares estimate of the shifted boundary parameters Y is then,

Y = Υ†B

= Υ†
{
K−1(Υ + 4KΥu)Y + (K−1Υ

c −ΥcT c
−1)X

c
}
. (I.29)

Defining X
b

as the concatenation of Y , X
c
, and X

d
, i.e.,

X
b
=

 Y

X
c

X
d

 , (I.30)

the new model parameter vector X
b

can be computed from the old parameter vector X
b
, as

X
b
= M−1X

b
(I.31)

where the Np ×Np matrix M−1 can be partioned as,

M−1 =

 M bb
−1 M bc

−1 0
0 M cc

−1 0
0 0 Mdd

−1

 (I.32)

where each of the partitions of M−1 are defined as follows: the Ml ×Ml matrix M bb
−1 is,

M bb
−1 = Υ†(K−1Υ + 4KΥu); (I.33)

the Ml ×Nc matrix M bc
−1 is,

M bc
−1 = Υ†(K−1Υ

c −ΥcT c
−1); (I.34)

the Nc ×Nc matrix M cc
−1 is,

M cc
−1 = T c

−1; (I.35)
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and the Nd ×Nd matrix Mdd
−1 is,

Mdd
−1 = T d

−1. (I.36)

The result is the model parameter vector extrapolated to the new region. This can be
used to compute an initial value, which can be updated using the pointwise results for wind
field estimation.

These results can be extended to motion in the +j direction. For +j movement, the
boundary values which become part of the pressure field are at (j = N + 1, i = 1, . . . , N)
which are contained as part of the B

r
vector, B

ru
. The derivation of the matrix to ex-

trapolate the model parameter vector to the new location in the +j direction is similar
to the derivation for the −j direction. The pressure field at the new location, P , can be
appropriately computed from Bru and P , i.e.,

P = PT +Bru (I.37)

(The difference between Eqs. (I.7) and (I.37) is the transpose on the T matrix.) Using
lexicographic vectors and matrix notation, Eq. (I.37) can be written, as

P = (I ⊗ T T )P +B
u

(I.38)

Note that, I ⊗ T T = (G− IN2)T . The shifted and extrapolated vorticity field C is

C = ΥcT c
+1X

c
(I.39)

The new boundary condition vector B can be written, as

B = 4KP − C

= 4K[(I ⊗ T T )P +B
ru

]− C

= K[(I ⊗ T T )K−1(B + C) + 4B
ru

]− C (I.40)

Let the N2 ×N2 matrix K+1 be defined, as

K+1
4
= K(I ⊗ T T )K−1. (I.41)

Noting that
B

ru
= ΥruY , (I.42)

a least-squares estimate of Y given B is,

Y = Υ†B = (ΥT Υ)+1ΥTB (I.43)
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where Υ† is the pseudo-inverse of Υ. Then Eq. (I.40) can be written, as

B = K+1(B + C) + 4KB
ru − C

= K+1(ΥY + ΥcX
c
) + 4KΥruY −ΥcT c

+1X
c

= K+1(Υ + 4KΥru)Y + (K+1Υ
c −ΥcT c

+1)X
c
. (I.44)

The least-squares estimate of the shifted boundary parameters Y is then,

Y = Υ†B

= Υ†
{
K+1(Υ + 4KΥru)Y + (K+1Υ

c −ΥcT c
+1)X

c
}
. (I.45)

Then the new model parameter vectorX
b
can be computed from the old parameter vector

X
b
, as

X
b
= M+1X

b
(I.46)

where the Np ×Np matrix M+1 can be partioned as,

M+1 =

 M bb
+1 M bc

+1 0
0 M cc

+1 0
0 0 Mdd

+1

 (I.47)

where each of the partions of M+1 are defined as follows: the Ml ×Ml matrix M bb
+1 is,

M bb
+1 = Υ†(KΥ + 4KΥru); (I.48)

the Ml ×Nc matrix M bc
+1 is,

M bc
+1 = Υ†(KΥc −ΥcT c

+1); (I.49)

the Nc ×Nc matrix M cc
+1 is,

M cc
+1 = T c

+1; (I.50)

and the Nd ×Nd matrix Mdd
+1 is,

Mdd
+1 = T d

+1. (I.51)

The result is the model parameter vector extrapolated to the new region in the positive j
direction.

I.2.3 Discussion

The matrix M−1 (or M+1) gives us a very simple way of “predicting” (by extrapolation)
what the model parameter vector for an N −1 overlapped region (in the −j or +j direction)
will be from the model parameters of a given region. Using the point-wise wind estimation
and dealiasing procedure described in Chapter 6, we can first select a region which has a
high wind speed using the average wind speeds from the point-wise ambiguity sets. For high
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wind speed regions, the dealiased wind fields provide good initial values. Given an initial
wind field, we compute the initial model parameters and optimize the field-wise objective
function. Using the model extrapolation technique described here we can use M−1 (M+1)
to predict the model parameters for an adjoining region containing a large area of low wind
speeds. This approach can give better initial values than the point-wise dealiasing approach.

As with any extrapolation, one must apply the model extrapolation approach with great
care. This is especially true in regions where the wind field model does not fit the underlying
wind field well. Improved performance for the model extrapolation approach can be obtained
by first computing the extrapolated model parameter vector, computing the resulting wind
field, and then, for each sample point, selecting the ambiguity from the point-wise wind
estimate set which is closest to the predicted wind field. The initial value is then computed
from this closest ambiguity field. The model vector is then optimized and the process
repeated with the region sliding along the measurement swath to cover the low wind speed
area.
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