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ABSTRACT

IMPROVING ACCURACY IN MICROWAVE RADIOMETRY VIA

PROBABILITY AND INVERSE PROBLEM THEORY

Derek L. Hudson

Electrical and Computer Engineering

Doctor of Philosophy

Three problems at the forefront of microwave radiometry are solved us-

ing probability theory and inverse problem formulations which are heavily based in

probability theory. Probability theory is able to capture information about random

phenomena, while inverse problem theory processes that information. The use of these

theories results in more accurate estimates and assessments of estimate error than is

possible with previous, non-probabilistic approaches. The benefits of probabilistic

approaches are expounded and demonstrated.

The first problem to be solved is a derivation of the error that remains after

using a method which corrects radiometric measurements for polarization rotation.

Yueh [1] proposed a method of using the third Stokes parameter TU to correct bright-

ness temperatures such as Tv and Th for polarization rotation. This work presents

an extended error analysis of Yueh’s method. In order to carry out the analysis, a

forward model of polarization rotation is developed which accounts for the random

nature of thermal radiation, receiver noise, and (to first order) calibration. Analytic

formulas are then derived and validated for bias, variance, and root-mean-square error





(RMSE) as functions of scene and radiometer parameters. Examination of the for-

mulas reveals that: 1) natural TU from planetary surface radiation, of the magnitude

expected on Earth at L-band, has a negligible effect on correction for polarization

rotation; 2) RMSE is a function of rotation angle Ω, but the value of Ω which mini-

mizes RMSE is not known prior to instrument fabrication; and 3) if residual calibra-

tion errors can be sufficiently reduced via postlaunch calibration, then Yueh’s method

reduces the error incurred by polarization rotation to negligibility.

The second problem addressed in this dissertation is optimal estimation

of calibration parameters in microwave radiometers. Algebraic methods for internal

calibration of a certain class of polarimetric microwave radiometers are presented by

Piepmeier [2]. This dissertation demonstrates that Bayesian estimation of the calibra-

tion parameters decreases the RMSE of the estimates by a factor of two as compared

with algebraic estimation. This improvement is obtained by using knowledge of the

noise structure of the measurements and by utilizing all of the information provided

by the measurements. Furthermore, it is demonstrated that much significant informa-

tion is contained in the covariance information between the calibration parameters.

This information can be preserved and conveyed by reporting a multidimensional pdf

for the parameters rather than merely the means and variances of those parameters.

The proposed method is also extended to estimate several hardware parameters of

interest in system calibration.

The final portion of this dissertation demonstrates the advantages of a

probabilistic approach in an empirical situation. A recent inverse problem formu-

lation, sketched in [3], is founded on probability theory and is sufficiently general

that it can be applied in empirical situations. This dissertation applies that formu-

lation to the retrieval of Antarctic air temperature from satellite measurements of

microwave brightness temperature. The new method is contrasted with the curve-

fitting approach which is the previous state-of-the-art. The adaptibility of the new

method not only results in improved estimation but is also capable of producing use-

ful estimates of air temperature in areas where the previous method fails due to the

occurence of melt events.
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Chapter 1

Introduction

“Truth is knowledge of things as they are, and as they were, and as they are to

come.” –Doctrine and Covenants 93:24

Many problems in microwave radiometry are currently approached and

solved in an algebraic fashion. This approach is favored because it is simple and

accessible to audiences unfamiliar with more sophisticated approaches. However, the

use of probability theory and probabilistic inverse problem theory can yield solutions

which are significantly more accurate than algebraic solutions.

The foundation for an accurate solution is an accurate forward model.

While a purely algebraic model is easy to handle, a probabilistic model can include

additional information. One avenue for this is to model quantities as random vari-

ables rather than simple algebraic entities. An additional avenue is to capture the

relationships among variables using probability density functions (pdfs) rather than

deterministic functions.

A forward model with probabilistic variables and relationships should also

be inverted probabilistically in order to obtain information on parameters of interest.

Bayes’ theorem can be used to perform such an inversion when an algebraic forward

model exists. A more general approach, recently been published by Tarantola [3], is

available to invert probabilistic forward models.

1.1 Purpose

A primary purpose of this dissertation is to manifest advantages obtained

by employing probability theory and probabilistic inverse problem theory instead of
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simple algebraic methods. These advantages are: (a) more accurate estimates of

parameters, (b) more accurate assessments of error in estimates, and (c) conservation

of important covariance information.

Applying probability theory and probabilistic inverse problem theory is not

necessarily a straight-forward task. Hence, a second purpose of this dissertation is

to demonstrate details of application to three problems of increasing difficulty. This

prepares the way for others, especially those in the field of microwave radiometry,

to more easily apply probability theory and probabilistic inverse problem theory in

other problems.

The third purpose of this dissertation is to solve three actual problems at

the forefront of microwave radiometry. These problems and the results obtained are

now summarized.

1.2 Outline of Problems, Solutions, and Contributions

1.2.1 Analysis of Correction for Polarization Rotation

The first problem to be solved (Chapter 3) is a derivation of the accu-

racy of a procedure which corrects for unwanted rotation in the polarization basis

of radiometric measurements. Yueh [1] proposed a method of using the third Stokes

parameter TU to correct brightness temperatures such as Tv and Th for polarization

rotation. The method is termed “polarization rotation correction” (PRC). Chapter

3 presents an extended error analysis of PRC. In order to carry out the analysis, a

forward model of polarization rotation is developed which accounts for the random

nature of thermal radiation, receiver noise, and (to first order) calibration. An ap-

pendix to Chapter 3 derives a covariance matrix which is used in Chapters 3 and

4. Analytic formulas are then derived for the residual bias, variance, and root-mean-

square error (RMSE) of PRC as functions of scene and radiometer parameters. These

formulas are validated independently via Monte Carlo simulation.

Examination of the formulas yields valuable insights. In the planning of an

L-band spaceborne radiometer for soil moisture sensing, there has been concern that

natural TU from planetary surface radiation will significantly degrade the performance
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of PRC. However, the formulas derived in Chapter 3 indicate that natural TU of the

magnitude expected on Earth at L-band (less than 5 K) has a negligible effect on

PRC for such a sensor.

Another insight provided by the derived formulas is that residual error

(after PRC) stems from residual calibration errors. Furthermore, it is more accurate

to consider rotation angle Ω to be a modulator of residual calibration errors, rather

than an error source itself. In addition, if residual calibration errors are unknown,

then the value of Ω which minimizes residual PRC error is also unknown. This

contradicts the notion that error automatically increases with Ω (that notion is true

when no correction is made). This work is published as [4].

1.2.2 Optimal Internal Calibration

The second problem addressed in this dissertation (Chapter 4) is optimal

estimation of calibration parameters in microwave radiometers. Algebraic methods

for internal calibration of a certain class of polarimetric microwave radiometers are

presented by Piepmeier [2]. Chapter 4 and its appendix work out the intricacies

necessary to estimate the calibration parameters probabilistically (via Bayes theo-

rem) rather than algrebraically. The result, validated by Monte Carlo simulation,

is a reduction in RMSE by a factor of two as compared with algebraic estimation.

This improvement is possible because the probabilistic method is able to utilize re-

dundancy in the measurements (there are 16 measurements and only ten parameters

to estimate). Optimal utilization of the redundancy is possible because probability

theory captures knowledge of the noise structure of the measurements. While the

probabilistic method has greater complexity and requires more computation than an

algebraic method, the complexity is worked out in this dissertation and the compu-

tation is minor by today’s standards.

Chapter 4 also demonstrates that much significant information is available

as covariance information between the calibration parameters. This information can

3



be preserved and conveyed by reporting a single multidimensional pdf for the param-

eters as the solution to the problem, rather than merely reporting the means and

variances of the parameters.

As an extension of the work, pdfs are also found which characterize and/or

estimate eight hardware parameters of this class of radiometer. One parameter, the

amplitude imbalance of a hybrid coupler, receives no uncertainty from the effects

modeled in this paper. Another parameter, a bandpass equalization efficiency, is also

well resolved. The remaining six parameters cannot be individually resolved from

radiometer measurements. However, either ratios or products of pairs of them can be

well resolved.

This work is published as [5]. Note that the theoretical advantages pre-

dicted by this dissertation could be optimistic. Application of the probablistic method

in hardware is needed in order to validate the predictions herein.

1.2.3 Improved Retrieval of Polar Air Temperature

The third problem to be solved in this dissertation (Chapter 5) demon-

strates the advantages of a probabilistic approach in an empirical situation. A recent

inverse problem formulation, sketched in [3], is strongly based in probability theory

and is sufficiently general that it can be applied in empirical situations. Chapter 5

applies that formulation to the retrieval of Antarctic air temperature from satellite

measurements of microwave brightness temperature.

The previous state-of-the-art method (termed “sinusoidal method”) used

a sinusoidal curve to approximate the relationship between Antarctic air temperature

T and satellite measurements of microwave brightness temperature B. The new

method (termed “pdf method”) achieves better performance because it derives a

more exact (albeit empirical) relationship between T and B. The pdf method is

more accurate because it does not constrain the relationship between T and B to

a sinusoidal model. Instead, coincident T and B data are treated as samples of an

underlying two-dimensional pdf which relates T and B.
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To compare the sinusoidal and pdf methods, one or two years of coincident

T and B data at an Antarctic weather station are used to train both methods (that

is, to derive an empirical relationship between T and B at the station) . The methods

are then tested on another year of B data. The output of each method (T̂ ) is then

compared with station T data. In particular, the root-mean-square (RMS) of the

difference is calculated.

This procedure demonstrates that the adaptibility of the new method re-

sults in improved estimation. With only one year of training data, the performance of

the pdf method is slightly better than the sinusoidal method. This holds true over a

wide range of two controlling parameters, σD and σ. These parameters are standard

deviations which specify the credibility which the pdf method gives at a particular site

to its two sources of information (namely, day of year and 37-GHz v-pol brightness

temperature measured on that day).

When two years of training data are available, the pdf method can be

self-trained to make intelligent choices for σ and σD. This intelligence or adaptivity

produces significant improvements. Compared to the sinusoidal method, the pdf

method reduces RMS error by an average of 0.3 ◦C at the three inland sites with

sufficient data for use in this study.

With two years of training data, the adaptibility of the new method also

makes it capable of producing useful estimates of air temperature in areas where the

previous method fails due to the occurence of melt events. Two sites have sufficient

data for this study. Both are located on the Antarctic coast. Compared to the

sinusoidal method, the pdf method reduces RMS error by an average of 8.4 ◦C at

these sites.

A final advantage of the pdf method is that the variance of a T estimate can

be estimated even when ground truth data are unavailable. Specifically, the variance

can be calculated directly from the marginal pdf for T (this marginal is an output of

the pdf method).
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1.3 Dissertation Structure

The dissertation is developed as follows. Chapter 2 provides background

concepts on microwave polarimetric radiometry and estimation theory. Chapter 3 is

an error analysis of polarization rotation correction in microwave radiometry. Chapter

4 derives optimal (Bayesian) internal calibration of microwave radiometers. Chapter

5 derives an improved method of estimating polar air temperature from microwave

radiometric data. Chapter 6 contains summary and discussion, including future work

options. The appendices include a number of detailed derivations and a description

of the data sets used in Chapter 5.
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Chapter 2

Background

The three problems solved in this dissertation all concern microwave ra-

diometry and estimation theory. A few essential concepts from these fields are sum-

marized here. More complete expositions of radiometry are found in [6, Chs. 4 and 6]

and [7, Ch. 7]. A good introduction to classical probability and estimation theory is

[8], with deeper developments in [9] and [3]. Background information which relates to

only one of the specific problems in this dissertation is presented within the relevant

chapter.

2.1 Microwave Radiometry

Microwave radiometry is the measurement of natural electromagnetic radi-

ation in the microwave spectrum. This radiation is generated by the tiny vibrations,

collisions, and other movements which constitute the thermal energy of matter. The

characteristics of this radiation are described by Planck’s radiation law and additional

theory.

The intensity of this radiation is measured by a radiometer as the brightness

temperature TB of a scene at a certain frequency and polarization. This brightness

is the product of the physical temperature T of the scene and a quantity called the

emissivity ϵ of the scene:

TB = ϵT. (2.1)

The emissivity ranges from 0 to 1. It depends on the polarization of the

radiation and on the composition, orientation, and texture of the scene. Both TB and

T are measured in kelvins, while ϵ is unitless.
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A phenomenon that is central to all three problems in this dissertation is

the random fluctuation of TB measurements. Even when ϵ and T are constant, the

randomness of the tiny movements of the atoms and molecules in a scene causes the

intensity of the emitted radiation to fluctuate about a mean value. The mean value

is the quantity which we wish to measure. The fluctuation is modeled by a zero mean

random variable which is termed noise equivalent ∆T (NE∆T ):

measured TB ≡ T̂B = TB +∆T. (2.2)

An important characteristic of NE∆T is that its standard deviation (STD) is equal

to TB/
√
Bτ , where B is the bandwidth of the radiation measured by the radiometer

and τ is the length of time over which the radiation is measured. Also, ∆T can be

approximated as a Gaussian random variable for Bτ > 10 [7, Ch. 7].

The basic process of measuring TB is straightforward. An antenna collects

the microwave radiation and converts it to a small electrical signal. This signal is

amplified and filtered by a receiver. The signal power, which is proportional to TB,

is then measured (“detected”) and digitized. This process can be represented by

P = G (TB + TRX) , (2.3)

where G is the overall amplification (gain) and TRX is additive noise power produced

by the receiver electronics. The radiometer consists of all the hardware to measure

TB from the antenna through the digitizing device. The calibration of the radiometer

consists of obtaining estimates of G and TRX , using targets or inputs with known

brightness temperature. Using hat marks to denote estimates, the desired estimate

of TB is then

T̂B =
P

Ĝ
− T̂RX . (2.4)

2.2 Polarization and Stokes Parameters

The polarization of microwave radiation is a characteristic of high signifi-

cance to many users of radiometer data. This section sketches the basic principles of

polarization characterization.
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+45°−45°

vertical

horizontal

Figure 2.1: Axes for defining the polarization of light. The plane of the figure is
perpendicular to the direction of travel of the light.

Consider the plane perpendicular to the direction of travel of a light wave

(such as microwave radiation). This plane is depicted in Figure 2.1. The electric field

component of light oscillates in this plane. If the oscillation is back and forth along the

vertical axis, then the wave is said to be vertically polarized. Likewise, a horizontally

polarized wave is one whose electric field oscillations occur in the direction of the

horizontal axis1. Two other polarizations are those at plus and minus 45◦ to the

vertical and horizontal axes, shown by dashed lines in Figure 2.1. Finally, a circularly

polarized wave is one in which the axis of electric field oscillations rotates smoothly

and continually rather than remaining fixed.

1For remote sensing of the earth, horizontal is defined as the axis parallel to both the earth’s
surface and the plane in Figure 2.1. Vertical is defined as the remaining axis (perpendicular to both
the direction of travel and the horizontal axis).
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The radiation (light) measured by a radiometer is the sum of large num-

bers of tiny waves which are randomly emitted by different parts of the scene. The

instantaneous axis of oscillation of the total electric field is therefore rather random

– that is, unpolarized to some degree. Nevertheless, in most cases the radiation is

partially polarized – that is, the oscillations have a larger component along one axis

than along others.

The degree to which such “random” radiation is polarized in various man-

ners can be described as follows. The light can be filtered such that only the vertically

polarized component of the oscillations is preserved. The brightness temperature of

this filtered radiation is defined as Tv. Similarly, brightness temperatures of the radi-

ation filtered along the other axes in Figure 2.1 are denoted by Th, T+45, and T−45. It

is also possible to measure the brightness temperature of only the circularly polarized

components of the radiation. The component whose axis of oscillation rotates to the

right is denoted Tr while the component whose axis of oscillation rotates to the left

is denoted Tl.

The polarization state of random radiation can be completely summarized

by four parameters known as Stokes parameters after their inventor. These are

TI (“first Stokes parameter”) ≡ Tv + Th = T+45 + T−45 = Tl + Tr, (2.5)

TQ (“second Stokes parameter”) ≡ Tv − Th, (2.6)

TU (“third Stokes parameter”) ≡ T+45 − T−45, (2.7)

TV (“fourth Stokes parameter”) ≡ Tl − Tr. (2.8)

It is also common to denote the third and fourth Stokes parameters by T3 and T4,

respectively. Radiation which is completely unpolarized has nonzero TI while TQ =

TU = TV = 0. More generally, the degree of polarization of radiation is given by

p =

√
T 2
Q+T 2

U+T 2
V

TI
, with p ranging from zero to one.
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2.3 Estimation Theory

This section provides a brief sketch of key selected concepts from estimation

theory which are frequently referred to throughout the dissertation. Specifically, it

touches on metrics for error and on the concept of forward versus inverse problems.

2.3.1 Error Statistics

The error in an estimator Q̂ of a quantity with true value Q can be defined

as follows. If the same process (estimator) is used to estimate the quantity N times,

under identical conditions every time, then an ensemble of estimates is obtained2,

denoted Q̂i with i = 1, ..., N . The root-mean-square error (RMSE) in this set of

estimates is an average error defined by

RMSE(set of Q̂i) ≡

√√√√(Q− Q̂1

)2
+ ...+

(
Q− Q̂N

)2
N

. (2.9)

As N grows to infinity, the arithmetic mean (average) of the ensemble is

equivalent (for practical purposes and the problem at hand) to the “expected value”

of the ensemble and is denoted < · >. The expected RMSE of the estimator Q̂ is

defined as

RMSE(Q̂) ≡
√
< (Q− Q̂)2 >. (2.10)

It is often very natural and useful to decompose RMSE into the root-

sum-square (RSS) of a bias and a standard deviation (STD). Bias is the expected

difference between the true Q and the Q̂i, while the STD captures the fluctuation of

the Q̂i around their mean value. Defining this mean value with Q̄ ≡< Q̂ >, then

Bias(Q̂) ≡ < Q− Q̂ > = Q− Q̄, (2.11)

STD(Q̂) ≡
√
< (Q̄− Q̂)2 >, (2.12)

RMSE(Q̂) =

√
Bias2(Q̂) + STD2(Q̂). (2.13)

2Typically it is not possible to physically obtain an ensemble since conditions do not remain
constant. Thus, the idea of an ensemble is primarily theoretical.
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2.3.2 Forward and Inverse Problems

A forward model or problem seeks to show how measurements M are a

function of parameters Q which characterize a particular situation. Conversely, an

inverse model or problem seeks to determine Q based on measurements M .

One type of forward model is a probability density function (pdf) for M ,

given a known set of Q. This pdf is denoted p(M |Q). In many cases it is possible to

find a solution to the inverse problem as another pdf, p(Q|M), by using the following

form of Bayes’ theorem:

p(Q|M) =
p(M |Q)p(Q)

p(M)
. (2.14)

Here, p(Q) is information on Q from some source other than the measurements M

(prior information on Q). Chapter 4 provides an illustration of the use of (2.14). The

denominator is simply a constant, a normalizing factor which creates a valid pdf for

fixed M .3

3This constant is left undetermined for the problems addressed in this dissertation. If it is needed,
it can be found as

p(M) =

∫
p(M |Q)p(Q)dQ. (2.15)
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Chapter 3

A Probabilistic Analysis of Polarization Rotation Correction

This chapter illustrates the use of probability theory to analyze the residual

error in a correction technique. Previously, this residual error was modeled and

analyzed in a simple algebraic fashion [1].

While the algebraic approach is straightforward and accessible, the resid-

ual error under examination is known to contain random constituents. Therefore,

this chapter expands the error model to include random variables. Analysis of this

probabilistic error model is significantly more challenging than for the previous alge-

braic model. However, it yields more accurate characterization of the residual error.

This analysis also yields valuable insight into the sources of residual error. This work

is published as [4]. It demonstrates how error analysis in microwave radiometry can

be taken to a higher level of fidelity.

3.1 Introduction

The earth’s ionosphere and magnetic field cause Faraday rotation of the

polarization of radiation emanating from the earth’s surface. This rotation mixes the

vertical and horizontal polarization components of brightness temperatures, Tv and

Th, degrading the measurement of both. The oft-used second Stokes parameter, TQ

(≡ Tv − Th), is doubly degraded. For L-band satellite measurements, the error in TQ

due to uncorrected Faraday rotation can exceed 10 K, depending on solar activity,

incidence angle, and the angle between the look direction and the Earth’s magnetic

field [10]. (Faraday rotation is inversely proportional to the square of frequency.

Therefore this source of polarization rotation is less important above L-band.)
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Additional polarization rotation occurs if a sensor’s antenna feed polar-

ization basis is rotated with respect to the natural polarization basis of the earth’s

surface. Such rotation may occur as an accidental misalignment [11] or may be de-

liberately permitted in order to simplify hardware [12].

Near-future L-band spaceborne radiometers, namely SMOS [13] and Aquar-

ius [14], are being designed to perform polarization rotation correction (PRC) in post-

processing. A basic method involves measuring the third Stokes parameter, TU , in

addition to the usual Tv and Th. The method is introduced by Yueh in [1].

Previously developed forward models of polarization rotation [15], [12],

[1], [11], are deterministic and neglect the role of receiver channel noise (although

[16] includes noise in simulations). In Appendix A, an extended model is developed

which takes into account the random nature of the radiation and also accounts for

receiver noise. Simple and accurate expressions are derived for the means, variances,

and covariances of the measurements in a three-channel (Tv, Th, and TU) radiometer.

These are derived in Appendix A and summarized in Section 3.2.

In Section 3.3, Yueh’s correction technique is reviewed. In Section 3.4

derivations are given for the mean, variance, and root mean squared error (RMSE)

of the resulting estimate of TQ. Similar derivations for Tv and Th are presented in

Section 3.5. Insights from the resulting formulas are presented in Section 3.6, and

conclusions are offered in Section 5.6.

Throughout this work, case studies are shown for the Aquarius radiome-

ter, whose deployment is expected in 2010. The Aquarius instrument will have three

beams with respective incidence angles of 28.7◦, 37.8◦, and 45.6◦ [14]. For measure-

ments of ocean emissions, these angles dictate a nominal TQ of about 20, 35, and 53

K, respectively [17]. The Aquarius instrument also has nominal integration time τ of

6 seconds. Reference is also made to the canceled NASA Hydros mission [18], whose

nominal τ was 0.016 seconds. The Hydros incidence angle is adjusted from 39.3◦ to

37.8◦ in this study, to match Aquarius.
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3.2 Summary of Forward Model

As shown in Appendix A, the processes of receiving, detecting, and cali-

brating the first three Stokes parameters in a polarimetric radiometer can be sum-

marized with the forward model

T̂Ia = TI +∆TRX,I +∆Tsys,I , (3.1)

T̂Qa = +TQ cos 2Ω + TU sin 2Ω +∆TRX,Q +∆Tsys,Q, (3.2)

T̂Ua = −TQ sin 2Ω + TU cos 2Ω +∆TRX,U +∆Tsys,U . (3.3)

The quantities on the left hand sides are our measurements of the first

three Stokes parameters after rotation, detection, and calibration. On the right sides,

the natural Stokes parameters of the scene, TI , TQ, and TU , are altered by polarization

rotation Ω [15] and perturbed by error sources, represented by quantities with a ∆

prefix.

∆TRX,I , ∆TRX,Q, and ∆TRX,U are residual biases from the calibration pro-

cess that is performed throughout data collection. For example, if the fourth cali-

bration scheme described in [2] is used, then ∆TRX,U corresponds to all but the first

term on the right side of (42) in [2]. That same calibration scheme also leads to

∆TRX,v = ∆TRX,h =
TH T̂C − TC T̂H
TH − TC

, (3.4)

where TH and TC are the true temperatures of the hot and cold calibration sources,

while T̂H and T̂C are the best available estimates of them. (The calibration sources

could be noise diodes or external targets, for example.) Then ∆TRX,I and ∆TRX,Q

are defined as the sum and difference of ∆TRX,v and ∆TRX,h, respectively.

Using (3.4) gives ∆TRX,Q = 0. A more realistic description distinguishes

between the calibration sources in the v and h channels, i.e.

∆TRX,v =
THvT̂Cv − TCvT̂Hv

THv − TCv

,

∆TRX,h =
THhT̂Ch − TChT̂Hh

THh − TCh

, (3.5)

so that ∆TRX,Q is nonzero. This distinction also complicates the expression for

∆TRX,U .
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The radiometer calibration process is such that ∆TRX,I , ∆TRX,Q, and

∆TRX,U are slowly varying (e.g., over a period of many minutes or more) compared

with the radiometer integration time, τ . Even if estimates of the calibration parame-

ters (e.g., T̂Cv) are obtained as often as several times per τ , it can be assumed that the

predictable thermal environment of space permits extensive averaging of those esti-

mates to yield better estimates. Therefore, for retrieving Tv, Th, and TQ measured in

a single radiometer measurement cycle or even many cycles, we can consider ∆TRX,I ,

∆TRX,Q, and ∆TRX,U to be constants. It is also anticipated that this averaging (and

other post-launch calibration activities) will reduce ∆TRX,I , ∆TRX,Q, and ∆TRX,U to

such low magnitude that they are negligible compared to the other error sources.

In the development of the above forward model, this chapter neglects the

channel gains which are also estimated during data collection as part of the calibration

process (see [2]). Although these gains and the uncertainties in them are relevant,

they are omitted in this chapter, leaving their analysis for future work.

The quantities ∆Tsys,I , ∆Tsys,Q, and ∆Tsys,U in (3.1) through (3.3) are zero-

mean, Gaussian random variables which correspond to the usual noise equivalent ∆T

(NE∆T ) of radiometric measurements [6]. They fluctuate significantly from one

radiometer measurement cycle to the next. From their definition in (A.29) through

(A.31), we see that they have the same covariance matrix as T̂sys,I , T̂sys,Q, and T̂sys,U

(as well as T̂Ia, T̂Qa, and T̂Ua), given in (3.6). In (3.6), N ≡ 2Bτ , where B is the

sensor bandwidth (about 20 MHz for Aquarius and Hydros).

V ar(∆Tsys,I) Cov(∆Tsys,I ,∆Tsys,Q) Cov(∆Tsys,I ,∆Tsys,U)
V ar(∆Tsys,Q) Cov(∆Tsys,Q,∆Tsys,U)

V ar(∆Tsys,U)

 =

1

N
·

T 2
sys,I + T 2

sys,Q + T 2
sys,U 2Tsys,ITsys,Q 2Tsys,ITsys,U

T 2
sys,I + T 2

sys,Q − T 2
sys,U 2Tsys,QTsys,U

T 2
sys,I − T 2

sys,Q + T 2
sys,U

 (3.6)
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For future reference, the means of the calibrated measurements are:

TIa ≡< T̂Ia >= TI +∆TRX,I ,

TQa ≡< T̂Qa >= +TQ cos 2Ω + TU sin 2Ω +∆TRX,Q ,

TUa ≡< T̂Ua >= −TQ sin 2Ω + TU cos 2Ω +∆TRX,U . (3.7)

3.3 Rotation Correction Technique

In this section, PRC is reviewed. This is done in the context of the forward

model summarized in Section 3.2.

3.3.1 Estimation of TQ

Yueh’s model [1] does not include any of the ∆ terms in (3.1) through (3.3).

By noting that TU is much smaller than TQ in natural earth scenes, he proposes to

solve (3.2) and (3.3) for TQ by also neglecting the terms with TU . By assuming TU

and all the ∆ quantities are zero, squaring both sides of (3.2) and (3.3), adding the

two results, and then solving for TQ, we obtain Yueh’s proposed estimate,

T̂Q =
√
T̂ 2
Qa + T̂ 2

Ua, (3.8)

where we ignore the negative root since TQ is positive in geophysical circumstances.

In reality of course, TU and all the ∆ quantities are nonzero and constitute the

error sources of the correction technique. Nevertheless, as demonstrated by the error

analysis below, this equation provides a good estimate of TQ.

3.3.2 Estimation of Tv and Th

With T̂Q from (3.8) and T̂Ia from (3.1), we can also find T̂v and T̂h as

(T̂Ia ± T̂Q)/2. An error analysis of T̂v and T̂h is pursued in Section 3.5.

Yueh proposed an alternate method of estimating T̂v and T̂h (though it is

straightforward to show its equivalence to estimating T̂v and T̂h via (T̂Ia ± T̂Q)/2).

First, to estimate Ω, we divide (3.3) by (3.2), then solve for Ω. With the error sources
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(TU and all the ∆ quantities) assumed to be zero, this yields

Ω̂ =
1

2
tan−1 −T̂Ua

T̂Qa

(3.9)

as an estimate of the angle of polarization rotation. Then assuming the error sources

are zero and solving (A.35) and (A.36) for Tv and Th, respectively, yields

T̂v = T̂va + T̂Q sin2 Ω̂, (3.10)

T̂h = T̂ha − T̂Q sin2 Ω̂, (3.11)

which are the corrected forms of Eqs. (15) and (16) in [1], where T̂Q is given in (3.8).

3.4 Analysis of T̂Q

The next task is to determine the pdf, mean, and variance of the estimate

T̂Q =
√
T̂ 2
Qa + T̂ 2

Ua. We use the mean and variance to calculate the RMSE. T̂Qa

and T̂Ua are already well characterized. They are Gaussian (at least to a very good

approximation) with means given in (3.7) and with variances and covariance given in

(3.6).

3.4.1 Rotation of Variables

T̂Qa and T̂Ua are correlated, but we can rotate coordinates such that we

have uncorrelated quantities. Define Ẑ
Ŵ

 =
1√

T 2
sys,Q + T 2

sys,U

 Tsys,Q Tsys,U

−Tsys,U Tsys,Q

T̂Qa

T̂Ua

 , (3.12)

This is useful because
√
Ẑ2 + Ŵ 2 =

√
T̂ 2
Qa + T̂ 2

Ua = T̂Q. If we assume

that T̂Qa and T̂Ua are jointly normal, then Ẑ and Ŵ are also jointly normal and it is

straightforward to show that Ẑ and Ŵ are uncorrelated and have the following means
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and variances:

< Ẑ > =
Tsys,QTQa + Tsys,UTUa√

T 2
sys,Q + T 2

sys,U

≡ Z, (3.13)

< Ŵ > =
Tsys,QTUa − Tsys,UTQa√

T 2
sys,Q + T 2

sys,U

≡ W, (3.14)

V ar(Ẑ) =
T 2
sys,I + T 2

sys,Q + T 2
sys,U

N
≡ σ2

Z , (3.15)

V ar(Ŵ ) =
T 2
sys,I − T 2

sys,Q − T 2
sys,U

N
≡ σ2

W . (3.16)

The pdf of T̂Q is given by using Z, W , σZ , and σW in (2) of [19], restated here in

terms of the current problem:

fT̂Q
(T̂Q) =

T̂Q
σZσW

e
−

T̂2
Q+2Z2

4σ2
Z e

−
T̂2
Q+2W2

4σ2
W ·

∞∑
j=−∞

Ij

(
aT̂ 2

Q

)
I2j

(
dT̂Q

)
cos 2jψ (3.17)

for T̂Q > 0 and 0 otherwise, where

a ≡ σ2
Z − σ2

W

4σ2
Zσ

2
W

, d2 ≡ Z2

σ4
Z

+
W 2

σ4
W

, and tanψ ≡ Wσ2
Z

Zσ2
W

,

and the Ij are modified Bessel functions of the first kind and order j.

3.4.2 Simple Result by Assuming σ2
Z ≈ σ2

W

An attempt was made to find the first and second moments of
√
Ẑ2 + Ŵ 2

analytically, but failed, even though the pdf is known. Fortunately, a small approxi-

mation leads to simple and accurate formulas, as now shown.

T 2
sys,Q+T

2
sys,U has a worst case maximum value of about 4000K2 for Aquar-

ius; in more extreme cases it might reach 10,000 K2 (this is for L-band radiometers

with incidence angles less than about 50◦). But this is small compared to T 2
sys,I ,

which has a value of 660, 000 K2 for typical Aquarius parameters (TRX,I = 620 K and

TI = 190 K). Therefore, σ2
Z ≈ T 2

sys,I/N and σ2
W ≈ T 2

sys,I/N .

If we define σ2 ≡ T 2
sys,I/N and use σ2

Z ≈ σ2 and σ2
W ≈ σ2, then T̂Q is the

root of the sum of the squares (RSS) of two independent Gaussians with the same
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variance and with nonzero, unequal means. Note that σ is the NE∆T for the total

signal (first Stokes parameter).

With this approximation, the pdf, mean, and variance of T̂Q can be de-

scribed as functions of just σ and m where m2 ≡ Z2 +W 2 = T 2
Qa + T 2

Ua. In terms of

the original parameters,

m2 = T 2
Q + T 2

U +∆T 2
RX,Q +∆T 2

RX,U

+2 cos 2Ω(+TQ∆TRX,Q + TU∆TRX,U)

+2 sin 2Ω(−TQ∆TRX,U + TU∆TRX,Q). (3.18)

By either [20] or by (1) of [19], the density of T̂Q is then

fT̂Q
(T̂Q) =

T̂Q
σ2
e−

T̂2
Q+m2

2σ2 I0

(
T̂Qm

σ2

)
, T̂Q > 0 (0 otherwise). (3.19)

The mean and variance of T̂Q are [21]:

< T̂Q >= σ

√
π

2
e−

m2

2σ2
1F1

(
3

2
, 1;

m2

2σ2

)
, (3.20)

V ar(T̂Q) = 2σ2 +m2− < T̂Q >
2, (3.21)

where 1F1 is the confluent hypergeometric function.

Eq. (3.20) corresponds with the first line of (3.10-12) in [22]; the second

line shows that we can rewrite < T̂Q > as

< T̂Q >= σ

√
π

2
1F1

(
−1

2
, 1;−m2

2σ2

)
. (3.22)

A difficulty with using either (3.20) or (3.22) is that for large τ , σ is small and the

argument of 1F1 has very large magnitude (e.g. 70,000 for the Aquarius θ = 28.7◦

case). Calculating the value of 1F1 to high precision presents a huge computational

burden when its argument is so large.

Fortunately, using (4B-9) in [22], (3.22) becomes

< T̂Q >= σ

√
π

2
e−

m2

4σ2

[
(1 +

m2

2σ2
)I0

(
m2

4σ2

)
+
m2

2σ2
I1

(
m2

4σ2

)]
, (3.23)

which can be evaluated quickly.
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The final simplification comes by examining plots of Monte Carlo results

(see Section 3.4.3). These plots suggest that V ar(T̂Q) ≈ σ2. Hypothesizing that

V ar(T̂Q) ≈ σ2 is correct and using this in (3.21) yields the simple formulas

< T̂Q > ≈
√
σ2 +m2, (3.24)

⇒ Bias(T̂Q) ≈
√
σ2 +m2 − TQ, (3.25)

V ar(T̂Q) ≈ σ2 (our hypothesis), (3.26)

⇒ RMSE of T̂Q =

√
V ar(T̂Q) +Bias2(T̂Q)

≈
√

2σ2 +m2 + T 2
Q − 2TQ

√
σ2 +m2. (3.27)

These equations are the key result of this work.

Note that the pdf of T̂Q given in (3.19) can be well approximated by a

Gaussian pdf with the mean and variance of (3.24) and (3.26). Therefore, we are

justified in ignoring higher moments hereafter and concerning ourselves with only the

mean and variance (and the RMSE derived from them).

3.4.3 Validation of (3.24) through (3.27)

Numerical Equivalence of (3.23) and (3.24)

The final leap used to obtain (3.24) through (3.27) can be validated by

showing that (3.24) matches (3.23). MapleTM finds the magnitude of the difference

between (3.23) and (3.24) to be less than 20 nK in the Aquarius θ = 28.7◦ case,

and less than 60 nK in the other Aquarius cases. (These are calculated with TU =

∆TRX,Q = 0.5 K, ∆TRX,U = 0 K, and typical Aquarius values of TQ, TI , TRX,I , and N

for −180◦ ≤ Ω ≤ 180◦.)

Validation by Monte Carlo Simulation of Electric Field Model

The mean and variance of T̂Q can also be found by Monte Carlo simulation.

This can be done using (A.1) and (A.10) directly, thus avoiding all the approximations

used in deriving (3.24) through (3.27) from (A.1) and (A.10).

The precise procedure is to generate N samples of a, b, Ev, and Eh, all

independent of one another except < EvEh >= TU/2. From these, N samples of
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x and y are formed according to (A.1) and then squared and averaged to produce

a single sample each of T̂sys,Q and T̂sys,U as in (A.10). To simulate the calibration

process, TRX,Q is subtracted off while ∆TRX,Q and ∆TRX,U are added on, forming

T̂Qa and T̂Ua as in (3.2) and (3.3). These are used in (3.8) to form a single sample

of T̂Q. This entire procedure is repeated M times to form M independent samples

of T̂Q. The empirical mean and variance of T̂Q can then be calculated from these

samples. This method gives no formulas but its results converge to the exact results

as M increases.

The Monte Carlo results match analytic results from equations (3.25)

through (3.27) very well, for many values of each of the parameters. Figures 3.1

through 3.4 show some of these results. The discrepancy can be attributed to the

inherent imprecision in the Monte Carlo method.

3.5 Analysis of T̂v and T̂h

This section analyzes T̂v and T̂h, defined as (T̂Ia ± T̂Q)/2. Using (3.1) and

(3.24),

< T̂v > ≈ 1

2
[TI +∆TRX,I +

√
σ2 +m2], (3.28)

< T̂h > ≈ 1

2
[TI +∆TRX,I −

√
σ2 +m2]. (3.29)

3.5.1 Variance and RMSE of T̂v and T̂h

Using (3.6) and (3.26)

V ar(T̂v) =
1

4
[V ar(T̂Ia) + V ar(T̂Q) + 2Cov(T̂Ia, T̂Q)]

≈ 1

4
[
2T 2

sys,I + T 2
sys,Q + T 2

sys,U

N
+ 2Cov(T̂Ia, T̂Q)]. (3.30)

Similarly,

V ar(T̂h) ≈
1

4
[
2T 2

sys,I + T 2
sys,Q + T 2

sys,U

N
− 2Cov(T̂Ia, T̂Q)]. (3.31)

Finding Cov(T̂Ia, T̂Q) analytically appears to be intractable. But from (3.30) and

(3.31) we see that Cov(T̂Ia, T̂Q) = V ar(T̂v)−V ar(T̂h). We can therefore find Cov(T̂Ia, T̂Q)
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numerically by subtracting the Monte Carlo estimates of V ar(T̂h) from the Monte

Carlo estimates of V ar(T̂v). I studied such numerical results and found patterns,

then hypothesized the following formula for Cov(T̂Ia, T̂Q) from those patterns.

Cov(T̂Ia, T̂Q) =
2Tsys,I
N

√
T 2
sys,Q + T 2

sys,U . (3.32)

Using (3.32) in (3.30) and (3.31),

V ar(T̂v) ≈

2T 2
sys,I + 4Tsys,I

√
T 2
sys,Q + T 2

sys,U + T 2
sys,Q + T 2

sys,U

4N
, (3.33)

V ar(T̂h) ≈

2T 2
sys,I − 4Tsys,I

√
T 2
sys,Q + T 2

sys,U + T 2
sys,Q + T 2

sys,U

4N
. (3.34)

These, together with (3.28) and (3.29), give

MSE of T̂v ≈
1

4
[
√
σ2 +m2 − TQ +∆TRX,I ]

2

+
2T 2

sys,I + 4Tsys,I
√
T 2
sys,Q + T 2

sys,U + T 2
sys,Q + T 2

sys,U

4N
, (3.35)

MSE of T̂h ≈ 1

4
[
√
σ2 +m2 − TQ −∆TRX,I ]

2

+
2T 2

sys,I − 4Tsys,I
√
T 2
sys,Q + T 2

sys,U + T 2
sys,Q + T 2

sys,U

4N
. (3.36)

The RMSE of estimated Tv and Th are the positive square roots of these equations.

They do not appear to simplify further, although the variances can be approximated

as σ2/2.

3.5.2 Plots

Figures 3.1 through 3.4 illustrate the bias (top), standard deviation (STD)

(middle), and RMSE (bottom) for estimated TQ, Tv, and Th, as functions of Ω. The

analytic results (given using (3.25) through (3.27), (3.28) through (3.29), and (3.33)

through (3.36)) are plotted as solid lines. The Monte Carlo results are plotted as

symbols.
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Figures 3.1 and 3.2 were computed using TI , TQ [17], TRX,I , and τ values

typical of the innermost and outermost of the three Aquarius beams, respectively,

while Fig. 3.3 uses values typical of the Hydros radiometer. The particular values of

TU , TRX,Q, ∆TRX,I , and ∆TRX,Q were chosen arbitrarily within their expected ranges.

All values are given at the tops of the figures. The Monte Carlo results were generated

as described above (Section 3.4.3).

The discrepancies between the analytic and the Monte Carlo results de-

crease as M increases. But it is difficult to increase M: generating a plot such as

Fig. 3.1 currently requires days of CPU time. Another option is to generate the Monte

Carlo samples using the Gaussian approximation (see Section A.3 in Appendix A).

That is, rather than generating samples of the electric field, samples of T̂Ia, T̂Qa, and

T̂Ua themselves are generated as Gaussian random variables, with the means, vari-

ances, and covariances summarized in Section 3.2. This method, though not quite as

exact, is many orders of magnitudes faster, allowing much larger M and more data

points. Examples of the results obtained thereby are shown in Figs. 3.4-3.5.

3.6 Insights from the Equations

With the forward model developed in this chapter, there are five sources

of error to be considered in polarization rotation correction: TU , ∆TRX,I , ∆TRX,Q,

∆TRX,U , and NE∆T (manifested as σ). In this section some effects of these error

sources are studied, using the equations derived above. Note that Ω influences the

expression of the error sources but is not an error source in itself.

3.6.1 The Insignificance of TU

Examining (3.18), we see that the first term is desired while the rest are

sources of bias. However, TQ is more than an order of magnitude larger than the

other components of (3.18); therefore we can neglect terms without TQ, resulting in

m2 ≈ T 2
Q + 2TQ(∆TRX,Q cos 2Ω−∆TRX,U sin 2Ω). (3.37)
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Figure 3.1: Bias (top), STD (center), and RMSE (bottom) of T̂Q, T̂v, and T̂h as
functions of Ω, with TI , TQ, τ , and TRX,I chosen to be typical of the Aquarius θ = 28.7◦

beam over ocean. The values of the remaining parameters (TRX,Q, ∆TRX,I , ∆TRX,Q,
and ∆TRX,U) were chosen arbitrarily within expected ranges.
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Figure 3.2: Same as Fig. 3.1 except for the Aquarius θ = 45.6◦ beam. (Different
choices of TRX,Q, ∆TRX,I , ∆TRX,Q, and ∆TRX,U were also used, to demonstrate the
variety of possible behavior in the error.)
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Figure 3.3: Same as Fig. 3.1 except for the Hydros soil moisture sensing mission. (Dif-
ferent choices of TRX,Q, ∆TRX,I , ∆TRX,Q, and ∆TRX,U were also used, to demonstrate
the variety of possible behavior in the error.)
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Figure 3.4: Same as Fig. 3.1 except with the Monte Carlo results generated using the
Gaussian approximation, thus allowing much larger M. (Different choices of TRX,Q,
∆TRX,I , ∆TRX,Q, and ∆TRX,U were also used, to demonstrate the variety of possible
behavior in the error.)

28



−90 −45 0 45 90
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Bi
as

 o
f e

st
im

at
es

   
(K

)

T
I
=191 T

Q
=20 T

U
=0.8 τ=6 T

RX,I
=620 T

RX,Q
=−8 ∆T

RX,I
=−0.2 ∆T

RX,Q
=−0.02 ∆T

RX,U
=0.01 M=9e5

−90 −45 0 45 90
0

0.01

0.02

0.03

0.04

0.05

0.06

ST
D 

of
 e

st
im

at
es

   
(K

)

 

 

T
Q

, Monte Carlo

T
Q

, Analytic

T
v
, Monte Carlo

T
v
, Analytic

T
h
, Monte Carlo

T
h
, Analytic

−90 −45 0 45 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RM
SE

 o
f e

st
im

at
es

   
(K

)

Ω  (deg)

Figure 3.5: Same as Fig. 3.4 except that ∆TRX,I , ∆TRX,Q, ∆TRX,U are made small
compared to σ, which is the result anticipated from careful post-launch calibration.
As a consequence, the dependence on Ω is weak in this figure.
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This eliminates TU from the equations, which suggests that natural TU is not a sig-

nificant error source in polarization rotation correction, at least at L-band.

We can numerically examine the significance of TU as follows. We set the

unknown error sources (∆TRX,I , ∆TRX,Q, and ∆TRX,U) to zero but retain σ since it

is known. Then we plot RMSE as a function of natural TU . The results are shown in

Fig. 3.6 for typical parameters of Aquarius beams. The RMSE at TU = 0 is due to

NE∆T through σ. We can discern that the error caused by natural TU is negligible

compared to NE∆T when |TU | < 1.5 K.

Natural TU is reported to have a maximum magnitude of about 1.5 K over

the oceans at intermediate and high wind speeds, 10.7 GHz, and an incidence angle

of 50◦ [23]. Extensive measurements at L-band have not been made, but one group

reports amplitudes of less than 1 K over wind-driven ocean [24]. These measurements,

combined with Fig. 3.6, suggest that natural TU is not a significant error source for the

Aquarius mission. This further suggests that the error allocation for “Other (Wind)”

in the Aquarius error budget (on p. 8 of [14]) can be significantly reduced.

Plotted at the right of Fig. 3.6 are the results for typical parameters of a soil

moisture sensing mission such as the canceled Hydros mission. The short integration

time of the conical scanning radiometer results in NE∆T being so large that the

effects of natural TU are negligible for |TU | < 5 K.

3.6.2 The Optimal Ω Value

Examining (3.18) shows that near Ω = 0◦, the effect of ∆TRX,Q is amplified

compared to the effect of ∆TRX,U , because of TQ being so much larger than TU .

Similarly, the effect of ∆TRX,U is amplified near Ω = 45◦. Consequently, if |∆TRX,Q|

is significantly larger than |∆TRX,U |, then the RMSE of T̂Q is minimum near Ω =

45◦. Likewise, if |∆TRX,Q| is significantly smaller than |∆TRX,U |, the RMSE of T̂Q is

minimum near Ω = 0◦. See Figs. 3.1-3.4 for examples.

If ∆TRX,Q and ∆TRX,U have the same magnitude and sign, RMSE is min-

imum near Ω = 22.5◦. If they have the same magnitude but opposite sign, RMSE is

minimum near Ω = −22.5◦. But in all these cases, if the magnitude of both is less
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Figure 3.6: RMSE (from the analytically derived formulas) of T̂Q, T̂v, and T̂h as
functions of TU , with ∆TRX,I , ∆TRX,Q, and ∆TRX,U set to zero. TI , TQ, τ , and TRX,I

are typical of the Aquarius θ = 28.7◦ beam (left), the Aquarius θ = 45.6◦ beam
(center), and the Hydros soil moisture sensing mission (right).

than σ/2 then RMSE is approximately constant with respect to Ω (and is ≈ σ for

T̂Q), as illustrated in Fig. 3.5.

Because ∆TRX,Q and ∆TRX,U are unknown (at least until instrument fab-

rication and initial calibration), there is no basis for claiming a priori that RMSE

is better at any one value of Ω than at any other value. This should correct the

notion that it is best to sense the land or ocean at dawn because of low free electron

content in the atmosphere (and hence small Ω), an assumption used in the design of

the Hydros mission. We note that there may be other good reasons for sensing at

dawn, such as the better known temperature profile of the atmosphere and planetary

surface.
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3.6.3 Negligible Error Contribution of PRC

If ∆TRX,I , ∆TRX,Q, and ∆TRX,U are reduced to insignificance through post-

launch calibration, then the overall RMSE reduces to theNE∆T that exists regardless

of polarization rotation. To see this analytically, let ∆TRX,I = ∆TRX,Q = ∆TRX,U = 0

and also let TU = 0 since we know its effect is not large. Then m2 reduces to T 2
Q, and

using a binomial expansion of (3.25),

Bias(T̂Q) ≈
√
σ2 + T 2

Q − TQ ≈ σ2

2TQ
(3.38)

⇒ RMSE of T̂Q ≈

√
σ2 +

σ4

4T 2
Q

≈ σ. (3.39)

The validity of these approximations is easily confirmed by numerical examples using

Aquarius and Hydros parameters.

Similar analysis shows that the RMSE of T̂v and T̂h reduces to σ/2. Hence,

error allocation for ionospheric effects can be greatly reduced [14].

3.7 Conclusions

This chapter extends the forward model of polarization rotation to include

the random nature of radiation, radiometer channel noises, and (to first order) cal-

ibration. In particular, it derives the means, variances, and covariances of the first

three Stokes parameters, TI , TQ, and TU , (or their modified counterparts, Tv, Th, and

TU) as measured by radiometers.

There are several known limitations to this forward model. First, it ig-

nores the uncertainties in channel gains which remain after the calibration process.

Second, it ignores antenna sidelobe contributions to the apparent brightness temper-

ature, which undergo a different amount of polarization rotation than the main beam

contribution. Third, it ignores the mixing of the scene Stokes parameters by the

antenna (i.e. the antenna cross-pol patterns). This chapter ignores these effects for

tractability and because their effects are projected to be smaller than those effects

which are included.
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Using the forward model just described, this chapter analyzes the errors

in using polarimetric measurements to correct for polarization rotation as proposed

in [1]. Closed form equations have been derived for the bias, STD, and RMSE of

estimated TQ (see equations (3.25)-(3.27)) and similar expressions for Tv, and Th.

These equations match numerical results obtained by Monte Carlo simulation of our

original electric field model. These equations are the key results of this work since

they allow more accurate error analysis and error budgeting than has been possible

previously.

This analysis indicates several things about the five sources of error. First,

the natural third Stokes parameter (of the magnitude expected at L-band for most

natural Earth scenes) is an insignificant source of error compared to NE∆T (for

τ ≤ 6 sec over ocean).

Second, the dependence of RMSE on rotation angle is determined by resid-

ual errors from the calibration process, ∆TRX,Q and ∆TRX,U . Since these residuals are

unknown (by definition), I cannot predict the dependence of RMSE on rotation angle

(such as whether or not Ω = 0◦ is the optimum angle). But if post-launch calibration

reduces ∆TRX,Q and ∆TRX,U to the level of NE∆T or less, then the dependence of

RMSE on Ω is weak.

Third, if ∆TRX,I , ∆TRX,Q, and ∆TRX,U are reduced to insignificance through

post-launch calibration, then overall RMSE reduces to the NE∆T that exists regard-

less of polarization rotation. In other words, Yueh’s method reduces the error incurred

by polarization rotation to negligibility.
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Chapter 4

Optimal Estimation of Calibration Parameters

In the previous chapter, probability theory was used to improve analysis

of microwave radiometry. A probability theory-based approach can also improve the

usage of microwave radiometry measurements, as demonstrated by a Bayesian ap-

proach in this chapter. Specifically, a probability theory-based approach is the means

by which one can take full advantage of the redundancy in a set of measurements in or-

der to reduce the inherent uncertainty (noise) in estimates of radiometer parameters.

That is, probability theory enables optimal estimates.

The derivation of optimal estimates points the way to a fundamentally

better way of reporting estimates and the uncertainties in them. The optimal solution

to the estimation problem is a pdf for the set of radiometer parameters. The mean

of the pdf provides the best (minimum average error) numerical estimates of the

parameters. But the structure of the pdf provides much additional information: the

uncertainties in the estimates (variances) and the correlations between uncertainties

in pairs (covariances), triplets, etc. of the parameters. This information can be

preserved and transmitted by reporting the full pdf for a set of parameters.

Rather than reporting a full pdf for a set of parameters, current practice

in radiometry is often to report and use merely numerical estimates for parameters

(such as the mean of the pdf). At best, variances are also reported. Reporting and

utilizing a full pdf certainly requires more work. However, a purpose of this chapter

is to demonstrate the advantages of a full pdf and to mention options for reporting

and using it. This work is published as [5].
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4.1 Introduction

A polarimetric radiometer measures the intensity of thermal emissions in

at least three polarizations, represented by brightness temperature vector [Tv Th TU ]
T .

A simple forward model for the voltages recorded by one class of radiometer is
vv

vh

vp

vm

 =


Gvv 0 0

0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU

 ·


Tv + T1

Th + T2

TU

 , (4.1)

where the Gxx are radiometer channel gains while T1 and T2 are the internal noises

(represented by an equivalent noise temperatures) generated by the radiometer.

Radiometer calibration is the process of estimating the Gxx, T1, and T2 so

that Tv, Th, and TU can be determined. Because the gains and noise temperatures

can change rapidly during operation, this calibration is interleaved frequently between

radiometer measurements of a scene. The calibration is accomplished by applying

“known” inputs (hot and cold loads of temperature TH and TC) and measuring the

voltage outputs of the radiometer.

Calibration of radiometers which measure the third Stokes parameter (TU)

requires an additional “known” input, TCN , which is split and fed into both the

vertical and horizontal channels so that the fluctuations in the electric fields of the

two channels are correlated (simulating a third Stokes parameter input). See Fig. 1

in [2]. This technique was introduced in [2], for microwave radiometers which use a

hybrid coupler to synthesize ±45◦ linear polarizations from vertical and horizontal

signals. The noise-free forward model for the calibration measurements of such a

radiometer is given below (Section 4.2). The algebraic method of [2] for estimating

channel gains and temperatures using this noise-free forward model is summarized

below in Section 4.3.

In the remainder of this work, we improve on the method of [2]. In Section

4.4 we expand the forward model to include the noise in the measurements and then

solve the calibration problem using Bayes theorem rather than algebraically as was
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done in [2]. This results in a probability distribution function (pdf) for the calibration

parameters.

This pdf itself is the best answer to the calibration problem and is explored

in Section 4.6. However in Section 4.5, we compare numerical estimates extracted

from this pdf with the algebraic estimates of [2]. We show that our estimates are op-

timal in the sense of minimizing root-mean-square-error (RMSE). They are unbiased,

and their RMSE is approximately half the RMSE of the algebraic estimates.

4.2 Calibration Forward Problem

The noise free forward model for a single cycle of the full (Case 4) polari-

metric radiometer calibration algorithm described in [2] can be written as
vv,C vv,H vv,CH vv,CN

vh,C vh,H vh,CH vh,CN

vp,C vp,H vp,CH vp,CN

vm,C vm,H vm,CH vm,CN

 =


Gvv 0 0

0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU



×


TC + T1 TH + T1 TC + T1 TC + 1

2
TCN + T1

TC + T2 TH + T2 TH + T2 TC + 1
2
TCN + T2

0 0 0 ±TCN

 . (4.2)

This forward model is (1) in [2], with ov, oh, op, and om given by (8) in [2], and with

the vector [Tv Th TU ]
T replaced by the rightmost matrix in (4.2) in order to

describe calibration measurements.

The four columns of the rightmost matrix in (4.2) represent the brightness

temperature inputs used in the four types of calibration measurements (looks). The

top row has temperature inputs to the vertically polarized (v) channel, the second row

has inputs to the horizontally polarized (h) channel, and the third row has third Stokes

parameter inputs (representing correlation between the vertically and horizontally

polarized signals, TU). .

We can describe the forward model as follows. On the left side of (4.2)

are the 16 voltages measured in one radiometer calibration cycle: for each of the
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four calibration looks (cold load, hot load, mixed load, and cold load plus correlated

noise load), the voltage outputs of the four polarimetric channels (v, h, p, and m) are

measured. On the right side of (4.2) are ten calibration parameters which are unknown

to some degree: eight radiometer gains plus two receiver noise temperatures T1 and

T2. For this work we pretend that TC , TH , and TCN are perfectly known. Optimal

estimation of them from thermometer measurements, on-ground calibration, and the

voltages on the left side of (4.2) is left for future work.

Various expansions of this model are possible. An additional column, the

vector [Tv + T1 Th + T2 TU ]
T , could be added to the right side, and a column

of corresponding voltages to the left side. This vector contains the brightness of the

scene under observation, whose estimation is the goal of radiometry. We have left

off these columns in order to simplify the problem, focusing only on estimating the

calibration parameters. However, our work can readily be extended to the larger

problem. Other possible extensions include (a) allowing for nonzero Gvh, GvU , Ghv,

and GhU in the gain matrix, rather than approximating them with zeros as done

above (though this approximation is fairly accurate), (b) adding a small TU term,

generated by the radiometer, to the last row of the temperature matrix, (c) retrieving

the radiometer hardware parameters that comprise the gain matrix entries rather

than the entries themselves (this is accomplished in Section 4.7), and (d) adapting

the method expounded in this work to other classes of radiometers, by using their

forward models in place of (4.2).

4.3 Algebraic Estimation (the method of [2])

Estimating the ten calibration parameters on the right side of (4.2) by the

method of [2] can be summarized as follows. It is algebraic, making no attempt to

model the noise in the measurements.

Gvv is estimated using vv,C and vv,H , which is the conventional cold/hot

calibration method of non-polarimetric radiometers. From (4.2), the equations for
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these two voltages have the same form as equation (20) in [2], viz.,vv,C
vv,H

 =

TC 1

TH 1

 Gvv

GvvT1

 . (4.3)

Solving for Gvv, the estimate is

Ĝvv =
vv,H − vv,C
TH − TC

(4.4)

as in (21) of [2]. T1 is estimated by solving the same equations for T1, yielding

T̂1 =
−TCvv,H + THvv,C

vv,H − vv,C
. (4.5)

Estimation of Ghh and T2 from vh,C and vh,H is similar.

The gains Gpv, Gph, and GpU are found from (41) in [2], reproduced here

(with op expanded and the minor correction that Gpm is replaced by Gph):
vp,C

vp,H

vp,CH

vp,CN

 =


TC TC 0 1

TH TH 0 1

TC TH 0 1

TC + 1
2
TCN TC + 1

2
TCN ±TCN 1




Gpv

Gph

GpU

GpvT1 +GphT2

 . (4.6)

Note that this also follows from (4.2). To obtain Gpv, Gph, and GpU , both sides of

(4.6) are multiplied on the left by the inverse of the 4x4 temperature matrix. Gmv,

Gmh, and GmU are found similarly, using the measurements vm,C , vm,H , vm,CH , and

vm,CN .

Note that the matrix in (4.6) has a condition number (for the 2-norm) of

about 3000 (when we use load temperatures typical of NASA’s near future Aquarius

radiometer, TC = 288 K and TH = TCN = 800 K [25]). This suggests that noise in

the voltage measurements can disturb the estimates significantly. This may explain

why our optimal estimates of the last six gains are the most improved compared to

algebraic estimates (see Table 4.2). Also note that four of the available measurements,

vv,CH , vv,CN , vh,CH and vh,CN , are not utilized in this method. Nevertheless, the

method of [2] works well.
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4.4 Posterior Pdf, p(m|v)

The algebraic estimation method sketched in the previous section is not

unique. For example, Gvv could also be estimated using

Ĝvv =
vv,H − vv,CH

TH − TC
. (4.7)

A better estimate would be the average of (4.4) and (4.7), since the noise in each

estimate is somewhat different and is therefore reduced by the averaging. Information

on Gvv is also contained in the measurement vv,CN , and similarly with the other nine

calibration parameters. How can we combine all of the information in the voltages to

get the best estimates of the ten calibration parameters? The answer is to approach

the problem using probability theory, rather than algebraically. Using Bayes theorem,

a pdf can express all the information on a parameter. This information can come from

various measurements, from the noise-free forward model, and from a probabilistic

description of the noise [9]. Let v be the vector1 of measurements (voltages) in (4.2)

and m be the vector of calibration parameters (the eight gains plus T1 and T2). Then

Bayes’ theorem tells us that the pdf for the parameters, given the voltages, is

p(m|v) = p(v|m)p(m)

p(v)
. (4.8)

The pdf p(m) represents prior or external information on the model pa-

rameters. Several options are available for choosing an informative p(m). A uniform

pdf could be chosen, using known physical limits on each parameter. Measurements

of these parameters by means other than the calibration voltages could also provide

p(m). A third option is to use historical values of the parameters from measurements

of similar hardware. However, it is apparent in the results shown below that the cali-

bration voltages provide high quality information on the parameters even without the

use of an informative p(m). Therefore, for simplicity, we choose a non-informative

p(m) – namely, a “flat” pdf represented by an arbitrary constant2. The denominator

1Vectors are denoted by boldface font in this chapter and are column vectors.
2The use of an arbitrary constant for a non-informative pdf can be considered the limit of a

uniform pdf as its support is extended without bound in all directions.
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of (4.8) is also a constant3, so that

p(m|v) = cp(v|m), (4.9)

where c is a constant.

4.4.1 Pdf for the Voltages Given Parameters, p(v|m)

We now elaborate the probability distribution for voltages given a set of

calibration parameters, p(v|m).

Noise Model

Equation (4.2) is a noise-free forward model for the 16 voltages from the

calibration parameters. However, the temperature inputs in the last matrix of (4.2)

are only mean values. Actual thermal emissions fluctuate. These random fluctuations

can be treated as Gaussian noise (commonly called NE∆T ) that is added to each

“true” (mean value) temperature in the forward model. Therefore a forward model

with noise included is
vv,C vv,H vv,CH vv,CN

vh,C vh,H vh,CH vh,CN

vp,C vp,H vp,CH vp,CN

vm,C vm,H vm,CH vm,CN

 =


Gvv 0 0

0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU

×


TC + T1 + n1 TH + T1 + n3 TC + T1 + n5 TC + T1 +

1
2
TCN + n7

TC + T2 + n2 TH + T2 + n4 TH + T2 + n6 TC + T2 +
1
2
TCN + n8

0 0 0 TCN + n9

 . (4.10)

The noise term n1 represents the total fluctuation away from TC+T1 during

the first calibration sub-cycle. It is zero-mean Gaussian noise with variance equal to

the mean temperature squared and then divided by the time bandwidth product,

(TC+T1)2

Bτc
(see Appendix B). n2 through n9 are similar4.

3For fixed v, the denominator of (4.8) is obtained by integrating the numerator of (4.8), thus
normalizing the right side of (4.8) so that

∫
p(m|v) = 1.

4Caveat: in a more detailed model, the zeros on the last row would be small noise terms, n10,
n11, and n12, representing the random amount of instantaneous correlation between the electric field
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The noise terms n1 through n6 are all independent of one another (and of n7

through n9) for one or both of the following reasons: (a) they originate from different

sources (the v channel hot and cold inputs, as well as the amplifiers producing T1,

are separate from the h channel inputs and the amplifiers producing T2) and (b) they

are realized during different calibration sub-cycles (i.e., are different realizations of

the noise, and the rapidity of the fluctuations means that the realization during one

interval is independent of the realization during the next interval). The noise terms

n7 through n9 are not independent of one another since they are all originate (at least

in part) from the correlated calibration source; they are treated in Appendix B.4.

Even though n1 through n6 are independent of one another, there is corre-

lation among the voltages. For example, vp,C and vm,C are both functions of n1 and

n2 and are therefore correlated. All the correlations that exist among the voltages

can be summarized in a covariance matrix C. This C is derived in Appendix B. As

a result, the probability distribution for v given m is a 16-dimensional Gaussian pdf,

with mean given by the right hand side of (4.2) and denoted g(m):

p(v|m) =
1√

(2π)16 |C|
e−

1
2
(v−g(m))T C−1 (v−g(m)). (4.11)

Eigendecomposition of Singular C

The covariance matrix C is a function of the calibration parameters, m.

Numerical calculations using arbitrary values for m show that although C is 16x16,

its rank r is consistently only nine. From a theoretical standpoint, this corresponds

to the nine noise sources on the right hand side of (4.10).

Because C is not full rank, it cannot be inverted. It also has 16 − r = 7

eigenvalues with value zero so that its determinant |C| is zero. How do we evaluate

(4.11) in this situation?

in the v channel and the electric field in the h channel. But for simplicity, these small terms are
treated as zero in this work.
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Consider the eigendecomposition of C:5

C = [V ΛV T ] =
[
V1 V2

]
diag([Λ1 0])

V T
1

V T
2

 , (4.12)

where the r = 9 columns of V1 are eigenvectors with nonzero eigenvalues Λ1 while

the seven columns of V2 are eigenvectors with eigenvalues equal to zero; and diag(·)

is a diagonal matrix with the elements of the argument along its diagonal. Matrix

theory tells us that because C is symmetric, V ≡ [V1V2] is unitary [26]. Therefore,

V Tv =

V T
1

V T
2

v is a rotation of the voltages. Consider a partition of these rotated

voltages into y ≡ V T
1 v and x ≡ V T

2 v. The covariance of x is

Cov(x) =
⟨
(x− < x >)(x− < x >)T

⟩
(4.13)

=
⟨
(V T

2 v− < V T
2 v >)(V T

2 v− < V T
2 v >)T

⟩
(4.14)

= V T
2

⟨
(v− < v >)(v− < v >)T

⟩
V2 (4.15)

= V T
2 Cov(v)V2 = V T

2 CV2 = [0]7x7, (4.16)

where the last step follows from the fact that the columns of V2 are eigenvectors of C

with eigenvalues equal to zero.

Because the variances of each of the xi are zero, x is a constant vector.

That is, for fixed m, x will be the same for any realization of the voltages.

In this subsection we consider m to be given. Therefore we can find C

and then V2. We can also find the particular v = g(m) corresponding to the voltages

obtained when all nine noise sources happen to be zero. Therefore we can find x as

V T
2 g(m). Since x is constant for any realization of the voltages, then all realizations

of the voltages satisfy V T
2 v = V T

2 g(m).

This last expression is a constraint when evaluating p(v|m). It says that

the pdf is concentrated on a manifold (in the 16-dimensional space of voltages) defined

by V T
2 v = V T

2 g(m). For any v which does not satisfy this constraint (i.e., does not

lie on the manifold), p(v|m) = 0.

5This is also the singular value decomposition (SVD) of C. But since C is symmetric, the SVD
degenerates to an eigendecomposition, which is more convenient both numerically and analytically.
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Next consider the rotated voltages y ≡ V T
1 v. By the same steps as in

(4.16), we find that

Cov(y) = V T
1 CV1 = V T

1

[
V1 V2

]
diag([Λ1 0])

V T
1

V T
2

V1 (4.17)

= V T
1 V1diag(Λ1)V

T
1 V1 = diag(Λ1), (4.18)

which is nonzero. This new covariance matrix is invertible and its determinant is the

product of the elements of Λ1. Therefore we can reduce the dimensionality of the

Gaussian pdf p(v|m) from 16 to r = 9 by using y and its invertible covariance matrix

in place of v and C. The mean of y is V T
1 g(m).

In summary, we have rotated and partitioned our measurements v into

those which provide constraints (x) and those which provide a smaller dimensional

pdf (y), so that (4.11) can be rewritten6 as

p(v|m) =


1√

(2π)9|∏9
i=1 Λi|

e−
1
2
(v−g(m))TV1·(diag(Λ1))−1·V T

1 (v−g(m)) if V T
2 v = V T

2 g(m)

0 if V T
2 v ̸= V T

2 g(m).

In Appendix C, we derive V2 analytically and show that the constraint

V T
2 v = V T

2 g(m) reduces to

Gpv = Gvv
(vp,Cvh,H − vh,Cvp,H)

(vv,Cvh,H − vh,Cvv,H)
, Gph = Ghh

(vp,Cvv,H − vv,Cvp,H)

(vh,Cvv,H − vv,Cvh,H)
, (4.21)

Gmv = Gvv
(vm,Cvh,H − vh,Cvm,H)

(vv,Cvh,H − vh,Cvv,H)
, Gmh = Ghh

(vm,Cvv,H − vv,Cvm,H)

(vh,Cvv,H − vv,Cvh,H)
, (4.22)

GmU = GpU · GmvGhhvv,CN +GmhGvvvh,CN −GvvGhhvm,CN

GpvGhhvv,CN +GphGvvvh,CN −GvvGhhvp,CN

. (4.23)

6The exponent can also be written

−1

2

(
V T
1 v − V T

1 g(m)
)T  1

Λ1

...
1
Λ9

(V T
1 v − V T

1 g(m)
)

(4.19)

= −1

2

9∑
i=1

(
[V (:, i)]T · (v − g(m))

)2
Λi

. (4.20)
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4.5 Maximum A Posteriori / Maximum Likelihood Estimation

4.5.1 Theory

In Section 4.4.1 we demonstrated how to calculate p(v|m), see (4.21). From

this we can find a distribution for the parameters of interest, p(m|v), by simply re-

versing the roles of input and output in the function and multiplying by a normalizing

constant, as shown in (4.9)7. (We will not attempt to find the constant c since it is not

necessary for finding estimates and since the pdf can be displayed in unnormalized

form.) Explicitly,

p(m|v) = c√
(2π)9|

∏9
i=1 Λi|

e−
1
2
(v−g(m))TV1·(diag(Λ1))−1·V T

1 (v−g(m)) (4.24)

if (4.21)–(4.23) are satisfied, while

p(m|v) = 0

otherwise.

In general, the best answer to an estimation problem is a joint pdf on the

variables of interest [3], in our case equation (4.24). A joint pdf usually contains

much more information than merely reporting numbers and standard deviations for

the variables. This is illustrated in Section 4.6.2. The increase in computing power of

the last few decades enables us to begin to use pdfs (such as p(m|v)) as inputs and

outputs to algorithms, rather than simple estimates and their uncertainties. It is our

hope that science and engineering will move in that direction. In this section, however,

we follow tradition by reporting simple numerical estimates and their uncertainties

(RMSE).

From the joint pdf, p(m|v), which numbers should we extract and report

as estimates of the calibration parameters? Of all possible estimates of m from v, the

minimum mean-squared error (MMSE) estimate is the expected value (over m) of

p(m|v) [26]. Section 4.6.2 explains one way to calculate this expectation numerically.

7Due to the simplifying use of a constant for p(m), we recognize that p(m|v) is identical to the
likelihood function for m, given v.
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However, a shortcut is available. Marginal 1-D and 2-D pdfs for any pa-

rameter or pair of parameters can be obtained by integrating p(m|v) with respect

to the remaining parameters. Typical examples of these pdfs are shown in Figs. 4.1

through 4.4 (the generation of such figures is explained in Section 4.6). From such

examples it appears that p(m|v) is unimodal and symmetric in most (if not all) cases.

This is corroborated by the Gaussian structure of (4.24). These properties (unimodal

and symmetric) signify that the mean of p(m|v) is the same as its mode (at least as a

good approximation, if not exactly). Finding the mode turns out to be simpler than

finding the mean; therefore we use the mode as our primary estimate. We examine

the properties of the mode in detail in this section and return to consider the mean

in Section 4.6.2.

p(m|v) is often called the posterior distribution, since it is the distribution

for m after measuring data v. The mode of p(m|v) is the set of parameters, m, which

maximizes the posterior distribution. Therefore it is referred to as the maximum

a posteriori (MAP) estimate. In the current problem, since p(m|v) is equal to a

constant times p(v|m), the MAP estimate is equivalent to what is called the maximum

likelihood estimate, obtained by considering p(v|m) to be a function of m and finding

the m which maximizes it.

Finding the m which maximizes p(m|v) is a standard multidimensional

optimization problem. It is readily accomplished by a blackbox minimization algo-

rithm such as MATLAB’s fminsearch (though more advanced techniques could find

it with less computation). The search can be initialized using the algebraic estimate

of m (see Section 4.3). (Also, maximizing the log of p(m|v), rather than p(m|v)

itself, causes the search to converge more quickly, about 3x speedup in the overall

algorithm.) To limit the search to m which satisfy the constraint, we only search over

the five parameters Gvv, Ghh, GpU , T1 and T2. When the other five are needed, they

are generated from the constraint equations, (4.21) through (4.23).
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Table 4.1: Gain-related parameters typical of an L-Band radiometer and used in
simulations

Radiometer hardware parameters

detector sensitivities,

cv, ch, cp, and cm 450 V/W

channel amplifier gain, G1 1.8e7 W/W

gain imbalance, g 1.585

scattering parameter, s 0.7

αe 0.934

bandwidth, B 20 MHz

Resulting gains

Gvv 2.24e-6 V/K

Ghh 3.55e-6 V/K

Gpv 1.10e-6 V/K

Gph 1.81e-6 V/K

GpU 1.31e-6 V/K

Gmv 1.14e-6 V/K

Gmh 1.74e-6 V/K

GmU -1.31e-6 V/K

Note that the constraint equations dictate that estimates of Gpv and Gmv

are 100% correlated with estimates of Gvv, estimates of Gph and Gmh are 100% cor-

related with estimates of Ghh, and estimates of GpU and of GmU are also 100% cor-

related. In other words, a MAP estimate of any gain in the gain matrix is 100%

correlated with the MAP estimates of the other members of the same column (see

Fig. 4.4 for an illustration).

4.5.2 Simulation and Results

To compare MAP estimates with algebraic estimates, we simulate the esti-

mation process as follows. Typical values of radiometer hardware parameters defined

in [2], obtained from [25] and Table I of [2], are shown in Table 4.1. These are used

in (17) of [2] to calculate typical values for the eight gains, Gxx, also shown in Table

4.1.
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For typical T1 and T2 we use 310 K; these plus the eight Gxx in Table 4.1

are considered the “true” values in our simulations, mtrue. For TC , TH , and TCN we

use 288, 800, and 800 K, respectively. (These T1, T2, TC , TH , and TCN are nominal

values for NASA’s Aquarius radiometer [25].)

From the above parameters we next generate simulated voltages. As dis-

cussed in Section 4.4.1, we can find x as V T
2 g(m). We also need realizations of y.

Since y is a linear combination of v, it is Gaussian as is v. We know that y has a

mean of V T
1 g(m) and a covariance matrix of diag(Λ1) (see Section 4.4.1), so we can

readily generate random realizations of it by adding the mean to zero-mean Gaussian

noise with that covariance. Then with x and y in hand, we can form v by de-rotating

(left multiplying by V ) since

V

y
x

 = V

V T
1 v

V T
2 v

 = V
(
V Tv

)
=
(
V V T

)
v = v. (4.25)

This can also be written to separate the voltages into their means and zero-mean

noise:

v = V

y
x

 = [V1 V2]

V T
1 g(m) +N (0, diag(Λ1))

V T
2 g(m)

 (4.26)

= V1[V
T
1 g(m) +N (0, diag(Λ1))] + V2V

T
2 g(m) (4.27)

=
(
V1V

T
1 + V2V

T
2

)
g(m) + V1N (0, diag(Λ1)) , (4.28)

whereN (0, diag(Λ1)) is a vector of zero-mean Gaussian random variables with covari-

ance matrix diag(Λ1). The voltages generated in this manner satisfy the constraint:

numerical tests show that ||V T
2 v − V T

2 g(mtrue)|| ≤ 1e− 27.

With the simulated voltages, we then use the method of [2], as summarized

in Section 4.3, to algebraically estimate the ten calibration parameters. We repeat

this for 106 different realizations of the voltages (means stay the same, noise changes).

The bias of these 106 estimates is computed as the difference between their mean and

mtrue. The standard deviation (STD) of these 106 estimates is also computed. Finally,

the RMSE of these 106 estimates is computed as the root-sum-square of the bias and
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Table 4.2: RMSE results for 106 estimates from voltages generated by typical mtrue.
RMSE is given as a percent of the true parameter value.

Parameter Gvv Ghh Gpv Gph GpU Gmv Gmh GmU T1 T2

RMSE of algebraic estimates (%) 0.58 0.58 1.33 0.63 0.78 1.24 0.63 0.59 1.39 1.39
RMSE of MAP estimates (%) 0.44 0.43 0.44 0.43 0.21 0.44 0.43 0.21 1.05 1.18

Improvement Factor (row 1/row 2) 1.3 1.4 3.0 1.5 3.7 2.8 1.5 2.8 1.3 1.2

STD. (This is equivalent to RMSE=
√⟨

(m̂−mtrue)
2⟩, where the averaging is over

106 realizations of noise.)

This process is repeated for MAP estimates, and the results are compared.

For both estimation methods, and for all ten parameters, the bias is less than 0.01%

of the true parameter values (that is, 1 part in 10,000). The STD is therefore the

same as the RMSE, to four significant digits. In the first two rows of Table 4.2 we

report the RMSE for each method and for each of the ten parameters, as percentages

of the true parameter values. In the third row we report the factor by which the

RMSE of MAP estimates is lower than the RMSE of algebraic estimates8.

To summarize our results with a single number, we take the average of

these ten improvement factors. It is 2.04 – that is, the RMSE of MAP estimates is

about two times smaller than the RMSE of algebraic estimates.

To establish the accuracy of this number, the entire procedure of the last

four paragraphs was repeated 7 times to provide 7 estimates of the average improve-

ment factor. The average of these 7 numbers was 2.041, with a STD of 0.001. Also,

the results reported in Table 4.2 were the same (to two decimal places) in all 7 cases.

The cost for the increased accuracy of MAP estimates is an increase in

computation. On average, a MAP estimate requires 40,000 times more computation

than an algebraic estimate (this could be reduced if pains were taken to increase

the efficiency of the eigendecomposition, etc.). But MAP estimation is still quite

8A likely explanation for the assymetry in the RMSE of MAP estimates of T1 versus those of T2

is as follows. The variance of n5 is smaller than that of n6 because TC < TH . Since n5 is added to
T1 while n6 is added to T2, we end up with less uncertainty in T1 than in T2.
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tractable: as of this writing, a standard computer can perform a MAP estimate in

about 0.06 seconds, even without any optimization of the eigendecomposition9.

Improvement as a Function of mtrue

The improvement in accuracy of MAP estimates (over algebraic estimates)

is a weak function of mtrue. If we repeat the above procedure for 100 different mtrue,

chosen randomly within expected ranges10 , we find that the RMSE of MAP estimates

is consistently the same as the values in Table 4.2. The RMSE of algebraic estimates

is slightly lower than the values in Table 4.2, resulting in an average improvement

factor that ranges from 1.86 to 2.03, with the mean being 1.90.

4.6 Sampling the Posterior Pdf

We now turn to exploration of the more complete answer to the calibration

problem, the posterior pdf p(m|v). If samples of p(m|v) are available, they can be

used to visualize the posterior pdf, to report it, or to calculate its mean, mMMSE.

In this section we describe how to generate such samples and then use them for the

aforementioned purposes.

4.6.1 Sampling p(m|v) by the Rejection Method

Samples of the posterior pdf, p(m|v), can be generated by the well known

rejection method (a.k.a. acceptance-rejection sampling) [3] [27]. First, samples of

9The above results were obtained using MATLAB’s fminsearch’s default options: tolFun= 10−4

and tolX= 10−4 (and with the default maxFunEvals = maxIter= 2000, these tolerances are consis-
tently achieved). When the options are changed in order to produce convergence to a more precise
peak (specifically, tolFun= 10−11, tolX= 10−11, maxFunEvals = 105, and maxIter= 104), the aver-
age improvement in RMSE is a factor of 2.042 (for four runs of 106 estimates each) and the increase
in computation is 77,000. This demonstrates that the default precision is adequate.

10cv, ch, cp, and cm are chosen independently from normal distributions with mean of 450 and
STD of 17 mV/mW. G1 is chosen from a normal distribution with mean of 18e6 and STD of 2.7e6
W/W; 10log10(g) is chosen from a normal distribution with mean of 0 and STD of 1 dB; s is
chosen from a normal distribution with mean of 1/

√
2 and STD of 0.02/

√
2; αe is chosen from a

normal distribution with mean of 0.934 and STD of 0.01; and T1 and T2 are chosen independently
from normal distributions with mean of 310 and STD of 1 K. Also, TC is chosen from a normal
distribution with mean of 288 and STD of 0.5 K while TH and TCN are chosen independently from
normal distributions with mean of 800 and STD of 2 K.
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Gvv, Ghh and GpU are proposed from independent, uniform distributions. These

distributions are centered on an initial guess such as the MAP estimate.

With the proposed Gvv, Ghh and GpU coordinates, we next find proposed

Gph, Gmh, Gpv, Gmv, and GmU coordinates from the constraint equations, (4.21)

through (4.23). Also, T1 and T2 coordinates are proposed from independent, uniform

distributions centered on the initial guess. Each set of ten proposed coordinates now

comprises one proposed sample of p(m|v), which we denote mprop.

Because the constraint equations were used, each mprop is a sample from a

uniform distribution over a region of the constraint manifold. Let the constant value

of this uniform distribution be denoted by k. In order to correctly generate samples

of p(m|v), we must accept each mprop with probability P where

P =
p(mprop|v)/k

maxm (p(m|v)/k)
=

p(mprop|v)
maxm (p(m|v))

. (4.29)

The numerator of (4.29) is readily calculated using (4.24), with V1 found

from a numerical eigendecomposition of C and C calculated from mprop. The de-

nominator of (4.29) is the peak value of p(m|v). The search for this peak is the

same search that finds the MAP estimate of m – that is, the denominator is simply

p(mMAP |v).

In the rejection method just described, samples are proposed over only a

rectangular region (determined by the upper and lower bounds of the uniform 1-D

distributions) of the constraint manifold, rather than over the entire constraint man-

ifold (which has infinite extent). This effectively truncates p(m|v) to the rectangular

region. This is equivalent to using a 10-D uniform pdf p(m) in (4.8) that truncates to

the rectangular region. In other words, the above method adds external information

(even if it is false) that the true m definitely lies in the rectangular region. This is

a practical necessity when using uniform distributions to propose samples, since the

probability of accepting a proposed sample goes to zero as the rectangular region is
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enlarged in order to better cover the infinite extent of the constraint manifold. The

truncation is insignificant in the current problem however, see Section 4.6.211.

The bounds of the five 1-D uniform distributions of Gvv, Ghh, GpU , T1 and

T2 are somewhat arbitrary. Looser bounds cause less truncation but decrease the rate

at which proposed samples are accepted. A simple method of choosing the bounds is

to take the STD (= RMSE since bias ≈ 0) of simulated algebraic estimates or MAP

estimates, given in Table 4.2, and let the bounds be a certain multiple of STD above

and below the MAP estimates.

Numerical note: the sampling process is much faster when all the Gxx (or

voltages) are scaled by an appropriate factor. A factor of 107 was used in generating

the Figures.

4.6.2 Using the Samples

Marginal Posterior Pdfs

Once we have a number of samples of p(m|v), we can immediately obtain

plots of the marginal (meaning one-dimensional) probability distribution for the ith

parameter by simply binning the ith coordinate values of the samples (we believe

that this follows from [3]). Some marginal pdfs obtained in this manner are shown in

Fig. 4.1.

Fig. 4.1 demonstrates that the marginal pdfs are symmetric12. This verifies

the claim made earlier that MAP estimates (mode of marginal pdfs) are the same as

MMSE estimates (means of marginal pdfs). Furthermore, when MMSE estimates are

made, they have the same error statistics as MAP estimates, as given in Table 4.2

and Section 5.4.

Fig. 4.1 also demonstrates that the marginal pdfs are Gaussian (or at least

very nearly so). The Gaussians that are plotted have STD from the second line of

11If Gaussian distributions were used to propose samples, then no truncation occurs but (4.29) is
more difficult to evaluate. Using Gaussians may be only slightly more difficult, and if successfully
implemented, it would also result in a much higher sample acceptance rate.

12Some assymetry appears in Fig. 4.1, but this assymetry is a consequence of the finite number of
samples used to generate the marginal pdfs. This assymetry diasappears as the number of samples
increases.
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Figure 4.1: Marginal pdfs for the eight radiometer gains and two noise temperatures,
along with various estimates of the parameters. The height scale is arbitrary, being
the number of samples in each bin. As we use more accepted samples to generate
the empirical pdfs, the heights increase and the empirical pdf matches the Gaussian
more closely.
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Table 4.2. Hence, each marginal pdf can be completely characterized by its mode

(the MAP estimate) and STD (= RMSE of MAP estimates, given in Table 4.2).

Additional Information in Joint Pdfs

Joint pdfs can convey many times more information than the marginal pdfs

that are extracted from them. For example, consider the two variables Gvv and T1,

whose joint posterior pdf13 is depicted in Fig. 4.2. The density of dots (samples of the

pdf) illustrates the probability density. This figure is made from the same samples

as Fig. 4.1.

The 2-D joint pdf in Fig. 4.2 contains significant correlation information.

For example, it shows that there is a fair chance that Gvv ≈ 24.5 and T1 ≈ 311, but

almost no chance that Gvv ≈ 24.5 and T1 ≈ 304. If we had reported only the 1-D

marginal pdfs in Fig. 4.1, however, both possibilities would have been reported as

equally likely.

The current practice of reporting only the mean and variance for each

parameter is equivalent to reporting 1-D marginal Gaussian pdfs for the parameters

[3]. The only joint pdf that can logically be reconstructed from marginal pdfs is

the product of the marginal pdfs (this follows from [3]). An example of such a

reconstruction is shown in Fig. 4.3. All correlation information is lost, as well as any

non-Gaussian characteristics of the posterior pdf.

The situation is even more pronounced for the parameters in the current

problem whose estimation is 100% correlated (due to the constraint equations). For

example, a 2-D joint pdf of Gvv and Gpv is shown in Fig. 4.4 (also made from the

same samples as Fig. 4.1 and Fig. 4.2). The pdf is completely concentrated along a

1-D line in the 2-D space. If only means and variances were reported, the appearance

would be similar to Fig. 4.3.

We have demonstrated that the most complete answer to an estimation

problem is a joint pdf, but how can a 10-D posterior pdf be reported? We can report

the equation for it, such as (4.24). A numerical alternative is to simply report a

13Given a particular set of voltages measured by a radiometer.
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Figure 4.2: Dots showing the Gvv and T1 coordinates of samples of p(m|v). The
density of dots illustrates the 2-D joint pdf p(Gvv, T1|v). The samples are from the
same simulation that produce Fig. 4.1.
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Figure 4.3: Depiction of the 2-D joint pdf for Gvv and T1 which conveyed by reporting
only means and variances – using means and variances of samples in Fig. 4.2. Com-
parison with Fig. 4.2 shows the loss of information which occurs by reporting only
means and variances.
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Figure 4.4: Dots showing the Gvv and Gpv coordinates of samples of p(m|v). The
density of dots illustrates the 2-D joint pdf p(Gvv, Gpv|v).
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large number of samples of the pdf because most, if not all, calculations done with a

posterior pdf can be done using these samples [3]. Finally, a very succint alternative

is available when a multidimensional pdf is sufficiently Gaussian, as in the present

case. In such cases, all of the information can be conveyed by a vector of means

and a covariance matrix. For example, the correlation matrix for samples of p(m|v),

calculated from samples like those displayed in Fig. 4.1 and Fig. 4.2, is

1.00 0.04 1.00 0.04 0.22 1.00 0.04 −0.22 −0.96 −0.02

0.04 1.00 0.04 1.00 0.13 0.04 1.00 −0.13 −0.03 −0.96

1.00 0.04 1.00 0.04 0.22 1.00 0.04 −0.22 −0.96 −0.02

0.04 1.00 0.04 1.00 0.13 0.04 1.00 −0.13 −0.03 −0.96

0.22 0.13 0.22 0.13 1.00 0.22 0.13 −1.00 −0.17 −0.08

1.00 0.04 1.00 0.04 0.22 1.00 0.04 −0.22 −0.96 −0.02

0.04 1.00 0.04 1.00 0.13 0.04 1.00 −0.13 −0.03 −0.96

−0.22 −0.13 −0.22 −0.13 −1.00 −0.22 −0.13 1.00 0.17 0.08

−0.96 −0.03 −0.96 −0.03 −0.17 −0.96 −0.03 0.17 1.00 0.02

−0.02 −0.96 −0.02 −0.96 −0.08 −0.02 −0.96 0.08 0.02 1.00


(4.30)

This provides the important information found in Fig. 4.2 and Fig. 4.4 but not in

Fig. 4.1 or Fig. 4.3 – for example, that the 2-D pdf for Gvv and T1 has a correlation

coefficient of -0.96.

As a final note: the relative amount of information preserved by various

joint pdfs can be compared quantitatively by calculating the entropy of such pdfs.

For example, the joint pdf in equation (4.24) has much less entropy than a joint pdf

which is reconstructed from marginal pdfs for the parameters.
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MMSE Estimation

Another use for the samples of a distribution is in calculating its expected

value. As mentioned above, this expected value (mean) is the MMSE estimate of m,

mMMSE = Em(p(m|v)) =



∫
M

m1p(m|v) dm∫
M

m2p(m|v) dm

.

.

.∫
M

m10p(m|v) dm


(4.31)

whereM is the 10-D space of the ten calibration parameters. For example, to estimate

Gvv,

m1,MMSE =

∫
M

m1p(m|v) dm (4.32)

and similarly for the other nine parameters. Equation (4.32) could be evaluated using

a quadrature rule. But it can also be numerically implemented by generating samples

of p(m|v) and then simply taking the mean of the m1 coordinate of those samples.

As the number of samples increases, this procedure converges to (4.32) [3].

4.7 Information on Hardware Gain Parameters

As a tangential but useful extension of the previous results in this chapter,

we can use the probabilistic method developed above to obtain information on the

radiometer hardware parameters that comprise the eight gains Gxx. The definition of

these gains in terms of hardware paramters, found by comparing equations (1) and

(17) in [2] with one another, is reproduced here:
Gvv 0 0

0 Ghh 0

Gpv Gph GpU

Gmv Gmh GmU

 ≡ kB


cvG1 0 0

0 chG2 0

cps
2G1 cp(1− s2)G2 cps

√
1− s2αe

√
G1G2

cm(1− s2)G1 cms
2G2 −cms

√
1− s2αe

√
G1G2

 .
(4.33)
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4.7.1 Analytical Results

By replacing the eight Gxx in (4.24)14 with their component definitions on

the right side of (4.33), we immediately obtain the joint posterior pdf for the eight

hardware gain parameters (G1, G2, αe, cv, ch, cp, cm, and s) plus T1 and T2. (The

bandwidth B could also be considered a parameter, but for this work we treat it

as a known constant. The parameter k is Boltzmann’s constant.) For brevity, we

simply summarize our discoveries about this pdf. Details of the derivations are given

in Appendix D.

First, the transformed constraint equations dictate that the parameter s is

uniquely determined by the measured calibration voltages:

s =

√
AD +

√
ADBC

AD −BC
, (4.34)

where

A ≡ vp,Cvh,H − vh,Cvp,H ,

D ≡ vm,Cvv,H − vv,Cvm,H ,

B ≡ vp,Cvv,H − vv,Cvp,H ,

C ≡ vm,Cvh,H − vh,Cvm,H .

It is worth noting that this closed-form solution for s fell out of the equations devel-

oped for a probabilistic estimation of the parameters. If a simple algebraic approach

had been attempted, the closed-form solution may not have been found, as (4.34) is

a rather complicated function of the measured voltages.

Another remarkable fact is that there is no uncertainty in this estimate for

s – it is not affected by NE∆T . (In simulation therefore, this estimate is the exact

value of the true s; but in reality, any uncertainties not captured by our model in

(4.10), such as imperfect knowledge of TC and TH , will cause this estimate to have

some error.)

14The Gxx are found both in m and in the constraint equations.
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The constraint equations also dictate that ch, cp, and cm are constrained

as follows:

ch = cv

√
AC

BD
, (4.35)

cp = cv

√
A

E
√
D

(√
AD −

√
BC
)
, (4.36)

cm = −cv
√
C

E
√
B

(√
AD −

√
BC
)
, (4.37)

where E ≡ vv,Cvh,H −vh,Cvv,H . One interpretation of these equations is that the ratio

of any two cx is perfectly resolved – it is equal to a function of the measured voltages.

Finally, the remaining four hardware gain parameters (G1, G2, αe, and

cv
15) are unaffected by the constraint equations.

4.7.2 Numerical Results

Additional information on the hardware gain parameters is readily ob-

tained by examining samples16 of the posterior pdf for them. In the first place, the s

coordinate of the samples has no variance, confirming the analytical conclusion above

that estimation of s is unaffected by NE∆T .

The samples can readily be used to plot pdfs for pairs of the hardware

parameters, as shown in Fig. 4.5. These plots reveal several characteristics.

First, an intuitive “conservation of information” principle would suggest

that the ability to perfectly resolve s must be compensated by a lack of ability to

resolve other parameters. This is indeed the case: As shown by Fig. 4.5, cv, G1, and

G2 cannot be individually resolved. We can only resolve their pairwise products17.

Marginal pdfs for cv, G1, and G2 are essentially uniform18.

15Note that (4.35) through (4.37) can be rearranged to put any three of the cx in terms of
the remaining one; thus any one of the cx can be considered unconstrained with the remaining
three tightly constrained via such equations. cv has been chosen arbitrarily to be considered the
unconstrained parameter in this work.

16The method for producing these samples is very similar to the method described in Section 4.6.
17For example, cvG1 is resolvable – as shown by (4.33), it is (kB)−1 times Gvv, and Gvv is well

resolved by either the algebraic method or probabilistic method discussed earlier in this chapter.
18These uniform marginal pdfs are only limited by prior knowledge. However, if we have tighter

prior knowledge on one parameter, say on cv, then good resolution of a product such as cvG1 can
cause tighter bounds on the other parameter, G1. This effect can be seen in several subplots of
Fig. 4.5.
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Figure 4.5: Two-dimensional pdfs for the four unconstrained radiometer hardware
gain parameters (G1, G2, αe, and cv) and two noise temperatures (T1 and T2). The
density of dots illustrates the pdfs, whereas asterisks show the location of the true
parameter values. The bounding boxes show the bounds of the uniform pdfs from
which samples were proposed. These plots illustrate that it is only possible to obtain
useful estimates of the hardware gain parameter αe (in addition to s which is not
illustrated).
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A second observation is that αe is resolved well. The average RMSE of

MAP estimates of αe is 0.33 %, whether using the typical values given in Table 4.1

or randomized values for the true hardware parameters.

4.8 Conclusion

This chapter demonstrates the advantages (and drawbacks) of estimating

calibration parameters via a probabilistic approach rather than a conventional alge-

braic approach. The first advantage of the probabilistic approach is a reduction in

error. By exploiting statistical knowledge of measurement noise using Bayesian esti-

mation, the RMSE of parameter estimates is reduced by a factor of two compared to

estimation without such knowledge.

This work also illustrates the principle that much more information can

be conveyed by a probability distribution for a set of parameters than by simple

estimates comprised only of marginal means and variances. In particular, valuable

covariance information is conserved via multidimensional pdfs. The generation and

utility of samples of such pdfs has been demonstrated.

Finally, this work shows that a probabilistic approach reveals valuable

information on the eight hardware parameters that comprise the overall channel gains

in the class of radiometer which is analyzed in this work. The probabilistic approach

provides accurate solutions for two of these parameters. An algebraic approach to

such solutions would be difficult if not intractable. For the other six parameters,

the probabilistic approach demonstrates that only products or ratios of pairs of the

parameters can be resolved.All of these results are valuable for diagnosis of radiometer

anomalies.

Most of the principles employed herein are well known in estimation the-

ory. However, this work is their first published application to microwave radiometer

calibration.
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Chapter 5

Adaptive Inference of Polar Air Temperatures

In the previous two chapters, probability theory was used to improve the

analysis and usage of microwave radiometer data for situations which are well modeled

by a forward model. This chapter considers a problem for which a solid forward model

does not exist and an empirical inversion is therefore advantageous.

The previous empirical solution to the problem involved fitting a sinusoidal

curve to training data and using this curve to estimate desired parameters from

available measurements. As in previous chapters, a better solution to the inverse

problem is possible through a probabilistic approach. This approach is to use training

data to form an empirical pdf which relates measurements to the desired parameter.

This solution is not only more accurate than the curve-fitting solution (especially as

the amount of training data increases) but is also significantly more robust because

an empirical pdf is more adaptive or flexible than a simple curve. This additional

adaptability enables the pdf to capture an additional physical phenomenon.

5.1 Introduction

Antarctica and Greenland represent 11% of the Earth’s land surfaces, so

measuring temperature there is of some importance to weather forecasting and cli-

mate prediction. However, weather stations to monitor such areas are quite sparse in

both time and spatial distribution due to the high costs of deploying and maintain-

ing stations on barren ice sheets. Consequently, the feasibility of retrieving surface

temperature from satellite measurements has been investigated by several groups [28]
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[29]. Polar orbiting satellites are well suited for this since their orbit geometry permits

them to measure both polar regions many times each day.

Satellite records can also be very dependable. For example, the Advanced

Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) has

provided a measurement record that is essentially unbroken since 20 Sep 2002. In

contrast, weather station records for the interior of Antarctica are plagued with gaps

(with the exception of south pole stations, which are not considered in this work

because orbit geometry prevents most satellites from observing the poles). In this

chapter AMSR-E data is used to retrieve near-surface air temperature in Antarctica.

The state of the art in retrieving near-surface air temperature T from

microwave emissions is a technique described by Shuman et al. [29]. This method,

along with infrared methods, is summarized in Section 5.2. In Section 5.3, we expound

an adaptive method with probability theoretic underpinnings which provides more

accurate estimation of T from microwave emissions. Performance of the two methods

is compared in Sections 5.4 and 5.5. Conclusions and future work are discussed in

Section 5.6.

5.2 Previous Methods

In this section we review previous methods of retrieving air temperature

over ice sheets from satellite measurements. These methods can be classified as either

infrared or microwave.

Satellite measurements of infrared emissions can be used to retrieve surface

temperature quite accurately under clear sky conditions [30, p. 6-7]. Unfortunately,

this method cannot retrieve temperature where clouds are present, and clouds typ-

ically cover a major portion of Antarctica. Furthermore, good cloud discrimination

cannot be achieved during darkness. The combination of these two effects undermines

infrared temperature retrieval for more than half of every year.

Although satellite measurements of microwave emissions have poorer res-

olution than infrared measurements, at certain frequencies such as 37 GHz they are

largely unaffected by atmospheric conditions [6, p. 20-21] or darkness. Shuman et
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al. [29] compare ground truth T with 37 GHz vertically polarized (v-pol) brightness

temperature B as measured by the SSM/I instruments. They find that the familiar

relationship

B = ϵT (5.1)

can be used to find a reasonably accurate estimate of T from B if the effective emissiv-

ity ϵ of the surface is modeled as a sinusoidal function of day of year (DOY), denoted

ϵsinus(DOY ), with a period of one year.

The mean, amplitude, and phase of Shuman et al.’s[29] sinusoidal emissiv-

ity ϵsinus are determined empirically as demonstrated in Fig. 5.1. A time series of

B data (black in upper plot) is divided by a coincident T time series (blue in upper

plot), yielding an empirical emissivity time series (red in lower plot). The particular

sinusoid which minimizes the root-mean-square error (RMSE) between the time se-

ries and the sinusoid becomes ϵsinus, as shown by the dashed line in the lower plot of

Fig. 5.1. With this emissivity ϵsinus(DOY ) in hand, estimation of T at times when

only B and DOY are available is

T̂ = B/ϵsinus(DOY ). (5.2)

Application of this method in Greenland by Shuman et al. shows that this

method achieves a good estimate of smoothed daily temperatures. In Section 5.4 we

apply this method to three Antarctic sites and obtain similar results. Hereafter we

refer to this method as the sinusoidal method.

Shuman et al. suggest that the cycle in empirical emissivity is due to a

seasonal cycle in the actual emissivity of the ice. While this may be true in part, the

cycle may also be a hysteresis effect caused by heat flow to and from deeper ice layers.

Since deeper layers have a more constant temperature than the surface, heat flows

upwards during the cooling season (roughly February through May). This causes the

surface ice to be warmer than the air, which is manifested as an apparent increase in

emissivity. In the warming season (roughly August through November), the reverse

occurs. The possibility of this effect is consistent with heat flow comments in the

introduction of Surdyk [28], in which it is also noted that a pioneering study using a

67



180

190

200

210

220

230

240

250

2002 2003 2004 2005 2006 2007 2008

B
 (

b
o

tt
o

m
) 

a
n

d
 T

 (
to

p
) 

a
t 

st
a

tio
n

 8
9

8
2

8
 (

K
)

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

e
m

p
ir
ic

a
l 
ε,

 B
/T

2003 2004 2005 2006 2007 2008

Time (one day per point)

Figure 5.1: Time series of coincident (blue in upper plot) T , (black in upper plot) B,
and (red in lower plot) empirical ϵ measurements at Antarctic automatic weather sta-
tion 89828 (Dome C), along with the (dashed in lower plot) sinusoidal fit ϵsinus(DOY )
which minimizes RMSE. Note the gaps in the T record indicating that the automatic
weather station is faltering.
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radiative transfer model by Zwally [31] indicates that the annual emissivity is nearly

constant.

5.3 Pdf Method

We desire to use satellite measurements of microwave earth emissions B,

together with DOY information, to obtain the best possible estimates of near-surface

air temperature T . We concur with Shuman et al. in the conclusion that formulating

a geophysically based forward model of B from T and then inverting it to obtain

T from B is very difficult because of the multitude of parameters in such a model

which are difficult to know (such as ice grain size and geometry, layer thicknesses,

heat flow in the firn, and thermal effects of wind pumping), although this approach is

considered in [28]. We instead seek to empirically determine the relationship between

T , B, and DOY, using coincident records of these three variables.

The sinusoidal emissivity model discussed in Section 5.2 is reasonable. But

if an empirical relationship is to be derived, why should it be constrained to a sinu-

soidal function? The simplicity of a sinusoid is attractive, but a more flexible rela-

tionship achieves greater accuracy. Deriving a more accurate relationship is the task

accomplished in this section. We refer to this method as the probability distribution

function (pdf) method, for reasons that become apparent.

5.3.1 Estimating T from B only

We begin by demonstrating how the pdf method estimates T from only B

information. Consider the three years of coincident T and B data for an Antarctic

weather station which are plotted in Fig. 5.2. The coordinates of each point are the

average T for a day and the average B for the same day (see Appendix E for details on

the datasets used). This plot shows the empirical information which we have about

the relationship between T and B at this location.

An intuitive description of the proposed pdf method is as follows. For

a particular satellite measurement denoted B̄, such as B̄ = 180 K, the density of

the points in Fig. 5.2 along the line B = 180 can be viewed as p(T |B̄ = 180), a
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probability distribution function for T given the knowledge that B̄ = 180. This pdf

itself is the most complete information on T , given the input B̄ and the empirical

relationship depicted in Fig. 5.2. Numerical estimates of T can be chosen based on

p(T |B̄): choosing the mean of p(T |B̄) provides the minimum mean squared error

(MMSE) estimate of T , given p(T |B̄) [20, p. 175].

In more precise terms, the proposed method solves an inverse problem

(obtaining T from B) using probability theory. We follow the exposition of Tarantola

[3, Ch. 1], which is similar to Bayes’ theorem but more general and complete. The

points plotted in Fig. 5.2 can be considered to be samples of our best available estimate

of the joint theoretical pdf of B and T , which we denote Θ1(b, t) (see [3, section

1.3]). This pdf captures our empirical knowledge of the relationship between B and

T .1 Satellite measurement information, together with its uncertainty, is captured

in another pdf, denoted by ρB(b) (see [3, section 1.4.1]). We model this pdf with a

Gaussian pdf whose mean is a particular satellite measurement B̄ and whose standard

deviation (STD) is σ, that is, ρB(b) = 1
σ
√
2π
e−(b−B̄)2/(2σ2). Then2 the output of the

pdf method is a marginal pdf for T , denoted σT (t), that is found as follows:

σT (t) = k

∫
ρB(b) Θ1(b, t) db, (5.3)

where k is an unknown constant and the integration is carried out over all values of

b.

In words, we multiply the joint distribution Θ1(b, t) depicted in Fig. 5.2 by

the measurement information ρB(b), so as to select the area near the line B = B̄. A

depiction of the two pdfs is given in Fig. 5.3. Multiplying the two pdfs combines the

information in them. Then we integrate the resulting 2-D pdf to obtain the marginal

pdf σT (t) which represents our best information on T . The MMSE estimate and its

variance can then be calculated from σT (t) (although in general, an estimate and its

variance only summarize the information contained in a pdf such as σT (t)). Also

1Although Θ1(b, t) is subject to change on a scale of years or decades, we neglect this phenomenon
in this work.

2I assume arbitrary constant (i.e., flat) distributions for the remaining distributions in Tarantola’s
formulation [3, Eq. (1.84)]. Such constant distributions are arguably non-informative (do not add or
remove any information from the problem) – see Example 1.15 of [3]. More informative distributions
could be selected, but I leave this for future work.
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Figure 5.2: All coincident T and B measurements (daily averages) at Antarctic au-
tomatic weather station 89828.
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Figure 5.3: Overlay of samples of the two pdfs Θ1(b, t) (blue) and ρB(b) (green)
which are multiplied together and then integrated along the B dimension to obtain
the marginal pdf σT (t) shown in Fig. 5.4.
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note that σT (t) is called the posterior pdf for T and is essentially equivalent to the

pdf p(T |B) in a simple Bayesian formulation.

To numerically carry out the operations in (5.3), we start with all avail-

able samples of Θ1(b, t) (that is, the available coincident T and B data displayed in

Fig. 5.2), weight their T values using ρB(b), and then add the weighted T values

within a bin centered at T = t to find the value of σT (t).
3 An example of the σT (t)

obtained in this manner is shown in Fig. 5.4, for a measurement value B̄ of 180 K

with an assumed STD σ of 1 K.

5.3.2 Full Pdf Method: Estimating T from both DOY and B

The sinusoidal method referenced previously employs DOY information

by making emissivity a function of DOY. The proposed pdf method utilizes DOY

information in the same manner that it uses B data. A pdf ρD(doy) is used to convey

the DOY on which we desire a T estimate. A Gaussian pdf is used, with STD σD

and centered at the known DOY on which we wish to estimate T .4 DOY and B

information are used together to estimate T as follows:

σT (t) = k

∫ ∫
ρD(doy) ρB(b) Θ(doy, b, t) ddoy db. (5.4)

Given a particular measurement of B (denoted B̄) and the DOY associated

with that measurement (denoted ¯DOY ), (5.4) in more explicit form is

σT (t) = k2

∫ ∫
e−(doy− ¯DOY )2/(2σ2

D) e−(b−B̄)2/(2σ2) Θ(doy, b, t) ddoy db, (5.5)

where the scaling coefficients in the Gaussian distributions have been absorbed into

the constant k2. This is the posterior pdf for average air temperature T at the site

where B̄ was measured on day ¯DOY .

3After repeating this for all desired values of t, the results can be normalized so that σT (t)
integrates to one, as is proper for a pdf. This is equivalent to finding k in (5.3).

4If the relationship between DOY and T did not change from year to year, then ρD(doy) could
have all its mass concentrated at a single point, since the DOY is usually known with complete
certainty. But to allow for fluctuation and/or evolution of this relationship, the DOY information
is modeled by a non-singular pdf.
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This method depends upon two parameters in particular: σ and σD. The

STD σD characterizes variability in air temperature for a fixed DOY as a function of

year. For the STD σ, we note that the AMSR-E sensor builders report 0.6 K as the

sensitivity of 37 GHz measurements (see the description found at the website

http://www.ghcc.msfc.nasa.gov/AMSR/instrument descrip.html). This can be con-

sidered a lower bound on measurement error σ since there are additional error sources

for which it does not account (e.g., decorrelation between the surface temperature pro-

ducing B and air temperature T , azimuth modulation effects [32], and the fact that

the AMSRE footprint covers many square kilometers rather than only the point at

which the station lies).

The performance of the pdf method depends on the choice of σ and σD.

The sensitivity of this choice is explored in section 5.4.1. An adaptive method for

using training data to choose σ and σD is explained in section 5.4.2.

5.4 Application at Three Inland Antarctic Sites

In this section we assess the performance of the pdf method described in the

previous section. We compare its estimates with estimates obtained by the sinusoidal

method of Shuman et al.

At each of three stations in the interior of Antarctica, three years of quality-

controlled concurrent T and B records have been gathered (see Appendix for details).

These records are the top three subplots displayed in Fig. 5.5.

In Section 5.4.1, a single year of concurrent records from a given site is used

to train both the sinusoidal and the pdf method. The methods are then tested on the

other two years of concurrent records at the given site. The results are compared at

each of the three sites. In Section 5.4.2, two years of concurrent records are used to

train both methods, while the remaining year is used to test the performance of the

two methods at each site.
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5.4.1 One Year of Training Data

Sinusoidal Method

To train the sinusoidal method, a brute force numerical search is made to

find the sinusoidal emissivity with period 365.25 days which minimizes the RMSE

between T estimated from B and the true T, over a period of concurrent T and B

data. For example, at station 89828, the minimizing emissivity for the first year of

concurrent data is

ϵ = 0.844 + 0.0278 sin

(
(t− 22.3)

2π

365.25

)
, (5.6)

where t is in days.

As other examples, the minimizing emissivities for the first year of concur-

rent data at stations 89813 and 89606 are

ϵ = 0.923 + 0.0077 sin
(
(t− 33.6) 2π

365.25

)
and (5.7)

ϵ = 0.761 + 0.0155 sin
(
(t+ 22.2) 2π

365.25

)
, (5.8)

respectively.

Such sinusoidal emissivities are then used to estimate T from B for the

other years of concurrent data at each station. By using all permutations of training

year and test year, six tests are possible at each of the three sites. The RMSE between

these estimates and the true T is given in Table 5.1.

Pdf Method

When the pdf method is used for the same training and test data, the

estimates depend on the σ and σD used. As discussed above, we have a lower bound

of σ = 0.6 K for AMSR-E 37 GHz data but no established value for σD. In this

subsection, both of these STDs are left as free parameters, with the performance of

the pdf method given as a function of them.

To illustrate these dependences, the RMSE of the pdf method is calculated

for σ values from 0.6 to 2.4 K in steps of 0.1 K and σD values from 1 to 60 days. This
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Figure 5.4: Marginal pdf for T obtained from the 2-D pdfs represented in Fig. 5.3.

Table 5.1: RMSE for T using the sinusoidal method at three stations in the interior
of Antarctica, with 1 year of training data and 1 year of test data.

Station Station Station

89828 89813 89606

Year 1 = training, year 3 = test 5.7 K 3.6 K 4.3 K

Year 2 = training, year 3 = test 5.5 K 2.5 K 4.3 K

Year 1 = training, year 2 = test 6.4 K 2.2 K 4.3 K

Year 3 = training, year 2 = test 6.3 K 2.4 K 4.4 K

Year 2 = training, year 1 = test 5.0 K 2.1 K 3.9 K

Year 3 = training, year 1 = test 5.1 K 3.4 K 4.1 K

Average at each station: 5.7 K 2.7 K 4.2 K

Average over all stations and tests: 4.2 K
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Figure 5.5: (Lower lines, black) brightness temperature B (37 GHz, v-pol) and (higher
lines, blue) air temperature T versus time for five Antarctic stations. Both are in units
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is done separately for each of the 18 possible tests. The results at stations 89828,

89813, and 89606 are shown in Fig. 5.7–5.9, respectively. The contours in these plots

show the improvement in RMSE which is achieved by the pdf method, in mK relative

to the sinusoidal method, as a function of σ and σD.

These results indicate that with only one year of training data, the pdf

method (with σ and σD chosen somewhat blindly) achieves better performance than

the sinusoidal method at station 89828 (Dome C). At station 89813, the two methods

show similar performance. At station 89606, the two methods also show similar

performance. The precise results vary with the particular years used for training and

testing.

An average of the improvement over all 18 tests is shown in Fig. 5.10, as a

function of σ and σD. It reaches a maximum improvement of 0.134 K at σ = 1.4 K

and σD = 19 days. This is an improvement of 3.2% compared with the 4.2 K RMSE

which is the average (over the 18 cases) RMSE of the sinusoidal method. Fig. 5.10

also suggests that on average, the pdf method has lower RMSE over a large range of

σ and σD – roughly over the Cartesian product of σ = 0.6 to 2.4 K and σD = 10 to

50 days.

5.4.2 Two Years of Training Data

In the following we evaluate and compare the performance of the two meth-

ods when two years of training data are available at a site. The sinusoidal method is

considered first, followed by the pdf method.

Sinusoidal Method

For the sinusoidal method, the training is the same as with one year of

training data except that a minimizing emissivity is found over a two year dataset.

The RMSE that results when applying this method to each year of concurrent data

at each site are found in Table 5.2 (graphical display of this information is provided

in Fig. 5.11). Comparison with the results from only a single year of training (Table
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Figure 5.7: Improvement in RMSE of the pdf method, in mK relative to the sinusoidal
method, at station 89828, as a function of σ and σD. Each pane is for a different
combination of training and test year.
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Figure 5.9: Improvement in RMSE of the pdf method, in mK relative to the sinusoidal
method, at station 89606, as a function of σ and σD. Each pane is for a different
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Table 5.2: RMSE results of the sinusoidal method and the pdf method with two
years of training data and one year of test data at each of three sites in the interior
of Antarctica. The σ and σD used in the pdf method are chosen by testing the two

training years on one another and finding the parameters which maximize
performance.

RMSE between Estimates and True (Station) Temperatures

Station Station Station Station Station

89828 89813 89606 89022 89002

Years 1 & 2=training,

year 3=test:

Sinusoidal method (K) 5.5 3.0 4.3 7.2 11

Pdf method (K) 4.6 2.6 4.3 5.9 5.6

Improvement (%) 17 15 2 17 48

Years 1 & 3=training,

year 2=test:

Sinusoidal method (K) 6.3 1.7 4.4 12 32

Pdf method (K) 5.6 1.7 4.1 9.5 6.5

Improvement (%) 10 4 6 19 80

Years 2 & 3=training,

year 1=test:

Sinusoidal method (K) 5.1 2.7 4.0 5.9 21

Pdf method (K) 4.8 2.7 4.0 5.7 5.2

Improvement (%) 5 -1 -2 3 76

Ave. improvement (K) 0.61 0.16 0.08 1.2 15.6

Ave. improv’t by area inland: 0.3 K (7%) coastal: 8.4 K (57%)

5.1) indicates that the sinusoidal method does not benefit significantly from a longer

training period.

Pdf Method

In contrast to the sinusoidal method, the pdf method can benefit signif-

icantly from an additional year of training data. The additional year enables an

intelligent choice for σ and σD as follows.
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Figure 5.11: Bar graph of same information as in Table 5.2.
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For a fixed choice of σ and σD, two tests are performed: 1) one using the

first year of training data for training and the second year for testing, and 2) the

other using the first year of training data for testing and the second year for training.

The total RMSE of these two tests is calculated.

This entire process is repeated for many different choices of σ and σD,

over large ranges of possible values. The choice which minimizes the total RMSE

becomes the final choice of σ and σD which is used to estimate the third year of data.

(Figs. 5.12 – 5.14 include the values selected by this process for each particular site

and set of training years.)

The resulting RMSE results are given in the first three columns of Table

5.2 and are graphed in Fig. 5.11. At the inland sites, the pdf method achieves an

average RMSE that is 0.3 K (7%) lower than the average RMSE of the sinusoidal

method. These results demonstrate that the pdf method is an improvement over the

sinusoidal method, at least on the plateau of East Antarctica. Comparisons of true

air temperatures with the two estimates are shown in Figs. 5.12–5.14, along with the

σ and σD values selected by the pdf method.

5.5 Application at Two Coastal Sites

To demonstrate the agility of the pdf method, this section applies the

method at two coastal Antarctic sites. T and B data at these sites (Halley, station

89022; and Neumayer, station 89002) are much different from data at inland sites.

Plots of T , B, and the associated empirical emissivity at these two stations are given

in the lower two panes of Figs. 5.5 and 5.6. The largest difference from inland data

is the occurence of melt events, which appear as sharp drops in B near the beginning

of most of the years shown.5

It is apparent from Fig. 5.6 that a sinusoidal fit is not suited to sites with

melt events. Some other fit using a well known function might be contrived, but the

5Reasons for other more minor differences may be 1) the temperature of the air and of the ice
shelves on which the stations lie is more directly influenced by ocean currents and weather than
at inland sites, 2) there is greater annual precipitation at coastal sites; and 3) there are differences
between the composition of the ice shelves and that of the inland ice sheets – see Appendix E for
details on station geography.

85



pdf method automatically adapts itself optimally. We demonstrate this by applying

the sinusoidal and pdf methods as before, with two years of training. The performance

attained is given in Table 5.2 and graphed in Fig. 5.11. The estimates themselves are

shown in Figs. 5.15-5.16.

From these results, it is apparent that the flexibility of the pdf method can

produce large advantages. At station 89022, the pdf method produces better results

at almost all times. Its reliance on DOY produces notable robustness in the presence

of the melt events (around the beginning of each year). These same melt events cause

the sinusoidal method to produce erroneous spikes in estimated T (see Fig. 5.15).

Such spikes are especially large in station 890026 estimates (Fig. 5.16). Indeed, at

station 89002 the sinusoidal method is rendered useless for most of the test times

due to 1) the large melt event at the beginning of 2004 and 2) the generally non-

sinusoidal nature of the empirical emissivity time series at this station. In contrast,

the pdf method estimates show fidelity to smoothed air temperature data.

Additional interesting effects are seen in Fig. 5.16. For Year 1, the pdf

method determines that DOY information is more valid than B information, based

on the two training years of data. This explains the anomalous rise in pdf method

estimates near the middle of 2003 – the rise is shadowing rises in the training years’

T for those same DOYs. For Year 2, the pdf method chooses to place greater reliance

on B than on DOY, resulting in estimates which show more fluctuation than Year

1 and Year 3 estimates. However, the reliance of the pdf method on DOY is still

greater than that of the sinusoidal method – this prevents the pdf method estimates

from plunging during and after the melt event, where the sinusoidal method estimates

plunge.

5.6 Conclusion

Shuman et al. [29] previously demonstrated a method for estimating Green-

land air temperature from 37 GHz v-pol brightness temperature. Their method fits

6Note that station 89002 is farther north and closer to open ocean than station 89022. This can
explain why the melt events are larger at 89002 than at 89022.
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Figure 5.12: True air temperatures (solid blue), estimates of the pdf method (dashed
black), and estimates of the sinusoidal method (red x’s) at station 89828.
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Figure 5.13: True air temperatures (solid blue), estimates of the pdf method (dashed
black), and estimates of the sinusoidal method (red x’s) at station 89813.
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Figure 5.14: True air temperatures (solid blue), estimates of the pdf method (dashed
black), and estimates of the sinusoidal method (red x’s) at station 89606.
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Figure 5.15: True air temperatures (solid blue), estimates of the pdf method (dashed
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Figure 5.16: True air temperatures (solid blue), estimates of the pdf method (dashed
black), and estimates of the sinusoidal method (red x’s) at station 89002.
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a sinusoid to training data, then uses the sinusoid to estimate air temperature from

measurement data. This chapter presents the first demonstrations of this method

at sites in Antarctica (five total). The estimates of the sinusoidal method at inland

sites have an average RMSE of 4.2 ◦C when one year of training data is available,

decreasing slightly to 4.1 ◦C when two years of training data are available.

More importantly, this chapter introduces an adaptive alternative, the pdf

method. This method uses training data to empirically build a pdf relating measure-

ment data to air temperature. This pdf is then used to translate measurement data

to a marginal pdf on air temperature. The mean of the marginal pdf is used as an

estimate of air temperature.

With only one year of training data, the performance of the pdf method

is slightly better than the sinusoidal method. This holds true over a wide range of

two controlling parameters, σD and σ. These parameters specify the weight which

the pdf method gives to two sources of information (namely, day of year and 37-GHz

v-pol brightness temperature measured on that day).

When two years of training data are available, the pdf method can be

self-trained to make intelligent choices for σD and σ. This intelligence or adaptivity

produces significant improvements. Compared to the sinusoidal method, the pdf

method reduces RMSE by an average of 0.3 ◦C at three inland sites and by 8.4 ◦C

at two coastal sites. The large improvement at the coastal sites originates from the

adaptability of the pdf method which allows it to anticipate regular melt events.

The pdf method is currently useful for filling in gaps in ground station

temperature records and for extending those records to times before or after the

station’s operating life. Methods for extending the pdf method to areas without

ground stations are discussed in the next section.

5.7 Extensions of this Work

Another advantage of the pdf method is that the variance of an air tem-

perature estimate can be estimated even when ground truth data are unavailable.

Specifically, the variance can be calculated directly from the marginal pdf for air
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temperature. A straightforward extension of the present work is to evaluate the qual-

ity of this variance estimate by comparing it with RMSE obtained using ground truth.

This investigation is left for future work.

In this and previous work, both the pdf and the sinusoidal method require

training by ground station truth data. Further study can ascertain the quality of

estimates obtained in areas without station data, using data at neighboring sites for

training. Currently this prospect is hampered by the lack of additional stations in

proximity to the stations whose data is employed in this dissertation.

Another option for estimating temperature in areas without ground sta-

tions is to train either the pdf method or sinusoidal method using air temperatures

from a new source (such as estimates derived from satellite infrared sensors or nu-

merical weather prediction models). The quality of this approach can be tested by

using it at a ground station location and then comparing the resulting estimates with

ground station “truth” data. (Note that this option is only meaningful insofar as

data from the new source are independent of the ground station data.)

This chapter has focused on minimizing RMSE in air temperature esti-

mates. For applications such as long-term climate change investigation, it may be

desirable to minimize bias rather than RMSE. This can readily be accomplished for

either the pdf or sinusoidal methods described above. It is done in either case by

simply using bias rather than RMSE as the criteria to minimize during the training

of the method.
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Chapter 6

Conclusion

This chapter provides a summary and discussion of the dissertation con-

tributions. A list of publications and suggestions for future work are also provided.

6.1 Principal Contribution

The principal contribution of this dissertation is introducing and proving

to the microwave radiometry community that probabilistic approaches to problems

can offer significant advantages. This section summarizes these advantages and how

the dissertation demonstrates them. Additional contributions are discussed in the

next section.

Radiometry is the science of measuring random thermal emissions. Excel-

lent techniques for the characterization and exploitation of the properties of random

signals have been developed, some quite recently, in the fields of probability theory

and inverse problem theory. This dissertation manifests the value of these techniques

in solving three problems of current interest in microwave radiometry.

To begin, in Chapters 3 and 4, probability theory is used to model quan-

tities as random variables rather than simple algebraic unknowns. This permits the

inclusion of additional information such as the variances of quantities and their cor-

relations with other quantities. Random variables are more difficult to process than

algebraic unknowns. Fortunately, centuries of theoretical work can be tapped to as-

sist in this. In Chapter 3, this approach results in closed-form, analytical expressions

for error terms (validated by numerical simulation) whose fidelity is a level higher

than previous work. In Chapter 4, this approach results in optimal estimators for
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calibration parameters. It also leads to the first published information on certain

hardware parameters to be obtained from calibration data.

Not only is improvement possible by modeling radiometric signals and

error sources as random variables; the outputs of radiometry can also contain more

information if they are reported as random variables. It is not uncommon for an

estimate to be reported with an error bar or standard deviation. However, covariances

between outputs can contain much additional information, as illustrated in Chapter 4.

This is particularly relevant as radiometry advances by becoming more polarimetric,

in which three or four properties of a radiometric signal are measured simulataneously.

Covariance information can be conveyed by reporting a joint pdf for out-

puts rather than merely marginal information on each output. In many cases this

joint pdf is Gaussian (normal) or nearly so. This is convenient because a Gaussian

pdf is easily manipulated. A joint Gaussian pdf is also completely summarized by a

vector of means and a covariance matrix, making it computationally inexpensive to

store and process. Chapter 4 advocates the greater use of such pdfs as an important

next step in the field of microwave radiometry.

Samples of a pdf can serve as either supplements or alternatives to a solu-

tion in the form of an analytical pdf. Such samples can be plotted to aid in visualizing

available information on parameters, as shown in the figures of Chapter 4. Samples

of pdfs can also be used in lieu of analytical pdfs to solve problems where empirical

information is used in place of an analytical model, as demonstrated in Chapter 5.

Finally, pdfs can be preserved and conveyed by a collection of samples. In terms

of subsequent processing, this option can be much more tractable than analytically

manipulating non-Gaussian pdfs. While storing and processing many samples of a

pdf is computationally more expensive than the conventional choice to simply use

the mean, the exponential growth of computing power which has occurred in recent

decades puts this option within reach.
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6.2 Additional Contributions

As noted above, the principal contribution of this dissertation is intro-

ducing and proving to the microwave radiometry community that probabilistic ap-

proaches to problems result in significant advantages. The dissertation also illustrates

how to work out the difficult details of a probabilistic approach in three diverse sit-

uations. These examples can be helpful to others who approach similar situations.

This is an important additional contribution.

A number of other, secondary contributions involve specific, current issues

or goals of microwave radiometry. These contributions are now described.

6.2.1 Error Analysis of Polarization Rotation Correction

Chapter 3 and Appendix A extend the forward model of polarization ro-

tation to include the random nature of radiation, radiometer channel noises, and (to

first order) calibration. With these effects included, derivations are presented for

the means, variances, and covariances of radiometer measurements of the first three

Stokes parameters (or their modified counterparts) in the presence of polarization

rotation. These derivations are validated via Monte Carlo simulation of the original

electric-field model.

The error formulas thus derived allow more accurate error analysis and

error budgeting than has been possible previously. In particular, they indicate several

things about the residual polarization rotation correction (PRC) error. First, the

natural third Stokes parameter, of the magnitude expected at L-band for most Earth

scenes, is an insignificant source of error compared to NE∆T .

Second, the dependence of PRC error on rotation angle is determined by

residual errors from the calibration process. Since these residuals are unknown (by

definition), the dependence of PRC error on rotation angle cannot be predicted as

was assumed previously. But if post-launch calibration reduces these residuals to the

level of NE∆T or less, then the dependence of PRC error on rotation angle is weak

– in the limit, the overall PRC error reduces to the NE∆T that exists regardless of

polarization rotation.
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6.2.2 Estimation of Radiometer Calibration and Hardware Parameters

Chapter 4 develops a method of estimating radiometer calibration parame-

ters (channel gains and offsets) which is new to the literature of microwave radiometry.

In simulations, it promises to reduce estimation error significantly (by 30% for cal-

ibration parameters of the conventional h-pol and v-pol channels; and by factors of

1.5 to 3.7 for calibration parameters of the third Stokes parameter). As a side benefit,

the accuracy of the previous method is analyzed and published for the first time.

Chapter 4 and its appendices also derive valuable new information on the

estimation of radiometer hardware parameters for the specific class of radiometer un-

der consideration. An explicit formula is derived for obtaining a scattering parameter

in terms of calibration measurements. A polarimetric efficiency is shown to be nu-

merically resolvable from calibration measurements. It is proven that for six other

hardware parameters (two gains and four detector sensitivies), only ratios or products

of the parameters can be resolved. All of these results are valuable for diagnosis of

radiometer anomalies.

6.2.3 Improved Polar Air Temperature Estimation

Chapter 5 provides several advances in retrieving polar air temperature

from satellite microwave radiometer data. First, the chapter demonstrates a previous

empirical method (“sinusoidal method”) for the first time on the continent of Antarc-

tica. It shows that the previous method retrieves air temperature at three inland

Antarctic sites with a root-mean-square-error (RMSE) of 2.1 to 6.4 K with one year

of training data and a RMSE of 1.7 to 6.3 K with two years of training data.

Second, the new, probabilistic empirical method developed in Chapter 5

(“pdf method”) provides improved estimation of polar air temperature. At inland

Antarctic sites, the reduction in RMSE compared with the previous method is about

0.1 K or 3% with one year of training data and 0.3 K or 7% with two years of training.

An important leap in Chapter 5 is including day-of-year as an important

datum to be utilized jointly with radiometer measurements in order to estimate air

temperature. This makes the probabilistic method robust at coastal sites. Melt events
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at coastal sites cause the previous method to be unreliable (RMSE is 5.9 to 32 K,

average of 14.8 K, with two years of training) at the two sites with sufficient data

to be analyzed in this study. In contrast, the RMSE of the probabilistic method at

these sites ranges from 5.2 to 9.5 K (average of 6.4 K) with two years of training data,

signifying that the probabilistic method is usable at such sites.

The probabilistic method developed in this chapter can be used immedi-

ately for scientific research. First, it can fill in gaps in the temperature records of

many polar ground stations. Second, it can extend ground station records to times

before or after a station’s operating life, provided that satellite data cover those times.

6.3 Publications

Multiple papers publish the work in this dissertation. The material in

Chapter 3 appears in the October 2007 issue of the IEEE Transactions on Geoscience

and Remote Sensing [4]. A summary was presented at a 2006 IEEE conference [33].

Material from Chapter 4 is published in the October 2008 issue of the IEEE Trans-

actions on Geoscience and Remote Sensing [5]. The material in Chapter 5 is in final

preparation for submission to the peer review and publication process.

6.4 Future Work

A number of extensions can be made to the particular problem solutions

worked out in this dissertation. First, the forward model in Chapter 3 can be ex-

panded to include channel gains and uncertainties in them. The work in Chapter 4

provides an excellent start to this extension. Another possible extension of the for-

ward model is the inclusion of antenna pattern nonidealities: sidelobe contributions,

which undergo a different amount of polarization rotation than the main beam con-

tribution; and antenna cross-pol contributions, which mix the four Stokes parameters

of the scene to some degree.

Next, the findings of Chapter 3 can be validated using data from the Aquar-

ius radiometer when those data become available (the satellite launch is projected to
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be in 2010). Such validation may then aid in the present design of the SMAP ra-

diometer [34] and/or the development of SMAP calibration algorithms.

Like Chapter 3, the forward model of Chapter 4 is based on a number of

stated simplifications (see Section 4.2), and the simulations of Chapter 4 incorporate

those simplifications. Future work can assess the effect of these simplifications on

the conclusions of Chapter 4 by testing the proposed method on real radiometer

data. Alternatively, the forward model can be expanded in an attempt to avoid

the simplifications. Also, other profitable extensions can be made by adapting the

forward model to other classes of radiometers.

Chapter 4 focuses on estimation of calibration parameters. Future work

can assess the improvement in scene brightness temperature estimation that can be

achieved by using the methodology of Chapter 4 rather than algebraic estimation.

This would directly improve science data and is therefore of great interest.

Possible extensions of Chapter 5 are numerous and are discussed in greater

detail at the end of that chapter. As a summary, note the following.

First, it would be valuable to explore the accuracy of estimating air tem-

perature in areas without ground stations. One option is to attempt this in areas

adjacent to ground stations, using the ground station data for training. Another

option is to train either the pdf method or the sinusoidal method using air temper-

atures from a new source such as estimates derived from satellite infrared sensors or

numerical weather prediction models. The quality of this approach can be tested by

using it at a ground station location and then comparing the resulting estimates with

ground station “truth” air temperature data.

Chapter 5 focuses on minimizing RMSE in air temperature estimates. For

applications such as long-term climate change investigation, it may be desirable to

minimize bias rather than RMSE. This can readily be accomplished for either the

pdf or sinusoidal methods. In both cases, it is done by simply using bias rather than

RMSE as the criteria to minimize during the training of the method. A comparison

of the resulting biases of the two methods could then be made.
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Finally, it is noted in Chapter 5 that the pdf method can predict the

variance of its air temperature estimates, without the use of ground truth data. A

straightforward extension of the chapter is to evaluate the quality of this variance

prediction by comparing it with variance obtained using ground truth.
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Appendix A

Derivation of Forward Model of Polarization Rotation

In this Appendix, I derive equations (3.1)-(3.3). These equations comprise

the forward model of polarization rotation which is used in Chapter 3. Dr. Jeffrey

R. Piepmeier provided the initial sketch of equations (A.1) through (A.15).

A.1 Electric Field Model

Our most basic foundation is a model of the electric fields,x(t)
y(t)

 =

 cosΩ sinΩ

− sinΩ cosΩ

Ev(t)

Eh(t)

+

a(t)
b(t)

 . (A.1)

Ev(t) and Eh(t) are the components of the total electric field emitted by the scene in

the vertical and horizontal directions, respectively (hereafter, our notation suppresses

the time dependence, t, of all quantities). Because the number of independent emitters

in the scene is large in spaceborne radiometry, Ev and Eh are normally distributed,

by the central limit theorem, with zero means [7]. I assume they are real because we

are concerned only with the first three Stokes parameter in this work.

Ev and Eh are rotated through an angle Ω, modeling polarization rotation.

I consider Ω to be constant over the period of one radiometer measurement. Receiver

noise is then added, represented by the electric field amplitudes a and b. Like Ev

and Eh, I assume that a and b are normally distributed, zero mean, normal random

variables. I also assume they are independent of one another and of Ev and Eh. They

represent self emission by the antenna and radiometer. This model neglects sidelobe

contributions (as they may undergo different amounts of rotation than the main beam
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radiation) and cross-coupling of the polarization components caused by the antenna

and radiometer non-idealities (cross-pol patterns).

The quantities most commonly reported in radiometry are the first three

modified Stokes parameters, as brightness temperatures,
Tv

Th

TU

 ≡


< E2

v >

< E2
h >

2 < EvEh >

 , (A.2)

to which I add, for this document,TRX,v

TRX,h

 ≡

< a2 >

< b2 >

 . (A.3)

In these and subsequent definitions, I ignore a proportionality constant which converts

the product of two electric fields to a brightness temperature.1

A quantity of high interest to users of radiometry data is the second Stokes

parameter, TQ ≡ Tv−Th ≡< E2
v > − < E2

h > where < · > denotes the expected value

(ensemble average). In addition to the definition in (A.2), TU can be equivalently

defined in a manner analogous to the definition of TQ. This definition is TU ≡

T+45−T−45, where T+45 is the brightness temperature of the component of the incident

radiation that is linearly polarized at 45◦ with respect to the Ev and Eh axes.

Our model assumes a radiometer architecture in which the signals at +45◦

and −45◦ linear polarization (in the radiometer polarization basis) are synthesized

from x and y after enough amplification of x and y (by LNAs) that receiver noise

added after this synthesis is negligible. Radiometers which create the signals at +45◦

and −45◦ earlier (such as from direct measurement of T+45 and T−45) require that

additional noise terms be added to the additional channels. This would add many

terms to the final forward model and the error formulas.

1This conversion also assumes a narrow band radiometer, so that the frequency spectrums of
Ev(t), Eh(t), a(t), and b(t) are flat, see [6].
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A.2 Description of Parameters

In this document, I could express our results in terms of Tv, Th, TRX,v,

and TRX,h. It is more concise, however, to use the related quantities TI ≡ Tv + Th,

TQ ≡ Tv − Th, TRX,I ≡ TRX,v + TRX,h, and TRX,Q ≡ TRX,v − TRX,h. Note that TI , TQ,

and TU comprise the first three Stokes parameters [15] as brightness temperatures. I

also note that in the final expressions for bias and variance (and hence RMSE), TI

and TRX,I always appear added together, never separately. Therefore I reduce our

parameter set by using Tsys,I ≡ TI + TRX,I .

Beside TI , TQ, TU , TRX,I , and TRX,Q, other parameters are Ω, N , ∆TRX,I ,

∆TRX,Q, and ∆TRX,U (N is defined early in Section A.3; ∆TRX,I , ∆TRX,Q, and ∆TRX,U

are defined in Section A.5). This collection of ten parameters can be used to com-

pletely describe the forward problem and I therefore refer to them as the “original

parameters.” Other quantities are defined for convenience but can be expressed in

terms of these original ten.

The symbols x and y represent the electric fields to be detected by the

radiometer. By the construction of (A.1), they are also zero mean, normal random

variables. I denote their expected squared values, as brightness temperatures, with
Tsys,v

Tsys,h

Tsys,U

 ≡


< x2 >

< y2 >

2 < xy >

 . (A.4)

Using (A.2), (A.3), and the facts that a and b are independent of all other quantities

and are zero mean, we find

Tsys,v =
⟨
(Ev cosΩ + Eh sinΩ + a)2

⟩
= Tv cos

2 Ω + Th sin
2 Ω +

TU
2

sin 2Ω + TRX,v.

(A.5)
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By a similar process,

Tsys,h = Th cos
2Ω + Tv sin

2Ω− TU
2

sin 2Ω + TRX,h,

(A.6)

Tsys,U = −TQ sin 2Ω + TU cos 2Ω. (A.7)

A.3 Measured Temperatures, T̂sys,v, T̂sys,h and T̂sys,U

A conventional two-channel radiometer measures Tsys,v and Tsys,h by a time

average,

T̂sys,v ≡
1

τ

∫ τ

0

x2dt, T̂sys,h ≡ 1

τ

∫ τ

0

y2dt. (A.8)

I use hats to denote measured or estimated quantities, which are random variables, as

opposed to the unhatted quantities which represent the desired true quantities, such

as the ensemble average of a random variable.

A three-channel polarimetric radiometer also measures

T̂sys,U ≡ 2

τ

∫ τ

0

xy dt. (A.9)

As shown in [7], T̂sys,v, T̂sys,h, and T̂sys,U can be rewritten as sums of inde-

pendent samples,

T̂sys,v =
1

N

N∑
i=1

x2i , T̂sys,h =
1

N

N∑
i=1

y2i , T̂sys,U =
2

N

N∑
i=1

xiyi, (A.10)

where N = 2Bτ , B is the sensor bandwidth, and τ is the integration time.

I next proceed to find the distributions of T̂sys,v, T̂sys,h and T̂sys,U . For large

N (for Aquarius, N ≈ 480, 000, 000), T̂sys,v is so nearly Gaussian, by the central limit

theorem, that I assume it is Gaussian. Similar results apply for T̂sys,h and T̂sys,U .

Therefore, they can be very well characterized by only their means, variances, and

covariances, which I derive next.

A.3.1 Means of T̂sys,v, T̂sys,h and T̂sys,U

The ensemble average (expected value) of T̂sys,v is

< T̂sys,v >=

⟨
1

N

N∑
i=1

x2i

⟩
=

1

N

N∑
i=1

< x2i >= Tsys,v. (A.11)
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Similarly, < T̂sys,h >= Tsys,h and < T̂sys,U >= Tsys,U .

A.3.2 V ar(T̂sys,v) and V ar(T̂sys,h)

V ar(T̂sys,v) =

⟨
(
1

N

N∑
i=1

x2i )(
1

N

N∑
j=1

x2j)

⟩
− T 2

sys,v

=

⟨
1

N2

N∑
i=1

N∑
j=1

x2ix
2
j

⟩
− T 2

sys,v, (A.12)

which we separate into terms for which i ̸= j and for which i = j:

=
1

N2

N∑
i=1

N∑
j=1( ̸=i)

< x2ix
2
j > +

1

N2

N∑
i=1

< x4i > −T 2
sys,v. (A.13)

Using the independence of samples i and j and the known fourth moment of zero-mean

normal random variables,

=
1

N2

N∑
i=1

< x2i >
N∑

j=1( ̸=i)

< x2j >

+
1

N2

N∑
i=1

3 < x2i >
2 −T 2

sys,v. (A.14)

Then, using (A.4),

V ar(T̂sys,v) =
2

N
T 2
sys,v. (A.15)

By a similar process,

V ar(T̂sys,h) =
2

N
T 2
sys,h. (A.16)

A.3.3 V ar(T̂sys,U)

By a process similar to (A.12) through (A.15)

V ar(T̂sys,U) =
−T 2

sys,U

N
+

4

N
< x2y2 >, (A.17)

Consider < x2y2 > alone. Using the definitions of x and y in (A.1), it can be expanded

to several dozen terms. The independence of a and b from Ev and Eh means that
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many terms can be factored as < a >, < b2 >, and so on. Then using (A.2), (A.3),

the fact that a and b are zero mean, and the known fourth moment of zero-mean

normal random variables, many terms drop out or simplify, leaving

< x2y2 >=
1

2
< EvE

3
h − E3

vEh > sin 4Ω

+

(
3

4
< E2

vE
2
h > −3

8
(T 2

v + T 2
h )

)
cos 4Ω

−1

2
TRX,Q(TU sin 2Ω + TQ cos 2Ω)

+
1

4
< E2

vE
2
h > +

3

8
(T 2

v + T 2
h ) + TRX,vTRX,h +

1

2
TITRX,I . (A.18)

Ev and Eh are marginally zero-mean Gaussians, with variances of Tv and Th and

a covariance of TU/2. Assuming they are jointly Gaussian, their joint probability

density function (pdf) is completely specified. We can therefore determine < E3
vEh >,

< EvE
3
h >, and < E2

vE
2
h > by direct integration:

< E3
vEh >=

1

π
√
4TvTh − T 2

U∫ ∞

−∞

∫ ∞

−∞
E3

vEhe
−2ThE2

v+2TUEhEv−2TvE
2
h

4TvTh−T2
U dEv dEh. (A.19)

Using a table of integrals [35], the known second and fourth moments of zero-mean

Gaussians, and much algebra, this reduces to

< E3
vEh >=

3

2
TUTv. (A.20)

By similar processes, we find

< EvE
3
h >=

3

2
TUTh and < E2

vE
2
h >= TvTh +

1

2
T 2
U . (A.21)

By using these results in (A.18) and then using (A.18) in (A.17), we obtain, after

much algebraic manipulation,

V ar(T̂sys,U) =
1

N
[T 2

sys,I − T 2
sys,Q + T 2

sys,U ], (A.22)

where Tsys,I ≡ Tsys,v + Tsys,h = TI + TRX,I and Tsys,Q ≡ Tsys,v − Tsys,h.
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A.3.4 Covariances of T̂sys,v, T̂sys,h, and T̂sys,U

We wish to determine the covariances that exist between T̂sys,v, T̂sys,h, and

T̂sys,U . Similar to the derivation of (A.22), it can be shown that

Cov(T̂sys,v, T̂sys,h) =
T 2
sys,U

2N
, (A.23)

Cov(T̂sys,v, T̂sys,U) =
2Tsys,vTsys,U

N
, (A.24)

Cov(T̂sys,h, T̂sys,U) =
2Tsys,hTsys,U

N
. (A.25)

A.4 Definition and Characterization of T̂sys,I and T̂sys,Q

It is more convenient to work with the sum and difference of T̂sys,v and T̂sys,h

than with these quantities themselves. Therefore we define T̂sys,I ≡ T̂sys,v+ T̂sys,h and

T̂sys,Q ≡ T̂sys,v − T̂sys,h. Using the formulas given above, it is straightforward to show

that

< T̂sys,I >= TI + TRX,I ≡ Tsys,I , (A.26)

< T̂sys,Q >= TQ cos 2Ω + TU sin 2Ω + TRX,Q ≡ Tsys,Q, (A.27)

and that the variances and covariances of T̂sys,I , T̂sys,Q, and T̂sys,Q can be summarized

with the symmetric covariance matrix

N ·


V ar(T̂sys,I) Cov(T̂sys,I , T̂sys,Q) Cov(T̂sys,I , T̂sys,U)

V ar(T̂sys,Q) Cov(T̂sys,Q, T̂sys,U)

V ar(T̂sys,U)

 =


T 2
sys,I + T 2

sys,Q + T 2
sys,U 2Tsys,ITsys,Q 2Tsys,ITsys,U

T 2
sys,I + T 2

sys,Q − T 2
sys,U 2Tsys,QTsys,U

T 2
sys,I − T 2

sys,Q + T 2
sys,U

 . (A.28)

A.5 Forward Model of Rotated and Calibrated Brightness Temperatures

As discussed at the beginning of Section A.3, the measured temperatures

are normal random variables with the means and variances just found. It is conve-

nient to break them up into the sum of their means and zero-mean, normal random
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variables, 
T̂sys,v

T̂sys,h

T̂sys,U

 ≡


Tsys,v +∆Tsys,v

Tsys,h +∆Tsys,h

Tsys,U +∆Tsys,U

 , (A.29)

and similarly for the quantities defined for convenience,

T̂sys,I ≡ Tsys,I +∆Tsys,I , (A.30)

T̂sys,Q ≡ Tsys,Q +∆Tsys,Q, (A.31)

where ∆Tsys,I ≡ ∆Tsys,v +∆Tsys,h and ∆Tsys,Q ≡ ∆Tsys,v −∆Tsys,h.

Expanding these out in terms of the original parameters, we have

T̂sys,v = Tv − TQ sin2 Ω +
TU
2

sin 2Ω + TRX,v +∆Tsys,v,

T̂sys,h = Th + TQ sin2Ω− TU
2

sin 2Ω + TRX,h +∆Tsys,h,

T̂sys,U = −TQ sin 2Ω + TU cos 2Ω +∆Tsys,U , (A.32)

and

T̂sys,I = TI +TRX,I +∆Tsys,I ,

(A.33)

T̂sys,Q = TQ cos 2Ω + TU sin 2Ω +TRX,Q +∆Tsys,Q.

(A.34)

Now note that TRX,v and TRX,h (and hence also their sum and difference, TRX,I

and TRX,Q) are operationally estimated and subtracted off as part of the radiome-

ter data calibration. Imperfection in this correction leaves residuals which I call

∆TRX,v and ∆TRX,h. It is convenient to also define ∆TRX,I ≡ ∆TRX,v +∆TRX,h and

∆TRX,Q ≡ ∆TRX,v − ∆TRX,h. With TRX,v, TRX,h, TRX,I and TRX,Q subtracted off

and leaving only these residuals, we finally have a forward model for the outputs of

the rotation, measurement, and calibration processes, which become the inputs to

the polarization rotation correction process of [1]. Using a notation similar to [1] for

110



these inputs, where the subscript “a” can be interpreted as referring to temperatures

“after” rotation, measurement, and calibration,

T̂va = Tv − TQ sin2 Ω +
TU
2

sin 2Ω +∆TRX,v +∆Tsys,v, (A.35)

T̂ha = Th + TQ sin2Ω− TU
2

sin 2Ω +∆TRX,h +∆Tsys,h, (A.36)

T̂ ′
Ua = −TQ sin 2Ω + TU cos 2Ω +∆Tsys,U . (A.37)

As explained in Section 3.2, the measurement and calibration process also add a

residual bias, ∆TRX,U , to this last equation, as included in (3.3).

(A.35) and (A.36) are generalizations of equations (12) and (13) in [1]. For

convenience, I hereafter use the sum and difference of (A.35) and (A.36), as given in

(3.1) and (3.2), respectively.

111



112



Appendix B

Derivation of Covariance Matrix, C

Sixteen voltage comprise the operational calibration measurements made

by the class of polarimetric radiometer which is considered in Chapter 4. A forward

model of these voltages is equation (4.10). Using the information stated in Section

4.4.1 about nine noise variables, this appendix derives the variances and covariances

of the sixteen voltages in (4.10). Each column of voltages in (4.10) is independent of

the other twelve voltages, so we proceed column by column.

B.1 First Column

Consider the first column of voltages in (4.10). There are just two noise

terms, and they are independent of one another since they are from different sources.

Therefore vv,C and vh,C are independent. All other relationships have nonzero corre-

lation:

Cov(vv,C , vp,C) = Cov(Gvvn1, Gpvn1) = E(GvvGpvn
2
1) (B.1)

= GvvGpv
(TC + T1)

2

Bτc
. (B.2)

Similarly,

Cov(vh,C , vp,C) = GhhGph
(TC + T2)

2

Bτc
, (B.3)

Cov(vv,C , vm,C) = GvvGmv
(TC + T1)

2

Bτc
, (B.4)

Cov(vh,C , vm,C) = GhhGmh
(TC + T2)

2

Bτc
. (B.5)
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For the final covariance for this column,

Cov(vp,C , vm,C) = E ((Gpvn1 +Gphn2)(Gmvn1 +Gmhn2)) (B.6)

= E
(
GpvGmvn

2
1 +GphGmhn

2
2

)
(B.7)

= GpvGmv
(TC + T1)

2

Bτc
+GphGmh

(TC + T2)
2

Bτc
. (B.8)

By inspection, the four variances areG2
vv

(TC+T1)2

Bτc
, G2

hh
(TC+T2)2

Bτc
, G2

pv
(TC+T1)2

Bτc
+

G2
ph

(TC+T2)2

Bτc
, and G2

mv
(TC+T1)2

Bτc
+G2

mh
(TC+T2)2

Bτc
.

B.2 Second Column

The variances and covariances of the second column of voltages in (4.10)

are the same as those of the first column, except replacing (TC + T1) and (TC + T2)

with (TH + T1) and (TH + T2), respectively.

B.3 Third Column

The variances and covariances of the third column are the same as those

of the first except replacing (TC + T2) with (TH + T2).

B.4 Fourth Column

The variances and covariances of the fourth column are quite different

because TCN is a component of all three inputs. We first rewrite the calibration

inputs ( TC for both the vertical and horizontal channels, TCN/2, T1, and T2) in

terms of electric fields.

The v-channel cold load emits an electric field which we denote c1. Its

second moment (defined as < c21 > where < · > is ensemble average) is TC (here

and hereafter we ignore a constant that converts the product of two electric fields to

a brightness temperature). The v-channel amplifier noise is another source, whose

equivalent electric field (referred to the input of the first amplifier so that it is on the

same level as c1) is denoted r1. Its second moment is T1. Similarly, the h-channel

cold load outputs c2, with second moment TC , and the h-channel amplifier noise is

r2, whose second moment is T2.
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The correlated calibration source (depicted in Fig. 1 of [2]) emits an electric

field n with second moment TCN . When the energy from this source is split between

the vertical and horizontal channels, the electric field in each channel is then n/
√
2,

whose second moment is TCN/2.

The five electric fields just described (c1, r1, c2, r2, and n) are independent

of one another because of their distinct origins. They are all zero-mean normal random

variables.

The voltages in the fourth column on the left side of (4.2) are found by

summing these electric fields, squaring, integrating, and multiplying by a channel

gain,

vv,CN =
Gvv

τc

∫ τc

0

(c1 +
n√
2
+ r1)

2dt ≡ GvvI, (B.9)

vh,CN =
Ghh

τc

∫ τc

0

(c2 +
n√
2
+ r2)

2dt ≡ GhhJ, (B.10)

vp,CN = GpvI +GphJ +
GpU

τc

∫ τc

0

n2dt ≡ GpvI +GphJ +GpUK, (B.11)

vm,CN = GmvI +GmhJ +GmUK, (B.12)

where the third term in the last two equations arises from the correlation of the inputs

to the hybrid coupler.

Because all these voltages are expressed in terms of the I, J, and K defined

by these equations, all the variances and covariances can be expressed in terms of the

variances and covariances of I, J, and K, which we proceed to determine below.

As shown in [7], I, J , and K can be rewritten as sums of independent

samples,

I =
1

Nc

Nc∑
i=1

(c1,i +
ni√
2
+ r1,i)

2, (B.13)

where Nc = 2Bτc, B is the sensor bandwidth, and τc is the integration time, and

similarly with J and K.
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B.4.1 Means and Variances of I, J, and K

First, using the independence of each of the Nc samples from one another

and of the five electric fields from one another,

⟨I⟩ =
⟨
(c1 + n/

√
2 + r1)

2
⟩
=
⟨
c21 + n2/2 + r21 + 2c1n/

√
2 + 2c1r1 + 2nr1/

√
2
⟩

= TC + TCN/2 + T1, (B.14)

⟨J⟩ =
⟨
(c2 + n/

√
2 + r2)

2
⟩
= TC + TCN/2 + T2, (B.15)

⟨K⟩ =
⟨
n2
⟩
= TCN . (B.16)

These means coincide with the final column of the temperature matrix in (4.2), veri-

fying our formulation of the problem in terms of electric fields.

V ar(I) =

⟨
1

Nc

Nc∑
i=1

(c1,i +
ni√
2
+ r1,i)

2 1

Nc

Nc∑
j=1

(c1,j +
nj√
2
+ r1,j)

2

⟩
− ⟨I⟩2 (B.17)

=
1

N2
c

⟨
Nc∑
i=1

Nc∑
j=1

(c1,i +
ni√
2
+ r1,i)

2(c1,j +
nj√
2
+ r1,j)

2

⟩
− ⟨I⟩2 . (B.18)

Separating the expected value operation into terms for which i ̸= j and for which

i = j:

V ar(I) = 1
N2

c

(∑Nc

i=1

∑Nc

j=1( ̸=i)

⟨
(c1,i +

ni√
2
+ r1,i)

2(c1,j +
nj√
2
+ r1,j)

2
⟩

+
∑Nc

i=1

⟨
(c1,i +

ni√
2
+ r1,i)

4
⟩)

− ⟨I⟩2 . (B.19)

Using the independence of samples i and j, the independence of c1, n, and r1 from ev-

erything but themselves, and the known fourth moment of zero-mean normal random

variables,

V ar(I) = 1
N2

c

(∑Nc

i=1

⟨
(c1,i +

ni√
2
+ r1,i)

2
⟩∑Nc

j=1( ̸=i)

⟨
(c1,j +

nj√
2
+ r1,j)

2
⟩

+
∑Nc

i=1 3
⟨
(c1,i +

ni√
2
+ r1,i)

2
⟩2)

− ⟨I⟩2 . (B.20)

Using (B.14),

V ar(I) =
1

N2
c

(
Nc ⟨I⟩ (Nc − 1) ⟨I⟩+ 3Nc ⟨I⟩2

)
− ⟨I⟩2 = 2

Nc

⟨I⟩2 (B.21)
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and we finally arrive at the ensemble variance

V ar(I) =
⟨I⟩2

Bτc
and similarly, V ar(J) =

⟨J⟩2

Bτc
. (B.22)

Also,

V ar(K) =

⟨
1

Nc

Nc∑
i=1

n2
i

1

Nc

Nc∑
j=1

n2
j

⟩
− T 2

CN (B.23)

=
1

N2
c

⟨
Nc∑
i=1

Nc∑
j=1

n2
in

2
j

⟩
− T 2

CN (B.24)

=
1

N2
c

 Nc∑
i=1

Nc∑
j=1( ̸=i)

⟨
n2
in

2
j

⟩
+

Nc∑
i=1

⟨
n4
i

⟩− T 2
CN (B.25)

=
1

N2
c

 Nc∑
i=1

⟨
n2
i

⟩ Nc∑
j=1( ̸=i)

⟨
n2
j

⟩
+

Nc∑
i=1

3
⟨
n2
i

⟩2− T 2
CN (B.26)

=
1

N2
c

(
Nc(Nc − 1)T 2

CN + 3NcT
2
CN

)
− T 2

CN (B.27)

=
T 2
CN

Bτc
. (B.28)

B.4.2 Covariances of I, J, and K

Cov(I, J) =

⟨
1

Nc

Nc∑
i=1

(c1,i +
ni√
2
+ r1,i)

2 1

Nc

Nc∑
j=1

(c2,j +
nj√
2
+ r2,j)

2

⟩
− ⟨I⟩ ⟨J⟩(B.29)

=
1

N2
c

⟨
Nc∑
i=1

Nc∑
j=1

(c1,i +
ni√
2
+ r1,i)

2(c2,j +
nj√
2
+ r2,j)

2

⟩
− ⟨I⟩ ⟨J⟩ .(B.30)

Focus only on the expected value operation, which we separate into terms for which

i ̸= j and for which i = j:

=
Nc∑
i=1

Nc∑
j=1( ̸=i)

⟨
(c1,i +

ni√
2
+ r1,i)

2(c2,j +
nj√
2
+ r2,j)

2

⟩

+
Nc∑
i=1

⟨
(c1,i +

ni√
2
+ r1,i)

2(c2,i +
ni√
2
+ r2,i)

2

⟩
. (B.31)

Using the independence of samples i and j, the independence of c1, c2, r1, and r2

from everything but themselves, and the known fourth moment of zero-mean normal
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random variables,

= Nc ⟨I⟩ (Nc − 1) ⟨J⟩+Nc

[
⟨I⟩ ⟨J⟩+ T 2

CN

2

]
= N2

c ⟨I⟩ ⟨J⟩+Nc
T 2
CN

2
. (B.32)

Putting this back into (B.30),

Cov(I, J) =
T 2
CN

4Bτc
. (B.33)

Similarly we have

Cov(I,K) =

⟨
1

Nc

Nc∑
i=1

(c1,i +
ni√
2
+ r1,i)

2 1

Nc

Nc∑
j=1

n2
j

⟩
− ⟨I⟩ TCN (B.34)

=
1

N2
c

⟨
Nc∑
i=1

Nc∑
j=1

(c1,i +
ni√
2
+ r1,i)

2n2
j

⟩
− ⟨I⟩ TCN (B.35)

=
1

N2
c

 Nc∑
i=1

⟨
(c1,i +

ni√
2
+ r1,i)

2

⟩ Nc∑
j=1( ̸=i)

⟨
n2
j

⟩
(B.36)

+
Nc∑
i=1

⟨
(c1,i +

ni√
2
+ r1,i)

2n2
i

⟩)
− ⟨I⟩ TCN (B.37)

=
1

N2
c

(
Nc ⟨I⟩ (Nc − 1)TCN +Nc[TCTCN +

⟨n4⟩
2

+ T1TCN ]

)
− ⟨I⟩ TCN

=
1

N2
c

(
−Nc ⟨I⟩TCN +NcTCN [TC +

3

2
TCN + T1]

)
(B.38)

= −⟨I⟩ TCN

Nc

+
(⟨I⟩+ TCN)TCN

Nc

(B.39)

=
T 2
CN

2Bτc
, (B.40)

and similarly,

Cov(J,K) =
T 2
CN

2Bτc
. (B.41)

B.4.3 Variances of the Voltages

Now that the means, variances, and covariances of I, J , and K are known,

we can find the means, variances, and covariances of the voltages:

V ar(vv,CN) = G2
vvV ar(I) = G2

vv

⟨I⟩2

Bτc
. (B.42)

V ar(vh,CN) = G2
hhV ar(J) = G2

hh

⟨J⟩2

Bτc
. (B.43)
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V ar(vp,CN) = V ar(GpvI +GphJ +GpUK) (B.44)

= V ar(GpvI) + V ar(GphJ) + V ar(GpUK)

+2[GpvGphCov(I, J) +GpvGpUCov(I,K) +GphGpUCov(J,K)]

= G2
pv

⟨I⟩2

Bτc
+G2

ph

⟨J⟩2

Bτc
+G2

pU

T 2
CN

Bτc

+2GpvGph
T 2
CN

4Bτc
+ 2GpvGpU

T 2
CN

2Bτc
+ 2GphGpU

T 2
CN

2Bτc
(B.45)

=
G2

pv ⟨I⟩
2 +G2

ph ⟨J⟩
2 + (G2

pU +GpvGph/2 +GpvGpU +GphGpU)T
2
CN

Bτc
.

(B.46)

vp,CN is identical to vm,CN – same realizations of noise – except for mul-

tiplication by different Gxx. Therefore, variances and covariances of the first will be

identical to those of the second if we simply replace Gpx with Gmx:

V ar(vm,CN)

=
G2

mv⟨I⟩
2+G2

mh⟨J⟩
2+(G2

mU+GmvGmh/2+GmvGmU+GmhGmU )T 2
CN

Bτc
. (B.47)

B.4.4 Covariances of the Voltages

The covariances of vv,CN with the other voltages are found as follows:

Cov(vv,CN , vh,CN) = GvvGhhCov(I, J) = GvvGhh
T 2
CN

4Bτc
, (B.48)

Cov(vv,CN , vp,CN) = Cov(GvvI,GpvI +GphJ +GpUK) (B.49)

= Gvv[GpvV ar(I) +GphCov(I, J) +GpUCov(I,K)](B.50)

= Gvv[Gpv
⟨I⟩2

Bτc
+Gph

T 2
CN

4Bτc
+GpU

T 2
CN

2Bτc
] (B.51)

= Gvv
4Gpv ⟨I⟩2 +GphT

2
CN + 2GpUT

2
CN

4Bτc
,

(B.52)

and similarly,

Cov(vv,CN , vm,CN) = Gvv
4Gmv ⟨I⟩2 +GmhT

2
CN + 2GmUT

2
CN

4Bτc
. (B.53)
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Likewise, the covariances of vh,CN with the vp,CN and vm,CN are

Cov(vh,CN , vp,CN) = Cov(GhhJ,GpvI +GphJ +GpUK) (B.54)

= Ghh[GpvCov(I, J) +GphV ar(J) +GpUCov(J,K)](B.55)

= Ghh[Gpv
T 2
CN

4Bτc
+Gph

⟨J⟩2

Bτc
+GpU

T 2
CN

2Bτc
] (B.56)

= Ghh
GpvT

2
CN + 4Gph ⟨J⟩2 + 2GpUT

2
CN

4Bτc
(B.57)

and

Cov(vh,CN , vm,CN) = Ghh
GmvT

2
CN + 4Gmh ⟨J⟩2 + 2GmUT

2
CN

4Bτc
. (B.58)

The final covariance is longer:

Cov(vp,CN , vm,CN) = Cov(GpvI +GphJ +GpUK,GmvI +GmhJ +GmUK)

= GpvGmvV ar(I) +GphGmhV ar(J) +GpUGmUV ar(K)

+(GpvGmh +GphGmv)Cov(I, J)

+(GpvGmU +GpUGmv)Cov(I,K)

+(GphGmU +GpUGmh)Cov(J,K), (B.59)

which expands and then simplifies to

Cov(vp,CN , vm,CN) =
1

4Bτc
[4GpvGmv ⟨I⟩2 + 4GphGmh ⟨J⟩2

+(4GpUGmU +GpvGmh +GphGmv +

2GpvGmU + 2GpUGmv + 2GphGmU + 2GpUGmh)T
2
CN ].

(B.60)

B.5 Summary: entire C

To recapitulate,

C =


CC 0 0 0

0 CH 0 0

0 0 CCH 0

0 0 0 CCN

 , (B.61)
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where (note that the following matrices are all symmetric; to make them fit better,

only the upper triangular elements are given)

CC = 1
Bτc

×



G2
vv(TC + T1)

2 0 GvvGpv(TC + T1)
2 GvvGmv(TC + T1)

2

G2
hh(TC + T2)

2 GhhGph(TC + T2)
2 GhhGmh(TC + T2)

2

G2
pv(TC + T1)

2 GpvGmv(TC + T1)
2

+G2
ph(TC + T2)

2 +GphGmh(TC + T2)
2

G2
mv(TC + T1)

2

+G2
mh(TC + T2)

2


(B.62)

CH = 1
Bτc

×



G2
vv(TH + T1)

2 0 GvvGpv(TH + T1)
2 GvvGmv(TH + T1)

2

G2
hh(TH + T2)

2 GhhGph(TH + T2)
2 GhhGmh(TH + T2)

2

G2
pv(TH + T1)

2 GpvGmv(TH + T1)
2

+G2
ph(TH + T2)

2 +GphGmh(TH + T2)
2

G2
mv(TH + T1)

2

+G2
mh(TH + T2)

2


(B.63)

121



CCH = 1
Bτc

×



G2
vv(TC + T1)

2 0 GvvGpv(TC + T1)
2 GvvGmv(TC + T1)

2

G2
hh(TH + T2)

2 GhhGph(TH + T2)
2 GhhGmh(TH + T2)

2

G2
pv(TC + T1)

2 GpvGmv(TC + T1)
2

+G2
ph(TH + T2)

2 +GphGmh(TH + T2)
2

G2
mv(TC + T1)

2

+G2
mh(TH + T2)

2


(B.64)

and

CCN = 1
Bτc

×



G2
vv ⟨I⟩

2
GvvGhh

T 2
CN

4 Gvv
4Gpv⟨I⟩2+GphT

2
CN+2GpUT 2

CN

4 Gvv
4Gmv⟨I⟩2+GmhT

2
CN+2GmUT 2

CN

4

G2
hh ⟨J⟩

2
Ghh

GpvT
2
CN+4Gph⟨J⟩2+2GpUT 2

CN

4 Ghh
GmvT

2
CN+4Gmh⟨J⟩2+2GmUT 2

CN

4

P Y

M


,

(B.65)

where

P ≡ G2
pv ⟨I⟩

2 +G2
ph ⟨J⟩

2 +
(
G2

pU +GpvGph/2 +GpvGpU +GphGpU

)
T 2
CN ,

M ≡ G2
mv ⟨I⟩

2 +G2
mh ⟨J⟩

2 +
(
G2

mU +GmvGmh/2 +GmvGmU +GmhGmU

)
T 2
CN ,

Y ≡ GpvGmv ⟨I⟩2 +GphGmh ⟨J⟩2 +
(
GpUGmU +

GpvGmh

4
+
GphGmv

4

+
GpvGmU

2
+
GpUGmv

2
+
GphGmU

2
+
GpUGmh

2

)
T 2
CN ,

and where ⟨I⟩ and ⟨J⟩ are given in (B.14) and (B.15), respectively.
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Appendix C

Derivation of Constraint Equations

Chapter 4 is concerned with the estimation of eight gains (among other

parameters) which characterize a certain class of polarimetric radiometer. This ap-

pendix contains the derivation of equations constraining those eight gains.

C.1 Finding V2 (eigenvectors of C for which λ = 0)

Due to the block diagonal structure of the covariance matrix C of calibra-

tion measurements (see Appendix B), C has four eigenvectors of the form

[abcd000000000000]T where [abcd]T is an eigenvector of CC , four of the form

[0000abcd00000000]T where [abcd]T is an eigenvector of CH , four of the form

[00000000abcd0000]T where [abcd]T is an eigenvector of CCH , and four of the form

[000000000000efgh]T where [efgh]T is an eigenvector of CCN . CC , CH , and CCH

each have two eigenvalues (λ) equal to zero while CCN has only one. This is easily

confirmed numerically; theoretically, it is because the first three columns of (4.10)

have two noise sources each while the last has three.

C.1.1 Eigenvectors of CC, CH, and CCH for which λ = 0

CC , CH , and CCH can all be written in the abbreviated forms

1

Bτc


v2T 0 vpT vmT

0 h2U hqU hnU

vpT hqU p2T + q2U pmT + qnU

vmT hnU pmT + qnU m2T + n2U

 , (C.1)
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where the only difference between CC , CH , and CCH is whether T and U are defined

using TC or TH . The eigenvectors of this matrix are found using the defining equation

of an eigenvector with λ = 0, explicitly
v2T 0 vpT vmT

0 h2U hqU hnU

vpT hqU p2T + q2U pmT + qnU

vmT hnU pmT + qnU m2T + n2U




a

b

c

d

 =


0

0

0

0

 . (C.2)

From the first two of the four equations in (C.2),

a = −cp+ dm

v
and b = −cq + dn

h
. (C.3)

Using these to substitute for a and b in the third and fourth equations in (C.2), these

equations reduce to

0c+ 0d = 0 and 0c+ 0d = 0. (C.4)

Any c and d will satisfy these equations. We choose simple but nontrivial values:

c = 1, d = 0 and c = 0, d = 1. Then, using (C.3), the eigenvectors are
−p/v

−q/h

1

0

 and


−m/v

−n/h

0

1

 . (C.5)

Eigenvectors can be scaled arbitrarily. Scaling by −vh and undoing the abbreviations,

the eigenvectors with λ = 0 are1:
GhhGpv

GvvGph

−GvvGhh

0

 and


GhhGmv

GvvGmh

0

−GvvGhh

 . (C.6)

1To within about 10%, the eigenvectors are ≈ GvvGhh[
1
2

1
2 − 1 0]T and GvvGhh[

1
2

1
2 0 − 1].
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Note that these are exactly the same (though they can be scaled arbitrarily and

independently) for CC as for CH and for CCH , since they do not depend on T and

U23.

C.1.2 Eigenvector of CCN for which λ = 0

Abbreviate the eigenvector problem for CCN as
V X A B

X H C D

A C P Y

B D Y M




a

b

c

d

 =


0

0

0

0

 . (C.7)

The procedure is similar to that used above but now with an X instead of zeros. We

solve the first equation for a, giving a = −bX−cA−dB
V

. Using this to substitute for a in

the second equation, then solving that equation for b, gives

b =
−aX − cC − dD

H
(C.8)

=
bX+cA+dB

V
X − cC − dD

H
(C.9)

=
(bX + cA+ dB)X − cCV − dDV

V H
, (C.10)

b(1−X2/V H) =
cAX + dBX − cCV − dDV

V H
, (C.11)

b(V H −X2) = cAX + dBX − cCV − dDV, (C.12)

b =
c(AX − CV ) + d(BX −DV )

V H −X2
. (C.13)

2When V2 is found numerically, there are usually four nonzero entries rather than the three
predicted by the above derivation. Both answers are correct, as can be verified by showing that in
either case, CCV2 equals a zero 16x7 matrix . Why is this so? Since there are two variables that can
be chosen arbitrarily, their span is a 2-D hyperplane in 4-D space. Any two vectors whose span is
that same plane work, and that is why both answers are correct. The analytical answer just happens
to be formed more simply, with a couple of zero elements. In (C.4), any c and d could work. In fact
if we put the c and d that a numerical calculation returns into the formulas above for a and b, they
match the a and b that the numerical calculation returns to at least 14 significant digits.

3In summary, the eigenvectors of CC , CH , and CCH whose λ = 0 are found as follows. First
choose c and d arbitrarily, as long as they are not both zero. If c = vh and d = 0 are chosen, then
one eigenvector each of CC , CH , and CCH is given (in terms of the original parameters) by the first
vector in (C.6)–otherwise use the more general formulas above to find a and b. Next, choose another
c and d arbitrarily, as long as they are not both zero and are not simply a scaled version of the first
choice. If c = 0 and d = vh are chosen, then the second eigenvector each of CC , CH , and CCH

is given (in terms of the original parameters) by the second vector in (C.6) – otherwise use more
general formulas above to find a and b.
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Using this, we can express a in terms of c and d as:

a =
− c(AX−CV )+d(BX−DV )

V H−X2 X − cA− dB

V
(C.14)

=
−c(AX − CV )X − d(BX −DV )X

V (V H −X2)
− c

A

V
− d

B

V
(C.15)

=
c[(AX − CV )X + A(V H −X2)] + d[(BX −DV )X +B(V H −X2)]

−V (V H −X2)
.

(C.16)

Using both the above results to substitute for a and b in the third equation, then

solving that equation for c, gives

c =
−aA− bC − dY

P
(C.17)

=
cA[(AX − CV )X + A(V H −X2)] + dA[(BX −DV )X +B(V H −X2)]

PV (V H −X2)

+
−cC(AX − CV )− dC(BX −DV )

P (V H −X2)
+

−dY
P

(C.18)

=
c[(AX − CV )2 + A2(V H −X2)]

PV (V H −X2)

+
d[(BX −DV )(AX − CV ) + AB(V H −X2)]

PV (V H −X2)
+

−dY
P

,

(C.19)

c
[
1− (AX−CV )2+A2(V H−X2)

PV (V H−X2)

]
= d (BX−DV )(AX−CV )+AB(V H−X2)

PV (V H−X2)
+ −dY

P
, (C.20)

c [PV (V H −X2)− (AX − CV )2 − A2(V H −X2)]

= d [(BX −DV )(AX − CV ) + AB(V H −X2)− Y V (V H −X2)] ,

(C.21)

c = d
(AB − Y V )(V H −X2) + (BX −DV )(AX − CV )

(PV − A2)(V H −X2)− (AX − CV )2
(C.22)

c = −dABH − Y V H + Y X2 −BCX − ADX + CDV

A2H − PV H + PX2 − 2ACX + C2V
(C.23)

c = −d
(
Y (V H −X2)− ABH + (AD +BC)X − CDV

P (V H −X2)− A2H + 2ACX − C2V

)
(C.24)

c = −d
(
Y (V H −X2) +D(AX − CV ) +B(CX − AH)

P (V H −X2) + C(AX − CV ) + A(CX − AH)

)
≡ −dk3. (C.25)
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If we put these expressions for a, b, and c into the fourth equation, it gives 0d = 0

which is satisfied by any d. Rewriting a and b in terms of d only, not c and d,

b = −dk3(AX − CV )− (BX −DV )

V H −X2

≡ −dk2, (C.26)

a = d

(
k2X + k3A−B

V

)
≡ dk1, (C.27)

and the eigenvector is

−d


−k1
k2

k3

−1

 = −d


−k2X−k3A+B

V

k3(AX−CV )−(BX−DV )
V H−X2

k3

−1

 (C.28)

= −d



−
(

Y (V H−X2)+D(AX−CV )+B(CX−AH)
P (V H−X2)+C(AX−CV )+A(CX−AH)

· AX−CV
V H−X2 − BX−DV

V H−X2

)
X
V

−Y (V H−X2)+D(AX−CV )+B(CX−AH)
P (V H−X2)+C(AX−CV )+A(CX−AH)

· A
V
+ B

V

Y (V H−X2)+D(AX−CV )+B(CX−AH)
P (V H−X2)+C(AX−CV )+A(CX−AH)

· AX−CV
V H−X2 − BX−DV

V H−X2

Y (V H−X2)+D(AX−CV )+B(CX−AH)
P (V H−X2)+C(AX−CV )+A(CX−AH)

−1



. (C.29)

Choosing d to be the denominator of k3 and scaling the eigenvector by −1 simplifies

the eigenvector to

−
(

Y (V H−X2)+D(AX−CV )+B(CX−AH)
1

· AX−CV
V H−X2 − d(BX−DV )

V H−X2

)
X
V

−Y (V H−X2)+D(AX−CV )+B(CX−AH)
1

· A
V
+ dB

V

Y (V H−X2)+D(AX−CV )+B(CX−AH)
1

· AX−CV
V H−X2 − d(BX−DV )

V H−X2

Y (V H −X2) +D(AX − CV ) +B(CX − AH)

−[P (V H −X2) + C(AX − CV ) + A(CX − AH)]



. (C.30)
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An expression in the first element of this eigenvector, namely[
[Y (V H−X2)+D(AX−CV )+B(CX−AH)](AX−CV )−d(BX−DV )

V H−X2

]
,

(C.31)

reduces to Y (AX −CV )−P (BX −DV )+A(BC −AD). Other terms also simplify,

leaving the eigenvector

− (Y (AX − CV )− P (BX −DV ) + A(BC − AD)) X
V

+ (BP−AY )(V H−X2)+(BC−AD)(AX−CV )
V

Y (AX − CV )− P (BX −DV ) + A(BC − AD)

Y (V H −X2) +D(AX − CV ) +B(CX − AH)

−[P (V H −X2) + C(AX − CV ) + A(CX − AH)]



, (C.32)

which then simplifies to

P (BH −DX) + Y (CX − AH)− C(BC − AD)

Y (AX − CV )− P (BX −DV ) + A(BC − AD)

D(AX − CV ) +B(CX − AH) + Y (V H −X2)

−C(AX − CV )− A(CX − AH)− P (V H −X2)


. (C.33)

This was verified numerically. This simplifies when put in terms of the original pa-

rameters. A GvvGhh can be factored out of the entire eigenvector; the remaining Gvv

and/or Ghh can be factored out of each element, leaving

GvvGhh


Ghh(...)

Gvv(...)

GvvGhh(...)

GvvGhh(...)

 , (C.34)
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where the factors in parentheses have no Gvv or Ghh. Computer algebra software was

then used to simplify this vector further, resulting in Eigenvector of CCN with λ = 0

is4 

GpvGmU−GpUGmv

Gvv

GphGmU−GpUGmh

Ghh

−GmU

GpU

 . (C.36)

C.2 Forming Constraint Equations from V2

For fixed v and unknown m, the constraint is

V T
2 (m)v = V T

2 (m)g(m), (C.37)

where we explicitly show that V2 is formed from the unknown m (through C).

C.2.1 First Six Constraint Equations

Having found the eigenvectors that form V2 in section C.1, we can now

write the first two equations of (C.37) as

GhhGpvvv,C +GvvGphvh,C −GvvGhhvp,C =

GhhGpvGvv(TC + T1) +GvvGphGhh(TC + T2)

−GvvGhh[Gpv(TC + T1) +Gph(TC + T2)], (C.38)

GhhGmvvv,C +GvvGmhvh,C −GvvGhhvm,C =

GhhGmvGvv(TC + T1) +GvvGmhGhh(TC + T2)

−GvvGhh[Gmv(TC + T1) +Gmh(TC + T2)]. (C.39)

4Note that when appropriately scaled, this is approximately (i.e., within about 10% of being)

GpU


−1
−1
1
1

 . (C.35)
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The right sides cancel themselves out, leaving

GhhGpvvv,C +GvvGphvh,C −GvvGhhvp,C = 0, (C.40)

GhhGmvvv,C +GvvGmhvh,C −GvvGhhvm,C = 0, (C.41)

or simply

GhhGpvvv,C +GvvGphvh,C = GvvGhhvp,C , (C.42)

GhhGmvvv,C +GvvGmhvh,C = GvvGhhvm,C . (C.43)

For the next two constraint equations, corresponding to eigenvectors of CH , the pro-

cedure is very similar, leading to the constraint equations

GhhGpvvv,H +GvvGphvh,H = GvvGhhvp,H , (C.44)

GhhGmvvv,H +GvvGmhvh,H = GvvGhhvm,H . (C.45)

Using the eigenvectors of CCH , the fifth and sixth equations of (C.37) become

GhhGpvvv,CH +GvvGphvh,CH −GvvGhhvp,CH =

GhhGpvGvv(TC + T1) +GvvGphGhh(TH + T2)

−GvvGhh[Gpv(TC + T1) +Gph(TH + T2)], (C.46)

GhhGmvvv,CH +GvvGmhvh,CH −GvvGhhvm,CH =

GhhGmvGvv(TC + T1) +GvvGmhGhh(TH + T2)

−GvvGhh[Gmv(TC + T1) +Gmh(TH + T2)], (C.47)

whose right sides still cancel themselves out. Therefore our first six constraint equa-

tions, in six unknowns, are (ordered differently for future convenience)

GhhGpvvv,C +GvvGphvh,C = GvvGhhvp,C , (C.48)

GhhGpvvv,H +GvvGphvh,H = GvvGhhvp,H , (C.49)

GhhGpvvv,CH +GvvGphvh,CH = GvvGhhvp,CH , (C.50)

GhhGmvvv,C +GvvGmhvh,C = GvvGhhvm,C , (C.51)

GhhGmvvv,H +GvvGmhvh,H = GvvGhhvm,H , (C.52)

GhhGmvvv,CH +GvvGmhvh,CH = GvvGhhvm,CH . (C.53)
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Multiplying (C.48) by vv,H/vv,C and subtracting (C.49) leaves

Gph(vh,Cvv,H/vv,C − vh,H) = Ghh(vp,Cvv,H/vv,C − vp,H). (C.54)

Similarly, from (C.48) and (C.50) we obtain

Gph(vh,Cvv,CH/vv,C − vh,CH) = Ghh(vp,Cvv,CH/vv,C − vp,CH). (C.55)

Solve (C.55) for Ghh

Ghh = Gph
(vh,Cvv,CH/vv,C − vh,CH)

(vp,Cvv,CH/vv,C − vp,CH)
, (C.56)

then substitute it into (C.54) to obtain

Gph(vh,Cvv,H/vv,C − vh,H) = Gph
(vh,Cvv,CH/vv,C − vh,CH)

(vp,Cvv,CH/vv,C − vp,CH)
(vp,Cvv,H/vv,C − vp,H).

(C.57)

This last equation cannot be solved for Gph – it merely reveals redundancy in the

data and that (C.54) and (C.55) are redundant constraint equations.

Similarly, from (C.51) and (C.52) we obtain

Gmh(vh,Cvv,H/vv,C − vh,H) = Ghh(vm,Cvv,H/vv,C − vm,H) (C.58)

or an expression that is numerically equivalent from (C.51) and (C.53).

A similar procedure produces constraint equations for Gpv and Gmv in

terms of Gvv. In summary we end up with the four constraint equations

Gpv = Gvv
(vp,Cvh,H − vh,Cvp,H)

(vv,Cvh,H − vh,Cvv,H)
, Gph = Ghh

(vp,Cvv,H − vv,Cvp,H)

(vh,Cvv,H − vv,Cvh,H)
, (C.59)

Gmv = Gvv
(vm,Cvh,H − vh,Cvm,H)

(vv,Cvh,H − vh,Cvv,H)
, Gmh = Ghh

(vm,Cvv,H − vv,Cvm,H)

(vh,Cvv,H − vv,Cvh,H)
, (C.60)

or two alternative (but numerically equivalent) sets obtained by finding, for example,

the equation relating Gph and Ghh from (C.48) and (C.50) or from (C.49) and (C.50).

So of (C.48) through (C.50), any one is completely redundant and the same for (C.51)

through (C.53). Hence, rather than six equations in six unknowns we only have four

equations in six unknowns.
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C.2.2 Last Constraint Equation

Using the last eigenvector with λ = 0, as derived in section C.1, the final

equation from (C.37) becomes

GpvGmU −GpUGmv

Gvv

vv,CN +
GphGmU −GpUGmh

Ghh

vh,CN −GmUvp,CN +GpUvm,CN

=
GpvGmU −GpUGmv

Gvv

Gvv ⟨I⟩+
GphGmU −GpUGmh

Ghh

Ghh ⟨J⟩

−GmU(Gpv ⟨I⟩+Gph ⟨J⟩+GpUTCN) +GpU(Gmv ⟨I⟩+Gmh ⟨J⟩+GmUTCN).

(C.61)

The entire right side cancels itself out. Then multiplying both sides by GvvGhh,

(GpvGmU −GpUGmv)Ghhvv,CN + (GphGmU −GpUGmh)Gvvvh,CN

−GmUGvvGhhvp,CN +GpUGvvGhhvm,CN = 0. (C.62)

Solving this for GmU ,

GmU = GpU · GmvGhhvv,CN +GmhGvvvh,CN −GvvGhhvm,CN

GpvGhhvv,CN +GphGvvvh,CN −GvvGhhvp,CN

. (C.63)
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Appendix D

Constraints on Hardware Parameters

This appendix contains derivations of equations constraining the hardware

parameters defined and used in Chapter 4. The first section is concerned with a

hybrid coupler scattering parameter, s. The second section is concerned with detector

sensitivities.

D.1 Derivation of Equation for s, (4.34)

By replacing the Gxx in (4.21)–(4.23) with their definitions in terms of

radiometer hardware parameters, the constraint equations become (after canceling

out common factors on both sides and simplifying the last equation)

cps
2 = cv

(vp,Cvh,H − vh,Cvp,H)

(vv,Cvh,H − vh,Cvv,H)
, (D.1)

cp(1− s2) = ch
(vp,Cvv,H − vv,Cvp,H)

(vh,Cvv,H − vv,Cvh,H)
, (D.2)

cm(1− s2) = cv
(vm,Cvh,H − vh,Cvm,H)

(vv,Cvh,H − vh,Cvv,H)
, (D.3)

cms
2 = ch

(vm,Cvv,H − vv,Cvm,H)

(vh,Cvv,H − vv,Cvh,H)
, (D.4)

cvch(cpvm,CN + cmvp,CN) = cpcm(cvvh,CN + chvv,CN), (D.5)

which are five equations in five unknowns. The hardware parameters that cancel

out, G1, G2, and αe, are unconstrained, as are T1 and T2. It is convenient to define
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abbreviations for various combinations of voltages:

A ≡ vp,Cvh,H − vh,Cvp,H , (D.6)

B ≡ vp,Cvv,H − vv,Cvp,H , (D.7)

C ≡ vm,Cvh,H − vh,Cvm,H , (D.8)

D ≡ vm,Cvv,H − vv,Cvm,H , (D.9)

E ≡ vv,Cvh,H − vh,Cvv,H . (D.10)

Using these abbreviations, (D.1) through (D.5) can be rewritten as

cp = cv
A

Es2
, (D.11)

cp = ch
B

−E(1− s2)
, (D.12)

cm = cv
C

E(1− s2)
, (D.13)

cm = ch
D

−Es2
, (D.14)

cvch(cpvm,CN + cmvp,CN) = cpcm(cvvh,CN + chvv,CN). (D.15)

Equations (D.11) and (D.14) are already solved for cp and cm. Using these to substi-

tute for cp and cm in the remaining three constraints yields

cv
A

s2
= ch

B

−(1− s2)
, (D.16)

ch
D

−s2
= cv

C

(1− s2)
, (D.17)

cvAvm,CN − chDvp,CN = −AD
Es2

(cvvh,CN + chvv,CN). (D.18)

Solving the second of these for ch and substituting this into the remaining two con-

straints yields

AD(1− s2)2 = BCs4, (D.19)

Avm,CN +
Cs2

(1− s2)
vp,CN = −AD

Es2
(vh,CN − Cs2

D(1− s2)
vv,CN). (D.20)

The fact that cv cancels out of both of these indicates that cv is unconstrained, like

G1, G2, αe, T1, and T2. (If we had solved the equations differently, any one of the cx

134



could be the unconstrained one.) Both of the above equations can be rearranged as

quadratic equations in s2, namely

(AD −BC)s4 − 2ADs2 + AD = 0, (D.21)

(AEvm,CN − CEvp,CN)s
4 + (−AEvm,CN + ADvh,CN + ACvv,CN)s

2 − ADvh,CN = 0.

(D.22)

The first is solved using the quadratic formula; its positive solution is

s2 =
AD +

√
ADBC

AD −BC
. (D.23)

The second is also solved using the quadratic formula; its positive solution turns out

to be the same1. Therefore the last two constraint equations are redundant of one

another. From (D.23) we then obtain (4.34).

D.2 Derivation of Equations Relating ch, cp, and cm to cv, (4.35) through

(4.37)

Combining (D.13) and (D.14) to solve for ch in terms of cv yields

ch = −cv
Cs2

D(1− s2)
. (D.25)

Joining this with (D.11) and (D.13) gives ch, cp, and cm in terms of cv:

ch = −cv
Cs2

D(1− s2)
, (D.26)

cp = cv
A

Es2
, (D.27)

cm = cv
C

E(1− s2)
. (D.28)

Substituting for s2 using (D.23) yields (4.35) through (4.37).

1We have shown this numerically. These solutions are also numerically the same as the solution
to an equation derived by another route, namely

(AEvm,CN − CEvp,CN )s4 + (−2AEvm,CN + CEvp,CN +BCvh,CN +ACvv,CN )s2

+AEvm,CN −ACvv,CN = 0. (D.24)
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Appendix E

Description of Chapter 5 Datasets

This appendix describes datasets used within Chapter 5. These are air

temperature datasets, a dataset of satellite microwave brightness temperatures, and

a combined dataset.

E.1 Air Temperature Data and Station Geography

The air temperature data T used in this work are available at dss.ucar.edu,

within Dataset 464.0. Our 2007-2008 data is from a more frequently updated site,

http://www.antarctica.ac.uk/met/metlog/cui.html.

The first three locations used in this work are all inland on the Antarctic

continent in order to avoid the complications of sea emission contamination and melt

events. The latter two are at the coast, but experience only a few days each year of

temperature above freezing. No other stations have been found that meet the criteria

of little or no melting and at least three years of good data records in the period June

2002 - March 2008 (i.e., overlapping with AMSR-E), with the exception of the South

Pole station (which cannot be used in this study since orbit geometry prevents most

satellites from measuring within disks around the poles). Details are given in Table

E.1. The locations are mapped in Fig. E.1.

Stations 89828 is an automated weather station (AWS) located atop Dome

C, which is an area of maximum elevation in this region that is known for its stability.

Station 89813 is an AWS located 500 km from Dome C, at a lower elevation. Station

89606 is the manned Vostok station and is located 600 km from Dome C. All three

of these sites are on the high East Antarctica plateau, a region of little precipitation.
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Figure E.1: Map showing locations (pink dots) of weather station sites in Antarctica.
Stations labelled with their station number are those that met the necessary criteria
for this study. (The green area is roughly the sea ice extent on 1 Jan 2005 and is
irrelevant to this dissertation).
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Stations 89022 and 89002 are manned and are located near sea level on

permanent ice shelves which float on the ocean. The shelf at station 89022 flows

seaward at a rate of about 700 m per year. The shelf at station 89002 flow seaward

at about 190 m per year, has a thickness of about 200 m, and is almost completely

flat. Precipitation is much greater at these stations than at the plateau stations, with

station 89022 having an annual snow accumulation of about 1.2 m.

We form daily averages from the station temperature data. Data from

stations 89828 and 89813 are required to meet the quality control criteria that at

least 12 measurements be available for a day. We also require that the averaged time

of day (TOD) of the measurements is not abnormal (specifically, we find the average

TOD for the candidate days in a year and then exclude those days on which the

average TOD is not within two hours of the group mean).

For Vostok (89606) data, four measurements are usually taken each day,

at 6 hour intervals. We require that all four be present. For Neumayer (89002)

data, eight measurements are usually taken each day, and we require that all eight

be present. For Halley (89022) data, we require that four measurements be present

and that the average TOD requirement also be met (measurements there have been

collected at least every two hours since March 2005, but less often previous to March

2005).

E.2 Satellite Brightness Temperature Data

The AMSR-E brightness temperature data B ([36], described at

http://nsidc.org/data/docs/daac/ae l2a tbs.gd.html) can be downloaded from

http://www.nsidc.org/data/data pool/index.html. We use the center latitude and

longitude, earth azimuth, and dimensions of each measurement footprint to select only

those measurements whose footprint covers the desired ground station latitude and

longitude. We manually excise those few data which are obvious outliers (attributed

to instrument anomalies). We then form daily averages from these data, with the

quality control criteria that the averaged earth azimuth angle for a day is not abnormal
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(specifically, we find the average angle for all the candidate days and then exclude

those days on which the average angle is not within three STD of the group mean).

AMSR-E makes both v-pol and h-pol measurements at frequencies from 7

to 89 GHz. We have chosen to use 37 GHz v-pol measurements because they correlate

most highly with surface air temperature. This fact is illustrated for two frequencies

in [29] and confirmed by us for AMSR-E 7, 19, 22, and 37 GHz channels. The cause

of this higher correlation is probably that 37 GHz measures the upper snow and ice

better than lower frequencies (i.e., it has a more shallow skin depth) [29] but is not

as strongly affected by atmospheric phenomena as 89 GHz radiation.

To prevent the measurements used in this study from including open water

or sea ice, we use satellite data covering points located somewhat inland of the two

coastal stations. The elliptical footprint of AMSR-E at 37 GHz has dimensions of

14 km by 8 km. Halley station is about 12 km from the ice shelf edge, so we gather

satellite measurements centered around a point 0.05 deg (5.5 km) south of the station.

Neumayer station is about 13 km south of one ice shelf edge and 4 km west of the

other edge, so we gather satellite measurements centered around a point 0.04 deg (4.4

km) south and 0.27 deg (10 km) west of the station.

E.3 Concurrent Data Records

The three years of concurrent T and B records at each site which are used

in this work have dates as specified in Table E.1. The number of missing days in each

record, usually due to the failure of the T record to meet the quality criteria given

above, are also listed. The dates were chosen to minimize the total number of missing

days at each station.
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Table E.1: Information on the stations and data years used in this work. WMO is
the acronym for World Meteorological Organization.

Station name Dome C II GC41,Radok Vostok Halley Bay Neumayer

WMO # 89828 89813 89606 89022 89002

Elevation (m) 3250 2761 3488 39 50

Latitude 74.5◦ S 71.6◦ S 78.45◦ S 75.5◦ S 70.65◦ S

Longitude 123◦ E 111.25◦ E 106.87◦ E 26.65◦ W 8.25◦ W

Year 1 start 9Oct2002 30Oct2002 3Dec2002- 25Feb2005 20Sep2002

13Feb2003

Year 1 end 8Oct2003 29Oct2003 14Feb2004 24Feb2006 19Sep2003

-1Dec2004

#missed days 12 3 6 24 22

Year 2 start 3Dec2003 6Nov2003 22Sep2005 25Feb2006 17Nov2003

Year 2 end 1Dec2004 4Nov2004 21Sep2006 24Feb2007 15Nov2004

#missed days 16 7 20 32 23

Year 3 start 15Dec2004 6Nov2004 29Mar2007 25Feb2007 18Feb2005

Year 3 end 14Dec2005 5Nov2005 27Mar2008 24Feb2008 17Feb2006

#missed days 10 6 44 27 11
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