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ABSTRACT

UNCERTAINTIES IN OCEANIC MICROWAVE REMOTE

SENSING: THE RADAR FOOTPRINT, THE

WIND-BACKSCATTER RELATIONSHIP, AND THE

MEASUREMENT PROBABILITY DENSITY FUNCTION

Paul E. Johnson

Electrical and Computer Engineering

Doctor of Philosophy

Oceanic microwave remote sensing provides the data necessary for the es-

timation of signi�cant geophysical parameters such as the near-surface vector wind.

To obtain accurate estimates, a precise understandingof the measurements is criti-

cal. This work clari�es and quanti�es speci�c uncertainties in the scattered power

measured by an active radar instrument.

While there are many sources of uncertainty in remote sensing measure-

ments, this work concentrates on three signi�cant, yet largely unstudied e�ects. With

a theoretical derivation of the backscatter from an ocean-like surface, results from this

dissertation demonstrate that the backscatter decays with surface roughness with two

distinct modes of behavior, a�ected by the size of the footprint. A technique is de-

veloped and scatterometer data analyzed to quantify the variability of spaceborne

backscatter measurements for given wind conditions; the impact on wind retrieval is



described in terms of bias and the Cramer-Rao lower bound. The probability den-

sity function of modi�ed periodogram averages (a spectral estimation technique) is

derived in generality and for the speci�c case of power estimates made by the NASA

scatterometer. The impact on wind retrieval is quanti�ed.
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Chapter 1

Introduction

Since radars were �rst observed to be a�ected by weather patterns in World

War II, electromagnetic systems have been used to measure geophysical systems. Both

active and passive systems, using various parts of the spectrum, have been used to

monitor rainfall, deforestation, wind, ice mass, and many other crucial variables. Such

parameters provide valuable data about our world and how it functions.

Oceanic microwave remote sensing is the �eld of study and application in

which oceans are observed from a distance, say from aircraft or spacecraft, using

microwave energy. The oceans, covering over 70% of the earth's surface, govern our

weather and climate. In particular, the boundary interaction at the surface between

the ocean and the atmosphere experiences tremendous 
uxes of heat, momentum,

carbon and oxygen. On a global scale, these drive weather patterns, climate changes,

atmospheric and oceanic compositions; the impact on humankind ranges from the

short-term daily weather to the long-term viability of life on earth.

Recognition of the importance of understanding the 
uxes at the ocean

surface has brought together several distinct areas of study. This has traditionally

been the domain of oceanography and meteorology. Physicists, chemists and biol-

ogists have increased the scienti�c rigor of geophysical 
uid dynamics, atmospheric

and oceanic chemical compositions, and the sensitivity of lifeforms to minor changes

in such dynamics and compositions. More recently, engineers have entered the �eld

to provide advanced measurement techniques, technology, and system understanding.

The most common active radar systems used in ocean remote sensing are

altimeters and scatterometers. While using the same basic radar principles, the two
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types of instruments are designed for very di�erent purposes. Altimeters are nadir

looking instruments (i.e., they are pointed straight down, normal to the ocean surface)

and use the time of 
ight of the radar signal to make their primary measurement:

the distance between the surface and the instrument. Altimeters can also be used

as nadir looking scatterometers. Scatterometers are pointed at an angle away from

nadir (commonly 20� to 60�), and use the amount of backscattered power to estimate

the normalized radar cross section, from which other parameters are estimated.

Remote sensing radars measure the re
ective properties of a surface. The

normalized radar cross section (NRCS), also called backscatter (�o), is calculated

using the radar equation [1]:

�o =
(4�)3R4LPs
PtG2�2A

; (1.1)

where R is the slant range to the surface, Pt is the transmitted power, Ps is the received

backscattered power, L represents known system losses, G is antenna gain, A is the

e�ective illuminated area, and � is the wavelength of the transmitted radiation. In

practice, a backscatter power measurement is actually the sum of the backscattered

power and noise due to instrumentation and the natural emissivity of the earth and

atmosphere. The noise power is estimated and subtracted from the signal-plus-noise

measurement to estimate Ps in order to compute the �o.

This work focuses on uncertainties in the scattered power measured by an

active radar instrument over the ocean. This requires some incursions into the realms

of non-engineering disciplines. For example, the ocean surface roughness is forced

by the near-surface wind, modulated by long waves (swell), governed by the 
uid

dynamics of salt water of a particular temperature and composition, and complicated

by the physics of a rotating planet. On the other end of the measurement process

is the estimation of meaningful and usable parameters for inclusion in the body of

scienti�c knowledge: global wind vector maps to drive climate models and numerical

weather prediction, ocean surface height for developing sea-
oor topographic maps,

etc.
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Figure 1.1: Microwave remote sensing of the oceans provides the necessary data to
estimate signi�cant geophysical parameters, such as the vector wind. Such estimates
are necessarily based on the measurements made by radars of the normalized radar
cross section of the surface. The NRCS is determined by the shape and electromag-
netic properties of the surface; for random surfaces like the ocean, it is determined in
terms of the statistics of the surface (i.e., the surface spectrum). The surface spec-
trum is forced by the geophysical parameters. Current applications require signi�cant
approximations to model the processes leading to the parameter estimation. Even
knowing the exact spectrum, the NRCS depends also on the relationship of the radar
footprint to that spectrum. But the relationship between the geophysical parameters
and the resultant spectrum is beyond the current knowledge of physical oceanography;
approximate models are used to relate the most signi�cant geophysical parameter, the
vector wind, to the NRCS, ignoring all other in
uences. The measurements them-
selves introduce noise while modifying the statistics of the measurements through the
analog processing.

Between the forces that shape the ocean surface and the estimated geophys-

ical parameters is a vast engineering realm to make appropriate, accurate measure-

ments. It is the uncertainty in this realm which provides the thrust of this research.

The relationship between the geophysical parameters of interest and the estimates

of those parameters based on microwave remote sensing is graphically displayed in

Fig. 1.1. The geophysical parameters (wind, rain, dielectric properties of the water,

etc.) impart a particular statistical structure to the surface, described in terms of the

surface power spectrum. The spectrum and water dielectric properties, along with

the measurement geometry and electromagnetic wavelength, determine the scatter-

ing characteristics of the surface, quanti�ed by the normalized radar cross section,

NRCS, or backscatter coe�cient, �o. The NRCS is related to measurements of the

power scattered from the surface. And �nally, estimates of signi�cant geophysical

parameters are made from the measurements.
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Each step in this process is prone to error and uncertainty. While the sur-

face spectrum is dictated by geophysical parameters, neither the precise relationship

governing the spectrum nor all the parameters involved are known. Oceanographers

have developed tunable models of the spectrum, providing several adjustable terms to

establish realistic ocean spectra. Using a particular spectrum model, and including

assumptions on the dielectric properties of the water and on the minimum radius

of curvature of the surface, electromagnetic scattering theory provides the necessary

theory to derive the NRCS. Still, identifying all of the surface and measurement pa-

rameters (e.g., spectrum parameters, wind forcing, swell, dielectric characteristics,

radar altitude, incidence angle) that determine the theoretical scattering behavior,

and the nature of their e�ects, is well beyond the current state of science. In order to

avoid many of these uncertainties and still provide techniques for estimating at least

some of the geophysical parameters (for example, the wind), a common approach has

been to develop empirical models relating the vector wind (the dominant force in

driving the surface spectrum) and the observation parameters to the NRCS. While

this approach bypasses the gap caused by the lack of scienti�c understanding of the

spectrum development, it is based on empirical measurements and statistical regres-

sion; empirical models do not incorporate non-wind factors of the spectrum and their

accuracy is not understood. Whether the NRCS is developed from an exact knowl-

edge of the spectrum or from an empirical model based on the wind, its value must

be measured by the scatterometer, which involves considerable signal processing de-

pendent on the radar design and the introduction of thermal noise. From the power

measurements, statistical signal processing is employed to estimate the wind (and

possibly other geophysical parameters), inverting the process under the constraint of

some optimality criterion with the appropriate model.

A thorough exploration of all the issues involved in oceanic microwave

remote sensing is well beyond the scope of a single Doctoral dissertation. Further,

because several subtopics have been developed in detail by other researchers, this work

has emphasized several important issues which a�ect the accuracy of NRCS measure-

ments. In particular, I have focused on three related points of interest that have been
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largely unstudied. I begin with an examination of the theoretical backscatter power

from a surface with an assumed spectral shape to observe the dependence of the

backscatter on typical spectrum parameters and especially on the size of the radar

footprint. I develop a method to estimate the variability of empirical model func-

tions relating the vector wind to the backscatter, based solely on the scatterometer

measurements to quantify the uncertainty in the backscatter caused by unmodelled

parameters. The digital processing involved in scatterometry modi�es the statistics of

the measurements, though the nature and impact of the modi�cation have not been

previously developed. I analyze the digital system to derive the probability density

function of the measurements, in su�cient generality to be applicable in a wide va-

riety of applications. The results are used to quantify the e�ects on the accuracy of

wind retrieval. These areas of oceanic remote sensing measurement uncertainty and

the contributions of this dissertation are described below.

1.1 Finite Footprint E�ect on Backscatter

Empirical data collected from altimeters at di�erent altitudes reveals in-

triguing di�erences: comparison of measurements from towers and from aircraft shows

a distinct bias in the amount of power returned to the instrument. Scientists have

struggled for a theoretical justi�cation of this bias. The basis of electromagnetic

scattering is rooted in Maxwell's equations and analysis techniques have been widely

studied and applied. The Kircho� approximation (also called the physical optics

approximation) is a common simpli�cation of scattering theory applied to random,

rough surfaces. This approximation has been applied to surfaces in generality and

to a large number of speci�c spectra. I derive the physical optics scattering from

a simple, two-dimensional model of the ocean surface and examine the sensitivity

of the backscatter to tunable parameters of the spectrum, as related to the radar

footprint. While the surface roughness provides the dominant e�ect in determining

the scattering coherency, the backscatter is quite sensitive to the power parameter of

the power-law spectrum of the surface, particularly for values of the parameter less
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than four. I �nd that using a �nite footprint size causes the backscatter to experi-

ence two modes of asymptotic behavior as the surface roughness increases; that is,

for a given surface roughness, the backscatter decays at di�erent rates depending on

the scatterometer footprint size. This bimodal behavior is magni�ed for directional

surfaces because relevant surface information in the correlation function is stretched,

thus requiring a larger footprint to capture it. In application, this implies that di�er-

ent scattering models are required for scattering from above and below the altitude

threshold; use of a tower-based model with power measurements from a spaceborne

radar (or vice-versa) will introduce errors.

1.2 Geophysical Modeling Error

Near-surface winds control energy, moisture and gas 
uxes between the

atmosphere and ocean; these 
uxes are of vital importance as they drive weather,

climate and global changes. Further, the wind is the dominant driving force of

the surface roughness and spectrum, which a�ect the scatterometer measurements.

Space-borne scatterometers provide unparalleled observation of the oceans on a global

scale, generating invaluable data about the ocean state and oceanic and atmospheric

circulation patterns.

The ability to infer wind from backscatter measurements presupposes a

known relationship between the wind and the surface scattering characteristics. How-

ever, this relationship is not completely known; current geophysical model functions

approximate the backscatter as a function of the electromagnetic frequency and po-

larization, the wind speed and azimuth direction relative to the radar antenna and

the incidence angle, based on simple empirical techniques. Not included in the model

function are temperature, salinity, and other factors. Because empirical estimates of

the wind{backscatter relationship do not incorporate such non-wind in
uences they

su�er from errors due to unmodelled parameters. Actual measurements exhibit vari-

ability due to these unmodelled e�ects, resulting in reduced wind retrieval accuracy.

I have developed a simple method for estimating this variability from just scatterom-

eter measurements and have explored the variability to determine its impact on wind
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estimation and its dependence on additional measurable parameters. In this way, sys-

tematic factors in the backscatter, such as temperature and latitude, can be identi�ed,

helping researchers to focus their e�orts on parameters which will improve the mod-

els. Further, this variability serves as an indirect measurement of these unmodelled

parameters and can be incorporated as error bars on wind estimates.

1.3 The PDF of Scatterometer-Derived Wind Estimates

Spaceborne scatterometers, such as the recent NASA scatterometer, NSCAT,

frequently use Doppler �ltering to improve the resolution of the surface. The simple

method of periodogram averaging is commonly used to estimate the power scattered

from each resolution element of the surface, as described by a frequency band of the

Doppler shift. Such processing modi�es the statistics of the scattered signal. Estima-

tion of geophysical parameters such as the vector wind requires accurate statistics of

the power measurement. Wind estimation from scatterometer measurements, such as

provided by NSCAT, relies on several NRCS measurements with di�erent geometries.

An objective function is formed and optimized based on the wind most likely to have

generated the set of measurements; maximum-likelihood estimation and weighted

least squares are common choices of estimators currently employed. However, esti-

mators require, at least implicitly, a distribution for the measurements. While the

Gaussian distribution has been assumed previously, I show that power estimates based

on periodograms are not distributed Gaussian.

The NSCAT data collection includes spectrum estimates using Welch's

technique. Welch's method for spectral estimation of averaging modi�ed periodo-

grams has been widely used for decades in many applications, though the statistics

of such an estimate have not been developed. The pdf of a power estimate is derived

here for an estimate based on an arbitrary number of frequency bins, overlapping data

segments, amount of overlap and type of data window, given a correlated Gaussian

input sequence. The pdf's of several cases are plotted and found to be distinctly non-

Gaussian (the asymptotic result of averaging frequency bins and/or data segments),

using the Kullback-Leibler distance as a measure. For limited numbers of frequency
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bins or data segments, the precise pdf is considerably skewed and will be important

in applications such as maximum-likelihood tests.

I also apply the pdf derivation to the speci�c case of NSCAT. Working

from �rst principles and the design of the NSCAT signal processor I derive the dis-

tribution of the NSCAT measurements as a function of the surface NRCS, the signal

to noise ratio and the cell number. The resulting distribution is skewed relative to

the traditional Gaussian model. Simple compass simulations are used to compare the

accuracy of winds estimated using the actual and Gaussian model distributions in

order to quantify the bias caused to wind retrieval.

1.4 Dissertation Preview

Inherent in the wind measurement process are signi�cant points of uncer-

tainty. The electromagnetic backscatter depends critically on the unknown spectrum

of the random surface. The surface spectrum is driven principally by the wind, but

other e�ects impact the spectrum. The measurement process itself provides an esti-

mate of the power; while the noise contributed by the radar is well understood, the

digital processing involved in power estimation modi�es the statistics of the estimate.

In this dissertation I explore these fundamental issues. Background for each sub-topic

is given in the appropriate chapter.

In Chapter 2 I develop the physical optics scattering from a random, per-

fectly conducting surface with a power-law spectrum as the theoretical version of

scattering from the ocean. I quantify the sensitivity of the backscatter to various

parameters of the spectrum and radar; in particular, I derive theoretical evidence for

two asymptotic regimes of scattering based on the footprint size, suggesting di�er-

ences in the scattering behavior for radars with di�erent footprint size, such as those

carried on aircraft compared to spacecraft.

In Chapter 3 I analyze a simple model which describes variability of the

NRCS for given wind conditions and develop a method for quantifying that variability

based solely on scatterometer measurements. I also process the NSCAT data set

to estimate the variability constrained to narrow bins of wind speed, measurement
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incidence angle, latitude, and time. I examine the impact of the variability on wind

estimation and �nd that, on average, the wind estimate is not dramatically a�ected by

the variability (this is expected because the empirical model functions are considered

highly accurate), but the error bars, as quanti�ed by the Cramer-Rao lower bound,

are signi�cantly increased by non-wind factors a�ecting the backscatter.

The e�ect of the digital processing on the signal power estimate is con-

sidered in Chapters 4 and 5. In Chapter 4 I derive the probability density function

of a power estimate based on averaged, modi�ed periodograms. The description is

widely applicable in many engineering endeavors where Welch's spectral estimation

technique is applied. In Chapter 5 I consider the resulting probability density function

for power estimates based on the digital processing of NSCAT.

Finally, in Chapter 6, I describe some overall conclusions of the research.

My contributions are identi�ed within the larger context of the subject. I also describe

avenues of research to extend this study.
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Chapter 2

The Finite Radar Footprint

Microwave remote sensing is fundamentally dependent on electromagnetic

scattering theory. A thorough understanding of the dominant causes of the theoretical

backscatter is vital for a complete knowledge of the relationship between geophysical

parameters and NRCS measurements. Several geophysical parameters contribute to

the nature of the surface spectrum. However, the precise relationship is beyond the

current state of science and that study in the realm of oceanography is outside the

scope of this engineering dissertation.

In this chapter, the Kircho� approximation (physical optics scattering) for

the backscatter is expressed for general models of the two-dimensional surface correla-

tion function from a perfectly conducting random surface. While the mathematics of

the Kircho� approximation have been well developed, the application to speci�c spec-

tra has received limited attention and the identi�cation of the critical parameters of a

generalized spectrum and the measurement system have not been fully explored. Par-

ticularly intriguing is the consistent discrepancy between backscatter measurements

made at low altitudes from towers and those made from aircraft and spacecraft [2].

Speci�cally addressed here, the identi�cation of distinct modes of backscatter behav-

ior are identi�ed, based on the size of the radar footprint and the parameters of the

measurement.

2.1 Overview

The basic model of the ocean surface suggested by physical oceanogra-

phy and empirical studies describes an essentially perfectly conducting surface at
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microwave frequencies with a spectrum based on a power-law decay from a low

wavenumber limit. Frequently a separable spectrum is assumed with some form of

directionality independent of the wavenumber magnitude. Energy is injected into the

surface spectrum as short, capillary waves on the order of a few centimeters long with

capillary action for the restoring force. As the wind continues to blow, non-linear

interactions transfer the energy to longer and longer waves. These longer waves, re-

stored by both gravity and capillary action, can sustain a larger amount of power in

the spectrum. As a result, such a spectrum is commonly referred to as a red spectrum.

In Section 2.2, the well-known physical optics integral is considered, using

asymptotic approximations as the surface roughness increases. The physical optics,

or Kircho�, approximation computes the NRCS of a random surface through use of

the correlation function, assuming the limitations of physical optics scattering, but

no other constraints on the surface roughness. For the special, simplistic, case of a

separable spectrum with a low wave-number limit, the correlation function is derived

explicitly and the asymptotic NRCS computed using the dominant behavior of the

correlation function. While the applicability of this method is limited to the special

spectrum described at nadir incidence, closed form solutions are derived which de-

scribe the various backscatter regimes. A recently developed technique for computing

the asymptotic backscatter for an arbitrary, two-dimensional, power spectral density

is also outlined. This method has wide applicability, but requires time-consuming nu-

merical integrations with concerns about numerical stability and without the bene�t

of closed form solutions.

Section 2.3 analyzes the backscatter at nadir incidence from the simplistic

spectrum, based on the traditional asymptotic approximation, as changes are made

to the surface roughness, the spectrum power parameter and the surface direction-

ality. The dominant e�ect on the backscatter, which is based on the coherence of

the scattering, is due to the surface roughness. The power parameter of the ocean

surface, p, has been argued to have a value of four and has been measured between

3.5 and 4.5. For p < 4 the backscatter depends strongly on the particular value of p,

while for p > 4 the backscatter is only slightly a�ected. The surface's directionality
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stretches the correlation function such that the e�ect of the �nite footprint becomes

obvious. At low (though asymptotically signi�cant) roughnesses, the backscatter con-

verges to one mode of behavior, or rate of decay. At higher roughnesses, where the

surface is rough enough that all of the relevant surface variations are visible within

the footprint, the backscatter converges to a �nal, steeper, rate of decay.

Section 2.4 applies the second backscatter computation method to a spe-

ci�c example of a more realistic surface spectrum. Similar trends of two modes of

asymptotic decay are demonstrated, with the mode signi�cantly a�ected by the foot-

print size.

Section 2.5 considers the e�ect of the footprint size on the electromagnetic

bias. The EM bias is a di�erence between the actual mean sea level and the sea

level identi�ed by altimeters. The bias has been noted to have di�erent values for

altimeters mounted on platforms at di�erent altitudes. Here, the scattering theory

developed in the initial sections of this chapter are applied to show the e�ect of a

�nite footprint on the EM bias.

2.2 Physical Optics Scattering

In this section, the backscattering coe�cient from a perfectly conducting

rough surface having a Gaussian height distribution (a good approximation for the

ocean surface [3]) with variance h2 and surface height power spectral density S(k; �)

is determined. The well-known physical optics backscatter is developed with two

asymptotic approximations as the surface roughness becomes large. Because the

physical optics approximation uses it, the correlation function of the surface for typical

ocean states is considered.

The physical optics approximation, also called the Kircho� approximation,

establishes a constraint on the variance of the random process: the radius of curvature

at each point on the surface must be large compared to the electromagnetic wavelength

[4]. Mathematically, this constraint is that �c� cos �i � 1, where �c is the radius of

curvature, � is the electromagnetic wavenumber and �i is the incidence angle [5]. As

the wavenumber of the surface increases, two e�ects occur: the radius of curvature
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decreases and the amplitude of the surface variations decrease. A high frequency �lter

has been proposed to eliminate the frequency components of the surface which cause

a small radius of curvature [6]. However, if the amplitude of the waves becomes less

than the electromagnetic wavelength (so the scattering is coherent) before the radius

of curvature requirement is violated, then the physical optics approximation is still

applicable. This is the case for typical waves [7].

In the Kircho� approximation, the backscattering coe�cient is [8]

�o =

�
�2

� cos2 �i

�Z
ei
~kb�~xexpf��[1� C(~x)]g d~x: (2.1)

where ~� is the wavevector of the incident �eld, ~kb = 2~�H is the Bragg wavenumber

(twice the horizontal component of the electromagnetic wavenumber, ~�H), and � =

4h2�2 cos2 �i provides a measure of the surface roughness. The correlation function,

C(~x) is the inverse Fourier transform of the normalized surface height power spectral

density S(~k), and is discussed in detail below.

At nadir incidence, �i = 0, this reduces to

�o =
�2

�

Z
expf��[1� C(~x)]g d~x: (2.2)

2.2.1 Asymptotic Backscatter Approximations

Here, two asymptotic approximations of the physical optics backscatter are

developed. First, a traditional asymptotic expansion of Eq. (2.2) is performed for

backscatter from a nadir surface. The development uses realistic, closed forms for the

correlation function which allow the backscatter to be determined explicitly. This

simple, clear form allows analysis of the backscatter sensitivity to various parame-

ters. Second, an alternate asymptotic expansion of the physical optics backscatter is

described using multiple convolutions of the surface spectrum. While this form of the

backscatter does not immediately reveal the backscatter dependencies, it achieves

comparable numerical results and can be applied to any spectrum (satisfying the

physical optics constraints) and can be applied at arbitrary incidence angles.

The asymptotic approximation of an integral of Laplace type, such as Eq.

(2.2), is found by approximating 1�C(~x), about it's local minima [9]. Therefore, the
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physical optics approximation at nadir incidence can be evaluated using the dominant

behavior of the correlation function. Consider the class of correlation functions with

dominant behavior described as

Cdom(�; �) = 1� Ak�0�
�(a cos 2�+ b); (2.3)

where the coe�cients A, �, a and b are functions of the spectral parameters, and the

argument ~x has been expressed in polar coordinates � and �. In Section 2.2.2, this

equation for the dominant behavior of the correlation function is derived for a special,

though representative, case of ocean spectra. If the integration is constrained to a

�nite range of a circular footprint of radius �0, the asymptotic backscatter for normal

incidence can be written as

�o =
�2

�

Z �0

0

Z 2�

0

� d� d� e��[1�Cdom(�;�)] (2.4)

=
�2

�

Z �0

0

Z 2�

0

� d� d� e��Ak
�
0
��(a cos 2�+b) (2.5)

= 2�2
Z �0

0

d� �e��Abk
�
0
��I0 (�Aak

�
0�

�) (2.6)

=
2�2

�k20
(�A)�

2

� b�
2

�

Z u0

0

du u
2

�
�1e�uI0

�a
b
u
�

(2.7)

where u0 = �Abk�0�
�
0. Note that if the limit on the integration extends to in�nity, as

is commonly assumed in asymptotic analysis (representing either in�nite roughness

or in�nite footprint size), the integral is available in closed form

�o =
2�2

�k20
(�A)�

2

�
b�

2

�
+1

p
b2 � a2

(2.8)

which corresponds to the result in [10].

One additional approximation to Eq. (2.7), which does not capture the

behavior of the backscatter at very small roughness values, stems from approximating

the modi�ed Bessel function using its large argument behavior,

I0(x) � exp
2�x

as x!1: (2.9)

With this approximation, the integral may be represented as

�o =
2�2

�k20
(�A)�

2

�
(b� a)

1

2
� 2

�

p
2�a




�
2

�
� 1

2
;
�
1� a

b

�
u0

�
(2.10)
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where the incomplete Gamma function is de�ned as [11]


 (a; x) =

Z x

0

e�tta�1 dt: (2.11)

Warnick showed that an alternate asymptotic approximation of the physi-

cal optics integral for an arbitrary one-dimensional surface as the roughness parameter

� increases to in�nity can be expressed in terms of multiple convolutions of the spec-

trum (or as the Fourier transform of the correlation function raised to a power) [12]. A

similar development can be made in two (and higher) dimensions, as well. Expanding

the roughness-dependent term of Eq. (2.1) about the origin yields

expf��[1� C(~x)]g � f1� [1� C(~x)]g� (2.12)

= C(~x)�: (2.13)

Equation (2.1) is then

�o =

�
�2

� cos2 �i

�Z
ei
~kb�~xC(~x)� d~x: (2.14)

The backscatter is thus proportional to the spectrum, convolved with itself � times

and evaluated at the Bragg wavenumber,

�o =
4��2

cos2 �i
S(�)(~kb): (2.15)

At nadir incidence, Eq. (2.15) reduces to

�o = 4��2S(�)(0; 0): (2.16)

Note that the �nite footprint e�ect can be observed in this formulation of the backscat-

ter by windowing the correlation function according to the size of the footprint.

Two powerful methods of computing the asymptotic backscatter from a

rough surface have been developed from the physical optics approximation. The �rst

method, Eq. (2.10), approximates the correlation function with only its dominant

behavior in order to �nd the nadir backscatter in closed form. The second method,

Eqs. (2.15) and (2.16), use multiple convolutions of the surface spectrum to com-

pute the asymptotic backscatter for arbitrary correlation functions and at arbitrary

incidence angles.
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Figure (2.1) plots the physical optics backscatter, Eq. (2.2), the asymp-

totic approximation using just the dominant term of the correlation function, Eq.

(2.10), and the method of multiple convolutions, Eq. (2.16). The �gure shows the

strong agreement between the methods, with some minor di�erences at low roughness

where the backscatter is transitioning between the purely specular scattering (with a

constant value of �2�20) to it's �rst asymptotic slope. It should be noted that while

the physical optics and convolution methods are more general, they require special

care in the numerical integrations of the correlation function. Further, Eq. (2.7)

(not shown on the plot) also provides the specular scattering behavior at extremely

low roughness values with a fairly benign integration and using only the dominant

behavior of the backscatter. The vertical line shows the approximate transition point

between two rates of asymptotic decay. For this plot, the footprint size was �0 = 1 m,

the electromagnetic wavenumber was � = 200 rad/m, the power parameter was cho-

sen as p = 4:9, the low-wavenumber limit was k0 = 0:1 rad/m, and the directionality

parameter was �0 =
�
32

rad. Note that more detailed de�nitions of these parameters

are provided in the following section.

2.2.2 The Correlation Function

The correlation function is the inverse Fourier transform of the power spec-

tral density normalized by the surface height variance [13],

C(~x) =

Z
e�i

~k�~xS(~k) d~k: (2.17)

The power spectral density of the ocean surface indicates the relationship between

adjacent points on the surface, and is frequently approximated as being separable

S = K(k)�(�): (2.18)

Empirical models of the ocean spectrum ( [14] through [20]) include a low wavenum-

ber where the function is a maximum, a power-law decay to the capillary waves,

and an angular distribution function, �(�). A common representation of the power
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Figure 2.1: Comparison between the methods of computing the backscatter. The phys-
ical optics integral and the method of multiple convolutions show three distinct modes
of decay. At extremely low roughnesses, specular scattering dominates the process
and the backscatter is constant at �2�20. At moderate roughness values, the backscat-
ter decays at a moderate rate|this is the lower roughness regime of the backscatter as
computed using just the dominant behavior of the correlation function and the asymp-
totic approximation on the modi�ed Bessel function. At high roughness values, the
backscatter decays at a constant, steeper rate.

spectral density incorporating these features is

S = S0 exp

�
�k0
k

�
k�p cos2q � (2.19)

where S0 serves as a normalizing constant, k is the wavenumber, k0 describes the peak

of the spectrum (the peak is actually at k = k0=p), p is a power-law parameter, and

� is the angular direction of the waves. Figure 2.2 displays a typical spectrum based

on Eq. (2.19), using p = 4:5, k0 = 0:1 and q = 4. Ref. [21] derives the correlation

function for the special case of p = 4 and q = 1, and describes the involved derivation

18



−0.5
0

0.5

−0.5

0

0.5
0

5

10

15

20

25

k
x

k
y

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Figure 2.2: The power spectral density for a surface with smooth transitions at the
low wave number and on the directionality.

necessary for higher values of q based on integration by parts. Eq. (2.19) provides a

highly tunable and quite realistic spectrum for ocean-like surfaces, though analytically

it proves di�cult to incorporate.

A simple approximation for the power spectral density applies hard limits

for a low wavenumber limit corresponding to the spectral peak and allows a gen-

eral angular distribution function �(�). While this function allows expressions such

as cos2q �, it also allows simpler approximations such as rectangular or triangular

functions. Above the low wavenumber limit (k0) the spectrum falls as k�p where

the power parameter, p, is in the range between 3 and 5, corresponding to theoret-

ical and empirical estimates. The surface model assumed here, incorporating these

critical parameters, can be expressed for its power spectral density as
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Figure 2.3: The power spectral density for a surface with hard limits on the low wave
number and on the directionality.

S = S0k
�p�(�) for k � k0: (2.20)

Figure 2.3 shows a three dimensional plot of a typical power spectral density for a

directional surface based on this model, using hard limits for the angular distribution,

�(�) at ��0=2, with p = 4:5, k0 = 0:1 and �0 = �=3.

For the simplistic spectrum of Eq. (2.20), the inverse Fourier transform

can be computed for the correlation function. Because of symmetry in the spectrum,

the cosine form of the transform can be used, requiring integration only over the

half plane, kx > 0. Using polar coordinates for both wavenumber space (kx and ky

transform to k and �) and real space (x and y transform to � and �), the correlation

coe�cient can be computed as
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C(�; �) = S0

Z �
2

��
2

d��(�)

Z 1

k0

dk k�p+1 cos[k�j cos(� � �)j]; (2.21)

where k is the wavenumber of a surface wave and S0 is a constant that normalizes

the correlation coe�cient to one when � is zero. Thus, the normalization constant is

easily found to be

S0 =
p� 2R �

2

��
2

�(�) d�
kp�20 : (2.22)

The integral over k can be found in terms of a hypergeometric function and expressed

as a summation, yielding the correlation function as:

C(�; �) = 1�
p
��
�
2� p

2

�
2�
�
p�1
2

� kp�20 �p�2T (p� 2; �)

+
1X
r=1

�
p� 2

p� 2� 2r

�
(�1)r
(2r)!

k2r0 �
2rT (2r; �); (2.23)

where T depends on the particular choice of the angular distribution function �(�):

T (�; �) =

R �
2

��
2

d� �(�)j cos(� � �)j�R �
2

��
2

d� �(�)
(2.24)

Note in passing that the correlation function for a composite surface, one

de�ned by multiple power parameters, pi, and directionalities, �i, of a separable spec-

trum maintains the same form as Eq. (2.23). In Appendix A the correlation function

for a composite surface is derived as the weighted sum of simple correlation functions

parameterized by wavenumber transition points, power parameters and directionality

limits.

For even integers, and the typical directionality functions, the identity for

the expansion for a cosine raised to an integer power (see Appendix B) can be used

to express the function T (2r; �). For other values of the argument, T (p � 2; �) can

be approximated as the linear interpolation between two values of even integers.

Assuming hard limits for the directionality (at � �0
2
) the term T (2r; �) can

be expressed as

T (2r; �) = 2�2r
(2r)!

(r!)2
+ 2�2r+1

r�1X
k=0

�
2r

k

�
sin �0(r � k)

�0(r � k)
cos 2�(k � r) (2.25)
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For the special case � = 2, and assuming a directionality with hard limits,

T (2; �) =
1

2

�
sin �0
�0

cos 2�+ 1

�
: (2.26)

Similarly, assuming a directionality of �(�) = cos2q(�),

T (2r; �) = 2�2r
(2r)!

(r!)2
+ 2�2r+1

r�1X
k=max(0;r�q)

�
2r

k

�
(q!)2 cos 2�(k � r)

(q + k � r)! (q � k + r)!
(2.27)

And the special case of � = 2 yields

T (2; �) =
1

2

�
q

q + 1
cos 2�+ 1

�
: (2.28)

For values of � around 2, regardless of the particular shape of �(�), a

very good approximation for the term is T (�; �) � a cos 2�+ b. Thus, the particular

choice of the form of the directionality is not critical; the important parameter is the

e�ective width of the directionality (i.e., value of �0 or q). Unidirectional surfaces

(�0 = 0 or q !1) yield the maximum value of 0.5 (equal to the b coe�cient), while

spreading the waves out reduces the value of a to a minimum of zero for isotropic

surfaces (�0 = 0 or q = 0).

Asymptotic evaluation of the backscatter integrals only requires the domi-

nant behavior of the correlation coe�cient. This dominant behavior is determined by

the value of p, based on the lowest power of � (since the integral will add signi�cant

contribution only near � = 0). Note that in this asymptotic analysis, only the domi-

nant term is used. Near p = 4, the �2 and �p�2 terms are of comparable order and a

better, though more complicated, approximation would use both terms. In avoiding

this added complication, convergence of the backscatter to the asymptotic solution

for surfaces with p near four requires higher roughnesses values.

With the approximation on T (�; �), the dominant behavior of the correla-

tion function can be written (for p 6= 4) as

Cdom(�; �) = 1� Ak�0�
�(a cos 2�+ b) (2.29)

where

� =

8<: p� 2 for p < 4

2 for p > 4
(2.30)
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and

A =

8><>:
p
��(2� p

2
)

2�( p�1
2
)

for p < 4

1
2

�
p�2
p�4

�
for p > 4

: (2.31)

2.3 Nadir Backscatter with Traditional Asymptotics

Equation (2.10) provides the asymptotic limit of the backscatter at nadir,

assuming a �nite radar footprint. Recalling that � = 4h2�2 (where h is the surface

wave height and � is the electromagnetic wavenumber) the fundamental parameters

of the spectrum and scatterometer which a�ect the asymptotic backscatter are seen to

be the surface wave height, h, the low wavenumber cuto�, k0, the power parameter of

the spectral decay, p, the surface directionality, �0, the electromagnetic wavenumber,

� and the footprint size �0. In this section plots of Eq. (2.10) are displayed with

various sets of parameters to clarify the impact of the �nite footprint.

The general behavior of the backscatter, that exploited by scatterometers,

is its strong dependence on the surface roughness which can be de�ned as h�, the

surface wave height times the electromagnetic wavenumber. Figure 2.4 plots the

backscatter, �0, against roughness on a logarithmic plot at values of p = 3:1 and

p = 4:9 for �0 = �=32 using Eqs. (2.7) and (2.10). Note that Eq. (2.7) (the solid

line plotted for each value of p), using the modi�ed Bessel function, includes the low

roughness limit; if � is small, the backscatter is constant at a value of �2�20. Equation

(2.10) does not show this limit because of the asymptotic approximation on the Bessel

function. Figure 2.4 reveals two modes, or slopes of decay, depending on the surface

roughness. The �nal asymptotic slope obviously depends on p as is readily apparent

in Eq. (2.8) where (for in�nitely large footprints) the backscatter is proportional to

the roughness raised to �4
�
. Because � depends on p, the asymptotic slope of the

backscatter is distinctly di�erent for the two regions of p, changing considerably for

p < 4 but remaining constant for p > 4.

The transition point between the intermediate slope and the �nal asymp-

totic slope can be identi�ed by examining the incomplete gamma function of Eq.

(2.10). The incomplete gamma function, 
(x; a), demonstrates two very di�erent
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Figure 2.4: The general behavior of the backscatter is determined by the surface rough-
ness. The solid line for each value of p is based on Eq. (2.7), while the dashed lines
are based on Eq. (2.10). For this plot, �0 = �=32 (5:6�), � = 200, k0 = 0:1 and h is
varied to establish the surface roughness.

behaviors, with the function becoming very insensitive to x above a = 2x, where it

approaches �(x). This can be seen by taking the derivative of 
(x; a) using Leibniz'

Rule:

@

@a

(x; a) =

@

@a

Z a

0

dt e�ttx�1 (2.32)

= e�aax�1: (2.33)

The transition point occurs when Eq. (2.33) approaches it's asymptotic value of

zero. Note that scaling by 1=�(x), Eq. (2.33) becomes a Gamma probability density

function in a, with mean and variance both equal to x|-which is negligible beyond
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Figure 2.5: The asymptotic backscatter is plotted against surface roughness for two
footprint sizes. The vertical lines indicate the knees of the two plots as determined
from the knee of the incomplete gamma function. Values chosen for this plot reason-
ably represent the ocean surface: p = 4:5, k0 = 0:1, and �0 = �=4. The plot used
� = 200, for microwaves, and the footprint sizes are not unrealistic of tower-mounted
and aircraft-mounted altimeters.

about twice the mean. Recognizing the crudeness of this approximation, it provides

a reasonably accurate estimate for the point where the incomplete Gamma function

changes behavior. The incomplete Gamma function 
(x; a), then, is essentially equal

to the Gamma function �(x) for all values of a > 2x.

The backscatter then should become essentially independent of the foot-

print size when the surface roughness parameter is greater than

�0 �
�

4� �

�A(b� a)k�0

�
���0 : (2.34)

The important observation of this chapter is the e�ect of a �nite footprint

on the backscatter. Frequency and altitude of altimeters a�ect the behavior of the
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backscatter as described by [22{24]. As seen in Eq. (2.10), a �nite footprint will

modify the backscatter in some way that depends on the surface roughness. Figure

2.5 plots the normalized asymptotic backscatter of Eq. (2.10) against the roughness

for two di�erent footprint sizes, �0 = 0:5 and �0 = 5, holding other surface parameters

constant. While both footprint sizes display the same general behavior of following a

constant slope up to some roughness value and then decaying at a steeper slope, the

larger footprint (the dashed line) reaches the steeper, �nal slope at a lower roughness

value. The vertical lines indicate the �0 values of Eq. (2.34) for each of the two

footprint sizes. Note that between the �0 values, the slopes of the backscatter for the

two footprint sizes are di�erent; outside this range of roughnesses, the slopes of the

two cases are identical. For a particular sea state, at a roughness of, say, h� = 5 on

this scale, a radar system with a 1 m footprint yields a shallower slope than a system

with a 10 m footprint.

To describe the cause of the �nite footprint e�ect, consider Fig. 2.6. A

surface has been established with the proper power spectral density, and directionality

of �0 = �=8. The top plot shows the surface with a roughness of one, while the

bottom plot shows the same surface (with the same scale) with a roughness of ten.

The surface variance in the top plot causes incoherent scattering in one direction,

but the other direction's variance is small so the scattering is coherent: the surface

looks nearly unidirectional and the backscatter is limited by a �nite footprint to the

intermediate range. The bottom plot, with the greater roughness, causes incoherent

scattering in both directions: the rougher surface converges to the �nal asymptotic

result with a smaller footprint. Mathematically, the e�ect of the �nite footprint

is found in the integrand of the backscatter equation, e��[1�Cdom(�;�)]. The integral

requires information from the correlation function out to the critical values beyond

which the integrand contribution is negligible. These values are commonly chosen

where the integrand is e�1 [12] or where

Cdom(�; �) = 1� 1

�
: (2.35)
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Figure 2.6: A directional random surface with a roughness of (top) h� = 1 and
(bottom) h� = 10.

Figure 2.7 displays contour plots of where the correlation function equals

1 � 1=�, using p = 4:9 and k0 = 1. Reducing the surface directionality, �0, tends

to stretch the correlation function in one direction (perpendicular to the dominant

direction of the surface waves), and as the roughness increases, the size of the critical

contour decreases. If part of the contour is not contained in the footprint, the resulting

backscatter will have a di�erent behavior than if all of the contour (i.e., signi�cant

information of the correlation function) is within the footprint. Thus, while a given

footprint size will not contain a low-roughness contour completely, it will contain a

high-roughness contour. The asymptotic backscatter will converge �rst to a solution

limited by the �nite footprint, and eventually with increasing roughness will converge

to a solution based on the entire contour.
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From Eq. (2.34), the roughness value where the behavior changes from

footprint-limited to the �nal asymptotic mode depends on the size of the footprint,

the low-wavenumber cuto�, the spectrum power-law decay and the directionality

of the surface as described by the coe�cient, a. Figure 2.8 displays the backscatter,

showing the e�ect of a more narrow spectrum. The backscatter from the more narrow

spectrum (�0 = �=128) requires a much larger roughness to converge to the �nal

asymptotic behavior.

One of the advantages of using Eq. (2.10) to compute the asymptotic

backscatter is to be able to directly identify the sensitivity of the backscatter to

parameters such as the surface roughness. In particular, the slopes of the two modes

of asymptotic behavior are readily determined. The slope of the decay is the partial

derivative of the log of �o with respect to the log of � (note that the slope is de�ned

in terms of the roughness as described by � = 4h2�2):

� =
@

@(log�)
log�o (2.36)

= �2
�
+ (N�)d

e�N�


 (d;N�)
(2.37)

where N = (b � a)A(k0�0)
� and d = 2=� � 1=2. As previously pointed out, the
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Figure 2.8: The asymptotic backscatter is plotted against surface roughness for two
directionality values. The wider directionality, �0 = �=4 (45�), quickly converges to
the �nal asymptotic behavior, while the narrower directionality, �0 = �=128 (1:5�),
requires a higher roughness.

incomplete gamma function experiences two modes of behavior, with a transition

point approximately given by Eq. (2.34). The two asymptotic backscatter slopes can

be found by taking the limits of � as � goes to zero and to in�nity (the term on the

right has limits of d and 0):

� =

8<: �1
2

for � < �0

�2
�

for � > �0
: (2.38)

2.4 Asymptotic Backscatter Using Multiple Convolutions

While using the unrealistic spectrum with hard limits on the wavenum-

ber allows the backscatter to be analyzed in terms of fairly simple functions, the
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Figure 2.9: A more realistic spectrum, without discontinuities in k.

method for computing the backscatter using multiple convolutions allows the asymp-

totic backscatter to be computed using arbitrary correlation functions (constrained

by the physical optics approximation) and also applies at o�-nadir incidence angles.

In this section, we consider a more realistic spectrum using the form supplied by Eq.

(2.19).

Figure (2.9) displays the spectrum that will be considered in this section.

Note the smooth, low-wavenumber rise, as well as the smooth angular transitions.

Here we use p = 4:5, k0 = 0:1 (corresponding to a peak at kpeak = k0=p = 0:022) and

q = 87 (comparable to �0 =
�
12
).

The backscatter was computed for the spectrum described in Fig. (2.9),

using the multiple convolution method. Figure (2.10) shows the resulting backscatter

computed using three footprint sizes. Recall that a perfectly smooth surface would

result in �o = �2�20. For 10, 20 and 30 m footprints, this corresponds to 4 � 106,

1:6 � 107, and 3:6 � 107, respectively. As the surface roughness increases, the three

curves merge because the extremities of the correlation function no longer contribute
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to the backscatter integral|all pertinent information is contained within the smaller

footprint size. Also shown in Fig. (2.10) is the sensitivity of the backscatter to

roughness. The backscatter slope, �, de�ned as the partial derivative of the log of

the backscatter with respect to the log of � [Eq. (2.37)] begins near zero where

all the footprint sizes experience specular scattering. As the roughness increases, the

scattering experiences �rst one mode of decay (� � �1
2
) and then the �nal asymptotic

mode (� � �2
�
). Each footprint size transitions at di�erent roughness values. The

vertical, dashed lines, indicate the transition points as computed using Eq. (2.34)

where the backscatter slope changes from its �rst asymptotic slope (experienced only

brie
y) to its �nal asymptotic slope for the three footprint sizes.

2.5 Electromagnetic Bias

One application of the analysis performed in this chapter to is to examine

the e�ect of the footprint on the electromagnetic bias. The EM bias, �B, is an error

present in radar altimeter data in which the apparent mean sea height is biased to-

ward the troughs of the waves [7]. The empirically determined bias has been found

to behave di�erently for altimeters mounted on towers, as compared to altimeters

mounted on aircraft and satellites. One plausible explanation of this observation is

the di�erence in footprint sizes. Tower-mounted altimeters typically have small foot-

prints, while high-altitude altimeters have large footprints. In this section I explore

the hypothesis that the footprint size has an e�ect on the EM bias.

The EM bias can be de�ned mathematically as the ratio of �rst two mo-

ments of the backscatter coe�cient pro�le at a given surface displacement. That is, if

the surface is displaced a distance � from its mean level, then �o� describes the amount

of backscatter from points with that displacement. The bias is then

�B =

R
d� ��o�p�(�)R
d� �o�p�(�)

(2.39)

where p�(�) is the probability density function of the surface displacement.
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In Eqs. (2.10) and (2.38) the backscatter was found to have a behavior of

the form

�o = K
�
4h2�2

��
(2.40)

where K is a proportionality constant, h is the RMS surface displacement, � is the

electromagnetic wave number, and � is the rate of decay. The plots in the previous

section showed that using the more realistic spectrum with multiple convolutions to

compute the backscatter yields comparable results.

Arnold described the RMS surface displacement in terms of short-wave

modulation, �m, with a modulation parameter, m, [7]

h = �m

0@1 +m
�q
�2

1A (2.41)

where �m is the RMS wave height of the short waves riding on top of the long waves

and m is the modulation parameter. The backscatter using this model can be ap-

proximated for small values of the modulation parameter, m, as

�o� � K
�
4�2
��
�2�m

0@1 + 2�m
�q
�2

1A : (2.42)

The EM bias, then, is

�B =

R
d�

�
� + 2�m �2p

�2

�
p�(�)R

d�

�
1 + 2�m �p

�2

�
p�(�)

(2.43)

=
2�mq
�2

R
d� �2p�(�)R
d� p�(�)

(2.44)

= 2�m

q
�2: (2.45)

Equation (2.37) de�nes the slope of the backscatter, �, based on the ap-

proximate spectrum (using a hard limit for the low-wavenumber cuto�, k0). The EM

bias is then

�B = 2m

q
�2
�
�2
�
+ (N�)d

e�N�


 (d;N�)

�
: (2.46)
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Figure 2.11: The EM bias as a function of footprint size. Using Eq. (2.45), the bias

is plotted for the case of p = 3:9, �0 = �
16
, k0 = 1, m = 0:1 and

q
�2 = 0:4. The

roughness parameter is varied � = 10, 30, and 100.

Using reasonable values of p = 3:9, �0 =
�
16
, k0 = 1, m = 0:1 and

q
�2 =

0:4, Fig. 2.11 plots the EM bias as a function of the footprint size for the three

cases of surface roughness, � = 4h2�2 = 10, 30, and 100. The theory of this chapter

predicts that the bias is relatively small for small footprints, but as the footprint

size increases, the bias moves to a more negative value. Some unpublished studies

comparing satellite altimeter data to tower-mounted altimeter data suggest that the

bias observed by towers, with footprints of �0 = 0:8 m, is roughly 75% smaller than

that observed by satellites, with footprints of hundreds of kilometers. The plot shows

a good correspondence with this, showing the bias for a 0.8 m footprint at -6.5 cm

with � = 30, compared to an in�nitely large footprint with a bias of -8.4 cm.
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2.6 Conclusions

In this chapter, the physical optics backscatter was considered, and two

methods for the asymptotic backscatter at nadir incidence were derived. The �gures

presented in this chapter describe the long understood dependence on the surface

roughness, and also display the impact of correctly identifying the power parameter

of the surface power spectral density. The most interesting result seen from the

equations derived here is the e�ect of a �nite radar footprint.

Surfaces with small roughnesses cause specular scattering, which means

that the backscatter at nadir incidence is at a maximum. At large roughness values,

the scattering becomes more di�use and the backscatter power decreases. The power

parameter of the ocean surface, p, has been argued to have a value of four and has been

measured between 3.5 and 4.5. The e�ect of this uncertainty has been unclear because

the sensitivity of the backscatter to the parameter p was unknown. Examining the

equations developed in this chapter, however, it is clear that changing from p = 3:5

to p = 4 will cause the slope of the backscatter to change considerably, while further

increasing p beyond 4 will not change the backscatter slope appreciably.

The bimodal e�ect of the backscatter caused by the �nite footprint is

particularly interesting. The transition point between the two backscatter modes is

determined where the footprint size completely contains all of the relevant information

of the correlation function. The points of the correlation function that are important

are near the contour C = 1 � 1
�
; equivalently, Eq. 2.34 describes the size of the

footprint based on the surface parameters, p, k0, �0 (which determines a and b), and

the surface roughness. If the surface roughness is smaller than some threshold, recall

Eq. (2.38), then the asymptotic slope of the backscatter is �1
2
, but if the surface

roughness is larger than the threshold, the asymptotic slope is �2
�
, depending only

on p. Of particular note is the e�ect of �0. Surface wave directionality tends to

stretch the correlation function such that the e�ect of the footprint size becomes

readily apparent. This suggests that di�erent footprint sizes, typical for di�erent

platform heights will yield consistently biased backscatter measurements.
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With a theoretical description of the backscatter dependence on the foot-

print size, the impact on altimetry has been qualitatively described. In particular,

the EM bias was shown to be more negative for altimeters with large footprints than

for altimeters with small footprints. It would be realistic, then, to observe smaller

values of the bias in tower-mounted data than from satellite data.

While the causal factors of the surface spectrum are not completely un-

derstood, this study identi�es the sensitivity of the backscatter to the signi�cant

parameters of a generalized spectrum. Recognizing that the backscatter behavior

depends strongly on the relationship between the radar footprint and the correlation

function provides the insight that not only will altimeters at di�erent platform heights

yield biased results, but also that scatterometer measurements (o� nadir) using non-

symmetric footprints will be complicated by the relationship between the geometries

of the footprint and the directional spectrum generated by the wind.
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Chapter 3

Uncertainties in the Wind-Backscatter Relationship

In Chapter 2 I developed the NRCS from a rough surface with an ocean-

like spectrum. Unfortunately, understanding of the relationship between geophysical

parameters and the surface spectrum is still in its infancy due to the complicated dy-

namical processes involved [25{27]. Because of the substantial theoretical di�culties

in determining the spectrum from geophysical parameters (recall Fig. 1.1), a prac-

tical approach is necessary to determine the NRCS based on signi�cant geophysical

parameters (termed the geophysical model function).

Recognizing both the importance of wind as a geophysical parameter and

its dominant role in determining the backscatter, experimentally based approxima-

tions of the geophysical model function have been used to relate the vector wind to

the backscatter measurement [28{31]. Such empirical estimates are based on aircraft

scatterometer missions, re�ned with the growing body of satellite-borne scatterom-

eter data [32{34]. These empirical models are generally accurate in the mean, but

because additional geophysical parameters a�ect the backscatter, there is some vari-

ability to the backscatter for given wind conditions [35, 36]. This variability and the

sensitivity to non-wind factors are not well understood. This chapter examines this

variability and develops a novel method for estimating it for a given model function

solely from scatterometer measurements; the magnitude of the variability is reported

for a commonly used Ku-band model functions .

In 1978, the satellite SEASAT carried the scatterometer SASS in orbit;

although the power supply failed after only three months of data collection, the value

of spaceborne scatterometers in wind estimation was demonstrated [37,38]. The �rst
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European Remote Sensing (ERS-1) satellite used an Active Microwave Instrument

(AMI) to collect data from 1991 through 1996, when it was replaced by the similarly

designed ERS-2. The NASA Scatterometer, NSCAT, created at JPL was launched

on the ADEOS spacecraft in August of 1996 [29], and collected data through June

1997 until ADEOS failed due to mechanical problems. JPL will launch the next

generation scatterometer, QuikScat, in May 1999. This growing body of space-borne

scatterometer data with colocated in situ measurements (ships, buoys, etc.) has

resulted in a very strong con�dence in the ability of an empirical model function to

provide the mean backscatter.

3.1 Overview

3.1.1 The Empirical Model Function

The normalized radar cross section, or backscatter, �o, is physically gen-

erated by conditions of the scattering surface; this can be described by a geophysi-

cal model function [26]. A thorough understanding of the parameters a�ecting the

backscatter is beyond the current state of science and empirical models have been de-

veloped as useful approximations. Early experiments suggested a strong correlation

between the wind speed over the ocean and the backscatter coe�cient (the roughness

of the ocean surface is related to the energy in the wind). A simple empirical model

was suggested by [39],

�o = aU�: (3.1)

Later experiments [40] showed that the constants, a and � of this model are functions

of the relative azimuth angle of the wind, �, with a = a0q and � = �0 + � where

a0 and �0 are the average values over all wind directions and q and � contain the �

dependence. Experimentally, q varies by up to �0:5 about one and � varies by up

to �0:2 about zero. Since � is small, a better backscatter model, including azimuth

dependence, is
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�o = a0qU
�0+� (3.2)

� a0qU
�0 (1 + � lnU) (3.3)

= a0U
�0 (q + 2:3q� log10 U) : (3.4)

The angular dependent terms, q and q� can be expressed in terms of a

truncated Fourier series based on the relative wind direction, �:

q � 1 + a1 cos�+ a2 cos 2� (3.5)

2:3q� � �1 cos�+ �2 cos 2� (3.6)

where q� has no bias because it varies about zero, and there is an assumed symmetry

about the wind direction resulting in no sine terms in the expansion. The current

state-of-the-art model for backscatter, �oM where the M subscript identi�es this as

the empirical model function, incorporating wind speed and direction, is [32]

�oM = A0 + A1 cos�+ A2 cos 2�; (3.7)

with

A0 = a0U
�0 (3.8)

A1 = A0(a1 + �1 log10 U) (3.9)

A2 = A0(a2 + �2 log10 U) (3.10)

where U is the wind speed, � is the relative azimuth direction and the six model

parameters are determined by regression analysis, using this model to �t the in situ

measured winds to the satellite measured backscatter values, along with considerable

ad hoc tuning to a particular instrument. Values for these parameters are maintained

in C-band and Ku-band tables at H-pol and V-pol, as functions of incidence angle.

Usually, A2 � A1, conveying the dominance of the double cosine behavior with wind

direction. Figure 3.1 displays some typical examples of the empirical model function

backscatter as a function of the wind speed and azimuth angle.
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Figure 3.1: The empirical model function relates the wind speed, relative azimuth
direction, frequency band, polarization and incidence angle to the backscatter. This
plot, made with the C-band model function at an incidence angle of 35�, shows the
double cosine behavior with azimuth angle and the increasing return with wind speed.

3.1.2 Chapter Preview

While empirical model functions have become increasingly more developed,

it has become clear that other parameters, besides just the observation geometry

and the vector wind, a�ect the backscatter. These other parameters can be viewed

as variability in the backscatter about the mean provided by the empirical model

function. This can be seen by observing the variability in the measurement, z, for

given wind conditions, and recognizing that there is more variability than can be

accounted for by the communication noise, KPC . Determining, from �rst principles,

the other parameters that a�ect the backscatter would yield great scienti�c value;

such an analysis is beyond the current state of the art in geophysics. However, simple
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estimates of the magnitude of this model function uncertainty can be determined

solely from the scatterometer measurements.

In the next section, a simple model for incorporating model function vari-

ability in the measurement process is developed in a multiplicative form, comparable

to the way communication noise is applied to the backscatter measurements. In Sec-

tion 3.3, a technique for estimating the variability based on this simple model is de-

scribed. Section 3.4 reports data-driven estimates of the variability based on NSCAT

data and explores its dependence on several parameters. Speci�cally in Section 3.4,

the model function variability is estimated for narrow bins of latitude, season, wind

speed, and incidence angle. The model function variability is found to be highly cor-

related with the latitude, wind speed and measurement incidence angle, and slightly

correlated with time. Section 3.5 identi�es how the variability a�ects the wind esti-

mation process; we �nd through simulation that methods of suboptimal estimation,

modifying the way variability is incorporated into the wind estimation, has minimal

impact on estimated wind. Model function variability, while not signi�cantly a�ect-

ing wind estimates, a�ects the con�dence in the wind estimates and the ranking of

the wind ambiguities.

3.2 The Multiplicative Noise Model

The backscatter measurements made by a scatterometer are noisy, indirect

measurements of the wind. In particular, consider two signi�cant sources of variabil-

ity in the measurements for given wind conditions: variability in the empirical model

function, and thermal noise in the communication channel. A simple model for scat-

terometer measurements of the backscatter is displayed in Fig. 3.2. The geophysical

model function maps the surface wind to the normalized radar cross section (NRCS,

�o), that is, the GMF translates the wind to some surface shape. The scatterometer

attempts to measure this value, but introduces communications, or radiometric, noise

based on the temperature of the antenna.

The variability in the backscatter measurements, z, given the true wind,

appears to be reasonably represented as a multiplicative term. Figure 3.3 provides
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Figure 3.2: The model for scatterometer measurements of the normalized radar cross
section. The wind is mapped through the true model function to yield the NRCS. The
resulting \true" backscatter is corrupted by communication error (i.e., thermal noise)
in the measurement process, which yields the measured value of the backscatter, z.

a comparison between the measurements and the backscatter predicted by the em-

pirical model function based on the estimated wind and the satellite measurement

geometry. This �gure displays a compilation of more than a day's worth of NSCAT

measurements. There is a clear, linear, relationship between the measurements and

the model function backscatter. The scatter plot splits into two regimes at high values

of the backscatter; this split occurs at high wind speeds (greater than about 15 m/s)

and low incidence angles (less than 20�).

The nature of the measurement variability is more easily seen in Fig. 3.4,

where histograms of the measured backscatter given the retrieval information are

plotted along the line indicating the means of the histograms. Again the bifurcation

of the measurements into two regimes at high backscatter values is evident.

Figure 3.5 displays the standard deviation of z given the retrieval infor-

mation. This �gure reveals an a�ne relationship (for backscatter values below the

splitting of the backscatter), with a very small y-intercept value. This suggests a mul-

tiplicative noise model of the form z = �oM (1 + �) + �, where � and � are relatively

small random variables. I now consider models for the two components of the overall

noise: the model function variability and the communication noise.
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Figure 3.3: A scatter plot of the backscatter measurements against the actual surface
backscatter predicted by the empirical model function and the retrieved wind.

3.2.1 Communication Noise

The second source of noise mentioned above, that due to the communica-

tions channel for the measurement process, is well understood from �rst principles.

Fischer found the noise variance of a scatterometer with an analog processor to de-

pend on the signal (i.e., true backscatter) itself [41], or

z = �oT (1 +KPC�) ; (3.11)
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Figure 3.4: The mean of the measurements, given all retrieval information, is plot-
ted, revealing that the mean measurement is (essentially) an unbiased estimate of the
backscatter based on the retrieved wind. The (scaled) histograms describe the variabil-
ity of the measurements for given retrieval conditions.

where � is a standard normal random variable and K2
PC represents the normalized

variance of z. This normalized variance depends on the signal to noise ratio:

K2
PC = A+

B

SNR
+

C

SNR2 ; (3.12)

where A, B and C depend on the time-bandwidth product of the measurement. Note

that in the case of in�nite signal to noise ratio, the normalized variance is a constant,

independent of the measurement.
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Figure 3.5: The standard deviation of the measurements given the model function
backscatter.

Similarly, the variance of the measurements based on the digital processor

used by NSCAT is found to have the same form for K2
PC , though with more compli-

cated expressions for the constants, A, B and C [42]. Also, the normalized variance

in the form of K2
PC has been established for other digital processors with arbitrary

modulation schemes [43].

3.2.2 Model Function Variability

The other source of variability to consider is the variability of the true

backscatter, NRCS, given the average wind over the region. Unfortunately, the phys-

ical relationship between the wind and backscatter is not completely known. Here I

describe some simple justi�cations of a multiplicative model for this variability.
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One probable source of model function variability is due to non-uniform

wind over the entire scatterometer footprint. Consider a 25 km square region (the size

of an NSCAT resolution cell) with mean wind speed U0. Because wind is turbulent

it exhibits spatial and temporal 
uctuations about this mean value. The variation

in the wind over the region results in backscatter variability. In particular, consider

the surface with N subregions of equal area, each with a constant wind speed, and

consider the ith region as having wind speed Ui = U0 + ui where the average wind

speed, U0, is modi�ed by some additive, zero mean noise (for simplicity consider the

ui to be iid). The backscatter is then (using the model of Eq. (3.1) with � = 2, again

for simplicity):

�o =
a

N

NX
i=1

(U0 + ui)
2 (3.13)

= aU2
0 +

a

N

NX
i=1

u2i +
2aU0

N

NX
i=1

ui (3.14)

= �oM + a

�
N

N � 1

�
s2 + 2aU0m (3.15)

where �oM = aU2
0 , s

2 and m are the sample variance and mean of ui. In the limit of

in�nite subregions (N ! 1), the true backscatter is related to the model function

prediction, �oM , as

�oT = �oM + avar(U): (3.16)

Determining the variance of U for a 25 km wind cell is non-trivial because

of the lack of high resolution wind data. A rough estimate of the variance of U can

be formed by considering a larger region, say 150 km (6 by 6 cells of size 25 km).

Based on one half-rev of NSCAT data and using the �rst ambiguity of retrieved wind

(though wind speed is fairly similar for all ambiguities), the sample mean and sample

standard deviation of the wind speed were computed for over 15 000 regions. In Fig.

3.6, representative data points are plotted (roughly 2 000); also plotted is the 1st

order polynomial �t to the data in a least-squares sense. While there is considerable

spread in the scatter plot, the slight slope suggests the possibility that the standard

deviation can be approximately written as being proportional to the mean wind speed.
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Figure 3.6: The standard deviation of wind speeds vs the mean speed based on a region
of 6 by 6 25 km cells.

Thus, the true backscatter based on a region of non-uniform wind speeds is related

to the model function backscatter as

�oT � �oM + �aU2 (3.17)

= �oM (1 + �) : (3.18)

The large and non-uniform spread of data points shown in Figure 3.6 shows

that while the standard deviation of the wind speed has a small slope, there is some

dependence on its mean. This suggests that the variability of the wind is actually a

function of the backscatter (i.e., of the incidence angle, wind speed, etc.), just as the
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communication noise, KPC , is with �nite SNR. Thus, the backscatter measurement

could be written in any form where �oM is modi�ed by a mean-dependent random

noise term.

Traditionally, radar systems involving fading statistics [44] model the noise

as a multiplicative term because the communication noise in the limit of in�nite

signal to noise ratio is multiplicative with KP independent of the backscatter [41].

Further, [45] provides an example of using a multiplicative model noise in the C-band

model, CMOD4, used with ERS-2; this was justi�ed in terms of an additive noise

term in log-space, where the objective function is more linear and thus more suited

to maximum-likelihood estimation.

One additional use of KPM is in the general design of scatterometers. Con-

siderable e�ort is expended in optimizing the integration time and modulation scheme

to achieve a small value for KPC . By introducing KPM in a comparable way, the de-

signers can recognize the futility of reducing KPC far below the value of KPM ; if KPM

is much larger than KPC , there is little point in working to reduce KPC .

With these considerations in mind, the measurement model, including both

communication noise and model function variability, is

z = �oM (1 +KPC�) (1 +KPM�) ; (3.19)

where z is the measured backscatter, �oM is the model function prediction of the

backscatter, based on incident conditions and wind conditions, � and � are indepen-

dent, identically distributed, zero-mean, unit variance random variables, KPC is the

normalized standard deviation of the communication noise andKPM is the normalized

standard deviation of the model function uncertainty.

3.3 Model Variability Estimation Technique

As previously noted, the geophysical model function is not completely un-

derstood. Empirical estimates of the GMF, described in the previous section, describe

the relationship between the wind and the backscatter on average, but a particular
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Figure 3.7: Lacking a complete understanding of the geophysical model function, the
relationship between the wind and the surface backscatter is modeled using the empir-
ical model function and a model variability term, KPM , included analogously to KPC

as a multiplicative term. The box on the left represents the impact of the model vari-
ability, while the box on the right shows the variability in the measurements caused by
the communication noise.

realization can be considerably modi�ed by unmodelled parameters (e.g., swell, salin-

ity, etc.) The simple model of Eq. (3.19) which describes the basic measurement

process, including variability about the empirical model function, is depicted in Fig.

3.7 [36, 46]. The empirical model function, M , maps the surface wind, along with

the parameters of the scatterometer, to the model function backscatter. This value

is perturbed by unmodelled parameters, along with a zero-mean unit-variance nor-

mal random variable, �, to yield the true backscatter coe�cient of the surface. The

statistics of this model are analyzed in this section and an original method developed

for estimating KPM . This method will be examined through simulated data and used

to estimate KPM for the NSCAT model function, NSCAT-1.

The expected value of each measurement, E(z), is �oM , and the variability

is observed by looking at higher order statistics. The variance of the measurement,

z, is

var(z) = �oM
2var(1 +KPM� +KPC�+KPMKPC��) (3.20)

= �oM
2(K2

PM +K2
PC +K2

PMK
2
PC) (3.21)

so

K2
PM =

var(z)

�oM
2(1 +K2

PC)
� K2

PC

1 +K2
PC

: (3.22)
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For a narrow range of observation geometries and wind conditions, �oM and

KPC are nearly constants, �oM and KPC. De�ning a sample variance in terms of these

small data set averages,

SV = var

0@ z

�oM

q
1 +

�
KPC

�2
1A (3.23)

and a sample mean of the corresponding data

SM =

�
KPC

�2
1 +

�
KPC

�2 (3.24)

an estimate of K2
PM for this data segment is obtained by subtracting the two. This

simplistic approach results in an estimate of KPM dominated by variations in the

measurement, z, but because the variability of �oM and KPC are ignored, several data

segments are used to generate SV , SM and the corresponding estimate of KPM . The

average of these estimates is used as the �nal estimate:

dK2
PM = (SV � SM): (3.25)

The variance of a sample variance is given as [13]

var(SV ) =
2�4

n� 1
(3.26)

where �2 is the variance of the underlying random variable, and SV provides an

unbiased estimate of the variance. The variance of SM , for a narrow band of wind

and measurement conditions, is negligibly small. Thus, from SV and SM an estimate

of K2
PM and its variance are computed; several such estimates can be averaged to

improve the estimate.

One caveat that must be recognized is that neither the true wind or the

real value of KPM are known when analyzing scatterometer data. The estimated

wind is a random quantity (since it is computed from the estimated wind); thus, by

inheritance, �oM is also random (recall Fig. 3.7). The mean of �oM is based on the

assumed value of KPM , since this will alter the estimates of the wind. To ameliorate

the impact of this circular e�ect, an iterative procedure was developed in which
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1. A value of KPM is assumed.

2. The wind is estimated based on the assumed value.

3. The mean and variance of dK2
PM are estimated as described above.

4. This mean is now used as the assumed value in a new wind estimation.

This procedure is repeated until the estimated value of KPM converges.

This iterative procedure works well to converge to a solution, but the so-

lution is biased because of the variance of the retrieval process. Using the retrieved

(rather than the true) winds results in an underestimate of K2
PM . The variance of

the retrieval process causes a variance in �oM ; in Eq. (3.22), such a variance would

reduce the estimate of K2
PM . Admittedly, this is a simplistic analysis describing the

e�ect of the variance of the retrieval process on the estimate of KPM , but the ad hoc

correction factor that follows only requires the general e�ect of using estimated rather

than true winds. To correct for this e�ect, a simple quadratic function is used and

the fundamental theorem of statistics invoked to compute the derived distribution of

the corrected function. Extensive simulations show this to be a reliable method of

estimating the model function variability.

To examine the e�ectiveness of the estimation procedure described above,

�rst consider a simulation. In the simulation, a wind �eld based on typical winds

reported by numerical weather prediction models is used, along with the geometry

and noise levels of actual satellite observations. Introducing a reasonable value of

KPM in the simulation, known terms include the following:

� The true (simulated) wind and measurement geometry

� The backscatter from the empirical model function, �oM

� The model function standard deviation, KPM

� The communication noise standard deviation, KPC

� The simulated measurement, z, (generated according to Monte Carlo tech-

niques.)
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Figure 3.8: Simulation based on NSCAT data.

The estimation procedure is then applied to estimate KPM , and the accuracy of the

method is quanti�ed. Note that here there is no need for the recursive estimation of

K2
PM , since the correct value to use in the wind estimation is known.

Although NSCAT processing at JPL assumes a nominal value of KPM =

0:17 [36], there is no reported analysis ofKPM for NSCAT. There is also no description

of the sensitivity of KPM to various parameters. Having removed JPL's assumed

value, I simulate my own values and attempt estimation ofKPM . Figure 3.8 shows the

NSCAT simulation results, with a reference line, a curve based on the simulated wind

and a curve based on the retrieved wind. A simple quadratic correction compensates

well for the slight bias and curvature in the estimation procedure, allowing the model

function variance to be estimated based on retrieved wind.
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De�ning x to be K2
PM estimated with the retrieved wind, and

y =
p
ax2 + bx + c (3.27)

to be the corrected value of the estimate of KPM and invoking the fundamental

theorem of statistics, the mean and variance of y can be approximated in terms of

the mean, �x, and variance, �2x, of x.

The mean of y is

�y =

Z
fy(y)y dy

=

Z
fx(x)y dx

=

Z
fx(x)

p
ax2 + bx + c dx

� y0 +
a�2x
2y0

� (2a�x + b)2�2x
y30

(3.28)

where y0 =
p
a�2x + b�x + c and y is expanded about x = �x. This approximation is

based on the assumption that the distribution of x is symmetric and highly localized

about �x. Experience has shown that this is generally an accurate description ofK
2
PM ,

except at lower values of the mean. Although the distribution of K2
PM is always

unimodal, the necessity that K2
PM > 0 skews the distribution for smaller values,

reducing the accuracy of the approximation. While this is not a particularly satisfying

way to implement the correction factor, it appears to work well when moderate values

are being estimated. The estimate of the variance of y follows the same procedure to

yield

�2y � (2a�x + b)2
�
a�4x
y40

+
2�2x
y20

�
� (2a�x + b)4

�4x
y60
� a2�4x

4y20
: (3.29)

3.4 Data-Driven Estimates of KPM

With a statistical method for estimating the model function variability,

and the necessary correction factor determined, in this section I estimate KPM for

the Ku-band geophysical model function (NSCAT1) and identify which parameters

a�ect it. Speci�cally, I examine the e�ects of wind speed, incidence angle, latitude

and time.
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Having binned the data according to 20� latitude bins, 5� incidence angle

bins, and 2 m/s wind speed bins, KPM was estimated based on 40 half-revs of NSCAT

data for each week examined. Note that examination of ascending and descending

portions of the data resulted in comparable results for KPM ; the results presented

here are based on descending data. Further recognize that a typical week results in

approximately 100 revs; 40 revs provided a substantial sample of the week's data

while reducing the computation load of using the full week of data.

The estimate of KPM depends on the wind speed. Di�erent regions of

the world, though, experience di�erent wind speed distributions. Equatorial regions,

for example typically have lower wind speeds than upper latitude regions. Further,

these distributions change with seasons. Some bins, therefore, have little or no data.

Figures C.1 through C.7 (in Appendix C) display histograms of the wind speed for

each week of data (based on the 40 descending revs). Histograms for each week

are provided for six latitude bands, -60 to -40, -40 to -20, -20 to 0, 0 to 20, 20

to 40, and 40 to 60. The plots are arranged such that the southern hemisphere

plots are on the left and the northern hemisphere on the right, with the equatorial

regions at the bottom and the high latitudes at the top. The histograms show that

the southern hemisphere, particularly at high latitudes, have many more valid data

points (due to less land cover), and that the distributions are distinctly non-Rayleigh

(the theoretical distribution of wind speed) and that they vary from week to week.

However, combining the worldwide wind speeds for any particular week in a single

histogram yields a very precise Rayleigh distribution. Of particular interest is the fact

that there is a clear upper limit for the wind speed which is considerably higher for

higher latitudes. Thus, estimates of KPM for higher wind speeds and lower latitudes

will be severely restricted by the limited amount of data.

Binning the data as described above results in a four-dimensional array

for KPM . That is, KPM is estimated as a function of latitude, incidence angle, wind

speed and week of the mission. This requires several plots to display the estimates.

For clarity of presentation, these plots are archived in Appendix C.
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Figures C.8 through C.14 display plots of KPM vs. wind speed, for the

sampled weeks, with a separate line for each incidence angle. The estimate of KPM

is higher for higher incidence angles. Note the strong correlation of the estimate with

wind speed, KPM decreases with increasing wind speed. The estimation procedure

was hard-limited to a maximum value of 0.6, as evident in the plots. Further, the less

reliable estimates at high wind speeds and low latitudes is clear.

To provide another view of the data, Figs. C.15 through C.22 display the

estimates of KPM as functions of time through the mission, with a separate line for

each wind speed and a separate plot for each incidence angle. Note that there is very

little temporal dependence for the estimates, indicating that KPM is not strongly

dependent on seasonal variations.

As one additional view of the data, Figs. C.23 through C.31 display the

estimates of KPM as functions of time through the mission, with a separate line for

each incidence angle and a separate plot for each wind speed bin. Temporal variations

that appear in these plots seem to be results of regions with insu�cient data.

3.5 Impact on Wind Retrieval

As described earlier, empirical model functions yield unique backscatter

values for given wind and measurement conditions, but the mapping is many-to-one.

To estimate the wind, maximum likelihood estimations (MLE) is used to identify the

wind most likely to have generated a set of measurements, as described in Appendix

D.

The technique developed above to estimate, KPM from scatterometer mea-

surements uses, in place of the true wind, the estimated wind. The log-likelihood

function used to retrieve the wind (see Appendix D), displays a dependence on KPM

through the variance of the measurements. This results in a complex relationship

between the estimates of wind and KPM . The iterative process outlined in Section

3.3 is unwieldy for researchers interested in only the wind.

Here the impact of KPM on wind retrieval is examined [47]. If the impact

is minimal, the complex relationship can be ameliorated by setting KPM to be a
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constant (say, 0) for the purposes of wind retrieval. Also considered is the possibility

of removing the log variance term from the log-likelihood function (reducing the

problem to weighted least squares). This will dramatically reduce the dependence of

the likelihood function on KPM (again simplifying the computation), but will also

alter the optimality conditions of the maximum-likelihood estimator.

Compass simulations were performed in which a wind vector generated a

simulated ocean surface via the empirical model function. This surface was corrupted

by random noise with a simulated KPM value, and the resulting NRCS was measured

with a noisy scatterometer (KPC and other measurement parameters based on typical

NSCAT values) and the wind estimated from such measurements. Figures 3.9, 3.10,

and 3.11 display the average results of 100 000 simulations by plotting the retrieved

speed and direction errors (simulated minus closest retrieved ambiguity) for three

scenarios. The solid line (labeled `a') is for simulation and retrieval with KPM = 0.

The dashed line (labeled `b') uses KPM = 0:2 in the simulation, but KPM = 0

in the retrieval. That is, `b' is comparable to real-world estimation where there is

uncertainty in the model function, but it is not accounted for in the retrieval process.

Finally, the dash-dot line (labeled `c') simulates surfaces with modeling error, and

uses it in the retrieval process (assuming that it is known exactly rather than having

to estimate it).
These plots show that with the unrealistic case of KPM = 0 (there are

always unknown and unmeasured parameters that are not incorporated in empirical

model functions) the wind speed estimate is asymptotically unbiased (essentially);

while including the model uncertainty yields biased wind speed estimates. Even if

KPM is known exactly and accounted for in the estimation, the retrieved speed is

biased high. The result is similar for wind simulated at 10 m/s. The retrieved direc-

tion errors are modi�ed by KPM , but in non-predictable ways. The same behavior is

evident at mid and far swath, though is less pronounced.

While not dramatically biasing the wind estimates, including KPM in the

estimation procedure does have a signi�cant impact on the shape of the log-likelihood

function. Speci�cally, it changes the relative magnitudes of the ambiguities, some-

times completely suppressing lower-valued ambiguities and sometimes shifting the
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Figure 3.9: Impact of KPM on simulated wind estimation at near swath.

0 100 200 300 400
−0.05

0

0.05

0.1

0.15

Simulated Wind Direction

R
et

rie
ve

d 
S

pe
ed

 E
rr

or

Mid Swath, 4 m/s

a
b
c

0 100 200 300 400
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Simulated Wind Direction

R
et

rie
ve

d 
S

pe
ed

 E
rr

or

Mid Swath, 10 m/s

a
b
c

0 100 200 300 400
−4

−2

0

2

4

Simulated Wind Direction

R
et

rie
ve

d 
D

ire
ct

io
n 

E
rr

or

Mid Swath, 4 m/s

a
b
c

0 100 200 300 400
−4

−2

0

2

4

Simulated Wind Direction

R
et

rie
ve

d 
D

ire
ct

io
n 

E
rr

or

Mid Swath, 10 m/s

a
b
c

Figure 3.10: Impact of KPM on simulated wind estimation at mid swath.
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Figure 3.11: Impact of KPM on simulated wind estimation at far swath.

ranking of the ambiguities. Recall that all local peaks are kept as possible wind

solutions, but the ranking is useful in some situations.

For a typical measurement geometry, a compass simulation was performed

based on a wind speed of 8 m/s and various wind directions; the log-likelihood func-

tion, normalized to have a maximum of 1, was plotted assuming four values of KPM

in Fig. 3.12. Twelve sub�gures show the normalized log-likelihood function for simu-

lated directions of 0 through 330�. Note that with KPM = 0 in the estimation process

(the solid line), the ML estimate of wind direction, that is, the �rst ambiguity, corre-

sponds to the simulated direction as expected.

Compass simulations were also performed with the log variance term re-

moved from the estimator, with the results displayed in Figs. 3.13, 3.14, and 3.15 for

near, mid, and far swath locations, respectively. Again, if KPM is non-zero, there is a

small bias in the speed estimates (on the order of 2%). Note that there is now much

less dependence on whether or not KPM is included in the wind retrieval.
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Figure 3.12: Impact of KPM on the log-likelihood function (normalized to have a
maximum of 1).
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Figure 3.13: Impact of removing the log variance term on simulated wind estimation
at near swath.
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Figure 3.14: Impact of removing the log variance term on simulated wind estimation
at mid swath.
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Figure 3.15: Impact of removing the log variance term on simulated wind estimation
at far swath.

The changes caused by model function variability on the log-likelihood

function, and on the amount of error in a particular realization of the wind retrieval

process, can be quanti�ed with the Cramer-Rao (CR) lower bound. The CR bound

states the minimum limit of the error covariance matrix of an unbiased estimator [48].

While earlier plots indicate that wind estimation includingKPM is slightly biased, the

CR bound provides a reasonable measure of the error covariance of wind estimates.

The CR bound has been developed in detail for wind estimation [46]. The

error covariance matrix, C, of an unbiased estimator is bounded by the inverse of the

Fischer information matrix, J :

C = E
h
�̂ � �

i h
�̂ � �

iT
(3.30)

� J�1 (3.31)

=
1

J11J22 � J12J21

24 J22 �J21
�J12 J11

35 : (3.32)
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The parameter vector, �, can be de�ned either in terms of rectangular or polar wind

coordinates; I use the polar form: � is the vector of wind speed and wind direction.

The Fischer information matrix describes the variation of the log-likelihood function

with respect to the two-dimension, vector wind (or, in general, to the parameter being

estimated).

Oliphant [46] showed that for a set of K independent backscatter measure-

ment, assumed to have a Gaussian distribution with mean m, a vector of the NRCS

measurements, and covariance R, a matrix with diagonal entries of the variance of

the K measurements and o�-diagonal terms equal to zero, then the elements of the

Fischer information matrix can be expressed as

Jij =
1

2
tr

�
R�1@R

@�i
R�1@R

@�j

�
+
@mT

@�i
R�1@R

@�j
: (3.33)

It should be noted that the CR bound does not depend on actual scatterom-

eter measurements, but only on the model function and typical noise parameters for

the instrument at each observation geometry. Because the CR bound depends so

strongly on the noise, an increase in the model variability results in a substantial

increase in the error bounds.

Figure 3.16 displays the CR bound for a typical NSCAT measurement,

using 4 measurements in a 25 km near-swath cell. If there is no model function vari-

ability (the bottom plots), the bounds on the standard deviations of the wind speed

and wind direction are really quite small. The large peaks correspond to winds that

align with one of the scatterometer antennas [46]. In those directions, the assumption

of negligible bias in the wind estimates fails. While the CR bound has been extended

to include biased estimators [49], Fig. 3.16 clearly displays the general increase in the

error covariance with increasing KPM . The top �gures show the CR bound on speed

and direction. When there is substantial model function variability, KPM = 0:3, the

bounds are much higher than the case shown in the bottom two plots of no variability.

To further demonstrate the large increase in the std of wind estimates

caused by KPM , Fig. 3.17 plots the CR bounds for wind speed and direction as

functions of KPM value. Note that the same measurement geometry and noise values
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Figure 3.16: Plots of the Cramer-Rao lower bound of the standard deviation of the
errors in wind speed and wind direction. The bottom plots, with KPM = 0, yield much
smaller bounds for the errors than the top plots, with KPM = 0:3. Note that this is
quite a large value of KPM , resulting in the large di�erence in the vertical scales used
in the �gures|KPM = 0:3 results in approximately 7 times larger standard deviations
in both speed and direction.
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Figure 3.17: The Cramer-Rao lower bound of the standard deviation of the errors in
wind speed and wind direction are highly correlated with the model function variability,
KPM . Increasing KPM substantially increases the bound on the errors. This plot was
made based on the geometry of a near-swath cell, with the wind direction at 280�.

as in Fig. 3.16 were chosen; the wind direction was set to 280� in order to avoid bias

e�ects.

It was previously noted that the value ofKPM had little impact on the mean

of the closest ambiguity. However, because the log-likelihood function is modi�ed by

KPM , the possibility of changing the rankings of the ambiguities exists. In many

applications, all the ambiguities are kept as possible solutions and used to identify

large scale wind �elds (see, for example, Appendix H and [50]). The ambiguity skill

describes how frequently an ambiguity is closest to the true wind. The value of KPM

has the potential of dramatically reducing the ambiguity skill.

In order to quantify the e�ect of KPM on the ambiguity skill, a simulation

was performed in which a wind vector was observed using measurement geometry

and noise �gures typical of NSCAT at mid swath. The value of KPM was varied and

several wind estimates were identi�ed with the log-likelihood function. The highest

peak of the log-likelihood function was noted as the �rst ambiguity. The peak closest

to the correct solution was also noted. The �rst ambiguity skill was computed as the

percentage of cases in which the �rst ambiguity corresponded to the peak closest to
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the true wind. Winds were simulated using a true wind speed of 8 m/s and azimuth

directions of 0, 30, 60 and 90 deg. Comparable skill levels were observed at other

wind speeds.

Figure 3.18 displays the results of the simulation using 1000 noise real-

izations for each data point. The plot shows the percentage of runs in which the

highest valued peak of the log-likelihood function corresponded to the correct ambi-

guity. That is, the vertical axis displays the �rst ambiguity skill. If the measurements

are not corrupted by KPM (i.e., the NRCS is precisely determined by the wind alone)

then the �rst ambiguity skill is high, nearly 90% at 0 and 90 degrees, and even higher

at intermediate wind directions. However, in the realistic case where KPM is not

zero, the log-likelihood function is modi�ed such that the highest peak is not closest

to the simulated wind. For large values of KPM , the �rst ambiguity skill is reduced

for all wind directions. Recalling the plots of the log-likelihood function in Fig. 3.12,

the peaks in the function for winds at 0 and 90 degrees are sharper than those at

intermediate angles. This makes the �rst ambiguity skill at these wind directions

more sensitive to changes in the noise level than other wind directions.

3.6 Conclusions

Recognizing the di�culties in deriving an accurate theoretical surface spec-

trum from geophysical parameters, empirical approximations of the relationship be-

tween the wind and NRCS have been developed, bypassing the need for immediate

knowledge of the surface spectrum. Such an approach provides a reasonable and

practical way to estimate the wind from backscatter measurements. Unmodelled geo-

physical parameters that a�ect the backscatter introduce uncertainty in the wind

estimation procedure.

In this chapter, I developed a technique to estimate the model variability,

KPM , from scatterometer data alone. Binning the estimates provides a view of which

parameters change the backscatter from its expected value. I binned the estimates

of KPM according to latitude, wind speed, incidence angle and time in the NSCAT

mission, and computed estimates of KPM , which were commonly on the order of 0.3
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Figure 3.18: KPM alters the shape of the log-likelihood function and changes the
relative amplitudes of the peaks. This can cause low ranking ambiguities (whenKPM =
0) to be selected as the MLE when KPM is large.

and sometimes as high as 0.6. This is extremely high, particularly when compared

with the communication noise, KPC .

The impact on wind retrieval was also explored. While the estimates of

KPM are often quite large, the retrieved wind was shown through compass simulations

to be only slightly biased, on the order of a few percent. However, because KPM alters

the log-likelihood function substantially, the error possible in an individual retrieval

is larger than previously believed and the relative ranking of the ambiguities is often

changed by model function variability. The CR bound on the error covariance matrix

was computed, and found to be very sensitive to model function variability. A possibly

more signi�cant problem caused by modeling error is the sensitivity of the ambiguity

removal skill to the value of KPM .
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Chapter 4

The Probability Density of Spectral Estimates Based on Mod-

i�ed Periodogram Averages

Accurate power measurements are a critical component of microwave re-

mote sensing. The quality of estimates of the geophysical parameters is directly

related to the quality of the measurements. The observed backscatter power is a

function of the surface. Because the surface is random, the power measurement is

actually an estimate of the power based on a particular sampling time and band-

width; it is an estimate with some probability distribution, traditionally assumed

to be Gaussian. Using the correct distribution can be critical in many estimation

theoretic contexts.

The NSCAT power measurement is based on Welch's estimate of a signal

spectrum. Welch's technique of averaging modi�ed periodograms for spectral estima-

tion has been widely applied for over 30 years, [51], but without a thorough statistical

analysis of the technique. Indeed, only two papers extend beyond the mean and vari-

ance of the spectral estimates. The �rst, [52], describes the probability distributions

for discrete Fourier spectra based on a single periodogram, for data both smoothed

and unsmoothed, but doesn't describe the correlation between frequency bins. The

second, [53], derives the joint density functions for two frequency bins, including

windowed data and averaging over non-overlapping data periodogram estimates.

This chapter analyzes the statistics of spectral estimates using Welch's

method by deriving the pdf of the sum of frequency bins in great generality. The

analysis is readily applicable to many situations involving modi�ed periodograms
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for spectral estimation. In Chapter 5, the speci�c case of NSCAT measurements is

considered to describe the correct pdf for those measurements and the impact of using

approximate pdfs for geophysical parameter estimates [54].

4.1 Overview

For a data stream, x[j], Welch's modi�ed periodogram averaging provides

a technique for estimating the spectrum [51]. The sequence is segmented into K

overlapping sequences, each of length L, such that the ith sequence is de�ned by

x[i; n] = x [n + i(1� r)L], where the indices are i = 0; : : : ; K�1 and n = 0; : : : ; L�1;
r is the percentage of overlap. The transform, or periodogram, of this sequence is

labeled X[i; k]. The data sequence is windowed to minimize spectral leakage. The

window can be applied through multiplication in the time-domain (w[n]), or through

circular convolution in the frequency-domain (W [k]). The estimate of the power

spectral density of each segment, P [i; k], is

P [i; k] =
1

LU

���X[i; k] �W [k]
���2 (4.1)

where U is a scale factor dependent on the window [51]. To obtain the power in a

particular frequency band, several bins of the modi�ed periodogram may be summed.

Further, the variance of the estimate is reduced by averaging over i, all of the data

segments.

In this chapter, the statistical properties of this method of spectral estima-

tion are explored for the case where x[j] is a wide-sense stationary, Gaussian sequence,

with distribution N(0;R). The process is formulated in vector space notation, from

which the resulting power estimate is shown to be a quadratic form in the data vector

x. The pdf corresponding to this quadratic form is given in generality and several

representative examples are plotted. Simulations are reported in which sample pdf's

of the power estimates based on averaging modi�ed periodograms match the theoret-

ical functions derived here. Finally, I compute the Kullback-Leibler distance of this

density function from a Gaussian.
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4.2 Vector Space Analysis of Welch's Spectrum Estimation

To derive the pdf of a spectral estimate of the power in a frequency band

of a data stream, it is useful to consider the vector space formulation of the estimate.

For the real, length N , data vector x = [x0; x1; � � � ; xN�1]
T , distributed Gaussian

with zero-mean and covariance matrix R, a data window matrix 
 = diag(w[n]) is

commonly used to �lter the data. Welch's method segments x into data segments,

possibly overlapping, of length L. For an arbitrary data segment, i, the periodogram

estimate of the power spectral density in frequency bin k can be written as

P [i; k] = xT�[i; k]x (4.2)

= xT

0BBB@
0 0 0

0 1
LU


 (Ck + Sk) 
 0

0 0 0

1CCCAx (4.3)

where the sizes of the 0 matrices are adjusted to pick which data segment is being

used and the matrices Ck and Sk are from the cosine and sine transform kernels. The

(m;n)th element of Ck + Sk is

(Ck + Sk)m;n = cos

�
2�

k

Z
(n�m)

�
; (4.4)

where Z is the length of the zero-padded data vector (i.e., if Z = L, each data segment

has not been padded).

Averaging the power from the data segments and summing over several

frequency bins yields a quadratic form in the normal random vector x:

P =
1

K

K�1X
i=0

k2X
k=k1

P [i; k] (4.5)

= xT�x (4.6)

where the matrix � depends on the length of the data segment, the amount of zero-

padding, the data window, the frequency bins of interest, the number of periodograms

to average, and the amount of overlap of the data segments:

� =
1

K

K�1X
i=0

k2X
k=k1

�[i; k]: (4.7)
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Formation of the matrix � can be facilitated for arbitrary overlap by partitioning the

fundamental matrix of Eq. (4.3), 1
LU


 (Ck + Sk) 
, such that overlapping partitions

from di�erent data segments can be added. For example, with non-overlapping data

(r = 0), partitioning is unnecessary and � is a block diagonal matrix which is formed

as the Kronecker product

� = IK 

"



 
1

KLU

k2X
k=k1

Ck + Sk

!



#
: (4.8)

For 50% overlap (r = 0:5), the fundamental matrix can be partitioned into four

submatrices, (each of L
2
elements square).

The moment-generating function of a quadratic form in a zero-mean Gaus-

sian vector, such as Eq. (4.6), can be expressed as [48, p. 65]

M(t) =
DY
i=1

(1� t2�i)
� �i

2 (4.9)

where the �i are the D distinct, non-zero eigenvalues of R�. Each eigenvalue has

multiplicity �i.

The mean and variance of the power estimate, P , are respectively,

�P =
DX
i=1

�i�i (4.10)

�2P =
DX
i=1

2�2i �i: (4.11)

De�ning some convenient variables,

di = � 1

2�i
(4.12)

g =
DY
i=1

(2�i)
� �i

2 (4.13)

the pdf corresponding to Eq. (4.9) is (see Appendix)

f(y) =
g

�
�
J
2

�y J
2
�1�2

�
�1
2
; � � � ; �D

2
;
J

2
; d1y; d2y; � � � ; dDy

�
(4.14)

where �2 is the generalized hypergeometric function and J is the total number of

non-zero eigenvalues.
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While Eq. (4.14) provides a completely general solution for the pdf, cal-

culation of the hypergeometric function is computationally intensive. However, if all

of the non-zero eigenvalues have even multiplicities, M(s) can be expanded with a

partial fraction expansion. This yields a simple and practical density function (see

Appendix F):

fP (p) = g
DX
i=1

hiX
j=1

Aij
1

(j � 1)!
pj�1edip U(p) (4.15)

where U(p) is the unit step function which ensures that the power estimate is non-

negative. The coe�cients of the partial fraction expansion, Aij, are de�ned by Eq.

(F.9). Even when these eigenvalues are distinct, they are typically in near-pairs for

commonly used windows. Clustering the non-zero eigenvalues into groups with even

multiplicities to use with Eq. (4.15) provides an accurate numerical approximation

for practical computation of the density function.

Note in passing that for complex data, x = xR+ jxI , with the assumption

that the vectors xR and xI are independent and distributed N(0,R) so that x is

complex circular N(0,2R), the moment-generating function for the power estimate is

the square of Eq. (4.9):

M(t) =
DY
i=1

(1� t2�i)
��i : (4.16)

This ensures integer powers, so the partial fraction expansion always yields the exact

pdf without grouping eigenvalues.

In practice, the cumulative distribution function is frequently desired; this

is easily found by integration of Eq. (4.15), resulting in a sum of incomplete Gamma

functions:

FP (p) = g
DX
i=1

hiX
j=1

Aij
(�di)�j
(j � 1)!


 (j;�dip)U(p) (4.17)

where the incomplete Gamma function is de�ned as [11]:


 (a; x) =

Z x

0

e�tta�1 dt: (4.18)
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4.3 The PDF's for Special Cases

In this section, Eq. (4.15) is developed for several special cases. In partic-

ular, note that the pdf of the power in a frequency band based on averaging modi�ed

periodograms requires computation of the eigenvalues of R�, where R is the covari-

ance matrix of the Gaussian sequence, x. For simplicity in the examples presented

throughout most of this section, the signal x will be assumed to be white, R = �2I;

I present one example of a colored signal. For white noise, the eigenvalues of R�,

labeled � are simply �2 times the eigenvalues of �, labeled �; that is, �i = �2�i. I also

discuss the distance between a Gaussian density and the derived theoretical density.

I will consider, as examples, two useful and interesting examples for w[n]:

the rectangular window and the Hann window. For a rectangular data window,

w[n] = 1 so the window matrix is the identity, 
 = I and U = 1. The Hann window

is de�ned as w[n] = sin2
�
� n
L

�
and U = 3

8
.

First, the well known result for a single frequency bin based on a single data

segment is developed for rectangular and Hann data windows. The more complicated

case of averaging non-overlapping data segments with multiple frequency bins is then

found. The case of 50% overlapping data segments and multiple bins is considered.

I also include an example of spectral estimation for a colored sequence. The section

concludes with an examination of the Kullback-Leibler distance as a measure of how

di�erent the actual densities are from a Gaussian with the same �rst and second

moments.

4.3.1 One Frequency Bin, and a Single Data Segment

As a simple example, consider the case of a single frequency bin, (k1 =

k2 = k), and a single data segment, (K = 1). The examples we present use even data

segments, L = 2q, with no zero-padding of the segments, though the theory of the

previous section includes these possibilities.

For the rectangular window, the non-zero eigenvalues of � are easily found

to be
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� (�) =

8<: 1 for k = 0; L=2

1
2
, 1
2

otherwise
(4.19)

The resulting density function is Gamma:

fP (p) =

8<: 1
�
p
2�
p�

1

2 exp
�� p

2�2

�
U(p) for k = 0; L

2

1
�2
exp

�� p
�2

�
U(p) otherwise

(4.20)

Note that for k = 0; L
2
, with �2 = 1, the distribution is a Chi-square

distribution with one degree of freedom; for other frequency bins, the distribution is

exponential, a well-known result.

Similarly, for the Hann window, the non-zero eigenvalues of � are

� (�) =

8>>><>>>:
1 k = 0; L=2

5
12
, 7
12

k = �1; L=2� 1

1
2
, 1
2

otherwise

(4.21)

The pdf is the same as for the rectangular data window except at k = �1; L
2
� 1,

where the solution is in terms of the modi�ed Bessel function:

fP (p) =

8>>><>>>:
1

�
p
2�
p�

1

2 exp
�� p

2�2

�
U(p) for k = 0; L

2

1
2�2

q
36
35
e�

18

35�2
pI0
�

3
35�2

p
�
U(p) for k = �1; L

2
� 1

1
�2
exp

�� p
�2

�
U(p) for otherwise

(4.22)

Figure 4.1 displays the pdf's of the power in a single frequency bin, based

on a single periodogram using a rectangular data window and a Hann window. The

two data windows yield identical pdf's, except at k = �1; L
2
� 1 where the Hann

window uses a Bessel function. For the plot, �2 = 1 is used. For all of the plots, the

mean of P is 1; i.e., the estimate is an unbiased estimate of the signal power.

4.3.2 Averaging Non-Overlapping Data Segments

As described in Section 4.2, the case of non-overlapping data segments, �

is formed as a Kronecker product. The eigenvalues of a Kronecker product are all

the products of the eigenvalues of the two matrices. Applied to the problem at hand,

73



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p

f P(p
)

k=0, for Rect and Hann Windows
k=±1, for Hann Window       
otherwise                     

Figure 4.1: The pdf of the power in a frequency bin estimated through a single peri-
odogram estimate.

averaging K segments increases the multiplicity of each eigenvalue for a single data

segment by a factor of K.

For the rectangular data window with no overlap, each combination of b

bins and K data segments can be characterized as having D = 1 distinct non-zero

eigenvalue with multiplicity � = 2Kb (as long as the frequency bins do not span

across k = 0 or L
2
where the value of the eigenvalue is di�erent). Summing several

frequency bins yields the single non-zero eigenvalue D = 1 with multiplicity � = 2b;

averaging over independent data segments increases the multiplicity of this eigenvalue

to � = 2Kb. Further, the value of this eigenvalue is � = b
�
= 1

2K
. The pdf of a power
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estimate based on b frequency bins, averaging K non-overlapping periodograms, with

a rectangular data window is a Gamma distribution with � = Kb and � = �2

K
:

fP (p) =

�
K

�2

�Kb 1

� (Kb)
pKb�1e�p

K

�2 U(p): (4.23)

The Hann window with no overlap, introduces some distinctions. Specif-

ically, while the Kronecker product increases all the multiplicities by a factor of K,

the window introduces correlation between the frequency bins such that summing

multiple frequency bins yields more distinct non-zero eigenvalues. Again avoiding

frequency bins k = 0;�1; L
2
and L

2
� 1, the number of distinct non-zero eigenvalues is

D = b, each with multiplicity � = 2K; that is, hi of Eq. (4.15) is K. Note that for a

single bin, this is identical to the case of the rectangular data window.

Some examples of the density function for rectangular and Hann windows

are displayed in Fig. 4.2 for non-overlapping data segments. Here I have assumed

the data stream, x, is white Gaussian noise, with variance �2 = 1 and summed 2

and 5 frequency bins. The solid lines display the theoretical density, while the broken

lines are the corresponding Gaussian densities with the same mean and variance and

the circles and asterisks display the results of a Monte Carlo simulation in which

Welch's method was applied to over 13 000 random data segments of length L = 217

to estimate the pdf of the power spectrum for each case. While not an exhaustive set,

these plots demonstrate the general behavior of the pdf of the power. In every case,

the Monte Carlo simulation corresponds well to the theoretical distribution. Further,

the mode of the distribution occurs at a value of p considerably less than the mean|

the tail on the left side of the distribution is much lower than that on the right side.

As the number of frequency bins added together increases and/or as the number of

data segments increases, the density becomes less skewed, and closer to a Gaussian.

4.3.3 PDF for 50% Overlapping Data Segments

Having considered the cases of a single data segment and K non-overlap-

ping segments, consider now the case of overlapping segments. In Section 4.2 is a

description of how overlapping data segments can be readily analyzed by partitioning
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Figure 4.2: Probability density functions for non-overlapping data segments based on
the sum of 2 and 5 frequency bins (adjacent frequency bins were chosen well away
from k = 0; L

2
). The solid lines plot the theoretical pdf's based on 1 and 7 data

segments, the dashed lines indicate the corresponding Gaussian densities with identical
�rst and second moments, and the circles and asterisks are the results of Monte Carlo
simulations.
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the matrix for each periodogram and summing the corresponding submatrices. With

this method, it is straightforward to construct such a matrix for any overlap and

numerically evaluate the eigenvalues.

Examples of the densities based on 50% overlapping data segments, sum-

ming 2 and 5 frequency bins, are displayed in Fig. 4.3. As before, the data stream, x,

is white Gaussian noise, with variance �2 = 1. The dashed lines, indicating the corre-

sponding Gaussian density, are quite di�erent from the theoretical pdf. The general

form of the pdf of the power is shown to include considerable skew, with the right tail

being much higher. The plot also shows the agreement of Monte Carlo simulation

results with the theoretical density function as circles and asterisks.

4.3.4 A Correlated Data Segment

While the previous examples described the pdf of power estimates from

Gaussian, white data sequences, the derivation allowed a more general, correlated

sequence with arbitrary autocorrelation matrix, R. Here I consider an example of

this more general case. One constraint on the autocorrelation matrix, due to the fact

that the data sequence is assumed stationary, is that R is Toeplitz. A common type

of sequence results from a �rst-order Markov process with covariance function [55]

r(n) = �jnj; j�j < 1; 8n: (4.24)

For an L element data segment, x, this results in a symmetric autocorrelation matrix

with a value for the qth subdiagonal as �q.

Equation (4.15) provides the probability density function of the power in

a frequency bin based on the eigenvalues of R�. The basic form of the pdf will be

the same for correlated sequences as it was for white sequences; the only di�erence

will be that sequence correlation may modify the eigenvalues, changing the details of

the pdf.

In Fig. 4.4 the pdf of the estimated power spectrum is plotted. The x-axis

is the normalized frequency, plotted from 0 to � (the spectrum is symmetric). The

pdf is displayed at four frequencies, with the mean of each estimate (indicated by
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(c) Hann data window, 2 frequency bins
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Figure 4.3: Probability density functions for 50% overlapping data segments based on
the sum of 2 and 5 frequency bins (adjacent frequency bins were chosen well away
from k = 0; L

2
). The solid lines indicate the theoretical pdf's, the dashed lines indicate

the corresponding Gaussian densities, and the circles and asterisks are the results of
Monte Carlo simulations.
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small circles) corresponding well with the assumed spectrum of a �rst-order Markov

process with correlation coe�cient, � = 0:3. For this plot, each pdf was based on a

single frequency bin estimated with K = 5 data segments, each of length L = 64,

with 50% overlap, (the data window choice makes no e�ect for a single frequency

bin).

4.3.5 Relative Entropy

The plots of probability density functions presented to this point suggest a

wide range of behavior depending on the particular parameters of how many frequency

bins, data segments, amount of overlap and type of data window used. The pdf

asymptotically approaches a Gaussian in the limit as more frequency bins and/or

data segments are used.

The \distance" between two probability density functions, f and g, can be

quanti�ed with the concept of relative entropy, or Kullback-Leibler distance [56]:

D (fkg) =
Z
f(x) log

f(x)

g(x)
dx: (4.25)

Because the asymptotic behavior of the pdf is Gaussian, and because it is not uncom-

mon to compute the �rst two moments of the density and assume a Gaussian, it is

signi�cant to consider the distance between the theoretical pdf and a Gaussian with

the same mean and variance.

For the special case whereR� has only a single non-zero eigenvalue, �, with

multiplicity �, the resulting pdf is Gamma with parameters � = �
2
and � = �. This

case corresponds to an uncorrelated data stream for which the power is estimated

using a rectangular data window and non-overlapping data; this is a useful case

because the relative entropy between Gamma and Gaussian densities with mean ��

and variance ��2 can be written in closed form:

D (fkg) = log

 p
2��

�(�)

!
� �+

1

2
� (�� 1) 
 + (�� 1)

��1X
j=1

1

j
: (4.26)

In more general cases, the relative entropy can be computed numerically.

For several situations, D(fkg) is plotted in Fig. 4.5. Data points are calculated for
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Figure 4.4: For a correlated data sequence, the power spectrum (the Fourier transform
of the autocorrelation function) varies with frequency. The solid line represents the
spectrum of a �rst-order Markov process with correlation coe�cient, � = 0:3. The
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K = 1; 4; 7 and 10 data segments (with linear interpolation between the data points).

In every case there is a nearly exponential decay as the pdf's asymptotically approach

Gaussian as the number of data segments and/or frequency bins increases.

4.4 Conclusions

Welch's modi�ed periodogram averaging has served as a simple, common

technique for spectral estimation for three decades. However, the statistical structure

of the estimate has never been fully reported; in this chapter I present the probability

density function of a spectral estimate of a frequency band based on Welch's method

with Gaussian input. The probability density function of an estimate will be useful in

many situations. For example, maximum-likelihood estimations approximating the

distribution as Gaussian overestimate the mode because of the skewed structure of

the correct pdf.

The critical component of the analysis requires the eigenvalues of a matrix,

R�, which can be computed numerically. Several examples of the pdf have been plot-

ted for illustration purposes. Simulations were presented in which the sample pdf's

of the spectral estimates were compared to the theoretical functions derived here.

Finally, the Kullback-Leibler distance between the correct pdf and the corresponding

Gaussian density was plotted for several representative cases, displaying the mono-

tonically converging behavior of the pdf to a Gaussian as the frequency bins and/or

the number of data segments is increased.
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Chapter 5

The Probability Distribution of NSCAT Measurements

Estimation of geophysical parameters based on their modulation of NRCS

requires accurate measurements of the power scattered from the surface. Inherent in

such measurements is considerable uncertainty. While the signal transmitted from the

scatterometer is deterministic, the received signal is random based on the scattering

from the random surface. The scattered power is accurately described as a white,

Gaussian signal. Resolution of the antenna footprint into ocean cells is typically

done by Doppler �ltering. Further, an estimate of the noise in the receiver must be

subtracted from the noisy measurement. These complications modify the statistics

of the backscatter measurements. For lack of a better choice, and with only a sample

mean and variance of the measurements, the pdfs traditionally have been assumed

Gaussian.

However, the pdf of the sum of frequency bins, based on Welch's method

with K overlapping data segments, and an arbitrary data window, is explained in the

previous chapter, and found to be clearly non-Gaussian [54]. In this chapter I apply

the theory to the speci�c case of NSCAT processing.

Wind retrieval with NSCAT involves Doppler �ltering to resolve ocean

cells; the signal-plus-noise measurement is made as the sum of a range of frequency

bins of the estimated power spectrum [29]. Welch's method for periodogram estima-

tion [51] is used with 50% overlapping data segments and a Hann window to minimize

spectral leakage [42]. The signal power for a cell is then computed by subtracting a

noise-only power estimate from the signal-plus-noise estimate. This signal power, used

in the wind estimation, has been assumed to have a Gaussian distribution. However,
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Welch's periodogram estimate is not Gaussian [54]. In this Chapter, the probability

density function of NSCAT power estimates is found, and the e�ect on wind retrieval

is considered. The development is made with su�cient generality to readily extend

to other applications of periodogram estimation.

5.1 Introduction

The pdfs of a noise-only measurement and of a signal-plus-noise measure-

ment, appropriate for NSCAT processing, only require simple scale changes from basic

pdfs; the pdf of the signal-only measurement is then found as the correlation of these

two pdfs. In this chapter I describe the scale changes necessary based on the number

of overlapping data segments and frequency bins used (these vary throughout the

data set). I compare these density function with Gaussian densities of the same mean

and variance. I also report compass simulation results which describe the impact of

using the incorrect pdf on wind retrieval (see also [57]).

5.2 Conditional PDF of NSCAT Measurements

For NSCAT, two power estimates are made, a signal-plus-noise measure-

ment and a noise-only measurement. The power in the signal is estimated as the

di�erence between these two power estimates: P = P1 � P2. Because P1 and P2 are

independent random variables, distributed as described in Chapter 4, the pdf of the

signal-only power is the convolution of the �rst pdf with that of the second pdf with

a negative argument.

NSCAT employs both time and frequency �ltering to resolve a wind cell.

Depending on the cell location within the swath, the estimate of the signal-plus-noise,

P1, is based on either 2, 3 or 7 overlapping data segments (L = 256) and from 5 to

20 frequency bins, and is improved by averaging 25 pulses [42].

A single pulse would result in a pdf as given above by Eq. (4.15) and

repeated here for reference (with the subscript changed to `basic' because this basic

pdf will be scaled for given signal power):
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Table 5.1: Eigenvalues of the basic signal-plus-noise pdfs for a single pulse with typical
NSCAT parameters: K = 2, 3 and 7, b = 5, L = 256, r = 0:5, and a Hann window.

K = 2 K = 3 K = 7
Eigenvalues Mult Eigenvalues Mult Eigenvalues Mult

0.5932 2 0.3968 2 0.1688 14
0.5860 2 0.3935 2 0.1216 14
0.4252 2 0.3901 2 0.0877 4
0.4052 2 0.2890 2 0.0727 2
0.2578 2 0.2795 2 0.0608 2
0.1495 2 0.2721 2 0.0488 2
0.0613 2 0.1916 2 0.0374 2
0.0185 2 0.1378 2 0.0226 4
0.0030 2 0.0849 2 0.0078 6
0.0002 2 0.0413 2 0.0003 20

0.0173 2
0.0051 2
0.0009 2
0.0001 4

fbasic(p) = g
DX
i=1

hiX
j=1

Aij
1

(j � 1)!
pj�1edip U(p): (5.1)

The eigenvalues and their multiplicities, for a single pulse are based on K = 2, 3

or 7 data segments of length L = 256 and b = 5 to 20 frequency bins, r = 0:5 for

50% overlap and NSCAT applies a Hann data window to minimize spectral leakage.

Equation (5.1) then provides the pdf of the generic signal-plus-noise, with mean

equal to b. For example, Table 5.1 lists the eigenvalues corresponding to the basic

signal-plus-noise for the case of 5 frequency bins and a single scatterometer pulse.

The corresponding pdfs are plotted in Fig. 5.1, revealing the familiar shape seen in

Chapter 4 and each case having a mean equal to the number of frequency bins, 5.

Because NSCAT averages 25 signal-plus-noise pulses, it is useful to de�ne

the normalized pdf based on the self-convolution of 25 pulses (i.e., the pulses are

assumed i.i.d. so that the average power can be computed by convolution) and

normalized by b frequency bins, so the normalized distribution has a mean of 1:

fnorm(p) = 25bf
(25)

basic

� p

25b

�
; (5.2)
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Figure 5.1: Generic signal-plus-noise pdfs for a single pulse with typical NSCAT
parameters

where the superscript in parenthesis indicates self-convolution. The pdf of the signal-

plus-noise, given signal and noise powers, PS and PN , is

fSN(pjPS; PN) =
25b

PS + PN
f
(25)

basic

� p

25b
(PS + PN)

�
: (5.3)

The noise power estimate, P2, averages 4 `pulses' and sums more than 200

frequency bins. For this estimate, the scatterometer transmits nothing, but takes

measurements according to the same timing as during the signal-plus-noise measure-

ment.

The pdf of the signal-only power, fS(p), is then the convolution of fSN(p)

with the pdf of the noise estimate with a negative argument: fS(p) = fSN(p) �
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fN(�p). Because the noise estimate sums 200 frequency bins and 4 pulses, the noise

is essentially Gaussian with a variance which becomes negligibly small. The pdf fN(p)

can be well approximated with a delta function at the noise power. The signal-only

pdf is then simply

fS(pjPS; PN) � 25b

PS + PN
f
(25)

basic

� p

25b
(PS + PN) + PN

�
(5.4)

=
25b

PN (1 + SNR)
f
(25)

basic

h
PN

� p

25b
(1 + SNR) + 1

�i
: (5.5)

Figure 5.2 displays several examples of the density functions of power es-

timates. The near, mid and far swath cells use 7, 3 and 2 overlapping data segments,

respectively, and 5 frequency bins. Note that the SNR simply scales the power esti-

mate for each case. The dashed line indicates a Gaussian density with the same mean

and variance. It is clear that the actual distribution is skewed toward low �o values.

For near swath cells, the true distribution is more Gaussian.

Two useful results related to the density function are the normalized bias

and the probability of negative measurements. De�ning the normalized bias as the

di�erence between the mode and the mean, normalized by the mean of the distribu-

tion, a simple measure is obtained of the distance between a Gaussian and the correct

density. Also of interest is the probability of a negative power estimate. This can be

computed as the integral of the pdf from �1 to 0, or equivalently as the cumulative

distribution function evaluated at zero F (0). These measures are displayed in Fig.

5.3 as functions of the SNR for the three representative cell cases.

The concern is that because the actual density is skewed, the wind esti-

mation may be biased. A compass simulation shows that this bias is small, though

non-zero. Using a particular measurement geometry and noise parameters (taken

from an NSCAT L1.7 �le) simulated backscatter measurements for a given wind vec-

tor cell are used to estimate the wind in a traditional compass simulation. The

simulated measurements were then biased, according to Fig. 5.3, and the wind is

estimated with this set of biased measurements. Note that a more precise method

would be to use the correct pdf, rather than simply a shifted Gaussian distribution;

but to obtain a reasonably accurate result with minimal code modi�cation for this
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Figure 5.2: Some sample pdfs for the signal-only power estimate based on NSCAT
processing. Because there is less averaging for far swath cells (fewer data segments
and fewer frequency bins used), the skew increases. For the di�erent parts of the
swath, the SNR scales the fundamental pdf.
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preliminary study, this approach was chosen. Figure 5.4 displays the results of this

compass simulation for a cell in the far swath (2 overlapping data segments and 5

frequency bins). The plots show the di�erence between the wind estimates made

without the correcting bias and the wind estimates with the correcting bias for both

speed and direction. As the simulated wind speed increases, the di�erence between

the two estimates increases, while the direction di�erence is minimal.

5.3 Impact of Wind Distribution

In the previous section, the conditional probability density function of the

signal power estimate was derived for NSCAT processing as Eq. (5.5). In terms

of wind retrieval, this is the conditional pdf which, by adjusting the wind estimate,

results in the MLE wind (see Appendix D).

The pdf of the measurements, then, is the integral of this conditional pdf

multiplied by the prior pdf of the signal power:

fS(p) =

Z 1

�1
fS(pjPS)f(PS) dPS: (5.6)

The distribution of the signal power is not known. It will depend on the distribution

of the wind and on the model function relating the wind to the backscatter. In this

section I develop the backscatter measurements, z, based on prior distributions of the

wind and the empirical model function.

The radar equation, Eq. (1.1), states that the backscatter is linearly related

to the power measurement, �o = XPS. Transforming the pdf of the measurements to

backscatter space, and assuming the noise power is deterministic, yields:

fZ(z) =

Z 1

�1

25b

X (PS + PN)
f
(25)

basic

� z

25b
(PS + PN) + PN

�
f(PS) dPS: (5.7)

The pdf of the signal power is related simply to the pdf of the backscatter

(as a function of the wind). For Fig. 5.5 I established a set of wind vectors with realis-

tic statistics (plotted on the left), with a Rayleigh distribution for the wind speed and

a uniform distribution for the direction. Using a typical NSCAT measurement geom-

etry for a single beam (at near-swath) I computed the resulting backscatter according
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Figure 5.3: Left: The normalized bias, de�ned as the di�erence in the modes of the
theoretical and Gaussian densities, normalized by the mean, depends on the SNR and
has similar behavior for all cells. Right: The probability of negative power estimates
as a function of the signal to noise ratio.
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Figure 5.4: Impact on wind retrieval with bias error in the pdf. For the three parts
of the swath, results from compass simulations are displayed showing the di�erence
between the wind retrieved using traditional methods and that retrieved assuming a
biased Gaussian distribution for the scatterometer measurements. The latter more
closely approximates the correct distribution.
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to the empirical model function. The plots on the right display the sample pdf of the

backscatter. The evidence is growing for a limit on the wind speed, below which the

NRCS and wind speed are only slightly correlated; the bottom plots represent this

case where winds below a threshold of 3 m/s do not contribute to the backscatter.

5.4 Conclusion

The probability structure of NSCAT signal estimates is not biased, but

shows considerable skew. Initial observations suggest that this has negligible impact

on the estimated wind direction, though the wind speed bias should be investigated

further. The skew of the probability density function of the power measurements

causes current wind retrieval techniques (which assume measurements of Gaussian

random variables) to be biased high. This e�ect is ameliorated to some extent by

models like NSCAT1, which are tuned to the retrieved wind, as well as the consider-

able averaging resulting in nearly Gaussian densities (see Chapter 4).
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Figure 5.5: Sample estimate of the pdf of the model function backscatter.
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Chapter 6

Conclusion

Oceanic microwave remote sensing is a valuable tool for monitoring criti-

cal climatological and hydrological processes. Active radar systems provide measure-

ments of the EM power scattered from the surface, which serve as indirect measure-

ments of signi�cant geophysical parameters. While such systems have been in use for

decades, signi�cant gaps in our understanding of the processes involved still persist.

In this dissertation, I have clari�ed and quanti�ed uncertainties in oceanic microwave

remote sensing.

The general diagram of the translation of the geophysical parameters to

their estimation via microwave remote sensing is displayed in Fig. 1.1. The geophys-

ical parameters (e.g., wind, rain, swell) develop ocean waves with a particular surface

spectrum. The NRCS is determined by the surface spectrum, the radar observation

parameters and the ocean dielectric characteristics. The radar measures the scattered

power, which is linearly related to the NRCS. From the measurements, the geophys-

ical parameters such as wind can be estimated. In this research I explored three

signi�cant and previously unstudied sources of error and uncertainty in the radar

measurements.

6.1 Contributions

Several techniques for evaluating the theoretical backscatter from a ran-

dom surface have been developed over the last several decades, and continue to �nd

a signi�cant place in current literature. I applied the theory of physical optics scat-

tering, also called the Kircho� approximation, to nadir scattering from ocean-like
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spectra. I performed a sensitivity analysis of the backscatter and identi�ed a partic-

ularly interesting change in the scattering characteristics depending on whether the

radar footprint was larger or smaller than a computable threshold. I derived the foot-

print size threshold in terms of the signi�cant parameters of the spectrum and radar

system. This work has been presented at several international technical conferences,

and will be submitted for publication in The Journal of Geophysical Research.

Because the precise relationship between all of the geophysical parameters

and the NRCS is not understood, empirical estimates are commonly used to provide

reasonable estimates of the vector wind from the backscatter measurements. However,

inherent in all empirical estimates of the geophysical model function is uncertainty

caused by unmodelled parameters. While an intense search for the complete geo-

physical model function continues in the scienti�c community, current applications

require a quantitative understanding of the variability of empirical model functions.

My research provides such a quantitative analysis. I developed a simple model incor-

porating model variability as multiplicative noise in the true NRCS, distinguishing

it from the NRCS predicted by the model. From the noise model, I developed an

algorithm to estimate, from scatterometer measurements alone, the variability of the

backscatter for given wind conditions. Separating the data into distinct bins I was

able to estimate the variability as a function of incidence angle, speed, latitude, and

time. I performed the data analysis of the nine month NSCAT mission to quantify

the variability. I also investigated the impact of this variability on wind estimates and

found that, because empirical model functions provide good estimates of the mean

NRCS for wind conditions, the average vector wind estimates have only a very small

bias. But the covariance of the wind estimates, as quanti�ed by the Cramer-Rao lower

bound, is substantially increased by the variability of the model functions. This work

has also been presented at several international conferences and will be submitted for

journal publication in IEEE Transactions on Geoscience and Remote Sensing.

The measurements made by the radar provide substantial signal process-

ing. The statistical changes to the random signal were previously misunderstood. I

derived the probability density function of a power estimate for a correlated Gaussian

94



signal, based on Welch's modi�ed periodogram averaging technique, and �nd it to be

skewed from the Gaussian pdf previously assumed. Beyond the very general deriva-

tion of the pdf, I derived the correct pdf for the NSCAT signal processing design.

Including the estimate of the signal power from the di�erence of a signal-plus-noise

measurement and a noise-only measurement, I derived the pdf of NSCAT power mea-

surements based on the SNR, the number of frequency bins summed for the surface

resolution element, and the number of overlapping data segments used (each of these

change across the swath). I demonstrated that because NSCAT includes consider-

able averaging and because empirical model functions used to estimate the wind have

been tuned to the assumed Gaussian distribution, there is only a small bias in the

retrieved wind vector. This work has been presented at several international tech-

nical conferences. A manuscript describing the general development of the pdf of

spectral estimates has been accepted for publication in IEEE Transactions on Signal

Processing [54].

Here, I itemize my speci�c contributions to understanding and quantifying

sources of error and uncertainty in the radar measurements:

� The Finite Radar Footprint

{ Derivation of the traditional asymptotic expansion of the physical optics

scattering integral for nadir backscatter.

{ Extension of the multiple-convolution of the spectrum method for comput-

ing the asymptotic backscatter to two dimensions.

� Arbitrary incidence angle

� Arbitrary spectral form

{ Derivation of the correlation function from the general class of spectra

with:

� a hard low-wavenumber limit

� a power-law decay in wavenumber

� an arbitrary angular dependence.
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{ Extension of the correlation function to composite surfaces characterized

as a sum of spectra with di�ering parameters

{ Closed form solution of the asymptotic backscatter at nadir incidence,

using the traditional asymptotics method, allowing a sensitivity analysis.

� Several representative plots are produced demonstrating the backscat-

ter behavior

� The backscatter decreases with surface roughness

� The decay experiences distinct rates:

� Very low roughnesses experience specular scattering, the backscat-

ter is constant

� Intermediate asymptotic roughnesses achieve a moderate, constant
rate of decay

� Final asymptotic roughnesses converge to a large, constant rate of
decay

� The transition point between the moderate asymptotic rate of decay

and the �nal asymptotic rate is derived.

� The transition point is at higher roughness values with large p

values

� The transition point is at higher roughness values with more uni-

directional (less isotropic) surfaces

� The transition point is at higher roughness values with smaller k0

values.

� The transition point is at higher roughness values with smaller

footprint sizes.

{ The physical mechanism of the transition between moderate and �nal

asymptotic rates is described

� Directional surfaces with very low roughnesses do not have su�cient

heights in the cross-wave directions to be recognizable to the radar
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using a �nite footprint, so the surface looks unidirectional (which has a

shallow rate of decay). Very rough, directional surfaces have su�cient

height to scatter the radar signal incoherently in both the along-wave

and cross-wave directions.

� In terms of the correlation function, if the footprint size contains

enough of the correlation function, then the �nal asymptotic backscat-

ter slope is achieved, but if the footprint is small (relative to the width

of the correlation function) then the long distance correlations will not

be observed in the backscatter|the backscatter will have a smaller

rate of decay.

� Highly directional surfaces stretch the correlation function, pulling

portions of it outside a �nite footprint.

{ The multiple-convolutions method was applied to a more realistic spec-

trum (smooth low-wavenumber transition) to show that the two modes of

asymptotic decay are revealed with similar footprint-size dependence

{ The electromagnetic bias identi�ed in altimeter data was shown to be

a�ected by the the size of the footprint. A theoretical explanation qualita-

tively showed that smaller footprints should have less EM bias than larger

footprints.

� Uncertainties in the Wind-Backscatter Relationship

{ Development of a multiplicative model for the backscatter variability under

given wind conditions

{ Arguments leading to a multiplicative model.

{ Development of an iterative technique to estimate the model function vari-

ability based solely on the model function and scatterometer data.

� Simulations showing the convergence of the technique

� Determination of a quadratic correction factor to remove the bias
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{ Analysis of the NSCAT data set to determine the model function variabil-

ity, KPM , estimated as a function of four parameters:

� Retrieved wind speed in 2 m/s bins. Variability decreases with in-

creasing wind speed.

� Incidence angle in 5 degree bins. Variability increases with increasing

incidence angle.

� Time in approximately 3 day bins (40 revolutions) sampled approxi-

mately monthly. Estimates of KPM show minimal variation with tem-

poral variations.

� Latitude in 30 degree bins. Variability increases with increasing mag-

nitude of latitude (i.e., the variability is smaller at the equator than

at the poles).

{ Identi�cation of the impact of KPM on wind estimation

� Simulations were performed to estimate the wind from typical scat-

terometer measurements with and without model function variability

� Any variability of the model function biases (slightly) the retrieved
wind speed and direction estimated using a log-likelihood estima-

tor, as commonly done for scatterometer data

� Precise knowledge of the value of KPM does not improve the wind

estimate bias.

� Compass simulations were performed which show that changing the

value of KPM does not dramatically change the locations of the lo-

cal peaks of the log-likelihood function, but the shape and relative

magnitudes of the peaks are modi�ed. Thus, while KPM does not pre-

dictably change the bias of the possible solutions (all the local peaks),

it can change the ranking of the peaks and their curvatures (that is,

the variance of the ambiguities).

� Weighted-least squares estimation was considered as a means of reduc-

ing the sensitivity of the wind estimation to model function variability.
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� The variance of the wind estimates was demonstrated to be dramati-

cally a�ected by model function variability.

� The Cramer-Rao lower bound for the error covariance matrix was

used to compute the bounds on estimated wind speeds and direc-

tions, based on the NSCAT1 model function, using various KPM

values.

� Even moderate values of KPM produce substantial increases in the

variance bounds on the speed and direction.

� Compass simulations were performed to show the reduction in ambigu-

ity removal skill caused by KPM . Because the log-likelihood function

is modi�ed by larger values of KPM , the �rst ambiguity skill is dra-

matically reduced.

� The pdf of Scatterometer Measurements

{ Derivation of the pdf of spectral estimates based on Welch's modi�ed pe-

riodogram averages

� Welch's method written in vector notation.

� Derivation of the moment generating function, transformation to prob-

ability density function in terms of the generalized hypergeometric

function and a more practical solution using a partial fraction expan-

sion.

{ Explicit derivation (and plots) of the pdf for several representative cases

with di�erent data windows, amounts of overlap and number of frequency

bins to use in the averaging, and including a case with colored noise.

{ Computation of the relative entropy between the exact pdf and a Gaussian

density function (commonly used as the standard).

{ Application to NSCAT power measurements
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� Derivation of the pdf of the signal-only power estimates, as the di�er-

ence between the signal-plus-noise and and noise-only measurements,

using data windows, overlap and numbers of bins appropriate for

NSCAT.

� Computation of the normalized bias of power measurements and the

probability of negative measurements.

� Wind estimation was performed using pdf's biased according to the

exact pdf. The results showed a minimal bias to the wind speed and

direction estimates.

6.2 Future Work

The �eld of oceanic microwave remote sensing includes several areas which

need additional study and clari�cation, some of which is underway by various re-

searchers.

Though quite far beyond the current state of oceanography, an understand-

ing of the relationship between the geophysical parameters and the surface spectrum

would be invaluable. As an intermediate step, an understanding of which parameters,

along with wind speed and direction, dominate the spectrum development. The vari-

ability of empirical model functions, KPM , could be used as a guide. Binning KPM

with various geophysical parameters (sea surface temperature, etc.) could provide a

view of the sensitivity of the backscatter to those parameters.

The sensitivity of the NRCS, based on a given spectrum, was performed at

nadir incidence and assuming in�nite conductivity; relaxing these constraints would

provide greater understanding of the scattering mechanisms and the expected returns.

The work of scattering slightly o�-nadir (less than about 20�) was begun by Andrew

Greenwood in his Master's Thesis, [58]. Inclusion of the �nite footprint e�ect in

his work would involve substantial geometry and bookkeeping, though should prove

straightforward. Moving o�-nadir would stretch the footprint, making it oval instead

of round, and the relative orientations of the footprint and the directional spectrum

would become critical. At angles just slightly o�-nadir the eccentricity of the footprint
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may be su�ciently small that it could still be approximated reasonably well by a

circular footprint, reducing the complexity of this extension. However, extending to

larger incidence angles would quickly reduce the quality of such an approximation. At

larger angles, the geometry becomes representative of scatterometers and, therefore,

of substantial interest. The dominant scattering mechanism at larger angles is Bragg

scattering (based on constructive interference) rather than specular re
ections, and

as Ref. [58] showed, asymptotic analysis can include additional terms. The use of

the multiple convolutions technique will probably prove useful in o�-nadir analysis,

particularly as identi�cation of more realistic spectra are found.

The analysis in this dissertation of the pdf of spectral estimates assumed

only that the initial data sequence be a (possibly correlated) Gaussian stochastic

process. While this is a very reasonable form for scattering from the ocean surface

(the surface includes a tremendous number of scattering centers), other applications

may be based on other statistics. Development of the moment-generating function of

a quadratic form in a non-Gaussian vector would be useful, though probably daunting.

Application of the pdf to other scatterometers, such as ERS-1/2 and SeaWinds, would

be useful, to verify that su�cient averaging is being used to allow the Gaussian

approximation in wind retrieval.

In the dissertation I computed and plotted the probability of negative

backscatter measurements. Scatterometer data could be analyzed to identify areas

with many negative measurements, and possibly identify a correlation between the

frequency of negative measurements and the lowest wind speed identi�able by the

spaceborne scatterometer. Speci�cally, some have suggested that the simple empir-

ical models of the wind-backscatter relationship, with the backscatter proportional

to the wind speed raised to some power, is only valid above some low wind speed

threshold. Correlation of a large frequency of negative measurements, beyond that

predicted using the correct pdf, with areas of low wind speed, could help in identifying

a minimum wind speed for the empirical models.
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Appendix A

Composite models of the Ocean Surface

The spectrum presented in Chapter 2 is quite simplistic. Here I derive

the correlation function for a composite spectrum. Consider the power-law spectrum

de�ned as

S(k; �) = S0

8>>><>>>:
0 for k � k0

k�p0�(�; �0) for k0 � k < k1

�k�p1�(�; �1) for k � k1

(A.1)

where � provides a scaling factor to adjust the relative amount of power in each

section of the spectrum and �(�; �i) indicates the possibility of di�erent directionality

functions for the two regions. Here I will use hard limit cuto�s at � �i
2
, though

comparable results could be obtained for a cosqi form of directionality.

The correlation function is then expressed as

C(�; �) = S0

Z �
2

��
2

d��(�; �0)

Z 1

k0

dk k�p0+1 cos[k�j cos(� � �)j]

� S0

Z �
2

��
2

d��(�; �0)

Z 1

k1

dk k�p0+1 cos[k�j cos(� � �)j]

+ S0�

Z �
2

��
2

d��(�; �1)

Z 1

k1

dk k�p1+1 cos[k�j cos(� � �)j] (A.2)

The scale factor S0 must be such that the correlation function is 1 at � = 0:

S0 =

�
�0

p0 � 2
k�p0+20 � �0

p0 � 2
k�p0+21 + �

�1
p1 � 2

k�p1+21

��1

=
�
S�1
000 � S�1

100 + �S�1
111

��1
(A.3)

where the subscripts of Slmn are binary indicators of kl, pm and �n and Slmn is the

appropriate scaling factor of the power spectral density function associated with l,
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m, and n. Thus, the correlation function for a composite surface model is a linear

combination of correlation functions based on the parameters of the composite model:

C(�; �) =
S0
S000

C(�; �; k0; p0; �0)� S0
S100

C(�; �; k1; p0; �0)

+�
S0
S111

C(�; �; k1; p1; �1) (A.4)

which can be written in the same form as Eq. (2.17), with

C = 1� A0�
p0�2 � A1�

p1�2 +
1X
r=1

Br�
2r; (A.5)

with A0, A1, and B1 all of the form a cos 2�+ b.

Note that the dominant term of the correlation function of a composite

surface has the same form, C � 1 � A(a cos 2� + b)��, as that found for the basic

surface. From this we conclude that the backscatter from such a surface, using a �nite

footprint, will follow the same asymptotic behavior exhibited in Eq. (2.7) resulting

in two modes of asymptotic behavior.

104



Appendix B

Expansion of a Cosine to a Power

The function, f(x) = cosn(x) can be written as the sum of cosine terms; in

this appendix, this expansion is derived. The cosine function can be expanded with

Euler's identity

f(x) = cosn(x) (B.1)

=

�
ex + e�x

2

�n

(B.2)

and the binomial approximation applied [59]:

f(x) = 2�n
nX

k=0

�
n

k

�
ekxe�x(n�k) (B.3)

= 2�n
nX

k=0

�
n

k

�
e�x(n�2k) (B.4)

= 2�n
nX

k=0

�
n

k

�
[cos (�x(n� 2k)) + j sin (�x(n� 2k))] : (B.5)

Recognizing the symmetry of the series, f(x) can be written (for an even integer,

n = 2r):

f(x) = 2�2r
�
2r

r

�
+ 2�2r+1

r�1X
k=0

�
2r

k

�
cos (2x(r � k)) : (B.6)

If n = 2r + 1 is odd, the dc term is zero:

f(x) = 2�2r
rX

k=0

�
2r + 1

k

�
cos (x(2r � 2k + 1)) : (B.7)
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Appendix C

Estimates of KPM for the NSCAT Mission

This Appendix serves to archive the substantial number of plots used to

display the estimates of the model function variability, KPM , based on NSCAT data.

Figures C.1 through C.7 display histograms of the wind speed for each week

of data (based on the 40 descending revs). Histograms for each week are provided for

six latitude bands, -60 to -40, -40 to -20, -20 to 0, 0 to 20, 20 to 40, and 40 to 60.

The plots are arranged such that the southern hemisphere plots are on the left and

the northern hemisphere on the right, with the equatorial regions at the bottom and

the high latitudes at the top.

Figures C.8 through C.14 display plots of KPM vs. wind speed, for the

sampled weeks, with a separate line for each incidence angle. The higher incidence

angles (far swath) produce higher estimates of KPM . The curves correspond to six

incidence angle ranges of (20, 25), (25, 30), (30, 35), (35, 40), (40, 45) and (45, 50)

degrees. The six sub�gures correspond to the six latitude bands as described above.

Figures. C.15 through C.22 display the estimates of KPM as functions of

time through the mission, with a separate line for each wind speed and a separate

plot for each incidence angle bin. The estimate of KPM is smaller for higher wind

speeds. The speeds bins plotted are 2 m/s wide, centered at 3, 7, 11, 15 and 19 m/s.

Figures C.23 through C.31 display the estimates of KPM as functions of

time through the mission, with a separate line for each incidence angle and a separate

plot for each wind speed bin. Again, the curves are for the incidence angle ranges of

(20, 25), (25, 30), (30, 35), (35, 40), (40, 45) and (45, 50) degrees.
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Figure C.1: Wind speed histograms for week S3 (Sep 26). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.2: Wind speed histograms for week S9 (Oct 29). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.3: Wind speed histograms for week S15 (Dec 11). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.4: Wind speed histograms for week S21 (Jan 22). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.5: Wind speed histograms for week S27 (Mar 05). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.6: Wind speed histograms for week S33 (Apr 16). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.7: Wind speed histograms for week S39 (May 27). Plots on the left are for
the southern hemisphere, plots on the right are for the northern hemisphere; near
equatorial regions at the bottom, high latitudes are at the top.
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Figure C.8: KPM estimates for week S3 (Sep 26). Each line represents a separate
incidence angle bin.
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Figure C.9: KPM estimates for week S9 (Oct 29). Each line represents a separate
incidence angle bin.
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Figure C.10: KPM estimates for week S15 (Dec 11). Each line represents a separate
incidence angle bin.

117



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Wind Speed

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Wind Speed

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure C.11: KPM estimates for week S21 (Jan 22). Each line represents a separate
incidence angle bin.
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Figure C.12: KPM estimates for week S27 (Mar 05). Each line represents a separate
incidence angle bin.

119



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Wind Speed

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Wind Speed

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure C.13: KPM estimates for week S33 (Apr 16). Each line represents a separate
incidence angle bin.
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Figure C.14: KPM estimates for week S39 (May 27). Each line represents a separate
incidence angle bin.
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Figure C.15: KPM estimates for incidence angles between 15 and 20�. Each line
represents a separate speed bin.

122



Sep 26Oct 29Dec 11Jan 22Mar 05Apr 16May 27
0

0.1

0.2

0.3

0.4

0.5

0.6

Sep 26Oct 29Dec 11Jan 22Mar 05Apr 16May 27
0

0.1

0.2

0.3

0.4

0.5

0.6

Sep 26Oct 29Dec 11Jan 22Mar 05Apr 16May 27
0

0.1

0.2

0.3

0.4

0.5

0.6

Sep 26Oct 29Dec 11Jan 22Mar 05Apr 16May 27
0

0.1

0.2

0.3

0.4

0.5

0.6

Sep 26Oct 29Dec 11Jan 22Mar 05Apr 16May 27
0

0.1

0.2

0.3

0.4

0.5

0.6

Sep 26Oct 29Dec 11Jan 22Mar 05Apr 16May 27
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure C.16: KPM estimates for incidence angles between 20 and 25�. Each line
represents a separate speed bin.
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Figure C.17: KPM estimates for incidence angles between 25 and 30�. Each line
represents a separate speed bin.
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Figure C.18: KPM estimates for incidence angles between 30 and 35�. Each line
represents a separate speed bin.
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Figure C.19: KPM estimates for incidence angles between 35 and 40�. Each line
represents a separate speed bin.
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Figure C.20: KPM estimates for incidence angles between 40 and 45�. Each line
represents a separate speed bin.
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Figure C.21: KPM estimates for incidence angles between 45 and 50�. Each line
represents a separate speed bin.
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Figure C.22: KPM estimates for incidence angles between 50 and 55�. Each line
represents a separate speed bin.
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Figure C.23: KPM estimates for wind speeds of 3 m/s. Each line represents a separate
incidence angle.
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Figure C.24: KPM estimates for wind speeds of 5 m/s. Each line represents a separate
incidence angle.
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Figure C.25: KPM estimates for wind speeds of 7 m/s. Each line represents a separate
incidence angle.
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Figure C.26: KPM estimates for wind speeds of 9 m/s. Each line represents a separate
incidence angle.
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Figure C.27: KPM estimates for wind speeds of 11 m/s. Each line represents a
separate incidence angle.
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Figure C.28: KPM estimates for wind speeds of 13 m/s. Each line represents a
separate incidence angle.
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Figure C.29: KPM estimates for wind speeds of 15 m/s. Each line represents a
separate incidence angle.
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Figure C.30: KPM estimates for wind speeds of 17 m/s. Each line represents a
separate incidence angle.
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Figure C.31: KPM estimates for wind speeds of 19 m/s. Each line represents a
separate incidence angle.

138



Appendix D

Maximum Likelihood Estimation of the Wind

To estimate the wind, multiple measurements must be made of each wind

cell with di�erent measurement conditions and estimation theory employed to identify

the wind most likely to have produced all of the measurements. This is displayed

graphically in Fig. D.1.

Wind retrieval, as employed in NSCAT processing is based on the tech-

niques of maximum likelihood estimation (MLE). The wind estimate, ŵ, is selected

as the most probable wind, given the measurements; this can be inverted with Bayes'

rule to be interpreted as the wind which maximized the probability of the measure-

ments:

ŵ = argmax
w

p(wj~z) (D.1)

= argmax
w

p(w)

p(~z)
p(~zjw): (D.2)

The probability of the measurements, p(~z), does not change the maximization over

the wind; without a priori knowledge, the probability of the wind, p(w), is typically

taken to be uniform, leaving just p(~zjw). Because of the large amount of averaging
involved in each measurement, the Central Limit Theorem is invoked to assume a

Gaussian distribution for the measurements given the wind. It is further assumed,

with strained credibility, that the measurements of a wind cell are independent; the

communication noise (KPC), is probably reasonably independent, but model variabil-

ity (KPM) probably introduces some correlation between the measurements. The pdf
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Figure D.1: A single backscatter measurement produces a continuum of possible wind
speeds and directions in a given cell. By making additional measurements of the same
location, but with di�erent measurement conditions, wind vectors can be identi�ed
as more likely to have caused all of the many measurements. In this case, the 13
measurements (one curve for each) were most likely caused by a wind approximately
8 m/s, with a relative azimuth angle of about 270 degrees. If there had been no noise
in the measurements, (including no variability in the model function), the curves
would have exactly intersected at a unique wind vector; measurement noise and model
variability e�ectively bias particular measurement realizations. If there is enough
noise in the measurements, other wind vectors (say 9 m/s and 90 degrees) can be
erroneously retrieved as the wind.
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can then be expressed as

p(~zjw) =
KY
k=1

1

�k
p
2�

exp

��(zk �Mk)
2

2�2k

�
(D.3)

where Mk is the empirical model function value based on the given wind and the

kth measurement conditions, and �2k is the variance of the measurements|a simple

evaluation of our assumed model yields

�2k = K2
PM +K2

PC +K2
PMK

2
PC : (D.4)

The independent Gaussian density is commonly employed in MLE because

the natural log of the pdf can be equivalently maximized; de�ning the log-likelihood

function, L(w; z)

L(w; z) = log p(~zjw) (D.5)

= �
KX
k=1

�
[(zk �Mk)

2]

2�2k
+
1

2
log
�
�2k
�
+
1

2
log [2�]

�
(D.6)

results in a simple function to be maximized. Obviously the �nal term, 1
2
log(2�), will

not modify the maximization. The �rst term is the weighted-least squares estimate,

an alternate estimation procedure.
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Appendix E

Derivation of the Moment-Generating Function

Following [48], the moment-generating function for a quadratic form, P =

xT�x, where x is a random vector and � is an arbitrary matrix, is:

M(t) = E
�
etP
�

(E.1)

=

Z
dx etx

T�xf(x): (E.2)

With the assumption that the data stream, x, is normally distributed, N(0;R), the

moment-generating function becomes

M(t) =

Z
dx etx

T�x (2�)�
N
2 jRj� 1

2 exp

�
�1
2
xTR�1x

�
(E.3)

=

Z
dx (2�)�

N
2 jRj� 1

2 exp

�
�1
2
xT
�
R�1 � t2�

�
x

�
(E.4)

=

Z
dx (2�)�

N
2 jRj� 1

2

jKj� 1

2

jKj� 1

2

exp

�
�1
2
xTK�1x

�
(E.5)

= jRK�1j� 1

2 (E.6)

= jI� t2R�)j� 1

2 (E.7)

=
NY
n=1

(1� t2�n)
� 1

2 (E.8)

=
DY
n=1

(1� t2�n)
� �n

2 (E.9)

where K�1 = I� t2R� and the �n are eigenvalues of R�. D indicates the number of

distinct non-zero eigenvalues; the nth distinct eigenvalue has multiplicity �n. For the

simple case of a white Gaussian vector, x, the covariance is R = �2I; the eigenvalues

of R� are simply �2 times the eigenvalues of �.
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The �rst two moments of the distribution are easily determined from the

moment-generating function. Recognizing that M(0) = 1 (as is required for a valid

moment-generating function), the �rst moment of P , the mean, is

m1 = M 0(0) (E.10)

=
d

dt

DY
n=1

(1� t2�n)
� �n

2

�����
t=0

(E.11)

= M(t)
DX
n=1

�n�n (1� t2�n)

�����
t=0

(E.12)

=
DX
n=1

�n�n (E.13)

and the second moment of P is

m2 = M 00(0) (E.14)

= M(t)
DX
n=1

(1� t2�n)
�2 �2n2�n +M(t)

 
DX
n=1

(1� t2�n)
�1 �n�n

!2
������
t=0

(E.15)

=
DX
n=1

�2n2�n +

 
DX
n=1

�n�n

!2

(E.16)

so the variance of P is

�2P = m2 �m2
1 (E.17)

=
DX
n=1

�2n2�n: (E.18)

Higher order moments can be similarly computed.
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Appendix F

The PDF from the Moment-Generating Function

The probability density function is the inverse Laplace transform of the

moment-generating function with the negative of the argument; that is, the kernel of

the moment-generating function is etx, while that of the Laplace transform is e�sx [13].

In this section, the pdf is found from the moment-generating function in generality,

and in the simpler case when all eigenvalue multiplicities are even.

De�ning s = �t, the Laplace transform of the pdf of the random variable

P = xT�x, which is a central quadratic form in x,where x is distributed N(0;R),

can be written as (with g and di de�ned in the text)

M(s) =
g

s
J
2

DY
i=1

�
1� di

s

�� �i
2

: (F.1)

The inverse Laplace transform of Eq. (F.1) is [60],

f(y) =
g

�
�
J
2

�y J
2
�1�2

�
�1
2
; � � � ; �D

2
;
J

2
; d1y; d2y; � � � ; dDy

�
: (F.2)

The generalized hypergeometric function, �2, is de�ned with a sum over D dimen-

sional space:

�2 (b1; � � � ; bD; c; x1; � � � ; xD) =
X

(b1)m1
� � � (bD)mD

(c)m1+���+mD
m1! � � �mD!

xm1

1 � � �xmD

D (F.3)

where the summation � is a D-fold summation with m1 through mD each running

from 0 to 1, and the Pochhammer symbol is de�ned as

(a)n =
�(a+ n)

�(a)
: (F.4)
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While Eq. (F.2) provides a general solution, calculation of the generalized

hypergeometric function is computationally restrictive. We therefore seek special

cases to provide more practical solutions.

If all of the non-zero eigenvalues have an even number of multiplicities,

the pdf can be developed as a partial fraction expansion [61], this approach was

demonstrated by [62]. De�ning hi =
�i
2
, Eq. (F.1) can be written as

M(s) = g
DX
i=1

hiX
j=1

Aij

(s� di)
j (F.5)

where

Aij =
1

(hi � j)!

�
dhi�j

dshi�j

�
(s� di)

hi M(s)

g

������
s=di

: (F.6)

The derivatives required in Aij can be be written as

D
(m)
i (s) =

dm

dsm

DY
k=1;k 6=i

(s� dk)
�hk ; m � 0 (F.7)

where the higher order derivatives can be computed recursively from D
(0)
i (s)

D
(m+1)
i (s) =

mX
n=0

0@ m

n

1AD
(n)
i (s)

DX
k=1;k 6=i

hk
(m� n)!

(dk � s)m�n+1 ; m � 0: (F.8)

Thus, the coe�cient Aij can be written as

Aij =
1

hi � j

hi�j�1X
n=0

D
(n)
i (di)

n!

DX
k=1;k 6=i

hk

(dk � di)
hi�j�n ;

i = 1 : : :D; j = 1 : : : hi: (F.9)

Taking the inverse Laplace transform of Eq. (F.5), the pdf of a power

estimate is

fP (p) = g
DX
i=1

hiX
j=1

Aij
1

(j � 1)!
pj�1edip U(p) (F.10)

where U(p) is the unit step function.
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Appendix G

Useful Facts and Properties of the Gamma Distribution

The probability density function of a gamma distributed random variable,

G, is

fG(g) =
1

���(�)
g��1e�g=�U(g) (G.1)

with � � 0 and � > 0. The mean and variance of the Gamma distribution are,

respectively:

� = �� (G.2)

�2 = ��2: (G.3)

These can be determined from the moment-generating function,

MG(t) = E
�
etg
�

(G.4)

= (1� �t)�� (G.5)

Some special cases of the Gamma distribution are known by other names:

� = 1 Exponential distribution

� = �
2
, � = 2 Chi-square distribution, with � degrees of freedom

� is an integer Erlang

G.1 A Gamma RV by Squaring a Zero-Mean Gaussian RV

One common way to generate a Gamma rv is to square a Gaussian rv. To

�nd the distribution of a function of a random variable, y = g(x), we have
nX
i=1

fX(xi)

jg0(xi)j (G.6)
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where we use the solutions xi = g�1(y). Applying this technique to the special case of

y = x2 where x is distributed N(0; �2) yields no solutions for y < 0 and two solutions

for y > 0, x1 =
p
y and x2 = �py:

fY (y) =
1

2
p
y
[fX(

p
y) + fX(�py)]U(y) (G.7)

=
1p
y
fX(

p
y)U(y) (G.8)

=
1p
2�y�

e�
y

2�2U(y) (G.9)

=
1

���(�)
y��1e�y=�U(y) (G.10)

where � = 1=2 and � = 2�2. So we have a Gamma distribution (or a Chi-square with

one degree of freedom).

G.2 Scaling a Gamma RV Yields a Gamma RV

Scaling a Gamma rv by a constant yields a new Gamma with the same

� parameter, but � scaled by the same constant. Let S = aG, where G is Gamma

distributed then

fS(s) =
1

jajfG(s=a) (G.11)

=
1

jaj���(�)
� s
a

���1
e�s=(a�)U(s=a) (G.12)

=
1

(a�)� �(�)
(s)��1 e�s=(a�)U(s) (G.13)

G.3 The Sum of Independent Gamma RV's

What is the pdf of the sum of Gamma rv's, Z = X + Y ? Here, assume

that X and Y are independent, so fZ(z) is simply the convolution of two Gamma

distributions. Convolution of distributions is equivalent to multiplication of moment

generating functions:

MZ(t) = MX(t)MY (t) (G.14)

= (1� �X)
��X (1� �Y )

��Y (G.15)
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If X and Y have the same � parameter, then MZ(t) = (1 � �)�(�X+�Y ), so Z is

distributed Gamma with �Z = �X + �Y and �Z = �X = �Y = �. The pdf for

the sum of Gamma rv's with �X 6= �Y , but identical � can be computed with a

convolution, yielding a rather messy result involving Bessel functions:

fZ(z) =
e
�z
2 �1

� z
2 �2 z�1+3�

�
z
�1
� z

�2

� 1

2
��p

� I� 1

2
+�(

z
2�1

� z
2�2

)

(�1 �2 )
� �(�)

: (G.16)

G.4 Kullback-Leibler Distance Between a Gamma Distribution and a

Gaussian Distribution

Because the mean and variance of a periodogram estimate are easily com-

puted, the distribution of the estimate is typically assumed to be Gaussian, with this

mean and variance. Here we have shown that for several cases the distribution is

actually Gamma. How far is this distribution from the Gaussian typically assumed?

A standard measure is the Kullback Leibler distance, or relative entropy, where the

distance between two densities is de�ned as [56, p. 231]

D (fkg) =
Z
f(x) log

f(x)

g(x)
dx: (G.17)

While not a true metric, relative entropy has the property of non-negativity,D(fkg) �
0, with equality if and only if the distributions are identical, f = g.

De�ne f(x) to be the Gamma distribution,

f(x) =
x��1

���(�)
e�

x
� U(x) (G.18)

and g(x) to be the Gaussian distribution, with mean, �� and variance ��2 (identical

to the Gamma distribution),

g(x) =
1p

2���2
exp

"
�(x� ��)2

2��2

#
: (G.19)

The natural logarithm of the ratio of these distributions is

log

�
f(x)

g(x)

�
= (�� 1) log

�
x

�

�
+ log

 p
2��

�(�)

!
+

x2

2��2
� 2x

�
+
�

2
: (G.20)
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The relative entropy, D, computed as the integral of this expression mul-

tiplied by f(x), can be thought of as an expectation with respect to f(x):

D (fkg) = E log

�
f(x)

g(x)

�
(G.21)

= (�� 1)E log

�
x

�

�
+ log

 p
2��

�(�)

!
+
1

2
� �: (G.22)

The expectation of the log of x=� is

E log

�
x

�

�
=

Z 1

0

f(x) log

�
x

�

�
dx (G.23)

=

Z 1

0

x��1

���(�)
e�

x
� log

x

�
dx (G.24)

=
1

�(�)

Z 1

0

u��1e�u log u du (G.25)

=  (�) (G.26)

=
�0(�)
�(�)

(G.27)

= �
 +
��1X
j=1

1

j
(G.28)

where  (�) is the digamma function (the derivative of the log of the Gamma func-

tion), which can be expressed for integer arguments, �, in terms of the Euler gamma

constant, 
 � 0:57721 and a �nite sum (see Gradsteyn and Ryzhik, p. 604). Thus,

the relative entropy between a Gamma distribution and a Gaussian distribution is

D (fkg) = (�� 1)

 
�
 +

��1X
j=1

1

j

!
+ log

 p
2��

�(�)

!
+
1

2
� �: (G.29)
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Appendix H

Binary Classi�cation of Wind Fields through Hypothesis Test-

ing on Scatterometer Measurements

H.1 Abstract

1Scatterometers are radars specially designed to near-surface wind over the

ocean from space. Traditional scatterometer wind estimation inverts the model func-

tion relationship between the wind and backscatter at each resolution element, yielding

a set of ambiguities due to the many-to-one mapping of the model function. Field-

wise wind estimation dramatically reduces the number of ambiguities by estimating the

wind at many resolution elements, simultaneously, using a wind model that constrains

the spatial variability of the wind. However, the appropriate choice of the model order

needed for a particular wind �eld is not known a priori. The approximate model or-

der is valuable because of the implicit trade-o� between the computational complexity

of high-order models and the imprecise model �t of low-order models. In this paper,

a simple binary classi�cation of wind �elds is proposed which identi�es whether or

not a region will be well modeled by a low-order wind model. The raw scatterometer

measurements provide data about the wind that can be exploited through hypothesis

testing to identify the appropriate model order to use in �eld-wise wind estimation.

Improved processing algorithms lead to better use of the data.

1Published and presented [63]
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H.2 Introduction

Naval radar operators during World War II observed considerably more

noise in their radar returns during stormy weather; with this simple beginning, scat-

terometry was born [1]. Scatterometers are high frequency radars designed to infer

the physical state of a system based on measuring the backscatter from that system.

In particular, the last 20 years have seen the use of several space borne scatterometers

to estimate near-surface ocean winds with considerable success [29]. The estimation

procedure is not unique; that is, several wind vectors (as many as six) are typically

found that could have produced the measurements.

Sample of All Point−Wise Solutions in a Region

Figure H.1: Constructing a unique wind �eld from the multiple point-wise estimates
is a daunting task. Each resolution element can have as many as six point-wise
estimates. Determining the optimal �eld for a 12 by 12 region would require comparing
as many as 6144 �elds.

For example, Fig. H.1 displays all of the possible wind vectors based on

point-wise wind estimation, throughout a region; correctly identifying a unique wind

�eld from the many possible combinations is not a well de�ned process, involving

considerable computational resources and often prone to error. To ameliorate the
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Measurements

Locally optimize to
find the best 6 (or more)
parameter solution set

Consider a
more complex

model.

be modeled
Can region

with 2 bases?

Backscatter

2 parameter model

YES

NO

Determine the set
of fields from the

Figure H.2: Flow diagram for hypothesis testing. A statistic of the backscatter mea-
surements for a region is computed, and a hypothesis test performed on this statistic.
If the region is identi�ed by the test as likely to be well modeled by a mean wind �eld,
a set of �elds is determined by globally optimizing that two-dimensional space; these
solutions serve as initial values in a local optimization in a higher-dimensional space
to more accurately estimate the wind �eld. If the hypothesis test reveals that the �eld
will not be (probably) adequately �t by two bases, more work will need to be done.
Experience suggests that a slight majority of wind �elds are adequately �t by a mean
wind �eld; those that are not can be used to develop models speci�cally designed for
more di�cult wind �elds. Such models could include low wind speed models and non-
linear models for fronts and cyclones. Additional hypothesis tests could be cascaded
after this one: if the region is not �t by two bases, is it a low wind speed region or a
front or a cyclone?

problem of selecting unique wind vectors, �eld-wise estimation has been introduced

in which an assumed model for the spatial correlation of wind vectors constrains

the possible estimates [46, 64]. Flexible models which span a wide range of wind

�elds require many parameters|searching a high-dimensional space for wind �eld

estimation is computationally prohibitive [65]. On the other hand, models with only

a few parameters are easily searched, but represent a limited range of wind �elds [30].

In this paper a simple algorithm is examined to identify, directly from the backscatter

measurements, whether or not a particular region can be well modeled by a simple,
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low-order model. This approach decreases the average number of model parameters

without signi�cantly increasing the average modeling error.

Due to the nature of the wind estimation objective function, simple gra-

dient search techniques can not guarantee convergence to the global optimum; the

wind model vector space must be searched exhaustively. While exhaustively search-

ing even a 6 dimensional vector space is prohibitive, a two dimensional search is

fairly straightforward. An exhaustive search involves selecting a two dimensional

(i.e., mean) wind �eld and computing the probability of measuring the actual scat-

terometer measurements given that wind �eld and identifying the wind �eld (or set of

�elds) that maximizes that probability. Figure H.2 indicates a simple block structure

of a hypothesis test to identify from the measurements whether or not a �eld is well

modeled by a mean wind �eld. If a �eld is well modeled, there is no need to waste

additional resources trying to estimates higher order parameters; a mean wind �eld

can be estimated, and if a better estimate is required, a local optimization in a higher

dimensional space can be performed. If the �eld is not well modeled by a mean wind

�eld, then substantially more work needs to be done with this �eld|perhaps a six

parameter model, or a low-order non-linear model tuned to speci�c wind phenomena

would work. The methodology presented here could easily be extended to additional

hypotheses to continue reducing the set of di�cult wind �elds.

In the next section a statistic on the measurement is identi�ed which has

a strong correlation to the error of the model �t; it is this statistic that can be used

in a hypothesis test. Hypothesis testing is then brie
y described and speci�cally

applied to wind �eld classes and the backscatter statistic. Finally, some conclusions

are presented to put this work in perspective.

H.3 Statistics on the Measurements

Initial examination of the backscatter �eld over a region reveals little re-

lationship to the underlying wind �eld. Figure H.3 shows a gray scale image of the

average backscatter measurements for the region displayed in Fig. H.1. While there is

some correspondence between the magnitude of the backscatter and the wind speed,
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Figure H.3: The average backscatter measurements for the wind �eld region displayed
in Fig. H.1. While there is some relationship between the backscatter and the wind
speed and complexity, the relationship becomes unclear for cells along the top because
the backscatter is dramatically reduced with the increased incidence angle.

the cells at the top of the image (which have much larger incidence angles) have neg-

ligible backscatter values, because of the strong incidence angle dependence of the

measurements [32]. In order to observe the variability of the backscatter caused by

wind variations, the incidence angle dependence must be removed. I selected over 2000

regions from NSCAT (NASA Scatterometer) data in which a two parameter model

(the mean wind �eld) �t the �eld selected by Jet Propulsion Laboratories (JPL) very

well, according to the normalized-vector RMS error. Each of these regions had fairly

constant along track backscatter values and a strong cross-track dependence for the

backscatter. Averaging over all the regions, and over the along-track cells to yield

the cross-track dependence of the backscatter for each beam (the beams have di�er-

ent relative azimuths and possibly di�erent calibration errors) provides the average

backscatter for each beam as a function of the cross track cell. The results are shown

in Fig. H.4 where the curves show the cross-track dependence of the backscatter for

each beam. Now we can examine the normalized backscatter of a region, where we

normalize by dividing each backscatter measurement by the averages described by
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Figure H.4: The average backscatter for very smooth wind �elds, i.e., those which a
two parameter model �ts the JPL nudged wind with less than 0.1 NRMS error.

Fig. H.4. Any patterns or variations in the normalized backscatter should then be

due to the underlying wind pattern.

The statistics of the normalized backscatter seem to have some relationship

with the quality of �t of the wind model to the wind �eld. Examining more than 5000

regions, the RMS of the standard deviation of the normalized backscatter from each

beam is highly correlated with the VRMS (Vector RMS) error between the mean wind

�eld estimate and the JPL estimate of the wind; this standard deviation is selected as

the statistic for use in the hypothesis test. Figure H.5 shows the relationship between

the statistic and the VRMS error for the 5000 wind �elds. By setting a VRMS error

criterion, the �eld can be classi�ed as good or bad based on whether the �eld exceeds

the criterion for quality.

H.4 Hypothesis Testing

Wind �eld classi�cation algorithms can be used to select models with a

minimal number of parameters while keeping the error within an acceptable range.

The result increases the computational e�ciency of �eld-wise estimation without

signi�cantly increasing the modeling error. In this section a simple classi�cation
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Figure H.5: In general, the �elds that are poorly �t by a mean wind �eld (these have
a high VRMS error) have a large value of the measurement statistic (the std of the
normalized backscatter).

algorithm is described which tests the hypothesis that a �eld is poorly modeled by a

low-order model|speci�cally, by a mean wind �eld. Referring to Fig. H.2, a VRMS

error threshold is selected to identify �elds with error greater than the threshold as

a bad �eld (since it is poorly �t with two bases) and �elds with less error as good.

Either the region is adequately modeled by a low-order model (designated good, �0),

or it is poorly modeled by the low-order model (bad, �1). Comparing the statistic, y,

to a threshold, �, provides the basis for the binary hypothesis test [48]:

Wind Class Declaration =

8<: �1 if y > �

�0 if y � �:

The statistic, y, is de�ned as the standard deviation of the �0 values of all the beams

normalized by the average backscatter values to remove the cross track dependence.

The choice of a threshold for the VRMS error of model �t identi�es a

�eld as being either well (�0) or poorly (�1) modeled by a mean wind �eld. The

de�nition of \well" modeled, and the choice of the threshold, depends on the particular

application. The horizontal line in Fig. H.5 illustrates, for a given application, the
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separation of the wind �elds into two classes|�0 if the VRMS error is below the

line and �1 if the error is above the line. Having identi�ed the �elds as �0 or �1, the

empirical probability density functions of good and bad wind �elds can be computed

as functions of the statistic. Figure H.6 plots these densities for a few values of the

VRMS error threshold.

The density functions of good and bad wind �elds displayed in Fig. H.6

provide the probabilistic measures necessary for a hypothesis test. By setting a thresh-

old on the measurement statistic, we can test the hypothesis that a wind �eld will

be bad. If our measurement is less than the threshold, the �eld is declared good, �0;

if the measurement is above the threshold, the �eld is declared bad, �1. The vertical

line in Fig. H.5 illustrates this point by identifying a threshold on the statistic; the

two classes of wind �elds (separated by the horizontal line) and the two classes of

declared wind �elds (distinguished by the vertical line) de�ne four distinct regions in

the �gure, which can be characterized through two numbers: the probability of false

alarm and the probability of detection.

The probability of false alarm is the probability that we incorrectly identify

a good �eld as bad; this probability is computed as the area under the pdf of good

�elds above the threshold. The probability of detection is the probability that we

correctly identify a bad �eld as bad; this is computed as the area under the pdf of

bad �elds above the threshold. Optimally we want a low probability of false alarm

and a high probability of detection; adjustment of the hypothesis threshold requires

a trade-o� between these quality measures.

In this case, the probability of detection is critical. If we miss detection of

a bad wind �eld, we will try to use the two-parameter model on a �eld that contains

more features than a simple mean 
ow. On the other hand, the probability of false

alarm is not so important. If we classify a good wind �eld as bad, we will look at it

more closely and use a more involved model|this more complicated model will work

just �ne and the wind will be estimated with a little more trouble. Of course if we

set our threshold too low, we classify everything as bad and don't gain any savings in

computation from the classi�cation. Figure H.7 displays characteristic curves for our
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four VRMS thresholds that identify the quality of the �t by displaying the probability

of detection against the probability of false alarm as the statistic threshold is adjusted.

If, for example, the wind �eld class �0 is de�ned as wind �elds that have

a 2 parameter model �t VRMS error less than 3.4 m/s (below the horizontal line of

Fig. H.5), and with the choice of � = 0:52 (selected to declare half the wind �elds in

�0 and half in �1), the probability of correctly classifying a �1 wind �eld (probability

of detection) is 86% and the probability of incorrectly classifying a �0 wind �eld

(probability of false alarm) is 32%. With these thresholds (rather arbitrarily chosen)

50% of the wind �elds are declared to be well modeled by just 2 parameters|in fact,

the average VRMS error of these �ts is 2.2 m/s. For comparison, if two parameters

had been used for all the regions, the average VRMS error would have been 3.2 m/s,

and if 40 parameters had been used, the average VRMS error would have been 1.2 m/s.

Thus for a moderate increase in modeling error, the number of required parameters

was reduced from 40 to two in half the regions|with a signi�cant computational

saving.

H.5 Conclusions

Field-wise wind estimation profoundly reduces the number of ambiguities

and reduces the computational load of scatterometer wind estimation. Increasing the

number of model parameters increases modeling accuracy; however, it also increases

computational expense. Classi�cation algorithms, such as that presented here, can

be used to decrease the average number of model parameters without signi�cantly

increasing the average modeling error. Identifying, a priori, �elds that will be well

modeled by a low-order model conserves computing resources for more di�cult �elds.

Further, �elds that are classi�ed as poorly modeled by a mean wind �eld can be used

to develop improved models speci�c to certain features like fronts and cyclones. Low-

order models can be developed for these cases without the need of using the generic

model which would require many parameters to model unusual �elds.
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Figure H.6: Empirically derived probability density functions of good and bad wind
�elds as functions of the statistic of the scatterometer measurements. As the VRMS
error threshold is increased, the empirical density function becomes more erratic be-
cause there is a much smaller data set with which to estimate the density.
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Figure H.7: Characteristic curves based on adjusting the threshold on the measurement
statistic (for each of four VRMS error thresholds identifying the quality of the �t).
The goal is to choose a threshold on the statistic to yield a low probability of false
alarm while maintaining a high probability of detection.
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Appendix I

Glossary of Mathematical Symbols

k, k1, k2 Frequency bins of the spectral estimate.

p Power parameter of the ocean surface spectrum, p. 12.

z Measured value of the backscatter, corrupted by noise.

Aij Coe�cients used in the partial fraction expansion.

C, C(�; �), C(x; y) The correlation function in two-dimensional real space. The in-

verse Fourier Transform of the surface power spectrum.

I0(x) The zeroth order modi�ed Bessel function.

KPM The normalized standard deviation of the model function, nor-

malized by the mean value.

NRCS The normalized radar cross section, equivalently expressed by the

symbol for the backscatter coe�cient, �o (see below), p. 2.

NSCAT The NASA scatterometer. Developed at the Jet Propulsion Labo-

ratories and launched in August, 1996, the satellite power supply

failed in June 1997.

R The autocorrelation matrix of a data vector.

S, S(k; �) The surface power spectrum, in two-dimensional wavenumber space.

Computed as the Fourier Transform of the correlation function,

C.
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U Wind speed.


 The incomplete Gamma function.

� Standard normal random variable.

� Standard normal random variable.

�o The backscatter coe�cient, see also NRCS, pp. 2, 14.

�oM The NRCS value predicted by the empirical model function, given

the wind and measurement conditions.

�oT The true value of the NRCS as developed by the geophysical pa-

rameters.

� Central matrix of the quadratic form yielding the power estimate

of a band of frequencies based on Welch's modi�ed periodogram

averaging for a data vector, x.

�2 The generalized hypergeometric function.

R Range from radar to scattering target (p. 2).

L Losses in the radar system. (p. 2).

Ps Power scattered from the surface. (p. 2).

Pt Power transmitted by the radar (p. 2).

G Gain of the radar system (p. 2).

� 1: Electromagnetic wavelength (p. 2). 2: Surface roughness, the

large parameter in asymptotic analysis de�ned as 4h2�2 (p. 14).

A Area of target (p. 2).

~� Electromagnetic wavenumber, 2�=�, (p. 14).
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� Magnitude of the electromagnetic wavenumber (p. 14).

�i Incidence angle, measured from normal (p. 14).

kb Bragg wavenumber (p. 14).

~�H Horizontal component of the electromagnetic wavenumber (p. 14).

h Height of the ocean surface de�ned as the standard deviation of

the surface (p. 14).

�c The radius of curvature of the ocean surface (p. 13).

K(k) The wavenumber magnitude dependence of the separable version

of the ocean power spectrum (see also �(�)) (p. 17).

�(�) The angular dependence of the separable version of the ocean

power spectrum (see also K(k)) (p. 17).

k0 Low wavenumber limit (or peak) of the ocean surface spectrum

(p. 18).

q Directionality parameter of a separable ocean sectrum, cos2q(�),

see also q (p. 18).

�0 Directionality parameter of a separable ocean spectrum with hard

limits at ��0, see also �(�), (p. 21).

kx, ky Components of the ocean surface wavenumbers (p. 20).

S0 Normalizing constant for the ocean spectrum (p. 18).

�(x) The Gamma function.

� Polar magnitude coordinate in real space (p. 20).

� Polar angular coordinate in real space (p. 20).
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T (�; �) Function containing the angular dependence of the surface corre-

lation function (p. 21).

a Coe�cient in the approximation for T (�; �) (p. 22).

b Coe�cient in the approximation for T (�; �) (p. 22).

� Coe�cient in the expression for the dominant terms of the corre-

lation function (p. 22).

A Coe�cient in the expression for the dominant terms of the corre-

lation function (p. 22).

�0 Roughness limit describing the transition point between two types

of asymptotic behaviors caused by the �nite radar footprint (p.

25).

Cdom The dominant terms of the correlation function (p. 22).

� Relative azimuth angle between the wind direction and radar az-

imuth angle (p. 39).

A0, A1, A2 Coe�cients in empirical model functions relating the wind to the

backscatter (p. 39).

z Bacscatter measurement (p. 43).

KPC Normalized standard deviation of the communication noise (p.

43).

A, B, C Coe�cients in the computation of KPC (p. 44).

SNR Signal to Noise Ratio (p. 44).

SV Sample variance (p. 50).

SM Sample mean (p. 50).
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x[j], x[i; n] Data sequence, (p. 68).

L Length of data segment (p. 68).

K Number of data segments (p. 68).

r Amount of overlap in Welch's spectral estimation technique (p.

68).

w[n] Data window in time domain (p. 68).

W [k] Data window in frequency domain (p. 68).

k, k1, k2 Frequency bin (p. 68).

P [i; k] Power estimate in the kth frequency bin, based on the ith data

segment (p. 69).

U Normalization factor dependent on the data window (p. 68).

X[i; k] Fourier Transform of the ith data segment (p. 68).

x Data vector (p. 69).

N Length of entire data vector, x (p. 69).


 Matrix form of the data window (p. 69).

�[i; k], � Central matrix in the quadratic form used to estimate the spec-

trum (p. 69).

Ck, Sk Matrices describing the cosine and sine e�ects in the Fourier

Transform (p. 69).

Z The length of the zero-padded data segments (p. 69).

M(t) The moment-generating function (p. 70).

�i Eigenvalues of R� (p. 70).
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�i Multiplicity of the eigenvalue, �i (p. 70).

D The number of distinct non-zero eigenvalues (p. 70).

�P Mean of the power estimate (p. 70).

�2P Variance of the power estimate (p. 70).

di Convenient coe�cent based on the eigenvalues, �i (p. 70).

g Convenient coe�cient based on the eigenvalues, �i (p. 70).

J The total number of non-zero eigenvalues, (p. 70).

�i Eigenvalues of � (p. 72).

b Number of frequency bins (p. 74).

� Parameter for the Markov process (p. 77).

D(f jjg) Relative entropy (Kullback-Leibler distance) between two proba-

bility density functions, f and g (p. 79).

� Parameter of the Gamma distribution, see also � (p. 79).

� Parameter of the Gamma distribution, see also � (p. 79).
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