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ABSTRACT

A STUDY OF THE SCATTEROMETER IMAGE

RECONSTRUCTION ALGORITHM AND ITS

APPLICATIONS TO POLAR ICE STUDIES

David S. Early

Electrical and Computer Engineering

Doctor of Philosophy

A spaceborne microwave scatterometer is designed for the remote sensing

of near-surface ocean winds, but rapid repeat coverage and immunity to meteorolog-

ical e�ects makes it ideal for studying polar ice as well. Unfortunately, the intrinsic

resolution of the scatterometer is insu�cient for many geophysical studies.

Using multiple, overlapping passes of the scatterometer, the scatterometer

data can be reconstructed into enhanced resolution images with resolutions better

than the intrinsic 25-50km instrument resolution. This research establishes a theo-

retical backdrop for resolution enhancement of scatterometer data using the irregular

sampling characteristics of multiple passes of the scatterometer. An optimization of

the previously developed SIR algorithm for the ERS-1 scatterometer is presented.

Issues of algorithm initialization, cubic estimation and acceleration of the iterative

updates are addressed. The work is concluded with an application of the SIR resolu-

tion enhancement algorithm to Southern Ocean sea ice, including an examination of

azimuthal modulation of backscatter and a simple sea ice classi�er.
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Chapter 1

Introduction

1.1 Remote Sensing and the Environment

Of growing concern today is the possibility and implication of rapid climate

changes induced by industrialization, pollution, and the dumping of waste materials.

Contributing to the controversy that surrounds these issues is a fundamental lack of

knowledge of how the Earth acts as a system, and thus how man's actions will perturb

that system. We know relatively little about how the Earth's di�erent systems interact

to produce weather on a global scale. Models used for predicting local and national

weather patterns are not always correct, and are of little use for long term climate

forecasts. The farther in the future our present models look, the less accurate they

become.

More complex models are being developed to not only increase the accuracy

of weather predictions, but to incorporate what we do understand of the Earth as a

system and the inuences of things like pollution, CFCs and deforestation. But even

using models developed in recent years, results of di�erent models vary and can predict

either a rise in average global temperature, no change at all, or even a drop in average

temperature, depending on assumptions made in the model about how the Earth's

various systems react to human activities. Accurate modeling requires understanding

the Earth as a system, and the range of predictions from current theories on global

climate change reect the fact that our understanding is still imperfect.

Experience has shown that certain parts of the Earth's system are more

sensitive to human activities and to global climate change. Deforestation of signi�cant
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portions of the Amazon rain forest has raised speculation about whether this will a�ect

carbon dioxide levels in the atmosphere. If levels of this greenhouse gas increase, some

climate models predict signi�cant temperature changes all over the globe. Changes

in atmospheric layers, like the ozone hole that has developed over Antarctica, have

been linked to man-made chemicals released into the atmosphere. Another, less well

known indicator of climate change is Arctic and Antarctic ice. The vast, time-varying

ice �elds at the North and South poles are very sensitive to temperature changes and

inuence ocean circulation and global weather patterns.

Over the past three decades, the scienti�c community has had an increased

interest in polar ice and the role it plays in atmospheric and oceanic processes. Ex-

amples of the inuence of polar ice include:

� Polar ice radically changes the albedo of the Earth's surface, modifying the

planetary radiation budget.

� Polar sea ice acts as an insulating layer between the warmer ocean and the

cooler atmosphere (heat loss or absorption through an ice layer is 100 times

slower than from open water).

� Ocean circulation is a�ected by the formation and melting of sea ice because of

heat transfer and thermohaline e�ects [1].

� Both glacial and sea ice masses act as heat sinks and sources for atmospheric

heat, a�ecting atmospheric circulation.

Because of the e�ects of polar ice on atmospheric and ocean circulation,

the interannual variations and intraseasonal dynamics of sea ice in the Northern and

Southern hemispheres contribute to the climate of the entire globe. Ocean currents,

wind patterns and storm systems are all a�ected by the presence and condition of sea

ice. Careful and detailed monitoring of polar ice is a key element in understanding

and monitoring global climate change. As e�ects of human actions are propagated

through the Earth's weather system, subtle changes in the sea ice may allow us to
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monitor the severity of the a�ects of pollution, deforestation and industrialization on

the global climate and in which direction { warmer or cooler { we are heading.

One of the most cost e�cient ways of monitoring polar ice characteristics

is remote sensing. Satellite remote sensing avoids the cost and hazards of in situ

measurements, and has the potential to provide a much larger data base than could

ever be achieved by in situ measurements alone. Remote sensing platforms allow us

to synoptically view polar ice in space and time in order to study polar ice in detail.

There are three space-based microwave instruments which have been widely

used to study polar ice: the synthetic aperture radar (SAR), the radiometer, and more

recently, the scatterometer. The SAR is an active radar that has high resolution but

relatively poor spatial coverage. Radiometers are passive radar systems and are capa-

ble of scanning large areas in a short period of time, but have intrinsicly low resolution

and are signi�cantly inuenced by atmospheric e�ects (e.g., clouds and precipitation).

The third spaceborne microwave instrument, the scatterometer, is designed to study

near-surface ocean winds [2]. The scatterometer has low resolution, but has wide and

frequent spatial coverage and is not signi�cantly a�ected by atmospheric processes.

The recent development of a resolution enhancement algorithm for scatterometer

data, the Scatterometer Image Reconstruction (SIR) algorithm [3], has made possi-

ble the generation of medium-scale resolution images of polar sea and glacial ice and

promises to �ll the gap between SAR and radiometer imagery. The purpose of this

research is to expand the utility of the spaceborne microwave scatterometer in polar

ice studies.

1.2 Review of Polar Remote Sensing

Polar ice studies using remote sensing systems are currently being carried

out using a wide variety of instruments and platforms. Radiometers, scatterome-

ters and SAR systems have all been used in various frequency bands on platforms

ranging from sleds and ships to airplanes and satellites. Platforms mounted near

the earth's surface, such as ship-mounted radars, play an important role in providing

detailed ground truth studies, coupling radar measurements with data about surface
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conditions. Space-based platforms o�er the most comprehensive spatial and temporal

coverage, although the resolution is much less than similar systems own on airplanes

or other airborne systems. SAR systems overcome some of the resolution issues with

images with scales on the order of meters. However, high data rates and spacecraft

power capabilities associated with the SAR can limit SAR spatial coverage in remote

areas like Antarctica. This research is directed towards developing a compromise

between high resolution and frequent, wide-area coverage.

1.2.1 What Is the Goal of Polar Remote Sensing?

Polar ice is a very complex material. A photograph of sea ice near the

Antarctic ice pack edge is shown in Figure 1.1. Remote sensing of polar ice would

be useless unless geophysical parameters (e.g. ice type, ice concentration, open water

concentration, ice age and thickness) can be extracted from the satellite data. Ac-

cording to [4], there are ten desirable geophysical parameters associated with polar sea

ice. In the following list, a desired error limit has been included for some properties:

� Sea Ice extent (to within �5 km)

� Sea Ice concentration (open water percentage: �0.5% over 100km)

� Sea Ice growth/melt rates

� Sea Ice-thickness distributions

� Sea Ice motion (�1 km/day)

� Ice-type distribution

� Ice properties (e.g. polynyas, ridges, mesoscale oceanic features, etc.)

� Snow cover

� Ice roughness

� Internal Stress

4



Figure 1.1: Photograph of pancake ice taken near the Antarctic ice pack edge. Note
the edges on the pancakes which are formed by wind and wave action forcing pancakes
together and piling up the edge. Courtesy of Dr. Mark Drinkwater, JPL.
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Each parameter has a use for determining sea ice characteristics that may a�ect the

climate and is valuable for scienti�c study of polar ice processes. However, there is

little consensus on the accuracies needed to adequately model there e�ects on climate

processes. Also, basin wide characteristics are needed so that all the ice parameters

are included in any model. Note that the parameters that are speci�ed on scales of

kilometers, not meters. SAR imagery provides scales on the order of meters, which

is much higher resolution than currently required for most studies. Coarse resolution

instruments have potential for studying these parameters. The main spaceborne

sensors (SAR, Radiometer, Scatterometer) are compared in the following sections.

1.2.2 SAR

Synthetic aperture radar (SAR) uses ground processing to obtain resolu-

tions on the order of several meters, much �ner than the nominal resolution of the

antenna used. The best resolutions available from satellite SAR systems range from

10m per pixel to 100m per pixel, making SAR imagery the most detailed of any

space-based platform. SAR image products have proven a valuable tool for studying

polar regions. Figure 1.2 shows a SAR image that has been classi�ed into four cat-

egories using the Alaska SAR Facility (ASF) Geophysical Processor System (GPS).

The GPS was developed using data gathered from in situ studies to create statistical

characterizations of radar backscatter from various polar ice types. Coupled with me-

teorological data, the GPS uses a minimum distance or maximum likelihood classi�er

to group statistically similar pixels into the various ice types [5].

Sea ice motion is another product available from SAR imagery. Figure

1.3 illustrates how ice motion and deformation is derived from SAR imagery. First,

a grid is overlayed on an 'original' image. This acts as a starting point for the

motion/deformation. A second image taken over the same region two or three days

later is processed using feature extraction algorithms so that the grid corners from

the �rst image are placed over the same parts of the sea ice pack. The result is a

deformation grid as shown in Figure 1.3(b). Using the scale of the image, motion

vectors and velocities can be derived.
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Figure 1.2: Ice classi�cation example using an Arctic SAR image from March 26,
1992. In this image, the following color legend applies: (black) = background; (red)
= new ice/open water (1.2%); (green) = smooth �rst year ice (12.8%); (light blue) =
rough �rst year ice (16.1%); (white) = multiyear (69.8%). Percentages are the total
percentage of each type in the image. This image was obtained from the Alaska SAR
Facility WWW page. SAR data is copyright ESA 1992.

SAR systems do have limitations. SAR systems generate huge quanti-

ties of data for each image and require a receiving station available for concurrent

downloading of the collected data. Near populated areas, where ground stations are

inexpensive and easier to maintain, this is not a problem, but in Antarctica there are

not enough receiving stations to cover the entire continent and existing stations are

not online all year long, leaving spatial and temporal gaps in the Antarctic data set.

Power capabilities limit the number of images the SAR is capable of generating per

orbit. Also, because images are made over a swath of approximately 100km, the area

covered in each orbit is limited.
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(a) Original Image (b) Deformed Ice Pack

Figure 1.3: These �gures illustrate ice motion and deformation using SAR imagery.
In �gure (a), the grid shows the original position of the ice. Figure (b) shows the
same grid deformed so the corners of the grid are over the same features as in �gure
(a) for an image taken three days after the �rst. These images were obtained from
the Alaska SAR Facility WWW page. Copyright ESA 1992.

1.2.3 Radiometers

Radiometers are passive microwave radar systems [6]. They measure mi-

crowave emissions from objects at various frequencies and polarizations. Microwave

emissions from ice can be associated with the composition and structure of the sea

ice; saline content, age, snow cover and wetness of the ice, all contributing to changes

in the emissivity.

Spaceborne radiometers typically have many data channels (e.g. the Scan-

ning Multichannel Microwave Radiometer (SMMR) has 10 data channels: �ve fre-

quencies each with H-pol and V-pol data streams). However, the high correlation

between data channels does not allow ten di�erent parameters to be extracted from

the data set. In fact, principle component analysis of SMMR data reveals that there

are at most three independent channels of information [7]. The three channels of in-

dependent information are used to create a Polarization Ratio (PR) (the normalized

di�erence of two measurements at di�erent polarizations but the same frequency) and
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Figure 1.4: Plot showing a geometrical representation of the NASA SMMR algorithm.
The polarization and gradient ratios are used to determine the percentage of ice cover
by plotting the ratios on the graph in the �gure. The percentages listed on the plot
are total ice percentages, with open water (OW) as the 0 ice percentage point. The
percentage of �rst year (FY) and multiyear (MY) ice can be calculated based on
where the GR/PR point falls within the graph This �gure was taken from Gloersen
et al. [1992], p. 32.

a Gradient ratio (GR) (the normalized di�erence of two measurements at the same

polarization but two di�erent frequencies), which are used in the main classi�cation

scheme for radiometric data [8]. Figure 1.4 shows a graphical representation of the

algorithm developed in [8]. The concentration of sea ice is determined using the PR

and GR. Figure 1.5 shows an example of radiometric data classi�ed by �rst year ice

concentration. Note how well de�ned the ice edge is in this �gure.

Radiometric data has two signi�cant drawbacks. First, the resolution is

very low, about 25-50km depending on the frequency used. The intrinsicly low res-

olution of the instrument limits the utility of the instrument for polar ice studies.

Second, the radiometer is very sensitive to atmospheric e�ects. Clouds and precipi-

tation signi�cantly modify the microwave signature which introduces error into any

classi�cation scheme. Examples of this type of data corruption can be seen as dark

patches over the open ocean in Figure 1.5. Even though radiometers can cover the

polar regions in two or three days, the data is usually averaged over many days or on

a monthly basis to remove the e�ects of clouds and other atmospheric disturbances.

Nevertheless, radiometer data is widely used in polar ice studies, even though many of
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Figure 1.5: A Special Sensor Microwave Imager (SSMI) First year Ice concentration
map, JD 120 1994. This image was created using radiometric temperature data and
the algorithm developed in Gloersen et al., 1992.

the desired parameters in the list in section 1.2.1 cannot be determined with adequate

resolution using radiometer data.

1.2.4 Scatterometer

Scatterometers are active radar systems originally designed to measure

near-surface winds over the ocean. Typically, the instruments have nominal resolu-

tions of 25-50 km which is su�cient for the development of ocean wind �elds but, like

the radiometer, is too coarse for determining most of the desired ice parameters in

sections 1.2.1. The parameters in section 1.2.1 require accuracies much �ner than the

nominal scatterometer resolution. However, because scatterometers can cover large
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areas in a matter of two or three days and is relatively immune to clouds and precip-

itation, there is interest in using the scatterometer for polar ice study. For instance,

in [9], ERS-1 scatterometer data is used to create a sea ice mask, the equivalent to

�nding the ice extent, to eliminate ice infested areas from near surface ocean wind

maps. In other studies, the scatterometer is used to study Greenland glacial ice and

map the ice faces [10], and to determine rudimentary sea ice type information at the

nominal scale of the scatterometer [11, 12].

Because the scatterometer is relatively immune to atmospheric e�ects, it

will be more useful than the radiometer for providing good temporal resolution. Also,

the scatterometer provides data from multiple incidence angles which can be used for

identifying ice information. For example, in [10] the incidence angle information was

used to extract ice information. But, the scatterometer still has a low nominal spatial

resolution (25-50km) and spaceborne scatterometers are usually one (single polariza-

tion) or two (dual polarization) channel systems, providing much less independent

information compared to the radiometer. To overcome the resolution limitation, the

SIR resolution enhancement algorithm has been developed for scatterometer data.

This algorithm is described in Chapter 2. The ERS-1 scatterometer measurement

geometry is described in Appendix A.

1.3 Problem De�nition and Contributions

This dissertation presents the theoretical background of scatterometer res-

olution enhancement and addresses some of the practical issues of applying the pre-

viously developed SIR resolution enhancement algorithm to study of polar ice using

ERS-1 data, with some data from the short-lived NSCAT scatterometer. The goal is

the establishment of a basin-wide monitoring platform capable of rapid and complete

coverage of the polar regions at a scale of 10 to 20 km per pixel. The work herein

describes a theoretical backdrop for SIR and other reconstruction algorithms, the

tuning of SIR speci�cally for the ERS-1 scatterometer, issues of azimuth modulation

which a�ect the utility of SIR over polar ice, and the application of SIR imagery to

create sea ice classi�ed images.
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The contributions of this work to the remote sensing community are:

1. The establishment of a theoretical foundation for resolution enhancement for

the scatterometer with the possibility of extending this theory to other remote

sensing instruments.

2. The quali�cation of the relationship between aperture function, noise and sam-

ple spacing to signal recoverability.

3. The tuning of SIR for the ERS-1 scatterometer.

4. A quanti�cation of the azimuthal modulation over Southern Ocean sea ice.

5. The application of the SIR algorithm to Southern Ocean sea ice classi�cation.

These contributions, in conjunction with past e�orts in land scatterometer imaging,

establish the validity of the SIR resolution enhancement technique and help justify

future research e�orts in this �eld.

1.4 Dissertation Overview

We begin in Chapter 2 with a brief review of the SIR resolution enhance-

ment algorithm through the summary of the material published in [13] and [3]. This

provides the backdrop for the theoretical presentation in the next chapter.

In Chapter 3 the theoretical fundamentals of signal reconstruction from ir-

regular samples is presented. Here, the scatterometer measurements are demonstrated

to be equivalent to irregular sampling of the surface and a relationship between the

measurement aperture function, sample spacing and noise to the frequency content

of the recoverable signal is made. Several examples and simulations are presented to

support the theory.

In Chapter 4 tuning procedures are presented to aid in re�ning SIR for the

ERS-1 scatterometer. This tuning reduces the error introduced in the signal estimate

because of limited iterations in the reconstruction.
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In Chapter 5 the azimuthal modulation characteristics of Southern Ocean

sea ice are studied. Using actual ERS-1 data, selected regions are studied for vari-

ation of the backscatter with azimuth. This is an important consideration for the

application of SIR to polar ice because SIR combines multiple measurements with

various azimuth angles to create an image.

In Chapter 6, a classi�cation scheme for the SIR imagery is presented.

Using in situ and satellite measurements, signatures for various ice types are developed

and applied to SIR imagery to create a classi�ed sea ice image product.

Finally, in Chapter 7 the conclusions from this work are presented along

with an outline of recommended future work to extend the utility of SIR for general

surface studies.

Several appendices provide derivations, expanded background material,

and some auxiliary results associated with this research. In Appendix A, a descrip-

tion of the ERS-1 satellite geometry is presented. Appendix B presents a previously

published analysis of the e�ects of motion on SIR images. Appendix C presents a

comparison of two map projections (one equal area, one conformal) and a derivation

of a correction factor that can be used with the conformal projection to allow area

comparisons such as those presented in Chapter 6.
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Chapter 2

SIR Primer

Although the SAR has high resolution, its narrow swath and high data

processing overhead give an edge to scatterometers for basin wide monitoring tasks if

the scatterometer data can be reconstructed into enhanced resolution images. Many

of the desired parameters in Section 1.2.1 do not require resolution on the order of

tens of meters. Resolutions on the order of kilometers are su�cient to characterize

many of the parameters listed in Section 1.2.1. Further, these parameters are needed

on a basin wide basis. With resolution enhancement, the scatterometer is capable of

providing adequate resolution and spatial coverage for most polar studies.

Using a modi�ed algebraic reconstruction technique, an algorithm for in-

creasing the resolution of scatterometer images has been developed [3]. The algorithm

is called the Scatterometer Image Reconstruction (SIR) algorithm. If an additional

modi�ed median �lter is used at each iteration of the algorithm to reduce noise e�ects,

the algorithm becomes SIR with Filter, or SIRF. Originally developed for use with

the SEASAT Ku-band scatterometer (1978), data from multiple overlapping cells are

algebraically recombined and back projected onto a higher resolution grid. The e�ec-

tive resolution enhancement is a function of how closely the cells are spaced, the noise

level and the aperture function. In order to have su�cient cell spacing, several days

worth of data must be extracted from the satellite data record for each image. In this

presentation, the notation and general structure used in [3] and [14] are adopted to

maintain continuity.
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2.1 Reconstruction Problem Statement

The scatterometer basically sends out a pulse and measures the backscat-

tered power. The measured backscatter power is represented by �o, if in decibels, �odB

(The symbol �o is also used to refer to the radar cross section. The relationship of

radar cross section to backscatter power has led to the adoption within the remote

sensing community of �o to represent backscatter power). The radar return may have

both incidence and azimuth angle dependence, but as shown later in Chapter 5, we

may ignore the azimuthal modulation over Antarctic sea ice. However, there will

be incidence angle dependence, and data collected over several days will have many

di�erent incidence angles and direct comparison of all measurements in a data set

necessitates the removal of incidence angle dependence.

Backscatter power is a nonlinear spline which can be modeled by the fol-

lowing non-linear equation [15, 16]:

�odB = A+ B(� � 40�) + C(� � 40�)2 +D(� � 40�)3 + : : : (2.1)

where �o is the measure of the backscatter power, A is the value of �o at 40o and

where the B, C, D and other factors model the higher dimensional dependence of

the surface scattering on incidence angle (The spline shape is illustrated in Figure

4.28). Over a limited incidence angle range, between 25� and 55� for the ERS-1 C-

band scatterometer, the incidence angle dependence of backscatter is approximately

linear in dB. Although the actual incidence angle dependence of �o in dB is nonlinear,

the linear model works very well for the mid-range incidence angles as observed in

the actual and theoretical backscatter results illustrated in [17], [18] and [19] (see

also [15, 16]). The linear model is given by the equation

�odB = A+ B(� � 40�) (2.2)

where �odB is the received backscatter power in dB and � is the incidence angle of the

measurement. Note that the measurements are 'normalized' to 40�, i.e. the actual

measurement is adjusted to represent a measurement taken at 40�. Although 40� is

used here, the data can be normalized to any incidence angle value. Thus A is the
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backscatter power from the surface at 40�, and B represents the slope, or dependence,

of �odB with respect to the incidence angle � of the measurement. In the reconstruction,

we will estimate from the data both the A and B values.

Note that we want to determine A and B from the measurements, and

that we can create an A image and a B image for any surface we care to study. If

both images are continuous, we have a relatively accurate model of the backscatter

characteristics of a given surface within the limitations of the linear model in Eq.

(2.2). However, since we are dealing with discrete image reconstruction, we will

assume that the A and B images are not continuous, but at a higher resolution than

the measurements. The goal of the reconstruction algorithm for scatterometer data

is therefore the solution of the equation

S = H(A+ B(�i � �)) + V (2.3)

where

S is an Nx1 measurement vector (indexed by i)

H is an NxM point spread matrix (representing the e�ects

of aperture blurring)

A is an Mx1 pixel vector representing the incidence angle

normalized A image (indexed by j)

B is an Mx1 pixel vector representing the B image

V is an Nx1 noise vector for the noise associated with

each measurement

�i is the scaler incidence angle associated with

measurement i in S
� is the scaler normalizing incidence angle (we use 40�,

the mean value of the incidence angle for ERS-1)

The terms, S, H, � and � are known, leaving A and B the values to solve

for. The noise term V is included for a complete model and is assumed to be small.
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2.1.1 A Note on Noise

In general, the noise in a scatterometer measurement is dependent on the

returned backscatter. A noisy measurement can be accurately modeled by the equa-

tion

�noisy = (1 + kpN(0; 1))�true (2.4)

where kp is an emperically determined percentage dependent on the instrument (for

ERS-1, kp = 5%) and N(0; 1) is a zero mean unit variance Gaussian random variable.

The dependence of the noise component on the actual measurement greatly

complicates the removal of the noise from the system. However, in the material

presented herein, we do not attempt to compensate for the noise in the system.

Generally, the noise level for scatterometers is quite low, and we will simply ignore

it through most of the following discussion. When it is referenced, we will make

the simplifying assumption that the noise is additive and a simple Gaussian random

variable:

�noisy = �true + V (2.5)

as in Eq. (2.3). Note that V = kpN(0; 1)�true. In the case where the surface is

relatively homogeneous, the noise term is nearly a Gaussian random variable, a fact

demonstrated in Chapter 5 (see particularly Figures 5.9 and 5.10). Also, since the

original SIR algorithm development assumed an additive independent Gaussian noise

component, no attempt is made here to modify that assumption. It will be noted,

however, that greater overall accuracy could be obtained if future work were to inte-

grate the dependent noise component into the algorithm.

2.2 The SIR Algorithm

The resolution enhancement algorithm SIR is based on the Algebraic Re-

construction Technique. The Algebraic Reconstruction Technique, or ART, was pro-

posed by Gorden, Bender and Herman in 1971 [20] as a solution to a medical imaging
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problem. Computer Aided Tomography (CAT) scans or similar medical imaging sys-

tems generate a series of projections through the body. A known signal is sent, and

the attenuated signal is received on the other side of the object being imaged. The

problem is reconstructing these projections into an image. The basic idea of ART is

this: begin with an estimate of the object. In many cases, this will be a constant

image, or if some a priori knowledge about the object is known, a better �rst guess

can be used. For each measured projection, a simulated measurement is created using

the estimated object. The values of the object where the projection passes through

are modi�ed to match the measured projection. This process is performed for each

measurement to complete one iteration, and then it is repeated iteratively using the

updated estimate object.

The formulation of the correction factor used to update the estimate object

will determine the type of estimate developed. If an additive correction factor is used

(Additive ART), the resulting estimate is a least squares estimate of the image from

the data in the limit for in�nite iterations [21]. If a multiplicative factor is used

(Multiplicative ART), then the estimate is a maximum entropy estimate in the limit

[21] [22]. As the correction factors go to zero (Additive ART) or one (Multiplicative

ART) with increasing iterations, the algorithm converges for that data set. How

convergence is measured and de�ned for iterative processes is reviewed in [23]. The

convergence of ART in a noiseless system has been documented in [20], [24] and [25].

The motivation for the SIR algorithm is the generally poor performance of

ART in the presence of noise, especially when applied to the relatively noisy data from

the Seasat Scatterometer SASS [13] (Also see Chapter 3). SIR is a modi�ed multi-

plicative block Algebraic Reconstruction Technique (ART) with square root damping

and soft limiting of the update scale factor as described in [3]. To better understand

the SIR algorithm, we begin with a brief review of ART, show the development of

single variable (A only) SIR and complete this primer with the extension to the two

variable (A and B) SIR algorithm.
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2.2.1 ART

For the presentation of multiplicative ART, the model in Eq. (2.3) will be

simpli�ed to a one variable estimate. This is equivalent to assuming no dependence

on incidence angle, so the model reduces to

S = H(A) + V: (2.6)

Let si represent the ith element of the measurement vector S, aj the jth pixel of the

truth image A, and anj the jth pixel of the nth iterative update of the estimate. The

individual elements of the matrix H are given by hij. Multiplicative ART can now be

represented as follows: the updated value of the jth pixel due to the ith measurement

is given by [13, 21]:

ak+1
j = akj

0BBBB@si
MX
n=1

hin

MX
n=1

hina
k
n

1CCCCA hij: (2.7)

One iteration is de�ned as one pass through all N measurements si, 1 < i < N . After

all measurements have been used to update the ak+1
j pixels, k is incremented and

the process is repeated. The term in parentheses is called the update. Because this

multiplicative factor is used to modify the present pixel value to obtain the new pixel

value. For multiplicative ART, the initial image a0i must be non-zero, otherwise the

product of the update and previous pixel values will always be zero.

Note that each pixel may be updated several times in each iteration if

there are multiple measurements that cover the pixel. It has been shown that ART

does not necessarily converge if there is signi�cant noise in the system [20, 21, 25].

By using a simultaneous iterative reconstruction technique (SIRT), the performance

of ART in the presence of small amounts of noise can be improved. The idea is

relatively simple: All measurements covering a pixel are used to create the update

value, e�ectively averaging out the noise in the system. The modi�ed algorithm is
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called block ART and is given by [13, 21]:

ak+1
j = akj

0BBBB@
NX
i=1

si

266664
MX
n=1

hin

MX
n=1

hina
k
n

377775 hij
1CCCCA
,

NX
i=1

hij: (2.8)

Let us consider what is happening in this equation. First, note that if the

ith measurement covers the jth pixel, hij is non-zero, so only those measurements

a�ected by the jth pixel are used in the sums. Next, the value in the square bracket

is the inverse of the back projection, pki , of the ith measurement:

pki =

MX
n=1

hina
k
n

MX
n=1

hin

: (2.9)

Now de�ne a variable dki = si=p
k
i , called the scale factor. The scale factor is a measure

of how close the estimated value of the measurement (pki ) is to the actual measurement

(si). The closer this value is to 1, the less correction is needed. Equation (2.8) thus

represents the weighted average of the updates contributed by each measurement

covering the jth pixel. Equation (2.8) can be rewritten as:

ak+1
j =

akj

 
NX
i=1

dki hij

!
NX
i=1

hij

(2.10)

which represents the algorithmic formulation of block multiplicative ART.

2.2.2 Single Variable SIR

For the development of single variable SIR, we again assume that B is

known and that all the measurements have been normalized to 40� using the linear

relationship in Section 2.1. To motivate the development of SIR, consider a situa-

tion where the actual measurement si is very di�erent than the corresponding back

projection pki . The scale factor dki will be either quite large or quite small, causing
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a signi�cant change in the estimate image. Noise will be a major contributor to the

di�erence between the back projection and actual measurements.

In order to moderate the size of the scale factor and thus moderate the

ampli�cation of noise in the system, a damping factor is introduced and applied to

the scale factor. It is desirable to have the damping factor be symmetric about 1

in log space (see Figure 2.1) so that a scale factor less than one is not emphasized

more or less than a scale factor greater than one. This in e�ect spreads the error

created by the noise uniformally through the constraint space [13]. It is easily seen

that raising the scale factor dki to any power w meets the symmetry requirement.

Through a series of subjective evaluations, square root damping was chosen as an

'optimum' damping factor for a system with signi�cant noise, and we continue to use

a square root damping in the current study [3, 13].

Experimentation has shown that scale factor damping alone is not su�-

cient to prevent the system from going unstable in the presence of large amounts of

noise [13]. To further stabilize the system, a non-linear smoothing is performed by

emphasizing either the back projection or the current estimate in the update. The

algorithm is best illustrated by presenting it mathematically. The jth pixel value is

calculated by the set of equations

ak+1
j =

MX
i=1

updatekijhij

MX
i=1

hij

(2.11)

updatekij =

8><>:
�
1
2pki

(1� 1
dki
) + 1

akjd
k
i

��1
dki � 1

1
2p

k
i (1� dki ) + akjd

k
i dki < 1

(2.12)

dki =

�
si

pki

� 1

2

(2.13)

where dki is the square root damped scale factor. Note that when dki is very large or

very small (meaning a large change in the current pixel value), the back projection pki

inuences the update more than the scale factor. Correspondingly, if the scale factor

is near 1,then the back projection is deemphasized.
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Figure 2.1: A log-log plot of the non-linear scale factor used in SIR. Note the non-
linear damping a�ect added to limit the scale factor to between 1

2
and 2.

Consider a situation where the back projection is relatively close to the

current pixel value, so akj � pki . Under this assumption, the update term in Eq.

(2.12) can be approximated by:

updatekij � akj q(d
k
i ) (2.14)

q(x) =

8><>:
2

(1+1x )
x � 1

1
2(1 + x) x < 1

(2.15)

where q(x) is the approximation of the non-linear update in Eq. (2.12) (See Figure

2.1). What is important to note here is the behavior of the function q(x), which has

limits of 1
2
to 2. This non-linear limiting of the multiplicative scale factor deemphasizes

noise in the resulting imagery, but causes a slowed development of the A value. The

soft-limiting behavior of the function is illustrated in the log-log plot in Figure 2.1.

2.2.3 The Full SIR Algorithm

The main modi�cation made to single variate SIR algorithm for scatterom-

eter image reconstruction is the estimation of the B term in Eq. (2.3) between
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A estimate iterations. This is essential to the scatterometer image reconstruction

since multiple measurements at various incidence angles must be combined to create

the image, and if there is any incidence angle dependence it must be accounted for

in the B value. SIR adopts a two stage process for estimating the A and B images.

First, the A value is estimated under the assumption that the current B estimate is

correct. Then, the update values from the A image are used to create an updated

B image.

The updatekij term in Eq. (2.12) is an estimate of the A value for a given

measurement, with the weighted average of all the updatekij terms for a given pixel

used as the �nal iterative update. To obtain the B estimate, the updatekij values for

each pixel are unnormalized using the current B estimate:

(�̂o)kij = updatekij + bkj (�i � 40�): (2.16)

As the scale factor approaches 1, the B estimate is simply a linear regression estimate

of the B value from the unmodi�ed measurements (for details on this process, see [13]).

The linear regression is performed for each pixel and is given by:

b̂kj =

NX
i=1

hij

NX
i=1

�i(�̂o)
k
ijhij �

NX
i=1

�ihij

NX
i=1

(�̂o)kijhij

NX
i=1

hij

NX
i=1

�2i hij �
 

NX
i=1

�ihij

!2 : (2.17)

This estimate of B is approximate, and is inuenced heavily by the number

and distribution of incidence angles in the measurements covering a pixel. If there are

few measurements, or the spread between the incidence angles in the measurements

is low, the result may be a spurious estimate of B. To avoid these problems, a

weighting is performed for each pixel using the variance of the incidence angles of the

measurements covering the pixel. When the variance of the incidence angles is low,

the estimate is less likely to be accurate so the current value of B is emphasized and
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the update value deemphasized. The equations are

weight =

NX
i=1

hij

NX
i=1

�2i hij 
NX
i=1

�ihij

!2 (2.18)

bk+1
j =

weight� b̂kj + bkj
1 + weight

: (2.19)

The combination of Eqs. (2.11) and (2.19), performed alternately, consti-

tute the SIR algorithm. For a complete explanation of the SIR algorithm, the reader

is referred to [3] and [13].

2.3 Summary

The SIR algorithm is a multivariate variation of multiplicative ART with

square root damping and a non-linear scale factor. SIR was developed as a two

stage, iterative reconstruction algorithm for use with scatterometer data. The single

iteration of the algorithm is summarized as follows:

1. The A Update: The A values are updated �rst using the equations:

ak+1
j =

MX
i=1

updatekij

MX
i=1

hij

(2.20)

updatekij =

8><>:
�
1
2pki

(1� 1
dkj
) + 1

akjd
k
i

��1
dkj � 1

1
2p

k
i (1� dkj ) + akijd

k
j dkj < 1

(2.21)

dki =

�
si

pki

� 1

2

: (2.22)
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2. The B Update: The B update uses the updatekij terms calculated during the

A update phase to calculate the new B values using the following equations:

(�̂o)kij = updatekij + bkj (�i � 40�) (2.23)

b̂kj =

 
NX
i=1

hij

! 
NX
i=1

�i(�̂o)
k
ijhij

!
�
 

NX
i=1

�ihij

! 
NX
i=1

(�̂o)kijhij

!
 

NX
i=1

hij

! 
NX
i=1

�2i hij

!
�
 

NX
i=1

�ihij

!2 (2.24)

weight =

 
NX
i=1

hij

! 
NX
i=1

�2i hij

!
 

NX
i=1

�ihij

!2 (2.25)

bk+1
j =

weight� b̂kj + bkj
1 + weight

: (2.26)

The inuence of noise on the result is improved (compared to multiplicative

block ART) through reducing the size of the multiplicative update term in theA value

development based on the relative di�erence between the back projection and actual

measurements and by coupling the incidence angle variance to the B value update.
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Chapter 3

Enhanced Resolution Imaging From Irregular Samples

3.1 Introduction

In this Chapter, we discuss the theory behind resolution enhancement algo-

rithms with speci�c interest in how SIR achieves an enhanced resolution scatterometer

image. Because we wish to apply this theory to scatterometers, we will develop this

theory around a model of the surface response that describes the microwave backscat-

ter from a point. We model backscatter from the surface as a function of location and

incidence angle. Let f(x; y; �) be the function that gives the backscatter from a point

(x; y) on the surface at an incidence angle of �. For brevity, the � term is dropped

and unless otherwise stated, is implicit in the following sections. The measurement

system can be modeled by

�o = Hf + V (3.1)

where H is an operator that models the measurement system (sample spacing and

aperture �ltering), f is the original surface functions de�ned above, V is the noise

term and �o represents the measurements made by the instrument. Note that the set

of measurements �o are a discrete sampling of the function f . For the moment, noise

is ignored. The function f = A+ B(� � �) in Eq. (2.3).

The development will be presented as follows: First, a model of the desired

solution is presented, followed by a discussion of sampling and reconstruction from

sampling. Next, the e�ects of the measurement aperture function on the sampled

data are discussed, and then a theory of reconstruction from irregular samples is

presented, including a development of an arbitrarily band limited Banach space. Next,
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the discussion of irregular sampling theory is related to the ART (both additive and

multiplicative) reconstruction algorithms and the SIR algorithm. Finally, the e�ects

of noise are considered with an emperical review of performance of the ART algorithms

and SIR for the noisy case.

3.2 Solution Model

Equation (3.1) o�ers a very simple but powerful model for the measurement

system. Many things can be included in the point spread function H, such as sample

spacing and the aperture function. For enhanced resolution image reconstruction, we

are interested in the inverse problem:

f̂ = Ĥ�1�o (3.2)

where f̂ is an estimate of f from the �o samples. The inverse of the point spread

function, Ĥ�1, is exact only if H is invertible. If H is invertible, then f̂ = f . In

general, the direct inversion ofH is not practical. For large areas such as the Antarctic

basin, the number of samples will be very high (on the order of 1 million). As such,

H, whose size is (number of samples) x (number of pixels in reconstruction) becomes

quite large, increasing the computational complexity of a direct inversion. Also, in

many cases H is simply not invertible, and we must make an estimate of the inverse.

Introduce noise and this further complicates the estimate of the inversion. In the

following discussion, we propose the use of an iterative reconstruction, allowing us

to control to some degree the computational di�culties, and to reduce the e�ects of

noise on the resulting image.

3.2.1 The Nyquist Sampling Theorem

A traditional approach to sampling and reconstruction is based on the

Nyquist sampling theorem. The theorem simply states that a band limited function

can be completely reconstructed from regularly spaced samples if the sample rate

exceeds the Nyquist rate of twice the maximum frequency in the signal. The re-

construction is a simple low pass �lter that matches the band limits of the original
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signal, which is equivalent to using a sinc function as an interpolating function (for

a detailed explanation, see [26]). A block diagram of this system is given in Figure

3.1 for a case where the measurement system has an aperture function. Sinc inter-

polation reconstructs the aperture �ltered version of the signal, not the un�ltered

original. Since all real measurement systems have an aperture function, it is usually

designed to act as a pre�lter to eliminate high frequency components of the signal

that might otherwise cause aliasing in the reconstructed signal based on the sample

spacing. This approach is very similar to the ERS-1 scatterometer design: A desired

sample spacing of 25 km dictated an aperture function that, to avoid aliasing, elimi-

nates wavelengths smaller than 50 km. Note in this approach that the sample spacing

is the single largest limiting factor in the reconstruction.

3.2.2 A Modi�ed Approach

Figure 3.2 illustrates a di�erent approach. Suppose that a system is de-

signed with a sample spacing of 25 km and an aperture function created to minimize

aliasing (much like ERS-1). Later, a method of halving the sample spacing to 12 km is

developed, but the aperture function remains unchanged. If the aperture function is

an ideal low pass �lter, then the high frequency information in the original function is

unrecoverable and decreasing the sample spacing does not produce any new informa-

tion. However, most aperture functions have side lobes and, depending on the noise

in the system, the side lobes still contain enough information to recover at least some

of the higher frequency content of the original signal because of the new sample rate.

As illustrated in Figure 3.2, this is equivalent to inverting the e�ects of the aperture

function in the reconstruction in Eq.(3.2). Notice that the main di�erence between

Figures 3.1 and 3.2 is the operator being inverted (H, denoted by the dotted box).

In Figure 3.2, the operator includes the aperture function as well as the sampler, and

the inversion algorithm for this illustration is more involved than simply applying a

low pass �lter.

Figure 3.3 presents a chart comparing the two methods outlined above. The

rows of the chart show the Fourier transforms of (top to bottom) the original function,
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f
δ(x,y)

σο sinc
Interpolation

H

f^A(x,y)

Figure 3.1: A block diagram illustrating a simple Nyquist sampling problem. The
original surface, f , is �ltered by the system aperture function, A(x; y). This is sampled
on a regular grid using the delta function �(x; y), giving the measured values �o. To
recover the surface function, sinc interpolation is used. According to the sampling
theorem, this is equivalent to low pass �ltering the impulse train created in sampling
step. Note that the operator being inverted by the sinc interpolation in this scheme
is the sampling step: the signal recovery algorithm does not attempt to invert the
e�ects of the aperture function. In fact, the aperture function is usually designed to
band limit the original surface function to avoid aliasing in the recovered signal.

f

A(x,y)

δ(x,y)

σο

Η

Algorithm
Reconstruction f^

f = H-1σο^

Figure 3.2: A block diagram illustrating a reconstruction algorithm that attempts to
invert the e�ects of the aperture function. Compare this �gure with the block diagram
in Figure 3.1. The primary di�erence between the two �gures is the operator that is
being inverted, denoted in each �gure by H and the dotted box. In this scheme, the
aperture function �lters the surface, but the inversion given by f̂ = H�1�o inverts
the e�ects of the aperture function according to a regularization scheme (e.g., least
squares estimate, maximum entropy estimate, etc.).

30



the aperture function and the reconstructed estimate of the function. Traditional

sampling has a desired frequency range dictated by the sample spacing of the system.

For the example in Figure 3.3, the aperture function is designed to limit the frequency

content of the signal to the recoverable band de�ned by a given sample spacing. For a

reconstruction, the desired frequency range is increased by better sampling, although

the aperture function limits the reconstruction due to nulls in the frequency domain

and attenuation of some frequencies. The e�ects of the aperture function are discussed

in the next section.

The latter process of reconstruction is used by SIR. SIR utilizes multiple

passes of the satellite to build up a dense sampling of the surface. As is illustrated

in the following sections, this decreases the sample spacing, allowing the e�ects of

the aperture �lter to be inverted using an iterative reconstruction method and thus

achieving higher resolution than the nominal instrument resolution.

3.2.3 The Aperture Function

Any real-life sampling usually involves a non-ideal sampler with a �nite

aperture which a�ects the frequency content of the sampled data. Since most real

aperture functions are window-type functions, the result of applying the aperture is

to low pass �lter the data. Window-type aperture functions generally have frequency

nulls that result in information loss, and this a�ects the information that can be

recovered from samples gathered with the aperture function.

To understand the e�ect the aperture function has on the original function,

we can show that the aperture sampled data is equivalent to ideal delta sampling of

a function convolved with the aperture function. While the aperture function may

not be circularly symmetric and vary from sample to sample, here we assume it is

symmetric and the same for every sample for simplicity. Let the aperture function be

represented by g(x; y), and the convolution of two functions be denoted symbolically

by �. For any sample point, say at a point on the surface (x; y), the sample value is
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F (Ap) ->

 Reconstruction
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Sampling

{ {

Usable
Frequency Range

Lost Info

Figure 3.3: This chart shows a comparison of the frequency content at various stages
of the reconstruction illustrated in Figure 3.1 and 3.2. The rows of the chart represent
the Fourier transforms of (top to bottom) the original function, the aperture function
and the reconstructed estimate of the function. In \Reconstruction", the estimate
is limited by the nulls in the aperture function frequency response. In \Traditional
Sampling", the usable range is limited by the sample spacing. The aperture function
is used to �lter the signal so that aliasing is minimized.
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given by the convolution

fs(x; y) = g(x; y) � f(x; y) (3.3)

=

ZZ
A

g(x� x0; y � y0)f(x0; y0) dx0 dy0 (3.4)

where f(x; y) is the true surface function and A is the region of support for the

aperture function (i.e., the spatial region over which the aperture has non-zero values).

Now formulate a new continuous function h(x; y) which is the convolution of the

aperture function and the original surface function. Sampling this �ltered function

with ideal impulses leads to the same sample values as sampling the original surface

using a sampler with an aperture function. The value of this new function at a point

(x; y) is given by

h(x; y) = g(x; y) � f(x; y) = fs(x; y): (3.5)

Note that the resulting sampled set hs(x; y) is equivalent to the original data sampled

with the aperture function as in Eq. (3.3). Thus, from a functional perspective, we

can imagine that the measurement cells of a scatterometer are ideal samples of a

surface �ltered by the aperture function.

The e�ects of the aperture function are two-fold: First, the low side lobes

levels (compared to the main lobe) associated with typical aperture functions (e.g.,

Hanning or Hamming windows for very low side lobes or rectangular windows with

higher side lobes) substantially attenuate high frequency information that we desire to

reclaim through an appropriate algorithm. If the noise in the system is high relative

to these side lobe levels, the information is lost in the noise since the enhancement

algorithm ampli�es the noise as well as the desired signal in the reconstruction process.

However, as shown later, even very low side lobe levels can be recovered if there is

little or no noise in the system. Second, typical aperture have frequency nulls in

their spectrum. These nulled frequencies represent lost information no matter how

good the reconstruction algorithm. The recoverability of high frequency information

in the side lobes is dependent on the amount of attenuation relative to the noise in

the system.

33



3.3 Irregular Sampling Theory

Irregular sampling problems have been examined since the early 1960's

(see [27] for a review of the problem and key references). However, in most studies,

very limiting requirements are placed on the irregular sampling grid. There are es-

sentially two views on the nature of the irregular sampling grid: The �rst view is that

there is some structure to the grid so that it can be described with some function

or periodicity. Included in this class of irregular sample grids are wholly random

grids described by a probability distribution. The second view is one of an arbitrary

irregular grid parameterized by � which describes the maximal spacing in the grid.

There are advantages and disadvantages to each viewpoint. One implica-

tion of a structured grid is that the density of the samples is relatively uniform over

the entire sampling grid, i.e. any given two areas have about the same number of

samples in them and the standard deviation of the distance between sample points is

relatively small and constant when computed over small sets of the data. This leads

to good statistical characteristics of the reconstructed signal relative to the original

bandwidth. The main drawback is that satellite data does not generally �t this de-

scription of irregular data as the spacing can vary signi�cantly through latitude and

from pass to pass.

The arbitrary grid, however, places no restrictions on the structure of the

sampling grid. The biggest problem with this description is that the recoverable

frequencies are usually de�ned by the largest sample gap on the grid. Even if samples

are closely spaced in all regions but one, that one region with the large sample spacing

determines the frequencies completely recoverable by an appropriate algorithm. While

a regional description of resolution and frequency content can be employed to reduce

the e�ects of a single bad sample gap, this can be di�cult and tedious to apply

over large regions with changing sampling characteristics. Nonetheless, the arbitrary

grid is prefered in this study because it is a more accurate model of the constantly

changing satellite sampling grid.

To establish the validity of reconstruction from irregular samples, some

recent work using arbitrary sampling grids is cited. Speci�cally, Karl Gr�ochenig [28]
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presents a methodology that places no restrictions on the sample grid, allowing for

density changes in the sampling grid.

3.3.1 Preliminaries

In order to present the important lemmas and theorems of [28], certain

de�nitions and groundwork must be established. This includes de�nitions of the

spaces and functions used and some auxiliary information not presented in the cited

text but that make the development here complete. The de�nitions in this section

are usually for the two dimensional case, since that is the case of interest for satellite

remote sensing applications.

First, the de�nitions of the Hilbert space and the subspace of band limited

functions on the Hilbert Space are presented (as in [28]):

Definition 1 (L2(R2))

Let L2(R2) denote the Hilbert Space of square-integrable functions on R2 with the

norm kfk = (
R1
�1

jf(x)j2 dx) 12 .

Definition 2 (
)

Let 
 � R2 be a compact set where 
 denotes the cube
Q2

i=1[�!i; !i]. The ! =

(!1; !2) de�ne the extension of 
.

Definition 3 (B2(
))

Let B2(
) be a closed subset of L2(R2) such that B2(
) = ff 2 L2(R2) : supp F � 
g
where F is the Fourier Transform of f . B2(
) is, by de�nition, a Banach space.

These three de�nitions provide a mathematical formalism for the theorems to follow.

The �rst de�nition establishes a general set of well-behaved functions. The term 


describes a region of support in the frequency domain, bounded by some !i (Def. 2),

and B2(
) is the set of functions in L2(R2) whose Fourier Transform is contained

within the region de�ned by 
.

Next are two de�nitions that are used to describe an operator used in the

reconstruction algorithm:
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Definition 4 (Bounded Operator)

An operator A is bounded on the space B if there exists a constant C such that

kAuk � Ckuk 8u 2 B: (3.6)

Definition 5 (Operator Norm)

The operator norm, denoted k � k0 is the smallest constant C such that

kAk0 = supkuk=1kAuk: (3.7)

Finally, the irregular sampling grid can be described as �-dense for the one

dimensional and two dimensional cases as follows [28]:

Definition 6 (�-Dense: One Dimension)

A sampling sequence X = (xi)i2Z ; : : : < xi�1 < xi < xi+1 < : : : , is said to be �-dense

if supi(xi+1 � xi) � �.

Definition 7 (�-Dense: Two Dimension)

A sampling sequence X = (xi)i2Z in R2 (xi = (�1; �2)) is � = (�1; �2)-dense ifS
i2Z B�(xi) = R2 where B�(xi) represents the square

Q2
i=1[�i� �i

2
; �i+

�i
2
] centered at

xi.

The one dimensional case is presented for use as background to the more applicable

two dimensional case, but in this treatment, any reference to �-dense is to the two

dimensional case unless otherwise speci�ed. We note that the de�nition for �-dense in

the two dimensional case can also be generalized to larger dimensions.

In the one dimensional case, � is determined by the largest separation

between two sample points. Thus one large gap in the sampling grid severely limits

the frequencies recoverable from the sampled data. For an intuitive insight, consider

a one dimensional case and recall that the reconstruction from regular samples is

an interpolation using the sinc(x) as an interpolation function. If the samples are

not close enough together, the interpolation function cannot reconstruct the signal

properly between samples. So, even if the samples are fairly dense everywhere else,
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Figure 3.4: A graphical illustration of �-dense in two dimensions. Figure A shows a
situation where � is too small for the union of the boxes around each sample point
to cover the entire R2 space. Figure B shows a larger � where the union of the boxes
does span the R2 space. �-dense corresponds to the smallest � for which the R2 space
is spanned. A smaller delta yields better frequency reconstruction.
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a single large gap limits whether or not the entire signal and be completely recovered

from the sample set.

For the two dimensional case the de�nition is slightly di�erent. Here, �-

dense is de�ned as the minimum value of � around each sample point that completely

�lls the R2 space. In Figure 3.4(A), a set of sample points is shown with a �1 box

surrounding each sample point as described in De�nition 7. Note that the union of

the boxes is not su�cient to cover the entire R2 space. In Figure 3.4(B), a larger

� value, �2, is used that does cover the entire space. Thus, this particular sampling

set is �-Dense with � = (�2; �2). In reality, since a sampling set is limited to some

�nite space in R2, we assume that the sampling set is periodic in space with a period

determined by the x and y dimension of the �nite sample space. By extension, the

entire R2 space is covered by the union of the �2 boxes for the periodic grid.

3.3.2 Iterative Reconstruction from Irregular Samples

With all the preliminaries established, the main theorems may now be

presented. The bulk of the work in [28] is based on the following Lemma:

Lemma 1 (Gr�ochenig's Lemma: Iterative Reconstruction)

Let A be a bounded operator on a Banach space B such that kI � Ak0 < 1 (I is the

Identity Operator), where k � k0 denotes the operator norm on B. Then A is invertible

on B and A�1 =
P1

n=0(I � A)n.

1. Moreover, every f 2 B can be reconstructed by the iteration

�0 = Af (3.8)

�n+1 = �n � A�n (3.9)

f =
1X
n=0

�n (3.10)

with convergence in B.

2. Setting fn =
Pn

k=0 �k, the error is

kf � fnkB � kI � Ak0 n+1 1 + kI � Ak0
1� kI � Ak0kfkB (3.11)
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The proof is provided in [28]. The iterative procedure is based on the series A�1 =P1
n=0(I � A)n, the Neumann expansion for the inverse of an operator. The only

limitations on the operator A are that it be bounded (De�nition 4) and that kI �
Ak0 < 1, required for the Neumann expansion to be valid. Note that the � term

(i.e. �-density) de�ned in the previous section is not included in this Lemma. The

relationship of � to the recoverable frequency content is determined by the speci�c

choice of A.

An Example Operator

As an example of a valid operator A and the subsequent relationship be-

tween the �-dense sampling grid and the recoverable frequency content of the original

signal, the algorithm given in [28] is presented:

Theorem 1 (Gr�ochenig's Theorem)

Given 
 � R2 with linear extension ! = (!1; !2) and the appropriate Banach space

B2(
), choose � = (�1; �2) such that � � ! =
P2

i=1 �i!i < ln(2). If � = (xi)i2I is

a �-dense sampling set in Rn, then every f 2 B2(
) can be reconstructed from its

sampled values f(xi) by the iteration

�0 = Af (3.12)

�n+1 = �n � A�n (3.13)

f =
1X
n=1

�:n (3.14)

The operator A is de�ned by

Af = P (
X
i

f(xi) i) (3.15)

where ( i)i2Z is a partition of unity with the properties supp  i � B�(xi) (B�(xi) as

de�ned in De�nition 7), 0 �  i(x) � 1, and
P

i  i(x) = 1 and P is the orthogonal

projection from L2(R2) onto B2(
).

Note that the original image f is band limited. The operator is, in this case, very

simple. It can be visualized easily for a regular grid, which is a special case of the
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general irregular grid. Consider a regular Cartesian sampling grid with equal spacing

in the x and y directions, the distance between two samples in the x or y direction

denoted by �. One choice for the partition of unity function  i is a simple indicator

function where at a point xi = (x; y),  i = 1 on the square (x��=2; y��=2) and zero
elsewhere. The result is a step-type image. The operator P is simply the low pass

�lter of this step image where the low pass �lter corresponds to the frequency region

of support 
. The process is illustrated for a one dimensional example in Figure 3.5.

Theorem 1 establishes a relationship between the sample grid parameter �

and the frequency content of the original signal de�ned by 
 by the de�nition

� � ! =
2X

i=1

�i!i < ln(2): (3.16)

The ln(2) term in Eq.(3.16) is determined in the course of the proof of the Theorem

and is required for the operator A to be invertible on B2(
) (See [28] for the proof). If

the spectrum of the original signal is the cube 
 = [�!0; !0]2, and the �-dense sample

grid has �1 = �2, then the density must satisfy

�0 <
ln(2)

2!0
: (3.17)

Note that this requires the sampling density be higher than the Nyquist sampling

density for a given !0. In fact, it requires that the sampling frequency be nearly 1.5

times the Nyquist rate and is determined (essentially) by the largest distance between

samples. While this is a signi�cant performance hit relative to the Nyquist rate, this

theorem establishes that a function can be reconstructed from irregular samples.

The relationship in Eq. (3.17), however, is speci�c to Gr�ochenig's operator A. For

instance, in the one dimensional case, this same operator A requires that �0 <
�
!0
,

the Nyquist criteria. Other valid operators for one dimensional or two dimensional

applications may have slightly di�erent relationships between the �-dense grid and

the recoverable frequency content, but the upper limit is the Nyquist limit which

occurs for uniform sampling with � sample spacing.
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Figure 3.5: This illustrates the basic idea of the algorithm in [28]. The original image
is sampled and then an indicator function is used to generate the \Step" function.
This function is then low pass �ltered to obtain and estimate of the original function.
Note that the low pass �ltered version is very similar to, but not exactly the same as,
the original function.
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3.4 SIR, ART and Gr�ochenig's Algorithm

The previous section establishes the validity of reconstruction from irregu-

lar samples (see [28] for a more detailed review). The question now is how this relates

to SIR. SIR is a modi�ed multiplicative ART algorithm. Insight into the behavior of

SIR can be gained by examining the relationship of ART to irregular sampling theory.

In this section, a band limited Banach space is given as a background for the discus-

sion of SIR, ART and Gr�ochenig's algorithm. A comparison is then made between

SIR, ART and Gr�ochenig's algorithm to establish the link between the methods.

3.4.1 The Band Limited Banach Space

First, because Lemma 1 requires the operator to be invertible on a Banach

space, a Banach space of appropriately band limited functions must be established.

A simple case is the space of low pass �ltered images such that the spectrum of

the functions in the space is limited to j
j < ! as in De�nition 2. More generally,

the spectral content could be limited by other constraints such as those illustrated

in Figure 3.6(A). This �gure illustrates the band limits that might be imposed to

circumvent the nulls that occur in a real life aperture, such as the ERS-1 aperture

�lter illustrated in Figure 3.6(B). In the remainder of this section, it will be shown

that such a sub-band limited space is a Banach space.

Let L2(R) denote the Hilbert space of square integrable functions onR with

the norm kfk = (
R1
�1

jf(x)2jdx) 12 . Now de�ne a frequency range 
0 as a compact

set such that for all ! 2 
0, j!j � !0. Further, 
0 may have arbitrary sub-band

divisions as illustrated in Figure 3.6(A). Then B2(
0) = ff 2 L2(R) : supp F � 
0g
is the closed subspace of all square-integrable functions with spectrum contained in


0 (where F denotes the Fourier Transform or spectrum of f).

We will now show that B2(
0) is a Banach space. By de�nition, a complete,

normed vector space is a Banach space. First, B2(
0) is a vector space since this space
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Figure 3.6: This �gure shows a band limiting scheme in (A) that cuts out the nulls
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is closed under addition and multiplication by scalers. Recall the Fourier relations

af(x) [
0
pt]F() aF (!) (3.18)

af(x) + bg(x) [
0
pt]F() aF (!) + bG(!) (3.19)

and note that any scaler multiple or addition of the spectrums of two functions in the

space results in a function with spectrum support in 
0. Next, since B2(
0) � L2(R)

and L2(R) is a normed space, then B2(
0) is a normed space as well.

Next, there is the issue of completeness. For the space to be complete,

every Cauchy sequence in B2(
0) must converge to a function in B2(
0). A sequence

of functions ffng11 in B2(
0) is a Cauchy sequence if limm;n!1 kfm � fnk = 0, or in

other words, for an � > 0 there exists an N such that kfm� fnk < � for all m;n > N .

Each Cauchy sequence ffng11 converges to some function f (i.e. kfn � fk ! 0 as

n!1). Assume that there exists an arbitrary Cauchy sequence on B2(
0) such that

fn@ >> n!1 > f where fn 2 B2(
0), all n but f is not in B2(
0). This assumes

that f has frequency content outside 
0. Recall Parseval's Identity:Z 1

�1

jf(x)j2dx =
1

2�

Z 1

�1

jF (!)j2d! (3.20)

and note the similarity of the norm k � k on B2(
0) to the left hand side of this

equation. Also note that by our assumptions the frequency content of fn � f always

has some component outside of 
0. Thus the following is true of Fourier transform of

the limit function f under our assumptions:

kF (!)k =
Z 1

�1

jF 2(!)jd! =

Z

0

jF 2(!)jd! +

Z



0C

jF 2(!)jd! (3.21)Z

0

jF 2(!)jd! � 0 (3.22)Z

0C

jF 2(!)jd! > � (3.23)

where 

0C is the complement of 
0. Equation (3.23) is always greater than some �

since f has frequency content outside of 
0. By Eq (3.20), kfn � fk = 1
2�
kFn � Fk

for all n. Finally,

kFn(!)� F (!)k =
Z

0

jFn(!)� F (!)j2d!| {z } +

Z

0C

jFn(!)� F (!)j2d!| {z } (3.24)

� 0 > �
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where
R

0C jFn(!)� F (!)j2d! =

R

0C jF (!)j2d! > � because Fn(!) has zero value on



0C . This implies that there exists � > 0 : kFn(!)� F (!)k > � which contradicts the

assumption of the limit function f not included in B2(
0).

Thus, the Cauchy sequence limit function f cannot contain energy outside

of the frequency band de�ned by 
0 since no function in the sequence ffng11 has

energy outside of 
0. Therefore, ffng11 must converge to a function f 2 B2(
0), and

thus B2(
0) is a Banach space.

3.4.2 Equivalence of Additive ART and Gr�ochenig's Algorithm

Because the SIR algorithm has a non-linear multiplicative update term, it

is di�cult to analyze directly. However, the SIR algorithm is a modi�ed multiplicative

ART algorithm. Thus, showing the equivalence of ART and Gr�ochenig's algorithm is

helpful in understanding the behavior of SIR. We begin by examining the relationship

between block additive ART and Gr�ochenig's algorithm.

Gr�ochenig's iterative algorithm given in Lemma 1 can also be written as

[28]:

fn+1 = fn + A(f � fn) (3.25)

with A an operator meeting the requirements of Lemma 1 and f representing the

function to be recovered. Block additive ART can be written as [21]

ajn+1 = ajn +

P
i(si � pi)hijP

i hij
(3.26)

i 2 f1; 2; :::;Mg
j 2 f1; 2; :::; Ng

where a represents the image to be estimated, an is the nth iterative estimate of a,

j is the pixel index and i is the measurement index with N total pixels and M total

measurements. The essence of this equation is that all measurements that touch a

pixel aj are summed and normalized to create the per pixel update value. We wish

to have the equation for block additive ART (Eq. (3.26)) have the same form as

Gr�ochenig's algorithm in Eq. (3.25). The desired form for block additive ART is
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given by:

an+1 = an +H(a� an) (3.27)

where the a's are now vectors with a being the `true' image, an the nth iterative

estimate of a and H is an N � N matrix operator with the properties prescribed in

Lemma 1 for A. Note that H can be separated into two distinct operators:

H = H 0H (3.28)

each of which will be described in detail below. We now proceed to show that block

additive ART is equivalent to Gr�ochenig's algorithm (i.e., Eq. (3.26) is equivalent to

Eq. (3.27) and therefore also equivalent to Eq. (3.25)).

In Eq. (3.26), the normalized sum on the right hand side is a function

of the vectors s, the measurement vector and p the back projection vector based on

the nth iterative estimate. The vector s represents the actual measurements which,

as shown in Section 3.2.3, are just samples of the aperture-�ltered true image. The

sampled convolution of the true image a and the aperture function can be reduced to

a matrix multiplication, an M �N matrix denoted by H in Eq. (3.28). This matrix

is sometimes called the point spread matrix. Thus, H is the back projection operator

and s = Ha and p = Han. Combining these equations with Eq. (3.28), Eq. (3.27)

now becomes

an+1 = an +H 0(Ha�Han) (3.29)

an+1 = an +H 0(s� p) (3.30)

where, as shown below, H 0 is a matrix operator that performs the summation and

normalization in Eq. (3.26).

The form of the matrix H 0 can be determined by examining the form of H

and H. Figure 3.7 illustrates the matrix multiplication s = Ha where the columns

of H are denoted by vertical lines. The index i is the measurement index with each

measurement corresponding to a row in H. Refer to Eq. (3.26) and note that for

each update, only those measurements where hij is non-zero for the j
th pixel are used
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Figure 3.7: This graphic illustrates the matrix multiplication of the true image a by
a general point spread matrix H. The columns of H are shown as lines. The terms i
and j represent the measurement index and pixel index respectively.

to update that pixel. The measurements where hij is non-zero for the jth pixel all

have non-zero values in the jth column of H.

The update for the jth pixel is the normalized sum of the elements touching

that pixel. Take the transpose of H and normalize each row by the sum of the weights

in that row and call this new N �M matrix H 0. Note that by multiplying H 0 by the

vector H(a�an) = (s�p), the individual elements of the resulting vector correspond

to the update values in Eq. (3.26). Adding H 0(s� p) to the current estimate an gives

the updated an+1 image vector as shown in Eq. (3.30). Thus we see that the operator

H in Eq. (3.27) can be written as H = H 0H with H 0 and H as de�ned above. This

establishes the equivalence of Eq. (3.25) and Eq. (3.26).

The Operator H

With the successful derivation of a valid H = H 0H for Eq. (3.27), the

equivalence of block additive ART and Gr�ochenig's algorithm now depends on the

invertibility of H on an appropriately de�ned Banach Space as per the requirement

in Lemma 1. We wish to demonstrate the invertibility of H on the sub-band limited

Banach space de�ned in Section 3.4.1. We must de�ne invertibility on a sub-band
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Figure 3.8: An illustration that shows the relationship of the domain and range spaces
of the operator H. Note that this is H, the point spread function, not H.

limited Banach space because we know that by de�nition of the point spread func-

tion H, an arbitrary input is not necessarily recoverable because of frequency nulls

created by the point spread function. If the system input is selected so that it has no

frequency content at the H nulls, the input function will be attenuated by the point

spread function but no information will be lost. Recall that the operator H is de�ned

as H = H 0H, where H 0 and H are de�ned in Section 3.4.2. H as de�ned in Eq.

(3.28) incorporates the sample spacing and aperture function characteristics. Here

we assume that the sample spacing is adequate for recovering the original signal and

deal strictly with aperture function a�ects on invertibility. How the sample spacing

a�ects the signal recoverability is discussed in Section 3.4.2.

Figure 3.8 shows the functional operation of H in Eq. (3.1). Let L be the

space of band limited �nite functions (De�nition 2) represented by vectors u 2 L.

The point spread function H maps u 2 L into a range space v 2 R(H) � M . The

other half of H, H 0, is the row normalized transpose of H. The row normalization

consists of multiplying each row by the sum of the row elements and since elementary

row operations do not a�ect the rank of the matrix, rankH = rankH 0.

We now assume that the domain of H, u 2 B2(
0) consists of all functions

with a sub-band limited frequency response as illustrated in Figure 3.6(A). The low
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pass characteristics of the aperture function built into the point spread function H

indicate that certain frequencies of an arbitrary input are nulled out and therefore

unrecoverable in any reconstruction. But since we de�ne a domain B2(
0) that con-

sists exclusively of functions without those frequencies, no information is lost for the

new problem de�nition. So for v = Hu, v is the projection of u onto the columns of

H. While v may have attenuated frequency components, all the original frequency

components of u will be present in v. Now consider the left multiplication by H 0.

This new value, u0 = H 0v = H 0Hu 2 B2(
0) will also be in the original Banach

space. Thus, H = H 0H is a bounded operator on the sub-band limited Banach space,

meeting the �rst requirement of Lemma 1.

With H bounded, we must next show that H is invertible on the Banach

space for this to be a valid operator according to Lemma 1. It should be obvious that

if H is full rank, than H 0H is full rank and the operator H is invertible on the Banach

space. However, it is not necessarily required that H be full rank for the signal to

be recoverable. Consider that by de�nition no information is lost in the process of

applying H to an appropriately sub-band limited input function even if the matrices

are not full rank. Simple attenuation is easily corrected and therefore H is invertible

on the sub-band limited Banach space.

Thus, the block additive ART reconstruction in Eq. (3.27) is equivalent to

Gr�ochenig's algorithm in Eq. (3.25) (both repeated here for convenience):

an+1 = an +H(a� an)

fn+1 = fn + A(f � fn)

and both are completely invertible (by Lemma 1) on the sub-band limited Banach

space. Therefore Eq. (3.27) represents a valid algorithm for the complete recovery

of the original vector a for an appropriate choice of input function Banach space

B2(
0) based on the aperture function. Note, however, that complete recovery is

only possible if the assumption is made that the original function is contained in the

space spanned by the operator inverse H�1. If this isn't the case, then we apply

some conditions, or regularization, on the reconstruction in order to develop a unique
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solution. Additive ART, for instance, produces the least squares minimum norm

solution, while multiplicative ART gives the maximum entropy solution. In theory,

we could use any of a number of regularization schemes (least squares, for example)

to generate an estimate of the signal for a case where the original function is outside

the space spanned by H�1. This is addressed further later in this chapter.

Signal Recoverability from �-dense Sample Spacing

In the preceding sections, we have assumed that we have adequate sam-

pling. We now examine the limitations of the irregular sampling on the reconstruction.

Given a set of irregular samples that are �-dense, the natural question is what fre-

quency content can be recovered using this grid and an algorithm with the form given

in Eq. (3.25). Unfortunately, H varies from image to image, and (for our applica-

tion) is highly dependent on satellite geometry, location of the sampled surface, and

instrument activity. It is thus di�cult to determine an exact prediction of frequency

recoverability for SIR similar to the one given in Eq. (3.17) for Gr�ochenig's algorithm.

However, there is a limit to the best that can be done, which is the Nyquist

sampling rate. Recall the de�nition of �-dense in De�nition 7 and note that the �

of a �-dense sampling set is determined by the largest gap between samples. If this

� spacing were for a regular sampling grid, it would limit the recoverable signals to

a class of functions with spatial wavelengths greater than 2� by the Nyquist crite-

rion. This is the upper limit of any reconstruction algorithm. As shown in [28] for

Gr�ochenig's operator, the recoverable frequency range using an irregular �-dense sam-

pling grid in two dimensions is smaller than for a regular grid with � sampling. So for

an arbitrary operator, it is expected that the recoverable frequency range using an

irregular �-dense sampling grid will be less than the frequency range recoverable by

a regular � spaced grid as determined by the Nyquist criterion. Experimental results

for the ERS-1 scatterometer show that in the polar regions, the sampling sets are

�-dense with � = 10 kmto 13 km.

Using an ART-derived reconstruction technique (SIR), 30 km to 35 km

resolution is achieved [29], which is consistent with the relationship in Eq. (3.17).
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For the purposes of evaluation, the upper limit of frequency recoverability is assumed

to be a function of the largest sampling gap. Although actual performance likely will

be slightly less (depending on the operator used), using the Nyquist rate as an upper

performance limit gives a reasonable estimate of the best possible recovery using an

irregular grid.

Gr�ochenig's algorithm was originally presented as a method for complete

recovery of a certain class of irregularly sampled band limited functions [28]. In the

previous sections, we have shown that Gr�ochenig's algorithm is functionally equiva-

lent to block additive ART. In theory, block additive ART would completely recover

an arbitrary band limited function for the noiseless case after in�nite iterations if all

conditions of Gr�ochenig's lemmas and theorems are met (e.g. proper initialization,

sample spacing, etc). An important observation is that theoretical recoverability is

irrelevant to the aperture function for the noiseless case. In other words, no matter

how low the side lobes of the data are, in theory the original signal (less the appro-

priate nulls) can be recovered in the limit of in�nite iterations. This will become

important in the next chapter where practical application of this theory is discussed.

We now examine the relationship of additive and multiplicative ART.

3.4.3 Relationship of Additive ART to Multiplicative ART

With the equivalence of additive ART and Gr�ochenig's algorithm estab-

lished, we look at the relationship of additive and multiplicative ART. The di�erence

between additive and multiplicative ART is the regularization assumed in the esti-

mate. Additive ART is a least squares estimate in the limit of in�nite iterations [21],

and is based on the minimization problem:

Minimize kx2k (3.31)

Subject to y = Hx:
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Multiplicative ART with damping is a maximum entropy estimate in the limit of

in�nite iterations [21, 22], and is based on the maximization problem:

Maximize �
nX

j = 1

xj lnxj (3.32)

Subject to y = Hx:

Additive ART assumes no a priori knowledge about the data, and �ts the

estimate strictly on the measurements available through minimizing the error of the

back projection of the measurement onto the H space. In the context of the sub-band

limited spectrum illustrated in Figure 3.4(A) this means that the reconstruction is

strictly contained within the space spanned by the measurements (in this case, the

sub-band limited space).

Multiplicative ART assumes a maximum entropy model. The subjective

result of the maximum entropy model is sharper images. In the frequency domain, the

reconstruction is not strictly restricted to the band limited frequency domain spanned

by the measurement space. Additional high frequency content is added to create a

`sharper' image. However, the constraint y = Hx remains, and the reconstruction is

based on a projection of measurements onto the H space just like additive ART.

The choice of one method over another is a hotly debated issue. We can,

in principle, select any regularization to use in the reconstruction if the regularization

�ts with the a priori knowledge we have about the surface. In [21], this decision

may be based on the nature of the sampling mechanism (reection, absorption or

emission) and the nature of the approximation that the algorithm will develop for

under-determined systems. The choice depends somewhat on what regularization

gives the best results for the user. Least squares estimates produce a maximally

smooth estimate where edges tend to be softened and blurred. A maximum entropy

estimate produces a generally \sharper" image than least squares, at least for images

with high contrast [30]. The assumption of sharper edges �ts well with known char-

acteristics of the Southern Ocean sea ice such �ssures, high contrast areas of open

water and the hard edges of ice bergs.
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We now show a fundamental relationship between additive ART and mul-

tiplicative ART based on the common constraint y = Hx. Note that since both forms

of ART have the same constraint, the resulting solutions x are of the general form

x = P +Q (3.33)

where P is an element of the row space of H, or equivalently, the range space of the

transpose of H, H t, denoted P 2 R(H t); and Q is an element of the null space of

H, denoted Q 2 N(H). Any solution derived from either additive or multiplicative

ART will have a component P . However, the solution derived by using additive ART

results in Q = 0, while the solution from multiplicative ART will generally have a

non-zero Q component [31, 32]. Since the constraint y = Hx is the same for both

algorithms, the solution for both AART and MART will be the same in the range

space of H t in the limit of in�nite iterations. The only di�erence between the AART

and MART solutions will be the Q component from the null space of H.

In the case of a non-band limited input function, each algorithm recovers

what it can based on the band limits imposed by the �ltering. From a functional point

of view, the algorithm attempts to reconstruct the output of the �ltering operation,

not the original function because of the nulls introduced by the aperture function.

For the scatterometer and similar remote sensing devices, this means that the aper-

ture �ltered surface is recovered, contingent on su�cient sampling and su�ciently

low noise. The use of multiplicative ART rather than additive ART may result in

some component from the null space being added in to better meet the maximum

entropy constraint, but in the range space of H t, the solution for either additive or

multiplicative ART is the same. We conclude that both additive and multiplicative

ART are viable reconstruction techniques based on the theory from [28], with the

understanding that in the null spaces, additive and multiplicative ART may produce

slightly di�erent answers based on the di�erent regularizations.
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3.4.4 SIR: Blocked Damped MART

As stated previously, SIR may be formulated from either additive or mul-

tiplicative ART, but SIR as presented herein is based on multiplicative ART [13].

Recall the basic equations for block multiplicative ART (from Eq. (2.10):

ak+1
j =

akj

 
NX
i=1

dki hij

!
NX
i=1

hij

(3.34)

and for SIR (from Eq. (2.11):

ak+1
j =

MX
i=1

updatekijhij

MX
i=1

hij

(3.35)

where dki = (si=p
k
i )

n, where n is a damping factor (n = 1
2
for SIR). Note that the

scale factor for MART is simply dki , whereas the scale factor for SIR is a function of

not only dki , but also a
k
j given by (from Eq. (2.12):

updatekij =

8><>:
�
1
2pki

(1� 1
dki
) + 1

akjd
k
i

��1
dki � 1

1
2p

k
i (1� dki ) + akjd

k
i dki < 1

(3.36)
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2
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The scale factor for SIR is limited to between 0.5 and 2 as illustrated in

Figure 2.1. Note that this graph is a function of dki . This sigmoid soft-limit function

helps reduce the e�ects of noise in a SIR reconstruction by limiting the development

of regions where the di�erence between the measurement and the back projection are

large. MART has no such limitation. Also note that if the SIR update is small, in

other words, if the update is along the linear region near 1 on Figure 2.1, then the SIR

and MART updates will be the same if MART uses square root damping (n = 1
2
).

Also note that the SIR update does not change the direction of the update indicated

by MART, i.e. if the MART update causes the pixel value to increase, then SIR also
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causes an increase, but possibly a smaller increase. The same is true for a decrease.

We can thus draw the following conclusion: In the noiseless case, the damped SIR

update may slow the development of the �nal image in some regions compared to

MART, but in the limit of in�nite iterations, SIR will reach the same limit as MART

because it has the same constraints and does not change the fundamental direction

of the MART update. The damped update factor may cause the interim images to

di�er (i.e., images from di�erent iterations of MART and SIR will not necessarily be

equivalent), but the end result is the same. Because SIR may damp di�erent part of

the image in di�erent ways, the trajectory that SIR takes to reach the limit may be

di�erent than the path taken by MART.

Thus we have the following progression showing the relationship of Gr�ochenig's

algorithm and SIR: (i) Gr�ochenig's algorithm is a complete reconstruction; (ii) Ad-

ditive ART is a valid (complete) operator under Gr�ochenig's theory; (iii) Additive

ART and Multiplicative ART di�er by an element in the null space based on the

regularization; and (iv) SIR is a block damped version of MART, reaching the same

solution in the limit of in�nite iterations.

We now introduce two new considerations. The �rst is a �nite number of

iterations for any iterative algorithm; the second is noise. The former is a limitation of

time and practicality: no iterative process can forever. Therefore, even if a particular

algorithm is supposed to be the least squares estimate of a function, it can only

approach this estimate. The result is something close to the optimal reconstruction,

but not a complete reconstruction [21]. Truncation of the iterations is ultimately

another form of regularization [32].

Noise further complicates this since noise is also ampli�ed through most it-

erative processes, and increasing iterations will generally increase the noise. Although

steps can be taken to minimize noise, it will to one degree or another limit the number

of iterations that can be executed before noise overtakes the reconstruction. As will

be shown in the following sections, SIR was developed to reduce the overall e�ects

of noise on the output, and generally performs better in the presence of noise than

either ART algorithm. The e�ects of noise are examined in the next section.
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3.5 Noise

With the establishment of additive ART as a valid reconstruction algorithm

from irregular samples, we now turn to the issue that motivated the development of

the SIR algorithm: noise. All real systems have noise, and dealing with that noise

is a signi�cant processing consideration. Gr�ochenig's Lemma shows that complete

reconstruction of a signal can be made, though it may take an in�nite number of

iterations. Experimental data shows that even highly attenuated frequency compo-

nents are e�ectively recovered with �nite iterations for a noiseless case. However,

the addition of noise changes the problem because noise is ampli�ed along with the

desired signal during the reconstruction.

Unlike ART and Gr�ochenig's algorithm, SIR is designed to reduce the

overall e�ects of noise in the reconstruction. In the following sections, a methodology

is established for comparing the reconstruction algorithms, and then the performance

results for each are compared.

3.5.1 A Note on SNR

As mentioned, the noise power will be a�ected by the reconstruction. If the

signal power is ampli�ed, so will any noise be ampli�ed. Let us examine the behavior

of the signal and noise power in the reconstruction. The noise model is assumed to

be the additive model presented in Eq. (2.5), repeated here for reference:

�noisy = �true + V (3.38)

where V is Gaussian white noise.

In order to understand the e�ects of the reconstruction on the noise and

thus the signal to noise ratio (SNR) of the resulting imagery, we examine the signal

and noise power in the frequency domain. The noise is assumed to be Gaussian white

noise, so in the frequency domain the power is spread evenly over the spectrum. The

signal is attenuated by the aperture function, and will look �guratively like the lower

line in Figure 3.9 if we assume the original function spectrum was a rect function, an

56



0 1 2 3 4 5 6 7 8 9 10
-50

0

50

dB

Wave number (rad/km)

Aperture Filtered Signal

Reconstruction Response

Figure 3.9: A plot showing the aperture �lter response (bottom line) and the re-
construction impulse response. Note that at higher frequencies, the reconstruction
ampli�es the signal more. The higher the noise oor, the more dominant the noise
becomes at higher frequencies.

assumption used for illustration purposes. The noise power is e�ectively added after

sampling and so it is not a�ected by the aperture function.

We now assume that the reconstruction is a complete reconstruction. The

reconstruction frequency response will look like the upper line in Figure 3.9 (which is

the inverse of the lower line with the null regions zeroed out). In the absence of noise,

the reconstruction would restore the original function except for the null regions.

However, the additive noise will be ampli�ed by the reconstruction response function

just as the signal is. Because the ampli�cation is greater at higher wave numbers, the

noise power at higher frequencies will be higher relative to the signal power. Thus the

signal to noise ratio at a given frequency will decrease as the wavenumber increases.

For a simple original sinc function, the reconstruction result will be the

original frequency domain rect function (except the nulls) plus a noise function that in

the frequency domain will look like the reconstruction response function. (Recall that

the noise signal is at in the frequency domain, so the reconstruction result will be the

at signal times the impulse function, resulting in a shifted impulse function.) Note

that as the wave number increases, the noise power increases. Therefore increasing

the bandwidth of the reconstruction will result in greater and greater noise power at
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high frequencies lowering the SNR. If the initial SNR is good enough, this will not

be a problem, but at some point the noise power will exceed the signal power, and

the resulting imagery will be dominated by noise at high frequencies. In the current

applications, however, the sample spacing limits the reconstruction to a su�ciently

low bandwidth that noise ampli�cation does not dominate the resulting SNR.

3.5.2 Experimental Evaluation in the Presence of Noise

While it can be shown that all three of the algorithms (ART, MART and

SIR) can reconstruct a signal with no noise, we need to compare the performance

of the algorithms when noise is added to the problem. In order to qualitatively

evaluate the three methods, each is applied to a simple one dimensional signal. The

one dimensional test signal is a sinc function which readily shows the quality of the

frequency domain reconstruction from the various methods. The test signal is sampled

with an irregular sampling grid. The largest sample space in the grid is equivalent to

the Nyquist sample spacing for the test signal (i.e., the signal is fully recoverable if

sampled on a regular grid with spacing equal to the largest spacing in the irregular

grid).

The test function is illustrated in Figure 3.10. Figure 3.11 shows the fre-

quency content of the test signal. The aperture function used for this analysis is a

rectangular, constant aperture. This was chosen for convenience in algorithm imple-

mentation. The primary di�erence between the rectangular aperture used here and

the actual cos2 ERS-1 aperture illustrated in Figure 4.3 is width of the main lobe and

the level of the �rst side lobes. For the cos2 aperture, the side lobes are somewhat

lower and the main lobe slightly wider.

The relationship between the frequency content of the aperture and input

sequence is illustrated in Figure 3.12. The rectangular aperture for this study is

chosen so that the �rst side lobe of the aperture is just inside the frequency content

of the test signal as illustrated in Figure 3.12, allowing the reconstruction of the

attenuated frequencies in the side lobe to be evaluated. We see that in Figure 3.12

the aperture function nulls out some frequencies and signi�cantly attenuates other
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Distance

Figure 3.10: This �gure shows the sinc function used as the test input for the three
algorithms. The sinc function was chosen for its nicely band limited frequency content
(see Figure 3.11) that readily shows the behavior of the various algorithms when
certain frequencies are nulled by the aperture function.

Wave Number

Figure 3.11: This �gure shows the frequency content (spectrum) of the sinc function
test signal. The sinc function was chosen for its nicely band limited frequency content
to show the behavior of the various algorithms when certain frequencies are nulled
by the aperture function.
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Wave Number

Figure 3.12: This �gure illustrates the overlay of the test signal frequency content
(light) with the frequency response of the aperture function (bold). The aperture
function in this case is a uniform aperture. The primary di�erence between this
uniform aperture used here and the aperture of the ERS-1 scatterometer is the side
lobe levels for the ERS-1 aperture are lower due to the cos2 roll-o� and the main lobe
slightly wider.

frequencies. Figure 3.13 shows the original signal �ltered with the aperture function.

Note how the main lobe is much larger than the main lobe of the original function in

Figure 3.10. Performance of the resolution enhancement algorithms is judged by how

well these problem regions (main lobe shape and side lobe levels) in the frequency

domain can be corrected.

For each algorithm, a noisy case is also considered. To be as accurate as

possible in creating the noisy images, the actual multiplicative noise model for ERS-1

is used to create the test images using the relationship

anoisy = (1 + 0:05N(0; 1))aorig (3.39)

where N(0; 1) is a zero mean unit variance Gaussian random variable. This is the
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Figure 3.13: This �gure illustrates the original signal �ltered by the aperture function.
Compare to the original signal in Figure 3.10.

noise model for the ERS-1 scatterometer system, as referenced in Section 2.1.1. The

algorithm, however, assumes the additive noise model as discussed in Section 2.1.1.

In the next section, individual examples for each algorithm are presented

and comparisons of the outputs are used to judge performance of the reconstruction.

3.5.3 Algorithm Performance Comparison

To demonstrate the resolution enhancement capabilities of the algorithms,

we begin with a comparison of the noiseless case. One other consideration is that the

algorithms can only be run a �nite number of times so we examine performance as

a function of iterations as well. Figure 3.14 is comparison of the output of the three

algorithms at 25 iterations with no noise. Figure 3.15 is a similar output comparison

but at 100 iterations while Figure 3.16 is for 1000 iterations. There are two signi�cant

observations to be made. First, there is little di�erence between the Additive ART
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and Multiplicative ART reconstructions for an equal number of iterations at 25, 10

or 1000 iterations. There are some small numerical di�erences as would be expected

from the use of two very di�erent algorithms, but the di�erences are negligible.

Second, the SIR output lags (as a function of the number of iterations) the output

of the other algorithms. In fact, the SIR output at 100 iterations and the output of

Multiplicative and Additive ART at 25 iterations compare very well. This lag is a

result of the bounded multiplicative scale factor used to generate SIR output. As is

illustrated later, the bounded scale factor results in much better performance in the

presence of noise.

Next, we examine several examples for ART and SIR with and without

noise. Figure 3.17 illustrates the output from Multiplicative ART both in a noiseless

and in a noisy case. The original test signal is shown as a dotted line. Figure 3.18

shows the corresponding frequency content for the 25 and 100 iterations cases.

While the noiseless case shows very good frequency content recovery and

acceptable time domain signals for just a few iterations, the performance of the ART

algorithms in the presence of noise is not acceptable. As Figure 3.18 shows, after only

100 iterations the energy in the noise outside the desired band is increasing rapidly.

Additive ART has similar poor performance with noise as multiplicative ART. The

poor performance of ART in the presence of noise motivated the development of

SIR [14]. For SIR, the multiplicative scale factor is damped so that a large scale

factors do not overly magnify the noise at any one iteration. The main drawback to

the scale factor damping is the slowing of the reconstruction.

As a comparison to the previous ART example, several outputs of the SIR

algorithm are presented. Figures 3.19 and 3.20 show the time and frequency domain

outputs of SIR for 25 and 100 iterations. While similar in many respects to the output

of the ART algorithms, there is a noticeable lag in development of the reconstruction

under SIR. However, a comparison of the frequency content of the SIR output for the

noisy case in Figure 3.20 to the corresponding examples for multiplicative ART in

Figure 3.18 shows that SIR performs better in the presence of noise than ART. Note

also that for increasing iterations, the side lobes within the desired frequency band
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Multiplicative ART 
25 Iterations

Additive ART 
25 Iterations

SIR 
25 Iterations

Figure 3.14: A comparison of SIR, Additive ART and Multiplicative ART outputs
after 25 iterations for no noise. Note how there is little di�erence between Additive
ART and Multiplicative ART. SIR lags behind the the other two methods, but this
is part of the algorithm design.
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Multiplicative ART 
100 Iterations

Additive ART 
100 Iterations

SIR 
100 Iterations

Figure 3.15: A comparison of SIR, Additive ART and Multiplicative ART outputs
after 100 iterations for no noise. Note how there is little di�erence between Additive
ART and Multiplicative ART. Compare the SIR output with the Multiplicative and
Additive ART outputs in Figure 3.14
. 64



Multiplicative ART 
1000 Iterations

Additive ART 
1000 Iterations

SIR 
1000 Iterations

Figure 3.16: A comparison of SIR, Additive ART and Multiplicative ART outputs
after 1000 iterations for no noise. Note how there is little di�erence between Additive
ART and Multiplicative ART. Compare the SIR output with the Multiplicative and
Additive ART outputs in Figure 3.15
.
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Multiplicative ART 
100 Iterations

Multiplicative ART 
25 Iterations

Multiplicative ART w/Noise

Multiplicative ART w/Noise

25 Iterations

100 Iterations

Figure 3.17: Examples of Multiplicative ART for 25 and 100 iterations with and
without noise in real space.
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Multiplicative ART
25 Iterations

Multiplicative ART w/Noise

25 Iterations

Multiplicative ART
100 Iterations

Multiplicative ART w/Noise

100 Iterations

Figure 3.18: An example of Multiplicative ART with and without noise in the fre-
quency domain. These plots correspond to the Fourier transform of the plots in Figure
3.17. Note that for a few iterations, the noise is manageable, but the 100 iterations
example shows the noise becoming large relative to the signal.
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continue to rise with use of the SIR algorithm just as they do for the ART examples

(Refer to Figures 3.18 and 3.20).

Finally, we present some frequency domain example outputs after a large

number of iterations. While it is not possible to run the algorithms for an in�nite

number of iterations, a comparison of algorithmic outputs for a small (25) number

of iterations to a large (1000) number of iterations is instructive. Figure 3.21 shows

the frequency domain representation of the output for 1000 iterations of all three

algorithms. The important thing to note here is the behavior of the side lobes within

the desired frequency band. Refer back to Figure 3.12 and note that the aperture

function has very low side lobes relative to the test signal frequency band. But

the side lobes within the test signal frequency band in Figure 3.21 show signi�cant

improvement over the very low expected side lobes of the aperture function. All

three algorithms successfully reconstruct the original signal within the limits of the

nulls in the aperture function as expected by the earlier theoretical development for

the noiseless case. These examples show that even a few iterations are su�cient

to reconstruct a signi�cant portion of the desired signal with a residual low pass

�lter e�ect lowering the power in the higher frequencies ranges. In previous work,

an inverse �lter to compensate for the lower side lobes resulting from an incomplete

reconstruction has been used with success [33].

3.5.4 Reconstruction Error

We now consider the performance of SIR and MART with noise added.

The original motivation for SIR was desire for an iterative algorithm that performs

well in the presence of noise. In order to understand the performance characteristics

of SIR, the relationship between the number of iterations and the quality of the

reconstructed image must be established.

At any iteration, there will be an error between the iterative reconstruction

and the true image. In general, iterative reconstructions su�er from two forms of error:

reconstruction error and noise ampli�cation. The reconstruction error is the di�erence

between the iterative image and the noiseless true image. Noise ampli�cation, a
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SIR 
25 Iterations

SIR w/Noise

25 Iterations

SIR 
100 Iterations

SIR w/Noise

100 Iterations

Figure 3.19: Time domain comparison of SIR output after 25 and 100 iterations.
Cases with and without noise are shown. Notice how well behaved the noise is com-
pared to a similar number of iterations used in Figure 3.17 for multiplicative ART.
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SIR 
25 Iterations

SIR w/Noise

25 Iterations

SIR 
100 Iterations

SIR w/Noise

100 Iterations

Figure 3.20: Frequency domain comparison of SIR output after 25 and 100 itera-
tions. Compare with Figure 3.18 and note that the noise is ampli�ed less for the SIR
examples than the ART examples.
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FFT Multiplicative ART 
1000 Iterations

FFT Additive ART 
1000 Iterations

FFT SIR 
1000 Iterations

Figure 3.21: A frequency domain comparison of the outputs of all three algorithms
after 1000 iterations for the noiseless case. Note how all three examples show signi�-
cant improvement of the side lobe levels compared with the original levels in Figure
3.12. If SIR continues to run, it shows similar levels of side lobe reconstruction after
approximately 4000 iterations.
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function of the noise and the number of iterations, results from the inverse �ltering

of the reconstruction algorithm [21, 32].

If the true image is known, the two error components (noise ampli�cation

and reconstruction error) can be calculated separately, with the sum equaling the

total error for a reconstruction from noisy samples [32]. To illustrate, a graph show-

ing the total squared error versus iterations for the individual components (noise,

reconstruction and combined) is presented in Figure 3.22 for the simulation used in

previous examples. The graph in Figure 3.22 shows the noise ampli�cation error

(En), the reconstruction error (Es), and the total error for the signal plus noise (E)

for both MART and SIR. The total error is computed as the sum of the pixel by pixel

di�erence between the true image and the reconstructed image at each iteration. The

basic equation is

Total Error at Iteration k =
nX

j=1

jtj � akj j (3.40)

where n is the number of pixels, j is the pixel index, t is the true image and ak is the

reconstructed image at iteration k. For the noise ampli�cation error, the true image

is the null image (i.e. 0), not the original noise signal. The noise model used is the

model in Eq. (2.4). In Figure 3.22, note that the noise ampli�cation is much greater

for MART than for SIR. The reconstruction error for SIR, however, is larger than for

MART at the same iteration.

The power of SIR is its ability to go further in reducing the reconstruction

error than MART without signi�cantly increasing the noise. We note in Figure 3.22

that although MART reaches a minimum total squared error in just a few iterations,

the noise ampli�cation dominates the total error in any further iterations. The noise

ampli�cation for SIR, however, is much lower. The trade o� is a slower reduction in

the reconstruction error which continues to decrease with increasing iterations without

a large penalty in noise ampli�cation. It is thus possible to get to a lower point on the

reconstruction curve compared to MART while adding less noise. This is illustrated

in Figure 3.23. This graph shows a log-linear plot of the noise ampli�cation versus the

reconstruction error. Note that for any level of reconstruction error, SIR has a lower
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Figure 3.22: A comparison of total squared error for MART and SIR. The error
component is split into the contribution from noise error (En) and reconstruction
error (Es) [32]. The total error (E) is the sum of the two sub-components. Note that
the noise ampli�cation for SIR is much smaller than for MART.

73



noise ampli�cation than either MART or AART. Thus, for a given signal quality, we

have objective evidence that SIR has less noise than MART. This enables a simple

tradeo� between reconstruction error (i.e., signal error power) and noise ampli�cation

(i.e. noise power).

It should be noted that while total squared error is a rough indicator of

the accuracy of the reconstruction, the size and location of the error changes over

the course of the reconstruction, migrating, for instance, to regions around edges,

etc., depending on the regularization [32]. The quality of the resulting imagery is

therefore not a direct function of total squared error [30]. Because SIR damps out

areas where high noise level might otherwise destroy the image quality, the image

quality for SIR at any given reconstruction error level is better than corresponding

MART or AART products. Thus, as shown in previous studies, SIR results in a

qualitatively and subjectively better reconstruction than ART as a result of reducing

the reconstruction error as illustrated in Figure 3.22 [3, 13, 34].

3.6 Summary

In this chapter, we have presented the theory behind scatterometer image

resolution enhancement. First, the aperture function was shown to be a �lter on the

original data and inuenced the recoverable signal by nulling and attenuating some

frequencies in the original data. Next, a theory of irregular sampling was presented.

The concept of �-dense was presented as a measure of the sampling density and we

found that the largest sample spacing in the sample set inuences the recoverability of

the original signal. Gr�ochenig's algorithm was presented to demonstrate that a signal

can be completely recovered from irregular samples, and then Additive ART was

shown to be equivalent to Gr�ochenig's algorithm. Multiplicative ART and Additive

ART solutions were shown to be identical in the Banach space de�ned by the aperture

function.

SIR was developed to reduce the inuence of noise in the reconstruction

of scatterometer data. In the �nal section, known test data are used to demonstrate

the reconstructive abilities of additive ART, multiplicative ART and SIR for noise
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Figure 3.23: A log-linear plot of noise ampli�cation (i.e. noise power) and reconstruc-
tion error (i.e. signal noise power). Note that for any given reconstruction error, SIR
outperforms MART and AART, allowing a simple tradeo� between noise level and
reconstruction accuracy.
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free and noisy cases. Multiplicative ART, which SIR is based on, and additive ART

typically show very poor performance in the presence of noise. Outputs of the three

algorithms using a simple test signal as input demonstrated that SIR indeed has

better noise handling characteristics that the ART algorithms. SIR does have a

signi�cant lag because of the damping imposed on the scale factors, but this is the

tradeo� for noise control, SIR performs substantially better in the presence of noise

than comparable ART algorithms.
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Chapter 4

Application and Optimization of SIR for the ERS-1 Scat-

terometer

4.1 Introduction

Spaceborne scatterometers are designed to produce near-surface wind maps

over the ocean. These maps consist of estimates of wind speed and direction for each

cell across the scatterometer swath. Since the winds are rapidly changing, only a

single pass of the satellite is used to construct the wind estimate for a given ocean

area. An example wind map from ERS-1 data over the Southern Ocean is shown in

Figure 4.1. Each arrow in the �gure represents the estimate of the wind speed and

direction at that point using all beams of the scatterometer. Because geostrophic

winds vary slowly over the 25km spacing of the scatterometer readings, this map

accurately reects the near-surface characteristics of the local geostrophic winds at

the time of this `snapshot' of the surface.

A scatterometer does not measure the wind directly. Instead, it measure

the backscattered power �o, the normalized radar cross section of the surface, which

can then be related to the wind through a geophysical model function. In a similar

manner, �o over land can be related to surface conditions, making maps of �o over

land useful for geophysical studies.

In this Chapter, we examine the behavior of the Scatterometer Image Re-

construction (SIR) algorithm applied to ERS-1 scatterometer data. The SIR resolu-

tion enhancement algorithm was originally developed and optimized for the SEASAT

scatterometer (SASS). Subsequent modi�cations of the SIR algorithm for use with
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Figure 4.1: This is an example wind map generated from ERS-1 scatterometer data.
Each arrow represents the wind speed and direction estimate at that point and the
arrows are arranged on a 25km grid. The wind estimate is based on an established
geophysical model function that relates azimuth and incidence angle and scattered
power to the wind speed and direction. The cross track numbering indicates the
along-beam cell number (there are 19 cells across the swath) and the dotted lines
overlaying the map are longitude and latitude lines.

ERS-1 data have perpetuated, in general, iterative weights originally established for

SEASAT data. In previous studies, enhanced resolution scatterometerA value images

from ERS-1 data have been used to study earth surfaces [18, 35{41]. The B images,

however, have had little utility because they characteristically have had little dynamic

range in the B value. An example of an A and B image created from ERS-1 data

is shown in Figure 4.2. Notice that there is very little information in the B image

because of the narrow range of the B values.

In the original SASS SIR algorithm, the B value update is heavily damped

(i.e. the B value was not allowed to change very much in any one iterative step) by

reduction of the weighting value in Eq. (2.18) to control noise in the B image [14].

Using synthetic images, it has been determined that for ERS-1 data, the B value

is so damped by the original SASS weighting that the SIR algorithm is not able to

iteratively update the B value fast enough to reach the original value of the synthetic

image. This is especially true if the true value di�ers greatly from the value used to
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Figure 4.2: A comparison of A and B SIR images. This image is JD 120 1994. The
B image is normalized from 0 to -0.3 and the A image is normalized from 0 to -20.
The B image has very little detail, and the cross hatches over the open ocean are
quite pronounced. Some cross hatches also appear in the sea ice in both the A and
B images.
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initialize the SIR iterative process. Other potential issues regarding the application

of the SASS SIR routine to ERS-1 data include the initialization value and the limita-

tions of the linear model discussed in Section 2.1. Also, as mentioned in the previous

chapter, the theoretical reconstruction requires an in�nite number of iterations, but

noise considerations dictate that only a few (typically 25-50) iterations are possible.

Slower than possible development of the B value is accentuated by the small number

of iterations, and we wish to maximize the utility of the iterations we do run.

This Chapter is divided into three main sections: First, we present speci�cs

about the ERS-1 scatterometer, including the aperture function and a discussion

about how multiple overlapping measurements are combined to create a dense sample

set similar to the one discussed in Chapter 3. The second section presents the results

of several experiments on the e�ectiveness of increasing the accuracy of the SIR

A and B values by modifying the algorithm. The following areas are discussed:

SIR initialization values, using a cubic rather than linear model for backscatter, and

modifying the B development weighting. The �nal section examines the cumulative

e�ects of these optimization modi�cations.

4.2 The ERS-1 Scatterometer

4.2.1 The ERS-1 Aperture

The ERS-1 scatterometer has a circular aperture function with a cos2 roll

o� associated with each measurement cell. The aperture function is illustrated in

Figure 4.3. The aperture function is assumed to have a region of support 100 km

in diameter. To get the �lter response of the aperture function, the two dimensional

Fourier Transform is used on the cos2 circular aperture function and the resulting

frequency response is plotted by numerically evaluating the Fourier Transform of the

aperture function equation (derived in Appendix A):

F (�1; �2) = 2�

Z 50

0

d� � cos2(��)J0(k�): (4.1)

The frequency response is shown in Figure 4.4. Note that the Fourier Transform is a

low pass �lter with the �rst null at approximately the 45 km wavelength. Because the

80



(3 dB Point)

50 km

100 km

Figure 4.3: Geometry of the ERS-1 Footprint. Each measurement cell has a latitude
and longitude that specify the center of the cell. This �gure shows a slice through the
circular footprint. The �o is assumed to have a cosine-squared roll o� characteristic,
with the 3 dB point at 50km. [42]

ERS-1 scatterometer has a very high signal to noise ratio, some of the highly attenu-

ated higher frequencies are still far enough above the noise oor for the information

to be recoverable. Once outside this small band of recoverable frequencies, the roll

o� of the aperture function is valuable in that it prevents aliasing.

The aperture function, in e�ect, de�nes the recoverable frequency content

by determining what frequencies have enough energy above the noise oor to be

useful in a reconstruction. An examination of Figure 4.4 leads to some conclusions

about the band limits of recoverable signals using the ERS-1 data model. The �gure

indicates that a reasonable band limit would be about 30 km, or the location of the

second null in the frequency plot. It should be emphasized again that it is the noise

level with respect to the aperture, not the aperture function alone, that determines

the recoverable frequencies. A carefully chosen aperture function with high side lobe

levels has a better recoverable bandwidth for a given noise level than an aperture

with very low side lobes. This is demonstrated later in this chapter.
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Figure 4.4: This �gure illustrates the frequency response of the ERS-1 aperture func-
tion. This graph was created by a numerical computation employing Bessel functions
and based on the exact Fourier Transform of the cos2 roll o� function. The �rst null
occurs at approximately the 45 km wavelength, and the 3 dB point is at the 100 km
wavelength.
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4.2.2 Sampling of the Surface

In this section, we consider how sampling a�ects the frequency content of

the reconstructed images. First, consider a single pass of the satellite over a surface

to be sampled. Figure 4.5 shows the ERS-1 cell locations for a single pass over a 700

by 700 km region near the south pole. The cells are spaced 25 km apart both in the

along track and cross track directions.

Assume that the surface is static (i.e. unchanging) as the satellite passes

overhead for a single pass. Each measurement cell in a single pass represents a

\sample" of the surface on a regular 25x25 km grid. Because the satellite has a

�nite aperture, there is an aperture function associated with each sample of the

surface. For the moment we ignore the aperture function and assume that sampling

is accomplished with a delta function.

Theoretically, if the surface is band limited and sampled uniformally on a

grid with �x and �y spacing, the original image can be recovered from its samples

if the sample rate is greater than the Nyquist rate given by

1

�x
= �xs > 2�x0 (4.2)

1

�y
= �ys > 2�y0 (4.3)

where �x0 represents the bandwidth of the surface in the x direction and �y0 represents

the bandwidth of the surface in the y direction. According to the Nyquist sampling

criterion, sampling on a grid with 25 km spacing results in 50 km wavelengths being

the smallest recoverable wavelength in the satellite data. If the surface has wave-

lengths smaller than 50 km, sub-sampling at a rate less than the Nyquist rate causes

aliasing of the higher frequency components of the image. So, the very best resolution

we can obtain from a single pass of the satellite is 50 km per pixel. Consideration of

the aperture �ltering and high frequency aliasing could further reduce this resolution.
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Figure 4.5: An illustration of one pass of the ERS-1 scatterometer over a 700 km
square region in the Antarctic. The circles are centered on the cell center locations.
Note how the measurements are on a regular 25 km grid. The actual footprint size is
approximately 70 km.
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4.2.3 Multiple Passes

While there is no way to reduce the cell spacing and thus increase the

resolution on a single pass, multiple passes can be used to create sample sets with

more closely spaced samples. We now use the fact that the ERS-1 scatterometer

observes the same region on another pass and combines the results of multiple passes

and assume that the surface remains motionless between passes, even though there is

some motion.

The e�ects of motion on the SIR algorithm are presented in Appendix B.

This previously published study demonstrated that motion had a low pass �ltering

e�ect on the resulting images. Large motion (greater than 15 km per day) tended to

create more low pass �ltering than would be evident from the e�ects of the aperture

�lter alone. The general conclusion is that edges are blurred in region with high

motion. The only real problem would be for small features such as ice bergs which,

if moving at su�cient velocities, may not appear in the resulting imagery. However

for large areas of one ice type, the main result of high speed motion would be to blur

the edges between ice classes.

For the purposes of this study, we will make the assumption of a motionless

surface, with the understanding that there is some motion that may result in some

blurring within the image. Each pass of the satellite now samples the same surface

on a 25x25 km grid that is oriented to the satellite track. Subsequent passes along

di�erent tracks are also on a regular 25x25 km grid, but the grids from the various

passes are not aligned (see Figures 4.6 and 4.7 for examples of multiple tracks).

Because the satellite does not take cell readings at exactly the same points from pass

to pass, combining multiple passes results in a more dense but irregular sampling

grid. Figure 4.6 shows how two passes combine to give a more dense sampling than

only one pass is capable of. Note that the sampling is irregular and that it is more

dense in some places than others.

Figure 4.7 illustrates samples of the surface accumulated over a 5 day

period (representing data from approximately 32 di�erent passes) where the circles in

Figures 4.5 and 4.6 have been replaced by points for clarity. Note how the sampling
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density is much better than the nominal 25 km grid of a single pass although the

new sampling is very irregular. The irregularity of the sampling is a function of orbit

geometry and which instruments are being used on the satellite (e.g. use of the SAR

precludes the use of the scatterometer).

4.3 Achievable Resolution using SIR

In the previous chapter, SIR is established as a valid operator for recon-

structing irregularly sampled data. In this section, we discuss the achievable resolu-

tion of SIR. The theoretical limit of SIR resolution enhancement will be no greater

than the theoretical limit of resolution enhancement achieved by the underlying ART

algorithm since SIR is a non-linearly damped version of multiplicative ART. There-

fore, as a �rst cut at a summary of SIR resolution enhancement, we present the limits

of the ART algorithms.

As discussed in Chapter 3, additive ART is an operator under Gr�ochenig's

theorem and therefore results in a complete reconstruction in in�nite iterations. We

acknowledge that multiplicative ART, on which SIR is based, does not strictly result

in a complete reconstruction due to the regularization imposed in the algorithm. How-

ever, since the reconstruction results in two components, one from the measurement

space and one from the null space, we assume that the reconstruction is complete

if the null space component is ignored. Recall the two basic conditions for the re-

construction to be complete according to Theorem 1 in Chapter 3: First, that the

operator be bounded on an appropriate band limited Banach space, and second that

the sample spacing be su�cient for the frequency content of the original surface (e.g.

a minimum of the Nyquist rate).

The �rst requirement, that the operation be limited to functions within

a Banach space, is straightforward and implies that the original surface function is

band limited. In practice, the earth's surface is not a band limited surface, but we

apply a band limiting �lter to create a band limited surface function. When SIR is

used, a median �lter is applied to the data during processing, e�ectively band limiting

the data.
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Figure 4.6: An illustration of two passes of the ERS-1 scatterometer over the same
700 km square region as in Figure 4.5. Compare to Figure 4.5 and note the areas of
denser \sampling" where the two passes intersect.
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Figure 4.7: This �gure illustrates all passes of the ERS-1 scatterometer over a 700
km square region over a 5 day period. The circles have been replaced by points for
clarity. The density of the surface sampling is signi�cantly better than for the single,
25km spaced sampling of a single pass.
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The second requirement turns out to be the most limiting factor in this

reconstruction scheme. Note that even if we severely attenuate portions of the spec-

trum of the original surface function, Gr�ochenig's theorem states that a complete

reconstruction occurs in the limit. Therefore, no matter what the aperture �lter

function does to the original surface function, with the exception of the nulls created

by the aperture function, as long as the sample spacing is su�ciently close, a complete

reconstruction is possible.

However, in actual use we do not perform in�nite iterations and therefore

fall somewhat short of a complete reconstruction. Note in Figure 3.20 how the highly

attenuated side lobes of the sample data fall short of reaching the correct peak in

limited iterations. If an aperture function severely attenuates a particular frequency,

limited iterations may not be able to fully recover the original image. For ERS-1,

this represents a signi�cant limitation since the side lobes of the aperture function

are quite low.

Other scatterometers, such as NSCAT (1996-1997) and SASS (1978), have

very di�erent aperture functions [2] [3]. In both cases, the aperture functions are

long and thin and vary in shape and orientation depending on the cell location on

the antenna beam and orbit location of the instrument. This provides more high

frequency information through higher side lobes along the short axis of the cell, and

therefore o�ers better reconstruction possibilities than ERS-1. We now examine the

theoretical limits on resolution enhancement for both ERS-1 and NSCAT.

4.3.1 ERS-1 Resolution

We begin by considering the aperture function. The aperture function for

ERS-1 is circularly symmetric, as is the frequency domain response (see Figure 4.4),

and the side lobe levels are quite low. As noted in Chapter 3, theoretically the side

lobe levels are irrelevant to the information recovery process for a noiseless case. Since

in�nite iterations are not generally possible in a practical application, low side lobe

levels may not be fully recovered in �nite iterations. Nevertheless, simulations show

that resolution enhancement is ultimately limited by sample spacing.
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We now analyze the sample spacing and note that by using multiple passes

over a 6 day period, the average sample spacing in ERS-1 data taken in the Southern

Ocean is 12 km in both the x and y directions. Note that sample spacing varies by

location and number of days used in the reconstruction. Using Eq.(3.17), the limit

for Gr�ochenig's algorithm, the recoverable wavelengths �o are

�0 =
1
!0
>

2�0
ln(2)

= 34:6 km (4.4)

�0 >
2(12 km)
ln(2)

(4.5)

�0 > 34:6 km (4.6)

which is consistent with experimental results for the ERS-1 scatterometer published

in [29] and in Appendix B where the resolution is approximately 35 km from exper-

imental images. This is an improvement over the nominal 50 km wavelength limit

imposed by the 25 km grid and the Nyquist Criteria, even considering the nulls in-

troduced by the aperture function.

4.3.2 NSCAT Resolution

While the expected increase in resolution of the ERS-1 data is an improve-

ment, the resulting images are still fairly large scale. The two limitations of ERS-1

data in resolution enhancement are the aperture function and the sample spacing. An

improvement in side lobe levels would result in more information recovered in limited

iterations. Denser sampling is needed to further increase the resolution enhancement.

The NSCAT scatterometer, which recently completed collecting nine months worth

of data, has potential for much greater resolution enhancement with SIR than the

ERS-1 scatterometer because of much higher side lobe levels and more densely spaced

samples [2].

We begin by examining the sample spacing and note that multiple passes

over 6 days result in an average spacing in NSCAT data taken in the Southern Ocean

of about 4 km in both the x and y directions, again varying with the exact location

and the number of days used. Using Eq.(3.17), the limit for Gr�ochenig's algorithm,
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Figure 4.8: An example scatter plot of NSCAT cell centers over the Weddell sea using
6 days of data. Note variation of density of the cell centers over the area, ranging
from 1 to 8 km and sometimes more in some regions.

the recoverable wavelengths �0 are

�0 =
1
!0
>

2�0
ln(2)

(4.7)

�0 >
2(4 km)
ln(2)

(4.8)

�0 > 11:5 km: (4.9)

However, the density of measurements varies somewhat more than for ERS-1, and

ranges from about 1 km to 8 km, depending on the region. A sample scatter plot of

NSCAT data over the Weddell sea is presented in Figure 4.8. The variation in sample

spacing will cause some spatial variation in the actual wavelengths recovered in the

reconstruction, but for the purposes of this study, we will concentrate on an average

response based on the average spacing of the cell centers. A graph of the variation of

smallest recoverable wavelength versus nominal sample spacing according to Eq.(3.17)

is given in Figure 4.9 for reference. Note that the limit is about 3 times the sample

spacing, where Nyquist is 2 times the spacing.
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Figure 4.9: This plot shows the variation of the smallest recoverable wavelength as a
function of the sample spacing based on Eq.(3.17). Note that the variation is linear
and is about 3 times the nominal sample spacing where Nyquist is 2 times nominal
spacing.

Unlike the ERS-1 aperture function, the NSCAT aperture is not symmetric.

The NSCAT aperture is an elongated six sided cell similar to the ones illustrated in

Figure 4.10. In this �gure, six di�erent cells from various antennas and locations

along the antenna are presented for illustration. It should be noted that while the

cell geometry changes slightly along the measurement beam, and varies with the orbit

location, the general cell shape is fairly consistent: long on one axis, short on another

with the width and height determined by the exact cell location. The cells are very

narrow (8 - 15 km) on one axis, so the frequency domain response is quite wide,

allowing more high frequency content to be retained in the measured data compared

to ERS-1.

Recall that as the satellite orbits, measurements are made at several dif-

ferent azimuth angles. For ERS-1, this results in additional surface information for
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Figure 4.10: This �gure illustrates several examples of NSCAT measurement cells. In
the spatial domain, the cell is quite narrow on one axis (8 - 15 km). In the frequency
domain, this translates to much wider passband, resulting in more high frequency
content in the measured data.
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azimuthally modulated surfaces, but does not a�ect the �ltering of the surface image

by the aperture function since the aperture is circularly symmetric. The oblong cells

of NSCAT, however, combine in various orientations to vary the �ltering of the data

depending on the orientation of the cells.

SIR uses these multiple, overlapping, varied orientation measurement cells

to create images. While one measurement cell retains some higher frequency content,

it is directionalized, oriented on the narrow axis of the measurement cell. Multiple

measurements, however, retain more high frequency content by way of higher side lobe

levels over a wider range of the two dimensional space than a single measurement

cell orientation because of the varying azimuth angle. The higher side lobe levels,

combined with denser sampling, contribute to the better resolution enhancement of

NSCAT data compared to ERS-1 data in limited iterations.

Another side bene�t of the rotation of the elongated measurement cell over

the surface is the potential elimination of the nulls caused by the aperture function.

Consider that a rectangular aperture will have frequency nulls that are spaced di�er-

ently along the short axis compared to the long axis. If multiple readings are made

at various azimuth angles, one reading cell provides frequency information in the null

of another reading at a di�erent orientation. In the theoretical limit, this allows for

a complete reconstruction even though the individual aperture functions have nulls

since some frequency information is obtained through varying the orientation of the

measurement cells. This further improves NSCAT resolution enhancement using SIR.

4.3.3 Comparison of NSCAT and ERS Imagery

The preceding discussion leads to one conclusion: NSCAT data resolution

enhancement should be signi�cantly better than for ERS-1 data. As a basic compari-

son of the di�erence in detail between NSCAT and ERS-1, Figure 4.11 presents three

images over the Amazon basin. The upper left `NSCAT' image is of NSCAT data

processed with SIR. The upper right `ERS-1' image is of ERS-1 data processed with

SIR, and the lower right `Non-enhanced ERS-1' image is of raw ERS-1 data (nominal

25 km spacing, 50 km resolution). A comparison of the unprocessed ERS-1 data and
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the ERS-1 data processed with SIR shows an improvement in resolution, albeit a

limited improvement. The NSCAT data, however, gives marked improvement of the

corresponding ERS-1 data, resulting in more detail in the SIR image.

Figures 4.12 and 4.13 show an example ERS-2 image and NSCAT image

of the Weddell sea region of the same day range in 1996 (JD 337-342). ERS-2 is a

satellite identical to ERS-1 that replaced ERS-1 in 1996. Similar to the results shown

in Figure 4.11, the detail level in the NSCAT �gure is remarkably better than for

ERS-1, reecting the resolution improvements that result from closer sample spacing

and higher side lobe levels.

4.4 SIR Accuracy

We now turn to the accuracy of the SIR images. Throughout this develop-

ment, synthetic images are used to illustrate and establish SIR algorithm behavior.

The synthetic images are created using a true image that has been processed to create

synthetic ERS-1 data. This data is then processed to create SIR images.

4.4.1 Simulation Images

To account for incidence angle dependence, both A and B true images are

created. The true images used throughout this study are mostly one level images,

meaning both the A and B true images are constant images. Several di�erent A and

B values are selected to analyze SIR behavior over a wide range of A and B values.

All test images are created at a much higher nominal resolution (1 km per pixel) than

the nominal satellite resolution of 50 km. The size of the true images in this study

is 700 km square. The images are combined with cell location and incidence angle

information to create a data stream similar to the actual ERS-1 data stream that can

be processed by SIR.

For the synthetic images to be as similar to actual ERS-1 SIR imagery as

possible, actual cell locations and incidence angle information from the ERS-1 data

are used. An area is selected that matches the size of the true images and a 7 day

period of ERS-1 data is processed to extract the cell location, incidence angle, and
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Figure 4.11: Example set of images showing comparison of an NSCAT SIR image
('NSCAT'), and ERS-1 SIR image ('ERS-1') and unprocessed ERS-1 data '('Non-
enhanced ERS-1') over the Amazon basin. Note how the river feature is basically
visible in the unenhanced image and becomes more detailed in the ERS-1 SIR im-
age and very detailed in the NSCAT image. These images illustrate that resolution
enhancement of ERS-1 data is slightly better than raw, and much better resolution
enhancement is achieved using NSCAT data.
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Figure 4.12: An ERS-2 image (ERS-2 is functionally identical to ERS-1) of the Wed-
dell Sea from JD 337-342 1996. Note the lower resolution of this image compared to
the NSCAT image of the same time period shown in Figure 4.13.
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Figure 4.13: An NSCAT image of the Weddell Sea from JD 337-342 1996. Note that
this image carries much more detailed information compared to the ERS-2 image from
the same time period in Figure 4.12. Note that some di�erences between this and the
example ERS-2 image may result from NSCAT being a KU-band instrument while
ERS-2 is C-band. This will result in some brightness di�erences, but the enhancement
of detail is a result of cell geometry rather than a change of frequency band.
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other information. Eventually, only the �o value in the real ERS-1 data is replaced

by a synthetic value based on the true images and the cell response information.

The cell response was shown previously in Figure 4.3. Since the variation of

the incidence angle is small within a single footprint, it is assumed that the incidence

angle reported in the ERS-1 data is constant over that footprint. To calculate the

synthetic �o value, the contribution from pixel in the test image covered by the

footprint is calculated by

�oi = ATrue + BTrue(�ERS�1 � 40:0) (4.10)

which represents the contribution to the synthetic �o value of the ith pixel covered by

the footprint. Recall that this calculation is in dB. The �o values are summed in real

space using a weighted sum. The weight corresponding to each pixel is determined

by the cosine squared roll o� of the footprint pattern. The synthetic �o value is given

by

�oSynthetic =

P
iwi10

�
o
i

10P
iwi

(4.11)

and is illustrated in Figure 4.14. The grid on the left of Figure 4.14 illustrates how the

di�erent weight values are assigned to pixels based on the circular footprint shown on

the right of the �gure. The �o value replaces the �o value in the ERS-1 data stream.

The result is a data set with synthetic �o values but actual cell information that can

be processed with the SIR algorithm.

4.4.2 SIR Initialization

SIR generates images from some initial image using iterative updates. The

initial image must be set to a pre-selected non-zero value before the �rst iteration.

The general ow of the SIR algorithm is shown in Figure 4.15, where atj is the current

pixel value and � represents the non-linear combination of the raw �o values and the

current pixel values to form the new pixel value, at+1
j . This processes is repeated for

N iterations.
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Figure 4.14: Illustration of the ERS-1 footprint as applied to a set of pixels. The grid
on the left illustrates an example of the weight assignments to a particular grid of
pixels. The actual pixel grid used by SIR to create the imagery presented here uses
more pixels to model the footprint response.
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Figure 4.15: This �gure illustrates the general ow of the SIR algorithm. From
an initial pixel value, a0j , each iterative step updates the current pixel value based
on information from the raw data. � represents the non-linear combination of the
current pixel value and the raw data to form the new pixel value
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The importance of the selection of the initial image value is coupled to the

damping of scale factors used to generate the updates. Repeating here the equations

from Chapter 2, the update for the jth pixel of the A image estimate is given by:

at+1
j =

PL

i=1 update
k
ijPL

i=1mij

(4.12)

updatetij �
8<: akj

1
q(dk

i
)
mij dtj � 1

akj q(d
k
i )mij dtj < 1

(4.13)

where dki is the square root damped scale factor calculated from the raw measurements

and back projections of the raw measurements. What is important to note here is

the behavior of the function q(s) as illustrated in Figure 2.1. This non-linear limiting

of the multiplicative scale factor deemphasizes noise in the resulting imagery, but

causes slowed development of the A value. Because too many iterations may cause

the algorithm to go unstable due to noise and cause ringing in the resulting images,

implementing iterations beyond a minimal level (e.g. between 20 and 30 for ERS-1)

to further update the A value is not practical. If the initialization value of the A or

the B image is too far from the true value, a �nite number of iterations may not be

su�cient to reach the true value. Also, as previously stated the B value development

is heavily damped in SEASAT scatterometer processing. Processing ERS-1 data with

the unmodi�ed SEASAT weightings results in extremely slow B value development,

which will be addressed in the next section. We now pose the questions: Will the

unmodi�ed SIR algorithm produce accurate and viable imagery from ERS-1 data?

How sensitive is SIR to various initialization values for A and B? These questions

will be evaluated using synthetic test imagery as described below.

The e�ects of various initialization levels are investigated to determine the

sensitivity of SIR to di�erent initialization levels. Two true images are used in this

experiment to illustrate the e�ects of initialization on SIR imagery. The test data

sets represent relative extremes that are expected in actual image reconstructions, and

are the image pairs (A = �10dB;B = �0:1) and (A = �30dB;B = �0:3). Various
initialization ranges for A and B are tested with A ranging �30dB < A < �1dB and

B ranging �0:3 < B < 0, both representing expected extremes in the A and B values.
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Figure 4.16: A comparison of the standard deviation of the A value for a �xed initial
B value and various A initial values. The true image is (A = �10dB;B = �0:1),
and the initial B value is B = �0:1. Note that the standard deviation is constant
if the initial value of A matches the true value and that all other initial values used
converge to this level.
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Figure 4.17: A comparison of the standard deviation of the A value for a �xed initial
B value and various A initial values. The true image is (A = �30dB;B = �0:3),
and the initial B value is B = �0:3. Note that the standard deviation is constant
if the initial value of A matches the true value and that all other initial values used
converge to this level.
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image is (A = �10dB;B = �0:1), and the initial B value is B = �0:1
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Figure 4.19: Convergence of A value for correct initial B value estimate. The true
image (A = �30dB;B = �0:3), and the initial B value is B = �0:3
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In the �rst experiment, the B value is initialized to the true value and the

A value is varied between -30 dB to -1 dB. No matter what the true A value or

B value was, SIR correctly predicts the A value with little distortion. Figures 4.16

and 4.17 illustrate the standard deviation of the A value for two di�erent true image

sets, while Figures 4.18 and 4.19 show the convergence of the SIR A value to the true

value. Note that the standard deviation decreases with each iteration, converging to a

very small level (about 0.2 dB). Note also in Figure 4.17 that initializing the A value

to -1 dB when the true value was -30 dB does not prevent convergence of the standard

deviation of the A value. As the standard deviation of the A value suggests, all SIR

A images looked identical, although negligible di�erences do exist between images

with di�erent initialization levels. It should be noted that since the B initialization

value was set to the true B value, all SIR B images are virtually identical as well.

Another important observation is that even when the SIR algorithm is

initialized to the true A value and true B value there is a non-zero standard deviation

of the A and B values. In Figure 4.16, the Ainit = �10 dB line represents the true

value and the standard deviation is constant throughout all iterations. In Figure 4.17

the same is true for the Ainit = �30 dB line. In both cases, the standard deviation

was less then 0.2 dB. The standard deviation does not go to 0 because of some non-

linear e�ects of the B value development on the A value. Because Figures 4.18 and

4.19 show that the average value of the SIR A images converges to the true value,

for a correct initial B value. This demonstrates that for a noiseless case, 27 iterations

are su�cient for fair reconstruction of the image. For the noisy case, the number of

iterations was determined by empirical review of images for a subjectively best result,

with 27 iterations being judged su�cient without unduly amplifying noise.

Next, the A initialization value is �xed to the true value and the B initial

value is varied from 0 to -0.3. The resulting SIR A images are shown in Figures 4.20

and 4.21 and show the behavior of the A value for improper B value initialization.

Ideally, all these images should be monotone. These �gures give a comparison of

several B initialization value levels for the two di�erent true image sets. When the
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B initial value matches the true value, the resulting A value image has a small stan-

dard deviation. When the B initial value varies from the true value, however, the

resulting imagery begins to show hash marks that correspond to the satellite track

and reect the varying dependence on incidence angle along the beam. This error

increases the further the B initial value is from the true value.

Figure 4.22 shows the corresponding B images for Figure 4.21 for the true

image set (A = �30dB;B = �0:3) with the initial A value of -30 dB and various

B values. Note how the B value does not progress fast enough toward the true

value. This is further illustrated in Figures 4.23 and 4.24. The B value is unable

to converge, although the Figures indicate that the B value is moving in the right

direction. Figures 4.25 and 4.26, however, show that the standard deviation of the

B values is diverging rather than converging. This can also be seen in the B images

in Figure 4.22. The impact on the A value of slow B development is shown in Figure

4.27 for the true image set (A = �30dB;B = �0:3). Recall that the initial A value

is equal to the true A value of -30 dB and then note how the average A value does

begin to converge toward the true value.

The results of this experiment indicate that when the unmodi�ed SIR

algorithm is used on ERS-1 data, it is very sensitive to the initial B value estimate,

but not as sensitive to the A estimate. Ideally, the initial B value should be very

near to the true value; however, in practice it will be nearly impossible to make an

estimate that is close enough to the true value over a large surface area and avoid

the problems of convergence illustrated above. However, as mentioned before, the

B value development has been damped in previous applications, so increasing the

speed of B development is addressed in the following sections.

4.4.3 Cubic Parameterization

In Chapter 2, a model for backscatter was presented that included higher

order terms. While the linear model is good, there may be some utility in determining

if the use of higher order terms would result in a more accurate reconstruction. In this

section, we consider the inuence of the linear model versus a cubic model of incidence

106



Figure 4.20: A comparison of SIR A images with various initialization values for the
true image set (A = �10dB;B = �0:1). For this image, the A value was initialized
to the true value of A = �10dB. The images correspond to various initial B values:
Frame A has an initial B value of B = 0, Frame B has an initial B value of B = �0:1,
Frame C has an initial B value of B = �0:2, Frame D has an initial B value of
B = �0:3. Note that when the initialization value equals the actual image value the
distortion is minimal.
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Figure 4.21: A comparison of SIR A images with various initialization values for the
true image set (A = �30dB;B = �0:3). For this image, the A value was initialized
to the true value of A = �10dB. The images correspond to various initial B values:
Frame A has an initial B value of B = 0, Frame B has an initial B value of B = �0:1,
Frame C has an initial B value of B = �0:2, Frame D has an initial B value of
B = �0:3. Note that when the initialization value equals the actual image value the
distortion is minimal.

108



Figure 4.22: This �gure shows a comparison of B value images for a �xed initial
A value ( A = �30dB ) and various B values. The true image is (A = �30dB;B =
�0:3). Each subimage corresponds to various initial B values: Frame A has an initial
B value of B = 0, Frame B has an initial B value of B = �0:1, Frame C has an initial
B value of B = �0:2, Frame D has an initial B value of B = �0:3. While Figures
4.20 and 4.21 show that the A value, although high in variance, is still close to the
true value for various B initial values, this image set shows that the B value fails to
reach the actual value of B in 27 iterations if the initialization is too far from the true
value.
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Figure 4.23: Illustration of the convergence of the average B value for various initial
A values. The true image is (A = �10dB;B = �0:1).
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Figure 4.24: Illustration of the convergence of the average B value for various initial
A values. The true image is (A = �30dB;B = �0:3).
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Figure 4.25: Illustration of the standard deviation of the B value for various initial
A values. The true image is (A = �10dB;B = �0:1). Note how the standard
deviation diverges as the iterations increase. This problem is address in the following
section.
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Figure 4.26: Illustration of the convergence of the average B value for various initial
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angle dependence on SIR imagery. The dependence of �o on incidence angle � can be

modeled by a polynomial:

�o = A+ B� + C�2 +D�3 + : : : (4.14)

whereA is equivalent to �o at an incidence angle of 0 degrees and B, C andD correspond

to the linear, quadratic and cubic components of the �o vs. incidence angle relation-

ship. A more convenient parameterization of �o normalizes the A value to 40 degrees:

�o = A+ B(� � 40) + C(� � 40)2 +D(� � 40)3 + : : : : (4.15)

The A value is thus normalized to 40 degrees. Note that 40 degrees is the mean

scatterometer incidence angle for ERS-1, thus minimizing the higher order terms (i.e.

a measurement with an incidence angle of 40 degrees has no higher order terms and

thus �o = A).
While higher order polynomials can be used to approximate �o, the linear

equation �o = A+B� is usually su�cient to give a good approximation of �o behavior.

However, the linear approximation will have a larger error at the extremes of the

scatterometer beam where incidence angles get large (> 55 degrees) or small (< 25

degrees). Figure 4.28 shows an qualitative example of the �o vs. incidence angle

relationship. The nearly linear region in the center (corresponding to incidence angles

of about 25-55 degrees) is accurately modeled by the A and B parameters. The tail

regions (incidence angles below 25 degrees and above 55 degrees) begin to curve (the

curve is exaggerated in the �gure), and higher order polynomials like Eq. (4.14) are

required to accurately model the behavior of �o with large and small incidence angles.

The limitations of the linear model can be seen in Figure 4.2 where the

cross hatches exist in the ocean and in the periphery of the sea ice. Over the ocean,

we expect to see the cross hatches because of the high dependence of ocean scattering

on incidence angle, the azimuthal modulation in the �o response, the dependence of

�o on wind speed and the high temporal variability of the wind speed. Since SIR

images are created using 3-7 days of data, the wind can change over this period,
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Figure 4.28: A qualitative example of the �o vs. incidence angle relationship. Note
how the center region is very linear (as illustrated by the dashed line), while the tails
begin to show non-linear behavior. The curve is exaggerated in the �gure to illustrate
the non-linearity. A linear approximation of the �o vs. incidence angle relationship
is usually su�cient for incidence angles in the range 25-55 degrees.
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causing signi�cant changes in �o over the open ocean. Since SIR assumes that the

surface is constant and isotropic in azimuth and open ocean meets neither of these

requirements, SIR imagery of open ocean is of little scienti�c value.

Over sea ice, there is no signi�cant azimuthal modulation [43] and it is

reasonable to assume that the surface scattering characteristics of sea ice remains

unchanged over several days. However, the cross hatches are still quite visible in the

sea ice pack in Figure 4.2 in both the A and B images due to the limitations of the

linear model of �o vs. incidence angle and inaccurate B image values as illustrated in

the previous section. Although much less pronounced than the cross hatches in the

ocean, the artifacts in the sea ice pack present a challenge for using SIR imagery in

any classi�cation scheme.

The most signi�cant cross hatching occurs near the ends of the beam.

Note in Figure 4.2 how the area in between the cross hatches is relatively consistent

throughout the ice pack, while the major di�erences occur along the edge of each

swath. SIR uses a linear approximation in developing the B value from the A value.

Because the linear approximation begins to fail near the beam edges, it is these areas

in the imagery that show the greatest error.

The quadratic and cubic terms C and D can be used to reduce the cross

hatching in the sea ice regions by increasing the accuracy of the A and B estimate

from �o near the edges of the beam. Previous e�orts have demonstrated that SIR is

not e�ective for estimating C and D [44], so we opt to use a �xed value of C and

D based on an examination of values of C and D from several study regions over

the sea ice. Since we do not care to correct cross hatching over the open ocean, no

ocean regions are considered. The study regions and some of their statistics are listed

in Table 4.1. The global values chosen are C = 0:0015 and D = �0:00015, which
are actually slightly less than the average values. The smaller values were chosen

to minimize enhancing the cubic error rather than correcting it. With these global

values, �o is \corrected" for the quadratic and cubic terms and this new corrected

value is used by SIR to make estimates of A and B. The corrected �o value is given
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Linear Cubic
lon x lat C D

Reg Corner
(degrees)

Â B̂ Â B̂
x10�4 x10�5

Glacial 1 (110,-76) 10 x 2 -10.12 -0.188 -10.23 -0.218 29.6 .13
Glacial 2 (140,-74) 10 x 2 -11.01 -0.192 -10.91 -0.206 28.6 -11.0
Glacial 3 (140,-78) 10 x 2 -8.24 -0.130 -8.24 -0.103 20.6 -26.3
Glacial 4 (40,-78) 10 x 2 -11.93 -0.169 -11.84 -0.163 13.0 -22.1
Glacial 5 (-110,-78) 10 x 2 -19.38 -0.275 -19.45 -0.273 15.9 -17.3
Sea Ice 1 (-20,-64) 10 x 2 -14.21 -0.174 -14.06 -0.185 .053 -11.2
Sea Ice 2 (-30,-66) 6 x 4 -16.96 -0.177 -16.82 -0.192 2.49 -9.38
Sea Ice 3 (-170,-74) 10 x 2 -16.98 -0.167 -16.87 -0.182 4.36 -8.17
Sea Ice 4 (-160,-70) 10 x 2 -14.66 -0.181 -14.60 -0.201 12.5 -5.28
Sea Ice 5 (-54,-74) 4 x 2 -16.66 -0.189 -16.57 -0.207 6.55 -6.53

Table 4.1: Study region statistics. The study regions were chosen to be relatively
homogeneous regions of the sea ice pack, and their locations and size are given in the
�rst three columns. The 'Linear' columns are linear regression estimates from the
raw �o of A and B with quadratic and cubic terms removed as explained in the text.
The 'Cubic' columns are full cubic regression �ts with the quadratic and cubic terms
C and D estimated from the raw data. Note that there is little di�erence is most
cases between the Linear and Cubic regression estimates of Â and B̂.

by

�ocorr = �o � C(� � 40)2 �D(� � 40)3 = A+ B(� � 40): (4.16)

The results are mixed. The study regions show a high variability in C and

D values as illustrated in Table 4.1, so a single global value for C or D does not

adequately represent the conditions over the entire sea ice pack. In general, there

is at most a small reduction in the cross hatches in some images. The e�ect of

the correction varied from image to image. Figure 4.29 shows a surface plot of the

di�erence between an image with higher order correction and the same image without

higher order correction. The pattern in the surface plot corresponds with the cross

hatch pattern visible in the original images. However, cross hatches are still visible

in the SIR images and the maximum correction in Figure 4.29 is less than 0.5 dB.

A comparison of B images for various values of C and D shows that there

is an overcorrection near the beam edges for values of C and D which are larger than
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Figure 4.29: Surface plot of the di�erence between two SIR A images, one with
higher order correction terms and one without. The original image is JD 150 1994
and C = 0:0015 and D = �0:00015. Note how the pattern in the di�erence image
corresponds with the cross hatch pattern.
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the true values. This indicates that if used, the global values for C and D need to be

carefully evaluated. For the regions reviewed in this study, the standard deviation of

the C and D parameters from several study regions is quite large. A quick review of

Figures 4.32 and 4.33 in the last section shows that there are fairly large di�erences

in the non-linear trends in the sea ice data making it di�cult to create consistent

C and D estimates using linear regression. Also, because ERS-1 operates at C-band,

we expect less volume scattering content in �o compared to instruments operating

at Ku-band (SEASAT and NSCAT) and it is the volume scattering component that

contributes the most to the non-linear e�ects in the extreme incidence angle ranges.

So a change in volume scattering translates roughly to a change in the non-linearity

of the �o vs. incidence angle relationship.

The conclusion is that if they are to be used, C and D should be chosen

smaller than the average calculated values of C and D to maximize the bene�ts of

including the non-linear �t but minimize the possibility of over correcting near the

beam edges. Unfortunately, because the surface conditions vary signi�cantly in space,

it is not possible to pick an ideal C and D value that will optimize the SIR algorithm

for all areas, and we therefore choose not to implement this correction at this time.

4.4.4 B Iterative Weighting

Another source error is an incorrect B value. In each successive SIR iter-

ation, the A and B estimates are updated based on information from the raw data.

The A and B values progress towards some limiting value with each pass of the data.

As discussed in the �rst section, the rate at which the A value develops must remain

�xed to preserve the stability of the algorithm. However, the B development can be

modi�ed by changing the weights used in the iterative update (see Eq. (2.18)).

For this phase of the experiment, the B update weight is modi�ed by a

multiplicative factor. Weights of 10, 25, 50, 100 and 150 times the normal update

weight in Eq. (2.18) are used to test the e�ectiveness of increasing the rate of B update

and the impact this has on the A image. This e�ectively emphasizes the linear

regression estimate of the B value as given in Eq. (2.19). A comparison is also made
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between the regions in the images with increased B weighting and linear estimates of

A and B over the same regions using raw �o data and a linear regression algorithm.

This comparison is a measure of how well SIR estimates match the information in

the raw data.

Test Images and Regions

A single test image is used in this study. The image chosen was JD 150

1994. A total of 10 study regions were chosen to evaluate the e�ects of accelerated

B development. These regions are listed in Table 4.1.

A valid comparison between the A and B values developed by SIR (which

is based on a linear model of �o vs. incidence angle) and the linear estimates of A and

B obtained by linear regression of the raw data requires that the quadratic and cubic

terms be removed from the raw data prior to the linear regression. This makes the

linear estimate of A and B from SIR nearly equivalent to the linear regression of the

raw data. Note that if we limit Eq. (4.14) to only the cubic, quadratic and linear

terms, we get

�ocorr = �o � C�2 �D�3 = A+ B�: (4.17)

Using a �xed C and D values, their e�ect on �o can be removed prior to processing

of the data with SIR. Estimates of C and D are based on linear regression analysis of

various surface areas. A linear regression of SIR data created with this modi�ed data

stream is now not biased by the non-linear behavior at the incidence angle extremes.

The linearA and B values given in Table 4.1 are made after the higher order terms are

removed from the raw data. The cubic terms in the table are from a cubic regression

using the raw data. Note that there is very little di�erence between the linear and

cubic estimates of A and B .

The addition of an increased B weight has dramatic results. Figures 4.30

and 4.31 show comparison scatter plots of A vs. B for SIR imagery with and without

the additional weighting factor. Each scatter plot corresponds to a study region listed

in Table 4.1. The cloud of points represents the A and B values for all pixels of the
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Figure 4.30: Scatter plots of Glacial Ice test regions. The information is from JD
150 1994 with a B acceleration factor of 50. Note how the A values remain relatively
constant with accelerated B development, but the B values change signi�cantly. The
increased vertical spread of the B value for accelerated images better reects actual
surface conditions since the B value is expected to vary over a large surface area.
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Figure 4.31: Scatter plots of sea ice test regions. The information is from JD 150
1994 with a B acceleration factor of 50. Both the A and B values are a�ected by
increasing the B weighting.
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SIR images that fall within the study region de�ned in the table. One cloud is the

SIR imagery without extra B weighting and one is with the extra weighting. For

comparison, the linear estimate of A and B from the raw data in the study region

is plotted in each case as a square box. The raw data corresponds to the same time

period (JD 150-155) as the image and the same spatial location as noted in Table 4.1.

In each case, the weighted development is much closer to the linear estimates for the

region.

First, Figure 4.30 shows glacial ice regions. In the each �gure, the A and

B parameters undergo signi�cant change with the increased B weighting. In each

case, the accelerated B data is clustered more closely to the linear regression A and

B values. This would indicate that the SIR algorithm imagery from ERS-1 data is

more accurate when the B weighting is higher than the nominal SEASAT weighting.

The use of various weights demonstrated a signi�cant change in the resulting A and

B values as the weight was modi�ed from 10 to 50, but less signi�cant changes as the

weight was increased from 50 to 150.

Figure 4.31 shows similar plots for the sea ice study regions. What is

signi�cant to note here is the how A and B change. For glacial regions in general,

the B value moved more than the A value, as expected. The B is more sensitive to

the initial value so may have farther to move, and the spread of the A values in the

image remained relatively constant. For the sea ice regions, both the A and B values

undergo signi�cant changes which may indicate a poor choice for the initial value of

A. In all cases the resulting cluster was grouped nearer the linear regression estimates

of A and B .

It is signi�cant to note that for the examples shown, the A range collapses

to a narrow 2-4 dB range similar to the range of �o in the raw data shown in Figures

4.32 and 4.33. In the case of sea ice regions 2, 3, and 4, the unaccelerated B images

have A values with a mean too high to match the trend of the actual raw data.
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Figure 4.32: �o vs incidence angle plots of raw data from sea ice regions 1 and 2 (see
Table 4.1).
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Figure 4.33: �o vs incidence angle plots of raw data from sea ice regions 3 and 4 (see
Table 4.1).
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4.4.5 B Weighting and Noise

The original argument for damping the B value development was to reduce

the ampli�cation of noise in the resulting imagery [13]. For SASS, the resulting

imagery was quite good and the B images had su�cient dynamic range to be useful.

As has been indicated above, accelerating the B value development did improve the

overall accuracy of the ERS-1 test images, and when applied to actual ERS-1 data,

the resulting B images had a usable dynamic range. In a subjective review of the ERS-

1 SIR images, there was no evidence that the accelerated B value had signi�cantly

ampli�ed noise.

4.5 Cumulative E�ects of the SIR Algorithm Enhancements

In Section 4.4.2, it was demonstrated that the A value appeared to be

relatively immune to initialization values if the B value was accurate. The B value,

however, showed a diverging standard deviation and the A value failed to converge

for cases where the B value was not initialized close to the actual value (see Figures

4.18 and 4.19). It is unlikely that initial B value will be identical to the true value

for every pixel in the reconstruction, so now we analyze the performance of SIR

for various initial values with the accelerated B value development outlined in the

previous section. Only initialization values for B are tested on the range �0:3 and 0

since the A value converged even for poor estimates of B .

In the �rst set of four images, the true image pair is (A = �10dB;B =

�0:1). Note here how the A and B values both converge in average and standard

deviation to the desired value. As expected, a poor estimate of B requires more

iterations to converge than a good estimate, but when compared to the results in

Section 4.4.2, this is a signi�cant improvement. Note how the standard deviation

of the B value converges to the same level for the accelerated B development or

unaccelerated B development (Compare the graphs in Figures 4.37 and 4.25). In

the next set of four images, the true image pair is (A = �30dB;B = �0:3). The

results are comparable to the previous ones: the convergence of the average and

standard deviations of both A and B are much improved. The one anomaly is the
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Figure 4.34: The average A value for accelerated B development. The true image
is (A = �10dB;B = �0:1), and the initial A value is A = �10dB. Note how the
A value converges quickly even for very wrong initial B values.
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Figure 4.35: The standard deviation of theA value for the accelerated B development.
The true image is (A = �10dB;B = �0:1), and the initial A value is A = �10dB.
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The true image is (A = �10dB;B = �0:1), and the initial A value is A = �10dB.
Note how the standard deviation converges quickly even for very wrong initial
B values. (Compare with Figure 4.25).

improved, but still non-zero, standard deviation of the A value (Figure 4.39). This is

caused by the non-linear nature of the scatterometer measurements. SIR does several

calculations in real space (vs. log space), which will result in some di�erences in

the output when compared to similar image con�gurations but di�erent absolute dB

levels in those images. Note that the standard deviation in Figure 4.35 is much higher

than the level in Figure 4.39, another result of this mathematical artifact. In both

cases, however, the results are acceptable and the accelerated B value development

has been demonstrated to signi�cantly improve the estimate of both A and B values.

4.6 Summary

In this Chapter, we demonstrated how multiple overlapping measurements

from the scatterometer can be combined to give a more dense sampling of the surface
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than a single pass of the scatterometer, demonstrating the applicability of the previ-

ous Chapter's theoretical discussion to the ERS-1 scatterometer. We concluded this

section with a brief discussion of the achievable resolution using ERS-1 scatterometer

data. Next, several experiments using the SIR algorithm were performed to tune the

algorithm for the ERS-1 data. These included reviews of A and B value initialization,

addition of cubic parameterization to the backscatter model, and acceleration of the

B value development. All of these issues are concerned with improving the accuracy

of the SIR images. The results are as follows:

� Although the values will still converge from poor initial values, the initialA and

B value should be made as close to the true value as possible. In most cases,

this entails using the average A and B values, computed from the raw measure-

ments, for the region being imaged. Minimizing the di�erence between true and

estimate values reduces the standard deviation of the A and B values.
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� Cubic parameterization using constant C and D values in the backscatter model

is shown to be ine�ective in a global sense. Spatial variation of the C and

D parameters is too high even in small regions to make a global value e�ective

in reducing cross hatching in the imagery. Further research into the development

of a C or D image may be useful.

� Acceleration of the B value leads to more accurate images, especially the B images.

Even for very inaccurate initial B values, the SIR algorithm converges to the

true average and a minimal standard deviation in all cases.
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Chapter 5

Azimuthal Modulation of C-Band Scatterometer �
o Over

Southern Ocean Sea Ice

5.1 Introduction

In previous chapters, we have outlined the theory behind reconstruction

from irregular samples, shown the relationship between SIR, MART, AART and

Gr�ochening's reconstruction algorithm, and �ne tuned the SIR algorithm for the

ERS-1 scatterometer. One issue remains to be addressed before applying SIR to a

scienti�c study: azimuthal modulation. The basis of the SIR algorithm is the ability

to combine measurements made at di�erent times on di�erent passes of the satellite

over a region.

Because measurements from di�erent passes of the satellite may have dif-

ferent azimuth angles, any modulation in azimuth of the backscatter from the surface

could create errors in a reconstruction using SIR because our backscatter model is

not parameterized with an azimuth angle (see Eq. (2.2)). In this chapter, we study

azimuthal modulation of the C-band microwave signature of Southern Hemisphere

sea ice and compare this with azimuthal modulation in the microwave signature of

the Antarctic ice sheet in ERS-1 C-band scatterometer data. Azimuthal modulation

has previously been observed over the Antarctic ice sheet using the SEASAT Ku-band

scatterometer and is generated by wind induced ripples on the ice sheet surface [45].

However, given the dynamic nature of the Antarctic sea-ice pack during the year, we

do not expect signi�cant azimuth modulation over Antarctic sea ice at the scale of a
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spaceborne scatterometer. Such an assumption is consistent with previous observa-

tions of little or no azimuthal modulation in airborne SAR and scatterometer data

from Arctic sea ice in the Labrador Sea [17].

5.2 Southern Ocean Ice Characteristics

In order to understand the azimuthal modulation of �o over Antarctic

sea ice at large scale (50km), we require an understanding of the general surface

characteristics of sea ice in that region. Although the volume of in situ and radar

measurements in the Antarctic is much smaller than similar Arctic measurements,

there is su�cient data to make a large scale characterization of Antarctic sea ice [46]

[47].

5.2.1 Surface Characteristics

In general, the Antarctic ice pack can be divided into two regimes: an

outer ice pack and an inner ice pack, and for this study we use the de�nitions of

these regimes as presented in [48]. Each regime has distinct physical properties that

modulate microwave signatures of the ice as described below. The outer ice regime

has two distinct phases: one during the winter freeze up and another during the

summer melt.

The outer ice regime consists of the Marginal Ice Zone (MIZ) which is the

extreme edge of the sea ice pack with a seasonally dependent makeup consisting of

sea ice oes (up to several meters) surrounded by open water or slush [48]. The �rst

phase of the outer ice regime occurs during early winter through early spring, when

thermodynamic growth causes a rapid advance of the sea ice pack. The outer ice pack,

and particularly the MIZ, are by de�nition regions of unsolidi�ed or uncoalesced ice

during winter freeze up, so wave action in this region makes pancake ice predominant

in early winter [49] [50]. A photograph of pancake ice taken at the edge of the ice

pack is shown in Fig. 1.1 and illustrates the development of pancake ice in the outer

ice regime. Oscillatory wave action pushes grease ice, new ice and slush together and

eventually thermodynamic cooling causes the pancakes to solidify. Before pancake ice
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�elds coalesce, the spaces surrounding the pancakes are either open water, frazil or

grease ice. Thermodynamic e�ects will eventually cause the pancake �eld to coalesce

into a solid ice pack. The second phase of the outer ice zone occurs during the spring

and summer melt and break up of the sea ice pack. With the spring and summer

warming, the pack ice begins to break up and melt, resulting in the MIZ containing

large volumes of small, broken oes and brash ice.

The inner ice pack is typically thin to thick �rst year ice. Evidence from

passive microwave systems shows that multiyear ice can survive in the Antarctic and

it tends to be concentrated in the western Weddell Sea along the eastern edge of the

Antarctic Peninsula [8]. Ridging, a major contributor to large scale deformation in

Arctic sea ice, is in general much less intense in the Antarctic than in the Arctic

with a lower average ridge height and lower frequency in the main body of the sea-ice

pack [51] [52]. Also, as the ice ages, oes in the pack can be laden with snow to

cause a negative freeboard condition, ooding the snow-ice interface. The existence

of this wet slush layer changes the microwave properties of the sea ice, as does the

subsequent re-freezing of this slush layer [46].

5.2.2 Azimuthal Modulation in the Antarctic

Azimuthal modulation of �o has been observed over the Antarctic ice sheet.

Using Ku-Band SEASAT scatterometer data, Remy et al. [45] demonstrated that

observed azimuthal modulation over the Antarctic ice sheet is related to the katabatic

winds on the continent. Further, any oriented scatterers, including sastrugi, wind

oriented drifts and crevasse �elds, may create azimuthal modulation in the satellite

data. Ice sheets, even without signi�cant oriented scatterers on the surface, can create

azimuth modulation if there is a signi�cant surface slope (e.g. a glacier in a mountain

valley).

Sea ice, on the other hand, has much di�erent surface characteristics than

land ice sheets. Small scale waves such as millimeter, capillary or gravity waves are

absent in the outer ice regime and the rest of the sea-ice pack because of the presence

on the ocean surface of either solidi�ed pack ice, pancake ice in its various forms
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or grease ice which prevent the formation of these small scale waves, eliminating

one source of oriented scatterers in the ice pack. Also, the presence of water in the

upper snow layer in some areas of the sea ice pack will change the structure of wind-

etched surface features such as sastrugi. To further reduce the e�ects of any oriented

scatterers that do develop on the sea ice surface, the dynamic motion of the ice surface

causes a randomization of the scatterers over a large scale reducing the cumulative

a�ect of scatterers on the return signal.

Since the sea ice oats on the surface of the ocean, we expect no inherent

large scale surface slope associated with sea ice that would induce azimuthal modu-

lation. However, because the ice in the outer ice regime is de�ned as uncoalesced ice,

long wavelength swell-waves are capable of traveling through these outer regions of

the sea ice pack [53] and inducing some surface slope. In the Southern Ocean, long

wavelength swell waves, with wavelengths of several hundred meters and amplitudes

of up to several meters are capable of traveling hundreds of kilometers into the sea-ice

pack through pancake ice regions [54]. Once the pancakes have begun to coalesce and

solidify however, the waves are quickly damped out by the increasingly rigid sea-ice

pack.

In the absence of signi�cant wave action, any signi�cant slope in the sea

ice must result from ridging or stacking of ice oes. However, the divergent nature

of the sea-ice pack causes break up, rotation and refreezing of sections of the ice

which e�ectively randomizes small scale ridges and other oriented scatterers may

form on the surface of the sea ice. This study concentrates on microwave scattering

characteristics of Antarctic sea ice on the scale of the ERS-1 AMI scatterometer

(50km), and we postulate that over the majority of the sea ice pack, relatively small

structure variations in the sea-ice surface will not introduce substantial azimuthal

variation in the scatterometer data due to the randomizing e�ects of the sea-ice

pack motion. We shall also establish that long wavelength swell wave penetration

in the MIZ will not introduce substantial azimuthal modulation in the scatterometer

signature.
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5.3 Procedures

Sea-ice surface characteristics have signi�cant spatial and temporal vari-

ation over a basin-wide area [36]. As a result, small study regions are used. Also,

there is a dependence of �o on incidence angle which must be accounted for. Further,

correlation between azimuth and incidence angles for a given cell resulting from the

orbit geometry can bias azimuthal modulation evaluation. In the following section,

�o dependence on incidence angle is discussed and a method for removing the de-

pendence based on a linear model is presented. This is followed by a discussion of

study region selection methodology that addresses the issues of spatial and temporal

variation of the surface.

5.3.1 Removal of Incidence Angle Dependence

As noted in Chapter 2, Section 2.1, the radar measurements may have

both incidence angle and azimuth angle dependence. The separation of any incidence

angle dependence from the data is crucial for proper interpretation of any azimuthal

modulation observed in the plots. Data collected over several days may have many

di�erent incidence angles and direct comparison of all measurements in a data set

necessitates the removal of incidence angle dependence for some analyzes.

To aid in this removal we use a simple model relating backscatter to inci-

dence angle, �rst given as Eq. 2.2 and repeated here for easy reference:

�odB = A+ B(� � 40�) (5.1)

Note that �odB is the received backscatter in dB and � is the incidence angle of the

measurement. Recall that A is the normalized radar backscatter (normalized to 40�

in this case) and B represents the slope of the data with respect to the incidence angle

�. An estimate of the parameter B , denoted B̂, is determined from a linear regression

of the �o measurements for each region reviewed in this study. With a B̂ estimated

for a given study region, the estimate bAi for each backscatter measurement �oi in the

study region is given by

bAi = �oi � bB(�i � 40�): (5.2)

137



30 32 34 36 38 40 42 44 46 48 50
0

0.5

1

1.5

2

Incidence Angle (Degrees)

A
bs

ol
ut

e 
E

rr
or

  (
dB

)

Figure 5.1: Plot of the maximum error in Â caused by a worst case B̂ error. This
graph shows an example where the measurements are normalized to 40 degrees. Note
that the error for the worst case is less than 0.5 dB for an incidence angle range of
�2� around the normalization angle. It is expected that the error will be considerably
less in practice than the worst case error.

The resulting bAi values represent incidence angle normalized backscatter values, i.e.

the value of �oi at � = 40o.

5.3.2 B̂ Error

The use of an inaccurate B value will introduce error into the algorithm.

Note that each �o measurement in a study region data set represents a unique

backscatter measurement from a single radar footprint. Because the surface area

of the footprint is smaller than the total area in each study region, we can reasonably

assume that due to spatial variability within the study region, each �o measurement

may have a unique B value. Error is introduced by using a single estimate of the

B parameter to determine all of the incidence angle normalized backscatter estimates

Ai in a given study region. And although the linear model in (5.1) is a good approxi-

mation of the incidence angle dependence, some error is realized from using the linear

model.
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Suppose that for a given measurement �oi , the true value of A , At is given

by

At = �oi � Bt(�i � 40�) (5.3)

where Bt represents the true B value for the ith measurement �oi . If bB is not exactly

equal to the true value Bt, the error in the estimate bAi is given by

�A = At � bAi = ( bB � Bt)(�i � 40�) (5.4)

Introducing similar notation for the error in bBi, let �B = bBi �Bt. If we assume that

�B is bounded by some maximum value, the maximum error in bAi becomes

�Amax = ��Bmax(� � 40�): (5.5)

For the purposes of evaluating error we can assume, based on the average B in Tables

5.1 and 5.2 for the regions evaluated in this study, that the mean B is approximately

�0:2 with a worst case range of 0.0 to -0.4, making �Bmax = �0:2. �Amax, is plotted

vs. incidence angle in Fig. 5.1.

Because the data can be normalized to any angle, the error introduced by

removing incidence angle dependence can be minimized by normalizing the data to

an angle in the middle of the incidence range of the data. Note that the graph in

Fig. 5.1 shows the worst case error for the assumptions in the previous paragraph;

in practice the error will be much smaller. We conclude that the error introduced

by faulty B estimates is negligible when the normalization angle is in the middle of

a narrow range of incidence angles. Assuming a narrow incidence angle range (less

than 6�), the error will not adversely a�ect evaluation of azimuthal modulation of 1

dB or more.

5.3.3 Study Region Selection

As part of an evaluation of basin-wide characteristics, study regions in

several areas of the Antarctic sea-ice pack are used. Relatively small study regions

and short study intervals are used so that areas of relatively constant temporal and
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Reg lon x lat 1993 JD Â B̂ �o Std Dev

I1 8� x 4� 23- 56 -14.41 -0.231 2.69
I2 10� x 4� 119-140 -14.68 -0.199 2.10
I3 14� x 3� 215-242 -14.85 -0.193 3.25
I5 8� x 4� 218-239 -17.26 -0.218 2.28
I6 8� x 3� 248-290 -14.63 -0.230 2.61
I7 18� x 5� 326-350 -15.14 -0.254 2.84
I8 10� x 4� 311-332 -16.80 -0.235 2.42
I10 8� x 3� 200-225 -16.56 -0.201 2.14
I11 8� x 3� 200-225 -16.05 -0.205 2.46
I12 8� x 3� 200-225 -15.81 -0.208 2.43
I13 8� x 3� 200-225 -16.44 -0.218 2.36
I14 8� x 3� 200-225 -16.33 -0.225 2.48
I15 8� x 3� 200-225 -15.65 -0.223 2.88
I16 8� x 3� 200-225 -16.94 -0.208 2.11
I17 8� x 3� 200-225 -17.12 -0.213 2.21
I18 8� x 3� 200-225 -16.92 -0.211 2.24
I19 8� x 3� 200-225 -16.86 -0.210 2.15
I20 8� x 3� 200-225 -16.80 -0.213 2.13
I21 8� x 3� 200-225 -16.60 -0.219 2.25
G1 10� x 2� 109-227 -8.07 -0.174 2.13
G2 10� x 2� 80-117 -15.42 -0.232 3.62
G3 10� x 2� 109-227 -10.56 -0.209 3.09
G4 10� x 2� 80-117 -11.59 -0.188 2.04
G5 10� x 2� 109-227 -15.01 -0.174 4.49

Table 5.1: Study Region Locations and Statistics.

spatial variation can be studied. Selecting areas that are spatially and temporally

homogeneous avoids creating study regions with many di�erent ice surfaces that might

skew any azimuthal modulation evaluation. Study regions from several areas in the

Southern Ocean are used to evaluate azimuthal modulation over many di�erent sea-

ice surfaces. The scatterometer requires 3 to 5 days to collect enough readings for each

study region to have good azimuth angle diversity. The surface conditions in each

study region are assumed constant over the data collection interval, a fair assumption

for the scale of observation of the scatterometer.

Study regions are chosen such that the regions are homogeneous in time

and space over the data collection interval. To aid in the selection of homogeneous
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Reg lon x lat 1993 JD Â B̂ �o StdDev

M1 6� x 2� 102-120 -12.68 -0.197 2.15
M2 10� x 2� 102-120 -12.77 -0.221 2.57
M3 10� x 2� 105-120 -12.66 -0.191 2.07
M4 8� x 2� 128-146 -12.79 -0.211 2.44
M5 6� x 2� 128-146 -12.32 -0.400 5.10
M6 10� x 2� 141-161 -12.42 -0.169 1.96
M7 10� x 2� 142-161 -13.51 -0.207 2.53
M8 10� x 2� 141-161 -15.84 -0.217 2.29
M9 10� x 2� 144-164 -13.16 -0.340 4.29
M10 10� x 2� 150-170 -12.17 -0.179 2.00
M11 10� x 2� 153-173 -13.04 -0.204 2.20
M12 6� x 2� 165-181 -12.67 -0.183 2.06
M13 10� x 2� 165-181 -13.32 -0.217 2.42
M14 10� x 2� 174-181 -12.48 -0.194 2.04

Table 5.2: Marginal Ice Zone Study Region Locations and Statistics.

regions, we use a time series of enhanced resolution images of Antarctic land and sea

ice [36] to identify the largest possible regions where the spatial surface response is

visually homogeneous. The spatial homogeneity of the �o measurements in a study

region reduces the variance of the measurements, ensuring accurate assessment of low

level (< 1 dB) azimuthal modulation for a given sea ice surface. Study regions that

represent several di�erent types of sea ice are selected in order to evaluate azimuthal

modulation over di�erent sea-ice surfaces. An example of an enhanced resolution

Antarctic image is shown in Fig. 5.2. An explanation of the SIRF algorithm for

generating the enhanced resolution images is found in [37].

An additional criterion for selecting viable study regions is adequate di-

versity of azimuth angles. Azimuth angle diversity is required in order to properly

evaluate azimuthal modulation and this diversity is a�ected by the location and size

of a study region and the number of days in the study interval. The scatterometer

requires several days of data to generate data with good azimuthal angle diversity.

If too many days of data are included, the dynamic nature of the Antarctic sea ice
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Figure 5.2: A polar stereographic projection image of Antarctica. The image is
generated from 6 days of ERS-1 data from JD 126 to JD 131 1993. The hash marks
in the periphery of the image are a result of the rapidly changing azimuthal response
of the open ocean surface.
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Figure 5.3: Example histogram of azimuthal angles over Antarctic sea ice (Study
Region I10). Note that the gaps are caused by the instrument geometry.
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increases the probability that the surface will change within the study interval. How-

ever, if too few days of data are used, there will not be enough measurements to yield

su�cient azimuthal diversity for modulation assessment or su�cient incidence angles

to properly estimate the incidence angle dependence of the data in the study region.

The successful tradeo� between study region size (spatial homogeneity) and

the number of days (temporal homogeneity) in the data set is evaluated by manually

examining data in each study region. An evaluation of each study region is made to

determine whether the data is spatially and temporally homogeneous and whether it

has su�cient azimuth angle diversity to show azimuthal modulation. The evaluation

for homogeneity is done by plotting the �o values versus incidence angle and evaluating

the data visually for �o spread and variance in the �o vs. incidence angle plot, plotting

the evolution of the �o values versus time (to evaluate temporal stability) and by

examining the statistics of the data. The data statistics are illustrated in Tables 5.1

and 5.2.

To evaluate the data for azimuth angle diversity, a histogram of azimuth

angles for several incidence angle ranges is plotted. An example azimuth angle his-

togram of ERS-1 scatterometer data over Antarctic sea ice is given in Fig. 5.3 for

the incidence angle range 40 to 45 degrees. The ERS-1 data over sea ice shows a lim-

ited range of azimuth angles. Notice the groupings of azimuth angles in the example

histogram in Fig. 5.3. These groupings are evident in all the data used in this study

and are a consequence of the ERS-1 instrument geometry and orbit. Also, ERS-1

instrument geometry and orbit provide very few readings at azimuth angles above

270 degrees or below 90 degrees. Histograms for each incidence angle range are eval-

uated for each study region for adequate azimuthal diversity. Incidence angle ranges

of �2:5� and �1:5� are examined for each study region over the incidence angles from

25� to 55�. Ranges of �1:5� around the average incidence angle of 40� provide good

azimuth angle diversity with an acceptably narrow range of incidence angles.

A total of 14 study regions near the edge of the sea-ice pack were selected

to study azimuthal modulation in the marginal ice zone during the winter freeze up.

The penetration of long wavelength swell waves into the uncoalesced MIZ sea ice may
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result in enough surface slope to induce azimuthal modulation which is not coupled to

sea ice surface characteristics. The MIZ study regions were selected based on enhanced

resolution imagery and are selected to include regions where wave penetration is likely.

Note in Fig. 5.2 the bright area near the ice pack edge. The subresolution scatterers

in the MIZ cause a brighter microwave signature than other parts of the sea ice pack,

and have been observed in the Labrador Sea MIZ [17].

Although the manual evaluations provide only a crude consistency check

of the data, the check is su�cient for reviewing time periods and parameter ranges

suitable for evaluating azimuthal modulation. A total of 19 study regions in the

Antarctic sea-ice pack at various times of the year in 1993 are selected and used

in this study, as well as 14 additional regions selected near the ice edge. The study

regions are illustrated in Fig. 5.4, and statistics for each region are given in Table 5.1.

The 14 MIZ areas are illustrated in Fig. 5.5, with statistics in Table 5.2. The study

regions in the Weddell sea are large and overlapping to provide a better picture of the

characteristics of the sea-ice pack in this highly dynamic region. The Julian Day (JD)

in Tables 5.1 and 5.2 reect the time period for which data was extracted in each

region. In practice, smaller day ranges are used in evaluating azimuthal modulation

to better approximate constant surface conditions.

5.4 Analysis

The data is analyzed using two di�erent methods. First, by assuming that

the data in each study region is representative of a single type of sea ice, the diversity

of azimuth angles in each study region data set leads to a natural test for azimuthal

modulation: plotting Â versus azimuth angle. If the �o spread in the data is low

any azimuthal modulation should be apparent in these plots. Using small incidence

angle ranges reduces error introduced by the necessary correction for incidence angle

dependence.

Second, the fore-aft beam di�erence is examined. Because the fore and

aft beams are 90� apart in azimuth, any signi�cant di�erence in azimuth response is

likely to appear as a di�erence between the fore and aft beam measurements. Also,
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Figure 5.4: Study Regions used with the ERS-1 data. The boxes indicate the location
of the data. Di�erent time periods are used for the various boxes. All data is from
1993. Regions I10 through I21 are overlapping regions in the Weddell sea.
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Figure 5.5: MIZ Study Regions used with the ERS-1 data. The boxes indicate the
location of the data. Di�erent time periods are used for the various boxes. All data
is from 1993. These regions were selected to be near the sea-ice pack edge.
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because the fore and aft beams have identical incidence angles, no correction for

incidence angle dependence is necessary, thus eliminating a potential source of error

in the analysis.

5.4.1 Â versus Azimuth

Figs. 5.6 and 5.7 show representative plots of Â versus azimuth angle for

small incidence angle ranges (37� to 39�) over sea ice. For comparison, Fig. 5.8 shows

a representative plot of Â versus azimuth angle for a small incidence angle range over

the Antarctic ice sheet. The range of Â is relatively high in the ice sheet regions but

is comparable to the spread found in plots of ice sheet response in Remy, et al. [45].

These plots are representative of the graphs produced in this study for all land and

sea-ice regions.

Based on the discussion in Section 5.3.2, we can ignore incidence angle

dependence when the data is taken over a 3-4 degree range. A comparison of corrected

and uncorrected plots over small incidence angle ranges shows little di�erence if the

normalization angle is chosen to be within the incidence angle range

An examination of Figs. 5.6 and 5.7 shows negligible azimuth angle mod-

ulation over sea ice. In all sea-ice regions studied, the observed variation in azimuth

angle of �o was less than 1 dB. Note that the plot in Fig. 5.8 shows signi�cant

modulation in azimuth in microwave signatures over land ice sheets.

5.4.2 Fore-Aft Pair Analysis

Because the fore and aft beams have nearly identical incidence angles and

azimuth angles 90 degrees apart, it is probable that azimuthal modulation will be

displayed in the di�erence between the fore and aft beam measurements. In this

analysis, the simple di�erence between fore and aft beam measurement pairs are

calculated and bulk statistics for each study region are examined. Also, the fore-aft

di�erence over a limited azimuth range is examined over sea ice and land ice.
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Figure 5.6: Representative �o versus azimuth angle plot for sea ice. This region is
in the Weddell Sea, region I1 in Fig. 5.4. Â, the incidence angle normalized �o, is
plotted.

148



 0         45       90       135      180      225     270      315      360
Azimuth (deg)

-10

-15

-20

S
ig

m
a-

0 
(d

B
)

Figure 5.7: Representative �o versus azimuth angle plot for sea ice. This region is
in the Weddell Sea, region I8 in Fig. 5.4. Â, the incidence angle normalized �o, is
plotted.
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Figure 5.8: Representative �o versus azimuth angle plot for Antarctic glacial ice. Â,
the incidence angle normalized �o, is plotted.
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Figure 5.9: Histogram of the di�erence of the fore and aft beams from the raw
scatterometer data for region I10. The dotted line is a Gaussian curve based on the
mean and standard deviation of the actual histogram.

151



-5 0 50

100

200
Az: 90-100

-5 0 50

100

200
Az: 100-110

-5 0 50

100

200 Az: 110-120

-5 0 50

100

200
Az: 120-130

-5 0 50

100

200 Az: 140-150

-5 0 50

100

200
Az: 150-160

-5 0 50

100

200 Az: 160-170

-5 0 50

100

200
Az: 170-180

# 
in

 B
in

Fore-Aft σο Difference (dB)

Figure 5.10: Histogram of the di�erence of the fore and aft beams from the sea ice
region I12. These graphs are over small azimuth angle ranges as noted over each graph
and illustrate the stability of the histogram mean in azimuth. If the data set does
not have measurements in an azimuth range, that azimuth range is not illustrated in
the �gure.

152



-15 -10 -5 0 5 10 15
0

50

100

150

200

250

300

350

0 90 180 270 360
100

300

500
(Fore Beam Only)

Azimuth Angle (Deg)

Fore-Aft σο Difference (dB)

# 
in

 B
in

Figure 5.11: Histogram of the di�erence of the fore and aft beams for scatterometer
data from glacial region G2. The inset is a histogram of azimuth angles from the fore
beam only to illustrate the diversity of azimuth angles in this study region.
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The di�erence between the fore and aft beam measurements may be mod-

eled by:

D = (�oF +NF )� (�oA +NA) (5.6)

where NF and NA are independent Gaussian noise terms associated with the fore and

aft beam measurements, respectively. We can predict D over an azimuthally isotropic

medium. For an azimuthally isotropic medium, �oF��oA = 0 since the incidence angles

for each measurement are equal, and D becomes the di�erence of the noise terms:

D = NF �NA: (5.7)

Since the sum of two independent Gaussian random variables is a Gaussian random

variable, we expect the fore-aft beam measurement di�erence to be a Gaussian ran-

dom variable. Assuming the noise terms are zero mean, histogram of fore-aft beam

measurement di�erences will be a zero mean Gaussian distribution if the observed

surface is isotropic in azimuth.

Fig. 5.9 shows an example histogram of the sea-ice regions studied. The

histogram is over all available azimuth angles. The dotted Gaussian curve �tted to

the example sea-ice azimuth angle histogram is based on the mean and standard

deviation of the data in the histogram. As predicted, the data is Gaussian with a

nearly zero mean (For all the regions studied, the mean is less than 0.2 dB in every

case.) A Chi-Squared statistical test was applied to the data to verify the Gaussian

nature of the curve. Because the number of data points was small for each curve,

the probability output from the Chi-Squared test was very small and the test was

inconclusive. However, even though the probability was small, it was large compared

to the probability that the skewed curves were Gaussian, so we accept this test as

indicative of the Gaussian nature of the isotropic surface response. Fig. 5.10 shows

similar histograms for the same region but over 10� azimuth angle ranges. Note that

the mean remains constant in each azimuth angle bin, which is not the case over land

ice as illustrated in Fig. 5.11 which shows a histogram from a land ice region. Over

the bulk of the data in this land ice region, there is a non-zero di�erence between the
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Figure 5.12: Histogram of the di�erence of the fore and aft beams for scatterometer
data from glacial region G2 over 10 degree azimuth ranges from 80� to 180� (fore
beam only). Note the progression of the mean from positive to negative as azimuth
increases.
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Figure 5.13: A plot of the fore-aft beam measurement di�erence over glacial ice
region G2. Note the double sinusoidal function of the di�erence in azimuth angle,
very similar to the geophysical model function used for predicting near-surface ocean
winds from scatterometer data.
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fore and aft beams, suggesting that there is modulation in the ice sheet microwave

signature. Fig. 5.12 shows the same data but with histograms over 10� incidence

angle ranges (Compare with Fig. 5.10). Note the progression of mean from positive

at lower azimuth to negative at higher azimuth. A plot of the mean fore-aft di�erence

for 5� azimuth bins versus azimuth angle is shown in Fig. 5.13. The double sinusoid

plot is similar to the Ku-band results of Remy et al. [45], and is very similar to the

geophysical model function used for retrieving near surface ocean winds illustrated

in [55].

5.4.3 Marginal Ice Zone

Of special concern are regions of sea ice near the periphery of the sea-ice

pack. Unlike areas of open ocean, we do not expect gravity or capillary waves to

form and create azimuthal modulation in the microwave signature. But because long

wavelength swell waves can propagate deep into the sea-ice pack, a surface slope may

be created that is su�cient to induce azimuthal modulation in �o. However, given

that these swell waves can have wavelengths on the order of several kilometers or

more and amplitudes on the order of a few meters, the change in surface slope is

quite small. Fourteen regions near the edge of the sea-ice pack were selected between

JD 102 and JD 204 1993 and reviewed for azimuthal modulation using a fore-aft

di�erence analysis. Using the previously described methodology it is determined that

azimuth modulation in all regions studied was less than 1 dB. Further, in the majority

(11 of 14) the azimuth modulation is less than 0.2 dB. We conclude that on the scale

of the scatterometer measurements, no azimuthal modulation is visible over Antarctic

sea ice.

5.5 Summary

A detailed analysis of C-band ERS-1 scatterometer data reveals that there

is no signi�cant azimuthal modulation (less than 1 dB) evident in data taken over

Antarctic sea ice at the scale of the ERS-1 scatterometer measurements (nominally

50km). The consistency of the analysis methods used in this study was established by
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comparing sea ice results with land ice sheet results. Using the same methodologies

for both land and sea ice, azimuthal modulation is shown to be negligible in the sea

ice regions studied. In contrast, land ice study regions exhibit signi�cant azimuthal

modulation. This result is consistent with the results of previous studies of azimuthal

modulation over land ice sheets. Areas in the Marginal Ice Zone, where long wave-

length swell waves can penetrate deep into the ice pack, also displayed negligible levels

of azimuthal modulation in the ERS-1 scatterometer measurements.
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Chapter 6

Application of Enhanced Resolution Imagery to Southern Ocean

Sea Ice

6.1 Introduction

The power of the scatterometer for polar remote sensing is two fold: First,

the scatterometer provides rapid, repeat coverage of the earth. With its wide 500 km

swath and on-board data storage capabilities, the scatterometer is capable of contin-

uously collecting data over the whole globe, which means frequent repeat coverage

of individual areas. Second, the scatterometer takes measurements at a variety of

incidence angles. This provides additional data which may be used to develop a re-

lationship between the backscatter power and incidence angle, which in turn reveals

information about the surface. As will be shown, this allows the separation of ice

classes that would not otherwise be distinguishable.

As established in the previous chapters, scatterometer data can be en-

hanced with the SIR algorithm to a medium scale resolution that makes it useful

for scienti�c studies. Coupled with the higher resolution SAR imagery, processed

scatterometer imagery provides a large scale context for interpreting the individual

SAR images. SIR images also o�er insight into sea ice characteristics and interannual

variability of the sea ice. SIR imagery also provides a time series of images illustrating

basin wide temporal change and evolution of the polar sea ice pack.

In this Chapter, we take advantage of one of the unique properties of the

scatterometer data by developing the measure of azimuthal anisotropy, described in

detail in the �rst section. This new measure is then used to separate ice classes
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otherwise inseparable using A and B images alone. Six sea ice types are de�ned

and described, and these classes, combined with in situ measurements of the A,
B and azimuthal modulation characteristics of each class are used to develop a SIR

image classi�er. SIR is then applied to ERS-1 scatterometer data to classify Southern

Ocean sea ice. The time evolution of the sea ice pack over a three year time period

is shown. The following introductory sections provide background on the scattering

characteristics of sea ice and introduce the new measure of the surface conditions

based on the minimal anisotropic response of the sea ice surface.

6.2 A Measure of Azimuthal Anisotropy

In Chapter 5, we concluded that the anisotropic response of the sea ice

pack was negligible for purposes of image reconstruction. However, in some regions

of the ice pack, rapid changes in space and time may result in a low level anisotropic

backscatter response in azimuth. While these regions have a minimal a�ect on SIR

image reconstruction, they reveal some important characteristics about the surface.

For instance, wave action in the marginal ice zone (MIZ) contributes to a small

anisotropic azimuth response from the surface. As will be shown, this anisotropic re-

sponse delineates MIZ ice and multiyear ice, two ice types otherwise indistinguishable

from backscatter alone.

We now introduce a measure of the anisotropic azimuth response of the

surface originally developed in [56] for ERS-1, the normalized measure of anisotropy,

given by

j�oF � �oAj
j�oF + �oAj

(6.1)

where �oF is the backscatter received at the fore beam, and �oA is the backscatter

response from the same area received at the aft beam. Recall that the fore and aft

beams for ERS-1 are 90 degrees apart, and that as noted in Chapter 5, the azimuthal

anisotropy has a double sinusoidal response (see Figure 5.13). Azimuthal modula-

tion will be evident in the di�erence between the fore and aft beams of the ERS-1

scatterometer. Thus the greater the value of Eq. (6.1), the greater the azimuthal
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modulation. Because open ocean measurements typically have a large normalized

measures of anisotropy and measurements over sea ice typically do not, Eq. (6.1)

is used in [56] to separate open ocean measurements from sea ice measurements to

generate near surface wind maps from only open ocean measurements.

It is possible that one particular fore-aft measurement pair may not reveal

azimuthal modulation even if it is present. Refering to Figure 5.13, note that it is

possible to have two measurements 90 degrees apart over an azimuthally anisotropic

surface and get the same value at each measurement. To ensure that the surface

anisotropy is correctly evaluated, multiple fore-aft measurements are made at various

azimuth angles over the same area. For a surface that is azimuthally anisotropic, there

will be a range of values calculated from Eq. (6.1), while for an isotropic surface, there

will be little variance in the values. The standard deviation of all values from Eq.

(6.1) for a particular area constitute a measure of azimuthal anisotropy.

We now adopt the standard deviation of the normalized measure of anisotropy

of sea ice de�ned in Eq. (6.1) as an additional measure of sea ice surface conditions

and create an image similar in pixel size and scale to the A and B images created

by SIR for ERS-1. We call this new image the STD image, in reference to it be-

ing derived from the standard deviation of the azimuthal anisotropy. For brevity,

references to the \standard deviation of anisotropy" are simply be referred to as the

\standard deviation" or STD. For the current application, an image of the normalized

standard deviation of the anisotropy is created from the scatterometer measurements

taken over the course of 6 days, the imaging interval of the SIR algorithm. For each

fore-aft measurement pair, the normalized measure of anisotropy in Eq. (6.1) is back

projected onto a pixel grid matching the pixel grid used for the SIR images (for

ERS-1, each pixel represents an 8.9 km by 8.9 km square and the image is 960 pixels

square), and statistics of the normalized anisotropy measure are kept for each pixel

the measure touches. The normalization in Eq. (6.1) eliminates the need to consider

the aperture weighting because the aperture weight for the pixel factors out in the

normalization. However, the size and shape of the aperture is used to generate the

STD image. This process is repeated for each measurement pair in the data set.
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The standard deviation of the normalized measures of anisotropy for each

pixel is computed using the standard equation:

stddev =

s
1

N � 1

�
K � S2

N

�
(6.2)

where N is the count (number of fore-aft pair measurements that touch a given pixel),

K is the sum of the squares of the normalized measure of anisotropy and S is the

sum of the normalized measure of anisotropy. The result is an image that reects the

average anisotropic response of the sea ice surface over the imaging interval. We now

include the STD image with the A and B SIR images for use with a classi�cation

algorithm. Note that while the A and B images are actually resolution enhanced as

shown in previous chapters, the simple method of projecting the standard deviation of

anisotropy measurements onto a �ner grid does not give greatly improved resolution.

In fact, the resolution is the same as the AVE algorithm introduced in [13], which

produces images from a simple averaging process. However, it provides adequate

results for a preliminary classi�cation algorithm. Further development of the STD

image is a topic for more extended research.

Figure 6.1 shows an example STD image from JD 126 (5 May) 1992. In this

and subsequent images, theA,B and STD images are masked with an ocean mask that

removes the open ocean pixels and a land mask that removes the Antarctic continent

from the images. Both masks are based on Special Sensor Microwave Imager (SSM/I)

passive microwave data. Using the zero ice concentration contour in an SSM/I image

created using SSM/I data from the same days as the SIR/STD image set, a sea ice

mask is created [57]. The mask used to remove the land pixels from the imagery is

the standard 25 km land mask provided with the SSM/I data set.

The example STD image in Figure 6.1 is annotated indicating two regions

displaying higher standard deviation than the surrounding areas. Region A is an

area in the Weddell Sea where warm water upwelling can cause large open ocean

polynyas during the early winter expansion of the ice pack [58]. This higher than

normal standard deviation is caused by the warm water changing the sea ice surface

and ice formation characteristics in this region. Region B is a known coastal polynya
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Figure 6.1: An example STD image from JD 126 1992. The two annotated regions
display higher than normal standard deviation. The �rst region, A, indicates a known
open ocean polynya caused by warm water upwelling. The second region, B, indicates
the regions o� the Ross ice shelf where the ice pack has pulled away from the continent
and allowed new ice to form in the gap.
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o� the Ross ice shelf. Here, the ice pack is drawn away from the continent by dynamic

forcing and new ice is allowed to form in the exposed open water. Where the previous

anisotropic response was due to warm water upwelling, coastal polynyas are scienti�-

cally interesting because they produce cold water downwellings: Super cooled, highly

saline water is ejected into the ocean as ice forms, and eventually this cold water mass

falls to the ocean oor, giving rise to cold bottom currents and trapping and storing

greenhouse gases in deep ocean currents [40].

In the following sections, we examine the coupling of STD images to the

A and B images to create more accurate sea ice classi�ers. In the next section,

we discuss ice types and the expected backscatter response from the various types.

Following this, an overview of work done on a one dimensional A image classi�er

is presented, and �nally the fusion of A, B and STD images to produce classi�ed

imagery is presented.

6.3 Sea Ice Type De�nitions and Scattering Characteristics

Every year, the Antarctic seasonal ice pack undergoes a regular cycle of

growth and decay. We now de�ne six ice classes used to characterize the Southern

Ocean sea ice through this annual cycle. For each class, a summary of the general

characteristics of the A, B and STD values is given.

Multiyear Sea Ice

Multiyear ice is ice that survives the summer melt, so this class of sea ice

is typically very thick. Older ice is less saline than younger ice types because of brine

drainage from the freeboard portion of the ice over time, signi�cantly changing the

scattering characteristics of the sea ice. Also, snow accumulation and the seasonal

melt/freeze cycle that the surface of the ice undergoes in the transition from summer

into winter both have a substantial a�ect on the backscatter characteristics of this

class of ice. The layering e�ects of the accumulated snow and ice lenses formed by

refreezing melt ponds increase the volume (non-specular) scattering from the ice and

these cause a generally high backscatter return at all incidence angles [57]. Thus, the
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A value is high. These same a�ects also cause a strong dependence on incidence angle,

and we expect the B value to be very low for this ice class. Due to the smoothing

of potentially large scale roughness of multiyear ice by snow layering, the standard

deviation of anisotropy is low.

Nilas

Sea ice generally forms �rst as small crystals that form in the open ocean

as the surface layer cools [1]. If the conditions are calm, the crystals begin to coalesce

forming a thin (< 10 cm thick), elastic layer called nilas [1]. During sea ice pack

expansion in the winter, the areas of largest ice production are at the sea ice edge

and near the large coastal polynyas. Near the sea ice edge, wave action usually does

not allow for calm conditions that favor the formation of nilas, so large expanses

of nilas have not been observed since most expeditions concentrate on the highly

dynamic marginal ice zone (MIZ) [57]. Nilas most likely forms in areas of long term

divergence, typical of the coastal polynyas where the pack continually pulls out from

the continent. Even then, the nilas is short lived, quickly thickening and hardening

into young �rst year ice. Nilas is characterized by a highly wet, saline surface. Little

if any volume scattering contributes to the total backscatter return. The A value is

expected to be very low, with a strong dependence on incidence angle. The B value is

low, and the relatively smooth, unbroken surface indicates a low standard deviation

value.

MIZ/Pancakes

In most cases, new ice is forming in areas where wind and ocean waves

push the ice crystals together. This action forms pancake ice (Illustrated in Figure

1.1) as the ice crystals are pushed into groups. The pancakes are characterized by

the pronounced lip caused by wind driving the pancakes into each other, the force

pushing the soft ice up into a ridge. Eventually, the cooling temperatures cause the

pancake formations to congeal into a solid pack of ice. Meanwhile, ocean waves are

capable of traveling in the ice pack in these regions. This type of ice is prevalent at
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the edge of the ice pack, making this type of ice characteristic in the MIZ. In situ

measurements have shown that regions of pancake ice have a very high backscatter

return, similar to multiyear ice [50,57]. However, unlike multiyear ice, pancake ice has

a much higher B value and, due to the wave actions and small scale ridges prevalent

in these regions, a much higher standard deviation of anisotropy.

Smooth First-year Sea Ice

As pancake or nilas ice congeals and thickens, it evolves into smooth (un-

deformed) �rst year ice, with a thickness for this class of over 50 cm. The backscatter

from this ice class is typically high because of the increased contribution of volume

scattering to the return as brine begins to drain from the free board portion of the

ice. The return is smaller than multiyear ice due to the less complex layering and ice

lenses. The scattering is still specular, however, because of the relatively smooth sur-

face, and the B value is quite low. The large-scale uniformity of the roughness in these

regions indicates a very isotropic response, so the standard deviation of anisotropy is

small.

Rough First-year Sea Ice

Because the sea ice pack is in motion due to wind and ocean currents push-

ing the ice on the ocean surface, ridging and deformation of the ice pack is inevitable.

Rough �rst year ice is deformed and generally thicker than smooth �rst year ice due

to piling of the ice pack during deformation. The rougher surface contributes to more

specular scattering loss and the backscatter from this class is lower than smooth �rst

year ice. However, the increased surface roughness and ridging increases the specular

scattering components to increase at various incidence angles making the B value

lower. Again, the large scale uniformity of the surface roughness indicates a low

standard deviation of anisotropy.
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Ice Type A Value B Value STD Value

Icebergs Very High Mixed Mixed
Multiyear High Low Low
MIZ/Pancakes High High High
Rough First-year Mid Mid Mid
Smooth First-year Mid High Low
Nilas Low High Low

Table 6.1: A summary of A, B and STD values for the six sea ice classes. Note
that multiyear ice and MIZ/pancake ice have di�erent B and STD characteristics
compared to the identical A value ranges for the two classes.

Icebergs

Icebergs constitute the last ice class. Iceberg are large, thick glacial ice

that has broken or calved o� the Antarctic glacial ice sheet. These large ice oes

have a much lower salinity than even old multiyear ice, and have a much larger

backscatter coe�cient. This class has the brightest A value. The B value depend on

the orientation of the iceberg surface. Tabular bergs are isotropic simply because the

surface has no slope. Most bergs have some surface slope so the backscatter depends

on incidence angle and azimuth as well, resulting a large variance and higher mean

in the B and STD values.

Table 6.1 shows a summary of the expected A, B and STD values for the

various ice types outlined above. In the following section, more detailed values are

added to this table to create a classi�cation scheme for SIR imagery.

6.3.1 Sea Ice Field Measurements

Figure 6.2 shows the C-band (4.3 GHz) scatterometer measurements made

during a 1992 expedition to the Southern Ocean by Dr. Mark Drinkwater of the Jet

Propulsion Laboratory (JPL) (Figure courtesy of Dr. Mark Drinkwater). Graph (a)

in Figure 6.2 is of white ice, a category not described above, is similar in some respects

to nilas but is ignored for this study. In each graph, �o versus incidence angle is plotted

for both VV and VH polarization with the bar indicating the standard deviation of
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Figure 6.2: Each plot in this �gure shows the �o versus incidence angle relationship
for three di�erent ice types considered in this study. The fourth plot, (a) White Ice,
is not discussed here but is similar to nilas. Note the varying levels of backscatter
return and the varying dependence on incidence angle for each ice type. This �gure
courtesy of Dr. Mark Drinkwater, JPL [57].
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the measurements made at that incidence angle. The ERS-1 scatterometer is limited

to VV polarization, so we ignore the VH plot. The shaded plots turned 90 degrees

clockwise represent a distribution of �o for the ERS-1 SAR measurements for that

ice type. The ERS-1 SAR is limited to a narrow range of incidence angles (20� to

26� , approximately) and so the histogram of SAR measurements is plotted at this

point on the incidence angle axis. Notice how in each graph the distribution of SAR

�o generally matches the curve �t to the scatterometer data.

Now compare the graphs in Fig 6.2 to Table 6.1 showing the characteristic

A, B and STD values for the various sea ice types. For Smooth First Year ice in

Figure 6.2(b), the backscatter is relatively low compared to the other types. Also,

the variation with incidence angle is steep, indicating a high B value. Rough First

Year ice in Figure 6.2(c) is characterized by a higher backscatter, but less steep

dependence on incidence angle. Finally, Multiyear ice in Figure 6.2(d) shows the

highest backscatter and the least dependence on incidence angles. This last graph

also clearly shows the higher order nature of the incidence angle dependence discussed

in Section 4.4.3. Notice how the graph is not actually linear near the extreme incidence

angle values, but that it is linear in the mid range incidence angles where the majority

of measurements are made. Also notice how each class has a di�erent level of cubic

dependence, a fact which prevented a global application of higher order parameters

to the data model in Section 4.4.3.

6.4 A Image Classi�cation

As part of ongoing research on the utility of ERS-1 SIR imagery, a sim-

ple, one-dimensional classi�er has been developed using only normalized backscatter

values [57]. The graph in Figure 6.3 summarizes the SAR, ship borne scatterometer

and ERS-1 scatterometer data used to develop this classi�er. SAR imagery was taken

where the surface conditions were known. This was coupled with in situ measure-

ments taken from a ship mounted C-band scatterometer and corresponding ERS-1

scatterometer SIR A image values (corresponding backscatter at an incidence angle

of 40� ) to create the graph in Figure 6.3. The �ve main ice types (excluding nilas)
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Summary of C-band Weddell Sea Ice Signatures
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Figure 6.3: This �gure illustrates the relationship between the ship-borne scatterome-
ter (Ship Scatt), the ERS-1 SAR (SAR) and ERS-1 scatterometer (EScat) backscatter
characteristics for the 5 ice types considered. Open Water (OW) characteristics are
also shown. Note that the MIZ/Pancake ice class overlaps the Multi-Year (MY) ice
class, making separation of these classes by backscatter alone di�cult. For several ice
types, the factors inuencing the surface backscatter are shown as functionals: f(�).
Figure courtesy of Dr. Mark Drinkwater, JPL [57].
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Ice Type Backscatter Range

Icebergs �6:0 � �o < 0:0
Multiyear �11:0 � �o < �6:0
MIZ/Pancakes �11:0 � �o < �6:0
Rough First-year �14:0 � �o < �11:0
Smooth First-year �20:0 � �o < �14:0
Nilas �32:0 � �o < �20:0

Table 6.2: A summary of winter A value classes. Note that multiyear ice and
MIZ/pancake ice have the same dB range, making them inseparable with only the
A image. The ice types are summarized in Section 6.3. From [57].

discussed in the previous sections are shown along with an open water (OW) class

showing the relationship between backscatter from open water and wind speed.

Note in Figure 6.3 how Multiyear ice (MY) has almost the same signature

as MIZ/Pancake ice, indicating that from backscatter alone it is not be possible to

distinguish between Multiyear and MIZ/Pancake ice [57]. However, the other classes,

First Year Smooth (FYS), First Year Rough (FYR) and Icebergs are generally dis-

tinguishable using normalized backscatter alone. Based on the in situ data available,

a simple threshold classi�er from [57] is presented in Table 6.2. The Multiyear and

MIZ classes in this classi�er have identical backscatter ranges, making distinguishing

these two classes from normalized backscatter alone impossible.

6.5 Separation of MY and MIZ Classes

We desire to separate the Multiyear (MY) and MIZ/Pancake (MIZ) classes.

Recall that summarized in Table 6.1 are general A, B image and STD image char-

acteristics of the various sea ice types, and that in Table 6.2 speci�c ranges for the

A values for each class are given. Because all but MY and MIZ ice are separable

by A value, the B value and STD value are only used at this point for the case of

separating MY ice from MIZ ice. Since the B and STD values for MIZ are higher

than for MY ice, we determine a threshold for an extended classi�cation algorithm

from histograms of B and STD values shown in Figure 6.4 and 6.5 respectively. These
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Figure 6.4: A histogram of the B values for the MY/MIZ ice class from JD 168
1992. The dotted line indicates the natural split in the data and provides a threshold
between two populations representing MY (low B ) and MIZ ice (high B ).

histograms are made using all the B and STD pixels in the MY/MIZ classes created

with the one dimensional classi�cation algorithm given in Table 6.2.

In Figure 6.4, the histogram shows two populations divided by the dotted

line. Per Table 6.1, the lower B values correspond to the Multiyear ice, with the

expectation of less MY ice than MIZ ice con�rmed because the distribution favors

the higher B values of MIZ ice. Figure 6.5 shows a histogram of the STD values for

the same data set. This graph has a less well de�ned split in the populations, but the

dotted line on the plot indicates a likely split in the data. There are also values of

higher (> 0.1) normalized standard deviation that extend in a tail beyond the graph.

These high values correspond to the MIZ ice. The lack of separation in this data is
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Figure 6.5: A histogram of the normalized standard deviation (STD) values for JD
168 1992. Unlike Figure 6.4, the populations in this plot are less separated, but the
dotted line indicates a probable split in the two populations.
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likely the result of the sensitivity of the STD values to either data dropout or too few

measurements for a given pixel.

Using the histograms, the threshold for the B image data is set at �0:2.
Values above this threshold are considered MIZ, values below are MY. The threshold

for the normalized standard deviation value is set at 0.03, with higher values indication

MIZ, lower values indicating MY sea ice. We now apply this modi�ed algorithm to a

speci�c time period over the Southern Ocean for validation.

6.6 Validation Using 1992 Polarstern Data

For the Winter Weddell Gyre Study (WWGS) of 1992, the research ves-

sel Polarstern was dispatched to enter the sea ice pack and study the surface con-

ditions [50, 59]. During this expedition, a ship borne C-band scatterometer made

measurements of the surface conditions of homogeneous ice types, and visual obser-

vations of surface conditions were made. This expedition provides some of the few in

situ observations available for validation of the SIR scatterometer imagery. There are

two very important surface observations made during this mission that are used to

validate the modi�ed algorithm used in this study. First, just after the ship entered

the sea ice pack, a large, persistent �eld of pancake ice was encountered. This is

where the photograph in Figure 1.1 was taken. Second, the ship later skirted around

a large patch of rough �rst-year ice in the middle of the Weddell Sea.

Figure 6.6 shows a SIR image for JD 168 1992 where the simple one di-

mensional classi�cation using A values has been applied. This date corresponds to

the time that Polarstern encountered the persistent pancake ice �eld in the MIZ. The

�gure is oriented with the 0 degree longitude at the top of the picture. Note there

is no MIZ class represented in the image. All MIZ is classi�ed as MY ice per the

simple A image classi�er in Table 6.2. The large red grouping of MY ice at 0 degrees

longitude at the ice edge is in the region where Polarstern observed the large pancake

�eld just after entering the ice pack [50, 59].

We now apply the multi-dimensional classi�er using the B and STD values

to separate the MY and MIZ ice classes. Figure 6.7 shows the resulting classi�ed
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Figure 6.6: A classi�ed image based on the SIR A image only.
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image. Note how the same region near 0 degrees longitude referenced above is now

classed as MIZ/Pancake, not MY as in the previous image. This corresponds to

the observed region in 1992 that consisted of pancake ice [59]. Other regions in and

around the sea ice pack have also been classed as MIZ/Pancake ice, most notably the

regions at the ice edge at 45 degrees west and 135 degrees west where we would expect

the MIZ/Pancakes because of wave action at the ice edge. The con�dence developed

in the MY-MIZ class separation because of the in situ data available supports the

classi�cation of these other regions of the sea ice pack. Also classed as MIZ/Pancakes

are the ice production regions o� the Ronne-Filchner ice shelf in the Weddell Sea and

the ice production area o� the Ross ice shelf, where winds o� the continental shelf

produce MIZ-like conditions in the newly formed sea ice.

While the addition of B and STD information enhances the one dimensional

A classi�cation, there are indications that some misclassi�cation has occured. Note

the small amount of yellow in the typically old ice mass at the tip of the Antarctic

Peninsula. Review of images prior to and after this image show that little if any

change occurs in the size and shape of this region con�rming the supposition that the

area is MY ice: MIZ ice tends to rapidly change size and shape as the surface congeals

and solidi�es into �rst-year smooth ice while MY sea ice tends to change very slowly.

Also, there are still small areas in the largely MIZ ice class at 0 degrees longitude

that remain classi�ed as MY ice. Since previous to this multi-dimensional algorithm

all MIZ ice was classi�ed as MY, the separation of the majority of pixels in these two

classes is considered a major improvement over the one dimensional algorithm. Some

misclassi�cation is expected due to the signi�cant overlap of the populations in the

B and STD value histograms shown in Figures 6.4 and 6.5.

Another validation of the algorithm concerns the large dark blue mass

near the center of the Weddell Sea in Figure 6.7. Records from the 1992 Polarstern

expedition show that the ship course was modi�ed to the north to avoid a large mass

of rough �rst-year ice in the center of the Weddell Sea [57] [59]. This feature of the

ice pack is correctly classi�ed in the SIR imagery.
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Figure 6.7: A classi�ed image based on the SIR A, B and STD images. Note the
di�erence between this and the image in Figure 6.6 in that the MIZ is a separate
class.
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6.6.1 Consistency Check: The Annual Sea Ice Cycle 1995

Figures 6.8 through 6.13 show a typical annual cycle of sea ice growth and

decay for 1995. Each year the cycle has di�erences from the year before, but here we

wish to establish the consistency of the classes used in the classi�cation algorithm.

Di�erences from year to year of temperature, wind and ocean circulation and precip-

itation causes signi�cant interannual variation of the amount of each ice type and the

extent of the sea ice sheet. However, we may expect some basic consistency assuming

the weather variations are not abnormally large. Also, we should expect that the

distribution of ice type throughout a year long cycle to be more or less continuous

throughout the year. In this section, we check the consistency of the classi�cation of

SIR imagery over the course of one year.

Figure 6.8 shows an example of the early expansion of the sea ice sheet.

The prominent feature is the presence of relatively large quantities of MY ice both in

the Weddell Sea and along many parts of the continental coast line. In the Weddell

Sea, a band of rough �rst year ice surrounds an inner core of smooth �rst year ice.

This is expected because the ice production begins near the continent, and as the ice

ages, deforms and thickens it moves out to make room for newer ice to form o� the

Ronne-Filchner ice shelf.

Figures 6.9 and 6.10 show the expanding sea ice pack and the gradual

break up of the older ice masses. Notice the substantial reduction in the MY sea ice

compared to the �rst image. Figure 6.11 shows a good example of a typical MIZ ice

class near the ice edge at the top of the �gure. Figure 6.13 shows the sea ice pack

near its maximal extent.

In general, examination of the set of images from 1995 shows that the

various ice classes outlined in Section 6.3 display a spatial and temporal stability over

the course of a one year sea ice cycle. The relatively small quantity of the MIZ class

throughout the series is typical in that pancake ice and areas where wave action is

prevalent are scattered and short lived [57]. The consistency of the ice classes from

image to image further supports the de�nition of the classes and the spatial stability

indicates that the classes are useful for studying dynamic motion in the sea ice pack.
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Figure 6.8: A classi�ed image based on the SIR A, B and STD images of JD 063
1995.
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Figure 6.9: A classi�ed image based on the SIR A, B and STD images of JD 099
1995.
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Figure 6.10: A classi�ed image based on the SIR A, B and STD images of JD 117
1995.
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Figure 6.11: A classi�ed image based on the SIR A, B and STD images of JD 144
1995.
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Figure 6.12: A classi�ed image based on the SIR A, B and STD images of JD 180
1995.
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Figure 6.13: A classi�ed image based on the SIR A, B and STD images of JD 270
1995.
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In summary, the consistency of the classi�cation algorithm has been demon-

strated �rst by a comparison of classi�ed imagery to the few in situ observations

available, where the MIZ and rough �rst year sea ice were correctly classi�ed. Sec-

ond, the temporal and spatial consistency of the classi�cation throughout a single

seasonal cycle has been demonstrated. This leads to a high con�dence level in the

sea ice classi�cation algorithm. As more in situ observations become available, the

algorithm may be re�ned to further reduce any classi�cation errors.

6.7 Interannual Ice Type Variations 1992 to 1994

An interannual comparison of the changing areal values of each ice type is

the �rst application of this new classi�er to a study of Southern Ocean sea ice. The

interest here is two-fold: �rst, to examine ice types individually, second to examine

the overall annual sea ice cycle over the course of three years. The areal comparisons

made in this chapter use the correction factor needed for the polar stereographic

projection as derived in Appendix C.

6.7.1 Individual Sea Ice Type Interannual Variation

In Figures 6.14 to 6.18, the total area classi�ed as a given sea ice type is

plotted versus date. The y-axis is in square kilometers, the x-axis in months. Except

for Figure 6.16 which shows �rst year rough and smooth sea ice classes from 1993

on the same plot, data from 1992 to 1994 is plotted together on a single plot, with

di�erent years having di�erent line types as noted in the legends.

Figure 6.14 shows the annual evolution of �rst year smooth (FYS) sea

ice. Around February/March, the area of FYS ice reaches a minimum and begins

to increase as the fall freeze up commences. Note the consistently smooth transition

in all three years from summer to fall, characterized by a gentle change in curvature

around JD 50 of each year. The growth rate in all three years plotted is roughly linear

and identical year to year at 64000 km2 per day. In 1992 the minimum was lower and

overall growth consistently lagged the other two years by about 1-2 weeks, although

the growth rate was identical to the two following years. All three years reach a
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peak around August/September at about 12.5 million square kilometers of FYS ice.

The peak is short lived, as the rapid spring melt begins around September/October.

Continual growth of this ice type is expected prior to the summer melt, since new

ice formation at the periphery of the sea ice sheet and at interior polynyas continues

right up to beginning of the summer melt. As temperatures begin to change, the area

peaks, then falls rapidly as the ice sheet melts and breaks up.

Figure 6.15 shows the annual evolution of �rst year rough (FYR) sea ice.

Recall that this type of ice is primarily made up of FYS ice that has been deformed

through the natural motion of the sea ice sheet. The graph reveals several things. In

February/March of each year, the area of FYR ice reaches a minimum just as it did

for FYS ice. The growth rate in each year is again linear and identical year to year at

59000 km2 per day, very similar to the rate of growth of FYS ice. The lag displayed in

1992 for FYS ice is not apparent in the FYR class. FYR ice also reaches a peak three

months earlier than FYS ice, peaking around May/June. The peak area is also much

less than for FYS, with FYR rough ice peaking at about 8 million square kilometers.

An interesting comparison is made in Figure 6.16 of the FYS and FYR

classes from 1993 data. It shows that the growth rate for each class is nearly con-

current up to the time that FYR ice peaks in May/June. It also shows that the

consistently smooth transition from summer to fall displayed by FYS data is not the

same as FYR data, where the transition from summer to fall is relatively abrupt for

FYR ice (compare Figures 6.14 and 6.15).

Figure 6.17 shows the interannual variation of multiyear (MY) ice. Through

the summer melt up to the beginning of the fall freeze up (September through Jan-

uary), the volume of MY ice in the graphs progresses to a minimum value, which is

unexpected since we expect a maximum value at the end of the summer melt. This

is likely a result of the surface melting and pooling of water on the ice surface and

the signi�cant change this has on the backscatter from the old sea ice. Surface water

signi�cantly reduces the A value from MY sea ice, causing some misclassi�cation in

the late melt period by the one dimensional classi�cation algorithm. Also, break up

of the older ice and integration of these smaller pieces of old ice into the body of the
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Figure 6.14: This plot shows a comparison of the total surface area of smooth �rst
year ice using the classi�cation algorithm proposed in the text. Note that just as for
rough �rst year ice, the increase in surface area for the type during the fall freeze up
is consistent for all three years.
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Figure 6.15: This plot shows a comparison of the total surface area of rough �rst year
ice using the classi�cation algorithm proposed in the text. Note that for each year,
the increase in surface area for the type during the fall freeze up is consistent for all
three years.
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Figure 6.16: This plot shows a comparison of the total surface area of smooth �rst
year ice and rough �rst year ice in 1993. It is interesting to see that rough �rst year
ice has a larger areal coverage than smooth �rst year ice, which plateaus earlier in
the freeze up cycle. This is consistent with the idea that rough ice forms during
deformation, which continues throughout the ice growth period.
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ice sheet reduce the area of MY ice over the course of the annual cycle. One other

interesting thing to note is the nearly 50% reduction in MY ice area in 1993 compared

to 1992 and 1994.

Figure 6.18 shows the plots for icebergs, the �nal ice type considered. This

�gure only shows 1993 and 1994 data due to heavy SAR use in 1992 which caused a

great deal of dropout errors in the scatterometer data in the areas where bergs are

most common. The high areal peak around JD 250 in 1993 is a result of a similar drop

out problem where the dropout caused a number of pixels to be classi�ed incorrectly

as icebergs. Current processing methods do not account for drop out errors, and the

result is the insertion of drop out errors into the iceberg class. Nonetheless, the plots

do show that bergs have a relatively constant area in the ice sheet throughout most

of the year, with the drop in area at the beginning of the season due to the presence

of surface water forming on the bergs as the temperatures increase.

The �nal plot in this review is an interannual cycle plot composed of the

sum of the area of all ice classes plotted versus time for all three years. The plot

in Figure 6.19 shows the interannual cycle of the Souther Ocean sea ice sheet. The

irregularities in the 1992 cycle are the result of some minor data losses in 1992 due

to the frequent use of the SAR for study of Antarctica. In each year, the total sea ice

volume peaks between 21 and 22 million square kilometers.

Although there is a general upward trend in total ice area year to year,

this three year sample is unlikely to reveal any long term patterns. However, the

slight upward trend is consistent with the results of another study of long term ice

trends indicating that Southern Ocean sea ice is gradually reaching larger and larger

extents [8]. It is interesting to note that if this trend were true, it would indicate

global cooling, not global warming. These results should be the beginning of a longer

term study to establish a statistically signi�cant trend in sea ice extent. This data,

combined with other C-band data from ERS-1 and ERS-2, and Ku-band data from

the recently launched NSCAT scatterometer allows data to be compiled over the next

few years so that an extended study of Southern Ocean sea ice behavior may be made.

SIR imagery should prove to be a valuable tool in basin-wide sea ice analysis.
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Figure 6.17: This plot shows a comparison of the total surface area of multiyear ice
using the classi�cation algorithm proposed in the text.
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Figure 6.18: This plot shows a comparison of the total surface area of ice berg using
the classi�cation algorithm proposed in the text.
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Figure 6.19: Interannual cycle of total ice area for 1992, 1993 and 1994. Note the
slight upward trend in ice area, which is consistent with �ndings in other studies [8].
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6.8 Summary

In this chapter, we presented background on ice classes and a simple, pre-

viously developed one dimensional sea ice classi�er based on SIR A imagery. This

routine was extended to separate MIZ/Pancake ice from MY, two classes indistin-

guishable using A values alone, by incorporating B and STD image information in

the classi�cation algorithm.

As validation of this new classi�cation algorithm, in situ observations of

the sea ice pack made in 1992 are compared with classi�ed imagery. The result is a

strong correlation between the observed sea ice conditions and SIR imagery classi�ed

with the extended algorithm. An examination of a full year cycle of sea ice growth

and decay in 1995 reveals that the various ice classes show strong spatial and temporal

stability from the beginning of ice pack expansion through the decay of the sea ice

pack. The stability of the classi�cation indicates that the images have value for study

of short term motion in the sea ice pack, as well as for study of interannual changes

in sea ice type proportions.

Finally, an interannual comparison of areal variation of the various ice

classes is made. In each case, the trends of growth and decay match expectations for

each ice type, further supporting the accuracy of the SIR images and classi�cation

algorithm. The �nal interannual comparison of total sea ice in the Southern Ocean

indicated a slight increase in maximal sea ice extent over three years. As more and

more data is collected, current trends, whether towards greater ice extent or lesser

ice extent, may be better evaluated and the conditions of global sea ice may be more

regularly monitored.
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Chapter 7

Conclusion

In the preceding chapters, various aspects of scatterometer image recon-

struction were discussed. Following a background of satellite imaging, with an em-

phasis on polar remote sensing, the mechanics of the SIR algorithm, an image re-

construction algorithm which has been used successfully for various remote sensing

applications, was presented. This introduction to the SIR algorithm sets the stage

for developing the theory behind the algorithm. In the theory chapter, a theory of

reconstruction from irregular samples was combined with the aperture characteristics

of the ERS-1 scatterometer to demonstrate the reality of the resolution enhancement

of the SIR algorithm. This was combined with synthetic images which quanti�ed the

resolution enhancement for the ERS-1 scatterometer and demonstrated empirically

the resolution enhancement.

The next chapter presented an analysis of C-band azimuthal modulation

over Southern Ocean sea ice. This was the �rst time such a study was carried out

for the C-band scatterometer. The study concluded that the azimuthal modulation

of less than 1 dB and is negligible for the purposes of image reconstruction.

The �nal section presented a �rst generation sea ice classi�er based on the

SIR algorithm and a new measurement of surface anisotropy. The results showed

strong temporal and spatial consistency, was consistent with available in situ mea-

surements, and demonstrated the viability of SIR for tracking sea ice type evolution,

sea ice extent and motion within the sea ice pack.
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7.1 Contributions

This work represents a signi�cant contribution in the �eld of scatterom-

eter image reconstruction and resolution enhancement. The contributions can be

summarized under three headings as follows:

Additive ART: Complete Reconstruction

The theory presented herein has broad application. The demonstration

of additive ART as a complete reconstruction under Gr�ochenig's lemma validates

this particular method of iterative reconstruction as a complete reconstruction in the

limit. Also, the relationship between the aperture function and the sampling has

implications in general radar application. Depending on the application, it may be

possible to increase performance of a radar system by widening the main lobe and

sampling more frequently and then using a reconstruction algorithm that meets the

criteria of the lemma.

Theory - SIR

Although the SIR algorithm has been in use for some time (See for example

[3] published in 1993), the theory presented here in Chapter 3 establishes for the �rst

time the validity of the SIR algorithm approach and quali�es the theoretical limits of

the algorithm [60{62]. This work also lays the necessary ground work and justi�cation

for hardware modi�cations that makes future scatterometers more useful as imaging

platforms.

Azimuthal Modulation

The azimuthal modulation study published in 1997 was the �rst of its kind

for Antarctic sea ice [39, 43], and while necessary for validating the SIR algorithm,

provides a nice stepping stone to other areas of study using a measure of anisotropy.

Here, a methodology was established and applied to the scatterometer data which

establishes the nature of azimuthal modulation at the scale of the spaceborne scat-

terometer.
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Classi�cation

In the �nal chapter, a basic classi�cation algorithm developed from avail-

able in situ data is presented and applied to Antarctic sea ice [35]. Here, through

a series of SIR images, the consistency of the classi�cation is checked and the inter-

annual variation of the classi�cation is presented for 3 years (1993, 1994 and 1995).

While the algorithm may require some additional �ne tuning as more in situ mea-

surements are gathered, this �rst cut appears to have good potential for a basin wide

monitoring of the various ice types.

There are several publications derived from this work, including more than

10 conference papers and two journal articles: one on the azimuthal modulation

material [43], and the other covering the theoretical basis for SIR [62]. A third

journal article is being prepared from the classi�cation material in the last chapter.

7.2 Future Work

There are several natural extensions of the current work that may be pur-

sued to enhance and expand the results of this project.

Relationship of side lobe level to iterations

As outlined in the main body of the text, the attenuation of the frequency

content of the original surface is irrelevant to the reconstruction in a theoretical

sense. However, in a practical environment, �nite iterations may limit the ultimate

development of the image. A study of the relationship of side lobe level to iterations

and quantifying the error associated with that in an ideal case would be instructive

in further development of the SIR algorithm.

NSCAT Data

Because of the post-processing techniques used by ESA to produce the

various ERS-1 scatterometer products, resolution enhancement is limited. With the

recent acquisition of 9 months of data from the NSCAT Ku-band scatterometer,

however, there is a new set of data that is capable of signi�cantly better resolution.

197



Results have demonstrated that the resolution enhancement of NSCAT data is much

better than is possible using the ERS-1 data (12 km per pixel versus 33 km per pixel),

resulting in even more detailed imagery. The application of SIR to NSCAT requires

several preparatory studies:

Theory The NSCAT measurement cells are oblong, not round, and in any given

image region there are multiple orientations and sizes of cells. The impact of this on

�nal resolution of the images needs to be examined. A �rst step would be a reworking

of the theory presented in Chapter 3 to account for the new shape and orientation of

the measurement cells. One possible approach is an analysis of the size and shape of

the cells at certain latitudes and longitudes used to create statistical relationship of

the size/shape pattern to the resolution recoverable from the data.

Azimuthal Study Because NSCAT is at Ku-band, a repeat of the azimuthal mod-

ulation study presented in Chapter 5 was necessary and has recently been completed.

The results showed less than 0.6 dB of azimuthal modulation, with signi�cant mod-

ulation over glacial regions, as expected [63]. If nothing else, this study con�rms the

isotropic azimuthal response of sea ice for a wide range of microwave frequencies.

Classi�cation It is noted in the literature that there is more distinction between

sea ice classes at Ku-band compared to C-band [19,46].As such, the NSCAT data has

the potential of more and/or better separated sea ice classes. In situ measurements

similar to the ones used to create the sea ice classes in Chapter 4 need to be assembled

and studied to form new ice type classi�cations based on A, B and standard deviation

of anisotropy measures.

Standard Deviation of Anisotropy

This measure as currently implemented is not truly resolution enhanced

when compared to the A and B values which have been produced using SIR. While the

current methodology is su�cient for a �rst generation classi�er, further development

and enhancement of the standard deviation of anisotropy measure would increase the
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accuracy of future classi�cation methods. One approach has been to use the resolution

enhanced value of A compared to the actual measurement values to determine an

A STD value, which is being evaluated. Adaptation of SIR to directly calculate the

measure or the use of a similar resolution enhancing method would be appropriate.

Also, application of this measure to NSCAT data requires some development since

the current data format does not have co-located fore and aft measurement cells like

the ERS-1 data has. However, this lack of registration may prove to be useful in

developing a better measure of surface anisotropy.

Con�dence Image

With a �rst generation classi�er under development, a good next step

would be a con�dence image. This would give some indication of how good the

estimate of A or B is relative to various data aspects that a�ect the estimate. In

particular, the number of measurements that touch a point in the enhanced resolution

image and the standard deviation of the incidence angles touching a pixel could be

statistically related to how well the estimate can be made from the data. The result

would lend credence to the classi�ed images and help ag areas in the image that

may be less than accurate.

Algorithm Re�nement

The simple classi�er presented in this work is the �rst generation of a valu-

able research tool. With SIR, images of Antarctica can be generated about every

three days with NSCAT, and since the processing time is relatively short compared

to SAR image processing, SIR has the potential to provide very rapid medium scale

imagery of remote earth locations. Coupled with a well-developed classi�er, and this

data would be invaluable in the study of interannual changes and variation. Further

development of the classi�er by integrating more surface studies and possible valida-

tion using in situ data from a future �eld study would be a �rst step. Investigation

and use of other parameters beyond the A, B and standard deviation of anisotropy

could yield more information about the surface.
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Re�nement of SIR

Currently, the standard deviation parameter is not a resolution enhanced

�gure. It may be possible to get from SIR other relatively independent parameters

that would aid in classi�cation of surface features. Investigation of other forms of the

multivariate SIR might yield more surface information.

Inter-Instrument Comparison

Since there are now three scatterometer data sets (SASS, ERS-1/2 and

NSCAT) at two di�erent frequencies spanning more than three decades, a study

utilizing all these instruments to study interannual variations in sea ice formation

can now be performed.

Broad Expansion of Application of SIR

With the establishment of SIR as a valid algorithmic approach, the po-

tential application is large. Previous studies using SIR have focused on regional

vegetation studies [64{67] and Greenland ice sheets [38, 68, 69]. Such studies could

be, and are in the process of being broadened and re�ned, and include such things

as farmland studies, hydrology, deforestation in various regions [70, 71] and north

pole sea ice. Some work is already in progress to expand the application of SIR to

other earth surfaces [72]. In another type of expansion, the SIR algorithm approach

could be applied to di�erent instruments, such as the SSM/I passive radar system

as in [34]. With proper in situ measurements and model development, the appli-

cation of enhanced resolution scatterometer imagery for large scale studies of earth

surfaces using multiple spaceborne platforms is quite large: from farming studies to

deforestation to polar sea ice.
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Appendix A

The ERS-1 Scatterometer: A Functional Summary

A.1 ERS-1 Scatterometer Instrument Geometry

In this dissertation, ERS-1 scatterometer data is used. The ERS-1 scat-

terometer is part of the Active Microwave Instrument (AMI) on board the ERS-1

satellite. Figure A.1 illustrates the geometry of the scatterometer measurements.

Each beam of the scatterometer is a fan beam antenna with the beam pattern ori-

ented as shown in the �gure, with the fore, mid and aft beams oriented respectively

at 45�, 90� and 135� relative to the ight path. Since the orientation of the ight path

relative to north is known, for each track of the satellite an absolute azimuth angle

of the readings for a given beam is known. The multiple azimuth measurements are

important in making near surface ocean wind measurements. The incidence angle of

the measurements range from 18� to 47� for the mid beam and 25� to 59� on the fore

and aft beams based on the 500 km wide swath and an 800 km average instrument

altitude with small variations due to curvature in the Earth's surface.

There are several data products that are available from the ERS-1 scat-

terometer, but very little has been released concerning the details of how these prod-

ucts are made. The data used in this study is the lowest level data currently available

from the European Space Agency (ESA). The data is organized on a regular 25x25 km

grid oriented with the satellite track and there are 19 cells across the swath. It should

be noted that as the satellite track changes with each orbit, so does the orientation

of the regular grid relative to previous passes. Thus the measurement from one pass

over a speci�c area may be in a slightly di�erent location on the next pass. This lack
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Figure A.1: A graphical representation of the ERS-1 scatterometer geometry. The
gray stripe represents the swath, which is 500 km wide. The fan beam antennas of
the scatterometer are oriented at 45� , 135� and 180� relative to the satellite ight
vector. This provides three di�erent azimuth measurements for each pass. The swath
is computationally divided into a regular grid of 19 \nodes" or cells across the swath
spaced 25 km apart. The raw scatterometer data is processed so that each cell in the
swath has a fore, mid and aft beam measurement.
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of measurement registration from pass to pass is illustrated later in Chapter 3 and

is the core of the SIR resolution enhancement algorithm, which relies on multiple,

overlapping measurements to achieve resolution enhancement.

The actual raw scatterometer measurements are not taken on a regular

grid. After the raw data is gathered, it is resampled into the regular 25x25 km

grid using a prede�ned impulse response function applied to the raw measurements.

The impulse function was chosen to minimize aliasing by �ltering out high frequency

components from the raw data. The resampling causes the impulse response function

to be nominally the same for every cell, even at the very ends of the beams where

normally elongation distorts the cell size. In contrast, the NSCAT scatterometer has

a variable cell size and response depending on where the cell is along the beam. At

this point, we note again that there is a marked lack of published information about

exactly how the ground processing resamples the raw ERS-1 scatterometer data into

this 25x25 km grid.

In essence, the cell locations are assigned to a swath and then raw data from

the fore beam that falls within the region of support of the impulse function centered

at a given cell is used to generate a fore beam measurement. This measurement

value is assigned to that cell, and the process is repeated for the mid and aft beams.

Thus, for each cell location, there is a fore, mid and aft beam measurement. Further

information about the exact application of the impulse function is lacking at this

time.

The impulse response used for ERS-1 is a Hamming window. The impulse

response used for ERS-1 is assumed to have 50 km region of support. However, the

50 km distance is approximately the 3 dB level of the impulse response [42], and the

actual region of support extends to between 85 and 100 km. Figure A.2 shows the

cell centers for an example swath. Several of the cell centers in the �gure have had a

50 km diameter circle superimposed on them to illustrate the overlap of the various

measurements.

The lack of access to the raw scatterometer data and the particular choice

of the Hamming window as an aperture function with its very low side lobes hinders
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Ground Track

Figure A.2: This �gure illustrates the 19 nodes that are oriented across the swath.
The cells are spaced 25 km apart in each direction. The impulse response assigned
to each cell is circular with approximately a 50 km diameter, so the impulse response
of one cell overlaps the responses of its immediate neighbors.
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the reconstruction of imagery from the ERS-1 scatterometer (see Chapters 3 and 6).

However, the data in its current format can be enhanced and used successfully for

land and sea ice studies.

A.2 Derivation of The ERS-1 Aperture Frequency Response

As part of the evaluation of the ERS-1 scatterometer as a land imaging

instrument, the e�ects of the aperture function associated with the scatterometer

measurements is necessary. Each measurement cell of the ERS-1 scatterometer has

a cos2 roll o� characteristic. The aperture function e�ectively �lters the incoming

signal with a low pass �lter with a frequency response corresponding to the Fourier

transform of the cos2 roll o� function. In this section, the Fourier transform of the

ERS-1 scatterometer aperture function is derived and the analyzed.

A.2.1 Derivation

First, de�ne the roll o� function:

f(x; y) = cos2
�
2�

100

p
x2 + y2

�
(A.1)

0 km �
p
x2 + y2 � 50 km

where x and y are given in kilometers. The region of support for the aperture is

represented by A and is assumed to be a circle of radius 50 km. The Fourier Transform

of Eq. (A.2) is given by:

F (�1; �2) =

Z 50

�50

dx

Z 50

�50

dy f(x; y)e�j2�(�1x+�2y): (A.2)

Note that the integration is only over the aperture region of support. Because the

aperture is circularly symmetric, a change to cylindrical coordinates is appropriate:

R 50

�50
dx
R 50

�50
dy ! R 2�

0
d�
R 50

0
�d�

x = � cos(�) y = � sin(�)

F (�1; �2) =
R 2�

0
d�
R 50

0
d� � cos2( 2�

100
�)e�j2�(�1� cos(�)+�2� sin(�)) (A.3)
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and for brevity, the following values are de�ned:

� =
2�

100
(A.4)

k = 2�
q
(�21 + �22 : (A.5)

Begin by reorganizing the exponent:

F (�1; �2) =

Z 2�

0

d�

Z 50

0

d� � cos2(��)e�j2�(�1� cos(�)+�2� sin(�))

=

Z 2�

0

d�

Z 50

0

d� � cos2(��)e�j2��(�1 cos(�)+�2 sin(�))

=

Z 2�

0

d�

Z 50

0

d� � cos2(��)e�j2��
p

�2
1
+�2

2
cos(���k) (A.6)

and note that because the function is symmetric, the phase term �k is unimportant in

the integration through all values of �. We can now set �k = 0 and then rearranging

the integrals results in

F (�1; �2) =

Z 50

0

d� � cos2(��)

Z 2�

0

d�e�j2��
p

�2
1
+�2

2
cos(�): (A.7)

Recall that the Bessel function is de�ned as

Jn(x) =
1

2�

Z 2�

0

d�e�j(x cos(�)�n�+n
�

2
) (A.8)

so that the integration of � in Eq. (A.7) becomes the zero-order Bessel Function since

n = 0 will eliminate the two phase terms in Eq. (A.8). The �nal result, then, is the

Fourier transform equals:

F (�1; �2) = 2�

Z 50

0

d� � cos2(��)J0(k�) (A.9)

where k is de�ned in Eq. (A.5).

A.2.2 Evaluation

Because of the Bessel function, the integration in Eq. (A.9) is not triv-

ial. While approximations can be made for the Bessel function for large and small

arguments, the approximations give less accurate results near the origin, so the most
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Figure A.3: The result of the numerical evaluation of the integral in Eq. (A.9).
This is the frequency response of the ERS-1 aperture function. The plot is
20 log1 0(kF (�1; �2)k).

pro�table approach is a numerical evaluation of the integral. For the purposes of this

study, we use the �nal numerical result to characterize the aperture function.

Using available math tools, the integration can be evaluated and the results

are illustrated in Figure A.3 which is a plot of 20 log1 0(kF (�1; �2)k). This should be

recognized as a plot of the Hanning window frequency response. The aperture acts

as a low pass �lter with a 3 dB point at a wavelength of 100 km and the �rst null at

about a wavelength 45 km.
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Appendix B

Motion Error Characteristics of the SIR

Resolution Enhancement Algorithm

B.1 Introduction

SIR attempts to recover as much of the frequency information as possible

from the scatterometer data stream. By using several days worth of data, multiple

overlapping cells are algebraically recombined in a weighted iterative process. Reso-

lution enhancement is achieved by backprojecting the data onto a higher resolution

grid. The achievable enhancement is determined in part by the overlap character-

istics of the cells and the cell shape. Seasat data, for instance, can be enhanced to

greater resolution than ERS-1 data because the cell shape is oblong, resulting in a

higher spatial sampling in one direction. Recombination of several days of data with

various cell orientations results in a greater resolution enhancement than is possible

with the larger, circular ERS-1 cell shapes. However, SIR does provide resolution

enhancement to increase the use and applicability of ERS-1 data over land and ice.

This appendix addresses the issue of radiometric and frequency error in

the SIR algorithm for ERS-1 data. Because SIR was originally developed for use over

the Amazon where microwave signatures are relatively stable over periods of days,

there is a need to characterize the behavior of the algorithm over the more dynamic

polar ice regions. For brevity, we consider only the simple characterization of the SIR

algorithm as a low pass �lter for surfaces in motion and radiometric accuracy of SIR

compared to nominal ERS-1 resolution.
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B.2 Methodology

Simulated data is used to characterize the SIR imagery. High resolution

test scenes are processed using cell location, azimuth and incidence angle information

extracted from actual ERS-1 scatterometer data. The cell response shown in Fig. 4.3

is used in calculating the simulated �o values. For the purposes of this simulation, we

assume that this response is exact and that there is no location error in the latitude

and longitude extracted from the actual ERS-1 data.

We model �o as a linear function of incidence angle:

�odB = A+ B(� � 40�) (B.1)

where � has been normalized to 40�, the median incidence angle in the data. Each

test scene consists of two colocated images: an A image and a B image. In this study,

the test scenes are at 1 km/pixel resolution. For any given cell measurement, we

assume that the incidence angle is identical for each pixel in the footprint. For each

pixel, the �o value for that pixel is calculated based on the A and B values from the

test images and the incidence angle associated with the cell using (B.1). The cos2

weighting function is applied and the weighted average of the pixels within a footprint

represent a linear estimate of �o for the test `surface'.

The simulated data stream is then processed with SIR. Surface plots of

sample input and output image are shown in Fig. B.1. The test scenes used in this

study are two-level scenes as illustrated in Fig. B.1(A). Step sizes vary from 2 dB to

20 dB, but the results for various step sizes have negligible di�erences.

A total of 5 days of location, azimuth and incidence data are extracted from

the ERS-1 data set. Motion scenes are created using �ve A and B image sets, one for

each day. The scenes are considered stationary over each day period. Motions of 2

km/day, 5 km/day, 10 km/day, 15 km/day and 30 km/day are considered, although

a sustained speed of 30 km/day in sea ice is unlikely.
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Figure B.1: Example test image and SIR output. Plot (A) is the original single step
image. Plot (B) is the output of SIR.

B.2.1 Comparison images

Comparison of SIR imagery to low pass �ltered versions of the original

high resolution imagery is used to assess the SIR algorithm performance. Each test

scene in this study is low pass �ltered to create a `truth' image for comparison with

the SIR output. The low pass �lter used to create comparison `truth' images is ideal

with a spatial cuto� frequency equivalent to the resolution of the SIR imagery. For

motion over multiple days, each day's image is low pass �ltered and the truth image

is created by averaging the individually �ltered daily images.
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Figure B.2: Convergence of the maximum dB levels for the SIR algorithm and a
simple single pass reconstruction. Note SIR becomes more accurate relative to the
true dB level faster than the simple grid reconstruction even with the overshoot.

B.3 Results

Because the ERS-1 footprint extends beyond the nominal 25km grid spac-

ing (approximately a 100 km diameter circle), signi�cant reduction of the spatial

frequency content of the original image is expected at wavelengths less than 100km.

The SIR algorithm enhances the frequency content and results in a reconstructed

image that is accurate at higher spatial frequencies than the nominal data provides.

This is illustrated in Fig. B.2. The SIR image converges to within 0.5dB of the true

dB level at wavelengths of around 40km, although there is a slight overshoot. The

idealized data does not reach this level of accuracy for wavelengths less than about

60km.
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B.3.1 Motion

Fig. B.3 shows pro�le comparisons of SIR imagery with the low pass

`truth' images. Note that as the magnitude of the motion increases, the overshoot

and undershoot of the truth images are reduced by the averaging of the individually

�ltered day images, but that the transition region between the high and low dB levels

is the same for both SIR and the low pass truth images. Also note that the SIR

images have less over- and undershoot and ripple than the low pass truth images.

Figs. B.4(A) and B.4(B) show a comparison of 15 km/day motion and

30 km/day motion. The ripples in the 30 km/day transition region are because the

scatterometer passes over the regions at various ascending and descending angles

which result in unique distributions of overlapping cells in any given scene. Because

SIR uses multiple overlapping cells to reconstruct the images, areas in a scene that

have limited or reduced cell coverage may not be as accurately reconstructed. In Fig.

B.4(A), where the underlying motion is more reasonable, the textural anomalies in

the transition region are less signi�cant.

B.4 Summary

The ability of the SIR reconstruction algorithm to create accurate images

at higher spatial frequencies is illustrated. SIR provides more accurate dB estimates

at lower wavelengths resulting in an approximately 33% resolution gain for errors

less than 0.5 dB when compared to simple grid reconstructions even with the severe

limitations of the ERS-1 cell response. The SIR algorithm also produces images of

stationary scenes and scenes in motion that are similar to low pass �ltered versions

of the original scenes allowing the algorithm to be characterized as a low pass �lter.

Because of the non-linearities of the SIR algorithm, the overshoot and undershoot

characteristic of low pass �ltering are reduced in SIR imagery. This suggests that SIR

is more e�ective than simple construction of imagery from raw ERS-1 scatterometer

data.
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Figure B.3: Cross sections of several motion examples. The solid lines are SIR image
pro�les, the dotted lines are low pass �ltered truth image pro�les.
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Figure B.4: Comparison of two motion images. Plot (A) is 15 km per day motion,
plot (B) is 30 km per day. Note the textural similarities in the transition regions and
the very at response in the extremities.
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Appendix C

E�ects of Projection Selection: Comparison of the Polar

Stereographic and Azimuthal Equal Area Projections

C.1 Introduction

The appropriate use of a selected map projection when mapping satellite

data is an important step in creating statistically signi�cant data sets. In recent

years there has been an increase in availability of high quality medium and large

scale satellite data sets covering many geophysically interesting global surfaces. The

use of this data for statistical analysis of surface conditions has great potential in

increasing our understanding of earth processes, particularly in polar regions.

The statistical analysis of satellite data will center on areal classi�cations

and interannual or interseasonal comparison of areal change. However, the com-

mon projection used for polar ice study is the polar stereographic, which introduces

signi�cant areal distortion away from the projection origin as explained in the fol-

lowing sections. Errors will arise if large or medium scale data from radiometers or

scatterometers is used for statistical analysis of the polar sea ice characteristics and

the satellite data is not corrected for areal distortions introduced by map projections.

Small scale data, such as SAR imagery, will in general be una�ected by the projection

used since the origin of the projection is within the image.

This paper outlines some of the issues involved with selection of map pro-

jections and the associated errors. While we concentrate on issues in polar ice study,

the ideas are applicable in any �eld using large scale satellite data. The �rst section

outlines some earth model issues and the errors introduced by using di�erent earth
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models. The second section introduces two map projections, the polar stereographic

and Lambert equal area projections, and outlines the primary di�erences between

them as they pertain to polar ice study. This is followed by an analysis of the error

between these two projections and possible error corrections.

C.2 The Projections

The problem of map projection lies in the placement of a spherical surface

on the at surface of a map. There are many projections available to map a sphere

to a at surface, each having desirable characteristics as well as weaknesses. The

task of the map maker is to evaluate the needs of those using the map and choose an

appropriate projection.

In Antarctic and Arctic maps, the stereographic projection is commonly

used. The stereographic projection is also used for the DMSP SMMR and the

NIMBUS-7 ice concentration maps, making it a historically important map projec-

tion in the context of decadal remote sensing studies of the polar regions. Work

using Ku-Band and C-band scatterometers for imaging of land has used a Lambert

Azimuthal Equal-Area projection (CITE US)(see [73] for a detailed description of the

Lambertian projection). However, the projection of choice for current historic satel-

lite research is the polar stereographic projection. In this section, both the Lambert

Equal Area and Polar Stereographic projections are outlined. Both will be used for

the numerical analysis of projection accuracy.

C.2.1 Stereographic Projection

The geometry of the Lambert equal area projection is shown in Figure C.1.

The �gure illustrates a projection for the North pole, where the origin is the North

pole.

In Figure C.1, r, the radial distance from the origin of the transform (in

polar aspects, the origin is one of the poles and is the North pole in the �gure), is

given by r = 2R tan 90��
2

. � is the angle of latitude and R is the radius of the earth

at the origin of the projection, in this case the polar radius of the earth.
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The stereographic projection is conformal. Conformal projections maintain

the angular separation of lines from the surface to the map. A small intersection at

some angle � on the earth will have the same angle in the projection. Thus, relative

shape and angle are maintained through the projection while area is distorted. This

type of projection is desirable in maps used for plotting courses or where shape is

more important than size. Unfortunately, the projection does not have equal area

(see the discussion on Lambert transforms below).

The stereographic projection is an easily visualized geometric projection.

As shown in Figure C.1, the geometry of the projection is easily illustrated, and

the equations for the projection both forward and backward are simple even for an

elliptical earth model, making this projection computationally conservative.

C.2.2 Lambert Equal Area Projection

The geometry of the Lambert equal area projection is shown in Figure C.2.

The �gure illustrates a North polar aspect. In Figure C.2, r, the radial distance from

the origin of the transform (in polar aspects, the origin is one of the poles and is the

North pole in the �gure), is given by r = 2R sin 90��
2

.

The Lambert transform is not conformal, thus relative shape is not pre-

served in the projection, but it is equal area. This means that any shape placed on

the map at two di�erent points will cover the same amount of area.

Because the Lambert transform preserves area, it will be used as a point of

comparison for numerical analysis of the Polar Stereographic projection. Ice typing

and classi�cation will rely on accurate areal measurements, and by using an equal

area projection, the need to correct for pixel area distortion for di�erent regions of

the map is avoided. However, the Lambert projection is not commonly used because

of the di�culty of inverting the projection.

C.2.3 Ellipsoidal Model of the Earth

Projection algorithms are based on a model of the earth, usually a sphere

or an oblate spheroid. The earth has a slightly shorter radius at the pole than at
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the equator making a simple sphere a poor model of the earth. A poor earth model

will introduce error into any classi�cation scheme because the data will be distorted

by the map projection. Generally, since the oblate spheroid is closer to the actual

shape of the earth, projections using the oblate spheroid model will be closer to actual

ground truth than a simple spherical model.

Huges Ellipsoid

In a 1980 Hughes Aircraft SSM/I computer program speci�cations manual,

an ellipsoid is de�ned that is used for SSM/I data and several other satellite systems

[74]. No origin for this ellipsoid is available in the literature, and the ellipsoid di�ers

slightly from other published ellipsoids (See Table for a listing of the Hughes and

other ellipsoid models), but it is commonly used and is the model of choice for this

study. It will be shown later that minor variations in the choice of ellipsoid have little

quantitative impact on the resulting projection.

Ellipsoid Eq. Rad. Polar Rad. 1/f

Hughes 6378.273 6356.889 298.279

Hough 6378.270 6356.794 297

IUGG 67 6378.160 6356.775 298.25

WGS 72 6378.135 6356.330 298.26

IUGG 75 6378.140 6356.755 298.257

WGS 84 6378.137 6356.752 298.257

C.2.4 The Ellipsoidal Model vs. Spherical

Just to illustrate the magnitude of the error associated with a non-ellipsoidal

model of the earth, consider a Lambert projection near the origin, with � = 80o as

shown in Figure C.2. Calculating the radial distance r as illustrated in Figure C.2

using both a spherical and Ellipsoidal model we get

rSpherical = 1111:83km (C.1)

rEllipsoidal = 1108:03: (C.2)
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These numbers reveal an error of about 4km at latitudes close to the origin, but the

error increases to over 10km for latitudes over 60� which is near the extent of polar

ice in both the Northern and Southern Hemispheres. The error will, of course, vary

with the projection used.

C.3 Analysis

The next sections deal with exact analysis of error between the map pro-

jections outlined in the previous section and the actual area on the spheroid. No

pixelization or quantization error is considered.

C.3.1 Concentric Rings

This part of the study concentrates on changes in area of concentric rings

around the pole. Beginning at 80� south and continuing through 50� south, 1� in

latitude rings are created centered on the south pole. A true earth area is calculated

for each ring and then also for the polar stereographic projection. The �rst parameter

is the percentage error between true and polar stereographic ring areas. The error is

given by

100� (
APol � ATrue

ATrue

) (C.3)

and is shown in Figure C.3. Note that the error is negative below the polar stereo-

graphic origin latitude of 70� . This is consistent with calculations from the previous

section showing a contraction of area in this region for the polar stereographic pro-

jection. This plot illustrates that above 57� south, there is greater than 10% error

between the true and projected areas. Figure C.4 shows how this translates into abso-

lute area. Above 57� south, the absolute area di�erence is greater than 250 000 square

kilometers, quickly rising to 500 000 square kilometers at 52� south, the northernmost

extent of the Southern Ocean sea ice sheet.
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Figure C.3: Percentage error between a polar stereographic projection and the true
area. The area are polar concentric circles for ease of area calculation. The polar
stereographic projection has on origin latitude of 70� south.

C.3.2 Features in Motion

Another concern the monitoring of objects in motion in satellite imagery.

In most studies that concentrate on land features, movement is not a concern. How-

ever, sea ice at the poles is very dynamic and can move with velocities of several

kilometers per day. Because of this, a feature studied and classi�ed during one time

period may move signi�cantly during the annual freeze-melt cycle. The same feature

at low lattitudes early in the winter may move to higher lattitudes in a matter of a

few weeks or days.
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Figure C.4: Absolute di�erence between true areas and polar stereographic errors in
square kilometers.

The change in location of an object brings a change in the projected size of

that object under the polar stereographic projection. A square, constant area region

was moved through a series of 1� steps from the polar stereographic origin of 70� south

to 55� south. The original region was chosen to be 4� in latitude by 4� in longitude.

Figure C.5 illustrates how much larger an object can appear under the

polar stereographic projection. Near the origin, distortion is minimal, but quickly

increases to over 10% at 13 degrees from the origin.

The implications of areal distortion are most vivid for sea ice studies of

divergence and convergence. In essence, the uncorrected areal distortion of ice mass
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moving away from the projection origin appears to be a divergence of the ice mass.

If the pixel area is not corrected, calculations of sea ice divergence or convergence

will be highly inaccurate. Sea ice typing will also yield inexact results if the areal

distortion is not corrected before percentage changes or type comparisons are made.

C.3.3 Areal Distortion Correction

Because the polar stereographic projection is used in many areas of remote

sensing and for many historical data sets, and because the forward and reverse algo-

rithm for both a sphere and spheroidal model of the earth are easily implemented, it

will continue to be the transform of choice. Thus, we need to develop a correction

factor that can be used to correct the areal distortion introduced by the algorithm.

One such factor is introduced in [8], but due to a apparent printing error, there is

a signi�cant error in the equation presented. Since no background is provided, we

derive a correction factor here. The correction factor will be based on equations and

background material from [8] and [73]. For a complete discussion of map projections

in general, the reader is refered to [73].

For a conformal projection, the areal distortion ma is the square of the

linear distortion m, given by [73]

m =
�c

R cos�
(C.4)

ma = m2 (C.5)

R =
ReRpp

R2
p cos�

2 +R2
e sin�

2
(C.6)

where � is the distance from the pole on the map projection, c = 1 for the polar

stereographic projection, R is the radius of the sphere or spheroid at the latitude of

the point being projected, Re and Rp are the equatorial and polar radii respectively

and � is the latitude. For an unmodi�ed polar stereographic projection, � is given by

� = 2Rp tan
90o � �

2
: (C.7)

However, the projection we are considering has been modi�ed so that the projection

origin is at 70o latitude, so instead of 2Rp, we need to use the shorter distance shown

226



in Figure C.1 as Rp+R70o sin 70
o. Substituting this value into Eq. (C.7) and then into

Eq. (C.5), we get as an areal distortion factor for the modi�ed polar stereographic

projection:

m702 =
(Rp +R70o sin 70

o)2(R2
p cos�

2 +R2
e sin�

2) tan 90o��
2

R2
eR

2
p cos phi

2 (C.8)

R70o =
ReRpq

R2
p cos 70

o2 +R2
e sin 70

o2
: (C.9)

C.4 Summary

As the research community works to make better use of medium to large

scale satellite data, careful consideration of the projection used needs to be made.

The current use of the polar stereographic projection requires areal correction based

on location relative to the projection origin in order for statistical evaluations to

remain accurate. Even with the origin of the projection placed at a mid latitude of

polar imagery (70� south), this analysis shows that errors of 5% or more are possible

in various areal comparisons or classi�cation. Since changes on the order of a few

percent are considered important for global climate modeling, it is imperative that

the scienti�c community be aware of the implications of areal distortion in satellite

imagery
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