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ABSTRACT

WIND SCATTEROMETRY WITH IMPROVED AMBIGUITY

SELECTION AND RAIN MODELING

David Draper

Electrical and Computer Engineering

Doctor of Philosophy

Although generally accurate, the quality of SeaWinds on QuikSCAT scat-

terometer ocean vector winds is compromised by certain natural phenomena and

retrieval algorithm limitations. This dissertation addresses three main contributers

to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low

wind speeds, and rain corruption. A quality assurance (QA) analysis performed on

SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection

errors and that scatterometer estimation error is correlated with low wind speeds and

rain events.

Ambiguity selection errors are partly due to the “nudging” step (initial-

ization from outside data). A sophisticated new non-nudging ambiguity selection

approach produces generally more consistent wind than the nudging method in mod-

erate wind conditions. The non-nudging method selects 93% of the same ambiguities

as the nudged data, validating both techniques, and indicating that ambiguity selec-

tion can be accomplished without nudging.

Variability at low wind speeds is analyzed using tower-mounted scatterom-

eter data. According to theory, below a threshold wind speed, the wind fails to



generate the surface roughness necessary for wind measurement. A simple analysis

suggests the existence of the threshold in much of the tower-mounted scatterometer

data. However, the backscatter does not “go to zero” beneath the threshold in an

uncontrolled environment as theory suggests, but rather has a mean drop and higher

variability below the threshold.

Rain is the largest weather-related contributer to scatterometer error, af-

fecting approximately 4% to 10% of SeaWinds data. A simple model formed via

comparison of co-located TRMM PR and SeaWinds measurements characterizes the

average effect of rain on SeaWinds backscatter. The model is generally accurate to

within 3 dB over the tropics. The rain/wind backscatter model is used to simul-

taneously retrieve wind and rain from SeaWinds measurements. The simultaneous

wind/rain (SWR) estimation procedure can improve wind estimates during rain, while

providing a scatterometer-based rain rate estimate. SWR also affords improved rain

flagging for low to moderate rain rates. QuikSCAT-retrieved rain rates correlate well

with TRMM PR instantaneous measurements and TMI monthly rain averages. Sea-

Winds rain measurements can be used to supplement data from other rain-measuring

instruments, filling spatial and temporal gaps in coverage.
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Chapter 1

Introduction

Oceans are the central element of global energy circulation. The interaction

of the atmosphere and the ocean is of great interest to scientists and oceanographers

involved with understanding the world’s climate and predicting future weather pat-

terns. Wind scatterometry is a method of remotely sensing ocean winds by relating

radar backscatter from wind-roughened seas to near-surface wind speed and direction.

Wind scatterometry affords frequent global coverage of the Earth’s oceans, providing

a better understanding of the global winds than can be obtained from ground-based

techniques.

The most recent spaceborne scatterometers launched by NASA are Sea-

Winds on QuikSCAT (July 1999) and SeaWinds on ADEOS II (November 2002). The

SeaWinds instrument is a conically scanning Ku-band (14 GHz) active radar with a

wide-swath design that affords near-full coverage of our planet’s oceans on a daily

basis at 25 km resolution [1]. Previous scatterometers such as the SEASAT Active

Scatterometer System (SASS) flown in 1978 and the NASA Scatterometer (NSCAT)

in 1996-1997 by the National Aeronautics and Space Administrations (NASA) utilized

fixed fan-beam antennas and did not measure winds in the nadir sub-track region.

The SeaWinds design presents both unique advantages and challenges to wind scat-

terometry.

Wind estimation is possible due to the relationship between the normalized

backscattering cross-section of the ocean surface and the vector wind. This relation-

ship is known as the Geophysical Model Function (GMF) and is symmetric with

respect to wind direction. Because of the symmetry of the GMF, the wind vector

solution obtained via scatterometry is generally non-unique. At each resolution cell,
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there are typically 2 to 4 possible wind vector solutions known as ambiguities that

could have given rise to the measurements. Numerical weather prediction data is typ-

ically used to “nudge” or influence the scatterometer estimate, creating a dependence

upon outside information to select a unique wind vector field from the ambiguities.

While scatterometer wind estimates are generally accurate, scatterometer wind es-

timation quality is degraded at low wind speeds due to a low signal-to-noise ratio

(SNR). Low return signal power at low wind speeds is theorized to stem from a low

wind speed threshold in backscatter below which the small waves formed by wind fail

to be generated. Further, rain events corrupt the wind-induced backscatter response,

making wind estimates less accurate in the presence of rain.

The objective of this dissertation is to analyze, understand, and mitigate

typical errors in current scatterometer wind retrieval. The dissertation addresses

three main areas: performing high quality ambiguity selection without nudging, un-

derstanding the backscatter response at low wind speeds, and modeling the effects of

rain on SeaWinds backscatter in order to improve wind estimation in the presence of

rain and to provide a scatterometer-based estimate of the rain rate. These objectives

are expanded in Section 1.3.

In this introduction, a brief history of scatterometry and a general overview

of wind estimation is presented in Section 1.1. A description of the SeaWinds scat-

terometer and the SeaWinds wind retrieval method is given in Section 1.2, along with

a discussion of error sources in scatterometer data. Section 1.3 provides an overview

of the dissertation.

1.1 Wind scatterometry background

Wind scatterometry is a sub-discipline of Earth remote sensing. Many

active and passive sensors have been used to study the Earth from outer space in-

cluding optical, infrared, and microwave-frequency instruments. An advantage of

radar instruments is that they are relatively insensitive to cloud conditions and solar

illumination. Also, radar makes it possible to observe features of the surface that are

not “visible” at higher electromagnetic frequencies.
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1.1.1 History of scatterometers

Radar return from the ocean surface was first studied in connection with

clutter rejection in military radar systems during World War II. It was later discov-

ered that radar cross section of the ocean surface was related to the wind velocity.

From this discovery, the idea of the scatterometer was born. The scatterometer is a

radar specifically designed to measure wind over the ocean. In 1973-1974, the first

scatterometer was flown as a part of the Skylab mission. Later, in 1978, the Na-

tional Aeronautics and Space Administration launched the SEASAT-A Scatterome-

ter (SASS). Although the spacecraft failed after only 6 weeks of operation, the short

SASS mission proved that accurate ocean wind measurements could be obtained via

remote measurements from outer space. As a follow-up mission to SASS, the NASA

scatterometer (NSCAT) aboard the Advanced Earth Observing Satellite (ADEOS)

was launched in 1996. The ADEOS platform, however, failed after only nine months

of operation [2].

During the NSCAT era, the next generation scatterometer called SeaWinds

was being designed. The SeaWinds instrument utilizes a rotating pencil beam, rather

than fixed fan antenna beams like SASS and NSCAT, to measure the radar cross-

section of the ocean. To fill the gap in coverage caused by the NSCAT failure, a

SeaWinds instrument was flown on the QuikSCAT satellite as a “quick recovery”

mission in June 1999. The next SeaWinds instrument was launched in November 2002

aboard ADEOS II. Both SeaWinds instruments are currently functioning to provide

unprecedented earth-wide coverage of ocean winds. Additional scatterometers have

been launched by the European Space Agency aboard the European Remote Sensing-1

(ERS-1) and ERS-2 satellites [3].

1.1.2 Wind estimation

The underlying concept behind scatterometer wind estimation is that radar

instruments can remotely measure the wind-generated “roughness” of the ocean sur-

face. The profile of the ocean surface follows a power-law dependence on wave number,

with saturation occurring at low wave numbers, and a cutoff at high wave numbers.
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Figure 1.1: Idealized ocean waves generated by wind with SeaWinds backscatter.

Thus, in a rough ocean, nearly all reasonable spatial frequencies of waves exist si-

multaneously. The ocean waves with the highest wave numbers on the order of a

few centimeters are known as capillary waves and are the most sensitive to the wind.

The wind transfers momentum into the ocean by forming and sustaining these small

capillary waves. Transfer of momentum from the wind to the ocean is modeled as a

drag force per unit area, known as wind stress.

Under neutral stability conditions (equal surface air and surface tempera-

ture with an adiabatic lapse rate), the wind speed above the surface at a reference

height is directly related to the wind stress. Also, a nonlinear monotonic relationship

exists between the wind stress and amplitude of capillary waves, relating the capillary

wave amplitude to the neutral stability wind [4].

Scatterometers transmit an electromagnetic pulse and measure the power

in the return echo (see Figure 1.1). From the return power, the normalized radar
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cross-section, σ◦ of the ocean surface is calculated via the radar equation,

σ◦ =
(4π)3r4L

PtG2λ2Aeff

Pr (1.1)

where r is the distance to the earth, L is the loss of the antenna, Pt is the power

transmitted, G is the gain of the antenna, λ is the electromagnetic wavelength, Aeff

is the effective area of the ocean surface illuminated by the antenna, and Pr is the

power in the return signal. Scatterometers measure σ◦ at high incidence angles (20-

60 degrees). The main backscattering mechanism at these incidence angles is Bragg

resonance from waves on the order of the electromagnetic wavelength [5] (capillary-

sized waves for SeaWinds). Bragg resonance occurs when scattering from the troughs

and crests of the wave field constructively combine to yield an enhanced backscatter

return to the radar. The water wavelength to which the scatterometer signal resonates

is known as the Bragg wavelength. The rougher the surface, the higher the return

echo. The Bragg-induced backscatter is a function of the amplitude and orientation

of the small wind-generated capillary waves, and thus a function of the vector neutral

stability wind.

The relationship between wind velocity and σ◦ is described by the GMF.

Figure 1.2 shows the GMF used with SeaWinds on QuikSCAT for several wind speeds.

The GMF has a sinusoidal nature in 2χ, and is symmetric about χ = 180◦. The

highest σ◦ occurs at 0◦ or wind blowing directly toward the satellite. The lowest σ◦

occurs when the wind is perpendicular to the satellite azimuth (90 and 270 degrees).

Another lower peak occurs at 180◦, when the wind blows away from the radar. The

sensitivity of σ◦ to wind speed and direction allows for scatterometer-based wind

retrieval. The derivation for various model functions can be found in [6, 7, 8, 9]

The GMF, M, is a function of the wind speed, relative azimuth angle,

incidence angle, and polarization,

σ◦ = M(u, χ, θ, pol, f) (1.2)

where u is the wind speed, χ is the relative azimuth angle defined as the difference

between the wind direction d and azimuth angle φ of the instrument, θ is the surface
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Figure 1.2: GMF for SeaWinds inner beam: h-pol, 46◦ incidence, showing σ◦ as a
function of the relative azimuth angle χ for several wind speeds.

incidence angle, pol is the electromagnetic polarization, and f is the radar frequency.

The azimuth angle, incidence angle, and polarization are determined by the instru-

ment, and are known for each measurement. Thus, the GMF effectively maps two

parameters (speed and direction) to one (σ◦). Because of this, a single backscatter

measurement does not uniquely represent a wind vector, but rather a range of possi-

ble wind speeds and directions. Inversion of the GMF from one measurement is the

non-linear equivalent of the “one equation; two unknowns” scenario in linear algebra.

In order to provide a unique wind vector solution from scatterometer ob-

servations, the scatterometer is designed to provide multiple σ◦ measurements from

various azimuth angles [10]. The satellite σ◦ data is gridded into square bins called

wind vector cells (WVCs), with each WVC containing measurements from multiple

azimuth looks. From the gridded σ◦ measurements, two wind retrieval methods have

been introduced. The standard wind estimation procedure, known as point-wise wind

retrieval, estimates the wind at each WVC individually using the σ◦ measurements
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assigned to the WVC. An alternative method, known as field-wise wind retrieval, es-

timates entire N × N WVC regions by finding the optimal low-order wind field model

fit to the data [11].

For both point-wise and field-wise wind retrieval, the wind estimation pro-

cedure involves finding the wind solution that minimizes an objective function or error

measure between the wind projected through the GMF and the measured σ◦ values.

The typical objective function used in wind estimation has the form [12]

J(u, σ◦) =
∑

j

∑

k

{∣∣∣∣∣
f(σ◦j,k)− f(Mk(uj))

ς2
j,k

∣∣∣∣∣

p

+ q ln ςj,k

}
(1.3)

where j indexes the WVC (note: j only indexes one WVC for point-wise retrieval),

k indexes the measurement within the WVC, uj is the estimated wind vector at the

jth WVC, ς2
j,k is a weighting term which may be a function of either the wind or the

measured σ◦ values, and f is some weighting function (typically the identity or the

logarithm). The term u is the wind field parameterized by the low-order wind model

for field-wise wind estimation, and the wind vector estimate for point-wise estimation.

Because of noise and symmetry in the GMF, the objective function usu-

ally has several local minima. The wind solutions corresponding to these minima

are known as ambiguities or aliases (see Figure 1.3). The ambiguities are ordered by

increasing objective function value. The global minimum is termed the “first ambi-

guity”, and the ambiguity with next lowest likelihood value the “second ambiguity”

and so forth. The first ambiguity is most likely to be the correct wind vector choice;

however, any of the ambiguities may be the closest ambiguity to the true wind and

thus the best estimate. Because the estimation process results in multiple wind so-

lutions, an ambiguity selection or dealiasing step is required to yield a unique wind

vector field [13].

Ambiguity selection techniques are generally ad hoc, and not geophysically

based. The typical procedure includes two steps: selection of an initial field, and

filtering. The initial field can be “nudged” or “un-nudged.” For nudged winds, the

initial field is selected as the closest ambiguity at each WVC to an outside estimate of

the wind. Traditionally, only a subset of ambiguities are used in nudging to mitigate
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Figure 1.3: Sample objective function showing multiple minima, corresponding to
ambiguities. The true wind is shown as a black arrow.

the influence of the outside data [14]. The un-nudged technique uses the field of first

ambiguities as an initial wind field estimate. After an initial wind field is selected,

a filtering process is used to “correct” isolated patches of “incorrect” initial wind

solutions by replacing the initial ambiguity selection with ambiguities that are the

most consistent with the surrounding selected ambiguities. A description of the point-

wise filtering method used with the standard SeaWinds data product is given in the

following section.

1.2 The SeaWinds scatterometer

As previously discussed, wind retrieval requires several measurements at

different azimuth angles to reduce ambiguity in the estimated wind. The diversity in

azimuth looks determines the accuracy of the retrieved winds. Instruments such as

SASS and NSCAT utilized fixed fan beam antennas on either side of the spacecraft

8



Figure 1.4: The QuikSCAT satellite with the SeaWinds instrument.

oriented at different angles to obtain azimuthal diversity [10]. Such a design affords

constant performance for all wind vector cells due to the fixed azimuth angles of the

antennas. One draw back to the fan-beam design is that nadir-facing measurements

cannot be utilized in wind retrieval because there is little wind directional sensitivity

at low incidence angles. Thus, the data from fan beam instruments has a ∼ 300

km nadir region gap in coverage. To remedy this problem, the SeaWinds instrument

is designed to have a constant incidence angle over the entire swath. The SeaWinds

antenna is a rotating dish with two offset-fed antenna beams: a horizontally polarized

(h-pol) beam at 46◦ incidence, and a vertically polarized (v-pol) beam at 54◦ incidence

9
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Figure 1.5: SeaWinds measurement geometry

(see Figure 1.4). The antenna traces a helical pattern on the surface and achieves the

needed azimuthal diversity by measuring each point on the surface at least four times,

twice by each beam fore and aft as the antenna rotates [1]. The constant incidence

angles afford wind measurement in the nadir region due to the constant incidence

angles, yielding a wider coverage (1800 km swath vs. 500-1200 km) than fan-beam

instruments. The SeaWinds instrument orbits the earth in a near-polar orbit and

yields 90% coverage of the earth in a 24-hour period.

Unlike fan-beam instruments, the pencil beam measurement geometry

varies along the cross track. In the center of the swath (nadir region), the fore

and aft beams are nearly 180 degrees apart, while the difference in azimuth between

fore and aft beams go to zero on the swath edges. Also, the outer eight 25 km WVCs

on either side of the swath only obtain measurements from the outer v-pol beam.

Thus, the swath edges and nadir regions have somewhat poor viewing geometry for

wind estimation. In the off-nadir inner-beam regions, known as the “sweet spots”,

the azimuthal diversity is very well suited for wind retrieval [15]. The measurement

geometry for various swath positions is illustrated in Figure 1.6
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Figure 1.6: SeaWinds measurement geometry for several cases: a) swath edge, b)
sweet spot, and c) nadir swath region.

In standard SeaWinds processing, the satellite swath is segmented into

approximately 25 km square wind vector cells (WVC). The σ◦ measurements whose

centers fall within the 25 × 25 km WVC are used to create a wind vector estimate at

that WVC. WVCs that contain land or ice are discarded. The overall swath size for

a single orbit is 76 × 1624 WVCs. Wind estimation is performed by finding the local

minima to the point-wise objective function. Specifically for SeaWinds, the objective

function is derived from a maximum likelihood estimation technique [12].

Assuming an independent Gaussian noise model, the probability of the

retrieved measurements given the wind is

p(σ◦|u) =
∏

k

1√
2πςk

exp

{
−1

2

(σ◦k −Mk(u))2

ς2
k

}
(1.4)

where ς2
k is the measurement variance. The mean of the noise model is the GMF.

The variance is a combination of uncertainty in the GMF, signal noise due to fading

and thermal noise. Typically, the variance is defined in terms of Kpm, the normalized

standard deviation of the GMF, and Kpc, the normalized standard deviation of the

11



communication or signal noise. The total variance on σ◦ is given by

ς2(u) = (K2
pc + K2

pm + K2
pcK

2
pm)M2(u) (1.5)

where Kpc is generally written as

Kpc =

√
α +

β

σt

+
γ

σ2
t

. (1.6)

The coefficients α, β and γ depend on fading characteristics of the surface scatterers,

the receiver design, and the signal to noise ratio (SNR) at the receiver [15, 16]. Also,

σt is the true σ◦ without communication noise.

For SeaWinds processing, Kpm is assumed to be constant, and σt is ap-

proximated by the model function estimate of σ◦,

σt
∼= M(u). (1.7)

Using the approximation from Eq. (1.7), and combining Eq. (1.5) and Eq. (1.6) yields

ς2(u) ∼= αM(u)2 + βM(u) + γ

+K2
pm

[
(1 + α)M(u)2 + βM(u) + γ

]
. (1.8)

SeaWinds processing simplifies this expression by the assumption

(1 + α)M(u)2 À βM(u) + γ, (1.9)

yielding, after some algebra,

ς2(u) ∼= [(1 + α)K2
pm + α]M2(u) + βM(u) + γ. (1.10)

The coefficients kp alpha = (1 + α), kp beta = β, and kp gamma = γ are computed

and stored in the standard SeaWinds L2A product. The SeaWinds data processing

estimates the wind via the simplified objective function formed by removing the 1√
2πςk

term in Eq. (1.4) and taking the negative logarithm, yielding a reduced form of the

objective function l(u, σ◦),

l(u, σ◦) =
∑

k

(σ◦k −Mk(u))2

ςk(u)2
. (1.11)
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Figure 1.7: A sample QuikSCAT ambiguity field. Also shown, the first and second
ambiguity fields.

Thus, the objective function is of the form of Eq. (1.3) with f the identity function,

p = 2, and q = 0.

The objective function has one or more local minima corresponding to pos-

sible wind vector solutions or ambiguities. SeaWinds processing keeps the first four

ambiguities from which it performs ambiguity selection. As explained earlier, am-

biguity selection requires two steps: nudging and filtering. The standard SeaWinds

product uses a variant of nudging known as thresholded nudging [14] with numeri-

cal weather prediction (NWP) winds from the National Centers for Environmental

Prediction (NCEP). In thresholded nudging, the ambiguities whose objective func-

tion lies outside of a threshold from the global minimum are not used in the nudging

process. Thresholded nudging inherently takes into account the instrument skill at

the WVC. The instrument skill is defined as the estimated percentage of correct first

ambiguities. Where the instrument skill is high, separation between the objective

function values of the ambiguities is generally large, and thus, the least likely am-

biguities are discarded in nudging. Where the instrument skill is low, the objective

function values of each ambiguity are about the same, and all ambiguities are used.

Figure 1.7 shows an example wind field and its ambiguities.
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After nudging, a modified median filter iteratively selects the ambiguity at

each WVC that most closely matches the flow of the surrounding selected wind. The

point-wise median filter has the form

n = argmin
i

∑
j

d(ui,uj) (1.12)

where i indexes the ambiguities at a given WVC, j indexes the surrounding 7 ×
7 WVC region of selected wind vector, and n is the new selected ambiguity. For

SeaWinds processing, d(·, ·) represents a directional error measure, defined as the

difference in directions between the two vectors on the set 0 to 180 degrees. A vector

difference has also been suggested as an error measure [17]. Thus, the median filter

selects the ambiguity that minimizes the sum of directional errors between it an

the surrounding selected WVCs. The median filter is repeated until convergence is

reached [17].

The SeaWinds wind retrieval performance is not constant for all conditions.

First, because the measurement geometry varies across the swath, the instrument skill

is not uniform for every cross track position. Due to non-uniform measurement geome-

tries, the wind retrieval process is somewhat ill-conditioned on the swath edges and

at nadir [1]. Second, due to limitations in the GMF, noise, and a possible backscatter

threshold wind speed, wind retrieval is less accurate at low wind speeds (. 4 m/s) [18].

Also at high wind speeds, the GMF saturates, making wind retrieval less accurate

at high wind speeds (& 25 m/s) [19]. Third, the wind retrieval process is somewhat

sensitive to the nudging data used in ambiguity selection. Where the nudging data

is less accurate, the ambiguity-selected winds retrieved winds are adversely affected

[14]. Fourth, unmodeled geophysical phenomena such as sea temperature variations,

salinity, foam, breaking waves, modulation by larger waves, and rain add to errors in

the scatterometer winds. The effects from most of such phenomena are assumed to

be small. However, rain backscatter has been shown to be significant and at times

dominating [20].
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1.3 Dissertation objectives

As indicated above, many factors can decrease the accuracy of

scatterometer-retrieved winds. Therefore, my goal in this dissertation is to develop

methods to detect, better understand, and mitigate errors in scatterometer wind es-

timation. I first perform a quality assurance (QA) analysis to determine the impact

of error sources on the current wind product. I then specifically address the three

main issues indicated by the QA analysis: the ambiguity selection procedure, low

wind speed uncertainty, and rain contamination.

First, because the quality of ambiguity selection is sensitive to outside data

used in the initialization step, I develop an advanced ambiguity selection algorithm

using a low-order wind model rather than outside data to enhance self-consistency of

retrieved winds. Using the new ambiguity selection method, I demonstrate that high-

quality ambiguity selection can be obtained without the use of outside data. The new

method independently produces winds that are similar to the nudged winds, thereby

also validating the nudging approach.

Second, it is theorized that radar backscatter falls off below a wind speed

threshold where capillary waves fail to be generated, creating low-quality wind es-

timates. Because the threshold wind speed is difficult to analyze directly with Sea-

Winds data, I use data from a tower-mounted scatterometer YSCAT to evaluate the

affect of the threshold wind speed on radar backscatter in an uncontrolled marine

environment. With the tower-mounted data, I illustrate a roll-off in σ◦ that occurs

beneath the threshold wind speed for much of the data. Although my research is not

designed to improve scatterometry through this analysis, I present valuable evidence

of the threshold wind speed which aids to validate threshold wind speed theory and

demonstrate its effects in uncontrolled data.

Third, to better understand the effects of rain corruption on radar backscat-

ter, I develop a combined rain/wind backscatter model using co-located measurements

from the Tropical Rainfall Measuring Mission precipitation radar to estimate the
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impact of rain on SeaWinds scatterometer data. This research expands our under-

standing of both surface and atmospheric rain effects on Ku-band scatterometers, and

suggests that rain can be retrieved using SeaWinds data.

Fourth, I use the wind/rain backscatter model to simultaneously retrieve

wind/rain and rain from SeaWinds data. The simultaneous wind/rain retrieval

method improves the wind estimate in the presence of rain and allows for SeaWinds

scatterometer-based estimation of rain rate. I validate the simultaneous wind/rain

procedure with passive and active rain measurement instruments from the Tropical

Rainfall Measuring Mission satellite.

Fifth, I analyze the simultaneous wind/rain retrieval via simulation and the

Craḿer-Rao lower bound on estimate accuracy. This analysis illustrates the regimes

where the simultaneous wind/rain retrieval works well and the limitations associated

with the method. I show that using simultaneous wind/rain retrieval, the current

rain flagging method can be improved.

Overall, this dissertation affords a greater understanding of the current

issues associated with improving scatterometer data quality. In addition, the research

presents practical methods of improving SeaWinds on QuikSCAT ambiguity selection

and estimation quality in the presence of rain.

In Chapter 2, a quality assessment of SeaWinds on QuikSCAT data over

a two-year period is presented. Chapter 3 describes and evaluates a new method

of ambiguity selection that does not require nudging. In Chapter 4, I present an

analysis of the threshold wind speed using tower-mounted scatterometer data. Then,

Chapters 5, 6, and 7 develop, evaluate, and validate the simultaneous wind/rain

retrieval method. Conclusions are given in Chapter 8.
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Chapter 2

An Assessment of SeaWinds on QuikSCAT Wind Retrieval

This chapter assesses the quality of SeaWinds on QuikSCAT wind retrieval

using a self-contained quality assurance (QA) method. The QA method uses a low-

order wind model to assess the general quality of the data and examine the ambiguity

selection skill. The QA analysis given in this chapter infers that the ambiguity selec-

tion at least 95% effective and that scatterometer errors are generally associated with

instrument geometry, low wind speeds, fine-scale wind features and rain. Several is-

sues indicated by the QA analysis are addressed in subsequent chapters, including the

ambiguity selection procedure, low wind speed uncertainty, and rain contamination.

2.1 Error in scatterometer winds

Error in scatterometer winds can be divided into two major classifications:

estimation error, and ambiguity selection error. Estimation error is uncertainty due

to the estimation process and is evidenced by variability in the ambiguity closest

the true wind. Estimation error is influenced by factors such as instrument noise,

measurement geometry, rain contamination, and accuracy of the GMF. These factors

generally cause the selected wind flow to appear “noisy.”

Second, data quality is affected by the accuracy of the ambiguity selection

process. An ambiguity selection error occurs when a selected wind vector is not the

closest ambiguity to the true wind. Due to the nature of the ambiguity selection

process, ambiguity selection errors generally occur in clusters and result in 90◦ or

180◦ shifts in the selected wind flow (see Figure 2.1 for a comparison of noisy vectors

and ambiguity selection error).
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a) b)

Figure 2.1: a) Region containing some noisy vectors due to estimation error, poor
measurement geometry, rain, etc.. b) Region containing an ambiguity selection error.
Notice that the wind vectors in the central region oppose the surrounding flow.

Because both estimation noise and ambiguity selection errors can cause

the retrieved winds to have inconsistent flow, the error due to these factors can be

assessed by evaluating the general consistency of the ambiguity-selected wind [21].

Traditionally, quality assessment is accomplished by comparing ambiguity-

selected winds to numerical weather prediction (NWP) fields or buoy measurements.

These methods allow a validation check of the data, but are sensitive to the accuracy

of the comparison data and interpolation methods. Validation of NSCAT data against

both buoy measurements and NWP fields has yielded good results [22, 23].

For this quality assessment, I adapt and extend a self-contained method

developed by Gonzales and Long [21] for NSCAT. The NSCAT quality assurance

assessment method compares ambiguity-selected winds to a low order Karhunen-

Loève (KL) wind model fit. The model fit gives an estimate of the noise-reduced

underlying wind flow. Regions exceeding error thresholds are assumed to contain

either estimation or ambiguity selection error and are identified and tallied.
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Our implementation of this model-based assessment method first addresses

the overall consistency of the wind due to both estimation and ambiguity selection

error. Then the method uses an empirically-determined set of error thresholds and

other criteria to locate possible ambiguity selection errors in the presence of estima-

tion noise (thus attempting to separate the effect of ambiguity selection error from

estimation error). This technique does not evaluate the absolute correctness of the

scatterometer data. Rather, it is a method of identifying inconsistent wind flow which

suggests wind retrieval error. Natural phenomena such a fronts or fine-scale storms

may contain apparently inconsistent wind flows and thus be erroneously identified by

the method as a possible ambiguity selection error. An additional analysis of storm

cases is provided to better quantify the wind retrieval performance in storm areas.

Further, it is possible that an ambiguity selection error can result in a seemingly con-

sistent flow which is not correct. Such errors are assumed to be infrequent. Although

this model-based approach has limitations, it works well for most wind data has the

distinct advantage of being self-contained.

In this chapter, the QA analysis method is described along with rationale

for the selection of parameters. The KL wind model size and truncation point are

discussed with an analysis of the KL model’s data sensitivity in Section 2.2. The

QA analysis method is described in detail in Section 2.3. The QA analysis is applied

to two years of SeaWinds data and the results are presented as a function of cross-

track position, RMS wind speed, time, and latitude band in Section 2.4. Higher

noise is shown to occur in low wind speed regions and at nadir. Ambiguity selection

errors tend to be highly correlated with rain and storm occurrences. The ambiguity

selection is determined to be at least 95% effective for wind speeds above 3.5 m/s.

An additional subjective analysis for cyclonic storm areas is presented in Section

2.5, indicating that scatterometer wind estimation is less effective in cyclonic storm

regions.
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2.2 Analysis of the KL wind model

The QA analysis method is based on comparing QuikSCAT retrieved winds

to a low-order KL wind model fit and identifying regions where the model fit signif-

icantly deviates from the retrieved winds. The KL model fit effectively smooths the

wind data. Other smoothing methods (truncated Fourier spectrum, wavelets, av-

eraging) may be used; however, the KL model optimally compresses the low-order

wind information into a few basis vectors that resemble true phenomenological fea-

tures. These basis vectors span most of the low-order wind flow, and give a very good

estimate of the underlying wind field.

In general, the KL transform (also known as the method of principle com-

ponents and commonly used in image processing) maps a signal (an image or wind

field) on to a set of orthogonal basis vectors [24] formed from the eigenvectors of an

autocorrelation matrix. In wind applications, the autocorrelation matrix is empiri-

cally generated from a training set of QuikSCAT retrieved winds. Each “square” N

× N wind sample used to form the autocorrelation matrix is extracted from a swath

of QuikSCAT winds and reshaped into a 2N2 vector by column scanning and then

stacking the cross-track (u) and along-track (v) orthogonal components of the wind

field. This is known as the standard vector form of the wind field. The autocorre-

lation matrix (R̂) is constructed by combining the information from each wind field

vector (wn) by

R̂ =
1

M

M∑
n=1

wnwn
T (2.1)

where M is the number of N × N wind fields in the training data set. The eigen-

values, or principle components, of the autocorrelation matrix indicate the amount

of energy in the training set that is in the direction of the corresponding eigenvec-

tors. The eigenvectors are ordered by decreasing eigenvalue, with the first eigenvector

representing the component of the wind with the most energy. The KL approach op-

timally compresses the greater part of the signal variability into the lowest order

KL basis vectors and minimizes the basis restriction error [24]. The KL model basis

vectors used in the QA analysis is shown in Figure 2.2.
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Model Parameter 1 Model Parameter 2 Model Parameter 3

Model Parameter 4 Model Parameter 5 Model Parameter 6

Figure 2.2: The truncated KL model used in the QA algorithm.

Because the wind has a generally red spectrum [25] (a spectrum where the

lowest frequency content contains the highest energy), the low-order KL model ba-

sis vectors represent the low-frequency component of the wind. Thus, the low-order

model fit retains the general flow of the wind and rejects high frequency content [26].

Where the difference between the model fit and the ambiguity-selected (observed)

wind is large, the truncated basis is not sufficient to characterize the selected wind

flow. Large errors between the model fit and the observed wind may be due to ambi-

guity selection error, estimation error, or fine-scale wind features outside of the space

spanned by the truncated basis, but are most commonly associated with estimation

error and ambiguity selection error.
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Figure 2.3: The first 50 eigenvalues of the 8 × 8 KL model.

2.2.1 KL model size and truncation point

The N × N size of the KL model used in the QA analysis method is

determined to be 8 × 8, and the truncation point is determined to be 6 basis vectors

via the following analysis.

The spatial frequency resolution of the KL model is determined by the

model size (N) and the truncation point (number of basis vectors retained). A desired

frequency resolution can be attained with any sized model as long as the number of

basis vectors is chosen appropriately (see Appendix A). The size of the KL model

used in the QA analysis is determined by a trade-off between the ability to pin-point

error regions, and minimize modeling error. The use of a smaller model affords better

localization of error regions and is less computationally expensive. A larger model

requires more basis vectors to achieve the same resolution, but can more accurately

represent the overall flow of the wind and is thus less prone to modeling error. Test

versions of the QA analysis method were evaluated for different model sizes. An 8 ×
8 KL model was subjectively determined to be the best compromise between error

region localization and modeling error minimization. The QA analysis, however, is
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Figure 2.4: The wind fields corresponding to the first 6 KL basis vectors (top) and
the magnitudes of their corresponding cosine transforms (bottom). The vertical di-
mension of the cosine transform corresponds to increasing frequency in the vertical
direction. Likewise, the horizontal dimension of the cosine transform corresponds to
increasing frequency in the horizontal direction.

not particularly sensitive to the model size as long as the truncation point is chosen

such that the spatial frequency resolution is similar.

The general approach in choosing the KL model truncation point is to

remove higher-order eigenvectors containing mostly noise. Examining the eigenvalues

of the wind autocorrelation matrix for an 8 × 8 region size (see Figure 2.3), there are

noticeable discontinuities in eigenvalues after the 2nd and 6th eigenvalues. Because

the first 6 eigenvectors characterize over 95% of the wind variation, six is a reasonable

truncation point for a simple, low-order model.

The discontinuities in the eigenvalues after the 2nd and 6th value can be

explained by examining the spatial frequency of the eigenvectors via the 2-D vector

cosine transform. Figure 2.4 displays the first 6 basis vectors and the magnitude of

their corresponding vector cosine transforms. The first two basis vector wind fields

are the mean wind, and consist solely of the constant (1,1) cosine basis term (upper

left corner). The next 4 basis vectors represent various common wind features and

are linear combinations of the (1,2) and (2,1) cosine basis terms. The succeeding 6

KL basis fields consist of the (1,3), (2,2), and (3,1) cosine bases (Figure 2.5). This
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Figure 2.5: The wind fields corresponding to KL basis vectors 7 - 12 and the magni-
tudes of their corresponding cosine transforms.

analysis suggests that the eigenvalue discontinuities correspond to edges of discrete

frequency groupings. With six basis vectors, the model can represent a wide range of

wind features, including cyclonic storms, col points, and divergent fields.

The effective spatial resolution achieved by the QuikSCAT KL model is

similar to that of the NSCAT KL model. Gonzales and Long [21] used a larger (12

× 12) region size with an arbitrary truncation point of 22 parameters in analyzing

NSCAT data. Due to QuikSCAT’s finer grid, the actual spatial resolution achieved

by the 6-parameter QuikSCAT model is on the order of the resolution achieved by

the larger NSCAT model.

2.2.2 KL basis data sensitivity analysis

Because the KL model is derived from SeaWinds ambiguity-selected wind

fields, it is important to evaluate the sensitivity of the model to ambiguity selection

errors in the training data. To do this, we employ Monte Carlo simulation to the

ambiguity selected winds to form several KL models whose training data sets are

“corrupted” with artificially induced ambiguity selection errors. A cluster of artificial

ambiguity selection errors is introduced into SeaWinds data by adding an arbitrary

angle between 60◦ and 300◦ to a randomly-shaped patch of ambiguity-selected winds
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and choosing the nearest ambiguities. The ambiguity selection errors are injected into

the data set until a certain percentage of wind vector cells have been corrupted. A KL

model is then generated from the corrupted data. We then evaluate the vector space

spanned in common between the corrupted and uncorrupted models, and demonstrate

that the space spanned by the KL model is insensitive to the artificially-induced

ambiguity selection errors. The analysis suggests that the original model is unaffected

by ambiguity selection errors inherent in the training data.

The following derivation introduces a basis comparison metric that cal-

culates the amount of energy in common between the spans of two truncated

KL basis models. We begin the derivation by defining the two truncated bases,

A = [a1 a2 · · · aN] and B = [b1 b2 · · · bN] where an and bn are the nth basis vec-

tors of A and B respectively. We map each basis vector of A onto the space spanned

by B via the inner product,

x̂n = BTan. (2.2)

Because the columns of B are orthonormal, each element in x̂n gives the magnitude

of the projection of an in the direction of the B basis vectors. Also, because each

an has unity length, the magnitude of x̂n is between zero and one. A value of “0”

indicates that an is orthogonal to B while “1” indicates that an can be completely

represented by B. The total mean energy of the first N projected basis vectors is

LA,B =
1

N

N∑
n=1

‖BTan‖2
2. (2.3)

LA,B is known as the basis comparison metric. The value of LA,B is also between 0

and 1, indicating the fraction of the energy in the span of A that is also spanned by

B. Simplifying Eq. (2.3), we obtain

LA,B =
1

N

N∑
n=1

(BTan)T BTan

=
1

N
tr{(BT A)T BT A}

=
1

N
‖BT A‖2

F (2.4)

where ‖ · ‖F is the Frobenius norm.
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Table 2.1: Comparison of several KL models corrupted with artificially-induced am-
biguity selection errors to the original (non-corrupted) KL model. The percentage of
WVCs corrupted by induced ambiguity selection errors in the training data is given
in the left column. The basis comparison metric is given in the left column (LA,B)
where A is the corrupted KL model and B is the original model. A and B both have
6 basis vectors.

Induced ambiguity LA,B

selection errors 6 basis vectors
0% 1.0000
4% 0.9996
8% 0.9992
12% 0.9989
16% 0.9984
20% 0.9981

The basis comparison metric (LA,B) is applied to the uncorrupted KL

model against each of the corrupted models and the results are given in Table 2.1.

From this analysis, each 6-parameter model derived from corrupted data is shown to

span over 99% of the same vector space as the original KL model. This indicates that

the KL model is not sensitive to ambiguity selection errors (at least as high as 20%) in

the training data set. Because the ambiguity selection errors inherent in QuikSCAT

data are estimated to only be about 5% (see Section 2.4.1), the low-order model is

considered insensitive to the ambiguity selection of the training set.

2.3 QA analysis method

This section describes the ambiguity selection method in detail. Because we

do not know the true wind, an absolute assessment of the performance of QuikSCAT

wind retrieval is unachievable. It is possible, however, to evaluate the self-consistency

of the ambiguity-selected winds. From the KL analysis in Section 2.2, we see that

the wind is dominated by low spatial frequency content. By mapping the observed

winds onto the low-order KL eigenvectors and comparing the observed wind to the

model fit, we identify the wind variability outside of the typical wind spectrum. We
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Figure 2.6: A flow diagram describing the QA analysis method. The left shaded
box defines the region classification thresholds, and the right shaded box defines the
thresholds involved with flagging a region as an ambiguity selection error.

can generally attribute large errors between the model fit and the ambiguity-selected

wind to estimation error or ambiguity selection error.

Besides estimation and ambiguity selection errors, certain fine-scale wind

features cannot be accurately modeled by the KL model’s limited basis set. Such

areas may differ from the model fit, albeit the ambiguity selection is the best possible.

Also, it is possible for ambiguity selection errors to result in a consistent wind flow.

Due to these considerations, the QA analysis method is considered effective only in

identifying “possible” ambiguity selection errors [21].

2.3.1 Overview

Our QA analysis method has two parts: First, each 8 × 8 region is classified

as “good,” “fair,” or “poor” by the absolute level to which it deviates from the model.
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This region classification rates the level of estimation error, ambiguity selection error,

and poorly-modeled fine-scale wind features. Second, possible ambiguity selection

errors regions are identified using a more sophisticated approach. This ambiguity

selection error detection method is optimized to suppress certain known effects of

estimation error in order to better locate those regions containing ambiguity selection

error. A flow diagram of the QA method is shown in Figure 2.6 with a summary

description given in the following sections.

Weighted least-squares model fit

The swath is segmented into 8 × 8 regions overlapping by 50% in the

cross-track and along-track directions. Regions containing more than 25% invalid

cells are ignored. An invalid cell is a WVC over land or ice where wind retrieval

is not performed. The KL model is applied to each 8 × 8 region using a weighted

least-squares fit,

ŵm = F (F T WF )−1F T Wwo (2.5)

where F is the truncated basis model, W is a weighting matrix, wo is the observed

wind, and ŵm is the model-fit estimate. The vectors wo and ŵm and the columns of

F are in standard vector form defined in Section 2.2. The diagonal weighting matrix

W places a weighting of “1” on valid WVCs and a weighting of “0” on invalid WVCs.

Thus, WVCs containing invalid data do not contribute to the modeled wind field.

After creating the model fit, the directional and vector error between the

observed wind and model-fit wind for each WVC is computed. The directional error

is the difference in direction between the model-fit cell and the selected ambiguity,

i.e.

φe = |φm − φo|0≤φe≤180 (2.6)

where φm and φo are the directions of the modeled and observed vectors. The direction

error is always between 0◦ and 180◦. The vector error is the magnitude of the vector

difference between the model fit and the selected ambiguity, i.e.

ke =
(
(um − uo)

2 + (vm − vo)
2
) 1

2 (2.7)
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Figure 2.7: 8 × 8 Region of QuikSCAT point-wise selected wind and the KL model fit.
Also shown are all possible ambiguities and the difference field between the observed
wind and model fit.

where (um, vm) and (vo, vo) are the cross-track and along-track components of the

model-fit and observed WVC, respectively.

Figure 2.7 shows an 8 × 8 WVC region of point-wise selected wind and

its least squares approximation. This example contains inconsistent flow evidenced

by the divergent nature of the central section. The restricted basis cannot accurately

represent this feature.
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Table 2.2: Constant WVC thresholds determining the flagging of a vector. The term
urms is the region root mean square (RMS) wind speed defined by urms = (wT

o wo/N)
1
2

where wo is the standard vector form of the observed wind field and N is the number
of valid data cells in the region. ( †Denotes values used by Gonzales and Long, [1999]).

WVC threshold value
direction error 23◦ †

vector error max

{
2.7 †

0.5urms
m/s

Region classification (good, fair, poor)

After generating a model fit and thresholding the wind vectors, the QA

method first evaluates the overall consistency of the wind. Each 8 × 8 region is

classified according to the number of WVCs exceeding “constant” directional or vector

thresholds. The term “constant” denotes that the thresholds are independent of cross-

track position (as opposed to “variable” thresholds explained in Section 2.3.1). These

WVC thresholds are given in Table 2.2.

When the region exceeds 20% flagged cells (those that exceed the “con-

stant” thresholds), it is classified as “poor.” A poor rating indicates that the region

is not spatially consistent due to a high estimation noise level, significant ambiguity

selection errors, or fine-scale wind features such as fronts or storms. If the region con-

tains 5% to 20% flagged WVCs, it is classified as “fair.” A fair rating indicates that

the region may have several noisy vectors or some fine-scale wind variations. Small

isolated ambiguity selection errors may also receive a fair rating. A “good” rating

(less than 5% flagged cells) indicates a spatially consistent wind field with possibly

only a few noisy vectors. These region thresholds are summarized in Table 2.3. Bulk

general region classification statistics for the QuikSCAT data set are given in Section

2.4.
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Table 2.3: Thresholds determining the classification of a region. (†Denotes values
used by Gonzales and Long [1999]).

Classification Percentage of cells
flagged per region

“Good” < 5%
“Fair” 5% - 20%
“Poor” > 20% †

Ambiguity selection error detection

The next stage of the QA analysis is ambiguity selection error detection.

Here, we suppress flagging of regions due to estimation noise error in order to better

locate ambiguity selection errors. To detect 8 × 8 regions containing possible ambi-

guity selection errors, two types of consistency checks are performed: a model-based

consistency check, and a directional-histogram-based consistency check.

First, we perform a model-based consistency check. The region is compared

to the KL model fit and WVCs are flagged according to variable directional and vector

error thresholds (similar to the region classification explained in Section 2.3.1). The

variable WVC thresholds are tuned to a manually-inspected training data set. The

training set consists of 15 swaths of SeaWinds data in which ambiguity selection errors

are manually flagged. The variable WVC thresholds are set to equalize the false alarm

rate for all cross-track/RMS wind speed bins, giving constant performance across the

swath (see Figure 2.8). Where the region exceeds a limit in the number of cells flagged

(set at 14%) and an RMS error threshold, it is flagged as inconsistent. The variable

thresholds suppress over-flagging of regions due to estimation noise. A full description

of the method used to compute the variable thresholds is given in Appendix B.

Second, we perform a directional-histogram-based consistency check by

inspecting the 8 × 8 WVC region for multiple directional flows. The purpose of

this non-model-based consistency check is to help ensure that the region is not being

flagged solely due to noise. Generally, the directions of noisy wind vectors have some

random distribution about a mean flow. When no ambiguity selection errors are
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Figure 2.8: The a) directional and b) vector error thresholds per cross track and RMS
wind speed that give a constant false alarm rate.

present, a high estimation noise level may cause the region to deviate significantly

from the model, albeit there is only one mean flow. Ambiguity selection errors,

however, generally cause neighboring patches of WVCs to point in contradictory

directions, creating multiple main wind directions in a single 8 × 8 region. This can

be detected by inspecting the histogram of directions for multiple modes. When a

region fails both model-based and directional-histogram-based consistency checks, it

is identified as containing possible ambiguity selection errors. These two consistency

checks are described in more detail in Appendix C.

In addition to these consistency checks, all regions under 3.5 m/s RMS wind

speed are not examined for possible ambiguity selection errors because the SNR is too

low to validate the wind direction estimates. From experience with the NSCAT QA

analysis, most NSCAT regions with RMS wind speed less than 4.0 m/s are flagged

primarily because of noise [21]. Similarly, through subjective examination of Sea-

Winds data, the estimation noise level for regions below 3.5 m/s RMS is determined
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to be too high to subjectively assess the ambiguity selection. Approximately 7% of

the total number of regions fall beneath this threshold.

The QA data can be used in conjunction with the current L2B product via

a WVC bit flag, created as an overlay product. Appendix D presents a bit flag that

indicates the overall quality of retrieved winds in the swath using the QA analysis

method.

2.3.2 Performance of the ambiguity selection error detection method on
the training data set

Ambiguity selection error detection is performed on the training data set,

and the number of false alarms and missed detections are tabulated. A region is

considered a false alarm if it was not subjectively identified as an ambiguity selection

error, but is flagged by the detection method. A region is considered a missed de-

tection if the region was subjectively identified as an ambiguity selection error, but

neither it nor an overlapping region is flagged by the detection method. The false

alarm rate (number of false alarms per number of regions not subjectively flagged as

ambiguity selection errors) is determined to be approximately 1.5%. The missed de-

tection rate (number of missed detections per number of regions subjectively flagged

as ambiguity selection errors) is found to be about 3%. This means that the ambiguity

selection errors are correctly identified 97% of the time.

The false alarm and missed detection rates are also computed as a function

of cross-track position and RMS wind speed. These results are summarized in Figure

2.9. From this, we see that the far swath produces less false alarms than the inner-

and mid-swath regions. Also, the false alarm rate and missed detection are slightly

higher in the 4 m/s bin because the data at these wind speeds tend to be somewhat

noisier than for other wind speed bins.

2.4 QA analysis

In this section, the QA analysis method is applied to 2 years of QuikSCAT

data and a statistical account is presented. First, the overall quality of the data set

is evaluated. Next, the quality assessment is presented as a function of cross-track
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Figure 2.9: False alarm and missed detection rates for the ambiguity selection error
detection method per cross track and RMS wind speed. This data is taken from a
test set of 15 subjectively analyzed revs.

position and RMS wind speed. Lastly, we present the QA results as a function of time

and latitude band. We also compare the ambiguity selection errors to the number of

cyclonic storms and the percentage of WVCs corrupted by rain.

2.4.1 Overall SeaWinds QA results

An aggregate assessment of the ambiguity selection and self-consistency of

retrieved winds for 2 years of QuikSCAT data is provided in this section. Table 2.4

summarizes the percentage of 8 × 8 regions classified as “good,” “fair,” or “poor”

using the method described in Section 2.3.1. Also given is the percent of regions

flagged as possible ambiguity selection errors using the method described in Section

2.3.1. The majority of the regions examined are classified as “good” ( > 65 % ). This
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Table 2.4: Overall results of the QA analysis for the SeaWinds data set and for the
training data set. Also, the percent of ambiguity selection errors subjectively flagged
in the training data set.

Region Entire Training data
Classification Data Set set (15 revs)
Good 65.2% 63.6%
Fair 19.3% 19.6%
Poor 15.5% 16.8%

Containing
Ambiguity 4.6% 4.9%
Selection (4.0% subjectively
Errors flagged)

indicates that in general, most QuikSCAT point-wise derived winds have a relatively

low noise level. A substantial portion (15.5%) of the regions are classified as poor.

These regions have a high estimation noise level or contain ambiguity selection errors.

However, using the ambiguity selection error detection method, only five percent of

regions are flagged as possible ambiguity selection errors, suggesting that only about

one third of the poor regions are a result of ambiguity selection errors. Thus, we

conclude that the SeaWinds ambiguity selection is at least 95% effective for wind

speeds exceeding 3.5 m/s.

We also note that the automated ambiguity selection error detection

method classifies regions in the 2-year data set in approximately the same proportion

as the training data set, suggesting that the training data is representative of the

2-year SeaWinds data collection.

The results given here for SeaWinds are very comparable to the QA results

obtained for NSCAT [21]. With NSCAT, 65% of regions are classified as “perfect”

or “good,” which is similar to a “good” classification for the SeaWinds QA analysis.

In addition, 18% of NSCAT regions are classified as “poor” which is only slightly

more than for SeaWinds. Also, both SeaWinds and NSCAT ambiguity selection is
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Figure 2.10: Percentage of all regions flagged as “poor” and flagged as containing
ambiguity selection errors (ASE regions) per a) cross-track position and b) RMS
wind speed.

determined to be at least 95% effective for wind speeds exceeding 3.5 and 4 m/s

respectively.

2.4.2 Cross track/RMS wind speed dependence

Here, we analyze the results of the QA analysis as a function of cross

track position and region RMS wind speed. We first compare the percentage of

“poor” regions to possible ambiguity selection error regions as a function of cross

track position and RMS wind speed (see Figure 2.10). Poor regions occur in higher

percentages at nadir and where there is low wind speed. These areas generally contain

higher estimation noise, and are thus more apt to be rated “poor.” Poor wind retrieval

at low wind speeds are additionally observed by [27].

An important observation is that fewer possible ambiguity selection errors

are inferred at nadir and on the edges of the swath than in the “sweet spot” (the off-

nadir region, usually characterized by a high percentage of correct first ambiguities).

In order to explain this, we examine the average number of ambiguities produced

by the JPL wind estimation algorithm per cross-track position. The fraction of 1 to

3 ambiguity cases per cross track is compared to the fraction of 4 ambiguity cases

averaged over 600 revolutions of SeaWinds data in Figure 2.11. The general shape of
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Figure 2.11: a) Percent of WVCs per cross track position with 1 to 3 ambiguities and
b) Percent of WVCs per cross-track position with 4 ambiguities averaged over 600
revs of SeaWinds data.

the curve representing the 1 to 3 ambiguity cases of Figure 2.11 closely mirrors the

percent of ambiguity selection errors per cross-track position shown in Figure 2.10.

At nadir and on swath edges (where there are fewer estimated ambiguity selection

errors), there is a higher likelihood of having four ambiguity choices.

These results suggest that a higher number of ambiguities enables the

creation of a more self-consistent wind field by the ambiguity selection algorithm. A

manual inspection of ambiguity selection errors shows that higher errors in the sweet

spot often occur in connection with rain occurrences (see Section 2.4.3 for an objective

analysis of the rain effect). In regions of data corruption such as rain contamination

where an entire region of first ambiguities may be incorrect, thresholded nudging

in the sweet spot can result in blocks of incorrect initial selections. The point-wise

median filter alone is insufficient in correcting such errors. Since more ambiguities

are used in the nudging process at nadir and along swath edges [14], the result is a

more self-consistent initial estimate in the presence of rain. Also, where there are

more ambiguities, the point-wise median filter has a wider selection of possible vector

directions to match the flow of the surrounding WVCs in regions of rain corruption.
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Figure 2.12: Ambiguity selection errors as a function of time. The data line is the
fraction of ambiguity selection errors averaged over 3 days. The smooth line is a 30
day moving average.

2.4.3 Temporal QA statistics

Next, we examine SeaWinds ambiguity selection as a function of time.

Figure 2.12 shows the flagged ambiguity selection errors averaged over 3 days for each

point. The percent of flagged ambiguity selection errors stays nominally between 4%

and 5% for the two years of SeaWinds data analyzed. Although the overall ambiguity

selection appears constant, seasonal weather variations in various oceanic regions

locally affect the SeaWinds wind retrieval performance.

In order to understand weather pattern variations that affect SeaWinds’

performance, we divide the QuikSCAT wind data into latitude bands (see Table 2.5).

For each band, the average percentage of possible ambiguity selection errors detected
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by the QA method, the average number of cyclonic storms passed by SeaWinds per

degree latitude (see Section 2.5 for details on cyclonic storm detection), and the

number of WVCs flagged by the JPL rain flag [28] per day are computed and given

in Figure 2.13.

We define our count of the number of storms per latitude band as the

number of cyclonic features passed by SeaWinds with RMS wind speed > 6 m/s

divided by the latitude band size in degrees. Due to SeaWinds’ polar orbit, storms

in the arctic and mid-latitude regions may have multiple observations per day, while

some tropical storms may only have one or possibly zero observations in a single day.

Thus, this scatterometer-observed storm count is somewhat skewed from a true count

of the number of storms in each latitude band.

Storms are problematic in wind retrieval for several reasons. First, since

storms exhibit fine-scale wind variations, the nudging field must be sufficiently ac-

curate to correctly position such features. The numerical weather prediction models

used to nudge SeaWinds data are interpolated from low resolution estimates. Storm

centers and other fine scale features may be misplaced or smoothed due to the inter-

polation process, resulting in a poor initial estimate of the wind flow.

It is also important to note that small-scale storm features may be erro-

neously identified as possible ambiguity selection errors due to the limited basis set

of the KL model [21]. Thus, the correlation between storms and estimated ambiguity

selection errors may be somewhat artificially induced. However, as is shown by a

subjective analysis in Section 2.5, the wind retrieval is worse in storm regions.

Second, rain often exists in stormy areas. Rain affects the ambiguity selec-

tion of SeaWinds data by disrupting the scatterometer signal. Falling rain interacts

with the signal, causing attenuation and backscatter from the atmospheric hydrome-

teors [5]. In addition, rain disrupts the wind-generated capillary waves on the ocean

surface, altering the wind-induced backscatter signature [29]. Rain-corrupted WVCs

are often augmented in speed and contain incorrect direction information. Generally,

the first and second ambiguities point in a direction almost parallel with the cross

track, independent of the wind’s true direction. The ambiguities point parallel with
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Figure 2.13: a) Percent of ambiguity selection error regions, b) number of cyclonic
storms per degree latitude, c) percent of WVCs flagged with L2B rain flag for each
latitude band averaged over 3 days per data point.
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Table 2.5: Latitude bands

Latitude Band Range
7 45◦ to 90◦

6 25◦ to 45◦

5 5◦ to 25◦

4 −5◦ to 5◦

3 −25◦ to −5◦

2 −45◦ to −25◦

1 −90◦ to −45◦

the cross track because rain is a nearly isotropic scatterer, giving an equal response

for both fore and aft looking observations. Likewise, winds blowing cross-wise to the

satellite flight direction also give a near-equal response from fore and aft observations

[28]. Rain effects on wind scatterometer backscatter returns have been found to be

significant [29, 30].

Nearby ambiguity selection is influenced by rain-corrupted WVCs. When

rain occurs in regions of high instrument skill (where thresholded nudging chooses only

the first or second ambiguities), incorrect wind vectors may be chosen to initialize

the median filter. Because these corrupted wind vectors are given the same weight as

other wind vectors, they influence neighboring cells causing an entire area of WVCs to

point in an incorrect direction. Also, because the direction of isolated cells that have

been rain contaminated may be incorrect, they may be flagged as possible ambiguity

selection errors, since there is no better choice.

From visual inspection of Figure 2.13, a correlation exists between the

possible ambiguity selection errors, number of storms, and rain percentages. We

quantify this correlation by computing the correlation coefficients between storms

and ambiguity selection errors and between WVCs flagged as rain and ambiguity

selection errors. These coefficients are listed in Table 2.6 for each latitude band. The

highest correlation occurs in the 3rd, 5th, and 7th latitude bands. This correlation

suggests that rain and storms contribute to poor ambiguity selection and inconsistent

wind flow.
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Table 2.6: Correlation coefficients for each latitude band. Csa is the correlation
coefficient between the smoothed ambiguity selection error and storm data of Figure
2.13. Cra is the correlation coefficient between the smoothed ambiguity selection error
and rain data of Figure 2.13.

Latitude Band Csa Cra

7 0.9193 0.7626
6 0.5314 0.6285
5 0.8737 0.9152
4 0.1047 0.8399
3 0.8794 0.8456
2 0.6126 0.4388
1 0.5700 0.4072

The equatorial band (latitude band 4) has the fewest storms. Storms

around the equator are rare because the Coriolis effect that drives cyclonic circulation

disappears at the equator. Thus, of storms and rain, rain has the larger influence on

the self-consistency of the ambiguity selected wind in that area. From visual inspec-

tion, both rain and possible ambiguity selection errors for the equatorial band peak

around April. This time period in the equatorial band has some of the highest wind

retrieval error rates.

Latitude bands 3 and 5 (north and south tropical regions) demonstrate the

most noticeable seasonal trend in storms, rain, and possible ambiguity selection errors.

During the Austral summer months (November to May), rain, storms, and ambiguity

selection errors increase in the southern hemisphere tropical band (see Figures 2.13b

and 2.13c, latitude band 3). In the Austral winter months (May to November), there

are decreased rain, storms and ambiguity selection errors. A similar, shifted seasonal

trend occurs in the northern hemisphere in the 5th latitude band. Peak rain averages

in band 5 (northern hemisphere tropics) are higher than band 3 for these years,

resulting in higher peak ambiguity selection errors.

Though more total storms occur in bands 2 and 6 (mid-latitude regions)

than in the tropics, the mid-latitude bands are the most stable with respect to ambi-

guity selection errors. The seasonal variation of rain and ambiguity selection errors
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in these bands are not as distinct as in bands 3 and 5, resulting in more seasonally

uniform performance of scatterometer wind retrieval. Mid-latitude rain averages are

higher in the northern hemisphere, causing a slightly worse performance of SeaWinds

ambiguity selection in this region.

The two polar regions (bands 1 and 7) have distinctly different character-

istics. The key difference between the polar regions is the position of the Earth’s land

masses at each of the poles. In the Southern hemisphere (band 1), wind retrieval is

not performed over the pole due to the position of Antarctic land and ice. The esti-

mated winds are only from the upper part of the band, and are therefore very similar

in their characteristics to the winds from the 2nd latitude band. In the Arctic region

(band 7), SeaWinds retrieves winds in the ice-free areas of the Arctic Ocean. Since

the weather in the Arctic region widely varies with the seasons, the performance of

SeaWinds also varies. The peak in ambiguity selection errors for the arctic region

occurs from October to April during the stormy winter months.

2.5 Subjective analysis of cyclonic storm regions

To better understand the scatterometer wind retrieval performance in

storms, we perform a subjective analysis of the winds in regions containing cyclonic

storm features. Cyclonic storm features are located by fitting the KL model to the

NCEP fields and comparing the mean square of parameters 3 and 6 to the mean

square of model parameters 1 and 2. Parameters 3 and 6 have cyclonic features,

while parameters 1 and 2 represent uniform wind flow (see Figure 2.4). Where the

mean square of parameters 3 and 6 is greater, the region is flagged as a cyclonic storm.

The circular region surrounding the storm center with radius 10 WVCs

(250 km) is manually examined in both the NCEP and ambiguity-selected data. The

region is subjectively given a rating of “1”, “2”, or “3”. A “1” rating indicates that

the ambiguity-selected storm’s cyclonic flow is very well defined and realistic. A “2”

rating occurs when the storm has a mostly-cyclonic flow, but there are some noticeable

ambiguity selection errors or rain-corrupted wind vectors. A rating “3” indicates that
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Table 2.7: Number of storms identified as rating “1”, “2”, and “3” for two time
periods: July 1999, and January 2000. For each time period, the data is further
subdivided into northern and southern hemisphere locations.

July 1999 January 2000 Total
Rating 1 2 3 1 2 3 1 2 3
North 55 17 33 /105 39 54 35 /128 94 71 68 /233
South 42 62 35 /139 74 76 44 /194 116 138 79 /333
Total 97 79 68 /244 113 130 79 /322 210 209 147 /566

the cyclonic flow is not well defined and the region may contain significant ambiguity

selection errors or rain corruption. Examples of each rating are shown in Figure 2.14.

Two separate time periods are examined: 2 weeks of QuikSCAT data from

July 19th to August 1, 1999, and 2 weeks of QuikSCAT data from January 17th to

January 30th, 2000. Cyclonic features bordering land or ice, and those with exces-

sively low wind speed (less than 6 m/s RMS) are ignored. Additionally, the data is

divided into northern and southern hemisphere. The number of storms given each

rating for each time period and hemisphere is shown in Table 2.7.

Overall, less than 40% of the manually inspected storm cases are identified

as “1.” The remaining 60% of storm cases have some level of inconsistent wind flow

which can often be attributed to ambiguity selection errors. In addition, 26% are

given a “3” rating, indicating very poor wind retrieval.

The northern hemisphere summer case exhibits the highest percentage of

“1” ratings, while the proportion of northern hemisphere “3” cases remains approx-

imately the same as the other cases. This increase in accuracy for the northern

hemisphere summer may be related to the accuracy of the nudging NCEP fields for

this case. In order to examine the accuracy of the NCEP winds, we calculate the dis-

tance between NCEP and QuikSCAT storm centers for each storm rated “1” or “2”.

After manually flagging the storm centers, we average the distances between NCEP

and QuikSCAT centers for each period (see Table 2.8). The northern hemisphere

July 1999 case exhibits the statistically best storm retrieval and also demonstrates
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Figure 2.14: a) QuikSCAT storm region rated “1”, b) corresponding NCEP data.
c) QuikSCAT storm region rated “2”, d) corresponding NCEP data. e) QuikSCAT
storm region rated “3”, f) corresponding NCEP data.
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Table 2.8: Average distance (km) between the NCEP storm centers and the L2B
storm centers for storms rated 1 or 2.

July 1999 January 2000 Combined
North 74 112 95
South 118 106 111

Combined 100 108 105

the best collocation between NCEP and QuikSCAT storms. This example suggests

that more accurate nudging in this area improves the wind retrieval performance.

In addition to the sensitivity to misplaced storms, the scatterometer wind

retrieval of storms is also seriously affected by rain. For storms rated “3”, on average,

approximately 30% of vectors per region are flagged by the QuikSCAT L2B rain

flag. For regions ranked “1” or “2”, only 20% of vectors are flagged as containing

rain. The higher rain averages in storms rated “3” suggests that rain is related to

poorly retrieved storms. From manual inspection, where the rain corruption is severe,

especially in lower wind speed regions, the backscatter is sufficiently affected as to

make retrieval of fine scale features nearly impossible with current methods.

This subjective analysis of QuikSCAT cyclonic storm cases suggests that

scatterometer wind retrieval is more error prone in regions of cyclonic storms and

lends support to the argument that storms, rain and ambiguity selection errors are

correlated. Because rain and storm mis-location along with the QA flag and other

factors can be indicators of poorly retrieved storms, automated storm rating proce-

dures can be created using these storm sensitive parameters as inputs. An attempt

at a simple maximum likelihood storm rating technique is given in Appendix E.

2.6 Discussion and summary

Scatterometer wind retrieval offers the opportunity for advanced study

of the oceans. Although the estimation process results in ambiguous solutions, we

estimate the current point-wise ambiguity selection technique to be 95% effective

in creating a self-consistent wind flow. Problems associated with the current wind
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retrieval process generally are correlated with natural phenomena (i.e. wind speed,

storminess, and rain) and instrument geometry. Wind speed and instrument geometry

affect the overall noise level of the retrieved winds. Scatterometer winds are especially

noisy at low wind speeds and at nadir for SeaWinds. Nearly 100% of regions with

RMS wind speeds less than 2.5 m/s are sufficiently corrupted by noise to receive a

“poor” rating. In addition, about 25% of regions at nadir are given a “poor” rating.

Ambiguity selection errors are correlated with rain corruption in the scat-

terometer signal and cyclonic storm features. Rain corruption generally creates sig-

nificant changes in the σ◦ values. The large error in the vector estimates for rain con-

taminated WVCs not only affects the corrupted WVC, but can significantly change

the flow of the surrounding WVCs from the point-wise filtering process, thus creating

patches of ambiguity selection errors.

Storms present a dual problem. First, the nudging data used to initialize

the ambiguity selection process is often in error near fine-scale wind features. Second,

rain associated with cyclonic storms often significantly affects the retrieved winds.

From the subjective analysis presented in this paper, 37% of examined storm cases

have very well defined and realistic flow in the scatterometer-derived wind fields,

while 26% of storm cases have very poorly retrieved flow. The effects of rain and

nudging-data storm misplacement are significant.

Although limitations in scatterometer retrieved winds exist, point-wise es-

timated scatterometer winds are of very high quality in non-rain and moderate wind

speed areas. Further research in wind estimation in the presence of rain or in storm

regions may aid in higher accuracy of scatterometer retrieved winds. These im-

proved methods may include the addition of a rain rate parameter into the MLE

technique and specialized storm retrieval methods using the KL or other storm-specific

models. Some current methods designed to improve wind retrieval accuracy include

[31, 14, 27, 32]. In addition, research is ongoing to improve the GMF at low, e.g.

[33], and high wind speeds, e.g. [34].
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In the following chapters, three main issues indicated by the QA analysis

are addressed: ambiguity selection, low-wind speed variability, and rain modeling and

correction. Through the following analysis, I demonstrate that

1. Quality ambiguity selection can be performed without the use of nudging data.

2. A low wind speed threshold in backscatter may be a significant contributer to

scatterometer error at low wind speeds.

3. Using a simple rain backscatter model, the effects of rain contamination in

SeaWinds data can be reduced.

4. Rain can be measured using the SeaWinds scatterometer.
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Chapter 3

An Advanced Ambiguity Selection Algorithm for SeaWinds

The QA analysis presented in the previous chapter suggests that ambigu-

ity selection errors contribute to inconsistent wind vector estimates in about 5% of

SeaWinds data. In order to improve the self-consistency of the ambiguity selected

wind flow, this section describes an advanced KL-model-based method of ambiguity

selection [35]. The new method avoids using outside data in its initialization and im-

proves the overall self-consistency of the wind. The new ambiguity selection method

produces winds similar to the JPL product and demonstrates that ambiguity selection

can be accomplished without nudging.

3.1 Background

In conventional SeaWinds point-wise ambiguity selection, NASA’s Jet

Propulsion Laboratory (JPL) uses a nudging method to initialize the ambiguity se-

lection process and enhance self-consistency [14]. As explained in Chapter 1, nudging

selects the ambiguity at each wind vector cell (WVC) that most closely matches the

flow of numeric weather prediction (NWP) fields to initialize the point-wise median

filter. The main limitation to the nudging method is that it creates a dependence on

the quality of outside information to select a unique solution from the ambiguity sets.

As an alternative to the nudged point-wise winds, Long developed a field-

wise wind estimation technique [11]. In field-wise wind retrieval, estimates are made

on a region-by-region basis using a low-order linear wind field model. The low-order

model assumes an inherent correlation between neighboring wind vectors, which re-

stricts the solution to a wind field satisfying the correlation constraints.
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In addition to its field-wise utility, the low-order wind model can also be

used to make point-wise ambiguity selection. Gonzales and Long demonstrated that

some ambiguity selection errors in point-wise retrieved winds can be corrected by se-

lecting the ambiguity that is closest to a least-squares model fit to the JPL winds [21].

This chapter describes a non-nudging point-wise ambiguity selection

method for SeaWinds developed at Brigham Young University (BYU) [35]. The BYU

method uses the low-order KL wind model to create an initial estimate of the overall

wind flow which replaces nudging. A model-based correction technique then reselects

ambiguities where the data is not self-consistent. The new method is self-contained

and computationally efficient.

In Section 3.2, we describe the BYU technique in detail. Because we lack

truth data, the ambiguity-selected JPL winds are used as a reference data set to which

the BYU method is compared in Section 3.3. We find that the BYU method generally

selects the same ambiguities as traditional JPL point-wise ambiguity selection with

more self-consistent performance in winds with low spatial variability. The BYU

method, however, is somewhat less able to correctly define fine-scale cyclonic flow than

the JPL nudged method. The fact that both the BYU and JPL methods produce

approximately the same result simultaneously helps validate both the nudged and

non-nudged approaches.

3.2 Overview of BYU point-wise ambiguity selection

In this section, the BYU algorithm is described in detail. To avoid nudging,

we utilize the KL model introduced in Chapter 2 to determine an initial ambiguity

selection over the high instrument skill inner-beam portion of the swath. The point-

wise median filter is initialized from this initial selection. The swath edges, where the

instrument skill is lower, are separately estimated by extrapolation of the inner-beam

wind flow. A correction routine locates and repairs inconsistencies in the selected

wind field. The masking and repairing steps are repeated until the wind field meets

convergence criteria. Fig. 3.1 outlines the steps involved in the BYU method. Section
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Figure 3.1: Flow chart of the BYU ambiguity selection method.

3.2.1 describes the initial estimate. Section 3.2.2 describes ambiguity selection of the

swath edges. Lastly, section 3.2.3 details the repair process.

3.2.1 Initial estimate

Methodology

As described in Chapter 1, the SeaWinds sub-track has three distinct

regimes with different wind retrieval characteristics: the swath edge, the sweet spot,

and the nadir region. Each regime has a different instrument skill or percentage of

correct first ambiguities. For SeaWinds, each WVC in the inner-beam region, includ-

ing the sweet spot and nadir region, has at least two fore-looking observations (one for

each beam) and at least two aft-looking observations, which provide sufficient mea-

surement density and azimuthal diversity to afford a high instrument skill. On the

swath edges, poor instrument geometry and observations from the outer-beam only

produces a much lower instrument skill. Also, the outer two cross track positions

on either side (1,2,75 and 76) are not always estimated in point-wise retrieval due to

very poor instrument geometry. Thus, the effective wind swath width is 72 WVCs.
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The high instrument skill of the inner-beam portion of the SeaWinds swath

affords estimation of the main wind flow using the first ambiguities. Although we

cannot calculate the actual instrument skill without truth data, a reasonable estimate

is the average percentage of first ambiguities selected by the JPL method. On average,

the JPL ambiguity selection method selects over 70% of first ambiguities in the inner-

beam portion of the swath. In the outer-beam portion of the swath, only about 35%

first ambiguities are selected. Because a vast majority of WVCs in the inner-beam

region have “correct” first ambiguities, the inner-beam first ambiguity field can be

utilized to initialize the ambiguity selection process.

Incorrect first ambiguities can be either isolated or clustered. In general,

isolated incorrect first ambiguities can be corrected by simply applying the point-wise

median filter to the field of first ambiguities. Small to large clusters of incorrect first

ambiguities on the order of half the filter size or larger remain incorrect after median

filtering. These errors can significantly affect the ambiguity-selected wind flow.

Rather than simply using the field of first ambiguities for an initial am-

biguity selection, the BYU method replaces first ambiguities that oppose the main

flow by second ambiguities. Since the JPL method selects over 90% first and sec-

ond ambiguities in the inner-beam region, a first/second ambiguity field yields better

final solution. Further, where neither the first or second ambiguity produces a self-

consistent solution, the ambiguity selection may be replaced by a third or fourth

ambiguity to create an even better initial estimate. In this way, ambiguities are in-

serted into the swath based on priority. This priority-based ambiguity selection is the

basic idea behind the BYU initial estimate.

In order to replace clusters of incorrect first ambiguities with second ambi-

guities, a low-order constraint is placed on the wind flow of the first ambiguity field.

To do this, an initial low-order KL model fit is made to the first ambiguity field. High

spatial frequency content caused by small clusters of incorrect first ambiguities are

smoothed by the model fit. All WVCs are set to the nearest first or second ambi-

guity. This step replaces isolated vectors and small to medium clusters of incorrect

first ambiguities with second ambiguities. The order of the KL model dictates the
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“smoothness” of the model fit, and thus influences the cluster size that is replaced by

second ambiguities. Wind vector cells exhibiting large errors between the first/second

ambiguity field and the model fit are flagged. Next, a second low-order model fit is

performed to the first/second ambiguity field, weighting out flagged WVCs. Where

neither first or second ambiguities are consistent with this model fit, the closest third

or fourth ambiguity may be chosen. Figure 3.2 illustrates the initial estimate.

Although this initial estimate corrects small to medium clusters of incorrect

vectors (depending on the KL model order), large regions where the first ambiguity

field is incorrect must be repaired separately with a more sophisticated routine (see

Section 3.2.3).

Detailed description of the initial estimate: application to SeaWinds swath

The large swath size prohibits applying a KL model to the entire swath

due to computational concerns. As a result, the swath is divided into 60 × 60 WVC

sections overlapping by 75% in the along track direction. The 60 × 60 region size is

chosen because it spans the entire inner-beam portion of the cross-track. A square

region size is chosen for historical reasons [11, 21]. Since the model fit requires the

inversion of a matrix that has on the order of N4 elements where N is the width of a

region, each 60 × 60 section is additionally decimated into 9 interleaved fields of 20

× 20 WVCs. This is equivalent to increasing the measurement spacing from 25 km

to 75 km for each field. Segmentation and decimation allow the use of a reasonably

sized model to reduce the computational expense of the problem.

For each 20 × 20 decimated region, a model fit is made to the first ambi-

guity field. Non-ocean WVCs and WVCs that contain significant rain contamination

as determined by the L2B rain flag [28] are weighted out of the model fit. The model

fit is computed via a weighted regularized least-squares estimate,

F̂ †
opt = (F T WF + Λ−1

F )−1F T W (3.1)

where ΛF contains the eigenvalues of the basis vectors in F and W is a weighting

matrix with diagonal elements of “1” corresponding to valid data cells and “0” cor-

responding to non-data cells or cells that are to be ignored. The coefficients for the
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Figure 3.2: Initial ambiguity selection method example: a) First ambiguity field, b)
Inner-beam portion with rain masked out, c) Decimated 20 × 20 field d) First model
fit, e) First and second ambiguities with inconsistent flow masked out, f) Second
model fit, g) reconstructed 60 × 60 field, h) Closest ambiguity to second model fit.
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Figure 3.3: A flow diagram summarizing the initial estimate. The shaded bubbles
show the most important steps.

basis fields, x̂opt, are

x̂opt = F̂ †
optw (3.2)

where w is the standard vector form of the wind field. The model fit field ŵopt is

constructed by the equation

ŵopt = F x̂opt. (3.3)

This model fit is regularized by the eigenvalues to give a realistic solution to points

that have been weighted out.
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After a model fit is made to the first ambiguity field, all WVCs in the 20

× 20 region are set to the nearest first or second ambiguity to the model fit. The

directional and vector error between the new ambiguity-selected field and the model

fit are computed for each WVC over the region. Cells where the directional error

exceeds 45◦ or the vector error is greater than the average wind speed of the region

are flagged as poor. A second higher order model fit is then made in which vectors

flagged as poor are weighted out. The second model fit interpolates new values for

the flagged cells.

After second model fits are made to all 9 fields corresponding to a 60

× 60 region, the entire 60 × 60 region is reconstructed by interleaving the second

model fit fields. The u and v components of the 60 × 60 reconstructed field are then

median filtered to ensure consistency among the interleaved fields. To rebuild the

entire swath, the center 30 along track rows are saved. All along track sections are

likewise estimated and each section is overlapped and window averaged. A simple

triangular averaging window is used in our implementation, although the shape of

the window is not critical. This creates a low resolution initial wind field close to the

wind flow dictated by the first and second ambiguities. Lastly, each WVC is set to

the nearest ambiguity to the low-resolution wind field. All ambiguities are included

in the selection process. The result is an ambiguity-selected field dictated mainly by

the flow of the first and second ambiguities. The steps involved with creating the

initial estimate are shown in Fig. 3.3.

The initial ambiguity-selected field replaces the nudging data used in tradi-

tional point-wise estimation. Next, the point-wise median filter described in Chapter

1 is employed to insure self-consistency among each selected ambiguity and its neigh-

bors. This is the same point-wise median filter implemented by JPL, although JPL

initializes the filter with NWP model fields.

3.2.2 Estimating swath edges

The initial selected ambiguity field only includes the inner-beam portion of

the swath. Due to low instrument skill in the outer beam region, ambiguity selection
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of swath edges must be performed separately. We make no assumption about the

correctness of the first ambiguities on the swath edges. Instead, we use the wind flow

of the inner-beam region to infer a solution for the outer-beam region by extrapolating

values for the outer cells via the KL model.

The swath edges, including the outer-beam WVCs and the outer edge

of the inner-beam, are divided into 16 × 16 WVC regions overlapping by 50% in

the along track direction. These regions contain 9 cross-track rows assigned unique

ambiguities by the previous steps and 7 cross-track rows of unselected outer-beam

WVCs. The choice of N = 16 is arbitrary, but provides a good compromise between

computational efficiency and inclusion of inner-beam data. The outer cross-track row

is not included because wind retrieval is not performed there. A low-order model fit is

made to each 16 × 16 region using only the inner-beam wind vectors. This yields an

estimate of the outer 7 cross track rows via interpolation of the model fit. A new 16

× 16 field is constructed from the closest ambiguity to the model fit. If the root mean

square (RMS) error between the closest alias field and the model fit falls beneath a

threshold, the new ambiguity selections are inserted into the swath. This threshold

is set at 1.5 m/s and is relaxed (increased by 1.5 m/s) for each pass until all WVCs

have a unique vector selected. Thus, the best solutions are inserted first and used

to influence subsequent estimates. The swath is again passed through the point-wise

median filter after estimating the swath edges. The estimation of the swath edges is

summarized in Fig. 3.4.

3.2.3 Repairing inconsistencies

The previous steps yield a unique ambiguity at each WVC. Although this

selected ambiguity field could be the final product, due to possible large clusters of

incorrect first ambiguities in the initial estimate, there still may be areas of signifi-

cant ambiguity selection errors. Clusters of ambiguity selection errors are generally

characterized by 90 to 180 degree shifts in the selected wind flow. The transition
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Figure 3.4: A flow diagram summarizing the estimation of swath edges. The shaded
bubbles show the crucial steps.

between a cluster of ambiguity selection errors and the correctly selected wind is typ-

ically sharp, and results in unnatural, inconsistent wind flow. In order to correct such

possible errors, we develop an inconsistency flag followed by a correction algorithm.

Inconsistency flag

Wind vector cells neighboring the sharp transitions from the correctly se-

lected winds to the ambiguity selection errors can be identified by evaluating the

consistency of the wind flow [36]. In order to flag inconsistent WVCs, several image

processing tools are used.

A true median filter is applied to the u and v components of the ambiguity-

selected wind (the value at each WVC is replaced by the median of the values around

it within a 3 × 3 WVC region). This technique reduces the noise in the wind field

while preserving edges caused by inconsistent wind flow. The median wind field
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a) b)

c) d)

Figure 3.5: An example of the steps involved with flagging ambiguity selection error
edges. (a) The ambiguity-selected wind, (b) the median-filtered wind, (c) the average-
filtered wind, (d) the difference field. Where the errors are large, the WVCs are flagged
as inconsistent (circled).

is then filtered with a 3 × 3 WVC averaging filter (the components of each cell

are replaced by the average of those around it). This technique reduces noise, but

smoothes edges. The median field and the averaged field are compared. Cells are

flagged as inconsistent where the normalized vector difference between the averaged

and median field is large (greater than 0.25). Fig. 3.5 shows an example of the steps

involved with flagging ambiguity selection error edges.

The WVCs flagged as inconsistent indicate the location of ambiguity selec-

tion error edges. In order to repair areas of ambiguity selection error, we flag WVCs

isolated by the inconsistency flag and other features such as low wind speed areas, the

swath edge, or land. The “filling in” of such isolated regions is accomplished through

modified dilation and erosion techniques (see Appendix F for details).
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Selecting a consistent wind field

All isolated ambiguity selection error regions are re-estimated through in-

terpolation using the KL model. The swath is divided into 72 × 72 WVC sections

overlapping by 50% in the along-track direction. This region size is chosen because

it includes the entire cross track except the outer 2 cells on either side which do not

always contain estimated ambiguities. Each region is decimated into nine 24 × 24

WVC smaller interleaving regions to reduce computational expense. This region size

is larger than the 20 × 20 WVC region size used earlier because the outer beam

portion of the swath is now included in the estimation process. Each region is model

fit using a truncated 24 × 24 KL model, weighting out flagged cells. Flagged cells are

re-estimated through interpolation, and the ambiguities closest to the model fit are

selected. Each 72 × 72 WVC region is then reconstructed, and the center 36 along

track rows are kept. The outer along track rows are discarded because they are more

likely to contain modeling errors. The 50% overlap provides an estimate of the entire

swath from the individual pieces. The swath is reconstructed from the 72 × 36 pieces

and point-wise median filter ambiguity selection is performed on the entire swath.

Figure 3.6 shows an example of the repair process.

Iteration of the repair process

For each iteration of the repair process, the output field is compared to

the input field. When the number of changing cells falls beneath a threshold (set at

20) or a maximum number of iterations is reached, the algorithm stops. Most swaths

converge in about 10 iterations. The repair process is summarized in Fig. 3.7.

3.3 Comparison of BYU and JPL Ambiguity Selection

Without an extensive truth data set, assessing the quality of the BYU

ambiguity selection is difficult [21]. As a result, we use the JPL level 2B (L2B)

nudged winds as a reference data set. We perform three comparisons of BYU to

standard JPL processing on a set of 102 revs. Ambiguity selection is performed on

revs 1000-1050 and revs 6000-6050 of QuikSCAT data. In section 3.3.1, we perform a
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Figure 3.6: Example of the repair process: a) A sample wind field containing a large
ambiguity selection error in the initial estimate. b) The initial estimate including
swath edge estimation. c) Ambiguity selection error region flagged by the inconsis-
tency flag (red vectors). d) Final field after repairs.
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Figure 3.7: A flow diagram summarizing the repair process. The shaded bubbles
show the most important steps.

direct comparison of the ambiguities selected by both techniques. In section 3.3.2, we

perform a quality assurance analysis with a model-based technique [36]. In section

3.3.3, we present statistics based on manual inspection of the data.

3.3.1 Direct comparison of selected ambiguities

To quantify the similarity of the BYU ambiguity-selected winds to the

JPL reference data set, we compare the percentage of each ambiguity selected by

both techniques over the test data set in Table 3.1. The BYU algorithm selects

slightly fewer first ambiguities than the JPL product and slightly more of the other

ambiguities. Like the JPL product, the BYU algorithm selects a majority of first and

second ambiguities (about 85%) which is consistent with our assumption that the
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Table 3.1: Percentages of ambiguities chosen by the JPL L2B product and the BYU
algorithm.

Category JPL L2B product BYU method
1st Ambiguity 65.47% 64.80%
2nd Ambiguity 20.58% 20.76%
3rd Ambiguity 8.63% 8.89%
4th Ambiguity 5.32% 5.55%
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Figure 3.8: Percentage of individual WVCs selected the same for both JPL and BYU
methods per (a) cross-track position and (b) average wind speed of the ambiguities.

overall flow of the wind is dictated mainly by the first two ambiguities. The other

ambiguities are chosen in approximately the same proportion as the JPL product.

Further, we compare the percentage of ambiguities similarly selected by

both the BYU and JPL algorithms and the percent of each ambiguity changed in Table

3.2. From Table 3.2, the ambiguity selection is the same for both BYU and JPL in 93%

of WVCs. Thus, the BYU algorithm gives generally the same wind vector solution as

the JPL product which simultaneously helps validate both BYU and JPL techniques.

This result is significant because the BYU method was independently developed and

not tuned against the JPL reference data. It suggests that the SeaWinds noisy

ambiguity sets contain a sufficient percentage of correct first ambiguities to allow

self-contained ambiguity selection that is very close to a nudged solution.
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Table 3.2: Percentage of ambiguities chosen the same and changed from 1st to 2nd or
from 1st or 2nd to 3rd or 4th for the sample set of BYU and JPL ambiguity-selected
winds

Category Percentage
Same ambiguity selected for JPL and BYU 93.03%
JPL selected 1st ambiguity and 1.41%
BYU selected 2nd ambiguity
JPL selected 2nd ambiguity and 1.13%
BYU selected 1st ambiguity
JPL selected 1st or 2nd ambiguity and 2.23%
BYU selected 3rd or 4th ambiguity
JPL selected 3rd or 4th ambiguity and 1.74%
BYU selected 1st or 2nd ambiguity

Next, we compare the percentage of similar ambiguities selected as a func-

tion of cross-track position and wind speed. To assign a unique wind speed to a WVC,

we average wind speeds of all ambiguities. Since all ambiguities at a WVC generally

have similar wind speeds the averaging does not significantly affect the results. Fig.

3.8 displays the percentage of ambiguities chosen the same per cross-track position

and wind speed. Fig. 3.8 indicates that the ambiguity selection differs the most along

swath edges and at nadir. This is intuitive, because more ambiguities are generally

produced in these regions, allowing for a higher probability of a different selection.

Also, low and high wind speed data (which tend to be the noisiest) have a higher

percentage of changed WVCs.

3.3.2 Quality assurance assessment

In this section, we present a QA assessment of the ambiguity-selected (see

Chapter 2 for a description of the QA method). The QA method is applied to both

JPL and BYU ambiguity-selected test sets. Of JPL ambiguity-selected winds, 4.5% of

8 × 8 WVC regions inspected by the QA method are determined to contain possible

ambiguity selection errors. Of the BYU wind vector selections, about 3.4% of all

regions are determined to contain possible ambiguity selection errors. These numbers
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Figure 3.9: Percentage of 8 × 8 regions flagged as containing possible ambiguity
selections error by the QA analysis method (a) per cross-track position and (b) RMS
wind speed for both JPL and BYU methods (left axes). A histogram of wind speeds
is show in (b), indicating the number of regions inspected per RMS wind speed bin
(right axis).

suggest that the overall consistency of the BYU method is somewhat better than

JPL.

Next, we examine the percentage of QA-determined ambiguity selection

errors as a function of cross-track position and region RMS wind speed (see Fig. 3.9).

The region RMS wind speed is defined as

(
1

n

∑
i,j

U2
i,j

) 1
2

(3.4)

where Ui,j is the wind speed at cell {i,j} of the region, and n is the number of valid

wind data WVCs in the region (WVCs over ocean). The BYU method performs par-

ticularly better in the “sweet spot” (off-nadir region characterized by high instrument

skill) and at low to moderate wind speeds (4-10 m/s). Many of the “sweet spot” cases

occur in rain-corrupted areas where thresholded nudging fails to select ambiguities

consistent with the overall flow of the non-rain-corrupted wind [36]. At moderately

high wind speeds (10-18 m/s) both methods perform about the same. At extreme
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JPL − poor

JPL − good BYU − good JPL − good BYU − poor

BYU − good JPL − poor BYU − poor

Figure 3.10: Examples of the various classifications of regions without cyclonic features
when comparing the JPL and BYU ambiguity selection routines.

winds (18+ m/s) the JPL method performs better. Extreme winds, however, only

occur a small percentage of the time.

3.3.3 Analysis of storm and non-storm regions

This section provides a subjective comparison of BYU ambiguity selection

with the JPL selection in regions with and without cyclonic features. For each rev-

olution of test data, the swath is segmented into 38 × 38 WVC sections. Because

cyclones represent areas of high spatial variability, regions containing cyclonic fea-

tures are analyzed separately. A 38 × 38 region is rated “good” if there is a visually

consistent wind flow. If the region contains an area of visually inconsistent flow, it

is rated “poor”. These ratings are applied to each 38 × 38 WVC region of the 102

swath test data set. Examples of each type of region are found in Figs. 3.10 and 3.11.

Table 3.3 summarizes statistics on the regions for the study.
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JPL − poor

JPL − good BYU − good JPL − good BYU − poor

BYU − good JPL − poor BYU − poor

Figure 3.11: Examples of the various classifications of regions with cyclonic features
when comparing the JPL and BYU ambiguity selection routines.

For non-cyclonic areas, both JPL and BYU methods produce very visually

consistent flow in about 95% of the test data set. The BYU algorithm on average

produces somewhat more non-cyclonic “good” regions. From visual observation, JPL

poor areas often occur where the first ambiguity field is corrupted by rain from which

the JPL algorithm cannot recover. This is consistent with results found in [36].

Ambiguity selection errors in the BYU data are often associated with large regions

of incorrect first ambiguities or fine-scale wind features. An interesting observation is

that in some cases, large areas of incorrect first ambiguities occur near the southern

end of the swath at moderately high wind speeds, creating ambiguity selection errors

in the BYU data, but not in the nudged JPL winds.

For cyclonic cases, the BYU method performs the same as the JPL winds

in about 71% of the cases. Of the remaining cases, BYU winds are subjectively

better in about 9% of the cases, and worse in about 20% of the cases. Thus, the BYU
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Table 3.3: Total numbers and percentages of regions subjectively rated “good” or
“poor” in both BYU and JPL data sets for 38 × 38 WVC areas without and with
cyclonic features. Percentages are calculated for regions with and without cyclones
separately.

Without Cyclone With Cyclone
BYU BYU

JPL Good Poor Good Poor
Good 6154 (94.8%) 63 (1.0%) 91 (56.2%) 32 (19.7%)
Poor 147 (2.3%) 125 (1.9%) 15 (9.3%) 24 (14.8%)

method is somewhat less able to produce realistic cyclonic features. Although the JPL

nudging technique is not perfect in storm regions, it provides an initial guess of the

placement of cyclonic rotational features. These features may not be clearly evident

in the noisy first ambiguity field. Additionally, in the BYU method, cyclonic storms

are sometimes overly smoothed by the low-pass effect of the KL model, resulting in

poor ambiguity selection. Of the poorly retrieved storms for the BYU algorithm, a

higher percentage occur on the swath edges than in the inner-swath. Eighteen storms

are centered on the swath edge in the test data set. Of these storms, eleven (61%) are

subjectively identified as “poor,” a much higher percentage than the overall 34.5% of

BYU storm cases that are identified as “poor”. The higher rate of poorly retrieved

storms on the swath edge is probably due to the fact that solutions for the swath edge

are selected via extrapolation of the inner swath. Thus, small-scale features located

in the other-swath region are more likely to be missed by the algorithm.

The analysis in this section suggests that the BYU method is somewhat

less effective than JPL in creating visually consistent cyclonic storm regions, but

is generally better in areas lacking cyclonic features. The BYU method could be

improved by detecting and separately processing storm regions with a specialized

algorithm or by mitigating the effects of rain in storm regions. Further work is

planned to accomplish this.
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3.4 Summary and discussion

BYU point-wise ambiguity selection uses a data-driven model rather than

a nudging field to produce self-consistent wind fields for scatterometer wind ambiguity

selection. A correction routine locates and corrects further large inconsistencies in

the wind. The algorithm is applied to a set of test revs. The algorithm generates the

same basic wind flow as the current JPL product without using the nudging field.

Largest differences between the JPL and BYU selections occur in low and

high wind speed regions, at nadir and along swath edges. Our QA analysis demon-

strates that low to moderate wind speed data (between 4 and 10 m/s) is generally

more self-consistent for the BYU method, while higher wind speed data is somewhat

less self-consistent. Also, there is increased performance in the sweet spot for the

BYU method, especially in rain-corrupted regions.

From a manual inspection of the JPL and BYU ambiguity selected winds,

we conclude that BYU produces fewer possible ambiguity selection errors in regions

without cyclonic storms. Ambiguity selection errors in the BYU algorithm are gen-

erally associated with storms, extreme winds, and large areas of incorrect first am-

biguities. These cases, however are rare. Overall, the BYU method selects 93% of

the same ambiguities as the JPL. This result indicates that ambiguity selection can

be generally accomplished without the use of a nudging field. The BYU ambiguity

selection method is well suited for operational ambiguity selection since the NWP

nudging field is not required and the algorithm is computationally efficient.
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Chapter 4

Evidence of a Threshold Wind Speed in Tower-mounted Scat-
terometer Data

The QA assessment classifies a higher percentage of regions as “poor” when

the RMS wind speed is less than about 5 m/s (see Figure 2.10b). At very low wind

speed, the SNR of SeaWinds may be too low to validate the wind vector estimates.

In addition, Donelan and Pierson [18] postulated the existence of a threshold wind

speed below which there is insufficient friction between the wind and water to gen-

erate capillary waves. The threshold wind speed is mainly dependent upon water

temperature and Bragg wavelength. Below the threshold wind speed, the Bragg-

induced backscatter theoretically goes to zero. Thus, according to the theory, wind

retrieval below the threshold is not possible. Because it is difficult to directly observe

this phenomenon with spaceborne measurements, this chapter analyzes the threshold

wind speed using data from the tower-mounted YSCAT scatterometer. This chapter

demonstrates that the possible effects of the low wind speed threshold are detectable

in scatterometer data in an uncontrolled marine environment. The implications for

SeaWinds are explained in the discussion section at the end of the chapter.

4.1 Overview

The geophysical model function (GMF) described in Chapter 1 is generally

accurate for wind speeds above about 3 to 4 m/s. Below the threshold wind speed,

the capillary waves theoretically disappear and the Bragg-induced backscatter goes

to zero. Although the minimum wind speed for wave generation has been carefully

studied in wave tank data [37], and have been documented in airship data [38], the

implications of the low wind speed threshold to space-based wind scatterometry are
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still uncertain. An approach of correcting the GMF for threshold wind speed effects

is given in [33], however no compensation for the threshold wind speed is currently

operationally used.

In order to analyze the low wind speed threshold, we examine data from

the tower-mounted YSCAT scatterometer. Data from the YSCAT scatterometer pro-

vides in situ wind speed measurements which are generally unavailable in connection

with SeaWinds data. YSCAT is an ultra-wideband (2-14 GHz) tower-mounted scat-

terometer, which was deployed on Lake Ontario for a period of 6 months in 1994

[39]. Data was collected for a variety of frequencies and incidence angles which span

a range of Bragg wavelengths. This chapter examines the YSCAT data for evidence

of a threshold wind speed as a function of Bragg wavelength. A simple experiment is

conducted in which approximately 1/2 of the Bragg wavelengths observed by YSCAT

evidence a threshold wind speed. The YSCAT-estimated threshold corresponds well

to the theoretical threshold for both h-pol and v-pol data. Although the effect of

the threshold wind speed is detectable, the YSCAT data does not suggest that the

backscatter “goes to zero” in an uncontrolled environment as theory indicates; rather,

backscatter measurements for winds below the threshold have a somewhat decreased

mean.

4.2 The YSCAT scatterometer

YSCAT collected data at 2, 3, 5, 10, and 14 GHz, and at 0◦ (nadir), 20◦,

25◦, 30◦, 40◦, 50◦, and 60◦ incidence angles at both horizontal and vertical polar-

izations. In addition, a variety of environmental parameters were observed including

wind speed and direction, rainfall, and water temperature. The antenna was specially

designed to provide a near constant beam width over most of the operating band-

width and produce a footprint of approximately one meter for mid-range incident

angles [39].

Post processing of YSCAT data provides minute averages of σo and in

situ measurements of wind velocity. Rain-contaminated data, data corrupted by

instrument malfunctions or other sources of error, and data with fluctuating wind
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Figure 4.1: Wind wave/electromagnetic wave interaction for Bragg scattering.

speed measurements are discarded. The minute-averaged data is binned according to

frequency, polarization, incidence angle, and direction. Data is additionally binned

into upwind and downwind directions. The data is normalized by dividing out the

mean of each record and then multiplying by the aggregate mean of the corresponding

bin [39].

The large number of frequencies and incidence angles provides a wide range

of Bragg wavelengths observed by the YSCAT instrument. The Bragg wavelength

is the component of the water wave spectrum that is resonant with the incident fre-

quency. Bragg scattering occurs when the phase fronts of electromagnetic backscatter

from successive surface waves align, creating an enhanced backscatter response. The

geometry associated with Bragg scattering is shown in Figure 4.1. This first order

Bragg theory relates the Bragg wavelength Λ to the electromagnetic wavelength λ by

λ = 2Λ sin(θ) (4.1)

or

Λ =
λ

2 sin(θ)
. (4.2)
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Table 4.1: Values of parameters given in Eq. (4.3) for a water temperature of 10◦ C
and zero salinity.

parameter value
ρa 1.19 g/L
ρw 0.997 g/cm3

τ 67.94 mN/m
ν 0.890 mPas

where θ is the incidence angle. The wide range of Bragg wavelengths observed by

YSCAT affords us access to understanding the wind/sea interaction for a large number

of wave sizes. The Bragg wavelengths measured by YSCAT range from 1.2 cm to 43

cm.

4.3 Theoretical threshold wind speed

The theoretical threshold wind speed is derived by Donelan and Pierson

[18]. At low wind speeds, friction from the wind is too light to overcome the viscous

effects of water and no capillary/gravity waves are generated. If we accept Bragg

scattering as the predominate scattering mechanism, under these conditions, there

should be no backscatter at all [33]. The threshold wind speed at π/k = λ/2 height

is derived to be [18]

Ū(π/k) = C(k) + 2

(
νk

C(k)

0.194ρa/ρw

)1/2

. (4.3)

In Eq. 4.3, C(k), the phase speed of the capillary/gravity Bragg waves, is given by

C(k) =
√

g/k + τk/ρw. (4.4)

Also, ρa and ρw are the densities of air and water respectively, τ is the surface tension,

g is the acceleration of gravity, and ν is the viscosity of water. The viscosity has a

dependence on water temperature. Thus, the threshold wind speed is a function of

Bragg wavelength and temperature. It is also a weak function of salinity, which is

ignored here. The mean water temperature for the YSCAT experiment is assumed
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Table 4.2: Theoretical threshold wind speeds (m/s) as a function of frequency and
incidence angle for YSCAT

Frequency Incidence Angle
(GHz) 10◦ 20◦ 25◦ 30◦ 40◦ 50◦ 60◦

2.00 1.98 1.94 1.95 1.98 2.03 2.09 2.14
3.05 1.93 1.99 2.03 2.09 2.19 2.28 2.36
5.30 1.96 2.15 2.26 2.36 2.55 2.72 2.87
10.02 2.14 2.56 2.77 2.98 3.40 3.79 4.12
14.00 2.30 2.92 3.24 3.57 4.23 4.85 5.40

to be 10◦ C. Using 10◦ C temperature and zero salinity, the parameters of Eq. (4.3)

are calculated and given in Table 4.1.

The wind speed at π/k height is related to the wind speed at 10 m height

by the equation

Ū(π/k) = Ū(10)

(
1− [A + BŪ(10)]1/2

κ
[ln k − ln(π/10)]

)
(4.5)

where A = 0.96e−3, B = 0.041e−3, and κ is the von Karman constant assumed to

be 0.4. The threshold wind speed at 10m (Ū(10)) must be numerically solved. The

theoretical threshold wind speeds for YSCAT at 10◦ C water temperature are given

in Table 4.2.

4.3.1 Detection and estimation of YSCAT threshold wind speeds

A simple experiment is performed to detect and estimate the threshold

wind speed versus Bragg wavelength using YSCAT data. Assuming that downwind

and upwind observations exhibit the same threshold characteristics, downwind and

upwind measurements are combined in the analysis. The backscatter cross-section

above the threshold wind speed (which we initially approximate as 4 m/s) has a

power-law relationship with wind speed [39],

σ◦(U > Ū(10)) = aU b. (4.6)

Using YSCAT minute average wind speeds and σ◦ values, the parameters a and b

for each Bragg wavelength are computed for wind speeds above 4 m/s by converting
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both sides of Eq. 4.6 to decibels,

σ◦dB = adB + bUdB (4.7)

and applying linear least-squares estimation to the YSCAT data [39]. After estimating

adB and b, all σ◦ values further than 2 standard deviations from the model fit are

discarded. The estimation is performed again, giving the final values for adB and b.

Next, non-parametric estimation is performed on each Bragg wavelength

data set using a Gaussian kernel. This method gives a smoothed line through the

data relating UdB and σ◦dB. The non-parametric curve affords a higher resolution

estimate of the data than the linear least-squares fit.

In order to select a threshold wind speed for each Bragg wavelength data

set, we compare the non-parametric curve to the linear least-squares fit. Since the

data is obtained from an uncontrolled marine environment and is minute-averaged for

each observation, we do not expect the σ◦ values to go to zero below the threshold wind

speed, but we do expect σ◦ to decrease in mean value and have a higher variability.

We estimate the threshold wind speed to be the point where the non-parametric

curve falls 1.5 dB (25%) beneath the linear least-squares fit. The threshold of 1.5

dB is subjectively chosen, but the results are not particularly sensitive to this value.

A higher threshold has the effect of slightly lowering the estimated low wind speed

thresholds. If the curve never falls 1.5 dB beneath the linear fit, we label the data

a “non-detection” (N/D). An alternative method for estimating the low wind speed

threshold is given in Appendix G. The alternative method, although more theoretical,

is less robust. Thus, the method described above is used in the further analysis.

Using this method, 20 of the 35 data Bragg wavelength bins observed by

YSCAT have a detectable threshold wind speed for h-pol observations. Of the fifteen

non-detections, 4 sets exhibit a noticeable noise floor that prevents observation of

the threshold wind speed. These sets occur at the highest frequencies and incidence

angles. In addition, one set has no usable data (5 GHz, 25◦, not shown in Figures 4.3

and 4.4).
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Figure 4.2: The theoretical threshold wind speeds for the range of Bragg wavelengths
observed by YSCAT. Also, the estimated threshold wind speeds for v-pol and h-
pol observations obtained from the YSCAT data where a threshold wind speed is
detected. The dashed and dot-dashed lines show a second order polynomial fit to the
h-pol and v-pol threshold wind speeds respectively.

Of the v-pol observations, 16 sets have a detectable threshold wind speed.

Of the nineteen non-detections, seven sets exhibit a noticeable noise floor and one set

contains no usable data. The v-pol data is much noisier than the h-pol data, thus

giving a higher variance in the estimates of the wind speed threshold and possibly

prohibiting detection in some cases.

The theoretical threshold wind speeds are plotted along with the results

obtained from this experiment in Figure 4.2. Also in Figure 4.2, a quadratic fit

is made to the h-pol and v-pol thresholds. Both quadratic fits give a fairly close

approximation of the thresholds in the range of valid detections. The v-pol data is

slightly more variable than the h-pol data, giving a fit that deviates more from the

theoretical thresholds. These results help verify the existence of the threshold wind

speed, and give support to the accuracy of the model.

The YSCAT data along with the theoretical and estimated threshold wind

speeds are shown in Figure 4.3 and 4.4. These figures allow for visualization of the

threshold wind speed and resulting decrease in σ◦ below the threshold. As illustrated
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Figure 4.3: H-pol YSCAT data plotted as a function of wind speed for each Bragg
wavelength. The straight line through the data is the linear least-squares fit. The
curved line is the non-parametric fit. The solid vertical line is the theoretical threshold
wind speed (Th). The dashed line is the threshold wind speed estimated from the
YSCAT data (Es).
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Figure 4.4: V-pol YSCAT data plotted as a function of wind speed for each Bragg
Wavelength and polarization (See Figure 4.3).
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in Figure 4.3 and 4.4, the roll-off in σ◦ below the threshold is not as pronounced as

in controlled wave tank data, and does not drop to zero as theory suggest. Never-

theless, a mean decrease in σ◦ is detectable in much of the data, suggesting that for

small-footprint instruments such as YSCAT, effects of the threshold wind speed are

detectable in an uncontrolled environment.

The fact that the backscatter does not drop to zero beneath the threshold

wind speed may be due to several effects. We discuss two reasons: First, the backscat-

ter measurements are affected by the sea state induced by previous winds. When the

wind decreases below the threshold, there is a lagging or hysteresis effect that occurs,

i.e. it takes time for waves previously generated by the wind to subside. The radar

then receives additional backscatter due to the residual waves. This hysteresis effect

is a function of Bragg wavelength. The longer the waves, the longer they take to

subside, and the less noticeable the low wind speed threshold.

Second, the backscatter data is minute-averaged. Even though the av-

erage wind may be below the threshold, the wind may somewhat vary during the

minute interval, generating at times capillary waves which give enhanced backscatter

to the radar. Thus, the averaging suppresses the overall effect of the low wind speed

threshold.

4.3.2 Dual threshold model

In addition to the single-threshold model, we introduce a dual-threshold

model. An dual-threshold model allows us to observe the hysteresis effect of the wind-

water interaction on different Bragg wavelengths. This is subjectively determined by

manually dividing each Bragg wavelength bin of data into three regions:

• moderate wind speed region.

• hysteresis region

• roll-off region

The moderate wind speed region is where there is no evidence of σo roll-off. It is

separated from the hysteresis region by the “high-end” cutoff. The “high-end” cutoff
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Figure 4.5: An example of the roll-off, hysteresis and moderate wind speed regions in
YSCAT data.

(χh) is the high end of the hysteresis region where the σo roll-off starts. This cutoff

indicates the threshold at which wind starting up begins to create capillary waves.

The “low-end” cutoff (χl) is the low end of the hysteresis region. This cutoff is where

slowing winds fail to give enough energy to the water to create the waves. Below

that is the roll-off region where the roll-off is evident in nearly all σo measurements.

Figure 4.5 shows these regions.

Figure 4.6 shows the subjective estimates for the low-end and high-end

cutoffs of the hysteresis region as a function of Bragg wavelength. The low-end cutoff

decreases and the high-end cutoff increases with increasing Bragg wavelength. This

suggests that the hysteresis region widens with Bragg wavelength. This phenomenon

has physical meaning. Short waves are very sensitive to the wind. Thus, when the

wind is starting up, the shorter waves are created quickly. However, longer waves take
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Figure 4.6: Subjectively chosen low-end and high-end cutoffs for the hysteresis region
and a least-squares fit.

more energy to get started. Thus, the high-end cutoff is higher for longer wavelengths.

On the other hand, once the larger waves are in motion, it takes longer for them do

die out because they are less sensitive to the wind. Therefore, the low-end cutoff

decreases for larger waves and the hysteresis widens.

4.4 Summary and discussion

YSCAT data demonstrates strong evidence of a threshold wind speed in an

uncontrolled marine environment. The experiment in this paper demonstrates that

in approximately 1/2 of the YSCAT Bragg wavelength observations, a detectable

roll off in σ◦ is evident beneath a threshold wind speed. Although the backscatter
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“rolls off,” it does not decrease to zero as theory suggests. Nevertheless, the YSCAT-

estimated threshold wind speeds correspond well to the theoretical threshold wind

speeds derived by [18], and help support the theory of a threshold wind speed.

We do not use the YSCAT analysis to directly correct SeaWinds scat-

terometer data. Rather, we give a brief discussion of implications of the YSCAT

analysis to SeaWinds. Unfortunately, a noise floor prohibits YSCAT observation of

the threshold wind speed at SeaWinds incidence angles and frequency (∼ 14 GHz, 46◦

and 54◦ incidence.) Thus, directly relating the YSCAT threshold effect to SeaWinds

is difficult. We can only make general observations.

The main observation from the YSCAT experiment is that backscatter

from winds beneath the low wind speed threshold are often lower than expected,

with increased variability. The variability is due in part to the hysteresis effect, and

is likely a main factor in the decrease in accuracy of SeaWinds vector wind data

at low wind speeds. The wind speed does not go to zero as theory predicts in an

uncontrolled environment, probably due to scattering effects from phenomena such

as residual waves from subsiding winds. In order to relate the effect of the low wind

speed threshold to SeaWinds requires an understanding of the variability of the wind

within the large footprint, i.e. the beamfilling effect. Over the footprint, there may be

areas with wind speeds above the threshold, and other areas with wind speeds below

the threshold. Depending on the spatial variability of the wind, this beamfilling effect

may significantly alter the backscatter from the mean. However, directly correcting

for the variability of the wind within the measurement via the scatterometer is not

possible, since knowledge of sub-footprint phenomena is not generally accessible. Such

effects can only be treated statistically.

A statistical method for improving wind estimation at low wind speeds is

given by Shankaranarayanan and Donelan [33]. The method adjusts the GMF for a

mean bias created by the threshold effect. The corrected GMF from [33] assumes that

for low wind speeds, the backscatter falls to zero in a statistically-determined area of

the 25 km footprint where the wind speed is locally beneath the threshold. Thus, the

GMF is lowered at low wind speeds to account for the threshold effect. The YSCAT

83



analysis, however, suggests that the backscatter does not drop to zero in uncontrolled

environments. Thus, the new GMF presented in [33] may be over-compensated.
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Chapter 5

Evaluating the Effect of Rain on SeaWinds Scatterometer
Measurements

The quality assessment presented in Chapter 2 and other validation anal-

yses have found SeaWinds on QuikSCAT data to be highly accurate in non-raining,

moderate wind speed areas [36, 40]. However, the quality of QuikSCAT retrieved

winds is degraded by rain contamination, especially in storm regions [41, 42]. Glob-

ally, rain is estimated to affect between 4% and 10% of SeaWinds data. Although rain

flagging techniques have been developed [28, 43], the current wind retrieval method

does not incorporate rain effects. As a result, rain attenuation and backscatter are

interpreted as wind-induced features [44].

Rain corrupts the wind retrieval process by altering the wind-induced radar

backscatter signature. Rain striking the water creates rings, stalks, and crowns from

which the signal scatters [45]. Rain also alters the wind-induced capillary wave field,

suppressing the wind/backscatter directional dependence [46], which may limit wind

estimation in cases of wide-spread rain [47]. The scatterometer signal is additionally

scattered and attenuated by falling hydrometeors.

In this chapter, we use a simple phenomenological backscatter model to

characterize the effects of rain on SeaWinds on QuikSCAT backscatter. We assume

that all rain effects are isotropic, allowing us to model the backscatter as a function

of integrated rain rate and effective non-raining σ◦ in closed form. For comparison to

rain-free backscatter conditions, the effective non-raining σ◦ from wind is estimated

using numerical weather prediction (NWP) winds from the National Centers for En-

vironmental Prediction (NCEP) projected through the GMF. In order to estimate the

rain-induced parameters of the model, we use 100 co-located regions of Precipitation
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Radar (PR) data from the Tropical Rainfall Measuring Mission (TRMM) satellite

and SeaWinds on QuikSCAT data. Each co-located region contains the portion of

the overlapping swaths in which the TRMM PR time tags are within ±10 minutes of

the corresponding QuikSCAT time tags. The co-location set spans a 3-month period

from August to October 1999. We use only the co-located regions where the over-

lapping TRMM PR swath contains more than 2.5% measurements flagged as “rain

certain” in the TRMM 2A25 files, eliminating rain free areas from the analysis. The

co-located set is limited to the tropics within ±37◦ of the equator, where rain contam-

ination is the most frequent. While we use data from TRMM PR, previous analyses

of the effects of rain on Ku-band backscatter have used data collected from ship [47],

buoy [44], and radiometer [20] observations.

In Section 5.1, the SeaWinds and TRMM PR instruments are described.

In Section 5.2, the rain/wind backscatter model is developed and the parameters

of the model are estimated. In Section 5.3, an analysis of the surface perturbation

due to rain is presented along with validation of the backscatter model as a func-

tion of rain rate and surface σ◦ from wind. Conclusions are given in Section 5.4. We

demonstrate that the surface backscatter from rain dominates the rain-induced signal

for low to moderate rain rates while atmospheric scattering dominates at high rain

rates. Overall, the simple backscatter model estimates 94% of the co-located Sea-

Winds backscatter values to within 3 dB and corresponds well with a non-parametric

estimate of the measured σ◦ as a function of integrated rain rate and effective non-

raining wind σ◦. Using the simple backscatter model, the conditions are determined

for which estimation of rain from SeaWinds measurements is possible, and for which

wind retrieval is not possible.

5.1 Data

Here, we describe each data source used in our rain model analysis, includ-

ing the SeaWinds on QuikSCAT scatterometer, NCEP NWP winds, and the TRMM

PR.
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QuikSCATTRMM

Figure 5.1: Swath geometry of the TRMM PR and SeaWinds on QuikSCAT instru-
ments.

As explained in the Chapter 1, SeaWinds on QuikSCAT scatterometer

is the first scanning pencil-beam instrument designed to measure marine winds.

QuikSCAT revolves in a near-polar orbit and obtains measurements from over 90%

of the earth daily. The outer (v-pol) beam operates at 54◦ incidence and has a 3 dB

footprint of 37 × 52 km. The inner (h-pol) beam operates at 46◦ incidence and has

a 3dB footprint of 34 × 44 km [1]. Because the h- and v-pol measurements have

different characteristics, it is necessary to analyze them separately.

The wind estimation process produces several possible solutions at each

wind vector cell, requiring “nudging” from an outside estimate of the wind to produce

a unique vector field [14]. These nudging winds are obtained from NCEP 1000 millibar

(mb) winds, included in the QuikSCAT level 2B (L2B) data files. They provide an

estimate of the non-raining wind used in our analysis. The NCEP winds are trilinearly

interpolated (in space and time) from a 2.5◦ × 2.5◦ latitude-longitude grid with a
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temporal resolution of 6 hours [7] to the QuikSCAT wind vector cell locations. It

is commonly known that the 1000 mb NCEP wind speeds are generally 10%-20%

higher than the 10 m neutral stability winds measured by SeaWinds. This, along

with prediction and interpolation errors, introduces a region-dependent bias in the

SeaWinds-NCEP comparison data. To ameliorate these effects, a bias correction for

NCEP is presented in Section 5.2.1. Overall, the RMS differences between SeaWinds

on QuikSCAT and NWP analysis fields are ∼ 1.4 m/s for speeds from 3–20 m/s and

14 degrees for speeds from 5–20 m/s [48].

TRMM PR data is used to evaluate the effect of rain on the SeaWinds

h- and v-pol backscatter. The TRMM satellite has been in operation since 1997

and orbits at a low inclination angle of 35◦, providing coverage of the tropics. The

PR instrument has a much higher resolution (∼ 4 × 4 km) than SeaWinds and is

electronically scanned within 17◦ of nadir [49]. Since the radar is near-nadir look-

ing, the 200 km PR swath width is much narrower than SeaWinds 1800 km swath.

Figure 5.1 compares the swath geometry of the TRMM PR and SeaWinds instru-

ments. Although the viewing geometry of TRMM and SeaWinds is quite different,

both instruments operate at approximately the same Ku-band frequency (13.8 Ghz

for TRMM PR versus 13.4 GHz for SeaWinds). Thus, the atmospheric effects of

rain on the SeaWinds scatterometer and TRMM PR are similar. Standard PR data

products used here include unadjusted reflectivity in 3 spatial dimensions (Zm) from

the level 1C21 data files, level 2A25 integrated rain rate (R), and level 2A25 path

integrated attenuation (PIA) [50].

5.2 Modeling σ◦ in rain and wind

This section presents a simple backscatter model and estimates the model

parameters using the co-located data sources. As previously noted, rain striking

the surface perturbs the wind-wave field and causes additional scattering from rain-

induced surface features. Along with surface effects, rain in the atmosphere also

attenuates and scatters the scatterometer signal. The scattering and attenuation
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parameters can be combined into a simple phenomenological model,

σm = (σw + σsr)αr + σr (5.1)

where σm is the measured σ◦, σw is the wind-induced radar backscatter, σsr is the

surface backscatter perturbation due to rain striking the water, αr is the two-way

atmospheric rain attenuation, and σr is volume scattering due to falling rain droplets.

Equation (5.1) combines all surface rain effects into one additive pertur-

bation parameter σsr. Although this relationship for the surface backscatter does

not fully represent the complicated nature of surface scattering from wind- and rain-

induced ocean waves, we are interested only in the average change in SeaWinds surface

σ◦. Thus, an additive relationship is sufficient for our first-order analysis.

The model of Eq. (5.1) is used to compare the surface perturbation to the

atmospheric backscatter in Section 5.3.1. However, in the final analysis, we are only

interested in the bulk augmentation of the scatterometer signal due to rain. Thus,

the model is further simplified in Section 5.3.2 by summing the attenuated surface

perturbation and the atmospheric scattering terms, creating a single effective rain

backscatter parameter σe. The combined rain effect model is

σm = σwαr + σe (5.2)

where σe = σsrαr + σr. This simplification is also used in [20].

5.2.1 Determining model parameters from TRMM and NCEP

We calculate the parameters from Eq. (6.1) by synergistically combining co-

located data from the TRMM PR and NWP fields to estimate the SeaWinds-observed

backscatter and attenuation from rain, and the effective non-raining backscatter from

wind. Because TRMM PR is higher resolution than SeaWinds, comparison of the two

datasets requires averaging of the TRMM parameters over the SeaWinds footprint

to account for the aperture of the SeaWinds antenna. In order to make the notation

tractable, when needed, we prime (′) parameters that have the resolution of the PR

and remove the prime after averaging over the SeaWinds footprint. Also, parentheses
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in the subscripts of symbols are used to indicate the source of the data used to

estimate that parameter.

The SeaWinds on QuikSCAT measured backscatter σm(QSCAT ) is taken

from the QuikSCAT L1B data set and corrected for atmospheric (non-rain) attenua-

tion using the QuikSCAT L2A attenuation map. These data were obtained from the

NASA Physical Oceanography Distributed Active Archive Center at the Jet Propul-

sion Laboratory/California Institute of Technology.

In evaluating the effect of rain on SeaWinds, the effective vertically-

integrated rain rate observed by SeaWinds is estimated from the TRMM 2A25 inte-

grated rain rate. The PR rain rate R′
(PR) is averaged over the SeaWinds footprint,

weighting each data point by the SeaWinds two-way antenna gain pattern,

R(PR) =

∑N
i=1 GiR

′
i(PR)∑N

i=1 Gi

, (5.3)

where Gi is the SeaWinds antenna gain pattern at the ith PR measurement, N is

the number of PR data points within a 6-dB antenna pattern contour, and R′
i(PR)

is the PR-observed rain rate. We note that this rain rate estimate is integrated

(essentially) normal to the surface, and thus does not take into account the slant range

of the SeaWinds instrument. The antenna-weighted rain rate differs somewhat from

an unweighted average due to the spatial variability of the rain within the antenna

footprint. This “beam-filling” variability is examined in Chapter 6 by evaluating the

error between the average rain rate weighted by the antenna beam pattern and the

unweighted average rain for individual measurements. A histogram of the PR-derived

rain rates for SeaWinds over the co-located data set is shown in Figure 5.2. The co-

located data set allows evaluation of rain effects for rain rates up to about 100 km

mm/hr.

The effective non-raining wind backscatter σw is computed from co-located

NWP estimates of the wind from NCEP included in the QuikSCAT level 2B data

files. As previously noted, these wind fields are interpolated to the same grid as the

SeaWinds 25 × 25 km wind product. For each SeaWinds observation, we further

interpolate the NCEP wind data to the center of each SeaWinds σ◦ measurement

90



0.001 0.01 0.1 1 10 100
0

2000

4000

6000

8000

10000

Rain Rate (km mm/hr)

C
ou

nt

Figure 5.2: Histogram of rain rates for the co-located data set derived from TRMM
PR data

using cubic spline interpolation of the zonal and meridional components of the wind.

The process is not particularly sensitive to the interpolation method since the NCEP

winds are low resolution. Each NCEP wind vector is then projected through the

GMF to yield an estimate of the non-raining wind backscatter,

σw(NCEP ) = M(u(NCEP ), χ(NCEP ), θ, pol) (5.4)

where u(NCEP ) is the NCEP model wind speed, χ(NCEP ) is the relative azimuth angle

of the NCEP wind direction, θ is the incidence angle and pol is the polarization of

the QuikSCAT measurement.

As mentioned earlier, the wind backscatter estimate from NCEP has some

bias due to prediction errors, errors in the GMF, and differences in reference height

between the 10 m SeaWinds wind product and 1000 mb NCEP winds. Because

NCEP is low resolution, we assume that the bias error is spatially correlated. For

each SeaWinds backscatter measurement, we estimate the bias error ε as a Gaussian-

weighted average of the error between SeaWinds and NCEP σ◦ values for surrounding

measurement cells in the same look direction (i.e. fore/aft) with very little or no rain.
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For the jth measurement,

εj =
∑

i

W ij(σi
m(QSCAT ) − σi

w(NCEP ))/
∑

i

W ij (5.5)

where i sums over all measurements in the same look direction with rain rate less

than 0.05 km mm/hr as determined by TRMM PR. The threshold of 0.05 km mm/hr

is chosen because it is approximately the rain rate achieved for a SeaWinds footprint

when only one co-located PR cell contains a rain rate of 0.7 km mm/hr. The value

of 0.7 km mm/hr is the lower bound of the sensitivity of the TRMM PR for a rain

height of 1 km [49]. The weighting W ij is calculated by

W ij = exp

(
1

2

d(i, j)2

202

)
(5.6)

where d(i, j) is the euclidean distance between the ith and jth measurements in km.

The distance scale of 20 km (yielding an effective 3-σ diameter of 120 km) is subjec-

tively chosen; however, because the NCEP wind are low resolution, the bias estimate

is not particularly sensitive to this value. Our estimate of σw is now written as the

NCEP-determined value plus the bias error,

σw = σw(NCEP ) + ε. (5.7)

The mean ε over the QuikSCAT/TRMM PR data set is ∼ -0.0025 while the standard

deviation is ∼ 0.0064, suggesting that NCEP predicted wind backscatter is biased

slightly high, as expected.

The estimate of the NCEP-QuikSCAT σ◦ bias error is most accurate when

there are no fine-scale wind features in the near vicinity of the QuikSCAT measure-

ment. Because fine-scale features may be misplaced or absent in the low-resolution

NCEP data, the estimate of σw error is expected to be less reliable in such areas.

Also, in regions of wide-spread rain, the estimate is less reliable because there are

fewer no-rain measurements in the vicinity from which to make our estimate.

The two-way atmospheric attenuation factor αr of Eq. (5.1) is calculated

from the PIA estimates in the TRMM 2A25 data sets. First, the PIA measurements

are adjusted for the PR slant range and converted to normal space,

α′r(PR) = 10− cos θ(PR)PIA(2A25)/10. (5.8)
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Values for α′r(PR) where there is no rain detected are set to one. For each SeaWinds

observation, the co-located values of α′r(PR) are weighted-averaged over the 6dB Sea-

Winds footprint to yield the effective SeaWinds on QuikSCAT columnar path inte-

grated attenuation, and then scaled by the secant of the SeaWinds incidence angle

θ(QSCAT ) to adjust for the SeaWinds slant range,

PIA = − sec θ(QSCAT )10 log10

(∑N
i=1 Giα

′
ri(PR)∑N

i=1 Gi

)
(5.9)

where α′ri(PR) is the ith PIA value. The attenuation parameter is then converted to

normal space,

αr(PR) = 10−PIA/10. (5.10)

Estimates for the volume-scattering cross-section (σr) are calculated from

measured reflectivities (Zm) obtained from the TRMM 1C21 data set. The actual

(attenuation-adjusted) reflectivity of the atmospheric rain (Ze) is related to the mea-

sured reflectivity through the equation,

Zm(r) = Ze(r)αr(r) mm6m−3 (5.11)

where r is the range, and αr(r) is the path integrated two-way attenuation at range

r. The volume backscattering coefficient can be found from [5],

σvr(r) = 10−10π5

λ4
0

|Kw|2Ze(r) m2/m3 (5.12)

where λ (cm) is the electromagnetic wavelength of SeaWinds, and |Kw|2 is a coefficient

related to the absorption properties of water (assumed to be 0.9). The quantity σvr

is radar backscatter cross-section per unit volume.

The volume backscattering cross-section observed by the satellite (σvro) is

attenuated by the two-way attenuation factor, αr(r) and is equal to,

σvro(r) = σvr(r)αr(r)

= 10−10π5

λ4
0

|Kw|2Ze(r)αr(r)

= 10−10π5

λ4
0

|Kw|2Zm(r). (5.13)
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Figure 5.3: Relationship of σr(PR) to σm(QSCAT ).

The total atmospheric rain backscatter as seen by the PR (σ′r(PR)) is σvro integrated

through the PR antenna beam to the lowest no-surface-clutter range (rnc),

σ′r(PR) =

∫ rnc

0

σvro(s)ds m2/m2

≈
Nnc∑
s=1

σvro(s)∆r m2/m2 (5.14)

where ∆r is the vertical range resolution of the PR and Nnc is the lowest no-surface-

clutter range bin. All valid σ′r(PR) values are weighted-averaged over the SeaWinds

footprint,

σr(PR) =

∑N
i=1 Giσ

′
ri(PR)∑N

i=1 Gi

(5.15)

where σ′ri(PR) is the ith PR rain backscatter value. Values for σ′ri(PR) where there is no

rain detected are set to zero. Figure 5.3 is a scatter plot illustrating the relationship

between the QuikSCAT measured backscatter and the atmospheric rain backscatter

observed by the PR. In addition, the effect of the rain on SeaWinds backscatter

and retrieved winds is shown in Figure 5.4, depicting a high correlation between the

integrated backscatter from rain seen by the PR, and the SeaWinds backscatter.
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Figure 5.4: Ambiguity selected wind in a QuikSCAT/TRMM PR co-location. Also,
an enhanced resolution backscatter image for the fore and aft beams (h-pol), and
integrated rain backscatter calculated from TRMM PR.

Thus far we have derived estimates for the atmospheric scattering and

attenuation from rain as seen by SeaWinds. We have assumed that the PR-derived

atmospheric backscatter σr can be directly applied to SeaWinds. However, because

SeaWinds has a longer slant range and a different incidence angle, we expect some

error in our estimate of σr. The TRMM PR and SeaWinds measurements are only

co-located at the ocean surface. For increasing height, the TRMM PR and SeaWinds

beams become misaligned. Temporal changes in rain profiles between the TRMM

and SeaWinds observation times introduce additional errors. Also, we expect a lower

sensitivity at v-pol than h-pol [20]. We do not attempt to model the all the sources of

error in σr. Rather, we evaluate the sensitivity of the overall model to the PR-derived

estimate of σr in Section 5.3.1.

5.2.2 Relating PR atmospheric parameters to rain rate

Here, we relate the PR-derived atmospheric parameters αr(PR) and σr(PR)

to the integrated rain rate. Power-law (linear log-log) models are widely used to relate

rain rate R to the rain extinction coefficient κer and reflectivity Ze, from which αr
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and σr are derived [5, 50]. The energy transfer equations relate κer and Ze to αr and

σr by

PIA = −10 log10(αr) = 2

∫ rnc

0

κer(r)dr (5.16)

and

σr = C

∫ rnc

0

Ze(r)10−(2
R r
0 κer(r′)dr′)/10dr (5.17)

where C = 10−10π5λ−4
0 |Kw|2. Although we are not directly interested in κer and Ze,

the linear nature of Eq. (5.16) suggests that a linear log-log model may suffice for

estimating PIA. However, the non-linear attenuation term of Eq. (5.17) may cause σr

to somewhat deviate from a power-law model. Due to this non-linearity in Eq. (5.17)

and the fact that we do not include information about rain profile or type, we model

the PR-derived atmospheric parameters with both linear and quadratic log-log fits,

i.e.

10 log10(PIA) = fa(RdB) =
N∑

n=0

xa(n)Rn
dB (5.18)

10 log10(σr) = fr(RdB) =
N∑

n=0

xr(n)Rn
dB (5.19)

where RdB = 10 log10(R), and N is either one or two.

The values for αr and σr can be cast into matrix equations of the form

PIA = Rxa (5.20)

σ̃r = Rxr (5.21)

where

R = [1 r] (5.22)

for the linear log-log model and

R = [1 r r2] (5.23)

for the quadratic log-log model. In Eq. (5.20), the elements of PIA are equal to

10 log10 PIA where PIA is related to αr by Eq. (5.16). In Eq. (5.21), σ̃r is a vector

containing σr values in decibels. In Eqs. (5.22) and (5.23), r is a vector containing the
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Figure 5.5: Parametric estimation of the parameters σr and PIA as a function of rain
rate for a) h-pol and b) v-pol data.

rain rate in decibels (RdB). The estimation of xa and xr is performed by first making

a non-parametric (moving average) estimate of 10 log10 PIA and 10 log10 σr(PR) as a

function of rain rate at regular logarithmically spaced rain rate bins. In doing this, we

use an Epanechnikov kernel [51] with a support of 3 dB in rain rate. The parameters

xa and xr are solved for using linear least-squares,

xa = R†PIA (5.24)

xr = R†σ̃r (5.25)

where PIA and σ̃r contain the non-parametric estimated values and R† is the least-

squares pseudo-inverse of R which is formed using the rain rate bins. The PR data and

model fits are shown in Figure 5.5. The estimated parameters are given in Table 5.1.
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Table 5.1: Coefficients of the linear and quadratic fits to the parameters PIA and
σr(PR)

h-pol v-pol
linear quadratic linear quadratic

xa(1) -11.90 -11.55 -11.21 -10.78
xa(2) 1.01 1.00 1.01 1.00
xa(3) – -0.0017 – -0.0021
xr(1) -35.34 -34.90 -35.32 -34.85
xr(2) 1.03 1.07 1.03 1.08
xr(3) – -0.0053 – -00057

5.3 Analysis

Thus far, all rain-induced parameters of Eq. (6.1) except the surface per-

turbation σsr have been estimated. The surface rain perturbation is often ignored by

theoretical models due to a lack of understanding of its effects. However, it is impor-

tant to include the surface perturbation to afford the best modeling of rain. This can

be done directly using the wind/rain backscatter model from Eq. (6.1), or indirectly

using the combined rain effect model of Eq. (5.2). In Section 5.3.1, we estimate the

surface perturbation directly using the co-located QuikSCAT/TRMM PR data and

compare the effect of the surface perturbation to that of the atmospheric backscatter.

In Section 5.3.2, we apply the combined rain effect model to SeaWinds on QuikSCAT

data. Using the combined rain effect model, the conditions for which wind and rain

retrieval are possible from scatterometer data is given in Section 5.3.3.

5.3.1 Estimating the surface perturbation

This section estimates the surface perturbation and presents a qualita-

tive comparison of the effect of the surface perturbation to the atmospheric rain

backscatter. Surface backscatter from rain striking the water has been studied at

low incidence angles (30◦) in wave-tank data [29, 52], and at higher incidence angles

(31◦, 41◦, 51◦, 76◦) from ship observations [47], but not at SeaWinds’ specific geome-

tries. The QuikSCAT/TRMM PR co-located data affords us the ability to evaluate
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Figure 5.6: Each parameter of xγ
sr(n) as a function of γ for both h-pol and v-pol

observations and both linear and quadratic fits.

the contribution of the surface rain perturbation to the total rain backscatter. An es-

timate of the surface perturbation is obtained by solving Eq. (6.1) for σsr and adding

appropriate subscripts,

σsr = α−1
r(PR)(σm(QSCAT ) − σr(PR))− (σw(NCEP ) + ε). (5.26)

In comparing the estimated surface perturbation to the atmospheric

backscatter, we recognize that error in the PR-derived estimates of the atmospheric

rain backscatter σr(PR) arises from differences in slant range, polarization, and cal-

ibration between the PR and SeaWinds and introduces a bias into the estimate of

σsr. To evaluate the sensitivity of σsr to the error, we adopt a variable calibration

parameter γ that is multiplied by σr(PR). The modified estimate for σsr is

σsr(γ) = α−1
r(PR)(σm(QSCAT ) − γσr(PR))− (σw(NCEP ) + ε). (5.27)

As with the PR-derived atmospheric parameters, we write the “calibrated”

surface perturbation σsr(γ) as a linear and quadratic function of rain rate in log-log

space, and solve for it using a similar method as described in Section 5.2.2 for varying

γ. The model for σsr is written as

10 log10(σsr(γ)) ≈ fγ
sr(RdB) =

N∑
n=0

xγ
sr(n)Rn

dB. (5.28)
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Because the estimate of the surface perturbation σsr(γ) can be negative, the non-

parametric estimate described in Section 5.2.2 is performed in normal-space for σsr(γ).

The non-parametric estimate is then converted to decibels and a least-squares esti-

mate of σsr(γ) is formed for a range of γ values.

The estimated parameters of σsr(γ) are plotted as a function of the cali-

bration parameter γ in Figure 5.6 for both linear and quadratic fits. As a note, the

estimates are only valid for v-pol observations up to γ = 1.15 and h-pol observations

up to γ = 1.85. At a larger γ, the non-parametric estimate of σsr becomes negative.

From Figure 5.6a, the constant term xγ
sr(1) is not particularly sensitive to the choice

of γ. The highest order terms, xγ
sr(2) for the linear model and xγ

sr(3) for the quadratic

model, are the most sensitive, especially as γ increases.

The observed backscatter due to rain is the sum of the attenuated surface

perturbation αrσsr and the atmospheric rain backscatter σr. A direct comparison

of the estimated surface perturbation parameters (Figure 5.6) to the atmospheric

scattering parameters (Table 5.1) shows that for all γ, the constant term of the
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surface perturbation is significantly higher than the constant term of the atmospheric

scattering (compare Figure 5.6a to Table 5.1 row 4). Also, the linear and quadratic

terms of xγ
sr(n) are on the same order of magnitude as the the linear and quadratic

terms of xr(n). This comparison demonstrates that the surface perturbation is a

significant contributer to the observed rain backscatter.

We further compare the contribution of the surface perturbation to the at-

mospheric backscatter by computing the ratio of the attenuated surface perturbation

αrσsr(γ) for each γ to the calibrated atmospheric rain backscatter γσr as a function

of rain rate (see Figure 5.7). The ratio αrσsr(γ)/γσr is greater than one for rain rates

less than 10 km mm/hr, suggesting that the surface rain backscatter dominates at

low to moderate rain rates. At higher rain rates, the surface signal is suppressed by

attenuation and atmospheric scattering dominates.

Although we have oversimplified the error in σr by modeling it as a simple

multiplicative constant γ, it is of value to consider the question “What γ gives the best

fit to the data and is the overall model sensitive to our choice of γ?” We approach this

question by finding an optimum γ that minimizes a least-squares objective function

given varying values of γ. The least-squares objective function is a measure of the
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Table 5.2: Estimated parameters of σ̃sr for h-pol and v-pol for the optimum γ.
h-pol (γ = 1.70) v-pol (γ = 0.95)

xγ
sr(1) -28.1 -30.2

xγ
sr(2) 0.93 1.01

xγ
sr(3) -0.017 -0.017

least-squares error between the QuikSCAT-measured σ◦ values and the model values

given a certain γ,

f(γ) =
∑

i

(
σi

m − σi
m(CALC)(γ)

)2
(5.29)

where i is the data index and σm(CALC)(γ) is the model-calculated σ◦ value given γ

and the corresponding model for σsr. The quadratic model for σsr is used rather than

the linear model because it it accounts for more of the variance than the linear model.

Now, we compute f(γ) at each valid value of γ. The objective function for both h-pol

and v-pol is plotted against γ in Figure 5.8. For h-pol, the objective function has a

minimum where γ = 1.70. For v-pol, the objective function has a minimum where γ

= 0.95. The values of xγ
sr(n) corresponding to the optimum γ are given in Table 5.2.

The optimum values for γ confirm that the SeaWinds h-pol response to atmospheric

rain is greater than the v-pol response. The shape of the objective function, however,

suggests a high variance on our estimate, and that the overall model is not very

sensitive to the exact choice of γ.

5.3.2 Combined rain effect model

The wind/rain backscatter model affords a closed-form relationship be-

tween ocean backscatter due to wind and rain rate. However, because we do not

precisely know the surface perturbation or error in the atmospheric backscatter es-

timate, we adopt the combined rain effect model of Eq. (5.2) to further analyze the

effect of rain on SeaWinds scatterometer measurements. Using the co-located data,

we calculate estimates for the effective rain backscatter,

σe = σm(QSCAT ) − (σw(NCEP ) + ε)αr(PR), (5.30)
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and use the same estimation technique to calculate σe as a function of rain rate as

performed with σsr (see Section 5.3.1). The effective rain backscatter can be written

as a function of rain rate,

10 log10(σe) ≈ fe(RdB) =
N∑

n=0

xe(n)Rn
dB. (5.31)

The optimization is performed and the estimated values for xe(n) for both linear and

quadratic fits are given in Table 5.3. Graphics demonstrating the model fits are shown

in Figure 5.9. The estimates σe range from -40 to -15 dB for the observed rain rates,

demonstrating a significant sensitivity of SeaWinds on QuikSCAT data to rain.
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Table 5.3: Estimated parameters of σe for h-pol, v-pol and both linear and quadratic
fits.

h-pol v-pol
linear quadratic linear quadratic

xe(1) -27.57 -27.04 -29.86 -29.09
xe(2) 0.83 0.94 0.86 1.00
xe(3) - -0.011 - -0.015

Now that the parameters of the wind/rain backscatter models have been

estimated, the measured SeaWinds backscatter can be parameterized by the surface

backscatter due to wind and rain rate as

σm(σw, R) = σw αr(R) + σe(R) (5.32)

for the combined rain effect model and

σm(σw, R) = (σw + σsr(R)) αr(R) + σr(R) (5.33)

for the full model. Each rain-induced parameter has a linear or quadratic log-log

relationship to rain rate of the form

σe(R) = 10fe(RdB)/10 (5.34)

σsr(R) = 10fγ
sr(RdB)/10 (5.35)

αr(R) = 10−10fa(RdB)/10/10 (5.36)

σr(R) = γopt10fr(RdB)/10. (5.37)

Comparing the two models, we find that the full model and the combined rain effect

model are very similar. Thus, for simplicity, the remaining analysis is applied only to

the quadratic combined rain effect model. Similar results follow for the full model.

Beamfilling: Worst Case Scenario

Chapter 6 addresses the effect of beamfilling with respect to the averag-

ing procedure. Here, we examine the beamfilling effect with respect to the spatial
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distribution of the rain. In doing so, we consider a worst case scenario of two mea-

surements where the integrated rain rate, averaged over the SeaWinds footprint, is

0.5 km mm/hr. In the first measurement, the rain rate is 0.5 km mm/hr, uniformly

distributed over the measurement area. In the second measurement, the rain rate

is 50 km mm/hr, isolated to the area of a single PR measurement cell (with ap-

proximately 100 PR cells co-located within the SeaWinds measurement). Using the

quadratic combined rain effect model, the effective rain backscatter for the uniform

0.5 km mm/hr rain rate is σe = 0.001 (-30 dB). The effective rain backscatter for

the isolated rain event of R = 50 km mm/hr, is σe = 0.039. Averaging over the

SeaWinds footprint yields an effective backscatter of σe = 0.00039 (-34 dB). Thus,

the effect of the uniform rain differs from the worst-case non-uniform rain by about

4 dB. However, the effect of non-uniform beam filling is generally much less substan-

tial. We treat the effect of non-uniform rain as a source of unknown variability in the

measurement model, and evaluate the overall accuracy of the model in the following

section.

Model Validation

Here we compare the combined rain effect model to actual SeaWinds

backscatter measurements as a function of R(PR) and σw(NCEP ) + ε. Figures 5.12

and 5.13 show the quadratic combined rain effect model plotted against SeaWinds on

QuikSCAT backscatter for h- and v-pol respectively. Visually, the model follows the

data very well. In fact, the model is within 3 dB of the measurements more than 94%

of the time. The standard deviation of the log error is about 1.6 dB for h-pol and 1.5

dB for v-pol. The relatively low variance of the model indicates that the simple closed-

form model is sufficient to describe the effects of rain on the SeaWinds-measured σ◦

to a high level of accuracy.

For further comparison of the model to the data, we create a non-

parametric estimate of σm on a regular grid with axes of σw(NCEP ) + ε and R(PR). The

non-parametric estimate is formed using a two-dimensional Epanechnikov kernel [51].

The non-parametric estimate, along with the quadratic combined rain effect model
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Figure 5.10: Non-parametric, and combined rain effect models for a) h-pol and b)
v-pol. Also, error between parametric and non-parametric models.

are computed on the regular grid and shown in Figure 5.10 for h-pol and v-pol. Both

h-pol and v-pol models are very close to the non-parametric estimate. The largest er-

ror occurs at high rain rates. However, there is less data at high rain rates, increasing

the uncertainty in the estimate.

5.3.3 Data regimes

By examining the wind-rain model, we notice three distinct backscatter

regimes. Regime one is where the rain backscatter σe is large compared to the at-

tenuated wind-induced surface backscatter αrσw and rain dominates the backscatter

return. Regime two is where the backscatter from rain and wind effects are on the
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same order of magnitude. Regime three occurs where the wind-induced backscatter

dominates rain effects. We can identify these regions by thresholding the ratio of σe

to the model estimate of σm. We define regime 1 by σe/σm > .75 and regime 3 as

σe/σm < .25. Between these regimes is regime two. The regimes are plotted along

with the combined rain effect model in Figure 5.11.

The three regimes help us understand under what conditions rain and/or

wind information can be extracted from SeaWinds data. Using the model, rain rates

can readily be computed from data in regime 1, but not from data in regime 3. Wind

information from data in regime 1 may be unobtainable, while current wind retrieval

methods may be sufficient for accurate estimates from data in regime 3. It is also

likely that rain and wind information may be simultaneously retrieved from data in

regime 2 by incorporating a rain model into the wind retrieval method (and improving

the current scatterometer wind estimate).

Of all h-pol QuikSCAT measurements in the co-location data set with

significant rain (> .1 km mm/hr), only 14% fall in regime 1. About 41% fall in regime

2, and 44% fall in regime 3. For v-pol, about 7% of measurements fall in regime 1,

29% in regime 2, and 64% in regime 3. If we accept the 3-month co-location data

set as typical, these percentages suggest that by including the rain model in the wind

retrieval method, winds can be improved for a significant fraction of rain-corrupted

measurements (data from regime 2). Also, because 36% to 56% of the measurements

with significant rain fall into either regime 1 or 2, we may be able to retrieve the rain

from nearly half of all QuikSCAT rain-contaminated measurements. We again note

that only 4-10% of the measurements are effected by rain.

5.4 Conclusions

Rain is one of the main sources of error in QuikSCAT scatterometer winds.

Current wind retrieval methods are limited by our knowledge of the effects of rain on

scatterometer data. Although backscattering and attenuation from rain are success-

fully modeled, rain surface effects are not generally well understood.
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Figure 5.11: Backscatter regimes for SeaWinds as a function of rain rate and effective
wind backscatter for a) h-pol and b) v-pol models. Also plotted is a contour plot of
the combined rain effect model for σm.

By synergistically combining TRMM PR and QuikSCAT data, we have

demonstrated that a simple low-order model is adequate for describing the wind/rain

interaction as a function of rain rate and non-raining effective wind σ◦. Also, our anal-

ysis suggests that the surface perturbation due to rain striking the water dominates

the total scattering from rain for low to moderate rain rates (< 10 km mm/hr). Since

backscatter from rain-induced waves significantly contribute to the total backscatter,

surface effects must be included in the rain/wind model.

In the rain/wind model, there are three distinct regimes. In the first regime,

the rain dominates. It may be possible to directly calculate the rain rate from data

in this regime. In the second regime, the signal from the rain and the wind are on

the same order. Data from the second regime may be used to simultaneously retrieve

wind and rain. In the third regime, the signal from the wind dominates and current

wind retrieval techniques are adequate. These regimes help us understand where rain

can be retrieved and where rain-contaminated wind can be corrected.

Chapter 6 introduces a simultaneous wind/rain retrieval method using the

combined rain effect model. The new method demonstrates that the use of the rain

108



model in wind estimation can reduce the adverse effects of rain on the retrieved winds

and that rain measurement can be performed from SeaWinds on QuikSCAT data.

The wind/rain model may be especially useful in connection with the SeaWinds on

ADEOS II instrument launched in November 2002. SeaWinds on ADEOS II includes

a dual-pol radiometer that measures rain rate at a high accuracy. Synergistic use

of the radiometer and scatterometer via a rain model may significantly improve the

wind estimation process.
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Figure 5.13: QuikSCAT measured backscatter σm plotted as a function of effective
non-raining wind σ◦, σw for v-pol. Also plotted is a non-parametric estimate of the
data, and the combined rain effect model.
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Chapter 6

Simultaneous Wind and Rain Retrieval Using SeaWinds Data

This chapter discusses a new method for improving wind estimates in the

presence of rain using the simple rain-backscatter model developed in Chapter 5

[53]. The chapter focuses on two wind retrieval methods: simultaneous wind/rain

estimation and rain-corrected wind retrieval.

First, in the absence of an independent estimate of the rain rate, the wind

velocity and integrated rain rate is simultaneously retrieved using maximum likelihood

estimation (MLE). This method is particularly useful for post-correction of SeaWinds

on QuikSCAT data where co-located rain measurements are not available, and to

provide an auxiliary earth-wide database of rain rates.

Second, when knowledge of the rain rate is available, such as from the

Advanced Microwave Scanning Radiometer (AMSR) aboard ADEOS II, the GMF

is directly corrected for the known rain rate. The wind is then retrieved using the

adjusted GMF. The rain-corrected retrieval technique can be used to provide a more

accurate wind estimate than simultaneous wind/rain retrieval by eliminating rain rate

ambiguity.

The combined wind/rain MLE approach is described in Section 6.1. In

conjunction with SeaWinds rain retrieval, beamfilling and wind vector cell filling

issues are discussed in Section 6.2, along with a calculation of the normalized standard

deviation of the rain backscatter model in Section 6.3. This chapter evaluates the

wind retrieval skill for both simultaneous wind/rain and rain-corrected methods via

simulation, comparing each method to the conventional wind-only retrieval in Section

6.4. In addition, validation studies are performed for the MLE approach with data

from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR), and

113



winds from the National Centers for Environmental Prediction (NCEP). A synoptic

example is given in Section 6.5, demonstrating the utility of simultaneous wind/rain

retrieval. Simulation and validation demonstrate that the simultaneous wind/rain

retrieval method works best in the swath sweet spots, and is not usable on the swath

edges. As expected, the nadir region tends to be noisier than the sweet spots. The

method works well for most wind and rain conditions, although some wind/rain states

cause ambiguity between wind speed and rain rate, resulting in spurious rain rate

estimates or abnormally low wind speeds. Such anomalies usually occur in extreme

wind or rain conditions, and in connection with cross-swath blowing winds. In zero

rain conditions, simultaneous wind/rain retrieval produces somewhat noisier results

than the conventional method, especially at nadir. Further work is intended for

quality control in such areas of degraded performance.

6.1 Methodology

The “wind-only” estimation process is described in Section 1.1.2 and as-

sumes that the effects from unmodeled factors such as salinity, sea and air tempera-

ture, sea foam, and rain are small. The GMF variance term Kpm helps account for

small perturbations due to these unknowns in the estimation process. Rain effects,

however have been shown to be appreciable, and at times dominating [20, 53].

The effect of rain on σ◦ can be parameterized by the additional scattering

and attenuation of the signal,

σm = σwαr + σe (6.1)

where σm is the measured backscatter, σw is the component of the backscatter due

to wind, αr is the two-way atmospheric attenuation from falling rain, and σe is the

effective rain backscatter due to surface perturbations and atmospheric scattering

[20, 53, 54]. The parameters αr and σe are assumed to be independent of azimuth

angle and wind velocity, and thus solely a function of the vertically integrated rain

rate in km mm/hr. Here, we adopt the empirically-derived quadratic log-log model

for αr and σe given in [53] for use with simultaneous wind/rain retrieval.

114



The simple rain-σ◦ model of Eq. (6.1) can be used in conjunction with the

GMF to create a combined rain/wind model function of the form

Mr(u, R, ...) = M(u, ...)αr(R) + σe(R) (6.2)

where R is the integrated rain rate andMr is the combined wind/rain model function.

When R is unknown, Eq. (6.2) can be used to simultaneously retrieve the wind and

rain. If R is known for each measurement, Eq. (6.2) can be used to directly correct

the model values in the wind estimation process. The measurement model for the

combined wind/rain case is derived in Section 6.1.1, and the simultaneous wind/rain

and rain-corrected wind retrieval methods are described in Sections 6.1.2 and 6.1.3

respectively.

6.1.1 Wind/rain measurement model

Applying an MLE technique to simultaneous wind/rain retrieval requires

a measurement model for the signal and noise in the combined wind and rain signal.

In the measurement model, the noise in the measurement is assumed to be white

Gaussian like the non-raining case. Also, the communication noise coefficients α,

β and γ used in the conventional wind-only case are assumed to not change under

raining conditions.

We assume that the wind model uncertainty and uncertainty in the rain

model are independent. Given the true wind and rain, the true backscatter σt can be

written as

σt = M(1 + η1Kpm)10−αdB(1+η2Kpa)/10

+σe(1 + η3Kpe) (6.3)

where η1, η2, and η3 are zero-mean Gaussian random variables, Kpa is the normalized

standard deviation of αdB (the model αr in decibels), and Kpe is the normalized

standard deviation of model effective rain backscatter. The non-linear nature of

the attenuation term introduces difficulty in calculating the overall variance of the

model. Assuming that the attenuation is not very large, the attenuation term can be
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simplified by truncating the Taylor’s series expansion of 10x about x = 0, yielding

10−αdB(1+η2Kpa)/10 = αr10(−η2Kpa/10)

∼= αr(1− ln(αr)Kpaη2). (6.4)

Further, by truncating the Taylor’s series expansion of ln(x) about x = 1, we arrive

at

10−αdB(1+η2Kpa)/10 ∼= αr(1 + (1− αr)Kpaη2). (6.5)

Using this approximation, the expected value of σt is easily calculated, giving the

original model equation,

E{σt} = Mαr + σe = Mr. (6.6)

The variance of σt is also calculated using the approximation of Eq. (6.5), yielding

Var{σt} ∼= M2α2
r [K

2
pm + K2

pa(1− αr)
2(1 + K2

pm)]

+σ2
eK

2
pe. (6.7)

For low to moderate rain rates, αr is nearly unity, making the Kpa term of Eq. (6.7)

negligible. At high rain rates αr is small, and the Kpe term dominates. Thus, the

variability due to attenuation can be ignored, reducing the variance to

Var{σt} ∼= M2α2
rK

2
pm + σ2

eK
2
pe. (6.8)

Figure 6.1 supports the argument that the variability of the attenuation is negligible

in wind retrieval.

Adding communication noise, the scatterometer measurement z is modeled

as

z = σt(1 + Kpcη4)

∼= [Mαr(1 + η1Kpm)

+σe(1 + η3Kpe)](1 + Kpcη4). (6.9)

Using this model, the expected value of z is

E{z} = Mαr + σe = Mr (6.10)
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function of rain rate, demonstrating that even at large Kpa, the overall variance is
not very sensitive to Kpa, and thus the variability of the attenuation can be ignored.

and the variance is

Var{z} = (M2α2
rK

2
pm + σ2

eK
2
pe)(1 + K2

pc)

+K2
pc(Mαr + σe)

2 (6.11)

(see Appendix H). As in the non-raining derivation of the variance, we replace σt

with its mean from Eq. (6.6). Using Kpc from Eq. (1.6), and making the assumption

(similar to Eq. (1.9))

1 + α À β

σt

+
γ

σ2
t

, (6.12)

Eq. (6.11) becomes

Var{z} = (M2α2
rK

2
pm + σ2

eK
2
pe)(1 + α)

+αM2
r + βMr + γ. (6.13)

For zero rain conditions, αr → 1, σe → 0, and Mr →M, reducing Eq. (6.13) to the

non-raining variance of Eq. (1.10).
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To further simplify the variance, the first term on the right hand side of

Eq. (6.13) is manipulated by completing the square to yield,

Var{z} = [(MαrKpm + σeKpe)
2

−2KpmKpeMαrσe](1 + α)

+αM2
r + βMr + γ. (6.14)

Given that the total model backscatter Mr is a constant, the negative cross term in

Eq. (6.14) is parabolic in σe, of the form

−2KpmKpe(Mr − σe)σe (6.15)

which has a minimum of −.5KpmKpe at σe = Mr/2. Although this negative cross

term is not negligible, the parabolic nature has an adverse effect on the MLE by

lowering the variance of potential estimates where the raining backscatter is on the

order of half the total backscatter. The parabolic nature also raises the likelihood

function, artificially discouraging estimation of rain rates in this regime. In order to

eliminate this problem, we present a reduced version of the variance which eliminates

the negative cross term,

Var{z} ∼= (MαrKpm + σeKpe)
2(1 + α)

+αM2
r + βMr + γ. (6.16)

To validate this simplification, wind retrieval skill using both Eq. (6.13) and Eq. (6.16)

is compared in Section 6.3, demonstrating that Eq. (6.16) yields better wind retrieval.

It is interesting to note that if Kpe = Kpm, the form of Eq. (6.16) reduces to the form

of the non-raining variance as intuition suggests,

Var{z} ∼= [(1 + α)K2
pm + α]M2

r + βMr + γ. (6.17)

6.1.2 Simultaneous wind/rain retrieval

The approximate MLE likelihood function for simultaneous wind/rain re-

trieval is written as

lr(z|u, R) =
∑

k

(zk −Mrk(u, R, ...))2

ςrk(u, R)2
(6.18)
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where ςrk(u, R) is the variance derived in the previous section. Simultaneous wind

and rain estimates are found by minimizing the likelihood function for u and R given

the backscatter measurements.

As in the non-raining case, the likelihood function has several local minima

corresponding to possible ambiguities (see Figure 6.2). Each ambiguity has a corre-

sponding wind speed, wind direction and rain rate. To yield a unique wind vector

field, ambiguity selection is performed. In order to follow the conventional wind-only

retrieval method as much as possible, a nudging/median filtering ambiguity selec-

tion scheme is implemented. For simplicity, nudging for the simultaneous rain/wind

retrieval is not thresholded as with the JPL product [14]; all ambiguities are used.

Median filtering is performed using the modified vector-median filter described in [17].

6.1.3 Rain-corrected wind retrieval

In the case of known rain rate, such as from the AMSR on ADEOS II,

simultaneous wind/rain retrieval is simplified by evaluating the MLE likelihood func-

tion of Eq. (6.18) at the “true” rain rate only. This technique is known as rain-

corrected wind retrieval and is equivalent to a Bayesian estimation technique using a

delta-distributed rain rate prior. In the case of synergistic use of AMSR radiometer

rain rates from ADEOS II, a realistic Bayesian prior given the AMSR rain rates may

also be developed. Simultaneous wind/rain retrieval and rain-corrected retrieval are

evaluated in Section 6.4.

6.2 Beam/ WVC filling

Because of the relatively high spatial variability of rain, beamfilling and

WVC-filling effects are significant factors in interpreting SeaWinds-retrieved rain

rates. The retrieved rain rate corresponding to the selected local minimum of the like-

lihood function is an irregularly-weighted average over an area larger than the 25 ×
25 km WVC. For each measurement, the antenna beam response function weights the

backscatter values received from the atmospheric and surface rain scatterers. Thus,

depending on the spatial distribution of the rain within the footprint, the backscatter

response is altered from the true unweighted average. This is known as the beamfilling
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Figure 6.2: Sample likelihood function, displayed as a function of wind direction and
rain rate. For each pixel, the wind speed corresponding to the likelihood minimum
for that wind direction and rain rate is chosen.
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effect. Additionally, the spatial layout of the σ◦ measurements within a WVC, with

the associated overlap and possible lack of coverage, yields an irregularly-weighted

rain rate estimate. This is the WVC-filling effect.

To evaluate the beamfilling and WVC-filling effects, we use co-located data

from the TRMM PR. The TRMM/SeaWinds data include 100 regions co-registered

temporally within 10 minutes. The co-located data span three months from Septem-

ber through November 1999 and are limited to the tropics. The TRMM PR obtains

measurements at a much higher resolution than the SeaWinds scatterometer (about

4 km), affording an excellent data set for analysis of beamfilling and WVC-filling

effects.

First, we examine the beamfilling effect by evaluating the error between

the average rain rate weighted by the antenna beam pattern and the non-weighted

average rain for individual measurements. Using the TRMM/SeaWinds co-located

data set, both antenna-weighted (Rw) and non-weighted (Rnw) rain rate estimates

for each SeaWinds measurement are computed from the PR-derived integrated rain

rates via the equations

Rw =

∑N
i=1 GiR

′
i(PR)∑N

i=1 Gi

(6.19)

and

Rnw =
1

N

N∑
i=1

R′
i(PR) (6.20)

where Gi is the gain of the SeaWinds antenna pattern at each co-located TRMM PR

measurement within the 6dB SeaWinds footprint, R′
i(PR) is the PR integrated rain

rate at each 4 km PR resolution cell, and N is the number of PR measurements within

the SeaWinds footprint. The statistics of the normalized error between the antenna-

weighted and non-weighted measurements with significant non-weighted rain rates (>

2 km mm/hr) are calculated for the entire co-located data set. The normalized error is

defined as the error divided by the non-weighted measurements, i.e. (Rw−Rnw)/Rnw.

The mean normalized error is approximately zero, while the standard deviation is 0.21,

suggesting that while beamfilling introduces variance into the rain estimate, it does

not shift the mean.
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Next, we examine the WVC-filling effect by evaluating the error between

the “effective” weighted average rain rate seen by SeaWinds and the non-weighted

rain rate averaged over each 25 × 25 km WVC. The weighted average rain rate Rwvc
w

is calculated by first computing the PR-derived antenna-weighted rain rate for each

measurement in the co-located TRMM/SeaWinds data set (see Eq. (6.19)), and then

averaging the antenna-weighted rain rates corresponding to each WVC. An example

25 × 25 km WVC, the 6 dB contours of individual measurements comprising the

WVC, and co-located 4-km PR rain rates are displayed in Figure 6.3. To facilitate

a comparison, WVC-average non-weighted rain rate estimates Rwvc
nw are obtained by

averaging all raw 4 km PR rain rates lying within each 25 × 25 km square WVC. Fig-

ure 6.3 illustrates the large area covered by the measurements and the high variability

of rain within the view of the large SeaWinds footprints.

A scatter plot comparing the WVC-average rain rates to the weighted

average rain rates for the co-located TRMM/SeaWinds dataset is displayed in Fig-

ure 6.4. The statistics of the normalized error are calculated for all measurements

with WVC-average rain rates greater than 2 km mm/hr. The mean of the normal-

ized error for the co-located dataset is about -.04, suggesting a slight negative bias

of the weighted-average estimates. The standard deviation is 0.39, indicating that

the variability due to the WVC-filling effect is significant. Thus, it is important to

interpret SeaWinds-derived rain rates as an irregularly-weighted average of the rain,

rather than an unweighted average of rain over the 25 × 25 km WVC.

6.3 Estimation of Kpe

In order to apply the MLE method to simultaneous wind/rain estimation,

the normalized standard deviation of the effective rain backscatter Kpe must be de-

termined. Several factors may contribute to Kpe including uncertainty in the model

and inter-measurement variability due to non-uniform rain. We present estimated

Kpe values due to both of these factors in Section 6.3.1. Also, we present an empirical

approach to estimating Kpe by finding the value of Kpe that yields the most accurate
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Figure 6.3: The geometry of a sample WVC (bold square) and the 6 dB gain contours
of the individual σ◦ measurements (ellipses) comprising the WVC. A PR-derived rain
map is shown in the background.

wind speeds in Section 6.3.2. The empirical Kpe from the rain detection analysis is

used in the remainder of the paper.

6.3.1 Kpe due to model uncertainty and non-uniform rain

We first examine the rain backscatter model uncertainty. Validation of the

wind/rain backscatter model (see Eq. (6.1)) is given in [53], where the normalized

standard deviation due to uncertainty in the model is determined to be 1.6 dB, corre-

sponding to a Kpe value of 0.45. This, however, may be an overestimate, augmented

by the inherent variability of the NCEP winds and TRMM PR rain rates used to

validate the model. Thus, we expect the actual variability to be somewhat lower

than this estimated value.

Second, we examine the inter-measurement variability of the rain backscat-

ter within a WVC due to rain non-uniformity. The contribution to Kpe from inter-

measurement variability from rain non-uniformity is estimated using the co-located

QuikSCAT/TRMM data by comparing the model backscatter computed from the
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Figure 6.4: The WVC-average (unweighted) rain rate versus the weighted average
rain rate seen by SeaWinds.

weighted-average rain rate of the entire WVC to the model backscatter of the rain

corresponding to individual measurements. The model estimate of the backscatter

for the entire WVC, σwvc
e , is computed by projecting the weighted WVC-average rain

rate Rwvc
w through the rain model. Likewise, for all QuikSCAT measurements in the

WVC, the model backscatter corresponding each measurement σe is computed by

forward projection of the antenna-weighted rain rate Rw through the rain model. An

estimate of Kpe is obtained by taking the standard deviation of the normalized error,

Kpe = std{(σe − σwvc
e )/σwvc

e } (6.21)

for all rain rate observations where the weighted average rain rate is greater than 2

km mm/hr. The resulting value is Kpe
∼= 0.39, indicating that inter-measurement

variability is important and on the order of the model uncertainty.

6.3.2 Kpe yielding lowest RMS wind error

Since the value of Kpe affects the likelihood function, which in turn influ-

ences simultaneous wind/rain retrieval, an alternate approach to estimating Kpe is to
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Table 6.1: Kpe value yielding the lowest RMS wind speed error when compared with
calibrated NCEP numerical weather prediction winds over the TRMM/QuikSCAT
co-located dataset. Also, the corresponding RMS errors for both variance equations
of Eq. (6.13) and Eq. (6.16).

Variance form Kpe RMS error
Eq. (6.13) 0.18 2.27 m/s
Eq. (6.16) 0.16 2.14 m/s

find the value of Kpe that yields the best wind speed retrieval in real SeaWinds data.

Here, we compare the retrieved wind speed from simultaneous wind/rain retrieval to

NCEP wind speeds over the QuikSCAT/TRMM/NCEP co-located dataset.

In comparing QuikSCAT to NCEP, we note that a bias exists between

non-raining QuikSCAT data and NCEP winds [8, 53]. We adjust for the bias with

a multiplicative constant determined using least-squares linear estimation over the

non-raining QuikSCAT winds (as determined from the TRMM PR rain rate). The

bias constant is determined to be uqscat = 0.83×uncep. The remaining discussion uses

NCEP wind speeds adjusted for the bias.

To find the value of Kpe that gives the best speed wind retrieval, we per-

form simultaneous wind and rain retrieval over the co-located TRMM/SeaWinds

data set for varying values of Kpe and for both likelihood function variance equations

(Eq. (6.13) and Eq. (6.16)). Then, we choose the value of Kpe and corresponding

variance equation that yields the lowest RMS wind speed error overall. We note that

we use the JPL default value of Kpm = 0.16 for the model function variability in the

retrievals. The optimal values of Kpe for each variance equation and the RMS error

are given in Table 6.1.

The optimal value of Kpe is 0.16 corresponding to the reduced variance

form of Eq. (6.16). Since this value of Kpe is the same as the Kpm value used,

the variance reduces to the non-raining variance equation. Thus, for the remaining

analysis, we utilize the non-raining variance equation (see Eq. 6.17) in the retrievals

with Kpm = 0.16.
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6.4 Simulations and validation

In order to evaluate the quality of the new wind/rain estimation procedure,

we present a simulation and validation study for simultaneous wind/rain retrieval and

rain-corrected wind retrieval. For SeaWinds baseline wind-only retrieval, it is known

that for some wind speeds and cross track positions, the wind retrieval performance

of SeaWinds is somewhat degraded [15, 36]. This degradation often occurs at low

and extremely high winds, at nadir, and on the swath edges. At low wind speeds,

low SNR often causes wind estimates to be noisy. At high wind speeds, a saturation

in σ◦ occurs, decreasing the accuracy of the winds [19, 55]. On the swath edges and

at nadir, poor viewing geometry causes the MLE to be ill-conditioned. However, at

moderate wind speeds, and especially in the “sweet spots” of the swath, wind retrieval

performance is very good.

In the absence of rain, the inclusion of a rain rate parameter into the

estimation process inherently makes the MLE more ill-conditioned than wind-only

retrieval. However, when rain is present, simultaneous wind/rain retrieval can signif-

icantly improve the wind estimate. It is thus important to evaluate the performance

of the wind/rain MLE procedure with and without rain. Also, because the wind

retrieval accuracy varies with cross-track position and wind velocity, we evaluate the

performance given a variety of cross track and wind conditions. The MLE is evaluated

via simulation in Section 6.4.1 for both simultaneous wind/rain and rain corrected

retrievals. Validation of simultaneous wind/rain retrieval with NCEP winds and PR

rain rates is given in Section 6.4.2.

6.4.1 Simulation results

To analyze the performance of the MLE, we perform simulations of the

backscatter return for various conditions and evaluate the statistics of the retrieved

wind and rain. Simulations are conducted for varying wind speeds, rain rates, wind

directions, and cross track positions, spanning a wide range of the parameter space

(see Table 6.2). Nominal values of the Kpc coefficients α, β, and γ are used with

typical measurement geometries at each WVC.
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Table 6.2: Delineations of wind speed, wind direction, rain rate, and cross track
position for which the simulations are performed.

Speed 3, 7, 11, 15, 20, 25 m/s
Direction 0◦, 15◦, 30◦, . . . , 345◦

Rain Rate 0, 0.3, 1, 3, 10, 30 km mm/hr
Cross Track Position WVC 2, 6, . . . 38; 39, 43, . . . 75

For each combination of conditions, we project the speed, direction, and

rain rate through the backscatter model (Eq. (6.1)) for all measurements correspond-

ing to that WVC. Next, zero-mean Gaussian random noise with the variance given

in Eq. (6.17) is added. Retrieval is then performed for 500 noise realizations for each

set of conditions. The wind vector ambiguity realization that is closest to the true

wind vector is selected.

For each simulation, three retrievals are performed: conventional wind-

only retrieval, simultaneous wind/rain retrieval, and rain-corrected wind retrieval. In

wind-only retrieval, the baseline wind-only likelihood function of Eq. (1.11) is used.

In simultaneous wind/rain retrieval, ambiguities are determined as the local minima

of the wind/rain likelihood function of Eq. (6.18). In rain-corrected retrieval, the

simultaneous rain/wind likelihood function (Eq. 6.18) is evaluated at the true rain

rate only, requiring knowledge of the true rain rate available from simulation. Full

simulation statistics for simultaneous wind/rain retrieval are given in Figures 6.17–

6.22 at the end of the chapter.

In presenting the simulation results, we first examine the RMS error of the

ambiguity closest to the true wind as a function of cross track position and “rain

fraction.” The rain fraction F is defined as the effective rain backscatter divided by

the total model backscatter given the ambiguity selected rain rate and vector wind

averaged over the measurements,

F =
∑

k

σek(R)/Mrk(R,u, ...). (6.22)
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Figure 6.5: Ratio in RMS error between the a) simultaneous wind/rain retrieval
RMSwr and the wind-only retrieval RMSwo, and b) the rain-corrected wind retrieval
RMSrc and the wind-only retrieval RMSwo as a function of rain fraction.

The rain fraction F indicates the level to which rain affects the backscatter mea-

surements, with zero meaning rain has no significant effects and one meaning rain

dominates the observed backscatter.

The wide scope of wind speeds and rain rates provides a large range of rain

fraction bins, each corresponding to a different wind/rain combination. To allow com-

pact comparison of wind-only retrieval to simultaneous wind/rain and rain-corrected

retrievals, the ratio of RMS error between each is shown in Figure 6.5 for each cross-

track position.

Figure 6.5a demonstrates that simultaneous wind/rain retrieval on the

swath edge performs poorly as indicated by a high error ratio. Also from Figure 6.5a,

simultaneous wind/rain retrieval is less accurate than wind-only retrieval for zero to

low rain fraction data (corresponding to relatively low rain rates). However, for most

rain fractions above 0.2, simultaneous rain/wind retrieval has a lower RMS error,

especially for sweet-spot observations. These simulations suggest that simultaneous

wind/rain retrieval works well for most rain corrupted cases, while it slightly degrades

wind retrieval performance in zero-rain conditions.

Comparing Figure 6.5b to Figure 6.5a, the rain-corrected wind retrieval

performs better than the wind-only retrieval for almost all cases except at high rain

fractions, where the wind is almost totally dominated by rain. The most noticeable

improvement over simultaneous wind/rain retrieval is on the swath edges, where

128



−90
−60
−30

0
30
60
90

−90
−60
−30

0
30
60
90

0 90 180 270 360
−90
−60
−30

0
30
60
90

a) no rain (R=0,u=7)

D
ire

ct
io

na
l E

rr
or

 (
de

g)

−90
−60
−30

0
30
60
90

−90
−60
−30

0
30
60
90

0 90 180 270 360
−90
−60
−30

0
30
60
90

b) light rain (R=1,u=7)

−90
−60
−30

0
30
60
90

−90
−60
−30

0
30
60
90

0 90 180 270 360
−90
−60
−30

0
30
60
90

c) significant rain (R=10,u=7)

−90
−60
−30

0
30
60
90

−90
−60
−30

0
30
60
90

0 90 180 270 360
−90
−60
−30

0
30
60
90

d) dominate rain (R=30,u=7)

True Direction (deg)

sweet spot
nadir

Figure 6.6: Directional error statistics as a function of true direction for 4 rain rate
cases with wind speed of 7 m/s. In each plot, the rain-corrected wind retrieval is shown
on top, simultaneous wind/rain retrieval is in the middle, and wind-only retrieval is
on the bottom.

simultaneous wind/rain retrieval fails. Also, as expected, the rain-corrected wind

retrieval performs much the same as wind-only retrieval in zero and low rain cases.

Next, we examine the directional and speed error of the two re-

trieval methods, comparing them to the wind-only result. The high number of

wind/rain/direction/cross-track combinations prohibits displaying all the cases in

this paper. Thus, we only show several representative examples. Since 7 m/s is

the mean wind speed over the oceans, we show four typical cases with wind speed

of 7 m/s and varying rain rates. For clarity, we show nadir and sweet spot simu-

lations only. Figures 6.6 and 6.7 show the directional and speed error statistics for
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rain rates of 0, 1, 10 and 30 km mm/hr for rain-corrected retrieval, simultaneous

wind/rain retrieval, and wind-only retrieval. For the zero-rain case, the simultane-

ous wind/rain retrieval of directions is somewhat less accurate than the other two

retrieval methods. However, for light rain, simultaneous wind/rain retrieval is more

accurate, while wind-only retrieval becomes somewhat biased. For significant rain,

the rain-corrected and simultaneous wind/rain retrieval are very close to zero-mean,

while the wind-only retrieval is extremely biased in certain directions. The bias in

the wind-only data exists because the wind-only ambiguities tend to point in a direc-

tion parallel or perpendicular to the swath regardless of the true direction. For the

dominate rain case, all three retrievals perform poorly with respect to wind direction

as expected; however, the rain-corrected and simultaneous wind/rain retrievals are

less biased. Figures 6.6 and 6.7 also demonstrate that simultaneous wind/rain direc-

tional retrieval has a lower variance in the sweet spot than in the nadir region. Thus,

directional retrieval in the sweet spot is somewhat better than at nadir as expected.

Examining the speed error statistics of Figure 6.7, the simultaneous

wind/rain retrieved wind speeds are nearly zero mean for all rain rates with increasing

variability at higher rain rates, while the wind speeds for the wind-only retrieval are

extremely biased at high rain rates. At higher rain rates, the simultaneous wind/rain

retrieved speed is biased slightly low for directions nearing 90◦ and 270◦, especially

at nadir. The bias is likely due to cross-track pointing winds appearing to the MLE

as rain, and thus decreasing the wind speed while increasing the rain rate. This bias

suggests identifiability problems between the wind and rain for cross-track blowing

winds.

The speed error for the three retrieval methods is further demonstrated in

Figure 6.8. Here, all simulation wind speed and rain rate combinations are shown.

As expected, the wind-only retrieval shows considerable biases at low wind speeds for

moderate to high rain rates. These biases are almost completely corrected in both

rain-corrected and simultaneous wind/rain retrieval which both exhibit a near-zero

mean for almost all cases. The rain-corrected retrieval is slightly biased high for very
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Figure 6.7: Wind speed error statistics as a function of true direction for 4 rain
rate cases with wind speed of 7 m/s. In each plot, the rain-corrected wind retrieval
is shown on top, simultaneous wind/rain retrieval is in the middle, and wind-only
retrieval is on the bottom. Notice the scale differences of the plots.

low rain rates and high wind speeds. Likewise, the simultaneous wind/rain retrieved

speeds are slightly biased high for most rain rate/wind speed combinations.

Next, we demonstrate the rain retrieval performance of the simultaneous

wind/rain MLE. Figure 6.9 shows the rain rate error statistics of the retrieved rain

rates as a function of true rain rate for varying wind speeds. As wind speed increases,

the retrieved rain rate becomes increasingly biased. The rain rate bias at high wind

speeds is quite high, even at zero rain rate. However, in low to moderate wind

speeds (3-11 m/s), the retrieval performs quite well. These simulations demonstrate
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the limitation of accurately retrieving rain in high wind speed regions where the

wind dominates the rain signal. Rain flagging algorithms can be developed to detect

erroneous rain rates in high wind speed regions and discard them.

In summary, simultaneous wind and rain retrieval works well for many

conditions, especially in the sweet spot and for moderate wind/rain conditions. Nadir-

retrieved winds from the simultaneous method tend to be especially noisier than winds

retrieved in the sweet spots, and simultaneous wind/rain retrieval is not usable on

the swath edges. In the absence of rain, simultaneous wind/rain retrieval is less

accurate than wind-only retrieval, and thus it is beneficial to use wind-only retrieval

in non-raining regions. The wind speeds of simultaneous wind/rain retrieval are

mostly unbiased; however, cross-track blowing winds may cause lower than expected

retrieved wind speeds due to increased ambiguity between the wind and rain effects in

such conditions. Also, in extreme wind, the retrieved the rain rate tends to be biased

high, while in extreme rain, the retrieved wind vectors tend to be highly variable.
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6.4.2 Validation

In this section, we present a validation of QuikSCAT simultaneous

wind/rain retrieval with NCEP wind speeds/directions in Section 6.4.2, and with

TRMM PR rain rates in Section 6.4.2. The analysis of rain-corrected wind retrieval

is omitted since it requires some tuning to use in connection with PR rain rates and

is thus beyond the scope of this paper. Also, as of yet, AMSR rain rate estimates are

not available to use in conjunction with rain-corrected wind retrieval.

Wind vector validation

First, we perform validation of simultaneous wind/rain retrieval with

NCEP wind speeds and directions. The validation is performed over the co-located

QuikSCAT/TRMM dataset since an estimate of the rain rate is available. Again, we

correct for the NCEP bias with a multiplicative constant of 0.83.

A scatter plot displaying the simultaneous wind/rain retrieved and wind-

only retrieved wind speed as a function of NCEP wind speed for several rain fraction
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Figure 6.10: Scatter plot with density curves of the bias-corrected NCEP wind speeds
versus simultaneous wind/rain retrieved wind speeds for various rain fraction bins.

bins is shown in Figures 6.10 and 6.11. Simultaneous wind/rain retrieval has a slightly

higher error than the wind-only retrieval for low rain fractions. However, for increas-

ing rain fractions, the simultaneous wind/rain retrieval remains essentially unbiased,

while the wind-only retrieval becomes increasingly biased.

At higher rain fractions, many of the wind speed estimates from simul-

taneous wind/rain retrieval are driven to zero. A “zero” wind speed indicates that

either the rain is sufficiently strong so that it totally dominates the signal, or that

the backscatter from the wind appears to the MLE as rain. Thus, in some wind/rain

regimes, especially when the rain dominates, the wind may not be identifiable. How-

ever, for most cases, the MLE can wind from rain because the co-polarization ratios

of wind- and rain-induced backscatter are different.

Validation of directional retrieval is demonstrated in Figures 6.12 and 6.13.

We note that we have excluded simultaneous wind/rain wind that have a “0” wind
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Figure 6.11: Scatter plot with density curves of the bias-corrected NCEP wind speeds
versus wind-only retrieved wind speeds for various rain fraction bins.

speed, because the direction is undefined in such situations. At higher rain fractions,

the simultaneous wind/rain directions are much closer to the true directions, while at

rain fractions above 0.25, the wind-only retrieval begins to have retrieved directions at

only 90 and 270 degrees (cross-swath). Thus, where rain is significant, simultaneous

retrieval aids in correcting wind directions corrupted by rain. The exception is at

very high rain fractions > 0.75, where the rain dominates and neither wind-only or

simultaneous wind/rain retrieval are valid.

Rain rate validation

Next, we compare the QuikSCAT-retrieved rain rates to the PR-derived

weighted average rain rates over the co-located dataset. A scatter plot of PR rain

rates against QuikSCAT rain rates are shown in Figure 6.14. Since the plot is on a
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Figure 6.12: Scatter plot with density curves of NCEP wind directions versus simul-
taneous wind/rain retrieved wind directions for various rain fraction bins.

log-log scale, “zero” rain rate values are not shown. The zero values correspond to

false alarms and missed detections.

Although the QuikSCAT derived rain rates have considerable scatter in

comparison to the PR rain rates, Figure 6.14 demonstrates a strong correlation be-

tween QuikSCAT and PR-derived rain rates. The QuikSCAT rain rates are biased

somewhat high, which is expected from the simulation. However, the bias can be

corrected. For example, Figure 6.14 shows a quadratic fit of the QuikSCAT rain

rates to the TRMM rain rates that can be used to correct for the bias. The bias

correction reduces the RMS error by about a fourth. Using the bias correction, the

rain backscatter model could be tuned to yield an unbiased estimate (see Appendix

I).
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Figure 6.13: Scatter plot with density curves of NCEP wind directions versus wind-
only retrieved wind directions for various rain fraction bins.

6.5 Synoptic example

In this section, we examine a co-located PR/QuikSCAT example over a

hurricane. The location of the storm is over the Ryukyu Islands off the southern tip of

Japan on September 22, 1999. Figure 6.15 shows the QuikSCAT-derived wind vectors

for both simultaneous wind/rain and wind-only retrieval, along with the QuikSCAT-

derived rain rates and the co-located TRMM PR derived rain rates.

On the far left, the coverage of the storm is limited to the outer-beam

region of the QuikSCAT swath. Retrieval of rain in this area is not usable. Thus, the

wind-only retrieved wind vectors are shown in Figure 6.15a in the outer swath region.

The wind-only retrieval exhibits many rain-induced features that are cor-

rected by the simultaneous wind/rain retrieval. The most obvious of these features

are the rain bands located up to about 24 wind vector cells (600 km) from the center

of the storm. The rain band is also visible in the TRMM PR data. The wind-only
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rate (in log space).

retrieval shows dramatic “apparent” wind speed increases and corrupted directions

in the rain band due to the electromagnetic scattering from rain. The simultaneous

wind/rain retrieval yields wind speeds in the rain bands that are more consistent

with the wind speeds of neighboring WVCs, along with generally more self-consistent

directions.

Another rain feature corrected by simultaneous wind/rain retrieval is the

corruption due to the large area of rain just south of the storm center. In this case,

the wind-only retrieval shows wind vectors all pointing nearly east (in the cross-

track direction), an indicator of rain. The QuikSCAT-retrieved rain rates are very

high in this region, which is consistent with the TRMM retrieved rains over the

portion covered by the PR. The simultaneous wind/rain retrieval shows a much more
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Figure 6.15: Synoptic example of a hurricane: a) QuikSCAT simultaneous wind/rain
derived wind vectors. b) QuikSCAT wind-only retrieval. c) QuikSCAT simultaneous
wind/rain derived rain rates. d) Raw PR rain rates. The box shows the coverage of
the PR data. Black pixels represent WVCs flagged as containing land.

consistent circular flow in this region, suggesting better wind retrieval over the wind-

only method. These corrected features demonstrate that simultaneous wind/rain

retrieval has the capability of correcting rain-corrupted winds.

Although simultaneous wind/rain retrieval corrects many of the rain-

induced features, the rain retrieval process also produces some possible spurious rain

rates as seen in the center of Figure 6.15c, where the wind-only retrieval shows little

evidence of rain contamination.
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Figure 6.16: Example of a rain event a) QuikSCAT simultaneous wind/rain de-
rived wind vectors. b) QuikSCAT wind-only retrieval. c) QuikSCAT simultaneous
wind/rain derived rain rates. d) Raw PR rain rates. The box shows the coverage of
the PR data. Black pixels represent WVCs flagged as containing land.

Another example of simultaneous wind/rain retrieval is shown in Figure

6.16. This example further illustrates the ability of QuikSCAT to measure rain. In

addition, the simultaneously retrieved wind flow is much more realistic and consistent

than the wind-only data. Further consideration of the validation of QuikSCAT rain

retrieval is given in Chapter 7.

6.6 Conclusions

Although rain has been shown to be one of the most significant factors that

corrupts SeaWinds scatterometer data, the new technique of simultaneously retrieving
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ocean winds and rain significantly improves the wind speed estimate for many rain-

corrupted areas. As a side benefit, simultaneous wind/rain retrieval provides an

estimate of the rain rate, which, while somewhat noisy and biased, has much broader

coverage than instruments such as the TRMM PR. When an outside estimate of the

rain rate is available, rain-corrected wind retrieval can be used to further improve the

rain/wind estimates.

SeaWinds on QuikSCAT rain retrieval has been shown by simulation to

give the best results in the sweet spot, and to not work well on the swath edges. Sim-

ulation also demonstrates that wind speeds from simultaneous wind/rain retrieval are

nearly unbiased, while the wind-only retrieval produces increasingly biased estimates

as rain increases. However, in zero rain conditions, simultaneous wind/rain retrieval

is generally more ill conditioned than wind-only retrieval, and thus does not perform

as well. It is thus beneficial to develop a rain flag, and only perform simultaneous

retrieval in raining areas.

The rain-corrected wind retrieval method presented here enables syner-

gistic use of the SeaWinds scatterometer and AMSR radiometer aboard ADEOS II

to correct rain-contaminated wind vectors. In addition, the simultaneous wind/rain

method can be applied for re-analysis of SeaWinds on QuikSCAT data. In the next

chapter, this method is further explored with a method of reducing spurious rain rate

estimates to reduce the overall bias of the estimates. Monthly rain rate validation

with the TRMM microwave imager is also presented in which QuikSCAT is shown to

be consistent (although somewhat biased) with passive data.
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Figure 6.17: Mean wind speed bias as a function of wind direction for several simu-
lation wind speeds and rain rates for a range of inner-beam cross track positions for
simultaneous wind/rain retrieval.
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Figure 6.18: Wind speed standard deviation as a function of wind direction for several
simulation wind speeds and rain rates for a range of inner-beam cross track positions
for simultaneous wind/rain retrieval.
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Figure 6.19: Mean directional bias as a function of wind direction for several simu-
lation wind speeds and rain rates for a range of inner-beam cross track positions for
simultaneous wind/rain retrieval.
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Figure 6.20: Wind direction standard deviation as a function of wind direction for
several simulation wind speeds and rain rates for a range of inner-beam cross track
positions for simultaneous wind/rain retrieval.
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Figure 6.21: Mean rain rate bias as a function of wind direction for several simula-
tion wind speeds and rain rates for a range of inner-beam cross track positions for
simultaneous wind/rain retrieval.
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Figure 6.22: Rain rate standard deviation as a function of wind direction for several
simulation wind speeds and rain rates for a range of inner-beam cross track positions
for simultaneous wind/rain retrieval.
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Chapter 7

Assessing the Quality of SeaWinds Rain Measurements

Considering that SeaWinds was not intended to measure rain, simultane-

ous wind/rain retrieval described in the previous chapter is surprisingly accurate,

especially in the sweet spots of SeaWinds swath, and when the true wind direction

is not oriented in the cross-swath direction. The main insufficiency in the method

is related to the fact that wind speed and rain rate do not have orthogonal effects

on backscatter. Thus, depending on the wind direction and measurement geometry,

backscatter due to wind can be confused with the response from rain. The effects of

this identifiability problem is most noticeable when the wind is oriented cross-swath

(see Figure 7.1). With wind in a cross-swath orientation, the backscatter response

is similar between the fore and aft beams, appearing isotropic, a signature similar

to rain. However, when the wind is not oriented cross-swath, the wind and rain

backscatter signatures are sufficiently different to afford good rain retrieval. In the

inner-beam region of the swath, where both v-pol and h-pol measurements are avail-

able, the effects of this wind/rain identifiability problem is lessened by the fact that

the co-polarization ratio of wind-induced backscatter is different than that of rain, i.e.

the HH-pol response from rain is higher than VV-pol, while the VV-pol response due

to wind-roughened seas is greater than the HH-pol. Thus, the use of measurements at

different polarizations affords better rain/wind discrimination than is available with

measurements from only one polarization (such as from the v-pol-only outer beam

region).

Wind/rain identifiability analysis for cross-swath blowing winds raises two

issues in retrieving accurate rain rates: First, for cross-swath winds, the simultaneous

wind retrieval method can infer spurious rain rates [56]. Second, the retrieved rain
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rates are biased somewhat high. This chapter investigates these issues by further

investigation of simulation statistics and via the Cramér-Rao (C-R ) theoretical lower

bound on estimate accuracy. From the simulations, a rain rate threshold is devel-

oped that indicates the level of rain required as a function of wind speed, direction,

and cross track position to confidently identify rain in the wind vector cell. This

rain flag threshold is set higher where spurious rain rates are more likely to occur.

Using simultaneous wind/rain retrieval and the thresholds, a method of improving

the current SeaWinds Multi-dimensional Histogram (MUDH) [28] rain flag is intro-

duced. The combined rain flag is shown to perform better than the MUDH flag for

low to moderate rain rates when comparing with co-located Tropical Rainfall Measur-

ing Mission (TRMM) precipitation radar (PR) measurements. Using the rain flag,

monthly average rainfall statistics are compared between the QuikSCAT data and

the TRMM microwave imager (TMI) [57]. Monthly-averaged QuikSCAT rain rates

(although noisy) visually correspond well to TMI-derived monthly average rain rates,

and are only slightly biased.

After presenting background to the SeaWinds instrument and simultaneous

wind/rain retrieval in Section 7.1, we analyze the quality of SeaWinds active rain

measurements via the Craḿer-Rao bound and simulation statistics in Section 7.2.

In Section 7.3, the simultaneous wind/rain retrieval-based rain flag is presented, and

validation of QuikSCAT monthly rainfall estimates with TMI data are given in Section

7.4.

7.1 Background

As described in Chapter 5, during rain the backscatter response of the

ocean is attenuated by falling hydrometeors. In addition, the nominal backscatter

response is augmented by both scattering from falling rain, and surface ripples formed

by rain striking the water. These effects are modeled as a net attenuation from the

nominal surface backscatter, and a net effective backscatter response,

σm = σwαr + σe (7.1)
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Figure 7.1: Example of wind/rain estimation for cross-swath blowing winds: a)
QuikSCAT simultaneous wind/rain derived wind vectors. b) QuikSCAT wind-only
retrieval. c) QuikSCAT simultaneous wind/rain derived rain rates. d) Raw PR rain
rates. The box shows the coverage of the PR data. Black pixels represent WVCs
flagged as containing land.
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A parametric model for the attenuation αr and effective rain backscatter σe as a

function of integrated rain rate R is computed in Chapter 5 [53]. The parametric

model has the form,

αr(R) = 10−10fa(RdB)/10/10 (7.2)

σe(R) = 10fe(RdB)/10 (7.3)

where RdB = 10 log10 R, and fa(RdB) and fe(RdB) are defined as 2nd-order polynomi-

als in RdB,

fa(RdB) =
2∑

n=0

xa(n)Rn
dB (7.4)

fe(RdB) =
2∑

n=0

xe(n)Rn
dB. (7.5)

As discussed earlier, the measurement probability density of the combined

wind/rain signal has the form,

p(z|u, d, R) =
∏

k

1√
2πςrk

exp

{
−1

2

(zk −Mrk)
2

ς2
rk

}
(7.6)

where k indexes the backscatter measurements z in the WVC, u is the wind speed,

and d is the wind direction. The probability distribution can be re-written as a

log-likelihood function of the form

L(u, d, R) = −1

2

∑

k

{
log(2π) + log ς2

k +
(zk −Mrk)

2

ς2
k

}
. (7.7)

In Eq. (7.6), the mean and variance are

Mrk = Mkαrk + σek (7.8)

ςrk = (1 + αk)εk + αkM2
rk + βkMrk + γk (7.9)

where αk, βk, and γk are the communication noise coefficients of the kth measurement

[16]. Also, Eqs. (7.8) and (7.9) contain the following simplified notation where the

dependence on wind and rain is implied,

Mk = M(u, d− φk, θk, polk) (7.10)

αrk = αr(R, polk) (7.11)

σek = σe(R, polk) (7.12)
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where M is the GMF, φk is the antenna azimuth angle, θk is the incidence angle, polk

is the polarization of the kth measurement, and εk is defined as

εk = (KpmαrkMk + Kpeσek)
2 (7.13)

where Kpm and Kpe represent the normalized standard deviation of the GMF and

effective rain backscatter, respectively [15, 56].

7.2 Cramér-Rao bound

In this section, we present simultaneous wind/rain estimation statistics ob-

tained from Monte-Carlo simulations and the C-R bound. The C-R bound gives a

lower bound on the variance of an unbiased estimator [26] and has also been general-

ized to include biased estimators. Let p = (u, d, R)T be the estimation parameters for

simultaneous wind/rain retrieval with u the wind speed in m/s, d the wind direction

in degrees, and R the rain rate in km mm/hr. Also, let p̂ be the MLE estimate of

the parameters. Using the notation of [15], the covariance of a biased estimate given

the measurements z is approximated by [58]

C (p) = E{[p̂− Ep̂][p̂− Ep̂]T}

& ∂Ep̂

∂p̂
J−1(p)

∂Ep̂

∂p̂

T

(7.14)

where J (p) is the Fisher-information matrix given by

J (p) = E

{[
∂L(p, z)

∂p

]T
∂L(p, z)

∂p

}
. (7.15)

If the estimator is unbiased (or biased by a constant value), the derivative

of the estimate given in Eq. (7.14) reduces to the identity, and the bound becomes

C (p) ≥ J−1(p). (7.16)

The solution of the Fisher-information matrix for the unbiased estimate corresponding

to the scatterometer likelihood function of Eq. (7.7) is given in [15] and is equal to

Jij =
∑

k

[
∂Mrk

∂pi

1

ς2
k

∂Mrk

∂pj

+
∂ς2

rk

∂pi

1

2ς4
k

∂ς2
rk

∂pj

]
(7.17)
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for the {i, j}th element of the matrix. Derivations of the rain model and variance

gradients are given in Appendix I.

Since the simultaneous wind/rain retrieval likelihood function has several

maxima, each corresponding to a possible wind vector estimate, ambiguity selection

must be taken into account in order to discuss statistics. In simulation, ambiguity

selection is performed by selecting the ambiguity closest to the true wind. With the

C-R bound, explicitly taking into account ambiguity selection is impossible. However,

because the C-R bound is computed from derivatives evaluated at the true wind and

rain, the computed variance is directly associated with the shape of the likelihood

function surrounding the true wind and rain, and not around the other ambiguities.

Thus, the C-R bound inherently computes the variability of the ambiguity closest to

the true wind. We can thus ignore ambiguity selection in the C-R bound analysis.

7.2.1 C-R / Monte-Carlo simulation analysis

As simulations and validation suggest [56], the wind/rain MLE is somewhat

biased. Thus, the most accurate representation of the MLE variance is the biased

C-R bound [59]. The biased C-R bound, however requires knowledge of the derivative

of the biased estimate, which is difficult to accurately compute. An approach to

computing the bias derivative is given in [15].

Rather than compute the biased C-R bound, for simplicity we compute the

unbiased bound, which we compare to simulation results. Monte Carlo simulations

are performed in which wind and rain are simultaneously retrieved for a variety of

wind/rain conditions and cross-track positions [56]. The simulation statistics are

computed over 500 noise realizations for each set of conditions. Likewise, the unbiased

C-R bound is computed. Standard deviation as a function of wind direction (relative

to the direction of the satellite), and cross track position is plotted in Figures 7.2

and 7.3 for a wind speed of 7 m/s . For most sets of conditions in these examples,

the C-R bound matches well with simulation results. We note that in some cases

the simulation results are somewhat lower than the C-R bound because of biases in

simultaneous wind/rain retrieval, and the fact that the model function derivatives
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Figure 7.2: Standard deviation as a function of cross track position of retrieved wind
speed, wind direction, and rain rate from QuikSCAT computed via a) simulation and
b) the unbiased C-R bound for three rain rates. Notice the anomalous C-R bound
spike in the nadir region for the directions, resulting from a large C-R bound due to
a bias in the estimate. The true wind velocity is 7 m/s and 0 degrees.
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due to a bias in the estimate. The true wind speed is 7 m/s at cross track position
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are numerically obtained. In addition, there are extreme artifacts in the C-R bound

at 60, 120, 240, and 300 degrees, and at nadir (evidenced by larges spikes, especially

in the directional standard deviation). These artifacts are most likely due significant

biases in such regions. We recognize that the unbiased C-R bound is not useful in

such areas.

We note that the SeaWinds geometry was originally designed from wind

observation, and thus may be suboptimal for rain measurement. Nevertheless, rain

can be accurately retrieved in most conditions. In Figure 7.2, the standard deviation

is reasonable for most cross track positions (excluding the swath edge). The standard
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Figure 7.5: Monte Carlo Simulations of SeaWinds data at WVC 14 for several wind
directions, a true wind speed of 7 m/s, and true rain rate of 0 km mm/hr. Also shown
are concentration ellipses representing the unbiased C-R bound

deviation peaks around nadir for all rain rates. This phenomenon is expected, as

SeaWinds has degraded performance in the nadir region. In addition, the rain rate

performance is dependent upon cross track position, with highest errors in the nadir

region and on the swath edges. Data from the swath edges, however, is not used in

simultaneous wind/rain retrieval.

Reasonable standard deviations are shown in Figure 7.3 for most wind

directions. Noticeable peaks occur at 90 and 270 degrees relative to the motion of

the satellite. These wind directions represent cross-swath blowing winds, where the

response from the fore and aft beams equalize, similar to rain. Since this example is

located in the left swath, a wind direction of 90◦ indicates wind blowing toward the
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Figure 7.6: GMF for a true wind speed of 7 m/s plotted for the inner H-pol SeaWinds
beam and outer V-pol SeaWinds beam at WVC 14. Also plotted are the expected
fore and aft backscatter measurements for each beam given an upwind direction (wind
blowing toward the instrument or d = 90◦ relative to the direction of the spacecraft
motion), or a downwind direction (wind blowing away from the instrument or d = 270◦

relative to the direction of the spacecraft motion).

satellite (upwind), while 270◦ is downwind. For 90◦, the fore and aft measurement

azimuth angles are centered around a relative (to the wind) azimuth angle of χ = 0◦,

while the fore and aft measurements at 270◦ are centered around χ = 180◦ (see Figure

7.6). The peak around 90 degrees is somewhat higher than the peak around 270◦.

This phenomenon is related to the anisotropic nature of the GMF. At a wind direction

of 90◦ (measurements centered around χ = 0◦), the GMF reaches the global maximum

for a given wind speed, while at 270◦ (measurements centered around χ = 180◦), a

lower local maximum in the GMF occurs. Thus, at 90◦, the returned σ◦ values have a

larger magnitude, which results in greater ambiguity between the wind and the rain

than at 270◦.
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Figure 7.6 also shows that the V-pol backscatter response for wind-

roughened seas is higher than the H-pol response. For rain backscatter, the opposite

is true [20, 53], i.e. the H-pol response is higher than V-pol. Since noise perturbs

the backscatter from the ideal GMF value, the observed V-pol/H-pol co-polarization

ratio is often smaller than expected. When the co-polarization ratio is low and winds

are pointing cross-swath (resulting in an apparent “isotropic” backscatter between

fore and aft beams), simultaneous wind/rain retrieval compensates by “adding rain”

to the estimate in order to lower the co-polarization ratio, and thus giving a better

fit to the data. The end effect can be a spurious rain rate estimate.

Another result of the wind/rain identifiability problem is a net bias in rain

rate. The wind speed and rain rate bias is illustrated in Figure 7.4 as a function

of wind direction for various rain rates. The bias is dependent on rain rate, wind

speed, wind direction, and cross track position. Even for zero true rain rate, the

MLE estimates are biased positive around 90◦ and 270◦. For rain rates of 3 and 10

km mm/hr, the bias is more significant at these directions. One method to remove the

bias is to apply a rain rate dependent correction to the wind/rain backscatter model.

Although the bias correction is not used in the remainder of the paper, Appendix J

presents a general methodology of correcting the rain backscatter model to improve

the overall bias using reference data from the TRMM precipitation radar.

7.3 Improved rain flag

The analysis from the C-RBound and simulated data in Section 7.2 predict

a bias and higher variability in the retrieved wind and rain for cross-swath winds. This

phenomenon is additionally illustrated in Figure 7.5 for WVC 14, at a true rain rate of

0 km mm/hr. Because the true rain rate in 0 km mm/hr, these spurious rain rates are

QuikSCAT false rain detections. As a result of possible spurious rain detections, we

present an rain rate thresholding scheme that indicates when simultaneously retrieved

rain rates are valid, and thus suggesting corruption in the wind-only speeds.

The simultaneous wind/rain-derived (SWR) rain thresholding scheme is

designed to produces a constant false alarm (false rain detection) rate for all wind
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Figure 7.7: Rain rate thresholds that yield a constant false alarm rate given wind
speed, wind direction, and cross-track position.

conditions and cross-track positions, at the risk of missed detections in some wind/rain

regimes. The SWR method can be used to improve the current Multi-dimensional

Histogram (MUDH) QuikSCAT rain flag by reducing the false alarms and expanding

the region of detection.

Using the simulation dataset, a rain rate threshold above which we can

identify true rain events is chosen for each wind speed, wind direction and cross track

position. The threshold is chosen as the rain rate above which the simultaneous

wind/rain retrieval estimates rain 5% of the time given zero-rain conditions. This is

equivalent to setting a constant false alarm rate of 5% for all wind/cross track con-

ditions. The thresholds are smoothed and interpolated onto a fine grid. In addition,

a minimum threshold of 0.5 km mm/hr is set to aid in robustness. We note that 5%

is a rather high false alarm rate; however, approximately 30% of false alarms occur

beneath the 0.5 km mm/hr threshold, and are thus eliminated.

Ideally, rain rate thresholding uses the “true” wind velocity. Since using

the retrieved wind speeds and directions is problematic during rain events, winds

from the National Centers for Environmental Prediction (NCEP), available in the

QuikSCAT Level 2B data, are used to index the thresholds. The use of NCEP winds

to index the thresholds introduces some variability into the rain flagging process,
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Table 7.1: Percentage of rain detection for SWR rain flag, MUDH rain flag, and
combined rain flag for various PR rain rate (RPR, km mm/hr) bins over the co-
located TRMM/QuikSCAT dataset.

RPR bin 0 to 0.1 0.1 to 0.5 0.5 to 2 2 to 5 5 to 10 10 ↑
tot. num. 16007 3226 2266 1137 523 433

SWR 1.7% 9.6% 39.7% 67.5% 85.3% 95.2%
MUDH 2.1% 9.2% 31.7% 70.9% 95.0% 99.5%
comb. 1.8% 10.2% 41.7% 73.7% 92.2% 97.2%

since NCEP winds at times may not accurately represent the true wind. However, in

most conditions, especially when there are no fine scale wind features, NCEP winds

are adequate.

The SWR rain rate thresholds for various wind speeds, wind directions and

cross-track positions are given in Figure 7.7. The low threshold values for u = 7 m/s

and u = 11 m/s illustrate that the SWR retrieval does not significantly confuse rain

and wind for low to moderate wind speeds. For higher winds, the rain flag thresholds

are set high in the cross-swath directions because high false rain rates may occur

there.

In order to better flag rain in areas of high SWR thresholds where the

retrieved rain rate is questionable, we describe a simple scheme to combine the SWR

rain flag with the current MUDH flag to improve overall performance of both methods.

If the retrieved rain falls above the SWR threshold, then it is flagged. However, if the

SWR rain flag greater than 2 km mm/hr (the threshold value to which the MUDH

rain flag is tuned), and the retrieved rain rate is between 2 km mm/hr and the SWR

threshold, then the MUDH flag is used. This scheme allows the use of the MUDH

rain flag when the SWR rain rate is questionable.

To validate the SWR and combined rain flags, we use 3 months of co-

located TRMM PR data. Table 7.1 shows the percentages of rain detections using

the SWR, MUDH, and combined rain flags for various TRMM PR effective average

rain rate ranges. The effective average rate is formed by antenna-weighted averaging
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Table 7.2: Percentage of WVCs flagged as containing rain, and not containing rain for
the MUDH and combined rain flags for 4 months of SeaWinds on QuikSCAT data.

MUDH
No Rain Rain Total

Comb. No Rain 88.0% 2.0% 90%
Rain 5.3% 4.7% 10%
Total 93.3% 6.7 %

of all PR rain rates within each SeaWinds 6 dB contour for each measurement, and

then averaging the resulting rain rates corresponding to each WVC.

The combined and SWR and combined rain flags infer less rain than the

MUDH rain flag in the 0 to 0.1 bin, indicating that the use of the SWR rain flag

yields less false alarms than the MUDH flag. For PR rain rates from 0.1 to 5 km

mm/hr, the combined rain flag infers a higher percentage of rain than the MUDH flag,

illustrating an improvement in rain flagging in low to moderate rain rates. The MUDH

flag, however is slightly more effective in higher rain areas (above 5 km mm/hr).

Further, we compare the combined rain flag to the MUDH rain flag over

4 months of QuikSCAT data from August to September 1999. Table 7.2 gives the

total numbers of WVCs flagged by rain for both MUDH and combined rain flags.

The combined rain flag identifies a considerably higher percentage of rain cases than

the MUDH flag. This is partly due to the fact that the combined rain flag is more

sensitive to lower rain rates than the MUDH flag in many areas. However, the SWR

rain flag thresholds used in the combined rain flag can be adjusted to give a similar

detection rate as the MUDH flag if desired. A comparison of the combined rain flag

to the MUDH flag is shown in Figure 7.8 as a function of cross track position. The

combined rain flag has rather constant performance in the sweet spots, while flags

more WVCS at nadir and on the edges of the inner-beam region. The MUDH rain

flag has a triangle-shaped flagging rate which peaks in the center of the swath. The

MUDH flag also has increased flagging on the outer-beam swath edges where the

QuikSCAT flag is not usable.
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Figure 7.8: Percentage of WVCs flagged by the MUDH rain flag versus the combined
rain flag per cross-track position.

7.4 Monthly rain rate validation with TMI

Simultaneous wind/rain retrieval from SeaWinds data, along with the com-

bined rain flag, afford reasonably accurate global observations of ocean rain. Here, we

present a comparison of monthly rainfall averages between the TMI and QuikSCAT.

In performing the comparison, simultaneous wind/rain retrieval is performed for 4

months of QuikSCAT data from August 99 to November 99. The combined rain flag

is applied to the retrieved winds, and the rain rates corresponding to non-flagged

WVCs are set to zero. The QuikSCAT retrieved rain rates and TMI surface rain

rates are then gridded and averaged separately on a 1◦ × 1◦ latitude-longitude grid.

The TMI surface rain rates give an estimate of the instantaneous rain

rate in mm/hr. To convert to similar units as QuikSCAT, the surface rain rate is

multiplied by a monthly average storm height (obtained from the 5◦ × 5◦ PR 3A25
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Table 7.3: Mean bias and correlation coefficients for monthly averages of QuikSCAT-
derived rain rates and TMI rain rates. A positive mean bias indicates larger average
QuikSCAT rain rates. A negative bias indicates larger TMI rain rates.

08-99 09-99 10-99 11-99
mean bias (km mm/hr) 0.0835 0.0819 0.02 -0.008

corr. coef. 0.5181 0.4768 0.5641 0.4963

monthly average data product, and interpolated to the 1◦ × 1◦ grid) to yield an

effective integrated average rain rate with units km mm/hr.

An example comparison of the QuikSCAT/TMI monthly average rain rates

for August 1999 is given in Figures 7.9 and 7.10. In this example, several global rain

features are evident in both the TMI and QuikSCAT rain data. The major noticeable

feature is the increased rain activity in the Inter-Tropical Convergence Zone that

stretches across the equator. Also, there is a noticeable correlation in the Southern

Pacific Convergence Zone located between −40◦ and −20◦ latitude and 150◦ and 270◦

longitude.

Table 7.3 gives the mean bias statistics (QuikSCAT-TMI) and correlation

coefficients for four months of data. Overall, the QuikSCAT data is biased slightly

high for three of the months. The bias for August and September is about 15% of the

mean TMI rain rate. This bias is comparable to the bias first reported in monthly

comparisons between Special Sensor Microwave / Imager (SSM/I) and TMI [60]. The

bias is expected from the previous analysis. Overall, the correlation coefficients for the

QuikSCAT and TMI data are around 0.5 for the monthly averages. The correlation

is likely low due to the noisy nature of the monthly averages.

Examining the monthly error map (see Figure 7.10b), the TMI data is

somewhat higher than QuikSCAT (white pixels) in areas of high monthly storm

height, indicating that the PR storm height estimate gives somewhat augmented

TMI integrated rain averages in some areas. Noticeable augmented storm heights

occur around the northern end of South America, in the Southern Pacific, and just

south of Japan.
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Figure 7.9: Monthly rain rate average for a) QuikSCAT-derived rain rates using the
combined rain flag and b) TMI-derived rain rates.
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Figure 7.10: a) Monthly rain height average from TRMM PR, interpolated to 1◦× 1◦

grid; b) Error between QuikSCAT and TMI monthly average rain rate for August
1999.
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Another noticeable difference between the TMI and QuikSCAT monthly

rain map is the noisy nature of the QuikSCAT rain rates in the Southern Pacific

Convergence Zone, whereas the TMI data is much smoother. Part of the difference

is due to the fact that the TMI data has much higher coverage of this area. For the

one month dataset, the TMI data has over 2000 data points per pixel in the southern

tropics, while the QuikSCAT data has less than 1000 data points per pixel. Thus, the

higher coverage allows for a more consistent time average of the region. In addition,

the TMI has a smaller footprint, and thus beam-filling variability is less of an issue.

Validation of QuikSCAT rain rates with TMI illustrates the utility of using

Ku-band scatterometer data from instruments such as SeaWinds to measure rain. In

addition, SeaWinds affords further active rain measurement to supplement the data

obtained by other active instruments such as the PR.

7.5 Conclusions

Although designed to measure near-surface winds, the SeaWinds instru-

ment is also sensitive to rain and thus can be used for global rain measurement.

Using the simultaneous wind/rain retrieval method described in [56], rain rate esti-

mates consistent with passive and active instruments such as the PR and TMI can

be obtained.

The major issue addressed in this chapter is rain/wind identifiability prob-

lems in the measurements, which is especially evident when the wind is oriented cross-

swath. In such orientations, spurious rain rates often occur and the retrieved rain rate

is biased somewhat high. The problem is evidenced in the Craḿer-Rao lower bound

and in Monte-Carlo simulations. Because the wind and rain signals may not be com-

pletely separable in such orientations, a rain rate thresholding scheme is developed in

which the thresholds are set higher in regions of poor wind/rain identifiability to re-

duce the false alarms. The simultaneous wind/rain retrieval and thresholding scheme

are combined to improve the current MUDH rain flag. Using co-located TRMM pre-

cipitation radar data, the combined rain flag demonstrates improved results for low

to moderate rain rates. Using the simultaneous wind/rain retrieval technique and
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combined rain flag, the QuikSCAT-derived rain rates are shown to be consistent with

monthly averages derived from TMI.
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Chapter 8

Summary and Conclusions

This dissertation addresses several error sources in Ku-band scatterome-

try, and presents methods for improving ambiguity selection performance and data

quality in the presence of rain without the use of outside information. Chapter 1

provides background in scatterometry and describes the current SeaWinds scatterom-

eter design. A quality assurance (QA) analysis technique is described in Chapter 2,

evaluating the effects of ambiguity selection, low winds, and rain contamination on

SeaWinds data. Chapter 3 describes an advanced ambiguity selection algorithm that

does not require nudging. Chapter 4 gives an analysis of the effect of the low wind

speed threshold in scatterometer data in an uncontrolled marine environment.

Chapters 5, 6, and 7, present, evaluate and validate a method of simulta-

neously retrieving wind and rain from scatterometer data. In Chapter 5, a forward

model of the rain-induced backscatter and attenuation as seen by the SeaWinds in-

strument is computed from comparison with co-located TRMM precipitation radar

data. The model is found to be accurate to within 3 dB. Using the rain model, the

simultaneous wind/rain retrieval method is developed in Chapter 6, demonstrating

that rain can be retrieved from SeaWinds data alone. The accuracy of the retrieved

winds is evaluated via the Cramer-Rao bound in Chapter 7, and a rain rate flag is

presented that indicates when simultaneous wind/rain retrieved rain rates are valid.

The main conclusion of the dissertation is that although ambiguity selec-

tion and rain contamination contribute error to the wind retrieval process, the error

due to both factors can be reduced without employing outside data. These results

are a significant contribution to scatterometry. The following sections provide further

contributions made by the dissertation.
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8.1 Contributions

8.1.1 Impact of error sources on vector wind

The quality assurance analysis presented in Chapter 2 and published in [36]

gives a self-contained method of determining the overall consistency of the wind and

identifying ambiguity selection errors. The method expands previous work applied to

NSCAT [21]. Although no truth data is available, the chapter describes how to use

a low-order model fit to estimate the underlying wind flow, and thus determine the

noise level and ambiguity selection. Scatterometer error is shown to be correlated with

the ambiguity selection process, low velocity winds, measurement geometry, fine-scale

wind features (such as cyclonic storms), and rain. Nadir winds tend to be much noisier

than winds in the other parts of the swath, resulting in “poor” wind flow in about

25% of the data. Also, low-velocity winds are shown to be extremely noisy, suggesting

that retrieving self-consistent direction flow on the scale of scatterometer winds is

not attainable with point-wise retrieval methods. SeaWinds ambiguity selection is

demonstrated to be about 95% effective over a two-year data set. The ambiguity

selection accuracy varies with latitude and time of year. Comparisons with rain-

flagged data and number of cyclonic storms indicates a high correlation between

ambiguity selection errors, storms, and rain.

8.1.2 High quality ambiguity selection without nudging

One of the inherent problems with the scatterometer wind retrieval is the

fact that a unique wind vector solution is generally not identifiable from the noisy

measurements at a single point. Thus, there are typically several possible wind vec-

tor choices, known as ambiguities, at each point that could have given rise to the

measurements. Numerical weather prediction winds are typically used to initiate

ambiguity selection to yield a self-consistent vector field. This technique, known as

nudging, creates a dependence on the accuracy of outside information. In Chapter 3,

I present a non-nudging approach that provides improved ambiguity selection in non-

extreme winds. These results are published in [35], and indicate that high quality
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ambiguity selection can generally be performed without nudging by taking into ac-

count the low-order variability of the wind via the Karhunen-Loeve wind model. The

new ambiguity selection method selects 93% of the same ambiguities as the nudging

approach, simultaneously validating both methods.

8.1.3 The effect of a low wind speed threshold on scatterometer data

In low wind speed conditions, scatterometer winds are much noisier due

to a low SNR and the possible effects of a low wind speed threshold in backscatter.

The impact of the low wind speed threshold on scatterometer data in an uncon-

trolled environment has been uncertain. To afford better understanding, I perform

a simple low wind speed threshold analysis with tower-mounted scatterometer data

in Chapter 4. The instrument measured the backscatter at a range of frequencies

and incidence angles, providing observation of the ocean backscatter from a num-

ber of Bragg wavelengths. With the tower-mounted scatterometer data, I show that

although a low-wind speed threshold is detectable in small-footprint scatterometer

data, the backscatter does not “go to zero” as theory suggests. Below the thresh-

old, there is generally a mean drop in backscatter with increased variability. The

measured threshold wind speeds correlate well with theory, but the mean drop is

usually not more than a few decibels. The increased variability below the threshold

may be related to a hysteresis effect and is consistent with space-borne scatterometer

observations, suggesting that increasing wind retrieval accuracy below the threshold

may not be possible. Space-borne scatterometers, however, observe the ocean with

much larger footprints, and are thus not as sensitive to the threshold wind speed as

small-foot print instruments. This work has been published as a conference paper

(see [61]).

8.1.4 The effect of rain on the SeaWinds scatterometer

Rain is the one of the largest weather-related contributers to scatterometer

error in SeaWinds data. Understanding the effect of rain on SeaWinds measurements

is imperative to correct rain-contaminated data. Using co-located TRMM precipita-

tion radar, I demonstrate that the effects of rain can be characterized using a very
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simple model (to within 3 dB) in Chapter 5. The analysis suggests that scattering

from surface perturbations dominates the rain-induced signal for low rain rates. At

high rain rates, atmospheric volume rain scattering dominates. Thus, theoretical

models must take into account not only volume scattering from the atmosphere, but

also surface backscatter to give accurate estimates of the bulk backscatter due to rain.

Using the simple backscatter model, I illustrate the regimes in which rain and wind

may be estimated from backscatter data in rain. This work has been accepted for

publication in the Journal of Geophysical Research [53].

8.1.5 Rain measurement from SeaWinds

Although SeaWinds is designed to measure wind, I demonstrate that Sea-

Winds’ sensitivity to rain affords scatterometer-based rain retrieval. Simultaneous

wind/rain retrieval is possible using the simple backscatter model presented in Chap-

ter 5 in Chapter 6. The wind/rain model is also useful for possible correction of rain

contaminated data from SeaWinds using rain rates obtained from the AMSR aboard

ADEOS II. The simultaneous method gives consistent results when compared with

the TRMM precipitation radar data, although the wind retrieval quality is somewhat

compromised in no-rain conditions, especially for cross-swath blowing winds. Simul-

taneous wind/rain retrieval reduces scatterometer speed errors in rain events, and

provides an auxiliary source for global rain rate estimates. This research is soon to

be submitted to the Journal of Geophysical Research.

8.1.6 Improvement of current rain flagging

Because SeaWinds was not designed to measure rain, the simultaneous

wind/rain retrieval procedure exhibits some limitations, explored further in Chapter 7.

The limitations are associated with accurate retrieval of cross-swath winds. Because

rain is an isotropic scatterer, and cross-swath blowing winds “appear” isotropic to

the scatterometer, the retrieval process may confuse wind and rain, yielding false rain

detections, and somewhat degraded wind estimates. This phenomenon is studied via

simulation and the Craḿer-Rao lower bound on measurement accuracy. Using the

simulation data, a set of thresholds are determined which indicates if the estimated
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rain rate is believable based on the wind speed, direction and cross track position.

Using this rain thresholding scheme, the current multi-dimensional histogram flag

can be improved by flagging wind vector estimates whose estimated rain rates fall

above the thresholds. The thresholded rain rates are shown to correlate well with

monthly averages from the TRMM microwave radiometer. This research is soon to

be submitted to the Journal of Geophysical Research.

8.2 Future research

8.2.1 Improvement of Non-nudging Ambiguity Selection in Storms

The ambiguity selection method introduced in Chapter 3 is slightly more

error-prone in cyclonic storm areas than the current nudging approach. Further

research is needed to tune the algorithm for optimal performance in cyclonic storm

areas.

8.2.2 Application of rain model to SeaWinds on ADEOS II

The ADEOS II satellite, which houses the second SeaWinds instrument,

has a high-precision radiometer known as the Advanced Microwave Scanning Ra-

diometer (AMSR) which will give co-located rain measurements with the scatterom-

eter. These rain measurements can be used to provide rain-corrected wind vector

estimates. The method suggested in Chapter 6 can be used to incorporate the AMSR

data. The rain model, however, must be tuned to the AMSR rain data, and validation

must be performed when AMSR data becomes available.

8.2.3 High resolution rain retrieval

In addition to the 25-km rain product, rain retrieval may also be performed

at a higher resolution using the method introduced by Long [62]. Because beam-filling

is less of an issue at higher resolutions, SeaWinds rain retrieval may operate at ap-

proximately the same accuracy as at 25 km resolution. The high-resolution processing

can give rain estimates with resolution on the order of the TRMM precipitation radar.

Such data would be ideal for hurricane observations of the interplay between rain and

wind.
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8.2.4 Combined model-based/rain estimation

As illustrated in Chapter 6, simultaneous-wind/rain-retrieved wind speeds

and directions during rain events are much more highly variable than in retrieved

wind speeds and directions in non-raining conditions. In order to provide a more

consistent estimate of the wind, model-based wind retrieval with a rain correction may

be employed in rain-corrupted areas. The result would be improved wind retrieval

in raining areas at a low computational cost compared with full model-based wind

retrieval.

176



APPENDICES

177



178



Appendix A

Fourier Analysis and Model Size Trade-offs of the QuikSCAT
KL Model

Because the truncated KL model minimizes the basis restriction error, it

is well suited for reduced order modeling of wind fields. This appendix explores the

issues involved with adapting the Karhunen-Loeve (KL) wind model to QuikSCAT

vector winds for use in model-based retrieval, point-wise ambiguity selection, and

quality assurance analysis. The KL model originally designed for NSCAT was a 12

× 12 KL model truncated at 22 model parameters. Differences in swath size and

resolution require a reevaluation of the KL model for use with QuikSCAT and future

sensors. Using Fourier analysis techniques, I discusses the issues associated with

model truncation point and region size. To explore the advantages of different sized

models, I analyze six model sizes including 8 × 8, 12 × 12, 16 × 16, 20 × 20, 24 ×
24, and 38 × 38 WVC models.

A.1 Generating a KL wind field model

Generically, a KL model is formed by taking the singular value decomposi-

tion of an autocorrelation matrix. To form the model, a subset of QuikSCAT swaths

are divided into N×N regions. No regions are used that contain missing data points.

The rectangular (u and v) components for each N ×N region are column scanned to

create a 2×N2 column vector, wn. The first N2 vectors contain the column scanned

u components, and the last N2 vectors contain the column scanned v components.

The autocorrelation matrix R is estimated:

R̂ =
1

M

M∑
n=1

wnw
T
n (A.1)
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where M is the number of N ×N wind fields examined. The basis set S is extracted

by taking the singular value (Σ) decomposition of R̂ where

R̂ = ST ΣS. (A.2)

Note that the singular value decomposition is equivalent to the eigenvalue decompo-

sition because R̂ is symmetric. The columns of S become the basis fields, or model

parameters of the KL model. The basis set is truncated to the appropriate number

of basis vectors, represented by F .

An arbitrary wind field can be represented exactly by a linear combination

the basis vectors. When restricted, the KL basis set identifies the underlying flow of

the wind, reducing noise at the risk of smoothing some fine scale wind features.

A.2 Frequency spectrum of the KL wind model

Since wind has a “red” spectrum, the low frequency wind has the most

energy. As a result, the KL model places low frequency parameters first. This phe-

nomenon is demonstrated in Figure A.1. The frequency spectrum of a 16 × 16 KL

model is estimated by taking the Fourier Transform (FFT) of the u component of

each model parameter. For the first 150 model parameters, energy is concentrated

at lower frequencies. As the number of model parameters increase, the frequency

spectrum widens monotonically. When truncated at a low number of parameters, the

model acts as a low-pass filter. Because noise is generally a “white” spectrum, most

of the noise is contained in the higher order model parameters.

A.2.1 Model size comparison

While the NSCAT KL model was fixed at 12 × 12 WVCs, the wide

QuikSCAT swath affords the flexibility of choosing a more optimally sized model

depending on the application. In order to directly compare different sized models, I

evaluate them on the same grid, requiring resizing of the KL model to a common re-

gion width. Resizing the KL model involves interpolation of the basis wind fields via

zero padding in the frequency domain. In doing so, edge discontinuities are avoided
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Figure A.1: The x-axis is the one dimensional frequency spectrum of the QuikSCAT
16 × 16 KL model for the u component. The y-axis is the model parameter number.
As the model parameter increases, the frequency spectrum widens.
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using conjugate mirroring of the wind field before applying the Fast Fourier Transform

(FFT).

Although different sized models are not identical, they contain similar fre-

quency information in the low-order vectors. To demonstrate this, two models A and

B are compared by creating a least-squares fit of each parameter in model A using

the truncated model B. This analysis is similar to the basis comparison metric given

in Chapter 2.

A least squares estimate of the nth model parameter of truncated basis A,

an, is obtained using the pseudo-inverse of the truncated basis B, B†, i.e.,

x̂n = B†an (A.3)

ân = Bx̂n. (A.4)

The coefficients, x̂n, are examined to see which parameters of model B are used to

model the parameters of model A.

Table A.1 shows the groupings of the NSCAT 12 × 12 WVC model that

are significantly used when applied via the least-squares fit to each of th first 22 basis

vectors of the QuikSCAT 24 × 24 model. The 24 × 24 QuikSCAT model was chosen

because it represents the same total area as the NSCAT 12 × 12 WVC model. Note

that the resolution for NSCAT was 50 km and the resolution for QuikSCAT is 25 km.

Thus, resizing the NSCAT model to twice the size makes it the same resolution as

the QuikSCAT 24 × 24 model. The models were truncated at 22 because there were

no vectors of the NSCAT model available above 22 model parameters.

Table A.1 demonstrates that up until the last few model parameters (20th

in this case), the model parameters for NSCAT and QuikSCAT are basically linear

combinations of each other. Another interesting point is that there are similar group-

ings of alike model parameters between the two models. For example, the first 2

QuikSCAT model parameters are modeled exclusively by the first 2 NSCAT model

parameters. This is because the first two model parameters are orthogonal DC com-

ponents of the wind. There is also another grouping of model parameters 3-6. Each

of the first 6 QuikSCAT model parameters can be modeled almost perfectly by the
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first six model parameters of the NSCAT model. Other noticeable groupings occur

at model parameters 7-12, and 13-22. As discussed in Chapter 2, each grouping of

model parameters represents a specific range of frequencies. As the number of model

parameter increases, the range of frequencies increase.

In analyzing the 8 × 8, 12 × 12, 16 × 16, 20 × 20, and 38 × 38 QuikSCAT

models, similar groupings are noticed. Each of these cases reveal that there are

groupings of model parameters at 1-2, 3-6, 7-12, and 13- ∼22. Also, the NSCAT KL

model for each case modeled the QuikSCAT model very well until the last 2-4 model

parameters. These results were achieved independent of the original model size. This

analysis suggests that for meso-scale winds, dynamic features inherent in the wind

are independent of size or resolution. Thus, although an 8 × 8 WVC region covers

much less area than a 24 × 24 WVC region, it contains similar wind structures, but

on a smaller scale.

A.2.2 Frequency groupings of the QuikSCAT KL model

The following analysis of the QuikSCAT KL model provides validation

to the observation that KL vectors are grouped into separate ranges of frequencies.

The frequency content of the QuikSCAT and NSCAT models is examined in the

following way: The wind fields are symmetrically mirrored creating periodicity. The

FFT for the u component of the rows is taken and averaged. The FFT is computed

and averaged for the v component of the rows, u component of the columns, and v

components of the columns. The maximum number of FFT bins used for each of the

model parameters is recorded. This entails examining each of the 4 FFTs performed,

2 vertical and 2 horizontal, and taking the highest bin used out of the 4 possibilities.

A subjectively chosen threshold is set to locate the highest bin. The threshold used in

these calculations ranged from .07 – .15 of the maximum bin magnitude depending on

model being used. The highest model parameters that used only the first N frequency

bins are listen in Table A.2 for each model examined.

Table A.2 indicates that there exist definite groupings of parameters that

use the same frequency bins common to all models. In general, the higher frequency
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Figure A.2: The average modeling error over the wind field of the QuikSCAT 16 ×
16 model being modeled by successive numbers of the enlarged QuikSCAT 12 × 12
model.

groupings become wider as the number of model parameters increase. The results of

Table A.2 aid in finding discrete points to best truncate the KL model. If a model is

truncated at a point defined in Table A.2, there exist the maximum number of model

parameters for a given wind frequency.

An alternate way of showing the results in Table A.2 is to do a model fit of

one model with another. Given that truncated model B contains a limited number of

spatial frequencies, it should not be able to represent model parameters of model A

outside of the frequency grouping due to the orthogonality of the Fourier transform

basis. Figure A.2 shows the average component error between the first 50 QuikSCAT

16 × 16 model parameters and model estimates made by the enlarged QuikSCAT 12

× 12 model for increasing numbers of 12x12 model parameters.

As seen in Figure A.2, 12 model parameters from the QuikSCAT 12 × 12

model are sufficient to model anything under 12 of the 16 × 16 model. However, 11

model parameters of the 12 × 12 model do not adequately model the subgrouping

from 7 – 12 of the 16 × 16 model. This phenomenon occurs because each of the
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Figure A.3: Average FFT over the cross track of QuikSCAT winds

16 × 16 model parameters from 7 – 12 contain portions of the frequency content in

parameter 12 of the 12 × 12 model, but do not contain higher components. Additional

discontinuities in the modeling error occur at 22, 26, and 36. When an entire frequency

grouping is used (e.g. at 12, 26, and 36) the same grouping of another model can

be adequately modeled. It is interesting to note that an apparent edge of a grouping

in Figure A.2 appears to occur at 16. This may be “sub-grouping” with common

frequency components between the 16 × 16 and 12 × 12 models.

A.2.3 QuikSCAT point-wise wind spectrum

In deciding reasonable truncation points for the QuikSCAT model, the

frequency spectrum of QuikSCAT winds is examined. Using QuikSCAT L2B data,

the frequency spectrum is determined by averaging the u- and v-component FFTs

for each cross track row containing no data gaps over a set of QuikSCAT winds. In

185



0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

FFT bin

C
um

ul
at

iv
e 

F
F

T
 o

f C
ro

ss
 T

ra
ck

 W
in

d 
−

 U
 c

om
po

ne
nt

Figure A.4: Running sum of energy in the FFT bins over the cross track

doing this, the data is mirrored for symmetry. Figure A.3 shows the average FFT of

the wind over the cross track for 10 revs. As shown, most of the energy in the wind

exists at low frequencies. Because of the “red” spectrum of the wind, an ideal wind

spectrum should drop to nearly zero at high frequencies. However, the high frequency

components saturate due to a “noise floor”. Because noise generally has a “white”

spectrum, the high frequency component of the wind is likely to be dominated by

noise. Thus, appropriately truncating the higher frequencies can reduce the effects

noise and not significantly affect the available frequency information in the retrieved

winds. Figure A.4 shows a running sum of the total energy in the FFT bins. Notice

that the slope becomes constant in the higher frequency areas. This indicates that

mostly “white” noise is being summed.
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A.3 Determining KL model truncation points

Figures A.3 and A.4 suggest that most of the energy in the wind is con-

tained in the first 1/4 - 1/3 of the frequency content. This section discusses at which

model parameters the QuikSCAT models must be truncated in order to keep the low-

est 1/4 or 1/3 of the frequency content. In the following discussion, N is the number

of bins in the 1/2 the FFT. Note that the wind has been mirrored, creating a vector

2 × 74 WVCs in length. Thus, N is 74 WVCs. Because the FFT is symmetric,

the right-hand side of the FFT has been neglected. Each bin represents a discrete

frequency of πM
N

where M is the bin number. I define T as the sampling period. The

real spatial frequency that a bin represents is

M

N

π

T
. (A.5)

All of the QuikSCAT model parameters have the same sampling period (T

= 25 km), making T constant for any size KL model. Given that there are N bins

in the FFT and M bins are desired, M/N is the fraction of the total number of bins

that will be kept. Equation (A.5) is simply the fraction of bins desired multiplied by

a constant. Thus, if the fraction M/N is held constant for any model, it represents

the same amount of spatial frequency. For example, if 1/4 of the frequency spectrum

was desired for the 16 × 16 model, N = 16 and M = 4. This is the same spatial

frequency as M = 3 for the 12 × 12 model. Both of these correspond to the same

cutoff frequency.

Using this information and the data obtained in Table A.2, QuikSCAT

cutoff model parameters can be obtained that correspond to a certain cutoff spatial

frequency. These numbers are calculated for each of the models of size 8 × 8 to 24

× 24 WVC and tabulated in Table A.3. From Table A.3, it is shown that as the size

of the model increases, the number of model parameters needed to obtain the same

cutoff frequency also increases. For example, to model 1/3 of the frequency content

of a swath, it takes only 12 8 × 8 model parameters. However, it takes 92 24 × 24

model parameters. This is such because the 24 × 24 model covers a larger region. In

a larger region, what may look like a uniform wind field for a 8 × 8 model, actually
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has low frequency content that can be modeled by the 24 × 24 model. Thus, the low

order wind vectors in larger models model low frequency winds that smaller models

cannot see. Table A.3 also shows the smallest wind feature size that can be modeled

for each fraction of the FFT. This information was gathered from direct observation

of the cutoff model parameters. Notice that using more FFT bins enables the model

to fit to smaller wind feature sizes.

A.3.1 Trade-offs between smaller and larger models

The previous discussion affords an understanding of the number of model

parameters that must be retained to obtain a certain spacial frequency. The number

of parameters to retain is related to the model region size. A trade-off analysis must

be made when selecting a model size. Although a large model must be truncated at a

high number to obtain the same spatial cutoff frequency as a smaller model, a larger

model can more accurately represent large-scale wind flow because the larger model

has less error-producing “edges.” Processing time, however is drastically increased

when a larger model is used. The small model is more computationally efficient and

can more easily model ocean regions next to land or non-data points, but introduces

higher modeling error. Thus, deciding on a model size and corresponding truncation

point involves a trade-off between modeling error and computational efficiency.

A.4 Conclusion

This appendix has shown that there is a direct relationship between the

KL model parameter number and the frequency content in the model. The model

parameters are grouped according to the amount of frequency content in the wind.

It has been shown that for the low order model parameters, all models contain scaled

versions of the same wind features. In addition, larger sizes of models contain lower

frequency content than smaller models.

For larger models, more model parameters are needed in order to have

the same cutoff frequency as the lower models. This creates a trade-off between

computational efficiency (with a small model), and low modeling error (with a large

model).
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Table A.1: Each QuikSCAT model parameter of the 24 × 24 model was modeled by
the enlarged NSCAT 12 × 12 WVC model. The model parameters with the greatest
energy used by the NSCAT model are enumerated. In addition, the approximate
range of NSCAT model parameters used to model the QuikSCAT KL model is shown.

QuikSCAT model par. NSCAT model Approximate
parameters used. range

1 1-2 1-2
2 1-2
3 3-6 3-6
4 3-6
5 3-6
6 3-6
7 7-9 7-12
8 7-12
9 7-13
10 7-11
11 7-11
12 7-12
13 8-16 13-(22)
14 13-20
15 13-17
16 8-17
17 19-22
18 14-21
19 14-21
20 13-21
21 Does not model well
22 Does not model well
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Table A.2: Comparison of frequency bin groupings between different models. The
last model parameter that used only the first N bins is listed.

Nth NSCAT QSCAT QSCAT QSCAT QSCAT QSCAT QSCAT
Bin 12 × 12 8 × 8 12 × 12 16 × 16 20 × 20 24 × 24 38 × 38
1 2 2 2 2 2 2 2
2 6 6 6 6 6 6 6
3 12 12 12 12 12 12 12
4 24 26 26 26 26 25
5 32 36 36 40 38 41
6 45 50 53 56 57 52
7 58 65 70 76 78 69
8 75 90 96 92 90

Table A.3: Cutoff model parameter numbers for 8 × 8, 12 × 12, 16 × 16, 20 × 20,
and 24 × 24 QuikSCAT models.

QuikSCAT Fraction Cut off QuikSCAT Smallest
model of FFT Bin Cutoff Wind

Number Model Feature
Parameter Size

8 × 8 1/4 2 6 8 × 8
12 × 12 3 12
16 × 16 4 26
20 × 20 5 40
24 × 24 6 57

8 × 8 1/3 ∼ 3 12 6 × 6
12 × 12 4 26
16 × 16 ∼ 5 36
20 × 20 ∼ 7 76
24 × 24 8 92
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Appendix B

Selecting Variable WVC Thresholds

This appendix develops the method of determining variable WVC thresh-

olds to detect ambiguity selection errors in the presence of cross track and wind speed

dependent noise. In addition to the WVC and region thresholds, we describe several

other criteria which must be met to flag a region as a possible ambiguity error. These

results are tuned to SeaWinds data, but similar methods may be adapted for use with

future instruments.

A selection of 15 revs was manually inspected for ambiguity selection errors

in every 8 × 8 WVC processable region. All regions that exhibited clear ambiguity

selection errors were identified. This serves as a training set to tune the algorithm.

The following discussion uses the terms missed detections and false alarms.

A missed detection is defined as a region that is manually flagged as an ambiguity

selection error, but is not flagged by the algorithm. A false alarm is defined as a region

that is flagged by algorithm as an ambiguity selection error, but not manually flagged.

The false alarm rate or probability of false alarm is defined as the total number of

false alarms divided by the total number of regions not manually flagged as ambiguity

selection errors. The missed detection rate or probability of missed detection is defined

as the total number of missed detections divided by the total number of regions

manually flagged as ambiguity selection errors. Because the number of regions not

manually flagged as ambiguity selection errors is about 95% of the data, it is valuable

to insure a low final false alarm rate. Both direction and vector error thresholds

are separately optimized to give a constant false alarm rate of 2.5% for each type of

threshold. At this false alarm rate, a region threshold of 14% is found to be optimal.
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Figure B.1: The average directional standard deviation for both RMS wind speed
and cross track position.

B.1 Optimal direction error thresholds

Because it is important to minimize the probability of false alarm, the noise

level at each cross track position and for each RMS wind speed must be taken into

account. The variability due to noise can be suppressed in the flagging process by

setting higher thresholds for statistically noisier regions, thereby equalizing the false

alarm rate for all wind speeds and cross track positions.

The standard deviation for each cross track position/RMS wind speed bin

averaged over several hundred revs is plotted on a three dimensional grid in Figure

B.1. A higher noise variance at nadir and in low wind speed regions make it difficult

to set appropriate constant WVC thresholds for locating ambiguity selection prob-

lems. Because the quality assurance algorithm is based on flagging individual vectors

exceeding a threshold in direction or vector error, using constant thresholds promotes

more frequent flagging of high noise regions. This warrants using variable thresholds

for different cross track positions and RMS wind speeds.
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Assuming that the higher variability in Figure B.1 is caused mostly from

noise, setting thresholds higher for regions of a higher estimated directional standard

deviation suppresses false alarms due to noise. Thus, an optimally adjusted version

of the shape in Figure B.1 should yield a constant false alarm rate for all wind speeds

and cross track positions.

To find a set of direction thresholds that gives a constant false alarm rate for

all RMS wind speeds and cross track positions, the following approach is implemented:

1. Using the training data set in which ambiguity selection errors have been manu-

ally identified, all 8 × 8 WVC regions are binned according to RMS wind speed

and cross track position.

2. The initial WVC threshold is assigned to be the lowest expected threshold value.

3. The observed wind is compared to the model fit and regions are flagged as

possible ambiguity selection errors according to the number of poor cells per

region (in this case, 14%).

4. The number of false alarms and missed detections is calculated for each bin.

5. If the false alarm rate for a bin is above a certain limit, the WVC threshold for

that bin is raised.

6. If the missed detection rate for a bin is greater than zero, and the false alarm

rate is significantly smaller than the desired false alarm rate, the WVC threshold

is lowered.

7. The number of false alarms and missed detections is recomputed for each cross

track and RMS wind speed bin.

8. This process is iterated until either the false alarm rate for all the bins or the

average false alarm rate falls beneath a desired threshold.

The threshold determination method was applied to a set of 15 test revs.

Figure B.2 shows the resulting set of direction error thresholds. The general shape
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Figure B.2: The direction thresholds per cross track and RMS wind speed that min-
imizes the probability of false alarm beneath a threshold of 2.5%.

mirrors the directional standard deviations shown in Figure B.1, verifying our as-

sumption.

The thresholds in Figure B.2 are very noisy because of the limited data set

used to compute them. However, a good approximation to “smoothed” thresholds is

formed by fitting the curve from Figure B.1 to match the values of Figure B.2. The

following algorithm accomplishes this in a least-squares sense:

1. For each row of constant RMS wind speed, the values from Figure B.1 and a

uniform vector the same length are selected to be “model parameters” for a

cross track row from Figure B.2. These two vectors form the columns of matrix

T .

2. A least squares fit using these two model parameters is made to the correspond-

ing row of numerically determined threshold values, r0 by taking the pseudo-

inverse of the matrix T , i.e. x = T †r0.

3. The modeled row is then r = Tx.
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Figure B.3: The direction error thresholds per cross track and RMS wind speed that
minimize the probability of false alarm beneath a threshold of 2.5%.
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Figure B.4: The vector error thresholds per cross track and RMS wind speed that
minimize the probability of false alarm beneath a threshold of 2.5%.
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Figure B.5: Probability of missed detection with optimized direction and vector
thresholds for different region thresholds.

4. Each of the columns corresponding to constant cross track position is low passed

filtered to smooth out any obvious anomalies.

5. Extra adjustments are made manually to improve performance. These include

adjusting the thresholds for low (< 4 m/s) and high (> 15 m/s) RMS wind

speeds to subjectively give better performance. Insufficient data for these re-

gions warrant manual adjustment.

This method creates “smoothed” WVC thresholds which approximate the

WVC thresholds that give a constant false alarm rate for all cross track position and

RMS wind speeds on the training data set. The final direction error thresholds are

shown in Figure B.3.

B.2 Optimal vector error thresholds

A set of vector error thresholds is also determined which equalizes the false

alarm rate for both RMS wind speed and cross track position. These thresholds are
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determined in the same way as the direction error thresholds. Figure B.4 shows the

imperially determined and “smoothed” vector error thresholds.

In order to classify a region as an ambiguity selection error, the total

number of WVCs flagged must exceed a threshold of 14%. To select this threshold,

we analyzed the missed detection rate generated by performing the WVC-threshold

optimization algorithm with different region thresholds (Figure B.5). As shown, the

threshold that results in the minimum missed detections is 14%. Thus, this threshold

is used in the algorithm.
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Appendix C

Ambiguity Selection Error Detection Consistency Checks

C.1 Model based consistency check

The model-based consistency check is based on comparing the directional

and vector errors against a set of “variable” thresholds. The term “variable” indicates

that the thresholds are raised in areas of known high noise to suppress flagging of

vectors due to noise. As discussed previously, the noise level for SeaWinds is variable

with cross-track position and wind speed. In order to reduce flagging of regions due to

noise only, the WVC thresholds are individually adjusted for each cross-track position

and RMS wind speed.

The variable WVC thresholds were empirically determined through an

analysis of false alarms versus missed detections on a training data set consisting

of 15 subjectively analyzed swaths (L2B revs 3000-3014). All 8 × 8 WVC regions

that subjectively exhibited ambiguity selection errors were identified and binned ac-

cording to cross-track position and RMS wind speed. Then, the vector and angle

thresholds for each bin were separately iteratively applied and the number of flagged

WVCs were tallied. The regions that exceeded a limit in WVCs flagged were iden-

tified as ambiguity selection errors. The variable WVC thresholds were iteratively

adjusted until the region false alarm rate was equalized for all cross-track/RMS wind

speed bins. In doing this, region threshold of 14% performed the best and was chosen

as the region threshold for flagging a region as an ambiguity selection error. These

variable WVC thresholds were then smoothed and further manually adjusted to give

subjectively better performance. The final WVC thresholds are given in Figure B.3.

The variable thresholds are indexed by the cross-track position and RMS

wind speed of the 8 × 8 region and applied to all valid WVCs in the region. When a
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HistogramObserved Wind

Figure C.1: A wind field containing an ambiguity selection error “edge” and the
corresponding directional histogram. Note the bi-modal nature.

WVC exceeds either vector or angle thresholds, it is flagged as a possible ambiguity

selection error. Where greater than 14% of cells in a region are flagged with the

variable thresholds and the RMS region error is greater than 1.8 m/s, the entire 8

× 8 region is considered as possibly containing ambiguity selection errors. The RMS

region threshold of 1.8 m/s was subjectively determined. The method, however, is

not particularly sensitive to this value.

C.2 Directional histogram-based consistency check

In addition to the model-based consistency check, each 8 × 8 region is

inspected for multiple directional flows (See Figure C.1). A histogram of the vector

directions in the region is assembled with a bin spacing of 24◦. Then, the histogram is

reordered with the lowest bin value first (this eliminates peaks straddling 0◦ and 360◦).

The histogram is then numerically differentiated. Multiple modes in the histogram

are identified where the derivative crosses the zero line.
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Figure C.2: Histogram of the RMS errors of all the regions manually flagged as “poor”,
the false alarms generated by the algorithm, and the missed detections generated.

The consistency check is relatively insensitive to the bin size. Similar per-

formance on the training data set was achieved for bin size of 20◦ and 30◦. However,

a bin size of 24◦ yielded the least false alarms.

Examining the histogram of wind directions for multiple modes supple-

ments the model-based detection scheme by providing an additional view of the con-

sistency of a region without the issues associated with the restricted basis model.

C.3 Region RMS error threshold

In addition to the region threshold for the number of WVCs flagged, an

RMS error threshold is applied to each region inspected. The RMS error is defined

as the following: ((wo −wm)T (wo −wm)

N

) 1
2

(C.1)

where wo and wm are the standard vector forms of the observed and modeled winds

respectively and N is the number of valid data cells in the region. The number of
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false alarms and missed detections per RMS error bin from applying the algorithm to

the training data set is computed in Figure C.2. The false alarms for regions whose

RMS error is less than 1.8 m/s account for nearly 20% of the total number of false

alarms. The missed detection rate is also very high for those regions. This suggests

that the algorithm does not perform well for regions where the RMS error is low

(< 1.8 m/s). Thus, an RMS error threshold is applied which excludes all regions

with RMS error less than 1.8 m/s from being flagged as possible ambiguity selection

errors. The use of this threshold decreases the false alarm rate by nearly 20% while

it increases the missed detection rate by less than 1%. For a region to be flagged as

a possible ambiguity selection error, the RMS region threshold must be met.

C.4 RMS wind speed threshold

An RMS wind speed threshold is additionally applied. Regions with RMS

wind speeds less than 3.5 m/s are considered not processable because the SNR may be

too low to create valid wind direction estimates. From experience with NSCAT, most

regions with RMS wind speeds less than 4.0 m/s were flagged primarily because of

noise. Through examination of SeaWinds data, we concluded that it is very difficult

to subjectively locate ambiguity selection errors when the region RMS wind speed is

less than 3.5 m/s. Approximately 7% of the total number of regions fall beneath this

threshold.
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Appendix D

QA Bit Flag

In order to make the QA data more accessible, we introduce a QA bit flag

that can be used in conjunction with the standard wind product. In this section, a

level bit flag is introduced that indicates the inferred quality of each cell in a rev. Wind

data is generally stored as a swath-shaped array with each element representing a

WVC. A corresponding QA flag array is produced by the quality assurance algorithm.

The flag is a 4 bit integer at each WVC. The following sections describe the meaning

of each bit.

D.1 Individual WVC flag

The two least significant bits of the QA flag, [q1, q0] indicate individually

flagged vectors. Bit q0 is set when a vector is flagged using the constant thresholds

in any of the overlapping regions (noisy vector flag). Bit q1 is set when a vector is

flagged using the variable thresholds (possible ambiguity selection error or ASE cell

flag). Recall the variable thresholds are set higher in nadir and low wind speed regions

to produce a constant false alarm rate over the swath, while the constant thresholds

have variable performance over the swath. The constant thresholds serve as a noisy

vector flag while the variable thresholds indicate vectors more likely to be ambiguity

selection errors. In summary, the first two bits have the following meanings:

q1, q0

×, 1 - Noisy vector: The cell is flagged using constant thresholds in at least one of the

overlapping regions, indicating a generally noisy wind vector.
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1, × - ASE cell flag: The cell is flagged using variable thresholds in at least one of the

overlapping regions. Multiple neighboring flagged cells may indicate ambiguity

selection errors in the vicinity.

D.2 Region WVC flag

The two most significant bits, [q3, q2] correspond to the region flag. Because

the 8 × 8 regions overlap, the WVC is classified with the highest classification for

any of the overlapping regions. The flagging scheme is:

q3, q2

0, 0 - Good: All overlapping regions containing the WVC are flagged “good.” Each

region contains less than 5% of the individual WVCs flagged by the constant

thresholds. For these regions the wind flow fits the model estimate very well

and is spatially consistent having a low noise level.

0, 1 - Fair: At least one overlapping region containing the WVC is flagged “fair.”

The region contains 5-20% of its WVCs flagged by the constant thresholds.

The wind flow is consistent, but some vectors may contain moderate amounts

of noise and/or possible ambiguity selection errors. Wind fields with fine scale

spatial variations (e.g. fronts) may also be flagged.

1, 0 - Poor: At least one overlapping region containing the WVC is flagged “poor.”

The region contains more than 20% of WVCs flagged by the constant thresholds.

The wind flow is not consistent due to ambiguity selection errors high levels of

noise. Nadir regions and low wind speed regions (both of which are noisier) are

more likely to flagged “poor.”

1, 1 - ASE region flag: At least one overlapping region is flagged as containing am-

biguity selection errors. The region exceeds 14% cells flagged by the variable

WVC thresholds, has an RMS wind speed of above 3.5 m/s, the RMS error

between the observed and the modeled wind is more than 1.8 m/s, and the

histogram of the wind directions in the region is multi-modal. Given all of
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Figure D.1: QA bit flag example containing a possible region of ambiguity selection
error. Missing vectors indicate the position of land. Notice that the QA algorithm
flags the position of inconsistencies in the estimated wind flow.

these considerations, the region is estimated to contain substantial ambiguity

selection errors. Very high noise corruption and rain contamination may also

cause the region to be flagged.

The algorithm is performed for each rev and provides a flag value for each

WVC. Cells without wind estimates are flagged with zeros. Note that isolated WVCs

or isolated small WVC groups cannot be effectively flagged and are, by default, flagged

zero. The QA flag can be viewed as an integer number from 0 to 15 indicating the

increasing uncertainty in the correctness of the wind flow at that cell. Figure D.1

illustrates a region containing an ambiguity selection error flagged by the algorithm.

Additional examples of the QA bit flag are shown in Figure D.2. Notice that the

algorithm clearly identifies inconsistencies in the estimated wind flow. This informa-

tion can be used to locate isolated regions of ambiguity selection errors in order to

correct them.

D.3 QA bit flag results

The results presented thus far have given the statistics for the QA algorithm

on a region-by-region basis. However, because the regions overlap, this does not fully

reflect the actual percentage of WVCs flagged by the QA algorithm. Using the QA bit
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Figure D.2: A few examples of the QA bit flag in stormy regions or regions of ambi-
guity selection error.
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Table D.1: Percent of valid individual WVCs flagged according to several QA bit
flag classifications. The symbol ’×’ indicates a “don’t care.” The classifications have
the following meanings: A - No Flag: the cell is not excessively noisy and is not
estimated to be an ambiguity selection error, B - Flagged with constant thresholds
(noisy vector), C - Flagged with variable thresholds (likely to lie near ambiguity
selection errors), D - “Good” region classification, E - “Fair” region classification, F
- “Poor” region classification, G - “Ambiguity selection error” region flag, H - Both
region and cell flagged as an ambiguity selection error

Classification Bit Flag Percent
[q3, q2, q1, q0] WVCs

A no flag [0, 0, 0, 0] 52%
B noisy cell [×,×,×, 1] 12%
C ASE cell [×,×, 1,×] 6%
D “good” region [0, 0,×,×] 53%
E “fair” region [0, 1,×,×] 22%
F “poor” region [1, 0,×,×] 16.5%
G ASE region [1, 1,×,×] 8.5%
H ASE region & [1, 1, 1,×] 4.4%

ASE cell

flag, we generate statistics indicating the percent of cells flagged individually by the

algorithm and the percentage of cells classified into each region classification. These

are shown in Table D.1

From Table D.1, we see that the due to the overlap of regions, actual per-

centage of cells in regions of ambiguity selection errors is higher than the percentage

of regions flagged (compare Table D.1 case G to Table 2.4). However, the percentage

of individual cells flagged in the regions of ambiguity selection error are approximately

equal to the percent of regions flagged by the algorithm (∼ 5%: Table 2.4, case H).
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Appendix E

Automated Storm Rating Procedure

The data set of subjective storm ratings is used to train an automated

storm detection and rating method. With this method, storms are located in

the nudging data as previously described, and a finer search is performed in both

QuikSCAT and nudging fields in the surrounding area of a detection. The storm

center in both QuikSCAT and the nudging data is estimated to be positioned where

the ratio of the mean square of model basis coefficients 3 and 6 to the mean square of

coefficients 1 and 2 is a maximum. The following parameters are then calculated for

the surrounding circular region of radius 10 WVCs (250 km): (1) distance between

QuikSCAT storm center and nudging storm center, (2) percentage of WVCs flagged

by the L2B rain flag, (3) percentage of individual WVCs flagged by the QA variable

thresholds, (4) percentage of individual WVCs flagged by the QA variable thresh-

olds where the 8 × 8 region was additionally flagged, (5) RMS wind speed of the

QuikSCAT region, and (6) RMS wind speed of the nudging field region. The means

and standard deviations of each of these parameters given the region is subjectively

identified as a “1”, “2”, or “3” are given in Table E.1.

Now, assuming a Gaussian distribution for each parameter, a maximum

likelihood estimator is used to automatically rate each region,

Rating = arg min
n

{∑
i

(Xi − µi,n)2

σ2
i,n

}
(E.1)

where (µi,n, σi,n) are the mean and standard deviation of the ith parameter given a

rating of n. The quality of this method is demonstrated in Table E.2. Based on a

simple missed detection/ false alarm analysis, storm sensitive parameters 1-4 performs

the best in correctly rating the storms.
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Table E.1: Sample means and standard deviations of d - distance between NCEP and
QuikSCAT storm centers (km), R - WVCs flagged with the L2B rain flag per region
(%), Q1 - WVCs flagged per region by the variable thresholds (QA individual cell
flag) (%), and Q2 - WVCs flagged per region by both the QA region and individual
cell flag (%), Uq - average RMS wind speed of storm regions (m/s) from QuikSCAT
data, Un - average RMS wind speed of storm regions (m/s) from NCEP data.

d R Q1 Q2 Uq Un

Rating µ σ µ σ µ σ µ σ µ σ µ σ
1 82.5 55 18.5 21.2 22.5 9.5 19.2 10.5 11.6 3.3 11.6 2.5
2 127.5 97.5 22.4 20.2 31.3 10.3 29.2 10.3 12.2 3.1 12.0 2.9
3 145 85 29.7 25.6 33.8 11.5 31.2 11.4 11.2 3.2 10.5 2.18

Table E.2: Number of storms subjectively rated “1”, “2”, or “3” vs. number of storms
rated “1”, “2”, or “3” by the automated method.

Automated Rating
Subj. Rat. “1” “2” “3”

“1” 117 44 24
“2” 51 68 50
“3” 12 17 49
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The automated method correctly detects a “1” rating with about 65%

accuracy. Also, the majority of storms automatically rated “2” or “3” are generally

subjectively rated either “2” or “3”, although the automated method is not able to

distinguish between a “2” and “3” with high precision. Although this simple method

has limitations and is not tuned for optimal performance, it suggests that ambiguity

selection of a cyclonic storm in scatterometer data can be evaluated by automated

methods. The ability to automatically locate and rate storms may aid scientists and

those using the data to indicate if the data around a storm is usable. Also, where

storms are identified as a “2” or “3”, specialized ambiguity selection schemes may be

used to increase the quality of the data in those regions.
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Appendix F

Dilation and Erosion Steps of the BYU Point-wise Method

Dilation and erosion are morphological operations that expand or contract

features of a binary image [24]. Morphological operations involve a structuring ele-

ment, similar to a convolution kernel. One of the simplest structuring elements is a

“nearest neighbor” element. The “nearest neighbor” element is shown in Fig. F.1.

If the “nearest neighbor” element is used, a dilation step turns on a pixel where any

neighboring pixel is turned on. Erosion turns off a pixel where any neighboring pixel

is off. A general technique of filling bounded regions is to dilate for several iterations,

and then erode for several iterations.

Morphological operations are a subclass of cellular automata. A cellular

automaton is an array of identically programmed cells which interact with each other.

For each cell, there is a state (in the binary case, on or off), a neighborhood, and

a set of rules on how the state changes. Morphological operations are binary, but a

multi-valued operation is needed in the BYU method. Thus, we modify the dilation

and erosion techniques to better suit our application by defining a cellular automaton

over the swath.

For each WVC, we define 4 states. State 1 is assigned to all WVCs whose

median-filtered wind vector is less than 3 m/s, or are non-data WVCs. Note that the

outside cross track row is assigned state 1 because retrieval is not performed there.

State 2 is assigned to all WVCs that are flagged as “inconsistent” (see section 3.2.3).

These are the edges of the regions of ambiguity selection error. Because states 1 and

2 are defined by the characteristics of the selected wind flow and not by the states of

the surrounding cells, they never change during the dilation and erosion steps.
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1

1 1

1

Figure F.1: The “nearest neighbor” structuring element. A value of “1” indicates a
nearest neighbor. The center pixel is the origin.

Cells not assigned state 1 or 2 are initially assigned state 0. Through

dilation and erosion, state 3 is assigned to all isolated regions of ambiguity selection

error. We redefine dilation as the changing from state 0 to state 3, and erosion as the

changing from state 3 to state 0. Our neighborhood is all “nearest neighbors.”

During the dilation step, the rules for states change are as follows: State

1 and 2 do not change. State 0 changes to state 3 when the neighborhood contains

at least one state 2 cell, or contains a state 3 cell accompanied by at least one other

state 1 or 3 cell. After iterating, these rules allow the inconsistent edges to dilate

until they come in contact with WVCs of state 1, 2 or 3, filling isolated regions. The

dilation step is iterated 20 times.

During the erosion step, the rules on state changes are modified. State 3

changes to state 0 when the neighborhood contains one state 0 cell and no state 2

cells, or contains at least two state 0 cells. Again, cells of state 1 or 2 never change.

Thus, the non-isolated cells erode away, leaving only the isolated regions. The erosion

step is iterated 40 times. All WVCs with non-zero state are flagged as isolated regions

of ambiguity selection error. We demonstrate the dilation and erosion steps in Fig.

F.2.
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Figure F.2: (a) Dilation and (b) erosion steps, demonstrating how an isolated region
is “filled in.” The initial state matrix is derived from the example in Fig. 3.5. To
enhance readability, state 0 cells are left blank.

215



216



Appendix G

Alternative Method of Determining The Low Wind Speed
Threshold

In this appendix, we describe an alternative method to estimate the low

wind speed threshold using the relationship of the wind to σo (the GMF). To first

order, the GMF has a power law dependence on wind speed,

σo = A(f, θ, χ, p)Uγ(f,θ,χ,p) (G.1)

where f is the frequency, θ is the incidence angle, χ is the relative incidence angle,

and p is the polarization [39]. Here, γ is referred to as the wind exponent which gives

a measure of how sensitive σo is to the wind.

The power law dependence of the GMF generally holds for moderate wind

speeds but falls off at low winds speeds and may saturate at high wind speeds. In

order to characterize the roll-off of the wind at low wind speeds, we take the following

simple model for the GMF:

σo =





A1(f, θ, χ, p)Uβ(f,θ,χ,p) U < Ψ

A2(f, θ, χ, p)Uγ(f,θ,χ,p) U ≥ Ψ
(G.2)

or

σo
dB =





A′
1 + β10 log10(U) U < Ψ

A′
2 + γ10 log10(U) U ≥ Ψ

(G.3)

constrained by

β ≥ γ (G.4)

and

A1Ψ
β = A2Ψ

γ. (G.5)
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This model assumes one power law dependence at wind speeds below the low wind

speed threshold (Ψ), and another for wind speeds above Ψ. The two constraints

insure that the slope of σo below Ψ is greater than the slope of σo above Ψ and that

the model is continuous across the threshold.

The approach taken to find the optimum Ψ for each Bragg wavelength is

to determine a least-squares fit of the model to a range of possible threshold wind

speeds and then find which threshold generates the lowest RMS error between the

model and the data.

The model is applied to the YSCAT data through a constrained least

squares optimization where Lagrangian multipliers [26] are used to force the con-

straints. To develop the least squares solution, we introduce the matrices, B1 and B2

which are defined as:

B1 =




1 10 log10(U1)

1 10 log10(U2)
...

...

1 10 log10(UM)




= [1 u1...M ] (G.6)

and

B2 =




1 10 log10(UM+1)

1 10 log10(UM+2)
...

...

1 10 log10(UM+N)




= [1 uM+1...M+N ] (G.7)

where U1 . . . UM are the speeds of the measurements below Ψ and UM+1 . . . UM+N are

the speeds of the measurements above Ψ. In addition, we introduce the vectors:

σ1 =




σo
1

σo
2

...

σo
M




, (G.8)
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σ2 =




σo
M+1

σo
M+2

...

σo
M+N




(G.9)

and

x =




A1

β

A2

γ




=


 x1,2

x3,4


 . (G.10)

where σo
1 . . . σo

M and σo
M+1 . . . σo

M+N are the measured σo values below and above Ψ

respectively. Now, we find the least squares solution to the equations

B1x1,2 = σ1 (G.11)

B2x3,4 = σ2. (G.12)

with respect to the constraints given in equations (G.4) and (G.5). Thus, we minimize

‖B1x1,2 − σ1‖2
2 + ‖B2x3,4 − σ2‖2

2 (G.13)

=
M∑

m=1

(x1 + umx2 − σo
m)2 +

M+N∑
n=M+1

(x3 + unx4 − σo
n)2 (G.14)

with respect to

x1 + ΨdBx2 = x3 + ΨdBx4 or x1 − x3 + ΨdB(x2 − x4) = 0 (G.15)

and

x2 ≥ x4 or x4 − x2 ≤ 0 (G.16)

These equations are formed into the Lagrangian,

L(x, λ, µ) =
∑

m(x1 + umx2 − σo
m)2 +

∑
n(x3 + unx4 − σo

n)2+

λ[x1 − x3 + ΨdB(x2 − x4)] + µ(x4 − x2)
(G.17)

where λ is the Lagrangian multiplier of the equality constraint and µ is the Lagrangian

multiplier of in the inequality constraint. The gradient of the Lagrangian with respect

219



to x, λ and µ is:

∇L(x, λ, µ) =




∑
m 2(x1 + umx2 − σo

m) + λ
∑

m 2(x1 + umx2 − σo
m)um + ΨdBλ

∑
n 2(x3 + unx4 − σo

n)− λ
∑

n 2(x3 + unx4 − σo
n)un −ΨdBλ

x1 − x3 + ΨdBx2 −ΨdBx4

x4 − x2




. (G.18)

Casting the gradient of L into matrix/vector form and setting it equal to

zero, we obtain:




2M 2
P

m σo
m 0 0 1

2
P

m σo
m 2

P
m(σo

m)2 0 0 ΨdB

0 0 2N 2
P

n σo
n −1

0 0 2
P

n σo
n 2

P
n(σo

n)2 −ΨdB

1 ΨdB −1 −ΨdB 0







x1

x2

x3

x4

λ




=




2
P

m um

2
P

m umσo
m

2
P

n un

2
P

n unσo
n

0




(G.19)

for µ inactive and




2M 2
P

m σo
m 0 0 1 0

2
P

m σo
m 2

P
m(σo

m)2 0 0 ΨdB −1

0 0 2N 2
P

n σo
n −1 0

0 0 2
P

n σo
n 2

P
n(σo

n)2 −ΨdB 1

1 ΨdB −1 −ΨdB 0 0

0 −1 0 1 0 0







x1

x2

x3

x4

λ

µ




=




2
P

m um

2
P

m umσo
m

2
P

n un

2
P

n unσo
n

0

0




(G.20)

for µ active. Equation (G.19) is first solved. If the inequality condition is violated,

equation (G.20) is solved forcing the inequality constraint.

After estimating x for each Ψi examined, the RMS error for that Ψ is

determined by

EΨi
=

√
eT

1 e1 + eT
2 e2

M + N
(G.21)
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Figure G.1: An threshold wind speed calculation example
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where

e1 = B1x1,2 − σ1 (G.22)

e2 = B2x3,4 − σ2. (G.23)

The Ψi that minimizes the error is chosen as the low wind speed threshold for that

Bragg wavelength.

In order to standardize the error metric, an additional “normalized” RMS

error is computed defined as

ÊΨi
=

EΨi
−min

j
(EΨj

)

max
j

(EΨj
)−min

j
(EΨj

)
(G.24)

The normalized RMS error constrains the error to be between 0 and 1. An example

of a calculation of the threshold wind speed is shown in Figure G.1. Although this

method is not implemented in the analysis of Chapter 4, it is theoretical value, and

can be used to form model functions that incorporate the low wind speed thresholds.
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Appendix H

Derivation of the Combined Rain/Wind Model Mean and
Variance

Assuming that the variability due to atmospheric rain is negligible, the

measurement with communication noise, wind model noise, and rain model noise is

written as

z ∼= [Mαr(1 + η1Kpm) + σe(1 + η3Kpe)](1 + Kpcη4). (H.1)

The mean of z is taken directly,

E{z} ∼= E{[Mαr(1 + η1Kpm) + σe(1 + η3Kpe)](1 + Kpcη4)}
∼= E{Mαr +Mαrη1Kpm + σe + σeη3Kpe + Kpcη4Mαr +

Kpcη4Mαrη1Kpm + Kpcη4σe + Kpcη4σeη3Kpe}. (H.2)

In H.2, all terms containing the independent zero mean, unit variance Gaussian ran-

dom variables η1, η2 and η4 vanish, leaving

E{z} ∼= Mαr + σe. (H.3)

The variance is computed as follows,

Var{z} ∼= E{([Mαr(1 + η1Kpm) + σe(1 + η3Kpe)](1 + Kpcη4)

−Mαr − σe)
2}

∼= E{[Mαr +Mαrη1Kpm + σe + σeη3Kpe + Kpcη4Mαr +

Kpcη4Mαrη1Kpm + Kpcη4σe + Kpcη4σeη3Kpe −Mαr − σe]
2}. (H.4)
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Multiplying, we find that all terms with ηiηj or ηiη
2
j go to zero because they are

independent, yielding,

Var{z} ∼= E{M2α2
rK

2
pmη2

1 + σ2
eK

2
peη

2
3 +M2α2

rK
2
pcη

2
4 +

+σ2
eη

2
4K

2
pc +M2α2

rK
2
pcK

2
pmη2

1η
2
4

+σ2
eK

2
pcK

2
peη

2
3η

2
4 + 2MαrσeK

2
pcη

2
4}. (H.5)

Taking the expectation, with (by definition) E{η2
i } = 1 and E{η2

i η
2
j} = 1, leaves

Var{z} ∼= M2α2
rK

2
pm + σ2

eK
2
pe +M2α2

rK
2
pc +

+σ2
eK

2
pc +M2α2

rK
2
pcK

2
pm

+σ2
eK

2
pcK

2
pe + 2MαrσeK

2
pc

∼= M2α2
rK

2
pm + σ2

eK
2
pe + K2

pc(Mαr + σe)
2

+M2α2
rK

2
pcK

2
pm + σ2

eK
2
pcK

2
pe

∼= (1 + K2
pc)(M2α2

rK
2
pm + σ2

eK
2
pe)

+K2
pc(Mαr + σe)

2

∼= (1 + K2
pc)(M2α2

rK
2
pm + σ2

eK
2
pe) + K2

pcM2
r. (H.6)
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Appendix I

Gradient of the Rain/Wind Model

I.1 Gradient of the MLE mean

Simplifying notation, we let w1 = u and w2 = d represent the speed and

directional components of the true wind. The gradient of Mr is obtained directly via

differentiation, yielding

∂Mrk

∂wi

=
∂Mk

∂wi

αrk (I.1)

∂Mrk

∂R
= Mk

∂αrk

∂R
+

∂σek

∂R
(I.2)

Since the GMF is tabular, ∂Mk

∂wi
is obtained numerically.

The derivatives of αrk and σek can be written explicitly. The derivative of

the attenuation term αrk, given in Eq. (7.2), is obtained via successive applications

of the chain rule, yielding

∂αrk

∂R
= ln(10)10(−10(fa(RdB)/10)/10)

×
(
− ln(10)

10

)
10(fa(RdB)/10)

× 1

10

∂fa(RdB)

∂RdB
× 10

ln(10)R

=
αrk ln αrk

R

∂fa(RdB)

∂RdB
(I.3)

where
∂fa(RdB)

∂RdB
=

2∑
n=1

nxak(n)R
(n−1)

dB . (I.4)

225



The derivative the effective rain backscatter given in Eq. (7.3) is

∂σek

∂R
= ln(10)10(fe(RdB)/10)

× 1

10

∂fe(RdB)

∂RdB
× 10

ln(10)R

=
σek

R

∂fe(RdB)

∂RdB
(I.5)

where
∂fe(RdB)

∂RdB
=

2∑
n=1

nxek(n)R
(n−1)

dB . (I.6)

I.2 Gradient of the MLE variance

The gradient of the combined wind/rain variance ςrk is calculated directly

using the previously defined derivatives,

∂ς2
rk

∂pi

= (1 + αk)
∂εk

∂pi

+ (2αkMrk + βk)
∂Mrk

∂pi

. (I.7)

The derivatives of εk are calculated as

∂εk

∂wi

= 2(KpmαrkMak + Kpeσek)

×(Kpmαrk
∂Mk

∂wi

) (I.8)

∂εk

∂R
= 2(KpmαrkMak + Kpeσek)

×(KpmMak
∂αrk

∂R
+ Kpe

∂σek

∂R
). (I.9)
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Appendix J

Rain Model Bias Correction

The rain/wind identifiability problem (most evident with cross-swath

winds) causes a mean bias in the rain rate estimate [56]. The mean bias can be cor-

rected by adjusting the rain backscatter model. We let Rq represent the QuikSCAT-

retrieved rain rate (in decibels). The forward effective rain backscatter model

fe(Rq) = a + bRq + cR2
q (J.1)

maps the QuikSCAT retrieved rain rate to a backscatter value. However, this rain

rate is biased. We parameterize the bias as a quadratic function of rain rate h that

maps TRMM PR rain rates Rt to QuikSCAT rain rates (in a least-squares sense),

Rq ≈ h(Rt) = d + eRt + fR2
t . (J.2)

Table J.1: Corrected model parameters for the quadratic log-log model of the effective
rain backscatter σe.

h-pol v-pol
xe(1) -26.02 -28.01
xe(2) 0.82 0.86
xe(3) -0.0012 -0.0039
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Figure J.1: Validation of QuikSCAT rain rates with TRMM PR antenna average rain
rates using the corrected rain model.

The bias-corrected model is calculated directly by inserting the bias correction of Eq

(J.2) into the model of Eq. (J.1)

σe = fe(h(Rt))

= a + b(d + eRt + fR2
t ) + c(d + eRt + fR2

t )
2

≈ (a + bd + cd2) + (be + 2cde)Rt +

(bf + 2cdf + ce2)R2
t . (J.3)

Examining the corrected model in Figure J.1, the corrected model is only

slightly higher for moderate rain rates. However, at high and low rain rates, the

corrected model is significantly higher. In fact, the corrected model has an almost

zero second-order term (see Table J.1). Further, comparison with the TRMM PR is

given in Figure J.2. The bias is nearly eliminated.
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