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ABSTRACT

Enhanced-Resolution Processing and Applications of the ASCAT Scatterometer

Richard D. Lindsley
Department of Electrical and Computer Engineering, BYU

Doctor of Philosophy

The ASCAT scatterometer measures the Earth surface microwave radar backscatter
in order to estimate the near-surface winds over the oceans. While the spatial resolution of
the conventional applications is sufficient for many purposes, other geoscience applications
benefit from an improved spatial resolution. Specialized algorithms may be applied to the
scatterometer data in order to reconstruct the radar backscatter on a high-resolution grid.

Image reconstruction requires the spatial response function (SRF) of each measurement,
which is not reported with the measurement data. To address this need, I precisely model
the SRF incorporating (1) the antenna beam response, (2) the processing performed onboard
ASCAT before telemetering to the ground, and (3) the Doppler shift induced by a satellite
orbiting the rotating Earth. I also develop a simple parameterized model of the SRF to
reduce computational complexity. The accuracy of both models is validated.

Image reconstruction of the ASCAT data is performed using the modeled SRF. I
discuss the spatial resolution of the reconstructed ASCAT images and consider the first-
and second-order statistics of the reconstructed data. Optimum values for the parameters
of the reconstruction algorithms are also considered. The reconstructed radar backscatter
data may be used for enhanced-resolution wind retrieval and for geoscience applications. In
this dissertation, the reconstructed backscatter data is used to map the surface extent of the
2010 Deepwater Horizon oil spill and in a study to quantify the azimuth angle anisotropy of
backscatter in East Antarctica.

Near-coastal ocean wind retrieval is also explored in this dissertation. Because near-
coastal ocean measurements of backscatter may be “contaminated” from nearby land and
introduce errors to wind retrieval, they must be discarded. The modeled SRF is used to
quantify the land contamination, enabling enhanced-resolution wind retrieval much closer to
the coasts. The near-coastal winds are validated against buoy measurements.

Keywords: ASCAT, scatterometer, spatial response function, wind retrieval, image recon-
struction
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Chapter 1

Introduction

1.1 Overview

The land, oceans, and life on Earth are subject to a variety of natural processes. The

wind over the oceans, for example, is partly responsible for both the natural climate of the

Earth and for extreme events such as tropical cyclones. In order to understand these processes

and to predict their future behavior, we depend on accurate observations of the Earth using

a variety of sensors.

One class of Earth sensor is a spaceborne wind scatterometer. A scatterometer

measures the microwave backscatter, or radar reflectivity, over a wide swath of the Earth’s

surface. The extensive spatial coverage enables measurements to be taken everywhere on

the globe within a time span of a few days. The radar frequency selected is designed to be

unaffected by cloud coverage yet sensitive to the desired characteristics of the Earth’s surface.

Because a scatterometer is an active microwave instrument, it does not require illumination

from the Sun, enabling observations to be made both day and night.

The primary use of a scatterometer is to measure indirectly the wind speed and

direction over the ocean surface. This is possible because the wind roughens the ocean surface:

the roughness is proportional to the wind speed and is aligned with the wind direction. The

amount of microwave power scattered back is related to this surface roughness. If the radar

backscatter is measured with an appropriate viewing geometry, it is possible to invert the

relationship between wind and backscatter to find the most probable winds that produced

the observed backscatter.

While several scatterometers have been in operation over the past few decades, this

dissertation focuses on the ASCAT (Advanced Scatterometer) series of scatterometers. Two

ASCAT instruments are currently in operation with a third planned for launch in the near
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future. ASCAT is of particular geoscience value because the data from current and planned

ASCAT instruments constitute a consistent and well-calibrated dataset that potentially spans

over a decade of continuous measurements.

Although a spaceborne scatterometer such as ASCAT has excellent global coverage, a

drawback is the relatively coarse spatial resolution of its measurements: usually on the order

of 20 km to 50 km. The spatial resolution is due to several factors, including the large distance

between the satellite and the Earth (a common orbit altitude is about 800 km), the microwave

frequency used, the size of the antennas, and the method by which the measurements are

processed. Improving the resolution of the backscatter data is desirable for a variety of

geoscience applications.

This dissertation addresses methods of processing ASCAT scatterometer data in a

way that improves the spatial resolution over that of traditional methods. The ASCAT

measurement spatial response function (SRF) is derived and validated. An accurate SRF

enables enhanced-resolution image reconstruction of the microwave backscatter from the

Earth’s surface. The performance of various image reconstruction algorithms using ASCAT

data are compared, including a spectral analysis to evaluate the recovery of high-frequency

content. Some applications of the enhanced-resolution backscatter data are also explored.

These include mapping geophysical features such as oil spills and enabling high-resolution

wind estimates. The SRF is additionally used to enable the estimation of near-coastal winds,

which are validated through comparison against buoy measurements.

1.2 Summary of Results

Previous work has produced and applied enhanced-resolution data for other scatterom-

eters. This dissertation builds on this previous work and extends it to ASCAT. ASCAT is

designed to follow the heritage of previous scatterometers while making important improve-

ments. Notwithstanding its similarity with previous scatterometers, special considerations

must be made to update and apply the extant work for ASCAT.

A central contribution to this dissertation is an understanding of the ASCAT spatial

response function. The SRF quantifies how much an arbitrary point on the Earth surface

contributes to the total backscatter measurement. The ASCAT SRF is utilized in the ground
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processing of the raw ASCAT telemetry into scientific values. However, the ASCAT SRF is

not reported in the published data nor thoroughly described in any official documentation.

This necessitates “reverse-engineering” the SRF based on available information.

This dissertation presents a model of the ASCAT SRF, which is composed of three

major factors: (1) the antenna pattern, (2) the range-Doppler processing performed onboard

ASCAT, and (3) the data averaging performed onboard before downlinking the data. Accu-

rately modeling each factor requires a thorough understanding of the ASCAT hardware and

software design.

In order to reduce the computational demands of the full SRF as modeled, an

approximate model is also developed and presented in this dissertation. This approximation

is compared against the modeled SRF and shown to have only negligible error, but it is two

orders of magnitude faster to compute.

The SRF is used in conjunction with image reconstruction algorithms to produce

backscatter measurements on a high-resolution grid. Three imaging algorithms are discussed:

GRD, AVE, and SIR. These algorithms have been used successfully for previous scatterometers,

but only GRD has been applied to ASCAT data. The appropriate processing parameters for

these algorithms are selected for ASCAT. One such parameter is the grid spacing, or pixel

size. Based on sampling theory and the ASCAT sampling geometry, appropriate grid spacing

is selected to minimize aliasing of the backscatter signal for single and multiple passes.

Another contribution of this dissertation is to characterize the first- and second-order

statistics of the GRD, AVE, and SIR algorithms. Results are shown using the ASCAT sample

geometry, but the technique is applicable to any arbitrary sample geometry and SRF. These

image statistics may be used to evaluate the bias, accuracy, and precision of the resulting

images. The correlation of an arbitrary pixel with its neighboring pixels is also evaluated.

Although it is difficult to precisely quantify the spatial resolution of the reconstructed

backscatter images, a basic spectral analysis is conducted to obtain some idea of the resolution

of the processed data. The behavior in both spatial and frequency domains for GRD, AVE,

and SIR is compared and discussed. The AVE algorithm is shown to have high-frequency

content, but it is attenuated. While the SIR algorithm has similar spatial resolution to AVE,

SIR is able to recover most of the attenuated content.
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The reconstructed backscatter data have a variety of geoscience applications. One

example is the mapping of large oil spills. The 2010 Deepwater Horizon oil spill, while

environmentally devastating, is unique in producing a very large area of surface oil. This

allows ASCAT to be used to map the spill extent and monitor its evolution. Another

application of enhanced-resolution backscatter is the mapping of the azimuth angle anisotropy

of radar backscatter over East Antarctica. The azimuth-dependent backscatter is due to

unusual geophysical features, including sastrugi and wind glaze. Mapping the azimuth

anisotropy indirectly maps these geophysical features as well.

The ASCAT SRF is essential for near-coastal wind retrieval. Backscatter measurements

of the ocean may be biased, or contaminated, due to nearby land. Traditionally all near-

coastal backscatter measurements are excluded from the wind retrieval process to avoid

the errors introduced by land contamination. This restricts the closest retrievable winds to

about 30 km from coastlines and islands. However, due to the ASCAT SRF shape, size, and

orientation, not all near-coastal measurements are necessarily land contaminated. The land

contribution ratio (LCR) is a metric to quantify the land contamination based on a land map

and the SRF. Previous work introduced the LCR and successfully applied it to near-coastal

data for the QuikSCAT scatterometer. This dissertation applies the LCR approach to ASCAT

data. With the LCR, winds may be estimated as close to 5 km of land. In order to evaluate

the efficacy of the LCR method, the ASCAT high-resolution winds are compared against

winds measured by buoys near coasts. The results show no evidence of error due to land

contamination when processed with the LCR method.

1.3 Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents back-

ground information for the subsequent chapters. A brief overview of scatterometry is presented

with a focus on the ASCAT scatterometer. Previous work on and applications of enhanced

resolution backscatter reconstruction are reviewed. Chapter 3 details the measurement spatial

response function for ASCAT. A “reference SRF” that models the SRF using the full measure-

ment geometry is presented. A parameterized approximation is developed in order to decrease

computation time. The validation of both SRF estimates is considered. Chapter 4 details the
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use of the estimated SRF in enhanced resolution backscatter reconstruction algorithms. The

spatial resolution, first- and second-order statistics, and reconstruction processing parameters

are considered. Chapter 5 examines an application of enhanced resolution backscatter data:

near-coastal enhanced-resolution wind retrieval. Enhanced-resolution wind retrieval is dis-

cussed, and the issue of land contamination near coasts is examined. The ASCAT SRF may

be used to mitigate land contamination, enabling wind retrieval close to coasts. The resulting

near-coastal wind data are compared against buoy-measured winds. Chapter 6 presents

two additional applications of enhanced resolution backscatter and wind data: mapping the

Deepwater Horizon oil spill and the azimuth variation of data over East Antarctica. Finally,

Chapter 7 summarizes the work presented in this dissertation and discusses avenues for future

work.
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Chapter 2

Background

This chapter provides the background information required to place the material in

the subsequent chapters of this dissertation into context. An overview of scatterometry is

first provided. A description of the ASCAT scatterometer, on which this dissertation focuses,

follows. Sampling and reconstruction of the Earth σ◦ from scatterometer measurements is

next considered. Previous applications of reconstructed σ◦ data are then described. The

chapter concludes with a review of the previous work conducted for land and oil contamination

in ocean σ◦ measurements.

2.1 Scatterometry

Near-surface ocean winds are an important geophysical parameter. These winds drive

the flow of heat, moisture, and the ocean itself. Local and global climate are both affected by

winds [2, 3]. While ships and buoys can measure local ocean winds, only a satellite-hosted

sensor can measure wind on a global basis within a day or two. The sensor commonly chosen

is an active microwave radar due to its ability to measure the ocean surface regardless of

solar illumination or cloud cover [2, 3].

The radar equation relates the power received by a radar to the power it transmits:

Pr
Pt

= G2λ2

(4π)3R4σ, (2.1)

where Pt and Pr are the power transmitted and received; G is the one-way antenna gain;

λ is the wavelength of the electromagnetic radiation; R is the distance, or range, between

the radar and the target; and σ is the radar cross section of the target. For simplicity, this

formulation is for a monostatic radar (same antenna for transmission and reception) at a
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single polarization with a single point target. The radar cross section (RCS) has units of

square area [4].

For remote sensing of distributed targets (e.g., terrain or other geophysical features,

as opposed to “hard targets” such as aircraft or buildings), the radar equation is modified to

account for the multiple scatterers within the measurement footprint:

Pr
Pt

=
∫∫

A

G2λ2

(4π)3R4
σ

A
dA, (2.2)

where A is the area illuminated by the radar beam and the integration is over the entire

antenna footprint (i.e., A =
∫∫
A dA). When the RCS is normalized by the area of integration,

it is a dimensionless quantity, the normalized radar cross section (NRCS), or often simply

the backscatter coefficient or radar reflectivity:

σ◦ = σ/A. (2.3)

The NRCS σ◦ is a property of the Earth surface. Areas that are are smooth and reflective

(e.g., oceans and lakes) scatter very little energy back in the direction of the radar; therefore,

the σ◦ value is low. Areas that are rough (e.g., vegetation) scatter energy in all directions,

with more energy scattered back to the radar; therefore, the σ◦ value is higher [4].

Many terms in Eq. (2.2) are a function of location within the antenna footprint:

Pr
Pt

= λ2

(4π)3

∫∫
x,y

G(x, y)2

R(x, y)4σ
◦(x, y) dx dy. (2.4)

If σ◦(x, y) is constant over the area A, then it can be factored out and solved for:

σ◦ = Pr
Pt

(4π)3

λ2 ∫∫
x,y

G(x,y)2

R(x,y)4 dx dy
(2.5)

σ◦ = Pr
X
. (2.6)

The term X encompasses all other terms in the radar equation [5], and is sometimes referred

to as “the X-factor”. It normalizes the received power of the radar by all other terms that

may vary measurement to measurement and are in consequence of the instrument geometry

7



(e.g., the range and antenna gain) so that σ◦ is intrinsic to the surface and not to the radar

system.

In practice, σ◦(x, y) is not constant over A. Letting the term s refer to the normalized

power, then

s = Pr
X

(2.7)

=
∫∫
x,y

G(x,y)2

R(x,y)4σ
◦(x, y) dx dy∫∫

x,y
G(x,y)2

R(x,y)4 dx dy
(2.8)

=
∫∫
x,y h(x, y)σ◦(x, y) dx dy∫∫

x,y h(x, y) dx dy , (2.9)

where h(x, y) is the measurement spatial response function (SRF) [4, 5]. Similar in role to X,

h(x, y) abstracts some of the less relevant details. A scatterometer, in effect, measures

si =
∫∫
x,y hi(x, y)σ◦(x, y) dx dy∫∫

x,y hi(x, y) dx dy , (2.10)

where si is measurement i (not accounting for measurement noise), hi(x, y) is the SRF for

measurement i, and σ◦(x, y) is the true signal: the radar reflectivity of the Earth’s surface.

The class of radar used is thus called a scatterometer, since it accurately measures the radar

backscatter of the Earth’s surface.

For a wind scatterometer, its science objective is to infer ocean vector (speed and

direction) wind from σ◦ measurements. At the oblique incidence angle range used for

scatterometers (30◦ to 60◦ for ASCAT), the scattering mechanism from the ocean surface

roughness is due to Bragg scattering. When ocean wave wavelengths of λo fulfill the Bragg

resonance condition,

λo = nλr/2 sin θ, n = 1, 2, . . . , (2.11)

where λr is the radar wavelength and θ is the incidence angle, the electromagnetic waves

constructively self-interfere to enhance the surface σ◦ value [4]. While modulated by larger

gravity waves, Bragg waves are generally in equilibrium with near-surface wind speed [3].

Higher winds generate more Bragg waves, leading to greater σ◦ values for greater wind speeds.
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Figure 2.1: The ASCAT geophysical model function, CMOD5.n, for θ = 40◦, φ = 45◦. The
left subfigure is σ◦ as a function of speed, given a wind direction of 0◦. The right subfigure is
σ◦ as a function of wind direction, given a speed of 10m/s.

The relationship between σ◦ and ocean wind at a standard height of 10m above the

ocean surface is given by an empirically derived geophysical model function (GMF),M:

σ◦ =M(s, d− φ, θ), (2.12)

where s is the wind speed, d the wind direction, φ the radar azimuth direction, and θ is the

incidence angle [3, 4, 6] (frequency and polarization dependence are omitted since ASCAT

operates at a single frequency and polarization). Figure 2.1 illustrates the GMF used for

ASCAT, CMOD5.n [7], as a function of wind speed and direction given known incidence and

azimuth angles.

A single σ◦ measurement is insufficient to invert the GMF. Due to the sinusoidal nature

of the GMF, multiple σ◦ measurements at different azimuth angles are required to uniquely

determine s and d. This motivates a common scatterometer design in which each location

on the ground is measured multiple times at different azimuth angles. A max-likelihood

estimator is used to estimate the wind speed ŝ and direction d̂ from the set of collocated σ◦,

θ, and φ measurements given a measurement variance ς2
i [4, 6, 8]:

[ŝ, d̂ ]T = arg min
s,d

N∑
i=1

(σ◦i −M(s, d− φi, θi))2

ς2
i

. (2.13)
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The estimation of vector winds from the associated σ◦ measurements is termed wind

retrieval [2]. Because the GMF is not a one-to-one function, inversion of the GMF (i.e.,

solving Eq. (2.13)) leads to several non-unique solutions, or ambiguities. Spatial consistency

constraints are used to select a unique vector wind [4, 9, 10].

Scatterometer data are primarily designed to retrieve vector winds over the ocean, but

they are also valuable for other geoscience applications. These include mapping and classifying

sea ice [11, 12], tracking icebergs [13, 14], measuring soil moisture content [2, 15], mapping

changes in vegetation [2,16], estimating rain over the ocean in addition to wind estimation [17,

18], and measuring azimuth anisotropy over Antarctica [19,20] and Greenland [21].

2.2 ASCAT

The Advanced Scatterometer on the MetOp series of satellites (ASCAT) is a wind

scatterometer that measures σ◦. ASCAT is a vertically polarized fan beam scatterometer

operating at 5.255GHz in the C band [2]. The ground geometry is illustrated in Fig. 2.2. Six

beams—three for each of the two swaths—measure at fore, mid, and aft azimuth angles. Range-

Doppler processing subdivides each fan beam into 256 measurements at varying incidence

angles, although only a subset of 192 measurements is reported. These measurement locations

are also termed “nodes”. The six beams are periodically calibrated to maintain the accuracy of

the σ◦ measurements and the derived geophysical parameters, such as wind or soil moisture.

An ASCAT instrument currently operates on each of the MetOp-A (2006–present)

and MetOp-B (2012–present) satellites. These two ASCATs are referred to as ASCAT-A and

ASCAT-B, respectively. A third ASCAT, on MetOp-C, is planned for launch within a few

years. The MetOp satellites are in a sun-synchronous near-polar orbit with a ground track

repeat of 29 days [2]. The MetOp satellites and their associated sensors are managed by

EUMETSAT in Darmstadt, Germany.1 The raw telemetry from ASCAT is downlinked every

orbit (at the Svalbard Satellite Station with a backup at the NOAA station in Fairbanks,

Alaska) and processed at EUMETSAT for later distribution.

The measurement values (radar backscatter, incidence angle, azimuth angle) and

location (in latitude and longitude) are reported for each measurement within each beam.
1http://eumetsat.int
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Figure 2.2: ASCAT ground measurement and swath geometry. Each swath is sampled at a
range of incidence angles at fore, mid, and aft azimuth angles. Surface beamwidth is exaggerated
for illustrative purposes.

This is the “full resolution” (SZF) Level 1B (L1B) product. Spatially averaged products are

also produced, in which a swath-oriented grid is defined and the value at each grid point is the

combination of all nearby full-resolution measurements, spatially weighted with a Hamming

window. This dissertation does not consider the spatially averaged products.

The sampling geometry and incidence angle dependence is distinctly different for

ASCAT than for other recent scatterometers, such as the QuikSCAT (1999–2009), OSCAT

(2009–2014), and RapidSCAT (2014–present) scatterometers, which all are scanning pencil-

beam scatterometers at a fixed incidence angle. ASCAT is an improved version of the ERS

(1992–1996; 1996–2001) scatterometers, which have a similar fan-beam design but only a

single swath.

ASCAT measures σ◦ over a wide range of incidence angles θ. Over land and sea ice

with incidence angles from about 30◦ to 60◦, the dependence of σ◦ on θ can be modeled as a
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σ◦(θ;x, y) σ◦[x, y] = A+ B(θ − 40◦)

Imaging algorithm

observed through SRF
σ◦ measurements

observation geometry, SRF

Parameters:

• Iterations (SIR only)
• Pixel size
• Region

Sampling Reconstruction
Figure 2.3: The sampling and reconstruction process. The sampling process is already
determined by instrument design and orbit geometry. For reconstruction, σ◦[x, y] is represented
from the ASCAT measurements, subject to parameters such as pixel size and reconstruction
algorithm.

linear fit with σ◦ in a logarithmic space, such as dB:

σ◦(θ) = A+ B(θ − 40◦). (2.14)

In this model, σ◦ is decomposed into A, which is the backscatter normalized to a 40◦ incidence

angle, and B, which describes the slope or gradient of the θ dependence [22–25]. While any

reference angle may be used, 40◦ is commonly used for other fan-beam scatterometers, so to

maintain consistency it is likewise applied for ASCAT.

2.3 Backscatter Sampling and Reconstruction

A diagram of the overall scatterometer sampling and reconstruction process is depicted

in Fig. 2.3. The sampling process, including the measurement SRF used, is dictated by the

instrument design and orbit geometry. The reconstruction process takes as input the sampled

σ◦ data and associated observation geometry and produces an output σ◦ image, shown here

as decomposed into A[x, y] and B[x, y] in order to express the incidence angle relationship

from Eq. (2.14). Reconstruction parameters, including the choice of pixel size, are considered

for ASCAT in Chapter 4.
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Scatterometers, including ASCAT, sample the Earth surface σ◦ over a distributed

area filtered with an aperture function. (More background on this special case of sampling is

found in Appendix A.1.) Neglecting measurement noise, a model for the reported backscatter

measurement produced is of the form

si =
∫∫
σ◦(x, y)hi(x, y) dx dy∫∫

hi(x, y) dx dy , (2.15)

where measurement si is the weighted combination of the surface normalized radar cross section

(NRCS) and the SRF hi(x, y) for measurement i [26]. The SRF represents the contribution

from each location within the ground footprint and is a variable aperture function—i.e., the

aperture function for each measurement may differ due to sampling geometry. If the SRF

can be assumed to be normalized (
∫∫
hi(x, y) dx dy = 1), then Eq. (2.15) simplifies to

si =
∫∫

σ◦(x, y)hi(x, y) dx dy. (2.16)

Accurate knowledge of the SRF is critical for the enhanced-resolution processing and ap-

plications considered in this dissertation. The ASCAT SRF is modeled in greater detail in

Chapter 3.

The sampling equation of Eq. (2.16) may be discretized (as explained in Appendix A.1):

si =
∑
xk

∑
yk

σ◦[xk, yk]hi[xk, yk], (2.17)

where i indexes the measurements and xk and yk index the regularly sampled locations, or

equivalently, the pixels in the reconstructed image. hi[xk, yk] is the measurement spatial

response function (SRF, or aperture) of measurement i at pixel [xk, yk]. For notational

convenience below, the two-dimensional indexing of a[xk, yk] is vectorized into a single

dimension, j, so that j indexes [xk, yk] (e.g., j = x + Nx × y). Then Eq. (2.17) may be

expressed more compactly:

si =
∑
j

ajhij. (2.18)
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A multiplicative model for scatterometer measurement noise often adopted [27] is

zi = si(1 +Kp,i νi), (2.19)

where zi is the σ◦ measurement affected by measurement noise, Kp,i is a per-measurement

noise term, and νi is a zero-mean unit-variance uncorrelated Gaussian random process. The

noisy measurements zi are distributed as

zi ∼ N (si, (Kp,i si)2). (2.20)

2.3.1 Gridding

A traditional approach to form an image from σ◦ measurements, referred to in this

dissertation as the GRD method, is to define a regularly spaced grid and use a “drop-in-

the-bucket” method to grid the measurements into a two-dimensional image of σ◦. In this

method each grid element, or pixel, is the average of all measurement values (drops) whose

centers fall within the pixel (bucket). The GRD method is expressed as

σ◦grd,j =
∑
i ziGij

Nj

, (2.21)

where Gij is an indicator function with Gij = 1 if the center of measurement i falls within

GRD pixel j and 0 otherwise. Nj = ∑
iGij is the number of measurements contained within

pixel j. Since the samples are irregularly spaced, a coarse resolution grid (i.e., a large grid

spacing) is required to reduce the number of pixels that do not contain any measurements

and to increase the number of measurements per pixel. Assuming uncorrelated measurement

noise, averaging more measurements together reduces the noise for each GRD pixel.

The chief drawback to gridding is the low spatial resolution of the resulting image.

The effective resolution of the gridded data is the sum of the grid dimension and measurement

spatial extent sizes. This is because although a measurement center may lie within a GRD

pixel, as much as half of its SRF could be in neighboring pixels. An alternative imaging

method interpolates the measurements on a higher-resolution grid. Since the measurements

are noisy, the measurements are often averaged or filtered before interpolation to reduce the
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noise. Both approaches are effective in presenting the σ◦ samples as a spatial image but suffer

from degraded spatial resolution.

Unlike the above approaches, image reconstruction retains the high-frequency in-

formation that is otherwise discarded, effectively inverting Eq. (2.16). The objective of

reconstruction is to recover σ◦(x, y)—or more precisely, the uniformly sampled version

σ◦[xi, yi]—from multiple overlapping aperture-filtered noisy measurements zi [28]. Gridding,

on the other hand, does not require modeling the SRF or the measurement noise.

2.3.2 Full Reconstruction

A conventional approach to reconstruction, or “full reconstruction”, is considered first.

For simplicity, measurement noise is neglected in this discussion. The discrete sampling in

Eq. (2.18) may be represented as a matrix equation:

~s = H~a, (2.22)

where ~s is the collection of measurements si, ~a is the vectorized image aj (or a[xk, yk]), and

H has elements hij . H is an m×n sampling matrix, where m is the number of measurements

(rows) and n the number of pixels (columns).

The objective of reconstruction is to invert this matrix equation to obtain ~ar (the r

subscript for “reconstructed”):

~ar = H−1~s. (2.23)

In practice, H is not square but either overdetermined (m > n, or more measurements than

pixels) or underdetermined (m < n, or fewer measurements than pixels). One approach is to

use the linear least-squares solution:

~ar ≈ H†~s (2.24)

~ar ≈ (HTH)−1HT~s. (2.25)

However, for all but the smallest images, H is a very large sparse matrix, so this matrix

inversion is not computationally feasible. Additionally, if there is any error in the H sampling
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matrix (e.g., due to an inaccurate model of the SRF), the error will also affect H−1 or H†.

Finally, a further shortcoming is that measurement noise is left unmodeled and may be

amplified.

2.3.3 Partial Reconstruction

An alternate reconstruction approach is to only perform a partial, or limited, recon-

struction. Not only is this more computationally tractable than a full reconstruction, but

it also serves as a regularization to reduce error from amplified noise. A particular partial

reconstruction approach is the block additive algebraic reconstruction technique (AART) [29],

an iterative technique. Further details on AART are found in Appendix A.2. This framework

is shared by the AVE (weighted AVErage) and SIR (Scatterometer Image Reconstruction)

algorithms.

The AVE and SIR algorithms are the chief reconstruction algorithms considered in this

dissertation. These two algorithms use the measurement spatial response function (SRF), i.e.,

the ground footprint imposed by the antenna pattern and onboard processing [5, 25,28,29].

Partial reconstruction methods not considered in this dissertation include Backus-Gilbert

inversion [30,31], a gradient method in Banach spaces proposed in [32], and a maximum a

posteriori approach [28].

The AVE and SIR algorithms have been applied to other scatterometers and ra-

diometers, including QuikSCAT (1999–2009) [29], a long-running Ku-band pencil-beam

scatterometer; OSCAT (2009–2014) [33], a scatterometer with similar design to QuikSCAT;

NSCAT (1996–1997) [34], a Ku-band fan-beam scatterometer; and the scatterometers on

ERS-1 (1992–1996) and ERS-2 (1996–2001) [29], a C-band scatterometer design previous

to that of ASCAT. Enhanced-resolution data for these and other instruments are available

online2 as part of the NASA Scatterometer Climate Record Pathfinder project (SCP). The

SCP datasets contain reconstructed high-resolution σ◦ imagery over many land and sea ice

regions [23,35].
2http://scp.byu.edu
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For a collection of σ◦ measurements indexed by i, zi, and a grid where j is the grid

point, or pixel index, the AVE algorithm is

σ◦ave,j =
∑
i zihij∑
i hij

, (2.26)

where hij is the SRF value hi(x, y) of measurement i sampled at pixel j. In effect, AVE is an

average of all σ◦ measurements per pixel, weighted by the SRF value. The chief difference

versus the GRD method is that the spatial extent of the measurement is defined by the SRF

instead of treated as a point at the measurement center. Thus each σ◦ measurement may

affect multiple pixels instead of only one. This permits a finer-resolution pixel grid than that

used for GRD.

SIR is a modified algebraic reconstruction technique (ART) tuned for scatterometers

and robust in the presence of noise [29]. The SIR algorithm is iterative with a nonlinear

update term. The update term is weighted by the SRF similar to AVE:

σ◦sir,k,j =
∑
i u

k
ijhij∑
i hij

, (2.27)

where ukij is the SIR update term for SIR iteration k, measurement i, pixel j. The update

term is

ukij =



[
1

2pki

(
1− 1

dki

)
+ 1
akjd

k
i

]−1

dki ≥ 1

1
2 p

k
i (1− dki ) + akjd

k
i dki < 1

, (2.28)

where akj is σ◦sir,k,j, pixel j of SIR iteration k; pki is the forward projection of measurement i:

pki =
∑
j a

k
jhij∑

j hij
; (2.29)

and dki is a function of the σ◦ measurement zi and the projection pki :

dki =
√
zi
pki
. (2.30)
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The first iteration of SIR is AVE. As SIR continues to iterate, it progressively inverts the

SRF; it equalizes spatial frequencies distorted due to the SRF frequency response while

reconstructing the irregular sampling defined by the measurement locations. However, the

number of SIR iterations is truncated as a form of regularization that reduces noise at the

expense of spatial resolution. Further details on SIR may be found in [25,29].

AVE and SIR are both partial reconstruction techniques to reconstruct σ◦ on a high-

resolution grid, whereas GRD creates a σ◦ image on a conventional resolution grid. GRD,

AVE, and SIR are all applied to ASCAT data in Chapter 4 and evaluated. The resulting σ◦

data have many applications.

2.4 Applications of Enhanced-Resolution Backscatter

The reconstructed σ◦ data from previous scatterometers have been used in many

ways. Using a single pass of data, σ◦ may be reconstructed and used for high-resolution wind

retrieval. This has been performed for QuikSCAT [36, 37] and its related scatterometers,

OSCAT and RapidSCAT. The data has also been used for rain estimation [17, 38] and

improved characterization of tropical cyclones [39].

With multiple passes of data, the spatial resolution of the reconstructed σ◦ data is

improved at the expense of temporal resolution. Combining passes is best suited for temporally

stable surfaces, such as land and ice. Applications of this reconstructed data include, among

others, mapping and classifying sea ice [11,40], melt detection of ice shelves [41], tracking and

estimating icebergs [13,14], analyzing melt and refreeze over Greenland [42], and mapping

vegetation [43–45].

Although ASCAT has differing characteristics from the scatterometers used for the

data above (e.g., polarization and frequency), it is anticipated that the creation of enhanced-

resolution ASCAT σ◦ data will be of value for future scientific studies. A continuous C-band

dataset currently spans nearly a decade with ASCAT-A and ASCAT-B, and is expected to

continue to increase.
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2.5 Contamination in Ocean Measurements

To fulfill its designed mission of near-surface ocean vector wind retrieval, a scatterom-

eter measures σ◦ of the ocean surface. The relationship between σ◦ and vector winds is

given by the GMF, defined in Eq. (2.12). However, there are two factors considered in this

dissertation that the GMF alone does not account for: the contamination from nearby land

and the effect of oil on the ocean surface. These are discussed separately below.

2.5.1 Land Contamination

Due to the distributed spatial extent of the measurement SRF, a near-coastal measure-

ment whose center is over ocean may include σ◦ from nearby land or ice as well as the ocean.

The land σ◦ value within the measurement footprint contaminates the ocean σ◦ measurement.

The error due to land contamination carries through wind retrieval, such that the wind speed

is overestimated.

A traditional approach to circumvent land contamination is to discard all σ◦ measure-

ments within a distance threshold of land, for example 30 km (since this is on the order of

the maximum size of an SRF). While effective, this approach is overly conservative since

many measurements may lie within the distance threshold yet be free of land contamination.

A more informed approach is to evaluate the land fraction, or land contribution

ratio (LCR) [46], which incorporates knowledge of the orientation, shape, and size of the

measurement ground footprint. The LCR for measurement i is defined as

LCRi =
∫∫
L(x, y)hi(x, y) dx dy∫∫

hi(x, y) dx dy , (2.31)

where hi(x, y) is the SRF for measurement i and L(x, y) is a binary-valued land indicator

function. Since the LCR is normalized by the SRF, it varies between 0 (entirely ocean) and 1

(entirely land). For computation purposes, the land map and SRF values are discretized on a

high-resolution grid:

LCRi =
∑
x,y L[x, y]hi[x, y]∑

x,y hi[x, y] . (2.32)
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The LCR is a metric that characterizes the degree of land contamination in a σ◦

measurement, subject to the accuracy of the land mask and the SRF estimate. Measurements

with LCR values greater than some threshold level are discarded and not used for wind

retrieval. The LCR is successfully used for QuikSCAT [46] to mitigate contamination

from known land and extended to include the variable sea ice contamination in near-polar

regions [47]. It is also applied to ASCAT in Chapter 5.

2.5.2 Oil Contamination

Another source of contamination, even over open ocean away from land, is that from

surface oil. Because oil is more viscous than sea water, oil on the ocean surface dampens the

amplitude of Bragg waves. This modifies the σ◦ of the affected area because the smoother

ocean surface reflects less microwave power back to the scatterometer. The σ◦ measurement

of the oil-contaminated area is thus lower than the oil-free case [48–51].

The presence of oil in σ◦ imagery can be therefore determined by the contrast difference

between oil-affected σ◦ with non-oil-affected σ◦. The exact value of σ◦ over the ocean depends

on many factors—geophysical, such as due to roughness induced by near-surface wind;

instrument-specific, such as the frequency, polarization, and incidence and azimuth angles;

and the type and the volume or thickness of surface oil. ASCAT is used in Section 6.1 to

detect surface oil from the Deepwater Horizon oil spill.

While detecting oil from an anthropogenic oil spill is of interest, other sources—oil

and otherwise—can also result in patches of dampened backscatter. These include biogenic

oil slicks produced by plankton and fish, natural oil seeps from the ocean floor, organic

wastes from fish processing ships, and changes in the water-ocean interface, such as that from

upwelling [48]. Since these sources can lead to false positives in oil spill detection, they are

referred to as “look-alikes.” Techniques to reduce look-alikes include using multi-frequency and

multi-polarization instruments [51–54]; applying a priori knowledge of geographic information,

historical human and animal activity, and shipping lanes; and using different remote sensors

that detect oil under mechanisms other than Bragg scattering (such as microwave radiometers

or infrared, optical, or ultraviolet sensors) [48, 50]. Many of these look-alikes are too small to

be resolvable by a scatterometer such as ASCAT. However, large regions with a low wind

20



speed can have very low backscatter and potentially be confused with oil-covered ocean

surface.

A challenge to oil detection using measured σ◦ is that the degree of σ◦ dampening

due to oil depends on the near-surface wind speed. If the winds are below a threshold wind

speed, the ocean surface is not sufficiently roughened to provide a contrast between the

oil-contaminated surface and the oil-free surface. For C-band scatterometers such as ASCAT,

this threshold is ≈ 3–4m/s [55]. Additionally, if the winds are too high (> 7–10m/s), the

surface oil mixes down into the water and may be less detectable. The wind speed range

best suited for oil detection is therefore about 3–10m/s. Previous work has recognized the

importance of factoring wind speed in to surface oil detection [49,50], and has done so, for

example, as part of synergistic data methods [56].

Another geophysical influence on ocean backscatter is precipitation. At C-band, the

radar band used by ASCAT, rain generally increases the observed σ◦ [57, 58]. As with oil- or

land-contaminated σ◦ measurements, this backscatter bias results in a wind speed bias after

wind retrieval.

2.6 Summary

This chapter has reviewed the theory of and motivation for wind scatterometry, with

a description of the ASCAT scatterometer. The irregular aperture-filtered sampling of σ◦

and the reconstruction of σ◦ from scatterometer measurements have been reviewed. The

AVE and SIR algorithms perform a partial reconstruction of σ◦ on a high-resolution grid,

whereas the GRD method is limited to a reduced-resolution grid. Enhanced-resolution σ◦

reconstruction has successfully been employed for other scatterometers; this dissertation

extends the reconstruction techniques to also operate on ASCAT data.

Oil and land contamination in ocean σ◦ measurements is also described. Oil contami-

nation may be detected by a contrast in σ◦ since surface oil dampens the roughness of the

ocean surface. However, this requires a sufficiently rough ocean surface due to moderate

wind speeds. Land contamination is addressed by computing the LCR of each measurement.

The LCR characterizes the level of land contamination in order to avoid inaccurate wind
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estimates. The SRF is required not only for σ◦ reconstruction, but also for the LCR. Thus,

the ASCAT SRF must next be described.
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Chapter 3

ASCAT Spatial Response Function

Each ASCAT measurement of radar backscatter, σ◦, has an associated spatial response

function (SRF), as described in Eq. (2.10). The measurement SRF quantifies the weighted

contribution of the area of the Earth’s surface around the measurement center. While

the backscatter measurement alone is useful, some applications additionally require a good

understanding of the SRF associated with each measurement. This chapter discusses the

ASCAT SRF, whereas applications of the SRF are discussed in subsequent chapters of this

dissertation.

The SRF is required in ground processing to convert each scatterometer measurement

from received backscatter power to σ◦. This is performed at the EUMETSAT ground Product

Processing Facility (PPF) in order to create L1B data from the ASCAT raw telemetry (or,

Level 0 data). However, once the ASCAT SRF is used to process the data to L1B, the SRF

is not distributed. Instead, I develop an estimate of the measurement SRF. A key difference

between the SRF used at the PPF and the version described in this chapter is that this SRF

does not depend on quantities in the Level 0 data, but instead on the Level 1B data.

Section 3.1 describes the various components that shape the SRF. This modeled SRF

is also termed the reference SRF. To reduce the computational demands of the estimate, the

SRF may be parameterized, as described in Section 3.2. The two estimates are validated in

Section 3.3.

For convenience, a locally tangent plane convention [59] is used to describe the SRF.

Each measurement uses a different plane tangent to the Earth at the reported measurement

center. Operating in the tangent plane permits working in units of linear distance (e.g., km)

from the measurement center rather than in geodetic latitude and longitude. The tangent
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plane mapping is not applicable at extreme latitudes (> |89.5◦|). Because the tangent plane

is aligned with North, the axes of the tangent plane are in northing and easting.

3.1 Modeled SRF

The measurement SRF is the combination of several factors. The three main compo-

nents examined here are (1) the antenna beam response, (2) the frequency response of the

FFT-based onboard processing, and (3) the along-track pulse averaging performed onboard.

Other factors may also influence the SRF, such as the onboard receive filter response, but

these do not influence the response to the same extent as those outlined below. For brevity,

many details about the geometry required to compute the SRF on a tangent plane are omitted

here, but they may be found in [60].

3.1.1 Antenna Beam Response

The first component to the SRF is the response resulting from the antenna beam

pattern. Of the six ASCAT beams, the antenna patterns of the four side beams are essentially

identical to each other, and the patterns for the two mid beams are likewise identical.

In the following, only the antenna patterns in the cross-beam (or azimuth) direction

are used. While the antenna response varies along the length of the beam (or elevation),

the variation is small for each individual measurement. Thus, for the SRF, the along-beam

response is treated to be constant. Because the modeled SRF is normalized so its peak value

is unity, this also normalizes out the bulk along-beam response.

To account for the use of the antenna response for both transmission and reception,

the magnitude-square of the normalized antenna gain pattern is used, corresponding to the

G2 term in Eq. (2.2). This is shown for the mid and side beams in Fig. 3.1.

3.1.2 Range-Doppler Processing

The second component to the SRF is the range-Doppler processing performed onboard.

The range-Doppler processing subdivides the fan-beam antenna response, providing range

resolution.
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Figure 3.1: The cross-beam or azimuthal nominal antenna patterns. The mid (solid) and side
(dashed) beams are shown together. The upper subplot is in linear space, the lower subplot in
dB space. The values shown are for the magnitude-squared normalized antenna gain pattern.

ASCAT is a pulsed radar, with each pulse a linear FM chirp. The received signal—a

sum of time-delayed and attenuated copies of the transmit chirp—is dechirped to baseband.

This baseband signal is termed the discriminator signal and is sampled at 412.5 kHz. The

power spectrum of the discriminator signal is estimated using Welch’s method (viz., Fourier

transforms of multiple overlapping segments of the sampled time-domain data are computed

separately, magnitude-squared, and then averaged together). The discretely sampled power

spectrum is the received power as a function of discriminator frequency [2, 26,61], denoted

here as P [f ].

The center frequency of each discriminator frequency FFT bin is given by

foffset −
4αs
c︸ ︷︷ ︸
fr

− 2vr
λ︸︷︷︸
fd

= iδf , (3.1)
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Table 3.1: Discriminator frequency parameters for Eq. (3.1).

Term Value
foffset(fore) −189.0× 103 Hz
foffset(mid) −286.2× 103 Hz
foffset(aft) 400.6× 103 Hz
α(fore) −1.03× 107 Hz/s
α(mid) −2.69× 107 Hz/s
α(aft) +1.03× 107 Hz/s

λ c
f

= 5.71 cm
i 0, 1, . . . , 255
δf

412.5 kHz
512 = 805.7 Hz

where foffset is a beam-dependent frequency offset, α the beam-dependent chirp rate, s the

slant range from ASCAT to the Earth surface, c the speed of light, vr the radial velocity

between ASCAT and the Earth surface, λ the radar wavelength, i the FFT bin number, and

δf the frequency bin width. Values for these parameters are given in Table 3.1. As noted

by the underbraces, the discriminator frequency has components due to a range frequency,

fr, and a Doppler frequency, fd. The received power is normalized to σ◦ using the radar

equation (e.g., Eq. (2.6)), and Eq. (3.1) is solved for the slant range s, so P [f ] maps to σ◦[s].

To better demonstrate the role of fr and fd, an illustration of how they contribute

to the measurement SRF is shown in Fig. 3.2. Lines of constant range, or isoranges,

and lines of constant Doppler frequency, or isodops, are shown. A zoomed illustration

of a mid-looking ASCAT beam is shown in Fig. 3.3 with isoranges and isodops again

illustrated. Since the discriminator frequency is the combination of fr and fd, a line of

constant discriminator frequency does not follow an isorange—range and Doppler couple

together into the discriminator frequency.

Due to the nature of the discrete Fourier transform, each FFT bin has an associated

frequency response: the power in the bin is the weighted combination of signals at many

frequencies. Since each (continuous) discriminator frequency in Eq. (3.1) maps to a point on

the Earth surface, the bin frequency response maps to a spatial response on the ground. The

frequency response of the FFT bins performed onboard ASCAT is derived in Appendix B.
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Figure 3.2: An illustration of lines of constant range (isoranges) and constant Doppler
(isodops). In this case, isoranges are circles centered at nadir and isodops are hyperbolic.
However, the exact isoranges and isodops are complicated by the fact that they are projected on
a ellipsoidal Earth. The relative motion between the orbiting satellite and the rotating Earth
further complicates the isodops.

cross-track

along-track

f(x, y) = fr(x, y) + fd(x, y)

fr(x, y) = Kr

fd(x, y) = Kd

f(x, y) = K

Figure 3.3: An illustration of a portion from a mid beam. Any point on the ground in (x, y)
has a discriminator frequency f(x, y) (ignoring foffset). Isoranges and isodops are plotted, along
with measurement centers indicated with the dark squares. A line of constant discriminator
frequency is also denoted and is roughly a tilted isorange line.
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3.1.3 Along-Track Pulse Averaging

The final major component to the SRF is the along-track pulse averaging performed

onboard ASCAT [61]. This is performed to reduce the amount of data required to downlink

from ASCAT to the ground. Each reported measurement is the weighted average of eight

pulses. The weights are {0.05, 0.10, 0.15, 0.20, 0.20, 0.15, 0.10, 0.05}, and a measurement

is saved every four pulses. The radar itself has a pulse repetition frequency (PRF) of

approximately 28.26Hz [62]. This is divided among the six beams, which are pulsed in

sequence (left fore, left mid, left aft, right fore, right mid, right aft). Thus the PRF for each

beam is 28.26/6 = 4.71 Hz. The measurements are stored at a frequency of 4.71/4 = 1.1775 Hz,

or, since ASCAT orbits at a speed of about 6.7 km/s, about every 5.6 km along-track.

3.1.4 Cumulative Effect

The cumulative effect for all three components is illustrated for a sample measurement

in Fig. 3.4. The measurement parameters are listed in Table 3.2 and the response is computed

on a plane tangent to the measurement center [60]. For each location (x, y) on the locally

tangent plane, the value of the SRF due to all three components (antenna pattern, FFT

response, pulse average) is computed.

The antenna response for the sample measurement is illustrated in Fig. 3.4a. To

estimate the range-Doppler SRF component, the frequency response of the 512-point onboard

FFT, including the window function, is used to compute the ground response. The spatial

response due to the FFT is shown in Fig. 3.4b for the sample measurement.

The cumulative effect of the range-Doppler processing on the antenna pattern is shown

in Fig. 3.4c, which is a multiplication of the two responses in Figs. 3.4a and 3.4b. This is the

SRF for a single ASCAT pulse so is termed the pulse SRF. Due to a non-negligible Doppler

frequency fd, the pulse SRF is rotated by roughly 60◦ from the cross-beam direction. The

shape of the pulse SRF, due to the rotation, is generally observed to be elliptical.

The individual pulse locations are not reported in the L1B data so are estimated

based on the measurement location, the along-track direction, and the ground-track velocity.

The measurement SRF is computed by shifting the pulse SRFs to the correct locations and

summing them together using the weighting given above [60]. The resulting measurement

28



Table 3.2: The parameters for a sample ASCAT measurement used for Fig. 3.4.

Beam Right mid
Pass Ascending

Incidence angle 38.24◦
Location 66.52 ◦N 299.67 ◦ E

Date 2011-10-26 (DOY 299)
Time 1:00:01.254Z

SRF for the sample measurement is shown in Fig. 3.4d. Pulse averaging generally gives the

measurement SRF a more elliptical shape.

3.2 Parameterized Estimate

Although the SRF may be computed using the components outlined in Section 3.1,

it is time-consuming to process. In order to increase the utility of the SRF, I develop a

parameterized variant. Not only does this speed up the processing, but it significantly

simplifies the code required to implement it.

The parameterization is based on the observation that the measurement SRF is

generally an ellipse rotated such that the semi-minor axis is aligned with the spatial gradient

of the discriminator frequency. The rotation angle between northing and the discriminator

frequency gradient is termed ψ. The parameterized SRF is treated as separable in the

directions aligned with the ellipse semi-major and semi-minor axes. Three parameters are

modeled: (1) the ellipse rotation angle ψ, (2) the SRF response along the x (semi-minor)

axis, and (3) the SRF response along the y (semi-major) axis. To compute the parameterized

SRF value for a location near a measurement, the following high-level algorithm is used:

1. Define a location on the locally tangent plane centered on the reported measurement

location

2. Rotate from tangent plane coordinates (xtp, ytp) to coordinates with respect to the SRF

ellipse (xd, yd) using the angle ψ

3. Look up the SRF response in the x direction

4. Look up the SRF response in the y direction
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Figure 3.4: The SRF is progressively built up by including various components: (a) the
cross-beam antenna response, (b) the range-Doppler response for a single FFT bin, (c) the
pulse SRF, and (d) the full SRF. The SRF shown is for the measurement with parameters given
in Table 3.2.

5. Multiply the x and y response values together to obtain the SRF value

The rotation angle ψ is a function of latitude, but it may be decomposed into

constituent angles:

ψ = (−ϕ) + β + α, (3.2)

where ψ is the angle from northing to the discriminator frequency gradient, ϕ is the rotation

angle from along-track to northing, β is the rotation angle from along-track to along-beam,

and α is the angle from along-beam to the discriminator frequency gradient. The angles ϕ
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Table 3.3: The angles β and ϕ for the six ASCAT beams. β is the angle between along-beam
and along-track, and ϕ is the angle between along-track and northing. The angle φ is the

azimuth angle reported in the L1B data.

Beam β ϕ

1 45◦ φ− 135◦
2 90◦ φ− 90◦
3 135◦ φ− 45◦
4 −45◦ φ+ 135◦
5 −90◦ φ+ 90◦
6 −135◦ φ+ 45◦
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along-trackNorth

ϕ
beam 1

beam 2

beam 3

beam 6
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β

cr
os
s-b

ea
m

along-beam
α

along-track North
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Figure 3.5: Left: the rotation angles ϕ and β for beam 1. Right: the rotation angles α and ψ
for beam 1. The ellipse represents the parameterized SRF.

and β are functions of beam geometry and are defined in Table 3.3. Figure 3.5 illustrates

the rotation angles. In all cases, the angles are defined such that positive values are in the

counter-clockwise direction.

The angle ψ is obtained directly in the reference SRF computed in Section 3.1 by

computing the gradient of the computed discriminator frequencies on the tangent plane

grid. At high latitudes, ψ rapidly varies due to ϕ, the angle between along-track and North.

However, α is much more stable as a function of latitude, so it is parameterized rather than

ψ. The remaining components of ψ—β and ϕ—are only a function of the beam number and

azimuth angle so are not parameterized.
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The angle α follows a surface as a function of measurement node and latitude. (The

measurements along each beam are indexed by node.) An example is shown in Fig. 3.6. A

fourth-order polynomial surface is fit individually for each of the six beams, and separately

for ascending and descending passes. The α parameterization is

α(n, l; b, a) = c00 + c01n+ c02n
2 + c10l + c11nl + · · ·+ c44n

4l4, (3.3)

where n is the node number, l the latitude, b the beam number, and a is ascending or

descending. For each combination of b and a, (4 + 1)2 = 25 coefficients are required. With six

beams (b ∈ {1, . . . , 6}) and two cases for ascending/descending (a ∈ {0, 1}), there are twelve

sets of coefficients, or 300 total coefficients, to parameterize α.

The coefficients are determined by computing the reference SRF estimate described

in Section 3.1 for a large number of ASCAT measurements, randomly distributed in latitude

and node. The angle α is computed for each measurement and the data is fit in the least-

squares sense to solve for the coefficients. For about 190 000 measurements per combination

of beam and ascending/descending pass, the R2 coefficient of determination is greater than

0.99 in all cases. Such a high value indicates the polynomial model chosen nearly perfectly

describes the data.

The SRF response values in the x and y directions may be modeled by a Gaussian

fit. However, to reduce the model error while retaining a simple parameterization, I describe

here a polynomial fit to the SRF response. A low-order polynomial fits the SRF mainlobe

more closely in dB space than linear space. The polynomial fit is constrained so it only fits

the mainlobe down to −15 dB in order to avoid fitting the “ripples” in the mainlobe. A

biquadratic fit is applied, or a fourth-order polynomial fit with the odd terms set to 0 to

enforce symmetry:

SRFx(x; . . . ) = a0 + a2x
2 + a4x

4 (3.4)

SRFy(y; . . . ) = b0 + b2y
2 + b4y

4, (3.5)
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Figure 3.6: The angle α, in radians, is shown as a function of node and latitude for the right
aft beam for both ascending and descending passes. The points shown are a subset from 5
days of ASCAT data. The surface, a fourth-order polynomial described in the text, is fit to the
points.

where x and y are in units of km from the center of the locally tangent plane. A sample SRF

response and the polynomial fit are shown in Fig. 3.7.

Equations (3.4) and (3.5) model the SRF response. The coefficients are, as with the

angle α, functions of node, latitude, beam, and ascending/descending pass. A polynomial

surface is fit to each coefficient as a function of node and latitude. However, unlike for

α, only a second-order polynomial surface is required. For example, for the a0 coefficient
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Figure 3.7: The SRF values along the x axis for a measurement from beam 3. The upper
subplot shows the values in linear space, and the lower subplot shows the values in dB space. A
biquadratic fit in dB space is applied to the data down to −15 dB.

from Eq. (3.4),

a0(n, l; b, a) = a00 + a01n+ a02n
2 + a10l + a11nl + · · ·+ a22n

2l2. (3.6)

For each of the six coefficients from Eqs. (3.4) and (3.5), there are (2 + 1)2 = 9 coefficients.

As with α, the fits are separately performed by beam and ascending/descending pass, for

twelve cases. Thus 6× 9× 12 = 648 coefficients are used to parameterize the SRF response

in the x and y directions.

The parameterized SRF is much less computationally demanding than the reference

estimate from Section 3.1. For a typical use case of evaluating a measurement SRF value

at 100 locations, the time is benchmarked on a computer at 19.61ms for the reference SRF

estimate, and 0.1048ms for the parameterized SRF estimate.

This decrease in runtime by two orders of magnitude does not appreciably affect

the accuracy of the SRF estimate. Comparison plots for the reference and parameterized

SRF estimates are shown in Figs. 3.8 and 3.9 for a side and mid beam, respectively. The
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Figure 3.8: The reference (left) and parameterized (center) SRF estimates and the PPF SRF
(right) for a measurement in the left fore beam.

Figure 3.9: The reference (left) and parameterized (center) SRF estimates and the PPF SRF
(right) for a measurement in the left mid beam.

estimated SRF values are very similar for the two estimates. The largest differences are for

measurements with low incidence angles in the mid beams. In these cases, the reference SRF

curves slightly, deviating from the ellipse model. Since the difference is small, and in the

interest of a simple parameterization, the curvature is not accounted for.

My parameterized SRF estimate is publicly available,1 including the coefficients for

the polynomial fits.
1http://www.scp.byu.edu/software/ASCAT

35



3.3 SRF Validation

The SRF estimates from Sections 3.1 and 3.2 may be validated using several techniques.

Two methods are comparing the estimates with the SRF model used during the ground

processing of the raw data from ASCAT and comparing the SRF estimates against the spatial

signal seen in the transponder data collected for the external calibration of ASCAT. These

validation methods are conducted by EUMETSAT and are detailed in [63]. Because the

methods are not my work, I do not detail them here. However, the SRF model used during

ground processing at the EUMETSAT PPF may be seen in Figs. 3.8 and 3.9 along with both

the reference and parameterized SRFs. All three SRF models agree well, although they are

not identical—some small error is expected due to approximations undertaken to create a

simple model and parameterization of the SRF.

A final validation method, which I implement based on an observation from Craig

Anderson of EUMETSAT, is shown in this section: observed features in the ASCAT σ◦ data

are consistent with those predicted by the SRF estimates. Generally, the σ◦ values for land

and vegetation are larger than for the open ocean. I select a study region that includes the

island of Niue (19.06◦ S 169.87◦ W) in the Pacific Ocean. When the wind speeds are low, the

large σ◦ values from the island provide an excellent contrast against the low σ◦ values of the

surrounding ocean.

Due to the distributed nature of the SRF, measurements over the ocean but near Niue

contain a combination of the true ocean σ◦ and the land σ◦. Thus some “blurring” in the σ◦

data is expected around Niue. Due to the elliptical shape of the SRF, the blur is larger along

one direction (oriented along the semi-major axis of the SRF ellipse) than the perpendicular

direction (oriented along the semi-minor axis of the SRF ellipse).

Niue is shown for geoprojected ASCAT backscatter in the upper left subfigure of

Fig. 3.10. The GSHHG2 coastline is overlaid on the σ◦ values. A few 3 dB contours of the

measurement SRF are shown for scale and orientation. As expected, the σ◦ values near Niue

are “blurred” in the orientation of the SRF semi-major axis.

To illustrate the significance of inaccuracies in the SRF estimate, a synthetic σ◦ scene

is created for the Niue region where land (the area within the Niue coastline) is set to
2http://www.soest.hawaii.edu/pwessel/gshhg/
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−10 dB and ocean is set to −20 dB. The synthetic scene is sampled with three different SRF

estimates: (1) a circular Gaussian with a −3 dB width of 25 km, (2) an early SRF estimate

from [24] that incorrectly assumes a rectangular shape perpendicular to the beam, and (3)

the parameterization from Section 3.2. The sampled σ◦ values are shown in the remaining

subfigures of Fig. 3.10 along with the SRF 3dB contours for a few measurements. Of the three

SRF types, only the estimate presented in this chapter enables synthetic σ◦ measurements

that match the observed values.

In all cases observed, the blurred backscatter matches the orientation of the SRF

estimate, and I conclude that the SRF as described here accurately models the characteristics

of the ASCAT NRCS measurements.

3.4 Conclusion

The ASCAT SRF is a quantity that characterizes the spatial extent and weighting of

each ASCAT σ◦ measurement. I model the SRF using the viewing geometry, antenna gain

patterns, and details of the ASCAT onboard processing. I also present a computationally

efficient SRF estimate that parameterizes the SRF based on measurement latitude and

cross-swath position.

The modeled and parameterized SRF are both constructed to only require quanti-

ties reported in the ASCAT L1B data product. This avoids considerations such as orbit

propagation and does not depend on quantities only reported in the lower-level data such as

measurement slant ranges.

I validate the modeled SRF by observing the features in ASCAT σ◦ data. The observed

features match the behavior predicted due to the SRF. In collaboration with EUMETSAT I

have also validated the SRF through comparison with the internal EUMETSAT SRF model

and through transponder data [63]. Subsequent chapters of this dissertation utilize the

parameterized SRF as presented here.
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Figure 3.10: ASCAT σ◦ measurements near Niue for the right mid beam on a grid spacing of
0.05◦ (≈ 6 km). The coastline of Niue is overlaid using a black line and the SRF 3dB contour
for some measurements are indicated with white dashed lines. The top left subplot is the
observed σ◦ measurements; the remaining subplots are synthetic values sampled with different
SRF estimates. Top right: a 25 km Gaussian SRF; bottom left: an SRF that is perpendicular
to the along-beam direction; bottom right: the parameterized SRF described in Section 3.2.
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Chapter 4

Enhanced Resolution Backscatter Reconstruction

The reconstruction of the Earth surface σ◦ from ASCAT measurements is discussed

in this chapter. The GRD, AVE, and SIR algorithms discussed in Section 2.3 are applied to

ASCAT data in conjunction with the parameterized SRF from Chapter 3.

The σ◦ data is produced on a high-resolution grid. The optimum grid spacing is first

considered in Section 4.1, along with the theoretical spatial resolution of ASCAT data. Other

parameters for the reconstruction algorithms are discussed in Section 4.2. Resulting images

of the reconstructed backscatter are shown in Section 4.3. First- and second-order statistics

of the GRD, AVE, and SIR algorithms are compared in Section 4.4. A basic spectral analysis

of GRD, AVE, and SIR using ASCAT data is conducted in Section 4.5 in order to evaluate

the effective resolution of the output images. Section 4.6 concludes this chapter.

4.1 Spatial Resolution

In this section I address the question of spatial resolution in order to determine an

appropriate grid spacing for the reconstructed σ◦. As depicted in Fig. 2.3, image reconstruction

operates on the irregularly sampled input data to produce a regularly sampled digital image.

Both the input (ASCAT σ◦ measurements) and output (reconstructed σ◦ image) are samples

of the same underlying signal—the Earth surface radar reflectivity σ◦(x, y)—but may have

different notions of resolution.

Sampling theory dictates that, under approximate conditions, a bandlimited signal

may be sampled such that the samples completely represent the signal. The classic case of

a band-limited regularly sampled signal is governed by the Nyquist criterion—the samples

perfectly represent the signal if the sampling frequency is at least twice the signal bandwidth.
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Since the output σ◦ image is a regularly sampled signal, due to the Nyquist criterion,

the spatial resolution of the image is at least twice the sample period, or pixel size. Thus the

output image has a pixel resolution determined only from the pixel size. This differs from the

effective resolution, which is determined by the input data and the reconstruction algorithm.

To avoid aliasing, the pixel resolution must be equal to or finer than the effective resolution.

For simplicity, I use square pixels so the pixel resolution in the x direction is the same as in

the y direction.

It is important to choose an appropriate pixel size, or grid spacing, for the output

image. Choosing a smaller pixel size increases the storage requirements and computation

time of the image reconstruction. A smaller pixel size than is necessary provides no benefit to

the image effective resolution. Choosing a larger pixel size leads to aliasing of the signal and

a loss of effective resolution. Since the image reconstruction also evaluates the measurement

SRF on the pixel grid (hij in Eqs. (2.26) and (2.27)), an additional constraint is that the

pixel size adequately samples the SRF values. Thus the choice of pixel size is motivated by

computational cost and SRF quantization, in addition to the effective resolution of the image.

The image reconstruction algorithm ideally preserves the effective resolution of the

input data. It is difficult to exactly quantify the effective resolution of ASCAT σ◦ samples. The

frequency response of the underlying σ◦ signal, the sampling geometry, and the measurement

SRF all may vary the effective resolution.

Because the input data consists of irregularly sampled aperture-filtered measure-

ments, the conditions of classic sampling theory are too restrictive for ASCAT and other

scatterometers. It has been shown [29,64] that, analogous to the Nyquist criterion

Ts <
1

2B (4.1)

for a signal bandlimited to [−B,B] and sampled regularly with period Ts, an irregularly

sampled signal with frequency extent [−B,B] must satisfy

δ <
ln 2
2B (4.2)
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in order to be fully represented by its samples. The parameter δ is the maximum sample

spacing. A spatial region is said to be δ-dense if the union of all rectangles with width δ

centered on each measurement completely fills the region [64]. Further details on irregular

sampling are discussed in Appendix A.1.

Whatever the true bandlimit of the signal, given irregular samples with a density of δ,

Eq. (4.2) dictates the recoverable bandlimit. The signal, if bandlimited, may or may not be

aliased. If the signal is not bandlimited, then it is certainly aliased. However, a bandlimited

signal implies the signal has infinite extent in the spatial domain. Since the true σ◦ signal

is finite in extent, it cannot be purely bandlimited. However, it is treated as approximately

bandlimited.

The justification for treating σ◦ as approximately bandlimited is due to its behavior:

radar reflectivity is a physical process with a power-law relationship that results in a red

spectrum—that is, the power density is inversely proportional to frequency. Although the true

σ◦ signal has high-frequency content that is aliased due to sampling, the energy in this portion

is minimal for a suitably chosen sample frequency. Additionally, since the aperture functions

that sample the σ◦ signal are generally lowpass, they further suppress the high-frequency

energy so that the aliased energy can be ignored. Note that because of the filtered or ignored

high-frequency content, the reconstructed enhanced-resolution image is a bandlimited version

of the true continuous signal σ◦(x, y).

I thus treat Eq. (4.2) as satisfied for the available sampling—that is, the σ◦ samples

have a δ-density sufficiently large to represent the σ◦ signal bandlimited to B, as determined

by Eq. (4.2). In order for the pixels of the output image to represent this bandlimited signal,

Eq. (4.1) must be satisfied. Since Eq. (4.2) is assumed satisfied, I combine them to yield

Ts <
δ

ln 2 . (4.3)

This represents the largest pixel size, Ts, that can represent the bandlimited signal, which is

irregularly sampled at a density of δ. Since Eq. (4.3) implies no aliasing of the irregularly

sampled signal, the effective resolution is the same as (or more coarse than) the pixel resolution.

As stated above, the pixel resolution is 2Ts. Thus from Eq. (4.3) the best-case effective
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Figure 4.1: The sample density δ as a function of latitude for bins of latitude using 1, 2,
and 5 days of ASCAT data. The smallest spatial resolution that may be reconstructed is also
indicated.

resolution may be computed directly from δ: 2δ
ln 2 . Note that due to the frequency response of

the aperture functions used to sample the signal, the effective resolution may be worse than

that determined solely by δ.

The parameter δ is intrinsic to the observation geometry and sample spacing. A

simple estimate for δ is found through binning the measurements over a region at various

grid sizes. The smallest grid size with no empty bins is the estimated δ. For ASCAT, using

only one beam from a single pass of data yields the largest nominal δ: approximately 5.25 km.

From this single-pass single-beam δ, the worst-case effective resolution is therefore 15.15 km.

Combining all beams and using multiple passes reduces δ, but this is a function of latitude:

due to the near-polar orbit, locations at high latitudes are sampled more densely than those

closer to the equator. The density δ and effective resolution are shown in Fig. 4.1 as a function

of latitude using 1, 2, and 5 days of data. The average δ for equatorial and for polar regions

is displayed in Table 4.1. The theoretical spatial resolution that may be reconstructed in

these cases is also shown.

For compatibility with existing SCP datasets, I choose a pixel size of 8.9 km/2 =

4.45 km in order to avoid aliasing. This pixel size is slightly smaller than the pixel sizes of
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Table 4.1: The average δ and corresponding spatial resolution from Fig. 4.1 for equatorial
(< 50◦) and for polar (> 55◦) latitudes.

Equatorial latitudes Polar latitudes
Days δ (km) Resolution (km) δ (km) Resolution (km)

1 4.6 13.3 3.0 8.5
2 3.6 10.3 2.6 7.4
5 2.6 7.5 2.2 6.4

4.6 km or 5.6 km required to represent 9.2 km or 11.5 km resolution data from the 5-day or

2-day δ values.

As part of AVE and SIR reconstruction, the SRF is quantized or sampled on the same

grid used to reconstruct the σ◦ data. The chosen pixel size of 4.45 km is on the order of the

width of a measurement SRF. While this coarse quantization of an SRF is not a particularly

accurate representation of the SRF, no issues are apparent in the final reconstruction output

using this coarse representation over a more finely quantized version using a smaller pixel

size.

For comparison purposes in this dissertation, I also consider a reconstruction pixel size

of 3.125 km for a pixel resolution of 6.25 km. To match the resolution of the spatially averaged

ASCAT data, which are produced at 25 km and 50 km resolution [26], I create conventionally

gridded σ◦ images on a grid spacing of 12.5 km and 25 km for pixel resolutions of 25 km and

50 km. The alternate pixel size of 3.125 km for the reconstructed images permits an easier

comparison between the gridded versus the reconstructed images since the gridded pixel sizes

are an integer multiple of the reconstructed pixel size. Thus for AVE and SIR I use a grid

spacing of 3.125 km, and for GRD I use both 12.5 km and 25 km.

4.2 Reconstruction Parameters

I consider three reconstruction parameters for ASCAT: (1) the pixel size; (2) the

number of SIR iterations; and (3) quantization of the SRF estimate. The choice of pixel size,

or posting grid, is discussed above in Section 4.1. In this section, I evaluate the other two

parameters.
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Since SIR is an iterative algorithm, the number of SIR iterations is a parameter

that affects the final reconstruction output—prematurely terminating the SIR iterations is

a regularization that results in a partial reconstruction. This parameter controls a tradeoff

between the image fidelity and the noise added or amplified during the reconstruction process.

The number of iterations can be fixed or chosen dynamically, e.g., by terminating if the

change in image values as a function of iteration falls below some threshold. Here, I select a

fixed value for the number of iterations.

The SRF may be quantized in order to reduce computation. The quantized, or binary-

valued, SRF is an approximation to the true, or full-valued, SRF hi(x, y), which is 1 inside

the SRF 3dB contour and 0 outside. A quantized SRF was previously used for QuikSCAT

slice measurements to reduce computational complexity [5]. I evaluate this approach for the

ASCAT SRF by reconstructing with both the original SRF and the quantized SRF.

I use simulations to select both the number of SIR iterations and choose between a

full-valued or binary-valued SRF by minimizing the error metrics defined below. A synthetic

“truth” image of σ◦[x, y] is created and sampled using ASCAT measurement geometry and

the full-valued SRF estimate. Using Eq. (2.17), the synthetic ASCAT measurement σ◦i is

expressed as

σ◦i =
∑
j σ
◦
true,jhij∑
j hij

, (4.4)

where j indexes the pixels of the true σ◦ image, i indexes the measurements, and hij is

the full-valued SRF value of measurement i at pixel j. Note that the evaluation of SRF

quantization is a reconstruction-only parameter, so a quantized SRF is not appropriate for

the sampling procedure. Measurement noise is additionally simulated using Eq. (2.19), with

νi ∼ N (0, 1) and Kp = 0.20:

zi = σ◦i (1 +Kp,i νi). (4.5)

Both noisy and noise-free samples of the synthetic image are processed using AVE

and SIR reconstruction as well as the traditional GRD method (“drop-in-the-bucket”). AVE

and SIR are produced at a grid spacing of 3.125 km and GRD is produced at grid spacings

of 12.5 and 25 km. Reconstruction is performed using either full-valued or binary-valued

SRF estimates and for various iterations of SIR. The reconstruction error is quantified by
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evaluation of the difference between the reconstructed σ̂◦[x, y] results and the input synthetic

image σ◦[x, y].

For this section, the signal error is defined as the standard deviation of the difference

between the synthetic truth image and the reconstructed output when using noise-free samples.

It is the difference between the actual scene and the reconstructed scene in the ideal sense,

i.e., with no measurement noise. I also define the noise error as the standard deviation of

the difference between reconstruction outputs when using noise-free versus noisy synthetic

measurements. This represents the error due only to the measurement noise. As SIR iterates,

the reconstruction amplifies the noise error as it reduces the signal error. The objective of the

simulation is to find an optimum number of SIR iterations such that these two error metrics

are jointly minimized, as well as to evaluate the effect of SRF quantization on the signal and

noise errors [29].

A parametric plot of signal error and noise error as a function of SIR iteration is shown

in Fig. 4.2 for the truth image using the full-valued and the binary-valued SRF to reconstruct.

Since the partial reconstruction process is not a linear operation, the error values depend on

the truth image chosen. However, the general trend is similar among the various truth images

evaluated: the first few iterations of SIR rapidly reduce the signal error at the expense of

additional noise. After about 10 iterations, the signal error continues to decrease, but the

increase in noise error is less dramatic. After about 30 iterations, any further reduction in

signal error is small, but noise error slowly continues to increase. The decrease in signal error

indicates resolution enhancement via improved signal reconstruction.

When using the quantized SRF, AVE has a slightly lower signal error but larger signal

error than with using the original SRF. However, as SIR iterates, the full-valued SRF permits

a greater reduction in signal than with the binary-valued SRF. Although exact values vary

as a function of input truth image, the trend is similar for all cases tested: a quantized SRF

may improve AVE, but it limits the performance of SIR.

The error for GRD at both grid spacings is also shown in Fig. 4.2. The noise error is

very low, but the signal error is larger than for AVE or SIR. This illustrates an important

tradeoff in enhanced-resolution image reconstruction: the signal error is improved at the

45



8 6 4 2 0 2 4 6

Signal error (dB)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o
is

e
 e

rr
o
r

GRD-12.5

GRD-25AVE

1

2

3

4

5

10
1530

50

100

AVE

1

2

3

4

5

10

15

30

50

100
Full-valued SRF

Binary-valued SRF

Figure 4.2: The noise error versus signal error for a synthetic truth image for up to 100 SIR
iterations. The solid line indicates reconstruction with the full-valued SRF, and the dashed
line indicates reconstruction with the binary-valued SRF. Selected iterations of SIR are labeled
along with AVE and GRD.

expense of greater noise. In some applications the improved spatial resolution may not justify

the additional noise, but for other applications this tradeoff is acceptable.

Based on the simulation results, I use the non-quantized SRF for reconstruction and

select 30 iterations of SIR. ASCAT images processed using GRD, AVE, and SIR are included

in the SCP to allow users some control over the noise/resolution tradeoff.

4.3 Reconstruction Results

At the spatial resolution of ASCAT, most land regions are isotropic with respect to

azimuth angle, whereas azimuth anisotropy is critical for ocean wind estimation. For land

and sea ice applications of σ◦ data, σ◦ data from all azimuth angle directions are averaged
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together to increase the number of measurements available for reconstruction. For wind

applications (see Chapter 5), each beam is separately reconstructed.

Data from multiple ASCAT orbits are used for enhanced resolution processing over

land and ice. Using multiple orbits of data over a few days increases the spatial coverage and

improves the measurement density. Since the tradeoff is a reduced temporal resolution, using

multiple passes is best suited for areas that do not rapidly change, such as land and ice.

To illustrate the effectiveness of resolution enhancement, examples of conventional

images using gridding and enhanced-resolution images using AVE and SIR are shown in this

section. The gridded images are produced at pixel sizes of 12.5 and 25 km using the GRD

method (referred to as GRD-12.5 and GRD-25, respectively), and the AVE and SIR images

are produced at a pixel size of 3.125 km. I use the reconstruction parameters selected in

Section 4.2: 30 iterations of SIR using the full-valued SRF.

Three regions in Antarctica and the Amazon, shown in Figs. 4.3 and 4.4, are selected

as study regions. Because ASCAT is in a near-polar orbit, polar regions are measured more

frequently than at lower latitudes. Because Antarctica is a polar region, only 9 orbits (about

15 hours) are required to completely sample the land. Sea ice extent varies as a function of

time, but two days of data is a good compromise between complete land and sea ice coverage

and high temporal resolution. The Amazon lies at the equator, so it represents a worst-case

example of coverage. At least 22 orbits (37 hours) are required to obtain complete coverage

over the land. For this region, five days of data are used.

Figures 4.5 and 4.6 show the reconstructed images for both Antarctic regions. Two

days of data (299–300, 2011) are used, with A (incidence angle-normalized σ◦) images shown.

Figure 4.5 shows the Weddell Sea, with the Brunt Ice Shelf visible on the right edge. Most of

the region consists of sea ice, with some icebergs visible as brighter patches. Many features

are visible in all four images, but the iceberg shape and orientation are more defined in

the AVE and SIR images compared to the GRD images. The smaller grid spacing of the

GRD-12.5 image is an improvement over the larger spacing in the GRD-25 image, and AVE

and SIR further improve on the GRD-12.5 image. SIR is similar to AVE, but the contrast

between sea ice and iceberg or ice shelves is sharpened. In effect, SIR de-blurs the AVE data.
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Figure 4.3: The regions of Antarctica used for Figs. 4.5 and 4.6. Figure 4.5 contains the
Weddell Sea and Fig. 4.6 contains Enderby Land.
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Figure 4.4: The region in South America containing the Amazon Basin used for Fig. 4.7.

Figure 4.6 contains part of Enderby Land and shows icebergs visible in the top-left

and center-right of the region. The coarse grid spacing of the GRD-25 precludes the recovery

of any small-scale features. With GRD-12.5, some smaller features become visible; with AVE,

the size and shape of icebergs and the coastline are more clear. SIR sharpens the transition

between contrasting features, such as the icebergs in the surrounding sea ice.

The Amazon Basin region is shown in Fig. 4.7. Five days of data (299–303, 2011) are

used, with A (incidence angle-normalized σ◦) images shown. The Amazon River and some of

its tributaries are visible in all images. While much of the region appears homogeneous due

to the high vegetation, the rivers are better resolved with AVE and SIR, with the largest
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Figure 4.5: A images of a region from the Weddell Sea, Antarctica. Top left: gridded with a
pixel spacing of 25 km; top right: gridded at 12.5 km; bottom left: AVE at 3.125 km; bottom
right: SIR at 3.125 km after 30 iterations.

contrasts between land and river visible in SIR. Some image artifacts are visible in the GRD

and AVE images near the center and the right. These are due to insufficient incidence angle

information to estimate B, the gradient of σ◦, which leads to a poor A estimate.

The spatial resolution of the AVE and SIR-reconstructed data is enhanced over that

of conventional GRD processing. This is demonstrated in Fig. 4.2 for a synthetic σ◦(x, y)

scene and visually verified in Figs. 4.5 to 4.7 for ASCAT σ◦ measurement data. Other regions

of the Earth similarly demonstrate enhanced resolution.

4.4 Reconstruction Statistics

To quantify the performance of the reconstruction algorithms, the reconstructed data

is characterized by first- and second-order statistics: the mean and variance of each pixel

and the autocovariance between each pair of pixels. These statistics are used to evaluate the
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Figure 4.6: A images of a region from Enderby Land, Antarctica. Top left: gridded with a
pixel spacing of 25 km; top right: gridded at 12.5 km; bottom left: AVE at 3.125 km; bottom
right: SIR at 3.125 km after 30 iterations.
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Figure 4.7: A images of a region from the Amazon Basin. Top left: gridded with a pixel
spacing of 25 km; top right: gridded at 12.5 km; bottom left: AVE at 3.125 km; bottom right:
SIR at 3.125 km after 30 iterations.

accuracy and precision of the reconstruction algorithms as applied to ASCAT. Although a

full derivation of these statistics is available in Appendix C, in this section only the results

and salient points are discussed.

For GRD and for AVE, I predict the mean σ◦ for each pixel j and the autocovariance

between pixels m and n. The mean is the expected value of the pixel:

µave[j] = E[σ◦ave[j]], (4.6)

and the autocovariance is

kave(m,n) = E [(σ◦ave[m]− µave[m])(σ◦ave[n]− µave[n])] . (4.7)

Due to the non-linear nature of the SIR algorithm, the pixel mean and autocovariance

are not readily computable, so instead I use the sample mean and sample autocovariance
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through simulation. The sample statistics are also computed for AVE and for GRD and

compared against the predicted values in order to validate the prediction. To simplify the

analysis, no incidence angle dependence is included.

The simulation process includes two modeled sources of randomness: measurement

noise and the uncertainty of the true Earth surface σ◦(x, y). The uncertainty of the true

surface is modeled as having first- and second-order statistics µA[j] and kA(m,n), the mean

at pixel j, and autocovariance between pixels m and n, respectively. After sampling with

the ASCAT measurement geometry and SRF, the ASCAT measurements zi have first- and

second-order statistics µz[i] and kz(a, b), the mean of measurement zi, and the autocovariance

between measurements za and zb.

Measurement noise, because it is zero mean and uncorrelated, does not change µz[i]

or kz(a, b) for a 6= b, but it does increase the measurement variance varz[i] = kz(i, i). The

pixel mean and autocovariance for AVE for GRD (µave[j], kave(m,n), µgrd[j], and kgrd(m,n))

are related to the measurement statistics.

Synthetic truth images are generated from a mean vector and autocovariance matrix,

µA and ΣA. A multivariate Gaussian distribution is used with the parameters µA and ΣA to

obtain multiple realizations of truth images. The truth images are sampled with the SRF and

the ASCAT measurement geometry over an equatorial region using 5 days of data to obtain

synthetic ASCAT measurements. Noise is added to the measurements using Eq. (2.19) with a

constant Kp value of 0.20. Based on the truth image statistics µA and ΣA, the measurement

statistics are predicted, and from those the AVE and GRD pixel statistics are predicted.

The GRD, AVE, and SIR algorithms reconstruct the output images from the noisy

synthetic measurements. The reconstructed images are created for each truth realization; for

the results following, 500 realizations are generated, so 500 sets of GRD/AVE/SIR images

are created. The sample mean and sample autocovariance are taken over the realizations and

computed independently for each image pixel.

The predicted statistics are compared against the sample statistics to validate the

prediction. This is shown in Appendix C, but here only the sample statistics are shown in

order to compare the performance of GRD, AVE, and SIR. A subset of the sample pixel mean

and variance are shown in Fig. 4.8 for GRD, AVE, and SIR. For GRD, a grid spacing at both
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12.5 km and 25 km is used. AVE and SIR are both computed on a grid spacing of 3.125 km.

For comparison, the GRD pixels are upsampled appropriately to match the AVE/SIR pixel

size. The pixel mean subplot of Fig. 4.8 additionally includes the truth image mean. GRD

and AVE are centered around the truth image mean, but SIR has a slight bias of −0.025 dB.

The pixel variance in Fig. 4.8 is typically largest for GRD at 12.5 km, is generally

less for AVE, is still less for SIR, and has the lowest pixel variance for GRD at 25 km. The

GRD and AVE results are proportional to the number of measurements used to compute

each reconstructed pixel. The number of measurements per pixel is shown in the bottom

subplot of Fig. 4.8 for GRD and for AVE (SIR has the same number of measurements per

pixel as does AVE). Even though SIR uses the same number of measurements per pixel as

does AVE, the pixel variance is lower for SIR than for AVE.

The autocovariance among pixels pairs is next evaluated. To increase the clarity of the

plots, the correlation coefficient is plotted rather than the autocovariance. The correlation

coefficient ranges between ±1:

ρ(m,n) = k(m,n)√
k(m,m) k(n, n)

. (4.8)

For this section, I define the correlation area as the area in the correlation neighborhood

covered by the contour 3 dB below the peak value of 1 and the correlation length as the radius

of the 3 dB correlation contour.

The autocovariance k(m,n) and correlation coefficient ρ(m,n) vary as a function of

position due to the ASCAT sample geometry, including the SRF shape and orientation. The

exact values differ as a function of location, but the general behavior is consistent over the

image. For an example pixel from GRD (both 25 km and 12.5 km grid spacings), AVE, and

SIR, the sample correlation coefficient ρ(m,n) between the pixel and its neighboring pixels

are shown in Fig. 4.9. The GRD pixels are upsampled to match the area in the AVE and

SIR cases.

In Fig. 4.9, both GRD-25 and GRD-12.5 have a very small correlation between

neighboring pixels; however, since the grid spacing is large, the resulting correlation area

is also large. The correlation area for AVE is about the same as for GRD-12.5, whereas
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Figure 4.8: The sample mean (top) and variance (middle) for a few pixels of GRD, AVE, and
SIR. GRD is computed on a grid spacing of both 25 km and 12.5 km. AVE and SIR are on a
grid spacing of 3.125 km. The number of measurements used to compute each pixel (bottom) is
shown for the three grid spacings.
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SIR increases the correlation area beyond that of AVE. (For the pixels used in Fig. 4.9, the

correlation areas for GRD-12.5, GRD-25, AVE, and SIR are: 634, 158, 175, and 314 km2.)

However, due to the measurement geometry and SRF shape, AVE typically has irregularly

shaped correlation contours, while SIR smooths the contours to be more circularly symmetric—

i.e., the variance of the correlation length is smaller for SIR than for AVE.

A desirable correlation coefficient area is small (so pixels are only weakly correlated

with adjacent pixels) but symmetric (so the correlation distance is directionally isotropic).

GRD satisfies both these conditions, but the grid spacing is large. AVE provides a smaller

correlation area than GRD, but it is less symmetric than GRD. SIR tends to improve the

correlation symmetry of AVE at the tradeoff of a larger correlation area.

This section has evaluated the GRD, AVE, and SIR methods by comparing the pixel

mean, pixel variance, and correlation neighborhoods. Although the pixel statistics may be

predicted for GRD and for AVE, in order to additionally consider SIR, the sampling process

is simulated and the measured statistics are compared. As mentioned previously, because the

number of SIR iterations is truncated, SIR is a partial reconstruction approach.

For the cases considered here, GRD and AVE both are unbiased while SIR exhibits a

small bias. SIR, however, improves the pixel variance over that of AVE. The pixel variance

of GRD depends on the grid spacing, which affects the number of measurements used for

each GRD pixel. For the two cases examined (12.5 and 25 km) the GRD pixel variance is

either greater than or less than that of AVE and SIR.

GRD pixels are weakly correlated with neighboring pixels, but AVE and SIR have

a larger number of adjacent pixels correlated. AVE has a small correlation area, but the

correlation is typically nonsymmetric. SIR improves the correlation symmetry but at the

tradeoff of a larger correlation area.

4.5 Spectral Analysis

Due to measurement spacing and SRF size and orientation, the effective resolution

of the reconstructed images may vary across the image. It is therefore difficult to precisely

quantify the resolution of the reconstructed images as a single value. However, in order to

55



∆
y

∆x

∆
y

∆x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.9: The correlation coefficient between a random pixel and its neighboring pixels for
GRD at a grid of spacing of 12.5 km (top left), GRD at a spacing of 25 km (top right), AVE at
a spacing of 3.125 km (bottom left), and SIR (30 iterations) at a spacing of 3.125 km (bottom
right). The GRD pixels are upsampled to match the AVE/SIR grid spacing. Contours are
drawn at −3, −6, and −10 dB.

determine an approximate effective resolution I conduct a basic spectral analysis on the

reconstructed images.

The synthetic truth image used is shown in Fig. 4.10. It contains a linear frequency-

modulated chirp in order to test a wide range of spatial frequencies. To simplify the analysis,

the same values are used for each row of the synthetic truth image. The synthetic chirp

image is treated as deterministic so the only uncertainty is the added measurement noise.

Using an (essentially) one-dimensional truth image permits simplifying the image spectrum to
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Figure 4.10: The chirp truth image used for spectral analysis.

one-dimensional as well. The image spectrum, as used here, is the row-wise power spectrum

computed using Welch’s method.

The spectra for GRD, AVE, and SIR are shown in Fig. 4.11. As before, grid spacings

of 12.5 and 25 km are used for GRD and a grid spacing of 3.125 km is used for AVE and SIR;

additionally, the ASCAT measurement geometry is from an equatorial region using 5 days of

data. The spectra of the reconstructed outputs follow the behavior of the truth spectrum

down to a wavenumber of about 0.01 km−1 (a spatial period of 100 km). Below that, AVE

and GRD have similar values, but the spectra taper off. This is effectively a non-ideal lowpass

filtering of the truth image. The AVE spectrum continues to decrease until high-frequency

noise starts to dominate below a wavenumber of about 0.05 km−1 (20 km).

Although the GRD pixel resolutions for the two cases considered are 25 km and 50 km,

the effective resolution of GRD is somewhat coarser than this. This is due to the SRF of

each measurement not always being entirely contained in the same pixel as the measurement

center. This is evident in the falling off of the GRD power spectra in Fig. 4.11 below 100 km.

The SIR spectrum in Fig. 4.11 is similar to AVE, but it successfully recovers more

frequency content between wavenumbers of 0.01 km−1 to 0.05 km−1 than AVE or GRD. Similar

to AVE, below about 0.05 km−1, the spectrum values are larger than the truth spectrum, and

the slope of the spectrum is more shallow, indicating that high-frequency noise dominates.

Figure 4.12 shows the spatial domain results, or the values of the rows of the images

averaged together. Since the image is symmetric, only half of the averaged row is shown. For

all reconstruction cases considered, the recovered amplitude decays as frequency increases, in
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Figure 4.11: Spectra for GRD, AVE, and SIR. The spectrum of the truth chirp image is
shown for comparison. For clarity, the GRD spectra are plotted shifted downward slightly but
otherwise is very similar to the AVE spectrum. GRD is computed on grid spacings of 12.5 and
25 km and AVE and SIR are on a grid spacing of 3.125 km.

agreement with the spectra results in Fig. 4.11. GRD cannot recover the highest frequencies

due to aliasing. AVE and SIR recover all the frequencies for this particular chirp, but with

diminished amplitudes. SIR, however, is able to recover the amplitudes better than AVE,

especially the troughs of each wave. The improved amplitude recovery of SIR versus GRD

and AVE matches the higher energy in mid-range frequencies in Fig. 4.11.

The spectra are also computed using ASCAT measurement geometry from a polar

region. Due to the near-polar orbit of ASCAT, a high-latitude region is more densely sampled

than at lower latitudes—i.e., the δ-density value is smaller. With 5 days of data, the spectra

(not shown) indicate an effective resolution of 12.5 km. However, in order to improve the

temporal resolution of polar regions (e.g., to detect and track fast-moving icebergs), 2 days
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Figure 4.12: The averaged row values for the truth input and the GRD, AVE, and SIR
outputs. Due to symmetry, only half of the row is shown.

of ASCAT data is used. The spectra for 2-day polar regions indicate a spatial resolution of

about 15 km.

Including data from both ASCAT instruments on MetOp-A and MetOp-B in tandem

processing further increases the number of measurements. The spectra results (not shown)

however do not support an improved spatial resolution—this is likely due to the two MetOp

satellites operating in a co-planar orbit. However, tandem processing enables improved

temporal resolution since combining data from both instruments improves the coverage over

that using only a single ASCAT instrument.

Although the spectra results vary as a function of parameters including the truth

image and measurement geometry, the general trends observed are similar. The coarse grid

spacing of GRD precludes recovery of high spatial frequencies. The results in both spatial

and frequency domains show that AVE and SIR both contain spatial content down to about

15 km, but as evidenced by the attenuation they cannot recover all data to 15 km; however,

SIR has less attenuation and is better able than AVE to recover the high-frequency content.

Both AVE and SIR provide improved spatial resolution over GRD.
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4.6 Conclusion

Image reconstruction algorithms, in conjunction with the measurement SRF, enable

enhanced-resolution estimates of the sampled Earth surface σ◦. The effective spatial resolution

of the reconstructed AVE and SIR products is difficult to precisely quantify for ASCAT but

is on the order of 15 km to 20 km compared to at least 25 km for GRD-12.5 and 50 km for

GRD-25. Increasing the number of ASCAT passes used increases the sample density, which

also improves the resolution (to a point) and reduces noise.

The parameters of reconstruction discussed include the choice of pixel size, quantizing

the measurement SRF, and the number of SIR iterations. A pixel size of 4.45 km/pixel is

chosen for compatibility with other products in the SCP dataset. This is selected to balance

the requirements of using a pixel resolution finer than the effective resolution but not so fine

as to provide no additional benefit for the larger storage requirement. Based on simulated

truth images and actual observation geometry, I select 30 iterations of SIR and do not use a

quantized SRF. The choice of SIR iterations is a reasonable tradeoff to reduce signal error

without needlessly amplifying reconstruction noise.

I also evaluate the pixel statistics of the GRD, AVE, and SIR methods, noting that

the statistics are dependent on the SRF, sample geometry, and synthetic truth pixel statistics.

Here, the results for ASCAT are examined, but the values may readily be determined for

any arbitrary SRF and sample geometry, e.g., for another scatterometer. I find that SIR

introduces a small bias of about 0.02 dB but has a smaller pixel variance than does AVE.

The pixel variance of GRD is directly proportional to the number of measurements used per

pixel; thus, the choice of grid spacing is an important consideration for GRD. However, the

number of measurements per pixel for AVE and SIR is affected by the sampling geometry

and measurement SRF, not the grid spacing; thus, the grid spacing size is not significant for

AVE and SIR pixel variance.

The correlation coefficient between reconstructed pixel pairs is also evaluated. GRD

pixels are only weakly correlated with adjacent pixels, but the correlation extends further for

AVE and for SIR. Because of the measurement geometry and SRF shape, the correlation

coefficient may be directionally dependent for AVE. SIR, however, tends to circularize the

correlation coefficient contours at the tradeoff of an increased correlation area.
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A basic spectral analysis indicates that AVE and SIR perform a limited recovery of

high-resolution information. The resolution recovery for GRD is constrained by the coarse

grid spacing. SIR improves upon AVE and amplifies high-frequency content that is otherwise

attenuated. Since the number of SIR iterations is truncated, it is only a partial reconstruction.

Increasing the number of SIR iterations may continue to recover high-frequency content, but

high-frequency noise is amplified as well.

The processed ASCAT σ◦ products at conventional resolution using GRD and

at enhanced resolution using AVE and SIR are publicly available in the SCP archives

(http://scp.byu.edu) and may be used in a variety of geoscience applications.
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Chapter 5

Near-Coastal Enhanced-Resolution Wind Retrieval

An application of enhanced-resolution backscatter is the production of enhanced-

resolution wind estimates, referred to as ultra-high resolution (UHR) winds. While UHR

winds are useful, their utility is limited by the land contamination present in near-coastal

regions. This chapter addresses this drawback by identifying and removing σ◦ measurements

sufficiently contaminated by land. In order to validate the accuracy of the near-coastal

ASCAT winds and to confirm the absence of land contamination, the ASCAT winds are

compared against buoy-measured winds.

The production of UHR ASCAT winds is outlined in Section 5.1. The land contamina-

tion ratio (LCR), or land fraction, which was discussed in Section 2.5.1, is applied to ASCAT

σ◦ measurements in Section 5.2. The LCR is used in order to reduce land contamination to

acceptable levels and enable (unbiased) wind retrieval much closer to land than otherwise.

This is detailed in Section 5.3 for ASCAT UHR winds. Finally, the near-coastal ASCAT

wind, both at conventional and enhanced resolution, is validated in Section 5.4 using buoy

measurements.

5.1 Ultra-High Resolution Winds

KNMI1 generates the ASCAT Level 2 wind product, referred to in this chapter using

the initialism L2W. The L2W winds are produced on a swath-oriented grid at a grid spacing

of 12.5 km. Each grid location is termed a wind vector cell (WVC). Of the L2W varieties

available, this chapter uses the “coastal” L2W product, which contains wind estimates closer

to land than the original L2W dataset but with a different approach than the LCR method
1http://knmi.nl
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in this chapter [65]. The target wind retrieval error in the L2W dataset is 2m/s RMS error

for wind speeds below 25m/s [2].

In contrast to the conventional resolution L2W winds, the ultra-high resolution (UHR)

winds are produced from reconstructed σ◦ values. UHR is processed on a high-resolution

grid aligned with the swath-oriented 12.5 km L2W grid, but it is subdivided into a grid with

1.25 km spacing. Similar to the L2W grid, each UHR grid point is referred to as a UHR WVC.

The AVE algorithm is used to generate UHR σ◦ values at each UHR WVC from the original

σ◦ measurements and their associated SRFs. The AVE image reconstruction method includes

a limited form of resolution enhancement by which the value reported at each grid point

is the average of all nearby σ◦ measurements, weighted by each measurement’s associated

SRF value at that point, as demonstrated in Chapter 4. AVE reconstruction is performed

separately for each of the three ASCAT beams within each swath. Further information on

ASCAT UHR, including validation through comparison with SAR-derived wind, is found

in [66]. The ASCAT UHR winds are produced by the BYU MERS Lab.

Figure 5.1 highlights the difference in spatial resolution between retrieved UHR and

L2W winds for a high wind event: Hurricane Katia of 2011. Storms tend to have more

high-resolution wind features than many other weather patterns due to their high wind speeds

and cyclonic nature and therefore provide excellent case studies for comparing the two wind

products [66–68]. In Fig. 5.1, the UHR wind speed contours are more detailed with higher

frequency variations than L2W. Additionally, the eye of the storm is more clearly defined in

the UHR image, and the pattern of decrease in wind speed away from the center is more

detailed.

While the UHR winds are useful in estimating higher resolution features than L2W,

the wind estimates near land are biased too high (examples are shown below in Section 5.3).

To mitigate these near-coastal errors, I require the land fraction of each ASCAT measurement.

It is anticipated that a future update to the ASCAT L1B data will include this quantity, but

until then, the land fraction must be computed during UHR processing.
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Figure 5.1: L2W winds (left) and UHR winds (right) retrieved from ASCAT on 2011-09-06 in
the North Atlantic. The storm shown is Hurricane Katia. Direction arrows are downsampled to
increase visibility.

5.2 ASCAT Land Fraction

The land contribution ratio (LCR), or land fraction, is an application of the SRF to

ASCAT σ◦ data. As described in Section 2.5.1, it characterizes the degree each measurement

of σ◦ over the ocean is (possibly) contaminated by nearby land by incorporating information

about the size, shape, and orientation of the measurement SRF [46].

The LCR is defined in Eq. (2.32) and repeated here for convenience:

LCRi =
∑
x,y L[x, y]hi[x, y]∑

x,y hi[x, y] , (5.1)

where L[x, y] is a rasterized binary-valued land map and hi[x, y] is the SRF value of mea-

surement i at pixel [x, y]. The rasterized land map used is based on the GSHHG dataset2.

The map is on a equirectangular projection with a grid spacing of 1
100
◦ (approximately 1 km,

varying as a function of latitude).
2http://www.soest.hawaii.edu/pwessel/gshhg/
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However, the LCR as defined by Eq. (5.1) may not be exact since the land map may

not perfectly characterize coastal regions. The land map is a binary indicator of land or ocean,

but for some coastal regions (e.g., marshes) the true σ◦ is not spatially homogeneous over the

“land” portion of the SRF and the full integral formulation of the LCR from Eq. (2.31) is

required. Notwithstanding this weakness, in practice the LCR model is valid for most coastal

regions.

To compute the LCR for each ASCAT measurement, a grid tangent to the Earth

surface at the reported measurement location is defined [59]. This grid has a spacing of 1 km

and extends over a 60 km by 60 km area. For each point on the grid, the SRF value and land

value (hi[x, y] and L[x, y]) are evaluated. The terms for all grid points are combined as in

Eq. (5.1) to compute the final LCR estimate for the measurement.

To illustrate, the LCR is evaluated with σ◦ data for a region containing the island Niue

in Fig. 5.2. The computed LCR compares well against the larger σ◦ values observed over Niue.

As expected, the LCR shape and extent correspond to the “blurring” of σ◦ measurements

around the island coast. Due to the SRF orientation and shape, the blur is not rotationally

symmetric, but spreads further along one direction than the other.

The interpolated LCR and σ◦ values along the transects labeled in Fig. 5.2 are shown

in Fig. 5.3, labeled A and B. The portions of the transects over land are also indicated in

the figure. The number of LCR values above a threshold (e.g., −20 dB) differs for the two

transects, indicating that the minimum land distance of uncontaminated measurements varies.

Along transect A, the σ◦ measurements are only biased by land within about 5 km of land,

representing a favorable SRF orientation. Transect B represents a worst-case SRF orientation,

where the σ◦ measurements are land contaminated within about 25 km of land.

5.3 Land Contamination Removal

As discussion in Section 2.5.1, land contamination in σ◦ measurements affects the

retrieved winds. A traditional approach to removing land contamination is to use a distance

threshold such that all σ◦ measurements within the threshold are discarded. However, since

the ASCAT measurement SRF is non-circular, a strict distance threshold is sub-optimal.

A measurement may lie “parallel” to land so it falls within the distance threshold yet
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and B for Fig. 5.3.
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Figure 5.3: The observed σ◦ and computed LCR values along the two transects of Fig. 5.2. The
portion of the transects over land are indicated with shading. The values between measurements
are linearly interpolated.
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be uncontaminated by land. Or, if a measurement is “perpendicular” to land, then even

measurements far away (up to half the “length” of a measurement footprint) are affected by

land. This is illustrated in Figs. 5.2 and 5.3, in which the land contamination (as manifest by

larger σ◦ and LCR values) is shown to extend further from the coastline for transect B than

for transect A. For this reason, I examine the removal of land contamination in UHR winds

using the LCR.

The LCR for each measurement is evaluated using the corresponding SRF and a

binary land map, as described in Section 5.2. To entirely avoid any land contamination,

all measurements with a nonzero LCR would be discarded and not used for wind retrieval.

However, in order to increase the quantity of retrievable near-coastal winds, this strict

threshold is relaxed. In fact, it is possible to retain measurements for wind retrieval, even

if they contain a small amount of land contamination, as long as the impact of the land

contamination on the wind is small.

Based on trial-and-error with some case studies, I find that a reasonable LCR threshold

is −20 dB (or, 0.01): any measurement with an LCR greater than −20 dB is not used for wind

retrieval. However, this threshold level is entirely a subjective choice. The more objective

approach discussed in this section is to choose the threshold level subject to minimizing a

suitable error metric. This also allows the LCR threshold to vary across the region as a

function of local conditions.

My approach with ASCAT is similar to previous work with QuikSCAT land contam-

ination [46]. The QuikSCAT LCR threshold is evaluated using compass simulations and

found to be largely a function of local land σ◦, local wind speed, and cross-track position. I

find this evaluation holds for ASCAT as well. The local wind direction does not significantly

affect the results.

The “compass simulation” procedure [46] is to define a “truth” wind field with spatially

constant speed and direction. The scatterometer measurement geometry and GMF are used

to sample the truth wind field to create synthetic σ◦ measurements, along with an appropriate

level of measurement noise. The σ◦ values are then passed through wind retrieval, and the

retrieved winds are compared with the input truth wind field. Multiple truth wind fields

with different wind speeds and directions are used to evaluate the retrieval performance over
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Table 5.1: LCR compass simulation input values, for a total of 10× 8× 10× 7 = 5600 input
combinations.

Parameter Values
Wind speed (m/s) 2.5, 5, . . . , 25

Wind direction (degree) 0, 45, . . . , 315
LCR value (dB) −45,−40, . . . , 0

Land σ◦ (dB) −30,−25, . . . , 0

a variety of parameters. Land contamination is additionally modeled by including a land σ◦

value and LCR value in the truth wind field. To give the worst-case error, each simulated

LCR value is applied equally in all beams.

The compass simulations are conducted for ASCAT for a range of wind speeds,

directions, land σ◦ values, and LCR values, as listed in Table 5.1. The ocean-only error is

determined by computing the RMS wind speed error with no land contamination present. An

error threshold is defined where the total RMS wind speed error is set so that the additional

error due to land contamination is 10% of the ocean-only error. While another value could

be used, I select a 10% level since the total speed error, even at wind speeds of 25m/s, is less

than 1.0m/s. This is well below the ASCAT L2W target RMS wind speed error of 2.0m/s.

For an example case, the ocean-only error is shown in Fig. 5.4. The maximum land-only and

therefore total error are also indicated.

The LCR threshold selected is the LCR value such that the corresponding RMS speed

error meets the error threshold. The threshold level is a function of (1) local wind speed, (2)

local land σ◦, and (3) cross-track location. The threshold values are stored as a lookup table,

in order to determine the maximum LCR threshold such that the additional wind speed RMS

error due to land is at most 10% of the ocean-only error. The local wind speed and land σ◦

are determined for each measurement by averaging nearby L2W wind speeds and land σ◦

values for each near-coastal measurement. The cross-track location is given in terms of the

nearest L2W WVC.

A selection from the LCR lookup table is shown in Fig. 5.5 for a single cross-track

position. Values for other cross-track locations are similar, but they vary somewhat. For low

wind speeds and low land σ◦ values, a modest LCR threshold level may be used (> −20 dB).
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Figure 5.4: The RMS wind speed error as a function of truth wind speed for a particular WVC.
The ocean-only error is determined, which error increases as a function of truth wind speed.
The land-only error is set to 10% of the ocean-only error. The total error is also indicated.

As wind speeds decrease or as land σ◦ increases, the LCR threshold must be decreased to

maintain the same maximum RMS error.

The land contamination removal described in this section, including the concept of a

dynamic LCR threshold, builds on previous work originally conducted for the QuikSCAT

scatterometer by Owen and Long [46]. I find that the basic approach and results for land

contamination removal using QuikSCAT are similar with ASCAT, notwithstanding the

differences in measurement geometry between the two scatterometer designs. However, my

contributions in applying this technique to ASCAT differ in two key respects. First, for

QuikSCAT, the compass simulations are used to find, for each WVC, the wind direction that

gives the largest RMS wind speed error. For ASCAT, the speed errors are less dependent on

wind direction than for QuikSCAT, so instead of using the worst-case truth wind direction, I

average the results across all wind directions. This simplifies the computation of the dynamic

LCR threshold since the worst wind direction as a function of WVC no longer needs to be

retained.
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Figure 5.5: For a WVC, the largest LCR value such that the land contamination error is
within 10% of the ocean-only RMS wind speed error. The LCR value is a function of wind
speed, land σ◦ value, and WVC.

Second, the Owen and Long approach [46] sets the maximum RMS wind speed error

to be a percentage of the truth wind speed. The exact percentage appears to vary as a

function of WVC but ranges between 15% and 20%, with a mean value of 18% across the

entire swath. Instead, for ASCAT, I set the maximum RMS wind speed error relative to

the ocean-only RMS speed error. This is a more direct method of precisely controlling the

amount of error due to land contamination versus the typical retrieval error encountered over

open ocean.

To illustrate land contamination mitigation using a dynamic LCR threshold, UHR

wind speeds are shown in Fig. 5.6 for a Caribbean region containing many islands and

coastlines. Four cases of UHR are produced: with no land contamination mitigation, with

a conventional distance threshold of 30 km, with a constant LCR threshold of −20 dB, and

with a dynamic LCR threshold. The mean dynamic LCR threshold level for this region is

−25.2 dB, but due to differing nearby land σ◦ levels and wind speeds, it varies from −38.1 dB

to −6.2 dB, with a standard deviation of 4.9 dB.

As expected, with no attempt at avoiding land contamination, the wind speeds near

land in Fig. 5.6 are biased high. This is visible around the many islands and coasts in
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the region. A distance threshold of 30 km is effective at removing land contamination, but

removes all near-coastal measurements, contaminated or not. The LCR approach permits

retrieval much closer to land, with no visible wind speed biases. For this region, using the

constant LCR threshold permits the estimation of winds slightly closer to the coasts than

with the dynamic LCR threshold. However, the dynamic threshold ensures a maximum error

level in a more controlled manner. For this region, of all valid WVCs within 30 km of land,

50% are within 18 km, and 10% are 8 km or closer.

Another example of ASCAT winds is shown in Fig. 5.7. The storm is Hurricane Rina

(2011) in the Gulf of Honduras. This region contains both a high wind event as well as islands

and coastlines. As with Fig. 5.6, processing with LCR removes land contamination while

retaining wind estimates close to land, so long as the land contamination error is small.

It may be possible that the distribution of retrieved winds near land may differ from

those over open ocean due to residual, undetected land contamination or to geophysical

effects, since the actual near-coastal wind may not be neutrally stable or otherwise affected

by land. For these reasons, although UHR processing with LCR enables near-coastal wind

retrieval, I next examine these wind estimates through comparison with near-coastal buoy

data.

5.4 Near-Coastal UHR Validation

In order to validate the near-coastal UHR wind data, ASCAT winds are compared

with buoy-measured winds. I use buoy data distributed by the NOAA Marine Environmental

Buoy Database.3 I select buoys in a region along the North American coastline of the Atlantic

Ocean where buoys are present at a variety of distances from land. The buoy locations and

identification numbers are shown in Fig. 5.8.

In order to compare the buoy-measured winds with ASCAT wind estimates, the

buoy-measured winds are converted to neutrally stable wind speeds at a standard height

of 10m above sea level to match the ASCAT winds. I use the LKB model [69, 70], which

additionally requires other buoy-measured quantities including air and sea temperatures and
3https://www.nodc.noaa.gov/BUOY/
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Figure 5.6: UHR winds with no land contamination mitigation (top left), with a distance
threshold of 30 km (top right), with a constant LCR threshold of −20 dB (bottom left) and
with a dynamic LCR threshold (bottom right). ASCAT-A data are from an ascending pass on
2013-02-05, orbit 32682, right swath.
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Figure 5.7: UHR winds with no land contamination mitigation (top left), with a distance
threshold of 30 km (top right), with a constant LCR threshold of −20 dB (bottom left) and
with a dynamic LCR threshold (bottom right). ASCAT-A data are from a descending pass on
2011-10-26, orbit 26040, right swath.
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Figure 5.8: The buoy locations and ID numbers used for near-coastal validation.

relative humidity. Only buoy measurements with sufficient quality-controlled information are

used, and only buoy wind speeds above 5m/s are considered.

Passes from both ASCAT-A and ASCAT-B are used to increase the number of

collocations between the buoys and the ASCAT instruments. Where a collocation is found,

all ASCAT UHR WVCs within 10 km of the reported buoy location are averaged together.

Because the buoy winds are reported every 10min, the largest temporal difference between a

collocation is 5min.

The buoy and ASCAT collocations are collected for the date range of 2014-07-01 to

2015-06-30. In addition to collecting the L2W winds, three variations of UHR processing are

included: UHR-none, which does not perform any land contamination mitigation; UHR-mdl,
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which discards all σ◦ measurements within 30 km of land from UHR processing; and UHR-lcr,

which uses LCR processing with a dynamic LCR threshold.

The L2W product has previously been validated using buoy measurements [71], so

this comparison is expected to yield similar results. The UHR-none product is anticipated

to perform poorly near land due to land contamination but have the greatest number of

collocations. The UHR-mdl represents a best-case situation where no land contamination is

present, but it has a reduced number of collocations. In order to validate the removal of land

contamination, the UHR-lcr product is predicted to have similar statistics as the L2W and

UHR-mdl cases, but with more collocations than UHR-mdl.

A comparison of the ASCAT and buoy wind speeds is shown in Fig. 5.9 for all four

cases. The tendency of ASCAT winds to slightly underestimate high wind speeds has been

noted previously [71]. Land contamination is readily visible in the UHR-none case, where

many ASCAT wind speeds that are larger than the buoy wind speeds are present. However,

no evidence of land contamination is present in any of the other three cases. These three

cases are very similar to each other, although the UHR-mdl and UHR-lcr correlation coefficient

and slope fit the buoy data slightly better than the L2W data does. The ASCAT and

buoy wind directions are likewise compared in Fig. 5.10. All four subplots are very similar,

indicating that land contamination does not affect wind direction as strongly as it does wind

speed. Further, the comparison of UHR and buoy wind directions is very similar to the L2W

comparison.

The wind speed residual, or difference between ASCAT and buoy wind speed, is also

computed. For bins of buoy wind speeds, the mean and standard deviation of the residuals

are shown in Fig. 5.11. As expected, the large bias and standard deviation for the UHR-none

case, especially at low wind speeds, are evidence of land contamination. The means and

standard deviations for the other three cases are very similar to each other, although the UHR

results have a lower standard deviation than the L2W results. Additionally, the L2W product

has a larger bias at buoy wind speeds of about 5m/s, which is also present—and larger—for

UHR-none. However, this bias is not present for UHR-mdl nor UHR-lcr. For brevity, the wind

direction residuals are not shown but are similar for all four cases.
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Figure 5.9: ASCAT wind speeds compared to buoy wind speeds. The number of collocations
(N), correlation coefficient (ρ), and linear fit (y = mx+ b) are shown for each case. Top left:
L2W; top right: UHR-none; bottom left: UHR-MDL; bottom right: UHR-LCR.

Finally, the wind speed residuals are shown in Fig. 5.12 as a function of distance

to land. The results at distances greater than about 20 km are identical, indicating that

land contamination is not a factor at these distances. Within 20 km of land, the UHR-none

product has a large bias and standard deviation error that each increase as the distance

to land decreases. This is expected since the land contamination increases when closer to

land. The L2W case, on the other hand, has a bias within 1m/s consistently for all coastal

distances. As expected, no collocations near land exist for UHR-mdl. The UHR-lcr product
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Figure 5.10: ASCAT wind directions compared to buoy wind directions. The number of
collocations (N), correlation coefficient (ρ), and number of ≈ 180◦ differences are shown for
each case. Top left: L2W; top right: UHR-none; bottom left: UHR-MDL; bottom right: UHR-LCR.

has collocations within 20 km, and the bias and standard deviations are similar to the L2W

results. This is the desired result.

I conclude based on these collocations with near-coastal buoy measurements, that

the LCR method is effective at removing land contamination while retaining a large number

of uncontaminated near-coastal wind estimates. With no land contamination mitigation,

the UHR product overestimates the wind speeds and increases the retrieval error. In both

the UHR-mdl and UHR-lcr cases, the statistics of the comparisons with buoy winds are very

similar to the conventional resolution L2W winds. That is, no evidence suggests the UHR

winds to be noisier or to contain more error with respect to the buoys. In fact, the residual
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Figure 5.11: The mean and standard deviation of the difference between ASCAT wind speeds
and buoy wind speeds. Top to bottom: L2W, UHR-none, UHR-MDL, and UHR-LCR.
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Figure 5.12: As a function of distance to land, the mean and standard deviation of the
difference between ASCAT wind speeds and buoy wind speeds. The number of collocations
at each distance is also shown. Top left: L2W; top right: UHR-none; bottom left: UHR-MDL; and
bottom right: UHR-LCR.

speed error statistics are somewhat lower for UHR than for L2W. This may be due to some

uncorrected land contamination present in the L2W product.

5.5 Summary

This chapter has demonstrated an additional application of the SRF: the computation

of the LCR for each ASCAT measurement in conjunction with a high-resolution land map.

The LCR is a useful approach to withhold land-contaminated σ◦ measurements from wind

retrieval since it relies on the actual measurement footprint rather than a worst-case distance

threshold. This enables wind retrieval much closer to land.
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The near-coastal ASCAT wind estimates are validated through comparison against

buoy-measured winds. Land contamination strongly impacts the retrieved wind speed, but

wind direction appears less affected. The wind distribution, as examined through the mean

and standard deviation of the ASCAT-buoy wind residuals, is shown to have large errors

when land contamination is not avoided. With a traditional distance threshold to address

land contamination, the UHR wind residuals are similar to—and somewhat better than—the

L2W wind residuals. This effectively represents no land contamination. The wind residuals

when using LCR have similar statistics, indicating that land contamination, if present, is

negligible. This validates the LCR approach with ASCAT UHR winds.

While this chapter applies the LCR to UHR winds, it may be similarly applied for the

conventional resolution L2W wind product. At present, the LCR for each measurement must

be computed as part of the UHR processing, but it is anticipated that this computation will

be part of the ASCAT ground processing at EUMETSAT and reported in the L1B data.
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Chapter 6

Applications of Enhanced Resolution Backscatter Images

In this chapter, two applications that utilize the enhanced-resolution σ◦ data from

Chapter 4 and enhanced-resolution wind (UHR) data from Chapter 5 are demonstrated.

The first, in Section 6.1, maps the spatial extent of the 2010 Deepwater Horizon oil spill.

The second, in Section 6.2, describes the azimuth modulation of ASCAT and QuikSCAT

backscatter over East Antarctica.

6.1 Deepwater Horizon Oil Spill

The oil spill from the Deepwater Horizon oil rig in the Gulf of Mexico is one of

the largest environmental disasters in recent history. The consequences from the roughly

4.4 million barrels leaked [72] continue long after the 15 July 2010 capping of the well. A

time-series estimate of the extent and shape of the oil on the ocean surface is beneficial for

estimating the amount of oil as a function of time and its impact on ocean life and human

industries.

Active microwave sensors are often used for remote detection of oil spills by virtue

of their all-weather performance in both day and night conditions. Historically, Synthetic

Aperture Radar (SAR) instruments have been used since the spatial resolution—on the

order of a hundred meters or less for a spaceborne SAR—is fine enough to map many oil

spills [50–53]. Scatterometers such as ASCAT have a coarser spatial resolution. Nevertheless,

the processes that enable oil detection using SAR data are the same for scatterometer data.

The spatial extent of the 2010 Deepwater Horizon oil slick is large enough to be

resolvable by the enhanced-resolution reconstructed ASCAT data. By exploiting the effects

of surface oil on the radar backscatter from ocean waves, the surface extent may be mapped

by examining processed data from ASCAT. This section presents a method for mapping
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the surface oil extent using ASCAT by determining the difference between predicted and

observed quantities. Predicted wind is determined from numerical weather predicted (NWP)

winds provided by the European Centre for Medium-Range Weather Forecasting (ECMWF).

ASCAT measures backscatter. A suitable threshold is chosen to classify ocean regions as

oil-affected or oil-free. The mapped surface oil extent is validated using data from other

sensors. Lacking information on oil thickness or volume, no attempt is made to estimate

thickness or volume.

The methodology for surface oil extent mapping is described in Section 6.1.1. Results

for selected case studies are shown, and the performance of the methods is evaluated in

Section 6.1.2. To my knowledge, this is the first application of spaceborne scatterometry to

detect oil spills.

6.1.1 Method

Surface oil is detectable given sufficient differences between the observed and predicted

wind or backscatter. The difference in wind, or wind error, is found by comparing the

ASCAT-retrieved winds with ECMWF winds. Similarly, the difference in backscatter, or

backscatter error, is determined by comparing ASCAT σ◦ measurements with predicted σ◦

values derived from ECMWF winds. If the error is greater than some threshold, the region

is flagged as having surface oil. The threshold is determined through minimization of an

objective function.

Wind error

For comparison wind data, ECMWF U10 is used. In this subsection, the notation U10

refers to ECMWF winds and Û10 represents ultra-high resolution (UHR) winds retrieved

from ASCAT σ◦ (UHR winds were described above in Section 5.1). ECMWF winds have a

temporal resolution of six hours and a spatial resolution of 1◦x1◦. The two ECMWF wind

fields nearest in time to an ASCAT pass, or rev, are bilinearly interpolated in space to match

the ASCAT wind locations, and then interpolated in time to the ASCAT pass. Thus the U10

is trilinearly interpolated to match each corresponding Û10.
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Although the interpolated U10 has the same grid spacing of Û10, it has limited high-

frequency spatial content. Taking the difference between U10 and Û10 therefore removes the

winds with low spatial frequency but preserves any small-scale structure. The wind speed

error ε|U10| is defined as

ε|U10| = |U10| − |Û10|, (6.1)

and the wind direction error ε∠U10 is defined as

ε∠U10 = ∠U10 − ∠Û10. (6.2)

Due to instrument noise and biases in ECMWF winds versus ASCAT winds, ε|U10|

and ε∠U10 are rarely zero. However, the wind speed error ε|U10| is anticipated to be positive in

regions affected by surface oil since the dampened σ◦ from the oil is manifested after wind

retrieval as lower estimated wind speed. Thus, large positive values of ε|U10| are used as a

metric to map the oil surface extent. The effect of oil on wind direction is unclear, but large

ε∠U10 could indicate the presence of oil.

Backscatter error

ASCAT σ◦ is reconstructed on on a grid spacing of 4.45 km using AVE for each look

separately (fore, mid, and aft). The predicted backscatter is derived from ECMWF winds,

which are trilinearly interpolated to match the ASCAT AVE grid. The interpolated winds

are input to the CMOD5.n GMF [7] using the observation geometry to find the predicted

backscatter for each of the three looks. The difference between the predicted backscatter, σ◦,

(from ECMWF winds) and the measured backscatter, σ̂◦, (from ASCAT) for each look k is

σ◦k − σ̂◦k = εk, (6.3)

where εk is the error for look k. As with wind error, some error is anticipated from noise,

although the predicted value of εk is positive in the presence of oil.
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The three error look terms are combined using the `2 norm of the vector ~ε =

[εfore εmid εaft]T :

‖~ε ‖2 =
√
ε2fore + ε2mid + ε2aft. (6.4)

The backscatter error is defined as Eq. (6.4), which is used as a metric to map the extent of

the surface oil. While the fore and aft measurements are at similar incidence angles, the mid

beam σ◦ is at a lower incidence angle range and is, therefore, generally brighter. Weighting the

squared error contributions separately could be used to account for this difference. However,

here, equal weights are used for all three looks.

Oil extent validation

Oil coverage products from the Experimental Marine Pollution Surveillance Report

(EMPSR) are used to validate the results. The EMPSR is an experimental product produced

by the National Oceanic and Atmospheric Administration (NOAA). Analysts interpret SAR

and visible imagery from satellites to estimate the surface oil extent of the spill [73]. EMPSR

does not report the oil thickness or volume.

The EMPSR product used is the daily composite shapefile, a vector-based geospatial

representation of surface oil extent based on the available satellite imagery for the day.

EMPSR products are not available every day, so only ASCAT passes that coincide with

EMPSR data are used.

Threshold determination

The backscatter and wind speed errors are thresholded to classify regions as either

oil-affected or oil-free. The threshold value for each pass is determined by minimizing a

objective function. I choose a simple function to express the relationship between probability

of false alarm versus probability of detection. The objective function is defined as the weighted

combination of two values: the number of oil-flagged pixels that fall within the EMPSR region

limits and the number of oil pixels that are outside the EMPSR region. This is expressed as

f(ν) = 1/g + αb, (6.5)
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Figure 6.1: The threshold objective function and its components for wind speed error (a) and
backscatter error (b) for ASCAT rev 19221 (2010-07-03). The upper and mid subplots show
values of g and b, the number of pixels inside and outside the EMPSR region classified as oil.
The lower subplots show f(ν), the objective function value. Vertical axis scaling is arbitrary.
The minimum of the function is indicated as a solid diamond.

where ν is the threshold value, f(·) is the objective function, g is the number of correctly

classified pixels, b is the number of incorrectly classified pixels, and α is a weighting parameter.

The weighting factor α may be set to an appropriate metric weighting, for example to achieve

some desired probability of false alarm rate. For this dissertation, I subjectively choose

α = 1× 10−5.

For both backscatter and wind speed errors, the threshold level ν for each pass that

minimizes Eq. (6.5), the objective function, is found. Figure 6.1 shows values of g, b, and f

for different threshold levels ν for a typical ASCAT pass. The minimum of f(ν) is indicated

on the figure.

6.1.2 Results

The Deepwater Horizon oil spill is located around a latitude of 29 ◦N. For ASCAT, a

maximum of two passes per day is possible (ascending and descending) at this location, but

in practice only about eight passes per 10-day period adequately cover the spill region. For

the duration of the oil leak (from 2010-04-21 to 2010-08-25), 204 ASCAT passes over the spill
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region are available. Of these, 118 have corresponding EMPSR data, and 11 are selected as

case studies. For each ASCAT pass over the oil spill region, interpolated ECMWF winds are

compared with ASCAT-derived winds to find wind errors ε|U10| and ε∠U10 . The measured σ◦

for each look is compared with the predicted σ◦ obtained from interpolated ECMWF winds

and the CMOD5.n GMF to obtain the backscatter error. Oil extent estimates are found after

thresholding the errors, where error greater than the threshold is classified as oil. These are

analyzed below. A case study is also presented comparing backscatter error with measured

backscatter.1

Wind error

As described above, the wind speed error and wind direction error are computed for

all available ASCAT passes over the oil spill region. From one of the chosen case studies,

the wind errors are shown in Fig. 6.2. Negative wind speed errors are discarded to reflect

the expectation of positive error values caused by surface oil. The large values of ε|U10| near

the center map the surface oil extent. Unfortunately, no EMPSR data is available on this

particular day for validation.

The case studies examined suggest that the wind direction error is not as useful as

wind speed error in surface oil mapping. In the best cases, wind direction error varies widely

over a small region that is a subset of the oil region mapped by wind speed error. Figure 6.2 is

a rare case where the wind direction error is correlated well with the oil spill. Wind direction

error may be useful for determining the regions most affected by oil.

For comparison, the wind speed error is shown for two ASCAT passes in Fig. 6.3a

and Fig. 6.3c. The wind speed error for both passes strongly correlates with the main body

of the oil spill. Smaller-scale oil features are not detectable, however. Some false positives

occur south of the mapped oil. These are primarily due to low wind speed oil look-alikes.

However, for the main body of surface oil, results from these and other passes show wind

speed error is a good match with the EMPSR data.
1Although the methodology is still applicable, the oil spill results shown below utilize a historical SRF

estimate [24] and predate revised work on the SRF presented in Chapter 3.
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Figure 6.2: Wind speed error and wind direction error for rev 18298 (2010-04-29). No EMPSR
data is available to validate oil extent for this day. Wind speed errors are clipped to positive
error only, i.e., pixels with ECMWF wind speeds less than ASCAT wind speeds are set to zero.
Land and near-land ocean regions are masked off.

Backscatter error

The backscatter error ‖~ε ‖2 is found for all available ASCAT passes over the oil

spill. The backscatter error is shown for two ASCAT passes in Fig. 6.3b and Fig. 6.3d.

Negative backscatter error is discarded in these and other figures since only positive values

are anticipated to indicate surface oil. The EMPSR data is shown by the white outlines. The

large backscatter errors closely match the EMPSR data.

A comparison of the various metrics used to map the oil spill is shown in Fig. 6.4.

The wind speed error (a) and backscatter error (c) map the bulk of the oil similarly. The

differences between the two are typical of other passes and are discussed more below. The

wind direction error is shown in (b). The direction error is largely uniform except for large

errors near the oil rig location (not marked in the figure). Typically, these large direction

errors are not found in other locations. It appears that the wind direction error only detects

regions most affected by oil. For most ASCAT passes, both wind speed error and backscatter

error validate well with EMPSR data.
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Figure 6.3: Wind speed and backscatter error for two ASCAT passes. The top row is ASCAT
rev 19363 (2010-07-13), and the bottom row is ASCAT rev 18745 (2010-05-31). The left column
shows the wind speed error and the right column shows the backscatter error. EMPSR data is
included in all subfigures as a white outline for validation. Negative errors are clipped to zero,
as indicated in the text.

Backscatter versus backscatter error case study

As the previous results show, mapping the oil extent using wind speed error or

backscatter error is generally effective. To illustrate the advantage of finding the backscatter

error rather than using only the measured backscatter, the results of ASCAT rev 19221

(2010-07-03) are presented as a case study.
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Figure 6.4: Wind and backscatter error for ASCAT rev 18880 (2010-06-09). The wind speed
error is in (a), the wind direction error in (b), and backscatter error in (c). In all subfigures,
the EMPSR data is outlined in white for comparison. Negative values of backscatter error and
wind speed error are discarded, as explained in the text.

Figure 6.5 shows the high-resolution σ◦ field over each of the three looks for an

ascending pass of ASCAT. In these images, two potential oil regions can be seen: one east of

the Mississippi River Delta and one further south of the delta. The regions are noted with

dashed ellipses. Similarly, Fig. 6.6 shows the difference between the measured and predicted

backscatter for each of the three looks. In Fig. 6.6, the region south of the delta with low

wind speeds is accounted for, leaving only the oil region east of the delta visible.

Without using the predicted backscatter, combining the three looks of Fig. 6.5 using

the `2 norm results in Fig. 6.7a. The middle look (center image of Fig. 6.5) spans a lower
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Figure 6.5: ASCAT σ◦ (in dB) fore, middle, and aft looks for rev 19221 (2010-07-03). Fore
and aft looks span incidence angles of 36◦–55◦, and the middle look spans a range of 27◦–44◦.
The fall off of σ◦ with incidence angle accounts for the brightness variations across the swath.
The locations of the two oil spill candidate regions are indicated with dashed ellipses.

incidence angle range than the other two, leading to poor detection of the first oil candidate

region. The `2 norm of the three looks has a greater value for the second candidate region

than the first. The second region is a false positive due to low wind speeds in the area.

Using Eq. (6.4) to merge the three looks of Fig. 6.6 to find the backscatter error results

in Fig. 6.7b. The white outline is the EMPSR product for the day. In this case, the results

agree well with the largest EMPSR oil region, while the smaller regions near the coast are

not as well detected.
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Figure 6.6: Difference in dB between measured and predicted σ◦ for ASCAT rev 19221
(2010-07-03). Compare with Fig. 6.5. The oil region is not as visible in the mid look due to the
different incidence angle between the fore/aft and mid looks.

Discussion

The EMPSR results corroborate the thresholded wind speed error and backscatter

error during the middle of the spill (late April – mid July), but they are less effective near

the beginning or end of the spill. It appears that at these times, the presence of surface

oil does not dampen σ◦ enough to be detectable by ASCAT. This could be due to the oil

collection/burning efforts, weather conditions, or other factors.

Each pixel in the figures corresponds to an area of the ocean of about 20 km2. It is

unlikely that an area of that size is uniformly affected by oil, especially on the boundary of

the spill. Thus, the true oil extent can only be approximated by ASCAT.

91



Longitude

L
a
ti
tu

d
e

 

 

−91 −90 −89 −88 −87
26

27

28

29

30

31

0

10

20

30

40

50

(a)
Longitude

L
a
ti
tu

d
e

 

 

−91 −90 −89 −88 −87
26

27

28

29

30

31

0

5

10

15

(b)

Figure 6.7: The `2 norm of the measured σ◦ in (a), and the `2 norm of the difference between
measured and predicted σ◦ in (b). Data from ASCAT rev 19221 (2010-07-03) is used, along with
interpolated ECMWF winds for (b). Land is masked out and near-coastal regions are set to 0
to remove biased wind estimates. The bright area in (b) indicates dampened σ◦ measurements
due to the presence of surface oil. The white outline is the EMPSR analysis for the surface oil
extent.

The wind direction error appears to only map a much smaller extent than that mapped

by the wind speed or backscatter errors. Many ASCAT passes do not have any significant

wind direction error, but for the passes that do, the errors often appear near the oil rig

location, perhaps correlated with regions with thicker surface oil. This hypothesis cannot be

validated with EMPSR data, since no measurements of oil volume or thickness are reported

in the EMPSR dataset.

Wind speed error and backscatter error each correlate well with the EMPSR oil

extent. The main body of surface oil is detectable by either of these methods, but smaller

regions further from the center of the spill are usually less detectable. The biggest difference

between wind speed error and backscatter error is the noise floor of the non-oil regions. The

backscatter error images have a much higher noise floor than the wind speed error images.

However, the wind speed error images have more false positives than the backscatter error

images. When finding the optimum threshold value, these false positives tend to dominate

the effects of the higher noise floor in the backscatter error images.
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Figure 6.8: The mapped oil extent using wind speed error (a) and backscatter error (b) for
ASCAT rev 19221 (2010-07-03). The gray region is land and the black region is the error
exceeding the chosen threshold. For comparison, the EMPSR region outline is overlaid on the
figures as black lines.

The optimum threshold is selected for each pass, as described previously. Using this

threshold, a comparison of detected oil with EMPSR data is shown in Figs. 6.8 and 6.9

for two different ASCAT passes. The chosen threshold maximizes true positives (flagged

pixels within the EMPSR boundary) and minimizes false positives (flagged pixels outside the

EMPSR boundary) with relative weighting controlled by α in Eq. (6.5). These results are

typical of other passes. Generally, thresholded backscatter error has fewer false positives than

thresholded wind speed error. A subset of the processed thresholded backscatter error images

is shown in Fig. 6.10. While the oil spill is mapped well by many of the passes, other passes

contain wind speed-induced oil look-alikes. The low wind speeds of these regions (about

3m/s or less) make oil detection difficult with the methods presented here.

6.1.3 Conclusion

Though originally designed for only low-resolution ocean wind measurements, ASCAT

can be used to map the surface extent of large bodies of oil on the ocean surface. The

detection of ocean surface oil by active microwave instruments is based on a contrast of σ◦

over oil-affected areas and oil-free areas. Moderate wind speeds sufficiently roughen the ocean
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Figure 6.9: The mapped oil extent using wind speed error (a) and backscatter error (b) for
ASCAT rev 19434 (2010-07-18). The gray region is land and the black region is the error
exceeding the chosen threshold. For comparison, the EMPSR region outline is overlaid on the
figures as black lines.

surface to provide this contrast. A comparison of σ◦ values while accounting for the wind

over the oil improves the detection.

Accounting for the wind may be done directly in the wind domain, or it may be done

in the backscatter domain by finding the predicted backscatter based on the reference winds

and the GMF. Both approaches have been explored in this chapter. The methods presented

account for the near-surface wind by using the ASCAT GMF in conjunction with NWP winds

to compute several oil-mapping metrics: ε|U10|, the wind speed error, ε∠U10 , the wind direction

error, and ‖~εσ◦‖2, the norm of the backscatter errors.

The wind speed error and backscatter error both match EMPSR products to a higher

degree than wind direction error. While the amount of true positives are typically similar

between the two, wind speed error generally has more false positives than backscatter error

and backscatter error exhibits a higher noise floor. Both metrics are useful for mapping

surface oil extent, but using a binary threshold to categorize the pixels generally is more

effective using thresholded backscatter error. The wind direction error ε∠U10 may provide

some indication of where the surface oil is most dense.
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Figure 6.10: A selected time-series of mapped oil. Each image is the thresholded backscatter
error for the date indicated in the upper left corner. The ASCAT pass may not completely
cover the region on a given day, leading to a diagonal crop in some of the images.
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Small oil regions in EMPSR data are not usually resolvable in wind speed and

backscatter errors. However, the main body of surface oil is mapped effectively. The

backscatter error and wind speed error results presented show a good match with conventional

oil detection techniques making use of multiple sensors as reported in the EMPSR product.

False positives, or oil look-alikes still arise owing to the limitations of working with a single

instrument, but the occurrence of wind-related false alarms is diminished. Results validate

well with EMPSR results except for the very beginning and end of the spill.

The oil spill mapping presented in this section is a novel application of scatterometer

data. Oil spill detection with a scatterometer is only suitable for the rare large-area event

such as the Deepwater Horizon spill. Thus, scatterometers have not been previously used to

map oil spills. The use of NWP winds to reduce false positives in the oil detection process is

also a novel application. Oil spill detection with SAR data has previously used wind speed

in order to account for low-wind-speed oil look-alikes, but these wind speeds are usually

obtained from the SAR data itself or from collocated scatterometer measurements.

6.2 Azimuth Angle Modulation

Each σ◦ measurement from a scatterometer has an associated incidence angle θ and

azimuth angle φ. For most land and ice surfaces, σ◦ depends only on incidence angle, not on

azimuth angle. However, in regions of East Antarctica associated with megadunes and sastrugi,

a strong azimuth dependence is induced due to the physical structures [20]. Conversely,

wind-glaze regions in Antarctica are expected to have little azimuth modulation [1]. This

azimuth angle modulation has been modeled previously as a second- or fourth-order Fourier

series [19–21,37,74].

Previous work has explored the azimuth modulation of scatterometer data. Data from

the ASCAT scatterometer are used in [19], where a variety of models are evaluated to fit

the incidence and azimuth angle dependence of the σ◦ data. Physical interpretations for

the observed azimuth variation are explored in [20,75] using data from the QuikSCAT and

ERS scatterometers. Modeling the azimuth modulation as a Fourier series, the first-order

term typically correlates with the local slope of the surface whereas the second-order term

correlates with sastrugi carved into the ground due to persistent katabatic winds.
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An important application azimuth angle modulation of Antarctica is to map the

distribution of physical structures such as sastrugi or wind glaze over the Antarctic ice sheet.

Wind-glaze areas, for example, represent areas with a near-zero change in surface mass

balance: the accumulation and ablation of snow and ice over these regions nearly equals

each other [1]. Until recently these local lows in surface mass balance were not included

in estimates of the changes in the Antarctic ice sheet. Accounting for these regions revises

estimates of the changes in Antarctica, which in turn are indications of climate change.

Although this dissertation focuses on the ASCAT scatterometer, for comparison in this

chapter, data from the QuikSCAT scatterometer is also considered. QuikSCAT (1999–2009)

is a scanning pencil-beam scatterometer at Ku band (13.4GHz). Because of its different

measurement geometry, QuikSCAT observes σ◦ at only two incidence angles (47◦ and 54◦)

but has complete azimuth angle coverage. ASCAT, as described in Chapter 2, covers a wide

range of incidence angles but only a few azimuth angles. While ASCAT only measures σ◦ at

vertical polarization (VV), QuikSCAT measures both vertically and horizontally polarization

(VV and HH) σ◦. QuikSCAT reports two types of measurements: “egg” data, where the

measurement SRF is essentially the antenna response, and “slice” data, which subdivides the

antenna pattern using range-Doppler processing [76]. Slice data has a finer spatial resolution

but is noisier than egg data.

In this section the azimuth modulation of ASCAT and QuikSCAT data is described

using a Fourier series fit. Enhanced-resolution σ◦ reconstruction using the AVE algorithm

is applied in conjunction with the SRF to estimate the incidence and azimuth dependence

of σ◦ for each pixel. The backscatter model used in this section is reviewed in Section 6.2.1

and the procedure to estimate the azimuth modulation model parameters is described in

Section 6.2.2. Results are shown in Section 6.2.3. Section 6.2.4 concludes.

6.2.1 Backscatter Model

The dependence of σ◦ on θ over land and ice is modeled as a linear fit, described by

Eq. (2.14) and repeated here for convenience:

σ◦(θ) = A+ B(θ − 40◦). (6.6)
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Since QuikSCAT does not have sufficient incidence angle coverage, QuikSCAT B is treated

as zero and A is simply the mean σ◦ for the pixel. A previous azimuth modulation study [20]

uses an M -order Fourier series to fit the residual backscatter after estimation of A and B:

σ◦(θ, φ) = σ◦(θ) + σ◦(φ) (6.7)

= A+ B(θ − 40◦) +
M∑
k=0

Bk cos(kφ) + Ck sin(kφ). (6.8)

To aid in interpreting the results, the sine and cosine coefficients are converted from a

rectangular coordinate system to polar coordinates:

mk =
√
B2
k + C2

k (6.9)

ϕk = tan−1(Ck/Bk). (6.10)

Thus mk and ϕk are the k-th order azimuth modulation magnitude and phase, respectively.

(The term B0 is an azimuth-modulation bias and is expected to be small; C0 is defined to

be zero.) Although several azimuth modulation models were considered, in this chapter a

fourth-order Fourier series is used with the third-order terms set to zero.

6.2.2 Model Parameter Estimation

The estimation of the model parameters is performed in two steps. First, the σ◦

measurements are corrected to remove the mean value and θ dependence (i.e., the A and

B values). Then, from the residual σ◦ values, the azimuth dependence is estimated. Let

the vectors ~σ◦j , ~θj, ~φj and ~hj represent the measurement values and SRF values for pixel

j. These are processed using the AVE reconstruction algorithm (described in Section 2.3.3

by Eq. (2.26) and applied to ASCAT data in Chapter 4) to estimate A and B for each

high-resolution pixel j.

After estimation of Aj and Bj, the azimuth modulation coefficients for the pixel are

computed using a linear least-squares approach. The matrix equation

Ax = b (6.11)
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is solved for x in the least-squares sense. The vector x contains the coefficients to estimate:

x = [B0, B1, C1, B2, C2, B4, C4]T , (6.12)

and the vector b contains the residual σ◦ values after correcting for the estimated A and B

values:

b = ~σ◦j −Aj + Bj(~θj − 40◦), (6.13)

and the matrix A contains column vectors:

A = [~1 cos( ~φj) sin( ~φj) cos(2 ~φj) sin(2 ~φj) cos(4 ~φj) sin(4 ~φj) ]. (6.14)

Since the length of the column vectors is much larger than 7 (there are 7 coefficients to

estimate), the system of equations is overdetermined. The equation Ax = b is solved for x in

the least-squares sense (e.g., through decomposition of A using QR or SVD).

However, in order to incorporate information about the SRF values, the formulation

above is modified to weight the measurements by their SRF values. The normal equations

are updated to

ATAx = ATb⇒ ATHAx = ATHb, (6.15)

where H is the diagonal matrix that contains the SRF values hij for the pixel j:

H =



h1j

h2j
. . .

hMj


. (6.16)

Now, instead, the matrix equation

By = c (6.17)

is solved for y using a least-squares approach, where B = ATHA, y = x, and c = ATHb.
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Table 6.1: The estimated azimuth modulation magnitude and phase coefficients for the data
shown in Fig. 6.11. The mk terms are in dB and the ϕk terms are in degrees.

Coef. ASCAT Egg Slice
m1 1.42 1.13 1.31
m2 4.97 2.65 2.58
m4 1.77 1.49 1.68
ϕ1 154 −46 −47
ϕ2 87 92 95
ϕ4 −165 −164 −161

6.2.3 Results and Discussion

ASCAT and QuikSCAT data are collected over the Antarctic region for the same

date range: days 211–240, 2009 (2009-07-30 to 2009-08-28). This 30-day range is during the

Austral winter when no significant melt or refreeze is expected. For comparison to ASCAT,

only the VV data from QuikSCAT is used. AVE on a 3.125 km grid spacing is used to estimate

the azimuth modulation coefficients. GRD on a 12.5 km grid spacing is also performed to

estimate the azimuth modulation parameters at conventional resolution.

Pixel results

A single high-resolution pixel is first selected, located at −67.99 ◦N 126.48 ◦ E. The

residual backscatter (i.e., after removing the estimated A and B values) at this pixel as a

function of azimuth angle is shown in Fig. 6.11 for ASCAT, QuikSCAT eggs, and QuikSCAT

slices. The fourth-order Fourier series fit is also displayed, and the estimated coefficient values

listed in Table 6.1. In Fig. 6.11, the difference in sampling geometry between ASCAT and

QuikSCAT is apparent: for ASCAT, only a few groups of azimuth angles are sampled, but

the QuikSCAT azimuth angle coverage is much more dense, with no large gaps present. The

QuikSCAT slice values are also much noisier than the QuikSCAT egg values: the residual

backscatter values have more vertical spread. Notwithstanding the noise, the Fourier series

fits for the two QuikSCAT cases are similar in this case. (This is not true for all pixels in the

region.)
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Figure 6.11: Residual backscatter values and fourth-order Fourier series fit to the data. Top
to bottom: ASCAT, QuikSCAT eggs, QuikSCAT slices.
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Comparing the ASCAT and QuikSCAT values, in all three cases two large peaks

are present at about −135◦ and 45◦; however, ASCAT does not have any σ◦ measurements

directly at the center of the 45◦ peak, only on either side. Conversely, the valley between

−90◦ and 0◦ is much lower for ASCAT, at about −5 dB, than for QuikSCAT, at about −1 dB.

Also, between about 120◦ and −160◦, the QuikSCAT data has a “valley” at about −3 dB, but

for ASCAT, it starts to slope upward at 135◦. While the two peaks are similar in position and

magnitude, the behavior between the peaks is different for QuikSCAT and ASCAT, leading

to different estimated values, most significantly larger estimated magnitude terms mk.

Region results

The azimuth modulation parameters are estimated for the entire Antarctic region,

masking out ocean and sea ice. Figure 6.12 displays m1, m2, and m4, the modulation

magnitudes, and Fig. 6.13 displays ϕ1, ϕ2, and ϕ4, the modulation phases. Only ASCAT

and the QuikSCAT egg data are shown, because the QuikSCAT slice data (not shown) is too

noisy.

For all images shown in Figs. 6.12 and 6.13, the estimated values are less accurate

closer to the South Pole at the center of the images. This is due to the polar orbits of

QuikSCAT and ASCAT and their measurement geometry. South of about 78 ◦ S, the Earth

is only measured by one of the two ASCAT swaths, and south of about 89 ◦ S, neither swath

observes the Earth surface. Between these two latitudes, ASCAT samples σ◦ at fewer azimuth

angles, so the estimated coefficients are less reliable since they suffer from over-fitting. A

circular discontinuity is visible at 78 ◦ S. QuikSCAT does not have such a sharp discontinuity,

but it still samples fewer azimuth angles at extreme latitudes, leading to poor estimates of

the azimuth modulation parameters.

As illustrated for one pixel in Fig. 6.11, the second-order magnitude is generally much

larger than the first-order and fourth-order magnitudes. This is visible in Fig. 6.12, where

different colorbar ranges are used. Also observed in Fig. 6.11 and tabulated in Table 6.1

for a single pixel, the m1, m2, and m4 values are smaller for QuikSCAT than for ASCAT.

This holds true in Fig. 6.12 for the entire region, where the modulation magnitudes are

larger from ASCAT than from QuikSCAT. In Fig. 6.13, the estimated phases ϕ2 and ϕ4 are
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Figure 6.12: The m1 (left column), m2 (middle column), and m4 (right column) azimuth
modulation coefficients over Antarctica, 30 days of data. Top row: QuikSCAT eggs, bottom
row: ASCAT.

very similar between QuikSCAT and ASCAT. However, the QuikSCAT-derived ϕ1 images

are often roughly 180◦ different from ASCAT. The larger modulation magnitude at C band

versus Ku band was previously noted in [37] for Greenland, although a comparison was not

conducted for Antarctica.

The azimuth modulation parameters estimated from ASCAT and QuikSCAT data

share many common features. Areas of higher or lower magnitude, for example, are present in

both cases. The consistency of the behavior of magnitudes and phases between ASCAT and

QuikSCAT is evidence that the observed azimuth angle modulation is not a scatterometer
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Figure 6.13: The ϕ1 (left column), ϕ2 (middle column), and ϕ4 (right column) azimuth
modulation coefficients over Antarctica, 30 days of data. Top row: QuikSCAT eggs, bottom
row: ASCAT.

calibration error or a sampling artifact, but it is due to shared geophysical structures. However,

differences exist between the terms estimated by ASCAT and QuikSCAT, even though the

two scatterometers observe the same region over the same time range.

The source of the differences is hypothesized to be geophysical. QuikSCAT operates

at a wavelength of 2.2 cm, whereas ASCAT is at 5.7 cm. The structures in the Antarctic ice

sheet that are responsible for azimuth modulation (e.g., sastrugi and megadunes) scatter more

strongly at the C-band wavelength of ASCAT than at the Ku-band wavelength of QuikSCAT.
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Figure 6.14: A region in Enderby Land. Left: m2 using GRD on a 12.5 km grid, right: m2
using AVE on a 3.125 km grid. Color scale ranges from 0dB to 6 dB.

Additionally, the penetration depth of snow and ice is more shallow for QuikSCAT than

ASCAT, so ASCAT is subject to more volume scattering than QuikSCAT.

Further study is warranted to understand the reasons behind the differences in azimuth

modulation observed by QuikSCAT and ASCAT. However, the enhanced-resolution estimation

of the modeled azimuth modulation parameters is an important step. Both QuikSCAT and

ASCAT data are consistently produced on the same high-resolution grid using the same

Fourier series estimation.

Resolution comparison

The smaller grid spacing of the enhanced-resolution images (AVE on a grid spacing

of 3.125 km) versus the conventional-resolution images (GRD on a grid spacing of 12.5 km)

enables resolving smaller features. Two examples each comparing the AVE and GRD m2

images are shown in Figs. 6.14 and 6.15. The m2 coefficient is selected for display due to

its large range. While the m2 values are very similar for both AVE and GRD, many small

features evident in the AVE images are less clearly defined or not present at all in the GRD

images.

Figure 6.14 contains a region from Enderby Land, where there are many small “spots”

of low m2 value within a larger area of higher m2 value. These spots are much better defined

in the AVE image at 3.125 km. In the center-left of the image is a cluster of many spots,
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Figure 6.15: A region near MacRobertson Land. Left: m2 using GRD on a 12.5 km grid,
right: m2 using AVE on a 3.125 km grid. Color scale ranges from 0dB to 6 dB.

which in the GRD image at 12.5 km cannot be individually separated but which are resolvable

in the AVE image.

Figure 6.15 shows a region near MacRobertson Land and contains some similar features.

As with Fig. 6.14, many darker regions appear surrounded by a lighter background, and the

ability to resolve these features is improved using AVE rather than GRD. In the GRD image,

many of these spots merge together, but they are individually defined in the AVE image. In

the center left are “ripples” with varying wavelengths of about 18 km to 35 km.

For most of East Antarctica, the azimuth modulation model parameters do not change

significantly on the scale of about 50 km or less. However, there are some regions where

the 3.125 km grid spacing is a clear benefit versus the 12.5 km spacing, such as shown in

Figs. 6.14 and 6.15. Although the resolution improvement is not needed for the entire region,

the AVE method has a lower pixel variance (see Section 4.4) and helps reduce noise since

more measurements are used per pixel than GRD.

Wind-glaze regions

A geophysical feature in East Antarctica of interest is the existence of wind-glaze

regions. These are areas where the snow surface is polished smooth by blowing snow. Wind-

glaze regions are expected to exhibit little to no azimuth modulation [1]. A map indicating

wind-glaze regions is shown in Fig. 6.16.
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Figure 6.16: Regions of East Antarctica, where the shaded areas indicate regions containing
wind glaze. Adapted from [1].

From Fig. 6.16, two areas of wind glaze are selected, as indicated by the dotted box.

The ASCAT and QuikSCAT modulation magnitude parameters are shown in Fig. 6.17. The

left sides of the images contain a wind-glaze region. The wind-glaze region is most identifiable

in the ASCAT m2 image. Within the wind-glaze region, the m2 values are lower but contain

significant variability. The wind-glaze region at the right of the images also has lower mk

values but retains a great deal of texture. The affected region appears smaller than that

mapped in Fig. 6.16.

Most wind-glaze regions are identifiable in the m2 images due to lower values and a

spotted appearance. Other regions, however, still exhibit a large degree of azimuth modulation.

Although the wind-glaze regions mapped in [1] are visible to some extent in the

azimuth modulation magnitude images, the values of the ASCAT m2 parameter subjectively

most resemble the wind-glaze regions. Within the mapped regions, the azimuth modulations

values are not uniformly dampened: large values of azimuth modulation occasionally exist

and significant “spotting” and other texture is also present at these locations. This suggests a
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Figure 6.17: ASCAT (left column) and QuikSCAT egg (right column) m1 (top), m2 (middle),
and m4 (bottom) images over the area contained by the dotted box in Fig. 6.16. Note that
color scales for the images differ to increase image contrast.

more complicated behavior at these regions, possibly indicating the coexistence of sastrugi or

other features so that the mapped wind-glaze regions are not spatially uniform as suggested

by [1].

6.2.4 Conclusion

While σ◦ does not vary as a function of azimuth angle for most land regions, for East

Antarctica, σ◦ is strongly dependent on the azimuth angle. This is due to geophysical features

in the Antarctic ice sheet that strongly scatter back microwave energy depending on the look

angle.

The azimuth modulation, or anisotropy, in the observed scatterometer σ◦ data over

East Antarctica is modeled with a Fourier series. This is an extension of the AVE method

that permits high-resolution estimation of the Fourier series model parameters. Both ASCAT
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and QuikSCAT data are considered, although QuikSCAT slice data is ultimately not used

due to its noise.

The estimated azimuth modulation magnitude and phase terms are very similar when

comparing ASCAT and QuikSCAT data, though some differences exist. A large difference

is that the ASCAT data exhibit a much larger azimuth modulation magnitude than the

QuikSCAT data. This is attributed to geophysical structures that are azimuthally anisotropic,

yet play a larger role at C-band (5.7 cm) for ASCAT than at Ku-band (2.2 cm) for QuikSCAT.

Previously mapped wind-glaze regions are also evaluated for azimuth modulation. I

find in both ASCAT and QuikSCAT data that though less azimuth modulation is typically

present within regions of wind glaze, the regions exhibit significant variability. Some pixels

(each with an area of 9.8 km2) may contain a magnitude of modulation several dB.

The results presented here demonstrate the consistency of East Antarctic backscatter

azimuth modulation at two radar bands and also illustrate the differences. Further, regions of

wind glaze are shown to contain variable azimuth modulation. Future work to better explain

the reasons for the differences at C and Ku bands is needed.
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Chapter 7

Conclusion

7.1 Summary

This dissertation addresses the production of enhanced-resolution data from the

ASCAT scatterometer and describes some geoscience applications of these results. Chapter 1

describes the scope of this dissertation and Chapter 2 presents background information

for this work. The ASCAT measurement spatial response function (SRF) is discussed in

Chapter 3. The major components that affect the SRF are presented in order to model the

SRF. This serves as a reference from which a parameterized SRF approximation is developed.

The parameterized SRF is much faster to compute and has negligible approximation error

for its applications in this dissertation. Both SRF estimates are validated to ensure their

accuracy.

The SRF is used for the AVE and SIR image reconstruction algorithms in Chapter 4.

These algorithms reconstruct the σ◦ of the Earth’s surface based on the ASCAT measurements.

They are also evaluated along with the conventional gridding approach (termed here, GRD)

to determine the spatial resolution of the resulting σ◦ images. The pixel mean, variance, and

autocovariance are also compared for the GRD, AVE, and SIR methods. Reconstruction

parameters for ASCAT are also considered, resulting in a choice of 30 iterations of SIR and

a non-quantized SRF. The appropriate pixel size for the reconstructed σ◦ images is also

considered.

The SRF is additionally required to determine the land contribution ratio (LCR) of

a σ◦ measurement. The LCR for ASCAT is shown in Chapter 5, in addition to ultra-high

resolution (UHR) ASCAT wind estimates. UHR wind is created from enhanced-resolution σ◦

images using a single pass of data. The LCR is used to enable near-coastal wind retrieval in

UHR data. This is an improvement over a traditional distance-based threshold, which is overly
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restrictive and withholds more land-contaminated σ◦ measurements from wind retrieval than

necessary. With the LCR of each measurement characterized, land contamination is addressed

on a per-measurement basis instead of a strict distance-from-land measure. Additionally, a

dynamic LCR threshold is created in order for the level of acceptable land contamination to

be directly related to a maximum error level. The near-coastal UHR winds are compared

against buoy-measured winds. This validates the LCR approach since no land contamination

is apparent in the UHR data when using the LCR approach. Also, when compared to the

buoy data, the UHR data is as good as—or slightly better than—the conventional resolution

ASCAT wind product.

Two geoscience applications of enhanced-resolution σ◦ and wind data are explored

in Chapter 6. The first uses both backscatter and wind data to map the surface extent of

the 2010 Deepwater Horizon oil spill. The oil spill was large enough to be resolvable by

ASCAT; the impact of the oil is visible in the σ◦ measurements and by extension the retrieved

wind speeds as well. Numerical weather predicted (NWP) winds are used as a comparison

dataset to account for changes in σ◦ due to wind speeds. This increases the effectiveness

of detecting surface oil. The results validate well against other sources, especially for the

central body of oil. For smaller regions further from the source of the leak, the oil is not as

detectable in ASCAT data. The second geoscience application in Chapter 6 is the mapping

of the azimuth angle anisotropy in East Antarctica. This is performed for ASCAT data as

well as for the QuikSCAT scatterometer. The ASCAT and QuikSCAT azimuth modulation

parameters are largely similar yet have significant differences: the magnitude of the azimuth

modulation is much larger for ASCAT (at C band) than for QuikSCAT (at Ku band). The

azimuth modulation parameters are stable over time, suggesting that the differences between

ASCAT and QuikSCAT are not transitory or a result of sampling differences, but are due to

geophysical differences at the scale of the two wavelengths.

7.2 Contributions

The unique contributions of this dissertation are enumerated below:

ASCAT SRF The ASCAT measurement SRF is accurately characterized. The ASCAT

SRF has not been previously described nor distributed in the open literature. This
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necessitates understanding the ASCAT design in order to identify and model the major

components of the SRF. These include the antenna response, the onboard range-Doppler

processing, and the along-track pulse averaging. Although I obtain the designed antenna

response from EUMETSAT, the effect of the onboard processing is “reverse-engineered”

based on the available documentation of how ASCAT operates.

In order to reduce the computational load of evaluating the full SRF for each measure-

ment, I parameterize an approximation of the SRF. Although it is possible to opt for a

simple approximation, such as modeling the SRF as the combination of two Gaussian

functions, or only modeling a quantized SRF (such as the −3 dB contour shape), I

instead develop a more thorough parameterization that uses low-order polynomials to

describe the SRF accurately down to −10 dB from the peak. This is more accurate

than required for image reconstruction using AVE and SIR, but it ensures an accurate

estimation of the LCR value.

Both the reference and parameterized SRFs are validated. Some validation was per-

formed in conjunction with EUMETSAT, but I validate the SRF estimate by comparing

the predicted and actual σ◦ measurements using the estimated SRF, as well as against

alternate SRF descriptions known to be less accurate.

Image reconstruction I apply the GRD, AVE, and SIR algorithms to ASCAT, including

determining a suitable number of SIR iterations, selecting a reconstruction pixel size,

and choosing between the full or quantized SRF. Although these algorithms are not

novel to this dissertation, I perform a more comprehensive analysis and comparison

than previously conducted.

The first- and second-order pixel statistics are derived for GRD and for AVE and

validated through simulation. The pixel statistics for SIR are also computed through

simulation and compared against the GRD and AVE values. This enables a more

objective comparison of GRD, AVE, and SIR than previously performed. Further, the

analysis pays special focus to AVE, which in previous work was neglected in favor of

SIR. By comparing AVE and SIR directly, I am able to conclude, for example, that SIR

has a small bias not present in AVE, but that SIR has a lower variance than AVE. Also,
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the correlation between an AVE or SIR pixel and its neighboring pixels is computed.

This leads to the observation that AVE typically has a smaller correlation area than

AVE, but its shape is more irregular than SIR.

Although difficult to precisely quantify the spatial resolution of GRD, AVE, and SIR, I

use a simple spectral analysis for each case. This enables the observation that AVE and

SIR have similar high-frequency content, but that SIR better recovers the high-frequency

content that is attenuated in AVE. This appears to be a tradeoff with some additional

high-frequency noise.

Near-coastal winds The idea of applying the LCR for land contamination mitigation is not

unique to this dissertation as it has previously been used for QuikSCAT data. However,

I modify and simplify the dynamic LCR thresholding approach and successfully apply

it to ASCAT. Additionally, I set the LCR threshold to vary as a proportion of the

ocean-only error.

Some buoy validation has previously been performed for QuikSCAT UHR winds and

for conventional resolution ASCAT, but this dissertation is unique in using buoys to

validate UHR ASCAT winds. The buoys are specially selected to evaluate whether land

contamination is present or not in the UHR winds.

Oil spill mapping Oil spills have previously been mapped using SAR data, but to my

knowledge, this dissertation is unique in using scatterometer data to map an oil spill.

This is likely due to two factors: (1) the coarser spatial resolution of scatterometers

compared to SAR limits the utility of scatterometers for typical oil spills; and (2) the

Deepwater Horizon oil spill is atypical because it spanned a very large surface area for

many days.

In addition, the impact of wind speed oil look-alikes is reduced by using numerical

weather predicted (NWP) winds as part of the oil detection process rather than relying

on a backscatter contrast alone. This approach also appears to be unique.

Azimuth modulation The azimuth angle modulation of σ◦ in East Antarctica has previ-

ously been described and measured using instruments such as ASCAT and QuikSCAT,
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but a direct comparison between the ASCAT and QuikSCAT data has not been

described before.

I also weight the parameter estimation by the SRF values (similar to the AVE algorithm),

which has not been performed previously.

7.3 Publications

The research described in this dissertation has either been published or is currently

in review. An early description of the ASCAT SRF and the application of SIR to ASCAT

data was presented at an IEEE conference [24]. This is superseded by the work described in

Chapters 3 and 4; the material in Chapter 3 is in review for inclusion in IEEE Transactions

on Geoscience and Remote Sensing [63], and the material in Chapter 4 has been peer reviewed

and accepted for publication in IEEE Transactions on Geoscience and Remote Sensing [77].

The research in Section 6.1 for the Deepwater Horizon oil spill was presented at an IEEE

conference [78] and published in IEEE Transactions on Geoscience and Remote Sensing after

peer review [79]. The azimuth modulation research in Section 6.2 in currently in review for

IEEE Geoscience and Remote Sensing Letters [80]. Finally, the material in Chapter 5 is

currently in review for IEEE Transactions on Geoscience and Remote Sensing as part of a

larger paper that analyzes and validates ASCAT UHR winds [81].

7.4 Future Research

Over the course of completing the research documented in this dissertation and

elsewhere, I identify the following avenues of future research:

• The ASCAT SRF as described in Chapter 3 is sufficiently accurate for the applications

in this dissertation, but increased accuracy may be desired in the future. One aspect of

ASCAT that was not included, for example, is the filter used on the received signal.

This does not appear to significantly affect the SRF, but it may be responsible for some

small changes in the SRF. The SRF computation includes some approximations, such

as assuming a spherical Earth at some stages. An ellipsoidal model is more appropriate

yet more complicated to implement. Further approximations were made in order to
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avoid a computationally expensive orbit propagation step. These approximations would

be unnecessary if the ASCAT orbit propagation were implemented.

• The SRF parameterization described in Chapter 3 is accurate, but the assumption

that the SRF is elliptical is not valid for measurements at very low incidence angles

(< 25◦): at these angles, the SRF becomes more curved. This is not included in the

parameterization due to both its complexity and that these measurements are typically

discarded from processing. A future refinement to the parameterized SRF could include

this curvature, or, instead, a more generalized parameterization could be developed.

• The reconstruction statistics are derived in Chapter 4 for GRD and for AVE, but no

attempt is made to derive the statistics for SIR. This is due to the non-linear nature

of SIR. The SIR non-linearity, however, could be approximated as linear (SIR uses a

sigmoid function, so its behavior is indeed linear when close to the origin) and the first-

and second-order statistics could be derived. If so, this obviates the need for simulation

to compute the pixel statistics for SIR.

• Only a limited spectral analysis of GRD, AVE, and SIR is undertaken in Chapter 4.

This could be extended and generalized.

• This dissertation focused on the GRD, AVE, and SIR algorithms. Other reconstruction

algorithms could be evaluated and compared, such as the Backus-Gilbert [30] method,

or the maximum a posteriori approach considered in [28] for QuikSCAT data (and

which used the early, incorrect ASCAT SRF from [24]).

• The buoy validation in Chapter 5 uses only one year of collocations and only buoys in

a small region. The number of collocations could be expanded by increasing the spatial

region and extending the time period.

• For the oil spill mapping in Section 6.1, the early but incorrect SRF from [24] was

used. Repeating the methodology with the more accurate SRF from Chapter 3 would

therefore give somewhat different results, which perhaps may improve the oil spill

detection. Additionally, there may be higher-resolution ECMWF winds than the 1◦x1◦
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product used. In computing the backscatter error, the beams are equally weighted, but

they measure σ◦ at different incidence angles. This could be accounted for by either

using an unequal weighting of the three beams or the σ◦ values could be corrected

after estimating B, the incidence angle dependence of σ◦. Additionally, the OSCAT

scatterometer was operational during the time period of the Deepwater Horizon oil spill.

Unlike ASCAT, it measures σ◦ at both horizontal and vertical polarization. Fusing the

OSCAT data with ASCAT may improve the spill extent mapping.

• The azimuth modulation of East Antarctica in Section 6.2 is compared using ASCAT

and QuikSCAT data. More microwave instruments could be used to map the azimuth

modulation parameters, such as from radiometers, which measure the microwave

brightness temperature at a variety of polarizations and frequencies. This may provide

further insight into the geophysical parameters responsible for the observed azimuth

angle anisotropy.

7.5 Final Remarks

The results and contributions of this dissertation are available not only here and in

the publications listed above, but also in the form of processed data available as part of the

NASA-sponsored Scatterometer Climate Record Pathfinder (SCP) at http://scp.byu.edu.

Reconstructed σ◦ images from ASCAT measurements are produced using the GRD, AVE,

and SIR methods discussed in this dissertation. It is anticipated that the enhanced-resolution

data will benefit other geoscience studies and applications.
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Appendix A

Background in Sampling and Reconstruction

In this appendix, some background in sampling theory is discussed, along with the
extensions required to discuss the special class of sampling employed by ASCAT: irregularly
spaced aperture-filtered sampling. Further information about the block additive algebraic
reconstruction technique (AART) is also given.

A.1 Sampling Theory for Scatterometers

Sampling theory dictates that, under certain conditions, a signal may be sampled such
that its samples perfectly represent the signal. The classical case of a band-limited regularly
sampled signal is governed by the Nyquist criterion—there is a relationship between the
minimum sampling frequency and the signal bandwidth that, if satisfied, perfectly represent
the signal.

The regular assumptions of this classical case are too restrictive for some classes of
signals, including scatterometer measurements of the Earth surface σ◦, as considered in this
dissertation. These signals are sampled at irregular locations using aperture functions. Some
background on sampling theory is presented in this section. Conventional sampling is reviewed
first, followed by extensions to model both irregularly spaced samples and aperture-filtered
samples.

A.1.1 Regular Sampling and Reconstruction

For a regularly (meaning periodically) sampled band-limited signal with bandwidth
ω0, the Nyquist criterion gives the minimum sampling frequency (fs), or equivalently, the
maximum sampling period (Ts), in order to perfectly reconstruct the signal:

Ts <
1
ω0

(A.1)

fs > ω0. (A.2)

Here, the signal bandwidth extends from −ω0/2 to ω0/2, for a total bandwidth of ω0.
The signal of interest is a(x), a one-dimensional continuous signal with bandwidth ω0.

To obtain a single sample from the signal, the sifting property selects a value from a(x) at
location x0:

a(x0) =
∫
a(x)δ(x− x0) dx. (A.3)
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Interpreted another way, a sample of a(x) is the inner product between the signal and a
sampling function: a(x0) = 〈a(x), δ(x− x0)〉.

Regularly sampling the function a(x) is represented with an impulse train (also known
as a Dirac comb or Shah function):

XT (x) =
∞∑

m=−∞
δ(x−mT ), (A.4)

where T is the sampling period, or interval between successive delta functions. The sampled
signal is

as(x) = a(x)XT (x) (A.5)

= a(x)
∞∑

n=−∞
δ(x− nT ) (A.6)

=
∞∑

n=−∞
a(nT )δ(x− nT ). (A.7)

The sampled function as(x) is still a continuous signal, but it is only defined at locations
where x = mT (m is an integer). The discrete-time function a[n] is related to the sampled
signal as(x) through

a[n] = as(nT ), (A.8)

where n indexes the samples.
The signal a(x) may be reconstructed from the samples a[n] through sinc interpola-

tion [82]:

â(x) =
∞∑

n=−∞
a[n] sinc

(
x− nT
T

)
, (A.9)

where the (normalized) sinc function is defined as

sinc(x) = sin πx
πx

. (A.10)

Because of the bandlimited nature of a(x) and that it is sampled frequently enough to fulfill
the Nyquist criterion, the reconstructed signal â(x) is identical to a(x).

A.1.2 Irregular Sampling

In reality, not all signals are regularly sampled. For a collection of samples {si} of
a(x) at arbitrary positions {xi}, each sample may be expressed as

si =
∫
a(x)δ(x− xi) dx (A.11)

= a(xi), (A.12)
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A(kx) 1(kx) rect(kx)A(kx) A(kx)
× ×= =

a(x) δ(x) sinc(x)a(x) a(x)
m F

∗ = =∗
Figure A.1: This diagram illustrates how a band-limited a(x), convolved with a delta function,
is equivalent to convolution with a sinc function of appropriate bandwidth, which is in turn
equivalent to itself.

where i is the sample index and xi represents the position of sample i. The samples are
characterized as having a density of δ, where δ represents the largest spacing between the
samples.

Analogous to the Nyquist criterion, Gröchenig has shown [29,37,64] that irregularly
sampled band-limited signals at a density of δ and a bandwidth of ω0 can perfectly represent
the original signal. This is termed here Gröchenig’s lemma. The irregular samples represent
the original signal if the collection of δ-dense samples satisfy

δ <
ln(2)
ω0

. (A.13)

This is similar to the Nyquist criterion in Eq. (A.1), in that the sample period (parameterized
here by δ) is related to the signal bandwidth. Note the additional factor of ln(2) ≈ 0.69.

A.1.3 Aperture-Filtered Irregular Sampling

The delta functions in Eq. (A.11) may be replaced with arbitrary functions, or
apertures:

si =
∫
a(x)hi(x) dx, (A.14)

where each sample si has an associated aperture hi(x). This reduces to Eq. (A.11) if
hi(x) = δ(x− xi). Note that if a(x) is bandlimited, the delta functions in Eq. (A.11) can be
replaced with sinc functions. An informal proof follows.

Figure A.1 illustrates the idea that convolving a band-limited function with a delta
function is equivalent to convolution with a sinc function (with matching or greater bandwidth).
Stated another way, a band-limited delta function is a sinc function.

To show how this applies to Eq. (A.11), the delta function is replaced by a generic
aperture function hi(x):

si =
∫
a(x)hi(x) dx = 〈a(x), hi(x)〉. (A.15)
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While this is expressed as an inner product, it is also in the form of a convolution integral,
evaluated at a single point (e.g. τ = 0):∫

a(x)hi(x) dx = 〈a(x), hi(x)〉 (A.16)∫
a(x)gi(τ − x) dx = a(x) ∗ gi(x), (A.17)

where the convolution kernel gi(x) is a reversed and possibly shifted aperture function hi(x):
gi(x) = hi(α− x).

Substituting hi(x) = δ(x− xi) into gi(x):

gi(x) = hi(α− x) (A.18)
= δ(α− (x− xi)) (A.19)
= δ(α + xi − x). (A.20)

Noting that δ(−x) = δ(x) and letting β = α + xi,

gi(x) = δ(β − x) (A.21)
= δ(x− β); (A.22)

therefore, gi(x), like hi(x), is a shifted delta function. The exact value of β is inconsequential
since a nonzero β adds a phase shift to the Fourier transform while leaving the magnitude
unaffected. Since gi(x) is a delta function, both gi(x) and hi(x) can be replaced with sinc
functions, as discussed. Thus, because the signal has finite bandwidth, the delta functions in
Eq. (A.11) can be replaced with sinc functions with appropriate bandwidth.

A.1.4 Two-Dimensional Signals

The previous subsections have used a one-dimensional signal a(x) for clarity. However,
the results are readily extended to a two-dimensional signal a(x, y). Aperture-filtered irregular
sampling, for example, is expressed as

si =
∫∫

a(x, y)hi(x, y) dx dy. (A.23)

A.1.5 Discrete Signals

While the signal a(x, y) is desired from reconstructing the measurements si, in practice
we are only concerned with reconstructing a[xk, yk], that is, a(x, y) on a regular grid. A digital
representation (e.g., an image) of a(x, y) is stored and displayed as a[xk, yk]. So long as the
grid spacing in a[xk, yk] satisfies the Nyquist criterion, then a(x, y) is completely represented
by its discrete version. As before, sinc interpolation can reconstruct a(x, y) from a[xk, yk].

It has been shown [83] that if either the signal a(x, y) or the aperture functions hi(x, y)
are bandlimited, then the continuous functions are equivalent to discrete versions:

si =
∫∫

a(x, y)hi(x, y) dx dy =
∑
k

a[xk, yk]hi[xk, yk], (A.24)
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A(kx, ky) hi(kx, ky) Â(kx, ky)

∩ =

Figure A.2: Hypothetical region of support in the frequency domain for the signal a(x, y), an
aperture function hi(x, y), and the recoverable signal â(x, y). The recoverable frequencies are
dictated by the intersection of frequency support.

where the discrete functions a[xk, yk] and hi[xk, yk] are bandlimited to the smaller of the two
bandwidths.

A.1.6 Signal Bandlimit

A bandlimited signal implies that the signal has infinite extent in the time or spatial
domain. However, the functions a[xk, yk] and hi[xk, yk] have a finite extent in the spatial
domain, so they cannot be bandlimited. Nevertheless, these functions are treated as approxi-
mately bandlimited. For example, a(x, y) is a signal generated from a physical process, such
as radar reflectivity or brightness temperature. These signals typically have a power-law
relationship that results in a red spectrum—that is, it decays as a function of frequency.
Thus, at high enough frequencies, the energy is small. What a suitable cutoff frequency is
depends on both the signal and how much aliasing is tolerable.

Even though high-frequency energy exists and is aliased after sampling, sampling
with the bandlimited aperture functions hi[xk, yk] in Eq. (A.24) (usually lowpass in behavior)
further suppresses the high-frequency energy so that the aliased energy can be ignored. This
acts as a lowpass filter so that a[xk, yk] is a bandlimited version of a(x, y).

A.1.7 Aperture Bandlimit

While the signal may have bandlimit ω0,a, the aperture functions have their own
bandlimits ω0,hi

. Consider Fig. A.2 for a hypothetical bandlimit for signal a(x, y) and
aperture function hi(x, y). The recoverable bandwidth is governed by the intersection of the
frequency support for the signal and for the aperture functions. Spectral nulls also reduce the
recoverable frequencies. In Fig. A.2, the aperture function limits the recoverable frequencies
in the kx direction and also causes loss of frequencies due to spectral nulls. Using multiple
variable aperture functions yields an effective net aperture function, with spectral nulls equal
to the intersection of the spectral nulls of the component aperture functions (or, the union of
the frequency extent of all the aperture function) [29].

“Aliasing” occurs if the original signal a(x, y) has frequencies outside the limit given by
Eq. (A.13). Technically, it is a generalized form of aliasing due to varying aperture functions
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and irregular sampling. This gives an interesting result, as demonstrated in Fig. A.2. Since
the maximum frequency extent in the kx direction is smaller for the recoverable signal than
the actual signal, it is possible to have a more sparse δ-density (and therefore a larger Ts)
than that required for the original signal, even though no aliasing is introduced. An alternate
interpretation is that the aperture functions performs a role similar to an anti-aliasing filter.

A.2 Block AART

An iterative reconstruction approach is block additive ART [29]. This is expressed as

a
(n+1)
j = a

(n)
j +

∑
i(zi − pi)hij∑

i hij
, (A.25)

where a(n) is the n-th iteration of the a estimate and p(n)
i is the forward projection

p
(n)
i =

∑
j

a
(n)
j hij, (A.26)

zi is noisy measurement i, and hij is the SRF value of measurement i at pixel j. Block AART
may also be expressed in matrix equations, where the forward projection for iteration n is

~pn = H~an (A.27)

and block AART at iteration n+ 1 is

~an+1 = ~an + H̃T (~s− ~pn), (A.28)

where H̃ is column-normalized H (elements hij/
∑
k hik). Factoring out H (noting the

implicit assumption that the estimate of H exactly matches the underlying H used for the
aperture-filtered sampling operation):

~an+1 = ~an + H̃TH(~a− ~an). (A.29)

H̃TH is n× n, and ~an+1 ideally converges to ~a. Expressed another way,

~an+1 = ~an + H̃T (~s− ~pn) (A.30)
= ~an + H̃T~s− H̃TH~an (A.31)
= (I − H̃TH)~an + H̃T~s. (A.32)

If H̃T = H−1, this reduces to Eq. (2.23).
A closed form solution of Eq. (A.32) for iteration N is, using the substitution G =

(I − H̃TH) for brevity,

~aN = (GN−1 +GN−2 + · · ·+G2 +G+ I) H̃T~s (A.33)

=
(
N−1∑
n=0

Gn

)
H̃T~s =

(
N−1∑
n=0

(I − H̃TH)n
)
H̃T~s. (A.34)
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The term H̃T~s1 can be viewed as a first-order approximation to ~a = H−1~s. The power series∑N−1
n=0 (I − H̃TH)n is a correction factor.

For practical purposes, only a finite number of iterations may be computed. The error
from using a finite number of terms in the power series is

~a∞ − ~aN =
( ∞∑
n=0

Gn

)
H̃T~s−

(
N−1∑
n=0

Gn

)
H̃T~s (A.35)

=
( ∞∑
n=N

Gn

)
H̃T~s =

( ∞∑
n=N

(I − H̃TH)n
)
H̃T~s. (A.36)

Note that while the power series depends only on the sampling matrix H, the iteration output
in Eq. (A.34) and the truncated iteration error in Eq. (A.36) additionally depend on the
measurements ~s and therefore the signal a(x, y).

1Note that this is the definition of the AVE algorithm.
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Appendix B

ASCAT FFT Bin Response

As part of its onboard processing, ASCAT estimates a power spectrum using an FFT
(fast Fourier transform). The FFT, being an efficient implementation of the DFT (discrete
Fourier transform), regularly samples the DTFT (discrete-time Fourier transform). The
number of FFT bins is the number of samples from the DTFT. Window functions are often
applied to data processed with an FFT in order to reduce spectral leakage.

This appendix derives the frequency response of each FFT bin used in the ASCAT
power spectrum estimation. The frequency response of an unwindowed FFT bin is computed
in Appendix B.1. The window function used onboard ASCAT is described in Appendix B.2,
and the corresponding windowed FFT bin response is found in Appendix B.3.

B.1 Rect Window Response

For the discrete-time signal [82] x[n] with length N (and assumed to be periodic with
period N), the DTFT is expressed as

X(ejω) =
N−1∑
n=0

x[n]e−jωn. (B.1)

The DFT is

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N (B.2)

= X(ejω)|ω=2πk/N . (B.3)

Implicit in these definitions is a window function, w[n], so that x[n] should be replaced with
x[n]w[n]. Instead, let y[n] = x[n]w[n] so that x[n] is the true signal, w[n] is the window
function, and y[n] the windowed signal. Due to the convolution theorem,

Y (ejω) = DTFT{x[n]w[n]} = X(ejω) ∗W (ejω). (B.4)

To find the frequency response of an FFT bin means to determine which frequencies of
X(ejω) are in bin k of Y [k]. This depends on the window w[n] used. So in order to evaluate
the frequency response of y[n] = x[n]w[n], the quantity W (ejω) must first be evaluated.
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W (ejω) is evaluated for a rect window (or an implicit window) of length N so that
w[n] = 1 for all n. The DTFT of w[n] is then

W (ejω) =
N−1∑
n=0

e−jωn = 1− e−jωN
1− e−jω . (B.5)

Making use of the following expansions:

1− e−jω = e−jω/2(ejω/2 − e−jω/2) (B.6)
1− e−jωN = e−jωN/2(ejωN/2 − e−jωN/2), (B.7)

then the DTFT of a rect can be written as:

W (ejω) = 1− e−jωN
1− e−jω = e−jωN/2

e−jω/2

(
ejωN/2 − e−jωN/2

ejω/2 − e−jω/2

)
2j
2j (B.8)

= e−jω(N−1)/2 sin(ωN/2)
sin(ω/2) . (B.9)

Recalling that one definition of the Dirichlet kernel (or “periodic sinc” function) is

Dn(x) = sin(nx/2)
sin(x/2) , (B.10)

then the DTFT is expressible in terms of the Dirichlet kernel:

W (ejω) = e−jω(N−1)/2DN(ω). (B.11)

Since the FFT is used for power spectrum estimation, only the magnitude-squared response
is of interest, which is

|W (ejω)|2 = |DN(ω)|2. (B.12)
Equation (B.12) is the continuous-valued frequency response of a rect window function

using a DTFT. In practice, a DTFT is approximated by a DFT with sufficiently many
samples. Thus, while Eq. (B.12) gives the analytic frequency response of an FFT bin, it
could be approximated computationally by zero-padding the window w[n] by some amount
and then computing the FFT for a large number of samples.

Since the signal frequency response X(ejω) is convolved with the window frequency
response W (ejω), the value of a given FFT bin Y [k] is not a single signal frequency (i.e.,
X(ejω) for some ω), but the linear combination of all signal frequencies weighted by the
window spectrum.

Some examples are shown in Fig. B.1. The frequency response for a 16-point FFT is
shown. The frequencies for FFT bin centers are indicated with the stem plots. Note that the
response follows a Dirichlet kernel. Additionally, the frequency response of any given bin is
the weighted combination of all other frequencies except for the frequencies at the centers of
the other bins.
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Figure B.1: The magnitude (top) and magnitude-squared (middle) frequency response of an
FFT bin. The frequency response (bottom) for two example bins in a 16-point FFT.
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Table B.1: FFT chunk parameters

# of Window parameters
Beam chunks c p
Mid 5 1.521 45 0.75
Side 8 1.685 56 0.5

B.2 ASCAT Onboard Processing

ASCAT transmits linear FM pulses.1 The received signal is dechirped and sampled at
412.5 kHz. The sampled mid and side beams contain 2252 and 3193 samples, respectively.
These samples are then divided into overlapping chunks of 512 samples. Each FFT chunk is
referred to as a range look.

The window applied to each chunk is specified in [85], Eq. 6.2.7-8. The number of
chunks and the window parameters are shown in Table B.1. A generalized Welch’s power
spectrum estimate is computed, where each chunk is windowed, and then a 512 point FFT
is performed. Half of the samples are discarded (the negative frequencies are redundant in
a real-valued signal) and the magnitude-square is taken. All the transformed chunks are
averaged together to give the final power spectrum estimate: power as a function of frequency,
which in ground processing maps to σ◦ as a function of range.

The window function used is described as

w(t) =
c 0 ≤ |t| ≤ p Trl/2
c
2

[
1 + cos

(
2π(|t|−pTrl/2)
Trl(1−p)

)]
p Trl/2 ≤ |t| ≤ Trl/2

, (B.13)

where Trl is the “range look duration” and is 1.241 212ms. Note that c and p differ for mid
and side beams. The sampled window function w[n] is w(t) where t ∈ [−Trl/2, Trl/2] and
N = 512 samples are taken. The window function is plotted in Fig. B.2 for the mid and side
beams. The window is a tapered rect, similar to a Tukey window.

B.3 Windowed FFT Bin Response

The magnitude of the Fourier transform for one of the windows is shown in Fig. B.3,
with the response from a rect window, for comparison. While the peak sidelobe level and
mainlobe width are not drastically different from the rect response, the sidelobes taper off
more quickly and the mainlobe is slightly wider. The closer view of the mainlobe is shown in
Fig. B.4 in comparison with a rect window mainlobe.

B.4 Summary

The ASCAT processing maps the FFT bin frequency response to a spatial response
along the Earth surface. Therefore, this appendix has described the frequency response of the

1Most of the information in this section comes from from [84], an email from Julian Wilson at EUMETSAT
on 2009-01-23.
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Figure B.2: The window function applied to each 512-sample chunk.

FFT bins computed onboard ASCAT. For a rect window (or, an unwindowed case), the FFT
bin frequency response is shown to be related to a Dirichlet kernel. The window used onboard
ASCAT is described and its corresponding mainlobe frequency response is very similar to,
but slightly wider than, a rect. Different window parameters are used for the mid and side
beams, and therefore the response on the ground is slightly different for the mid and side
beams.
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Figure B.3: The magnitude of the Fourier transform of the chunk window for side beams,
along with the response from a rect window. The rect response has been renormalized to match
the peak level of the side range look window response. This plot is horizontally zoomed in order
to show more detail near the mainlobe (the full domain is -0.5 to 0.5 cycles/sample).

137



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Normalized frequency [FFT bins]

5

4

3

2

1

0

N
o
rm

a
liz

e
d
 P

o
w

e
r 

[d
B

]

Side
Mid
Rect

Figure B.4: The magnitude-squared of the Fourier transform of the chunk windows, along
with a rect window for comparison. This plot is horizontally zoomed in order to show more
detail near the mainlobe. The 3 dB width of the windows is estimated to be 0.88, 1.0, and 1.125
FFT bins for the rect, mid, and side windows, respectively.
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Appendix C

Reconstruction Image Statistics

This appendix derives the predicted GRD and AVE statistics and validates the
predictions through comparison to corresponding sample statistics. To simplify the analysis,
no incidence angle dependence is included.

For pixels m and n of the output image â (the 2d image â[x, y] is vectorized to a
column vector âj), the mean at pixel m and the autocorrelation and autocovariance between
pixels m and n are

µâ[m] = E[âm]
râ(m,n) = corâ(m,n) = E[âmân]
kâ(m,n) = covâ(m,n) = E[(âm − E[âm])(ân − E[ân])].

Note that the pixel variance is a special case of the autocovariance: varâ[m] = kâ(m,m).
Similarly, for measurements a and b of the measurement vector zi, the mean and autocovariance
are

µz[a] = E[za]
rz(a, b) = corz(a, b) = E[zazb]
kz(a, b) = covz(a, b) = E[(za − E[za])(zb − E[zb])].

Two sources of randomness are modeled: first, the noise-free measurements are treated
as deterministic. The random measurement noise is modeled and the mean and autocovariance
of the AVE and GRD outputs are analytically determined. Simulation is used to measure
the pixel mean and autocovariance of the AVE and GRD outputs. In order to validate the
prediction, they are compared against the simulated values.

The second source of randomness is to consider the truth σ◦ scene, before sampling, as
a random process with an associated pixel mean and autocovariance. Thus the noise-free mea-
surements are stochastic and are characterized by their associated mean and autocovariance.
Finally, the AVE and GRD methods are applied to predict the mean and autocovariance
of the reconstructed image. As with the first approach, simulation is used to validate the
predicted values.

Some background on confidence intervals is first discussed in Appendix C.1. Then
the reconstruction mean and autocovariance are predicted and validated in Appendix C.2,
only considering the effect of measurement noise. The reconstructed image mean and
autocovariance are again predicted in Appendix C.3, this time modeling the true σ◦ scene as
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a random process. Both effects are combined in Appendix C.4 and the predicted values are
validated. Appendix C.5 concludes.

C.1 Confidence Intervals

To validate the predictions made below, the predicted mean and variance are compared
against the sample mean and variance. In order to evaluate the accuracy of the predicted
mean and variance, a Neyman-Pearson hypothesis test is created for each case. Under
the Central Limit Theorem, the distribution of the sample mean x̄ approaches a Gaussian,
distributed as N (µ, σ2/N) where N is the number of realizations averaged together, µ is the
true mean, and σ2 is the true variance. The distribution of the sample variance s2 similarly
approaches a scaled chi-squared distribution.

For the sample mean, the null hypothesis H0 is that the sample mean for a pixel
equals the predicted mean for that pixel:

H0 : x̄ = µ, x̄ ∼ N (µ, σ2/N)
H1 : x̄ 6= µ, x̄ � N (µ, σ2/N).

Assuming the null hypothesis is true, the predicted mean µ and the predicted variance σ2 are
both assumed correct. For this hypothesis test, the sample mean x̄ is the test statistic. It is
normalized to find the z-score:

z = x̄− µ√
σ2/N

,

where z is distributed as the unit normal distribution, z ∼ N (0, 1).
In this appendix, the test significance level, α, is set to 0.05. This, in conjunction

with the distribution of z, gives the well-known result that 95% of the probability may be
bounded by

x̄± 1.96(σ/
√
N).

This is the 95% confidence interval of x̄. An illustration is shown in Fig. C.1. The frequentist
interpretation is that, given many groups of data with the same underlying true mean and
variance, if the sample mean is computed for each group, then 95% of the time, the true
mean µ will lie within the 95% confidence interval of the sample mean.

In this appendix the sample and predicted statistics are computed separately for
each pixel or for each measurement. Thus, it is expected that for 95% of the pixels (or
measurements), the predicted mean lies within the 95% confidence interval around the sample
mean. The null hypothesis is therefore rejected 5% of the time, which is what is expected for
an α (also called the probability of false alarm, or type I error) of 0.05.

The hypothesis test for the sample variance is similar. The null hypothesis H0 is that
the sample variance s2 equals the predicted variance:

H0 : s2 = σ2

H1 : s2 6= σ2.
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Figure C.1: A unit normal distribution (top) and a chi-squared distribution with 8 degrees of
freedom (bottom). The cumulative probability α is indicated by the shaded portions at the two
tails of each distribution. The unshaded portion contains 1− α of the probability.

The test statistic is x = (N − 1) s2

σ2 , where x ∼ χ2(N − 1), a chi-squared distribution with
N − 1 degrees of freedom. In this case, the (1 − α)% confidence interval for σ2, the true
variance, is

(N − 1)s2

a
≤ σ2 ≤ (N − 1)s2

b
,

where a and b are the points in the chi-squared distribution that contain 1 − α of the
probability. An illustration in this case is shown in Fig. C.1 using a chi-squared distribution
with 8 degrees of freedom. As N → ∞, a chi-squared distribution with N − 1 degrees of
freedom approximates a (shifted) Gaussian distribution.

C.2 Measurement Noise

C.2.1 Predicted Values

As stated in Eq. (2.19), the multiplicative measurement noise model is

zi = σ◦meas,i(1 +Kp,i νi), (C.1)
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where σ◦meas,i is the sampled backscatter value, zi is the noisy measurement, Kp,i is a per-
measurement noise term, and νi is an correlated Gaussian random process with zero mean
and unit variance. For ASCAT, Kp,i is treated as constant across the measurements, so that
Kp,i = Kp.

Substituting Eq. (2.19) into the AVE algorithm, Eq. (2.26), and taking the expectation
over νi, the mean of σ◦ave for pixel m is

µave[m] = E

[∑
i σ
◦
meas,i(1 +Kpν)him∑

i him

]

=
∑
i σ
◦
meas,iE[(1 +Kpν)]him∑

i him
=
∑
i σ
◦
meas,i(1 + 0)him∑

i him

µave[m] =
∑
i σ
◦
meas,ihim∑
i him

. (C.2)

The AVE autocorrelation, noting that E[νi] = 0 and E[νlνk] = δlk, is

rave(m,n) = E[σ◦ave[m]σ◦ave[n]] = E

[(∑
l σ
◦
meas,l hlm (1 +Kpνl)∑

l hlm

)(∑
k σ
◦
meas,k hkn (1 +Kpνk)∑

k hkn

)]

=
E
[∑

l

∑
k σ
◦
meas,lσ

◦
meas,k hlmhkn (1 +Kpνl)(1 +Kpνk)

]
∑
l hlm

∑
k hkn

=
∑
l

∑
k σ
◦
meas,lσ

◦
meas,k hlmhknE

[
(1 +Kpνl +Kpνk +K2

pνlνk)
]

∑
l hlm

∑
k hkn

=
∑
l

∑
k σ
◦
meas,lσ

◦
meas,k hlmhkn (1 +K2

pδlk)∑
l hlm

∑
k hkn

=

(∑
l σ
◦
meas,l hlm

) (∑
k σ
◦
meas,k hkn

)
+K2

p

∑
l(σ◦meas,l)2hlmhln∑

l hlm
∑
k hkn

. (C.3)

The AVE autocovariance is simpler due to removing the mean terms:

kave(m,n) =
K2
p

∑
l(σ◦meas,l)2hlmhln∑
l hlm

∑
k hkn

. (C.4)

Above, i, l, and k index over the measurements and hij is the SRF value of measurement i at
pixel j.

The mean and autocovariance for GRD are similar, but hij is replaced with the GRD
indicator function Gij. Noting that ∑iGij = Nj and

∑
iGimGin = Nmδmn,

µgrd[m] =
∑
i σ
◦
meas,iGim

Nm

. (C.5)
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kgrd(m,n) =
K2
p

∑
l(σ◦meas,l)2GlmGln∑
lGlm

∑
kGkn

=
K2
pδmn

∑
l(σ◦meas,l)2GlmGlm

NmNn

kgrd(m,n) =


K2
p

∑
l(σ◦meas,lGlm)2

(Nm)2 , m = n

0, m 6= n

. (C.6)

Because GRD pixels do not share measurements with other pixels, the autocovariance of
GRD pixels—due only to measurement noise—is 0 when m 6= n.

C.2.2 Sample Values

The predicted reconstruction statistics are validated through simulation. A synthetic
truth image is created and sampled using actual ASCAT observation geometry, including
the SRF. The SRF is computed for each measurement and stored (as elements hij, the SRF
value for measurement i at pixel j) as well as the synthetic noise-free measurements σ◦meas,i.
Noise is added to the measurements using Eq. (C.1), with multiple realizations of ν. For
the results below, 1000 noise realizations are generated. Kp for ASCAT is assumed to be a
constant value of 0.20.

From the noisy measurements, the GRD and AVE algorithms reconstruct the output
images for each realization of noisy measurements. With 1000 noise realizations, 1000 sets of
GRD and AVE images are created. To measure the reconstruction mean and autocovariance,
the sample mean and sample autocovariance are taken over the realizations.

The sample mean and sample autocovariance are computed independently for each
pixel m. Whether the image is generated from the GRD or AVE methods, the output images
here are referred to as at[j] where j is the pixel index and t is the realization index. The
total number of realizations is T (∑t 1 = T ). The sample mean for pixel j is

µ̂a[j] = 1
T

N∑
t=1

at[j], (C.7)

and the unbiased sample autocovariance for pixels m and n is

k̂a(m,n) = 1
T − 1

N∑
t=1

(at[m]− µâ[m])(at[n]− µâ[n]). (C.8)

The sample autocovariance k̂a(m,n) may be computed for every pixel pair (m,n). However,
for brevity, only the pixel variance k̂a(m,m) is considered in this appendix.

C.2.3 Validation

The predicted and sample mean are shown for a subset of GRD pixels in Fig. C.2.
The predicted mean is Eq. (C.5) and the predicted variance is Eq. (C.6) for m = n. The
sample mean and variance are computed as detailed above. Results for AVE are similar.
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Figure C.2: The mean (top) and variance (bottom) for GRD as a function of pixel index. The
predicted values are indicated with dashed lines and the sample values with a solid line. The
95% confidence interval is indicated by the error bars.
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Table C.1: The number of pixels whose predicted mean or variance falls within the 95%
confidence interval of the sample mean and variance.

Statistic Pixels
GRD sample mean 555/576 96.4%

GRD sample variance 544/576 94.4%
AVE sample mean 54796/57419 95.4%

AVE sample variance 54551/57419 95.0%

Since each pixel is considered separately, it is expected that for 95% of the pixels, the
predicted mean and variance fall within the 95% confidence intervals of the sample mean
and sample variance. The actual number of pixels within the confidence intervals for GRD
and AVE are listed in Table C.1. The rejection rate matches that set by the choice of α: only
5% of the pixels are outside the 95% confidence interval. This validates the predicted mean
and variance. The autocovariance for m 6= n is not shown in this appendix, but a comparison
between the predicted and sample autocovariances similarly matches well.

C.3 True Signal Uncertainty

The true image A[j] = σ◦[x, y] is modeled as having first- and second-order statistics
µA[j] and kA(m,n), the mean at pixel j, and autocovariance between pixels m and n,
respectively. Neglecting measurement noise, the discretized sampling process is

zi =
∑
j A[j]hij∑
j hij

. (C.9)

The measurement mean is

µz[i] = E

[∑
j A[j]hij∑
j hij

]

=
∑
j E {A[j]}hij∑

j hij

µz[i] =
∑
j µA[j]hij∑

j hij
. (C.10)

The noise-free measurement autocorrelation is

rz(a, b) = E[zazb] = 1∑
m ham

1∑
n hbn

E

{∑
m

A[m]ham
∑
n

A[n]hbn
}

= 1
(∑m ham) (∑n hbn)

∑
m

∑
n

E {A[m]A[n]}hamhbn

=
∑
m

∑
n rA(m,n)hamhbn

(∑m ham) (∑n hbn) ,
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where a and b index over measurements and m and n index over pixels. Noting that
the autocorrelation may be expressed in terms of autocovariance, rA(m,n) = kA(m,n) +
µA[m]µA[n], the noise-free measurement autocovariance is

kz(a, b) = E[(za − µz[a])(zb − µz[b])] = rz(a, b)− µz[a]µz[b]

=
∑
m

∑
n rA(m,n)hamhbn

(∑m ham) (∑n hbn) −
∑
m µA[m]ham∑

m ham

∑
n µA[n]hbn∑

n hbn

=
∑
m

∑
n (kA(m,n) + µA[m]µA[n])hamhbn

(∑m ham) (∑n hbn) −
∑
m

∑
n µA[m]µA[n]hamhbn

(∑m ham) (∑n hbn)

kz(a, b) =
∑
m

∑
n kA(m,n)hamhbn

(∑m ham) (∑n hbn) . (C.11)

Using the AVE algorithm from Eq. (2.26), the mean for each pixel j and the autoco-
variance between the pixels m and n are

µave[j] =
∑
a µz[a]haj∑

a haj
, (C.12)

kave(m,n) =
∑
a

∑
b kz(a, b)hamhbn∑
a ham

∑
b hbn

, (C.13)

where a and b index the measurements.
For the GRD method, the indicator Gij replaces the SRF value hij and

∑
iGij = Nj

is the number of measurements falling within each GRD pixel j. The GRD mean and
autocovariance are therefore

µgrd[j] = 1
Nj

∑
a

µz[a]Gaj, (C.14)

kgrd(m,n) = 1
NmNn

∑
a

∑
b

kz(a, b)GamGbn, (C.15)

where a and b index over the measurements. Unlike the deterministic measurement case in
Eq. (C.6), the GRD autocovariance is not necessarily a delta function but a function of the
truth image autocovariance kA(m,n).

For brevity, the validation of the predicted quantities Eqs. (C.10) to (C.15) is deferred
to the next section.

C.4 Signal and Noise Uncertainty

C.4.1 Predicted Values

Including measurement noise modeled in Eq. (C.1) into the sampling equation Eq. (C.9),
the noisy sampling is expressed as

zi =
∑
j σ
◦[j]hij∑
j hij

(1 +Kpνi).
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The measurement noise νi is assumed uncorrelated with the source image, so E[A[j]νi] =
E[A[j]]E[νi] = 0. The noisy measurement mean is therefore

µz[i] = E

[∑
j A[j]hij∑
j hij

(1 +Kpνi)
]

=
∑
j E {A[j]}hij∑

j hij
+Kp

∑
j E {A[j]νi}hij∑

j hij

µz[i] =
∑
j µA[j]hij∑

j hij
, (C.16)

which is identical to Eq. (C.10).
The autocorrelation between measurements za and zb is

rz(a, b) = E




∑
k A[k]hak∑
k hak︸ ︷︷ ︸
α

+Kpνa

∑
k A[k]hak∑
k hak︸ ︷︷ ︸
α



∑
lA[l]hbl∑
l hbl︸ ︷︷ ︸
β

+Kpνb

∑
lA[l]hbl∑
l hbl︸ ︷︷ ︸
β




= E
{
αβ +Kpνbαβ +Kpνaαβ +K2

pνaνbαβ
}

= E [αβ] + 0 + 0 +K2
pδabE [αβ]

=
∑
k

∑
l rA(k, l)hakhbl∑
k hak

∑
l hbl

(1 +K2
pδab).

The autocovariance between measurements za and zb is

kz(a, b) = rz(a, b)− µz[a]µz[b]

=
∑
k

∑
l (kA(k, l) + µA[k]µA[l])hakhbl∑

k hak
∑
l hbl

(1 +K2
pδab)−

∑
k

∑
l µA[k]µA[l]hakhbl∑
k hak

∑
l hbl

kz(a, b) =
∑
k

∑
l kA(k, l)hakhbl∑
k hak

∑
l hbl

+K2
pδab

∑
k

∑
l (kA(k, l) + µA[k]µA[l])hakhbl∑

k hak
∑
l hbl

. (C.17)

With noise included, the measurement mean µz is unchanged from Eq. (C.10), but
the measurement autocorrelation kz has an additional term. Because of the Kronecker delta
δab, the second term is only nonzero when computing the variance of measurement za. This
implies that the covariance between measurements a 6= b is unaffected by measurement noise.
However, with measurement noise, the measurement variance increases. The mean and
autocovariance of the reconstructed pixels may be found by substituting the measurement
statistics of Eqs. (C.16) and (C.17) into Eqs. (C.12) and (C.13) for AVE and Eqs. (C.14)
and (C.15) for GRD.

C.4.2 Sample Values

The predicted statistics of the measurements zi may be validated through simulation.
Multiple realizations of a truth image may be created using known image statistics µA[j] and
kA(m,n). For simplicity, I assume the truth image A[j] is a multi-variate Gaussian so that
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it is completely described by the choice of mean vector ~µA and covariance matrix Σ. For a
size-M truth image, each truth image realization is a random vector ~A ∼ N ( ~µA,Σ), where
the vector

~µA =
[
µA[0] µA[1] . . . µA[M − 1]

]T
is the mean for each pixel and the covariance matrix Σ contains the autocovariances between
every possible pair of pixels:

Σ =


kA(0, 0) kA(0, 1) · · · kA(0,M − 1)
kA(1, 0) . . . ...

... . . . ...
kA(M − 1, 0) . . . . . . kA(M − 1,M − 1)

 .

After creating multiple truth image realizations (all with the same statistics µA[j]
and kA(m,n)), the images are sampled with the same sampling geometry hij as above and
measurement noise is optionally added. Then the sample mean and sample autocovariance
are computed.

The sample mean for measurement i is

µ̂z[i] = 1
N

N∑
t=1

zt[i],

and the (unbiased) sample autocovariance for measurements a and b is

k̂z(a, b) = 1
N − 1

∑
t

(zt[a]− µz[a])(zt[b]− µz[b]),

where t indexes the N realizations. For the noise-free case, N realizations of the truth image
are created and sampled. For the noisy case, a single noise realization is created for each
truth realization, so there are still N total realizations to average over.

C.4.3 Validation

The predicted mean and variance of the measurements, µz[i] and kz(a, b), are compared
against the sample values for various truth image statistics µA and ΣA. The predicted and
sample mean and variance are shown for some measurements in Figs. C.3 and C.4 for 500
realizations of sample values. Measurement noise is both omitted and included for comparison.

Comparing the noisy and noise-free cases in Fig. C.3, although the predicted mean
is the same (since Eq. (C.10) and Eq. (C.16) are the same), measurement noise increases
the variance of the sample mean, as seen in the broader confidence interval. Measurement
noise also affects the variance of the measurements in Fig. C.4: the measurement variance in
the noisy case is larger than the noise-free case by two orders of magnitude. The variance
increase is due to the second term in Eq. (C.17), where Kp is nonzero due to measurement
noise. Within the double summation, the µA[k]µA[l] portion of the summand dominates.

Notwithstanding the difference measurement noise makes, the predicted and sample
statistics match very well in all cases for all truth image statistics tested. The number of
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Figure C.3: The predicted and sample mean for both the noise-free (top) and noisy (bottom)
measurements.
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Figure C.4: The predicted and sample variance for both the noise-free (top) and noisy (bottom)
measurements.
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Table C.2: The number of measurements whose predicted mean or variance falls within the
95% confidence interval of the sample mean and variance. This is for one particular truth

image, but the values are similar for the other truth images tested.

Statistic Noise-free Noisy
Sample mean 282654/299369 94.4% 284223/299369 94.9%

Sample variance 284867/299369 95.2% 283950/299369 94.9%

measurements with predicted values with the sample statistics 95% confidence intervals are
listed in Table C.2. This validates the predicted measurement statistics, both with and
without noise.

The synthetic measurements are next used to validate the GRD and AVE predicted
mean and variance, Eqs. (C.12) to (C.15). AVE and GRD images are created from the
synthetic measurements. The sample mean and sample variance are computed on the
reconstruction outputs over the multiple realizations. The sample statistics are performed
over 500 realizations.

As in Appendix C.2.3, the 95% confidence intervals are computed for the AVE and
GRD sample mean and variance. The percentage of the GRD and AVE pixels with the
predicted mean or variance within the confidence intervals in all cases is very close to 95%,
validating the accuracy of the predicted values. Although not shown, the behavior of the
mean and variance in all cases is similar to Fig. C.2.

C.5 Conclusion

This appendix has derived the pixel mean and autocovariance for the GRD and AVE
algorithms. Two sources of randomness are modeled: measurement noise and the uncertainty
of the source σ◦ scene. Measurement noise is first treated in Appendix C.2, where the GRD
and AVE mean and autocovariance are predicted. Simulation is used to find the sample
mean and variance. The predicted and sample values agree with each other, validating the
predicted mean and variance.

Source uncertainty is modeled in Appendices C.3 and C.4 with a true image mean
vector and autocovariance matrix. Sampling is modeled and the mean and autocovariance of
the sampled measurements are predicted. Simulation is used to find the sample mean and
sample autocovariance of the measurements. The sample statistics validate the predicted
statistics. Finally, the predicted statistics for AVE and for GRD are computed and likewise
validated through simulation.

This analysis provides closed-form solutions for the mean and autocovariance for GRD
and for AVE, with measurement noise and truth image uncertainty modeled. Although the
ASCAT sample geometry and SRF is applied, any arbitrary sample geometry and SRF is
feasible. Therefore, future work could include comparing the measurement and pixel statistics
between other scatterometers or radiometers. For simplicity, incidence angle dependence of
σ◦ is not included, but it could be addressed in future work.
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