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ABSTRACT

MICROWAVE REMOTE SENSING OF THE GREENLAND

ICE SHEET: MODELS AND APPLICATIONS

Ivan S. Ashcraft

Electrical and Computer Engineering

Doctor of Philosophy

Spaceborne microwave sensors are powerful tools for monitoring the im-

pacts of global climate change on the Greenland ice sheet. This dissertation focuses

on refining methods for applying microwave data in Greenland studies by using new

simple theoretical and empirical models to investigate (1) azimuth anisotropies in the

data, (2) the microwave signature of the snow surface, (3) detection of snow melt, and

(4) classification of snow melt. The results are applicable for identifying geophysical

properties of the snow surface and monitoring changes on the ice sheet in relation to

melt duration/extent, accumulation, and wind patterns.

Azimuth dependence of the normalized radar cross-section (σ◦) over the

Greenland ice sheet is modeled with a simple surface scattering model. The model

assumes that azimuth anisotropy in 1-100 meter scale surface roughness is the pri-

mary mechanism driving the azimuth modulation. This model is inverted to estimate

snow surface properties using σ◦ measurements from the C-band European Remote

Sensing Advanced Microwave Instrument (ERS) in scatterometer mode. The largest

roughness estimates occur in the lower portions of the dry snow zone. Estimates of



the preferential direction in surface roughness are highly correlated with katabatic

wind fields over Greenland.

A new observation model is introduced that uses a limited number of pa-

rameters to characterize the snow surface based on the dependence of radar backscat-

ter on incidence angle, azimuth angle, spatial gradient, and temporal rate of change.

The individual model parameters are discussed in depth with examples using data

from the NASA Scatterometer (NSCAT) and from the ERS. The model may be

applied for increased accuracy in scatterometer, SAR, and wide-angle SAR studies.

Examples illustrating the use of the model are included with one application focusing

on analysis of inter-annual change and another focusing on increased sensitivity in

studies of intra-annual change.

Six different melt detection method/sensor combinations are compared us-

ing data for the summer of 2000. The sensors include the Special Spectral Microwave

Imager (SSM/I), SeaWinds on QuikSCAT (QSCAT), and ERS. A new method of

melt detection is introduced that is based on a simple physical model relating the

moisture content and depth of a layer of wet surface snow to a single channel melt

detection threshold. The model can be applied to both active and passive sensors.

Model-based melt estimates from different sensors are highly correlated and do not

exhibit the unnatural phenomenon observed with previous methods.

Trends in SSM/I channel ratios are used to differentiate subsurface and

surface melt. For ablation estimation, this separation is important due to expected

differences in the ablation rate for the two melt types. Evidences of the daily melt

refreeze cycle are observed in the diurnal variation of the different Tb channel ratios.

The polarization ratio increases during periods of surface melt while the frequency

ratio remains relatively constant. The frequency ratio increases during periods of

expected subsurface melt. Similar trends are observed in Tb measurements from in

situ data collected by other investigators.
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Chapter 1

Introduction

In recent years, spaceborne microwave instruments have been used in an

increasing number of environmental studies including measuring near-surface ocean

winds, observing tropical forest deforestation, tracking icebergs, mapping sea-ice ex-

tent, sea-ice classification, and more. These studies are based on theoretical and

empirical methods relating the microwave measurements to the geophysical proper-

ties of the surface.

Spaceborne microwave sensors, including scatterometers and radiometers,

are nearly optimal for large-scale studies requiring consistent relatively frequent ob-

servations. Current sensors observe over 90% of the Earth’s surface each day. Mi-

crowaves penetrate cloud cover and are independent of solar illumination, reducing

the need for optimal conditions to obtain quality measurements. Thus, accurate all-

weather measurements are obtained night and day, resulting in consistent temporal

and spatial coverage.

1.1 Scientific Interest in Greenland

The Greenland ice-sheet is an area where the use of spaceborne microwave

instruments is particularly beneficial. Current scientific interest in Greenland stems

from its position as a powerful measuring stick for monitoring global climate change.

Greenland is the largest island on Earth and is almost completely covered by a large

ice-sheet. Because of its size, this ice-sheet plays an important role in sea-level changes

1



and the Earth’s radiation budget1. Large-scale changes on the ice sheet are important

indicators of global climate change.

The mass-balance of the ice-sheet is a major contributor to changes in the

global sea level. Paterson and Reeh [1] state, “The greatest uncertainty in predicting

future sea level changes lies with our estimates of the mass balance of the ice sheets

in Greenland and Antarctica.” Greenland contains eight percent of the Earth’s ice,

enough water to raise sea-level by 7 meters [2]. It is estimated that 7% of the current

rise in sea-level originates from the Greenland ice-sheet [3].

Changes in the duration and extent of Greenland melt is important to

the earth’s radiation budget. With a surface area of ∼ 1.75x106 km2, the Green-

land ice-sheet constitutes 11% of the global glacier surface area [2]. Dry snow has a

high albedo, reflecting most of the incoming solar radiation; however, liquid moisture

present in the snow reduces the albedo increasing the solar radiation absorption three

fold [4]. Because the interior of the ice sheet has a small slope (typically less than 1◦),

small changes in air temperature result in large changes in the areal extent of the melt

[5]. This increase in absorption of solar radiation with increasing melt represents an

unstable positive feedback mechanism in our climate system. Increased temperatures

are also expected to contribute to an increase in accumulation. This adds another

complexity to predicting the effects of climate change on the mass-balance of the

ice-sheet.

The dynamics of the ice-sheet are also important indicators of global cli-

mate change. Variations in yearly melt extent and duration over the ice-sheet are

related to variations in global temperature. Tracking and understanding changes on

Greenland requires consistent large-scale observations of the complete ice-sheet.

Multiple reasons motivate the use of microwave measurements in studying

Greenland. Because of the size and harsh environment of the ice-sheet in situ observa-

tions are difficult to obtain. Microwave measurements are available for the complete

ice-sheet dating back to 1978, and current spaceborne microwave instruments observe

1The balance between the radiation absorbed and emitted by the earth’s surface.
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the complete ice-sheet multiple times per day. Microwave measurements are also valu-

able for Greenland studies due to their sensitivity to snow grain size, snow wetness,

and subsurface features. This sensitivity makes possible the delineation of Green-

land ice facies, the tracking of accumulation, and the measurement of melt extent

and duration. One limiting factor in the application of scatterometer and radiome-

ter measurements is the relatively low resolution of the data. However, the uniform

nature of the ice-sheet reduces the need for finer resolution. Additionally, current

resources limit the practicality of large-scale long-term analysis at high resolution.

1.2 Previous Work

A significant amount of work has already been performed in using mi-

crowave measurements to study Greenland. Long and Drinkwater [6] used σ◦ mea-

surements from NASA’s Seasat-A Scatterometer (SASS) to map the Greenland snow

zones based on a physical scattering model. Several other investigators have used

synthetic aperture radar (SAR) measurements in relating σ◦ to the different snow

zones [7, 8, 9]. Long term changes in the ice sheet were observed by Drinkwater and

Long [10] using SASS, the NASA Scatterometer (NSCAT), and the European Remote

Sensing satellite (ERS). Localized long term changes have also been observed using

SAR [9].

Multiple studies have focused on measuring Greenland melt duration and

extent. Special Sensor Microwave Imager (SSM/I) brightness temperature (Tb) mea-

surements were used by Mote et al. [11], Mote and Anderson [12] and Abdalati and

Steffen [2, 4, 5, 13] for measuring melt. Melt detection using the normalized radar

cross-section (σ◦) was performed by Wismann [14] using ERS measurements and by

Nghiem et al. [15] using measurements from NASA’s SeaWinds on QuikSCAT (QS-

CAT). Pack and Jensen [16] used a data fusion with SSM/I and ERS measurements

for melt detection.

Previous studies have also used microwave measurements to estimate accu-

mulation. Studies focusing on long-term accumulation include Bolzan and Jezek [17]

using SSM/I, Drinkwater et al. [18] using ERS and NSCAT, and Forster et al. [19]

3



using the ERS SAR. Annual accumulation studies have been performed by Wismann

et al. [20] using ERS and Pack and Jensen [21] using SSM/I.

1.3 Current Focus

Although much work has been performed and significant progress has been

made, microwave remote sensing of Greenland is still in its infancy. In this disser-

tation, I focus on improving four key areas: (1) understanding and accounting for

azimuth dependencies in the measurements, (2) developing an improved observation

model for monitoring change, (3) refining melt detection for improved correlation in

melt detected by different sensors, and (4) classification of melt as either surface or

subsurface. These studies primarily use scatterometer and radiometer data.

In previous studies over Greenland, the azimuth dependency of microwave

measurements has been ignored. In Antarctica, an environment similar to Green-

land, significant azimuth modulation has been observed [22, 23, 24]. When ignored,

the azimuth dependency of the data appears as noise possibly corrupting the study

results. Although azimuth modulation is documented over Antarctica, the physical

mechanism driving the azimuth anisotropy is not well understood. I focus on the

development of a simple scattering model to reproduce the observed azimuth modu-

lation over Greenland.

The results from this model are consistent with azimuth dependence being

caused by wind-formed surface features on the snow. The model is inverted using ERS

measurements to estimate the relative variation in the slopes of these surface features

and the direction of average wind flow. The estimates of the meso-scale surface

slopes are largest in the lower portions of the dry snow zone. Wind flow estimates

are consistent with automatic weather station measurements and atmospheric model

estimates of Greenland katabatic wind flow. The mean RMS error of the inverted

model estimates is 0.46 dB compared to 0.56 dB when the meso-scale surface slopes

are assumed to be azimuthally isotropic. The improvement in the model estimation

occurs primarily in the lower dry snow zone where the azimuth modulation is largest.

4



Parameterization of the azimuth modulation provides additional informa-

tion about the microwave signature of the surface. Changes in these parameters

indicate specific changes occurring on the surface. One of the difficulties in remote

sensing is many-to-one mapping where different surface profiles result in similar mi-

crowave measurements. A knowledge of the azimuth and incidence angle dependence,

along with other attributes of the microwave signature, enables improved characteri-

zation of the surface profile. A classic example is measuring σ◦ over the ocean. Some

knowledge of the near-surface ocean wind speed can be obtained from a single σ◦

measurement; however, by combining multiple measurements, not only can the the

wind speed be estimated much more accurately, but the wind direction can also be

inferred.

I develop a descriptive model for characterizing multiple σ◦ measurements

using a limited number of parameters. This model provides additional parameters

which help identify the long-term changes occurring on the ice-sheet. Using this

model, the microwave signature is characterized using 7 to 10 parameters depending

on the instrument design and the desired model accuracy. Next to incidence angle

dependence, model terms involving the spatial gradient provide the greatest reduction

in RMS error. This is followed by model terms for azimuth modulation and temporal

variation. The average RMS error using the full model is approximately 0.375 dB for

ERS and 0.458 dB for NSCAT. Inter-annual changes in the ERS model parameter

estimates are related to annual changes in melt extent, the formation of iced-firn on

the snow surface, the formation of subsurface ice-structures, and annual changes in

accumulation rate.

Because the model parameters are relatively constant between summer

melt events, this model is also used to observe intra-annual changes in the average σ◦.

This method enables higher temporal resolution than traditional methods. Estimates

of the change in the average σ◦ with time also have smaller variance than traditional

methods. This aids in the observation of small magnitude annual trends such as those

observed in the dry snow zone, and in the detection of short melt events.
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Although various methods exist for melt detection over Greenland, these

methods have not been compared on a large scale. In comparing these methods, I

find significant discrepancies in the detection by each method as well as unnatural

phenomenon in the temporal and spatial progression of the estimated melt. To de-

velop melt detection methods for each sensor which give consistent results, I present

a simple physical model of a melt event and its effect on σ◦ and Tb. This model is

applicable for melt detection using σ◦ or Tb.

Melt detection based on this simple physical model yields results consis-

tent between sensors with some variation due to frequency and temporal sampling

differences. The correlation coefficient between model-based melt detection with the

different sensors ranges from 0.87 to 0.73. The correlation coefficient for other existing

methods is lower with the smallest correlation coefficient being 0.19. The unnatural

phenomenon observed in results of previous methods are eliminated in the physical

model-based methods. QSCAT and SSM/I melt detection estimate that approxi-

mately 60% of the ice-sheet experiences melt, which is consistent with estimates from

in situ studies.

The next step in melt analysis over Greenland is classifying different types

of melt. I focus on classification of melt as either surface of sub-surface. Because

a single σ◦ or Tb value could correspond to either type of melt, multiple channels

are required for this classification. Because SSM/I measures Tb at multiple fre-

quency/polarization combinations simultaneously, this data set is used primarily for

melt classification. Data from multiple sensors are employed to enable estimation of

the diurnal variation in Tb and relate it to the stages of the daily melt cycle. This

relationship is validated using in situ temperature measurements. Diurnal trends in

the polarization ratios and frequency ratios are then used to associate the sensitivity

of these ratios to the stages of the daily melt process. I find the horizontal to vertical

polarization ratio to be a sensitive indicator of surface melt and the frequency ratio

of 19 GHz to 37 GHz to be a sensitive indicator of subsurface melt.
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1.4 Organization

This dissertation is organized in the following manner. Chapter 2 contains

the general background fundamental to all of the following chapters. This includes a

discussion on Greenland and its properties, a general background on σ◦ and Tb, an

overview of the various sensors, and a brief discussion on data processing. Chapter 3

develops a model for azimuth modulation of σ◦ over Greenland including results from

the model inversion. Chapter 4 develops a descriptive model for σ◦ with applications

and results. Chapter 5 introduces a simple physical model for melt detection and

compares results from methods based on this model to previous methods of melt

detection. Chapter 6 focuses on using frequency and polarization differences in Tb to

classify different types of melt. Chapter 7 provides a summary and conclusions.
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Chapter 2

Background

This chapter contains background universal to all of the research areas in

this dissertation. First, is a brief introduction to σ◦ and Tb, followed by a presentation

of the sensors employed in my studies. Methods used for data processing and imaging

are also discussed. This chapter concludes with background on Greenland.

2.1 The Normalized Radar Cross-Section

The normalized radar cross-section (σ◦) is measure of the reflectivity of the

surface relative to the direction of the transmit and receive antennas. It is defined as

the ratio of the target radar cross-section (σ) to the actual target area (At), i.e.

σ◦ =
σ

At

.

The radar cross-section is defined using the radar equation [25]

Pr = PtGt(4πR2
t )

−1

︸ ︷︷ ︸

incident power density

σ (4πR2
r)

−1

︸ ︷︷ ︸

spreading loss

Ar (2.1)

where Pr is the receive power, Pt is the transmit power, Gt is the normalized transmit

gain in the direction of the target, Rt is the range from the transmit antenna to

the target, Rr is the range from the target to the receive antenna, and Ar is the

effective area of the receive antenna. The radar cross-section has an intuitive physical

definition. The receive antenna effectively measures the scattered power density at

the receive location. If it is assumed that the target scatters the power isotropically,

the radar cross-section is the area required to capture the right amount of transmitted

power to generate the received signal (see Fig. 2.1).
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ideal
power
transfer

Figure 2.1: Illustration of the radar cross-section (σ) and the radar equation. Based
on the radar equation, σ represents the area required to capture the transmitted
power and re-radiate it isotropically to produce the power density measured by the
receive antenna.

The radar equation can be rewritten in terms of the gain of the receive

antenna (Gr) using the relationship

Gr =
4πAr

λ2

where λ is the wavelength of the signal. The new form of Eq. (2.1) is

Pr = Ptλ
2 GtGr

(4π)3R2
t R2

r

σ. (2.2)

For the mono-static case where the same antenna is used for transmit and receive,

Gt = Gr = G, Rt = Rr = R, and Eq. (2.2) becomes

Pr = Ptλ
2 G2

(4π)3R4
σ. (2.3)

If the target is large, G, R, and σ◦ vary across the illuminated area for

which case the integral form of the radar equation,

Pr =
Ptλ

2

(4π)3

∫

At

G2

R4
σ◦ da,

is used where At is the illuminated area on the target. The illuminated area is

typically termed the antenna footprint.
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Figure 2.2: Surface scattering from a smooth surface is drops rapidly with increasing
incidence angle while the fall-off for a rough surface is less steep.

In general, σ◦ is a composite of both surface and volume scattering, i.e.

σ◦ = σ◦
vol + σ◦

surf .

Surface scattering originates from the boundary between two distinct mediums. Vol-

ume scattering is due to variations in the electro-magnetic properties within a medium.

The largest σ◦
surf is at nadir where specular scattering dominates. At off-nadir angles,

the drop in σ◦
surf is dependent on the roughness of the surface. Backscatter decreases

more rapidly with increasing incidence angle for smoother surfaces (see Fig. 2.2).

Further discussion on volume and surface scattering along with physical models are

provided in Chapters 3 and 5.
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2.2 Brightness Temperature

Brightness temperature is a measure of the microwave emission naturally

radiating from a surface. Because a microwave radiometer only receives and does not

transmit a signal, this is termed a passive measurement and the radiometer which

measures Tb is termed a passive instrument.

The brightness temperature is related to the surface temperature (T ) in

Kelvin through the Rayleigh-Jeans approximation [26]

Tb = eT

where e is the emissivity of the surface. Because Tb is coupled to the dielectric

properties as well as the temperature of the surface, it is in some respects more

difficult to relate to the geophysical properties of the surface than is σ◦.

A useful tool in modeling the Tb radiating from a surface is the equation

of transfer. Given Tb(0), the brightness temperature at r is [26, pg. 216]

Tb(r) = Tb(0)e
−τ(0,r) +

∫ r

0
κe(r

′) [(1 − a)T (r′) + aTsc(r
′)] e−τ(r′,r) dr′ (2.4)

where the variables are

Tb(0) - brightness temperature entering the layer,

κe - extinction coefficient (κa + κs),

κa - absorption loss coefficient,

κs - scattering loss coefficient,

a - albedo (κs/κe),

T (r) - physical temperature in Kelvin,

Tsc(r) - scattered radiometric temperature, and

τ(r′, r) - optical length (
∫ r
r′ κe dr).

Although not explicitly stated, the radiation is assumed to be in the direction of r̂.

The term inside the integral including T (r′) represents self-emission and the term

involving Tsc(r
′) represents scattering of radiation from other directions into the di-

rection of r̂.
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Figure 2.3: Time-line of the operation intervals for various scatterometers.

2.3 Sensors

Multiple microwave scatterometers have been used to measure the σ◦ of the

Earth’s surface within the last 25 years (see Fig. 2.3). NASA has collected σ◦ measure-

ments from three Ku-band (∼ 14 GHz) scatterometers. The Seasat-A scatterometer

collected data for 3 months in 1978. For 9 months during 1996 and 1997 the NSCAT

scatterometer collected data aboard the Japanese ADEOS-I platform. SeaWinds on

QuikSCAT has continually collected σ◦ measurements from mid 1999 to the present.

The European Space agency has flown a C-band (5.3 GHz) microwave scatterometer

aboard the ERS-1 and ERS-2 satellites giving continuous data from 1992 though the

beginning of 2001. A summary of the statistics for these instruments is provided in

Table 2.1.

There is also a continuous set of Tb measurements from 1979 to the present.

These measurements were obtained using the Nimbus-7 Scanning Multichannel Mi-

crowave Radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP)

Special Sensor Microwave Imager (SSM/I) series. SSM/I measures Tb at 53◦ incidence

angle using 7 different channels. The polarization and frequency of these channels

are listed in Table 2.2.

2.4 Data Processing

The measurements from each of these sensors are in raw form with pseudo-

random sampling in location and time. For analysis it is convenient to process the

data, resampling at regular intervals in space and time. Various methods such as the
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Table 2.1: Information on the various scatterometers used in this work.

SeaWinds

13.6 GHz

V−OUTER/H−INNER

PENCIL−BEAM

WIND/HI−RES

25 km/6x25km

42° & 54°

92 %

7/99 −

SASS

14.6 GHz

V−H, V−H

FIXED DOPPLER

MANY

50/100 km

0° −70°

VARIABLE

6/78 − 10/78

ERS−1/2

5.3 GHz

V ONLY

RANGE GATE

SAR, WIND

25/50 km

20° −70°

< 41 %

92−96 & 96−01

NSCAT

13.995 GHz

V, V−H, V

VARIABLE DOPPLER

WIND ONLY

25/50 km

17° −62°

78 %

8/96 − 6/97

FREQUENCY

AZIMUTHS

POLAR.

BEAM RESOLUTION

SCI. MODES

RESOLUTION

SWATH

INCIDENCE ANGS

DAILY COVERAGE

DATES

500 600 600 1100,1600

Table 2.2: Frequency and polarization of the 7 channels of the SSM/I radiometer
[27].

Channel Frequency (GHz) Polarization

1 19.35 vertical
2 19.35 horizontal
3 22.235 vertical
4 37.0 vertical
5 37.0 horizontal
6 85.5 vertical
7 85.5 horizontal

14



Scatterometer Image Reconstruction (SIR) algorithm [28] have been developed for

this purpose.

I adopt a simple algorithm similar to the averaging method used in the

first iteration of SIR processing. This method is fast and simple, requiring only one

iteration, although it results in lower resolution than SIR. Because the Greenland

ice-sheet is relatively uniform, high resolution is not critical. For an imaging grid

I consistently use 8.9 km x 8.9 km spacing based on a Lambertian projection. For

parameter estimation at a given pixel all measurements with centroids within a 25

km radius of the pixel center are included. The measurement estimate for a given

pixel at time τ is obtained using the non-parametric fit

x(τ) =

∑N
i=1 xiw(τ, ti)
∑N

i=1 w(τ, ti)
(2.5)

where N is the number of measurements (x) within the specified radius. The weight-

ing function varies with the applications. Typical weighting functions include a rect-

angular window function

w(τ, ti) =







1 if |ti − τ | ≤ ∆tmax,

0 if |ti − τ | > ∆tmax.

and a truncated Gaussian

w(τ, ti) =







e−
1
2
(ti−τ)2/σ2

t if |ti − τ | ≤ ∆tmax,

0 if |ti − τ | > ∆tmax.

Much of my work employs linear models where σ◦ is modeled in terms of

incidence angle, azimuth angle, and possibly other terms. The model parameters are

obtained using least-squares estimation. The general form of this model is

σ◦
i = c0 + c1bi1 + c2bi2 + · · · + cNbiN

The model parameters (cn) are estimated using the weighted least-squared error so-

lution to 











1 b11 b12 · · · b1N

1 b21 b22 · · · b2N

...
...

...
. . .

...

1 bM1 bM2 · · · bMN

























c0

c1

...

cN













=













σ◦
1

σ◦
2
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σ◦
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where the weighting is that of the non-parametric fit described above. For an example,

let us assume a model of the form

σ◦ = c0 + c1(θ − 40) + c2(θ − 40)2

where θ is the incidence angle dependence. For this case, bi1 = θi − 40 and bi2 =

(θi − 40)2 are the definitions of the two bases in the model.

2.5 Greenland

Greenland has a unique environment. It is the largest island in the world.

The distance from the most northern point to the most southern point is over 1500

miles, about the distance from the Canadian border to the southern tip of Texas.

The distance from east to west is about 700 miles, further than the distance from

Salt Lake City to the Pacific Ocean. The majority of Greenland is covered by a large

ice sheet. About 8 percent of the total volume of ice on earth is located there [2].

Greenland is almost completely covered by a thick layer of snow and ice.

Near the summit, this snow layer is over 3 km deep [29]. Because the snow is so deep,

ground features are almost entirely masked out, leaving a surface with mountains

present only on the periphery of the ice sheet (see Fig. 3.1 (c)).

The topography of Greenland makes it unique. Sixty-five percent of Green-

land is over 2000 m in elevation, a relative distribution found on no other significant

land mass except for Antarctica. A histogram of the elevation distribution is shown

in Fig. 2.5. Although high in elevation, the ice sheet itself is relatively flat. The

3-dimensional image of Greenland in Fig. 2.4(a) illustrates how smooth and high in

elevation the interior of the ice sheet is. Figure 2.4(b) shows more topography data

including elevation, slope, and slope orientation. The Greenland summit (3278 m) is

indicated in the slope orientation image. A second summit (2850 m) is also indicated

on the southern portion of the ice-sheet.

Because of the associated cost and other difficulties, in situ data from

Greenland is scarce relative to the size of the ice sheet. Greenland is one of the

final frontiers with human exploration of the ice-sheet relatively recent. The first
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Figure 2.4: (a) 3-dimensional image of Greenland. The vertical scale is exaggerated.
(b) Topography characteristics of Greenland.
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Figure 2.5: Histogram showing the elevation distribution over Greenland.
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record of human crossing of the ice sheet is in 1888 when Fridtjof Nansen and his

team successfully traversed the southern portion of the ice-sheet traveling by skis

from the east to the west coast [29]. Throughout the twentieth century exploration

of Greenland has constantly been increasing. Even with modern technology many

obstacles still prevent thorough investigation. Most travel to the interior of the ice

sheet is done by air due in part to obstacles in the marginal zone near the edge of the

ice sheet.

One of the most extensive studies of the Greenland ice sheet was performed

by the United States SIPRE project [30]. The field work for the project was performed

from 1952 to 1955. This study includes extensive snow pit data which give insights

into accumulation and melt processes over Greenland. Data from this study is still

used today to further understand the properties of the ice sheet.

In his report for the SIPRE project, Benson [30] defines four basic ice

facies. As an understanding of the ice facies types is critical to Greenland studies, a

brief description of each is given here.

Ablation facies - The area around the periphery of Greenland where the yearly

snow accumulation completely melts during the summer leaving a surface of

glacial ice and rock.

Soaked or wet snow facies - During the summer melt, the accumulated snow for

the previous year becomes completely saturated with snow. The boundary

between the ablation and wet snow facies is termed the firn line.

Percolation facies - Some melting occurs, but the snow does not become saturated

with water. The liquid water that forms percolates down through a network

of channels which later freeze forming ice pipes and ice lenses. The boundary

between the wet snow facies and the percolation facies is termed the saturation

line,

Dry snow facies - The area at the interior of the ice sheet that is at a high enough

elevation that summer melt is negligible. The boundary between the percolation

and dry snow facies is termed the dry snow line.
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The locations of these facies as given by Benson are illustrated in Fig. 2.6. An updated

facies map derived from SASS meaurements [6] is shown in Fig. 2.7 along with an

ERS σ◦ image. A discussion of the scattering properties of the different snow zones

is contained in Chapter 4.
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Figure 2.6: Greenland ice facies regimes as defined by Benson [30].
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Figure 2.7: (left) ERS σ◦ image normalized to 40◦ incidence angle. (right) Greenland
ice facies map derived from SASS σ◦ measurements from Long and Drinkwater [6].
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Chapter 3

Azimuth Modulation Physical Model

An understanding of the relationship between σ◦ azimuth dependence and

physical properties of the surface is valuable for enhancing our understanding of the

dynamics of the ice sheet. Past studies employing σ◦ measurements over Greenland

have assumed azimuth modulation to be negligible. However, as remote sensing stud-

ies become more refined, extracting the relationship between the azimuth variation

and surface features is necessary for characterizing processes related to long term

change. My investigations have found azimuth modulation to be relatively stable

over time making it a potential indicator for long term change. The key to this

application is relating this change to surface properties.

This chapter presents a simple surface scattering model relating physical

properties of the surface to observed azimuth modulation of σ◦. The chapter is orga-

nized as follows: First is a background discussion of the data and previous research

on azimuth modulation over snow. Next, a simple surface scattering model is pre-

sented which includes azimuth modulation. This model is inverted using data from

two study locations and the results are discussed. Finally, the model is inverted for

the entire ice sheet and the resulting estimates of geophysical surface properties are

discussed.

3.1 Background

This study employs data from ERS which has a fan-beam design with

three fixed antennas, each measuring σ◦ at a different azimuth angle. Combining

ascending and descending passes, ERS provides azimuth sampling at approximately
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6 distinct azimuth angles at any given location. Azimuth sampling is fundamental to

the primary purpose of ERS which is to measure vector winds over the ocean. Wind

retrieval is achieved by inverting an empirical model of the azimuth dependence of

σ◦ as a function of wind speed and direction. I use the azimuth sampling of ERS

to estimate parameters of a physical model of the azimuth dependence of σ◦ over

Greenland. The data used in this study spans a 30 day interval beginning Julian Day

(JD) 330 and ending JD 360, 1996 which is during the winter when the backscatter

of the Greenland surface is relatively constant.

Much of the analysis focuses on data from the Tunu-N (78.0 N, 34.0 W)

and NASA-U (73.83 N, 49.5 W) sites (see Fig. 3.1). The raw data at each location

comprises all ERS σ◦ measurements which lie within a 30 km radius of the location

center. Figure 3.2 shows azimuth modulation observed in the raw data. The azimuth

modulation at the Tunu-N site is over 3 dB peak-to-peak and the modulation at the

NASA-U site is about half this magnitude.

Azimuth modulation of σ◦ has been observed over both Antarctica and

Greenland. Over Antarctica, the orientation of the modulation is highly correlated

with the wind direction [22, 23, 24]. Over Greenland, azimuth modulation of σ◦

over was first observed by Swift et al. [31] at a location in the southern percolation

zone. The modulation was observed in an aircraft banking maneuver during which

the scatterometer remained focused on a specific location. The observed modulation

is approximately 1 dB for σ◦ at Ku-band and is primarily first order (a single cycle

for 360◦).

My analysis indicates that the largest azimuth modulation at both C-band

and Ku-band occurs in the dry snow of central and northern Greenland where it is

primarily second order [32]. The orientation of the azimuth modulation matches the

general flow of the winter-time katabatic1 wind field as modeled by Bromwich et al.

[33].

1Katibatic winds are formed by cooling of the near-surface air which increases the air density
causing it to be accelerated down-slope by gravity.
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Figure 3.1: (a) Map of Greenland. (b) ERS backscatter image showing σ◦ at 40◦

incidence angle with the two study sites indicated. (c) Image of the direction of the
gradient of the Greenland surface topography.
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Figure 3.2: Azimuth modulation observed in the ERS backscatter at the two study
location indicated in Fig. 3.1. The circles represent the raw ERS measurements
normalized to 40◦ incidence based on a linear dependence on incidence angle. The
line is a second order sinusoid fit to the data.
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Over Antarctica, azimuth modulation of σ◦ is attributed to wind-formed

surface features termed sastrugi [22, 23, 24]. Sastrugi are erosional or depositional

surface features which are aligned such that the crest is parallel to the wind direction.

They range in scale from 10 to over a hundred meters [34]. Over Antarctica, azimuth

modulation is primarily second order with the orientation highly correlated with the

katabatic wind flow [24].

Although azimuth modulation is attributed to sastrugi on the surface, there

is a lack of physical models directly relating snow surface properties to azimuth mod-

ulation of σ◦. I propose a simple surface scattering model which relates azimuth

modulation to physical surface properties. My model assumes that sastrugi and other

features of the same scale are the primary mechanism driving the modulation, which

is consistent with second order azimuth modulation such as that observed over much

of the Greenland ice sheet and Antarctica.

3.2 Surface Scattering Model

The proposed model for the simulation of the effects of sastrugi on σ◦

over Greenland is composed of two scales. In my model, roughness of the order of

a radar wavelength (5.7 cm) or smaller is termed small-scale roughness. Roughness

at scales from a few meters to a few kilometers is termed meso-scale roughness.

Features at this scale are larger than a wavelength and smaller than the dimensions

of the measurement footprint. Features at scales larger than the size of the satellite

footprint (50 km) are termed large-scale. Roughness at scales in between these levels

is assumed to be negligible. The surface is modeled as a composite of small-scale

roughness and meso-scale roughness as illustrated in Fig. 3.3 (a).

While formulated as a surface scattering model, the scattering model repre-

sents an effective bulk equivalent to the actual multi-layer surface including multilayer

interaction and volume scattering, since the Greenland snow-pack consists of multi-

ple layers with each layer roughly equivalent to a years’ accumulation (see Fig. 3.3

(b). Backscatter from internal layer boundaries may affect the model estimates of
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Figure 3.3: (a) The snow surface is modeled as the composite of roughness at two-
scales: a meso-scale variation which is much larger than the electro-magnetic wave-
length and a small-scale perturbation with variations of the order of a wavelength
and smaller. (b) The actual surface includes multiple layers. The model represents
the net effective response for both the surface and the interaction between multiple
layers (see text).
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surface roughness. This effect is expected to be small for an individual layer be-

cause the dielectric difference between layers is small compared to at the air/snow

boundary. However, the combined contribution from multiple layers may be signif-

icant, especially for ERS which has a much larger penetration depth than Ku-band

scatterometers.

The model assumes the small-scale roughness is isotropic and is the pri-

mary factor in local incidence angle dependence of σ◦. The meso-scale roughness is

assumed, in general, to be anisotropic, resulting in azimuth modulation of σ◦. To

model the meso-scale roughness, the snow surface is viewed as a mesh of individual

flat surfaces. The dimensions of each mesh element are assumed to be large compared

with the incident wavelength. The satellite observed large-scale backscatter (σ◦
ls) is

the ensemble average of the small-scale backscatter (σ◦
ss) from the meso-scale mesh

elements, i.e.

σ◦
ls(θ, φ) =

∫ π/2

0
σ◦

ss(θ
′)P (θ′|θ, φ) dθ′ (3.1)

where P (θ′|θ, φ) is the probability distribution of the local incidence angle. The local

incidence angle distribution can be obtained from the surface slope distribution given

the observation geometry. Because our model assumes that each mesh element is

azimuthally isotropic, σ◦
ss is only a function of the local incidence angle (θ′).

For evaluating the contribution of the azimuth anisotropy in the meso-

scale roughness to the model accuracy, results from this general model are compared

with the results from a form of the model constrained to be azimuthally isotropic in

surface roughness. The general model for which the meso-scale surface roughness is

anisotropic is termed the A-model. The form of the model constrained to isotropic

surface roughness is termed the I-model. Additionally, these two models are compared

with a form of the model where the meso-scale surface is constrained to be flat, which

I term the F-model. In the F-model P (θ′|θ, φ) = δ(θ′ − θ) and Eq. (3.1) becomes

σ◦
ls(θ, φ) = σ◦

ss(θ) where δ(·) is the Dirac delta function.
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3.2.1 Meso-scale model

The probability distribution of the local incidence angle, P (θ′|θ, φ), is di-

rectly related to the meso-scale slope distribution P (~s) where ~s = [ sx sy ]T are the

slopes in the x and y direction. Assuming that ~s is zero-mean and Gaussian dis-

tributed,

P (~s) =
1

2π|R|1/2
e−(1/2)~sT R−1~s (3.2)

where R is the covariance matrix. The surface slope covariance R has a physical

interpretation in terms of a RMS slope as a function of azimuth. The singular value

decomposition

R = UΣUT (3.3)

provides estimates of the minimum and maximum one-dimensional RMS slope and

the associated azimuth angles. Let

Σ =






ξ2
1 0

0 ξ2
2




 (3.4)

and

U = [~u1|~u2] . (3.5)

Formulas for obtaining the SVD are given in Appendix B. ξ1 is the maximum one-

dimensional RMS surface slope which is in the direction of ~u1 and ξ2 is the minimum

one-dimensional RMS surface slope which is in the ~u2 direction. For the case of the

I-model, R is constrained to the form R = ξI where I is the identity matrix.

The simplified slope probability distribution in Eq. (3.2) is related to the

size and orientation of sastrugi over a snow field. The distribution defines how the

RMS slope of a cross-section of the surface varies with direction. Over sastrugi, the

RMS slope is expected to be a maximum when the cross-section is orthogonal to the

crests of the sastrugi and minimum when the cross-section is parallel to the sastrugi

crests. Because the crests of the sastrugi are aligned with the wind direction [34]

~u1 coincides with the cross-wind direction and ~u2 coincides with the up/down wind

direction. ξ1 is an estimate of the RMS slope of the sastrugi.
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3.2.2 Small-scale model

The other surface property required to evaluate Eq. (3.1) is the small-scale

dependence of σ◦ on incidence angle (σ◦
ss(θ

′)). Backscatter over snow is a combination

of both volume and surface scattering. Near nadir, surface scattering dominates, while

at larger incidence angles volume scattering has a more significant contribution. The

total backscatter at any incidence angle is the sum of these two components, i.e.

σ◦
ss(θ

′) = σ◦
surf (θ

′) + σ◦
vol(θ

′). (3.6)

The Small Perturbation Method (SPM) is used to model surface scatter, which is

appropriate for roughness scales of the order of the incident wavelength or smaller.

SPM is also used by Ledroit et al. [22] in modeling backscatter over the Antarctic ice

sheet. There are two key differences between my implementation of SPM and that

of Ledroit et al. First, Ledroit et al. assume an azimuth dependent form of SPM to

account for azimuth modulation. However, SPM is only valid for roughness smaller

than the incidence wavelength (5.7 cm for ERS). I assume the surface is isotropic at

the SPM scale and that azimuth dependency is caused by surface tilt due to meso-scale

features which is consistent with the theory that sastrugi are the primary mechanism

for azimuth modulation. Second, I assume a Gaussian surface correlation function as

opposed to the exponential correlation function used by Ledroit et al. This is done

because the Gaussian correlation function results in model estimates more consistent

with the σ◦ measurements.

For SPM [25],

σ◦
surf (θ

′) = 8k4σ2 cos4 θ′|αpp(θ
′)|2W (2k sin θ′) (3.7)

where k is the wave number in free space, σ is the surface RMS height, and l is the

surface correlation length. The αpp term is dependent upon polarization (p). For the

vertical-vertical ERS polarization [25]

αvv(θ
′) = (εr − 1)

sin2 θ′ − εr(1 + sin2 θ′)
[

εr cos θ′ + (εr − sin2 θ′)1/2
]2
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where εr is the relative dielectric constant of the surface. W (·) is the power spectrum

of the surface. Assuming a Gaussian correlation function, the roughness spectrum is

[25]

W (2k sin θ′) =
1

2
l2e−(kl sin θ′)2 . (3.8)

For volume scattering I use the same model as Swift [35],

σ◦
vol(θ

′) = T 2(θ′)
nσb

2α
cos θ′ (3.9)

where T (θ′) is the plane wave power transmission coefficient, n is the number density

of scatters per unit volume, σb is the radar cross-section of a single scatter, and α is

the bulk volume attenuation coefficient. Combining Eqs. (3.6)-(3.9) results in

σ◦
ss(θ

′) = 4k4σ2l2 cos4 θ′|αpp(θ
′)|2e−(kl sin θ′)2 + T 2(θ′)

nσb

2α
cos θ′. (3.10)

The performance of Eq. (3.10) in matching the ERS measurements is eval-

uated by fitting the model to the ERS data at a location where the surface is relatively

flat and minimal azimuth modulation is observed. Figure 3.4 shows a least-squares fit

of Eq. (3.10) to ERS data from 73.25 N, 37.28 W, which is near the summit where the

azimuth variation in σ◦ is negligible. The method used to obtain the least-squared

error model estimates is described in the next section. Model roughness estimates

for this location are kl = 3.22 and kσ = 0.498. The upper limit for the valid region

of SPM is kσ < 0.3 [25]. Because the estimate obtained for kσ is somewhat larger

than this limit, care must be used when interpreting these parameters in terms of

actual surface roughness values. However, as observed in Fig. 3.4, the model provides

a good fit to the data and thus is useful as an empirical model describing the local

incidence angle dependence of σ◦. Also, as discussed in Section 3.2, Eq. (3.10) is a

bulk equivalent model representing the snow-pack, which consists of many layers, as

one single layer. Therefore, the surface roughness parameters represent an equivalent

single layer roughness estimate for a multi-layered surface. The Small Slope Approx-

imation (SSA) is a possible alternative to SPM for future studies as SSA is valid for

larger roughness scales [36]. SSA is not used here because it adds significant com-

plexity to the model and the model inversion process. The quality of the fit and the

simplicity provided by the SPM model is deemed appropriate for this initial study.
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Figure 3.4: A least-squares fit of the small-scale model to ERS data at 73.25 N, 37.28
W, which is near the summit where azimuth modulation in the ERS data is negligible.

3.2.3 Model inversion

Estimation of surface parameters from σ◦ measurements requires inversion

of the surface model. The model inversion is obtained by minimizing the RMS error

χ =
[

(~σ◦ − ~σ◦
ls)

T (~σ◦ − ~σ◦
ls)
]1/2

(3.11)

where ~σ◦ is a vector of the measurement values and ~σ◦
ls is a vector of the model

estimates. The minimization of Eq. (3.11) with respect to the model parameters is a

second order non-linear regression problem. We solve it using the iterative Levenberg-

Marquardt technique [37]. On the base level, the small-scale model parameters which

minimize Eq. (3.11) are estimated for a given probability density P (θ′|θ, φ) which is

obtained from a specified meso-scale slope covariance R. This process is iterated for

different R values until the minimum of Eq. (3.11) is obtained.

The distribution P (θ′|θ, φ) is different for each measurement based on the

measurement geometry. For each measurement the calculation of P (θ′|θ, φ) from the
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surface slope covariance R is performed numerically. This is done by discretizing the

range of surface slopes along with the associated probability for each slope combina-

tion. Each slope combination ~s is represented by a unit vector ẑ′ orthogonal to the

local surface. The corresponding local incidence angle is θ′ = cos−1(ẑ′ · r̂) where r̂ is a

unit vector in the θ, φ direction. Each surface slope combination is binned according

to the local incidence angle θ′ to obtain a discrete estimate of the local incidence

angle distribution P (θ′|θ, φ).

Given P (θ′|θ, φ) the small-scale surface parameters which minimize Eq. (3.11)

are obtained. To solve for the small-scale model parameters Eq. (3.10) is rewritten as

σ◦
ss(θ

′) = P cos4 θ′|αpp(θ
′)|2e−Q sin2 θ′ + T 2(θ′)V cos(θ′) (3.12)

where P = 4k4σ2l2, Q = k2l2, and V = nσb

2α
are used as the unknown parameters.

To obtain αpp and T (θ′) we set εr = 1.7, corresponding to a snow density of 0.38

g/cm [38, pg. 2061] which is typical of the densities observed by Benson [30, pg. 66]

in the upper percolation facies. For each iteration of the non-linear least-squares

regression, the two-scale model is evaluated using the discretized P (θ′|θi, φi) for each

measurement, i.e.













σ◦
ls(θ1, φ1)

σ◦
ls(θ2, φ2)

...

σ◦
ls(θm, φm)













=













P (θ′1|θ1, φ1) P (θ′2|θ1, φ1) · · · P (θ′n|θ1, φ1)

P (θ′1|θ2, φ2) P (θ′2|θ2, φ2) · · · P (θ′n|θ2, φ2)
...

...
. . .

...

P (θ′1|θm, φm) P (θ′2|θm, φm) · · · P (θ′n|θm, φm)

























σ◦
ss(θ

′
1)

σ◦
ss(θ

′
2)

...

σ◦
ss(θ

′
n)













(3.13)

or equivalently

~σ◦
ls = P~σ◦

ss.

3.2.4 Results

The fit of the surface scattering model to the ERS σ◦ measurements is

analyzed using two study areas. As mentioned in Section 3.1 the study areas are

centered at the Tunu-N and NASA-U sites to enable comparison between Greenland

Climate Network automatic weather station (AWS) in situ wind measurements and
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model-produced preferential directions in the surface roughness. As discussed in

Appendix A, the co-location bias in the data can be significant. This is especially

true for locations in transition regions between facies such as the Tunu-N and NASA-

U sites. Therefore, before inverting the model to fit the σ◦ measurements, the co-

location bias in the data is estimated and removed using the method outlined in

Appendix A.

Estimates obtained through inverting the A-model provide a good fit to

the data. Plots comparing A-model estimates to σ◦ measurements are shown in

Fig. 3.5 for Tunu-N and Fig. 3.6 for NASA-U. The model estimates show peak-to-

peak azimuth modulation of over 3 dB at Tunu-N and up to 2 dB at NASA-U. At

Tunu-N the variability of the data around the model estimates is generally smaller

than 1 dB. The data is centered at the model estimate, indicating a good fit. At

the NASA-U location the spread in the data at each azimuth is larger, in many

cases over 2 dB, and not as consistently centered around the estimate. This apparent

discrepancy is attributed in part to the incidence angle dependence of σ◦. Over the 5◦

incidence angle range for each sub-plot, σ◦ varies up to 1.5 dB depending on incidence

angle.

A second plot for evaluating the fit of the model estimates to the data

is provided in Fig. 3.5 (b) and Fig. 3.6 (d). These plots show the incidence angle

dependence of the model at two azimuth angles along with σ◦ measurements with

azimuth angles within ±10◦. Here the incidence angle dependence of σ◦ is distinctly

different for the displayed azimuth ranges. At Tunu-N, the σ◦ measurements around

φ = 15◦ are consistently about 3 dB larger than the case where φ = 290◦. This

behavior is matched by the model output. At NASA-U, the model estimates a 2

dB bias in the mean data with the larger backscatter at φ = 245◦ and the smaller at

φ = 115◦. The model estimated bias is slightly larger than the spread observed in

the σ◦ measurements.

The performance of the A-model is evaluated by comparing the estimate

errors with those of the I-model and the F-model. The RMS residual error as defined

in Eq. (3.11) is used as the error metric. The A-model performs similarly at both
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Figure 3.5: Illustration of the A-model fit to ERS σ◦ measurements at the Tunu-N
(78.0 N, 34.0 W) site (see Fig. 3.1). (a) Plots of the azimth modulation observed
in raw ERS measurments (indictated by “+” symbols). The data are divided into
four incidence angle bins with the range of each bin indicated on the vertical axis.
The lines represent the model fit to the raw data where θ is set to the center of the
respective incidence angle range and φ varies along the horizontal axis. (b) Plots
showing the incidence angle dependence of the raw data and the surface model fit.
For each plot, raw ERS data from two ranges of φ are shown with the range indicated
in the key. The line shows the A-model where φ is set to the center of each range
indicated in the key and θ varies along the horizontal axis. (c) Wind statistics at
each location during 1996 obtained from the Greenland Climate Network [39]. The
left plot in (c) is a circular histogram of the wind direction while the right plot in (c)
is a histogram of the wind speed.
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Figure 3.6: Same as Fig. 3.5 for the NASA-U site (73.83 N, 49.5 W).
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Table 3.1: Maximum (ξ1) and minimum (ξ2) one-dimensional RMS meso-scale surface
slopes in (m/m) and corresponding azimuth angles (in degrees relative to North)
obtained from the A-model surface slope distribution estimates at the two study
locations. Because the model makes no distinction between up and down wind, there
is a 180◦ ambiguity in the direction of ~u2. The displayed value is the ambiguity closest
to the measured wind flow direction. Also included in the table is an estimate of the
meso-scale RMS surface slope for the I-model.

A-model I-model
ξ1 ξ2 6 ~u1 6 ~u2 ξ

Tunu-N 0.29 0.12 193◦ 103◦ 0.055
NASA-U 0.21 0.11 46◦ 316◦ 0.050

study locations with RMS residual errors of around 0.4 dB. The RMS errors are

significantly larger for the other two models: 1.05 dB at Tunu-N and 0.65 dB at

NASA-U. ERS measurement accuracy is approximately 0.2 dB [40].

The A-model enables estimation of the directional dependence of the meso-

scale surface slopes. The correlation matrix of the meso-scale surface slope distribu-

tion indicates how the one-dimensional RMS surface slope varies with azimuth angle

as discussed in Section 3.2.1. Recall that ξ1 and ξ2 are estimates of the maximum

and minimum one-dimensional RMS surface slope, and the corresponding azimuth

angles are given by the orientations of ~u1 and ~u2. Estimates of these values for the

two study locations are listed in Table 3.1. The RMS surface slope in the dominant

roughness direction (ξ1) is largest at Tunu-N, indicating steeper meso-scale surface

slopes at this location. This is attributed to the difference in accumulation rates

rather than a difference in wind speed since the speeds shown in Figs. 3.5 and 3.6

exhibit no significant difference in magnitude at the two locations. At Tunu-N the

accumulation rate is less than one half the accumulation rate at the NASA-U site

[41, 42]. The accumulation rate contributes to the differences in the thickness of the

annual layers, the snow density and other properties. Unfortunately, in situ data is

not available to validate the observed RMS surface slopes.

38



Table 3.2: Small-scale parameters for the three surface scattering models at the two
study locations where V = nσb/2α. Each parameter is discussed in detail in Sec-
tion 3.2.2.

A-model I-model F-model
kσ kl V (dB) kσ kl V (dB) kσ kl V (dB)

Tunu-N 1.24 3.62 -8.8 1.17 2.87 -8.7 1.18 2.82 -8.7
NASA-U 1.35 3.15 -11.2 1.39 2.76 -11.2 1.40 2.72 -11.2

The plots at the bottom of Figs. 3.5 and 3.6 show the distribution of wind

speed and direction during 1996 at the two locations. The model estimates show

that the minimum of the azimuth modulation is in the ~u2 direction. As discussed in

Section 3.2.1 the orientation of ~u2 corresponds with the up/down wind direction. This

relationship between the dominant wind direction and the minimum of the azimuth

modulation is consistent with the results of Long and Drinkwater [24] over Antarctica.

At both locations the orientation of ~u2 is within 15◦ of the dominant wind direction

as shown in Figs. 3.5 and 3.6.

The small-scale parameter estimates are listed for each of the three models

in Table 3.2. Because the estimates of kσ are outside of the valid range for SPM

as discussed in Section 3.2.2 the parameters are representative of the relative rather

than the actual surface roughness. The model estimates are still valuable in gaining

insights into the scattering at these locations. Inspection of the two terms in Eq. (3.10)

reveals important differences in the contribution of each small-scale parameter to the

overall backscatter.

The combination of surface and volume scattering dictates the backscat-

ter model dependence on incidence angle. In general, surface scattering generates a

steeper incidence angle dependence at large incidence angles than does volume scat-

tering. The large estimates of kσ cause the surface scattering term to contribute

more at large incidence angles resulting in a steeper incidence angle dependence than

is provided by the volume scattering term only. Thus, to adequately model the sur-

face in terms of snow properties either a more complex volume scattering term having
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a steeper roll-off with incidence angle or a surface scattering term valid for larger esti-

mates of the backscatter at high incidence angles is required. An alternate approach

for future studies is a multi-layer model combining the surface and volume scatter-

ing from the individual layers. However, such a model will increase the number of

unknown parameters, decreasing the probability for well-conditioned model inversion.

3.2.5 Ice-sheet wide surface parameter estimation

Meso-scale parameters

I have inverted the three variations of the surface scattering model to obtain

parameter estimates across the ice sheet. Estimates of the meso-scale slope distribu-

tion parameters are shown in Fig. 3.7. Recall that ξ1 and ξ2 are the square-roots of

the singular values of the correlation matrix R from the A-model and provide esti-

mates of the maximum and minimum one-dimensional RMS surface slopes. Perhaps

the most compelling indicator of the validity of the A-model and the assumption that

wind-formed sastrugi are the dominant mechanism driving azimuth modulation over

Greenland is found in the orientation of ~u2. As discussed previously, over a field of

sastrugi ~u2 is oriented in the up/down wind direction. Figure 3.7 (c) shows stream-

lines of 6 ~u2 imposed over an image of ξ1. The streamlines are very similar to the

katabatic surface wind fields modeled by Bromwich et al. [33] over the Greenland ice

sheet (see Fig. 3.8). One of the most identifiable features in both the 6 ~u2 streamlines

and the Bromwich wind field is the wind divergence region running from the summit

northwest to Hayes Peninsula (see Fig. 3.1). Over the southern portion of the ice

sheet, the dominant wind direction also matches 6 ~u2.

Features of the wind pattern are evident throughout the dry snow zone

in the ξ1 image. Locations with divergent wind fields give small estimates of the

sastrugi slopes, which is consistent with the low wind speeds and correspondingly

small sastrugi found there. This is most apparent where the wind field diverges

northwest of the summit. It is also observed on the east of Greenland between the

Scoresby Sund and Kangerlussuaq Fjords (see Fig. 3.1 (a)) where Bromwich et al. [33]

estimate corresponding low wind speeds. Along the ridge separating these two fjords,
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Figure 3.7: Images showing estimates of the meso-scale slope distribution correlation
matrix singular values. (a) & (b) Maximum (ξ1) and minimum (ξ2) one-dimensional
RMS surface slopes estimated using the A-model. (c) Stream-lines of the A-model
estimate of the wind flow (~u2 direction) imposed over a ξ1 image. Direction is not
indicated due to the 180◦ ambiguity in the model. Arrows indicate AWS measured
average wind flow direction during 1996. (d) RMS surface slope obtained using the
I-model.

41



Figure 3.8: Estimate of the Greenland wintertime katabatic windfield estimate from
Bromwich et al. [33].
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the mean wind field diverges. Thus low winds are expected on the ridge and high

winds on the slopes leading down to the fjords. This is observed in the ξ1 image as a

dark region (the ridge) between two brighter regions. Another pronounced feature in

the ξ1 image is an area of low estimates reaching almost directly north of the summit

to the edge of the ice sheet between King Fredrik VIII Land and King Christian X

Land. The location of these low estimates corresponds to the windward side of a ridge

running northwest from the summit observed in Fig. 3.1 (b). For katabatic winds, such

as those modeled by Bromwich et al. [33], the wind flow is driven by gravity and local

topography. Katabatic cooling increases the air density so that it sinks downslope. In

the region north of the summit with low RMS surface slope estimates, the wind and

the topographical slope are nearly orthogonal. Because gravity is not accelerating

the wind in the dominant flow direction, lower wind speeds are expected, which is

consistent with the low ξ1 estimates. One possible contributor to the differences in the

ξ1 estimates in the east and west dry snow zone is the difference in the accumulation

rates. The northeast dry snow zone has about half the accumulation rate of the west

dry snow zone [41, 42].

The low estimates of ξ1 in the percolation zone are attributed to changes

in the snow-pack associated with melt. Recall that the percolation zone is the region

where melt occurs, but the snow pack does not become saturated with liquid water.

Melt significantly changes the backscatter properties of the surface such that after

refreeze the backscatter is dominated by scattering from subsurface ice structures [43]

altering or masking the azimuth modulation signature. During the winter, scattering

from the dry snow surface layer that has accumulated since the last melt is mitigated

by its transparency and the strong backscatter from the sub-surface percolation facies.

Wind-field related features observed in the ξ1 image are also apparent in

the ξ2 image. The estimates of ξ2 at the divergent wind region between the summit

and Hayes Peninsula are high while just outside the divergent region the estimates

drop significantly. Low estimates are also found in other areas, mostly in the lower

portions of the dry snow zone. These are areas where significant acceleration and

narrow cross-wind variance is expected in the wind field as it nears the edge of the
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ice sheet where the surface slope increases. The ice sheet slope is particularly large

in King Christian X Land where the lowest estimates of ξ2 are found.

Small-scale parameters

The images in Fig. 3.9 show the model parameters for the local incidence

angle dependence. The small-scale parameters are estimated using a least-squares

approximation for the three models. As discussed previously, the kσ estimates are

slightly outside the valid range for SPM. Thus kσ and kl are indicative of relative

rather than actual roughness. Nevertheless, as previously indicated, insights can be

gained through viewing the small-scale model as an empirical model describing the

local incidence angle dependence of σ◦.

The kσ and V terms primarily affect the magnitude of the σ◦ estimates,

whereas the kl term is a major contributor to the incidence angle dependence of

the σ◦ estimates. The kσ estimates are nearly identical for all three models as are

the V estimates. The kσ and V images also exhibit very similar features. Three

regions are observed in each image: a dark region at the interior surrounded by a

bright region and then a reduced intensity region on the periphery. These regions

roughly correspond to the dry snow, percolation, and wet snow facies. In general,

the magnitudes of kσ and V are correlated with the magnitude of the backscatter

observed from the different facies. One feature observed only in the V image is the

division of the dry snow zone into the two distinct regions first noted by Long and

Drinkwater [6] in their investigations of the variance in σ◦ across the ice sheet.

Correlation length (kl) estimates are lowest in the percolation zone and

highest in the dry snow zone. The I-model and F-model result in approximately the

same kl estimates. The A-model is similar to the other two models in the percolation

zone but produces significantly higher estimates of kl in the dry snow zone which

has the largest azimuth modulation. Higher estimates of kl indicate an increased

roll-off of σ◦ with incidence angle. In this region the A-model indicates an increased

dependence of σ◦ on incidence angle.
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Figure 3.9: Images of the estimated small-scale surface model parameters across the
ice-sheet estimated for the three models from ERS σ◦ measurements.
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Figure 3.10: Images of the RMS error of the different models across the ice-sheet.
The A-model image includes a “+” mark indicating the location (69.5 N, 34.3 W)
which is used for further analysis of the RMS error.

Error analysis

Figure 3.10 shows the RMS error across the ice sheet for the three models

as defined by Eq. (3.11). The A-model error is significantly smaller than that of the

other two models throughout most of the dry snow zone, particularly in the northeast.

The distribution of the RMS error for each model across the ice sheet is shown in

Fig. 3.11. The A-model mean RMS error is 0.46, significantly less than the 0.56 dB

mean RMS error of the I-model and F-model. Over a significant portion of the ice

sheet the A-model RMS error approaches the ERS accuracy of 0.2 dB [40].

Areas with above average RMS errors are observed between King Christian

IX Land and King Christian X Land along the east edge of the dry snow zone. A close

inspection of the σ◦ measurements in these large error regions reveals anomalies in

the data at varying azimuth and incidence angles. Figure 3.12 shows data from 69.5

N, 34.3 W (see Fig. 3.10), a location within this high error region. From Fig. 3.12
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Figure 3.11: Normalized histogram of the RMS error across the ice sheet for the differ-
ent models. The I-model and F-model overlap making them almost indistinguishable.

(a) we observe that the largest errors occur around φ = 75◦. In Fig. 3.12 (b) it

appears that the incidence angle dependence around φ = 75◦ is reversed from the

common incidence angle dependence observed over Greenland. At this location and

azimuth angle, σ◦ increases with incidence angle opposed to the decrease of σ◦ with

incidence angle commonly observed over Greenland. Similar anomalies in the ERS

measurements are observed throughout the regions with high RMS errors. Between

King Christian IX Land and King Christian X Land the anomalies are generally

restricted to the range −60 < φ < 100, though the anomalies are not always a

reversal in the incidence angle dependence as observed in Fig. 3.12. In general the

anomalies occur as abnormally high or low σ◦ measurements within a small azimuth

and incidence angle range. The source of these anomalies is not understood. A more

complete azimuth and incidence angle sampling of σ◦ combined with in situ data

may be needed to understand the phenomena driving these anomalies. Because the

specific azimuth and incidence angles where such anomalies are observed varies with

location, it does not appear to be an instrument effect.

3.3 Summary

Significant azimuth modulation occurs in the ERS σ◦ measurements of

Greenland. This modulation is beneficial for further understanding the properties of
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Figure 3.12: ERS data and A-model estimate errors at 69.5 N, 34.3 W (see Fig. 3.10).
(a) A-model estimation error versus azimuth angle. At azimuth angles near 75◦

there is a high concentration of above average estimation errors. (b) Incidence angle
dependence of raw σ◦ measurements at two azimuth angles. At φ ≈ 30◦ (top) the
measurements exhibit the expected falloff with incidence angle. However, at φ ≈ 75◦

the measurements exhibit a counter-intuitive increase with incidence angle.
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the ice sheet, with particular application to wind flow. A simple two-scale model can

be used to model the combined incidence and azimuth angle dependence of the data.

This model assumes that the primary mechanism driving the azimuth modulation

are anisotropies in the meso-scale surface roughness, The small-scale incidence angle

dependence is modeled using a combination of surface and volume scattering. Because

the resulting surface roughness estimates are slightly outside the accepted range for

the surface scattering model, the small-scale model must be viewed as an empirical

model. Future studies may implement the model using SSA which has a larger region

of validity than SPM. However, SSA adds significantly to the complexity of the model.

Model estimates are consistent with the idea of wind-formed sastrugi play-

ing a dominant roll in the azimuth modulation. Estimates of the direction with

the minimum one-dimensional RMS slope are highly correlated with katabatic wind

flow patterns and AWS measurements. Many features related to the wind flow are

observed in the model estimates of the surface slope characteristics. The largest meso-

scale slope estimates occur in the lower portions of the dry snow zone. Even in the

percolation zone where azimuth modulation is small and scattering from subsurface

ice structures is significant, model estimates of the surface roughness directionality

are strongly correlated with katabatic wind patterns.

The A-model, which assumes anisotropic meso-scale surface roughness, re-

sults in significantly smaller modeling errors than the I-model (isotropic meso-scale

roughness) or the F-model (flat meso-scale surface). The mean RMS error is 0.46

dB for the A-model compared to 0.56 dB for the isotropic roughness models. Over

much of the dry snow zone where significant azimuth modulation is observed, the

improvement given by the A-model is much larger.

The A-model is a promising tool for characterization of the Greenland

surface. Using σ◦ azimuth modulation, the dynamics of the Greenland ice sheet may

be better tracked, including long term wind patterns. A better understanding of the

azimuth modulation over Greenland in connection with geophysical surface properties

may be obtained through in situ studies which combine measurements of σ◦ azimuth

modulation with measurements of the geophysical properties of the surface.
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Chapter 4

Microwave Signature Descriptive Model

Each scatterometer σ◦ measurement has a given set of observation pa-

rameters including location (typically the measurement centroid) and look geometry

(incidence and azimuth angle). Combined, these parameters are termed the observa-

tion geometry. A perturbation of any of the observation geometry parameters results

in a corresponding change in the observed σ◦. How σ◦ changes with the observation

geometry is termed the microwave signature of the snow. Temporal trends in the

variation of σ◦ are also part of the microwave signature. The regular and complete

coverage of the ice sheet by scatterometers with measurements of σ◦ at multiple in-

cidence and azimuth angles enables the estimation of the σ◦ signature of the surface.

Our objective is to use scatterometer measurements of σ◦ to estimate this signature

using a small number of model parameters. This simplified model aids in the obser-

vation of σ◦ and the study of its relationship to the large-scale geophysical properties

of the snow.

The σ◦ signature of the surface is important in at least three ways. First,

the parameters characterizing the signature provide a reference frame for monitoring

and understanding changes occurring on the surface relating to global climate change

and other phenomenon. Changes in the snow surface are observed by a scatterometer

as changes in the microwave signature. By closely monitoring the microwave signature

and how it varies over time, the temporal variability of the physical properties of the

ice sheet can be estimated. Second, an accurate descriptive model of the microwave

signature enables the inference of variations from the average microwave signature

on relatively short time scales. Using the model, individual measurements can be

51



normalized to a given geometry and then compared, making it possible to observe

changes at the temporal sampling rate of the sensor while mitigating the σ◦ changes

due to variations in the observation geometry. Third, the σ◦ signature is valuable for

accurate studies of data sets with limited sampling over the observation geometry.

A primary example is the azimuth sampling for SAR, which is effectively a single

azimuth instrument. High resolution maps of temporal change may be obtained by

inter-comparing swaths from different time periods. If these passes occur at different

azimuth angles, the unaccounted for differences in σ◦ due to azimuth modulation may

be misinterpreted as being caused by temporal change of the surface. Additionally,

processing of wide-angle SAR may be refined by including prior estimates of the

azimuth dependence of σ◦ along the swath.

In this chapter, a new model for parameterization of the σ◦ signature over

ice sheets is presented. The model is discussed in detail, outlining the theory as well

as the relative importance of each individual element. I show the variation of each

model parameter across the ice sheet and discuss the physical interpretation. Two

applications of the model are considered: monitoring inter-annual changes across the

Greenland ice sheet by observing the changes in the model parameters over time,

and monitoring intra-annual change by observing the variation in σ◦ measurements

when normalized to a specific observation geometry using the long term average σ◦

signature. Finally, a brief summary of the model and its applications is provided.

4.1 Background

This study employs data from ERS (C-band) and NSCAT (Ku-band).

Both instruments have a fan beam design with ERS being a single swath instru-

ment and NSCAT having a dual swath. The fan-beam design provides measurements

at a range of incidence angles spanning 20 to 60 degrees from nadir. ERS has three

fixed antennas, each measuring vertical polarization σ◦ at a different azimuth angle.

Combining ascending and descending passes provides azimuth sampling at approxi-

mately 6 distinct azimuth angles. NSCAT measures vertical polarization σ◦ using 6

antennas providing azimuth sampling at more angles. Plots of the incidence/azimuth
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Figure 4.1: (a) Scatter-plot of azimuth angle versus incidence angle for ERS and
NSCAT at NASA-U during the 6 months centered around January 1, 1997. (b) The
locations of the Tunu-N and NASA-U stations indicated on an ERS image of A (σ◦

normalized to 40◦ incidence angle).

angle sampling for ERS and NSCAT are shown in Fig. 4.1 (a). ERS measurements at

all six azimuth angles only occur within the incidence angle range of 25 to 45 degrees.

Because of this, only data within the 25-45 degree incidence angle range is included in

this study. The same incidence angle range is used for NSCAT to make the study self

consistent. This study primarily uses data from the 6 month interval from Julian Day

(JD) 275, 1996 to JD 90, 1997 which is during the winter months when backscatter

from the Greenland surface is relatively constant.

Two locations are used for in-depth analysis throughout this study. These

are the Tunu-N (78.0 N, 34.0 W) and NASA-U (73.83 N, 49.5 W) sites. The locations

are shown in Fig. 4.1 (b). For each site Automatic Weather Station (AWS) data is

available through the Greenland Climate Network [39]. The raw data analyzed at

each location comprises all σ◦ measurements with centroids which lie within a 25 km

radius of the location center.
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In addition to focusing on the microwave signature at these two locations,

I also present images of the model parameters across the ice sheet. The σ◦ model

parameter values for each grid element are estimated using a least-squares fit to the

model as described in Section 2.4. The ice sheet mask is the same as that used by

Abdalati and Steffen [2] which originated from the Quaternary Map of Greenland

produced by the Geological Survey of Greenland.

4.2 Observation Model

In order to parameterize the σ◦ signature of the Greenland surface I intro-

duce an empirical observation model for σ◦,

σ◦ = A + f(θ − θref) + q(φ) + h(r) + p(t − t0) (4.1)

where the variables describing the observation geometry are

θ – measurement incidence angle,

θref – reference incidence angle,

φ – measurement azimuth angle,

r – spatial displacement vector,

t – measurement time, and

t0 – reference time,

and σ◦ is in dB. The functions f(θ−θref), q(φ), h(r), and p(t− t0) give the microwave

signature relative to the argument parameters. Each is discussed in detail in the

following sections. A represents the average at the incidence angle θref and time t0.

For this application, θref is set to 40◦ and t0 is set to the center time of the data set.

The primary metric used to evaluate the performance of different model

formulations is the RMS modeling error

χ =

(

1

N

N∑

i=1

(σ◦
i − σ̂◦

i )
2

)(1/2)

(4.2)

where σ◦
i is the ith measurement in dB and σ̂◦

i is the corresponding estimate given

by Eq. (4.1). To evaluate the model performance across the entire ice sheet I use the
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average RMS modeling error

χ̄ =
1

M

M∑

i=1

χi

where M is the number of imaging pixels within the ice sheet. Using the fully devel-

oped model χ̄ = 0.375 dB for ERS and χ̄ = 0.458 dB for NSCAT.

4.2.1 Average backscatter

I first discuss A which represents the average backscatter normalized to θref

and t0. A key application of A is in delineating the Greenland ice facies [6, 7, 8, 9, 43].

Images showing the variation in A across the ice sheet for both ERS and NSCAT are

shown in Fig. 4.2. The extent of each of the snow facies can be estimated from

the images in Fig. 4.2. The dry snow is characterized by low A values throughout

the center of Greenland [6, 7]. Because the snow grains of dry snow are relatively

small, the microwaves penetrate deep in the snow and are absorbed, producing little

backscatter.

There is a strong spatial gradient in the backscatter between the dry snow

zone and the central percolation zone. At the upper edge of the percolation zone

the summer melt is short and the difference in backscatter from the dry snow zone

is relatively small. The short melt results in a crust of iced firn1 on the surface

and an increase in snow-grain size due to sublimation [30]. An increase in grain size

produces a corresponding increase in A in frozen snow [6]. Further downslope in

the percolation zone the summer melt contributes to the formation of subsurface ice

structures termed ice pipes and ice lenses which form when percolation channels in

the wet snow freeze [6]. Surface scattering from the rough tops of the ice lenses and

re-frozen melt surface causes the bright return in the lower portions of the percolation

zone [7, 43].

Downslope from the percolation zone on the edge of the ice sheet is a narrow

region of intermediate A values indicating the wet snow zone [7]. The delineation

between the percolation zone and the wet snow zone is perhaps the most difficult to

1Iced firn is formed when water-saturated snow freezes.
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Figure 4.2: Images of A from NSCAT (Ku-band) and ERS (C-band) estimated using
6 months of data centered at January 1, 1997. The area outside the ice sheet is black
in the images.

infer using the A images alone because of the low contrast between the two regions.

Other parameters perform better for this purpose.

Differences between the ERS and NSCAT A images are also beneficial in

delineating the snow facies. Drinkwater et al. [18] use this difference to determine

the line separating the dry snow and percolation zones. The ERS/NSCAT difference

is attributed to the frequency difference between the two instruments. For NSCAT,

the size of the snow grains relative to the wavelength is larger than for ERS, which

increases the radar cross-section of the individual snow grains. The larger σ◦ values

for NSCAT in the dry snow zone are attributed to this effect. In the percolation zone,

NSCAT σ◦ values are smaller than ERS. This is attributed to the reduced penetration

depth due to the higher frequency of NSCAT which results in reduced scattering from

the subsurface ice structures.
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4.2.2 Incidence angle dependence

In my model, σ◦ varies as a quadratic function of incidence angle where σ◦

is in dB and θ is in degrees, i.e.

f(θ̃) = B1θ̃ + B2θ̃
2 (4.3)

where θ̃ = θ − θref . Any constant offset is subsumed into A.

The B1 images in Fig. 4.3 show the variation in the linear incidence an-

gle dependence of σ◦. In general, B1 is an indicator of the contribution of volume

scattering versus surface scattering. An increase in the magnitude of B1 indicates

a greater contribution from surface scattering. Based on this premise, some general

conclusions are attained from the B1 images.

For ERS, |B1| ≈ 0.3 dB/deg in the upper percolation zone which is nearly

double that observed across the rest of the ice sheet, suggesting that in the upper

percolation zone the relative contribution from surface scattering is much larger than

elsewhere. This is attributed to the iced firn forming on the surface after a melt event

[30] contributing to increased surface scattering. The key difference between the upper

and lower percolation zone is that in the lower percolation zone the longer melt results

in the formation of subsurface ice structures that contribute to the increased volume-

like scattering. Similarly, for NSCAT the largest B1 magnitude is observed in the dry

snow zone indicating increased relative contribution from surface scattering in this

area.

A key difference between the NSCAT and ERS estimates of B1 is observed

in the dry snow zone. The smaller magnitude of B1 for NSCAT suggests that the

relative contribution from volume scattering is much more significant in this region

at Ku-band. This difference between C-band and Ku-band is attributed to volume

scattering in the dry snow zone, primarily originating from the individual snow grains.

The grains are electrically larger at Ku-band, corresponding to larger individual radar

cross-sections. This is consistent with the larger A values observed for Ku-band in

the dry snow zone. The ERS and NSCAT B1 are similar in the lower percolation

zone and wet snow zone where the volume-like scattering is attributed to subsurface
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Figure 4.3: Images of B1 from NSCAT and ERS estimated using 6 months of data
centered at January 1, 1997.

ice structures that are electrically large at both C-band and Ku-band. Variations of

B1 within the dry snow zone are attributed to the variation in the accumulation rate

where more negative B1 values indicate regions of higher accumulation [18].

Figure 4.4 shows the variation of B2 across the ice sheet. For my data set,

which includes the incidence angle range from 25 to 45 degrees, B2 is an indicator of

the relative contribution of surface scattering at low incidence angles.

For ERS, the B2 values are the most positive in the dry snow zone and

upper percolation zone indicating that the relative contribution of surface scattering

at low incidence angles is largest in these areas. For NSCAT, the most positive B2

values are observed in the upper percolation zone. The large B2 values in the upper

percolation zone are attributed to the large relative contribution of surface scattering

to the overall backscatter in this region. In the dry snow zone, the difference in B2

between the two frequencies is attributed to surface scattering contributing relatively
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Figure 4.4: Images of B2 (second order incidence angle dependence) from NSCAT
and ERS estimated using 6 months of data centered at January 1, 1997.

more to the overall backscatter for ERS than for NSCAT. This reasoning is consistent

with the observations from the B1 images.

The modeling of incidence angle dependence is critical to the model. With-

out incidence angle dependence in the model, the average RMS modeling error is

χ̄ = 1.26 dB for ERS and χ̄ = 0.957 dB for NSCAT. Including linear incidence angle

dependence reduces the modeling error to χ̄ = 0.393 dB for ERS and χ̄ = 0.461 dB

for NSCAT. When the second order term is included so the incidence angle depen-

dence is quadratic, the modeling error is further reduced to χ̄ = 0.375 dB for ERS

and χ̄ = 0.458 dB for NSCAT.

4.2.3 Azimuth angle dependence

The signature of σ◦ with azimuth angle provides valuable information re-

lating to the surface profile. In the previous chapter a simple physical model is used
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to relate azimuth dependence of σ◦ to aeolian-formed surface features such as sas-

trugi2. The physical model indicates that azimuth modulation of σ◦ over Greenland

is related to katabatic wind flow. Using a physical model provides valuable insights

into the relationship between surface features and backscatter; however, inversion

of the model requires second-order iterative non-linear regression. To enable faster,

more robust model inversion, in this chapter an empirical linear descriptive model is

adopted which provides accuracy similar to the physical model. This empirical model

facilitates the data normalization with respect to azimuth angle which is essential for

accurate inter-measurement comparisons.

This empirical model for the variation of σ◦ with azimuth angle consists of

the second order Fourier Series

q(φ) = M1 cos(φ − φ1) + M2 cos(2φ − φ2) (4.4)

where M1 and M2 are the magnitudes of the first and second order azimuth modula-

tion respectively, and φ1 and φ2 are the orientations. This simple empirical model is

chosen because it minimizes the model complexity and accurately exhibits the prop-

erties of the data. This model is also appropriate for the scale: it requires a minimal

amount of knowledge of the geophysical properties of the surface which may vary

widely across the scatterometer footprint and within the penetration depth of the

radar. Additionally, this is a simple diagnostic model used to identify the sensitivity

of σ◦ to azimuth variation.

This empirical azimuth dependence model is similar to models used pre-

viously for the azimuth signature of σ◦ over Antarctica, which has an environment

similar to Greenland. The models previously proposed for the azimuth signature

over Antarctica each include one or more terms of a Fourier Series. Ledroit et al.

[22] use a bi-sinusoid based on a theoretical model of ocean backscatter to model

azimuth dependence of Seasat-A scatterometer measurements over Antarctica find-

ing azimuth dependencies as large as 5 dB at Ku-band. Similarly, Young et al. [23]

2Erosional or depositional wind formed surface features aligned such that the crest is parallel to
the wind direction [34].
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use a bi-sinusoid to model ERS variations over Antarctica finding azimuth modula-

tions of similar magnitude (5.5 dB peak-to-peak maximum) for C-band. Long and

Drinkwater [24] added a first order sinusoid for their analysis and linear variation

in the magnitude of the modulation with incidence angle. The net finding of these

studies is that azimuth modulation over Antarctica is primarily second order (180◦

symmetry), and its orientation is related to the prevalent surface wind direction.

Because the characteristics of σ◦ azimuth dependence over Greenland have

not previously been investigated in depth, I devote considerable effort to this topic.

First, the azimuth dependency of the data relative to the azimuth variation in the

model is investigated. Next, the relationship between azimuth dependence and wind

flow is discussed, showing estimated wind flow maps based on the σ◦ signature of

the surface for both ERS and NSCAT. Subsequently, 9 years of ERS data are used

for analysis of the long term variability in the azimuth signature of σ◦. Finally, the

variation in the azimuth signature with incidence angle is investigated and found to

be relatively insignificant given the inherent variance of the data.

To illustrate the fit of the second-order Fourier Series to ERS and NSCAT

data, I use measurements from the NASA-U and Tunu-N sites discussed in Section 4.1.

The model fit to the data is shown in Fig. 4.5. The plots show the model estimate

of the azimuth modulation, q(φ) (see Eq. 4.4), versus the raw data with the DC bias

and all dependencies besides azimuth removed, i.e.

qi = σ◦
i − A − B(θi − θref) − s1(ri · g).

As observed in Fig. 4.5, a second-order fit is required to adequately describe the

azimuth dependence.

Images of the model parameters related to azimuth dependence are shown

in Fig. 4.6. The M1 and M2 images show estimates of the magnitude of the azimuth

anisotropy of the σ◦ measurements. Azimuth dependence is greater for ERS than for

NSCAT. For both instruments, the dependence is primarily second-order, indicative

of 180◦ symmetry in the microwave properties of the firn. Although smaller, the

magnitude of the first order dependence is non-negligible. The azimuth dependence
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Figure 4.5: Azimuth dependency observed in the data and the model at (a) Tunu-N
and (b) NASA-U. Normalized raw data measurements (qi) are shown as “+” marks
and the line indicates the model estimate (q(φi)) of the azimuth dependence. The
dominant wind direction during 1996 based on automatic weather station data from
the Greenland Climate Network [39] is indicated by a vertical dotted line on each plot.
The wind direction coincides with a local minimum of the azimuth modulation which
supports the theoretical correlation between wind direction and azimuth modulation.
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is largest in the lower portions of the dry snow zone and the transition region from

the dry snow to percolation zone. The largest azimuth dependence is found in the

northeast dry snow zone where the accumulation rate is relatively low [42]. Moving

south from the northeast dry snow zone, a decrease in the magnitude of the azimuth

dependence is observed. The location of this decrease corresponds to the windward

side of a ridge northeast of the summit. The reduction in the azimuth modulation

in this area is attributed to a decrease in the katabatic wind flow due to the wind

flowing cross- or up-slope rather than down-slope [44]. There is a general decrease

in the azimuth modulation moving from the dry snow zone to the percolation zone,

especially with ERS. This is attributed to the scattering from subsurface ice structures

which dominates the backscatter in this region [43] and is wind independent.

As discussed in the previous chapter and by Long and Drinkwater [24],

wind-formed erosional snow features known as sastrugi are a dominant factor driving

azimuth modulation. Sastrugi crests are parallel to the wind direction [34] resulting

in local minima in the azimuth modulation in the up/down wind directions and

a local maximum in the cross-wind directions. The observation model presented

in this chapter gives results consistent with this theory. At NASA-U and Tunu-N

the minimum of the ERS and NSCAT backscatter with azimuth angle matches the

measured dominant wind direction as illustrated in Fig. 4.5.

Streamlines in the azimuth direction of the backscatter minimum for ERS

and NSCAT are shown in Fig. 4.7. The streamlines are imposed over M2 images from

the corresponding sensor. The streamlines represent estimates of the wind flow and

are highly correlated with modeled katabatic wind fields [33]. A strong feature in

the streamline flow is the divergent region progressing northwest from the summit to

the Hayes Peninsula. Differences observed between ERS and NSCAT wind estimates

are attributed to Ku-band being sensitive to smaller roughness scales and also having

smaller penetration depths than C-band.

The azimuth dependence is deemed an important part of the model based

on its contribution to the overall model accuracy. Without modeling azimuth mod-

ulation, the model yields χ̄ = 0.591 dB for ERS and χ̄ = 0.550 dB for NSCAT.
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Figure 4.7: Streamlines of second order azimuth modulation minimums for ERS and
NSCAT. The streamlines are imposed over M2 images from the respective sensors.
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Inclusion of only first order modulation reduces the error to χ̄ = 0.504 dB for ERS

and χ̄ = 0.511 dB for NSCAT. Including only second order dependence results in

smaller errors: χ̄ = 0.423 dB for ERS and χ̄ = 0.491 dB for NSCAT. When the

model includes both first and second order dependence the average RMS modeling

error is reduced to χ̄ = 0.375 dB for ERS and χ̄ = 0.458 dB for NSCAT.

Long-term stability of azimuth modulation

A question that arises in analyzing the azimuth dependence of σ◦ is how

it varies with time. Over the ocean, the azimuth signature of σ◦ responds almost

immediately to changes in wind direction and speed. Over Greenland a much slower

change in azimuth dependence is expected because the changes in the surface profile

with wind change are not as immediate as those over the ocean. Also, the backscatter

is a composite of scattering from multiple layers which effectively makes the azimuth

signature dependent upon the wind flow over an extended period of time. The length

of time represented depends on the penetration depth, layer thickness and relative

magnitude of the backscatter from the individual layers.

To investigate the rate of change of the azimuth signature I use parameter

estimates from 9 years of ERS data with the parameters estimated at 15 day intervals

using 30 days of data. The first and second order azimuth modulation are viewed as

a vectors where M1 and M2 are the vector magnitudes and φ1 and φ2 are the vector

orientations. The temporal variability in the σ◦ azimuth signature is evaluated by

observing how these vectors change over time. Examples for the NASA-U and Tunu-

N sites are shown in Fig. 4.8. Each point on the scatter-plots indicates a vector

endpoint. The vector endpoints are well clustered over individual years indicating that

the azimuth modulation is relatively stable annually. The few outliers are attributed

to ill-conditioned estimations where the sampling of one or more of the basis elements

is insufficient over the given time interval.

Some changes in the azimuth modulation are observed from year to year.

The largest change is in M2 at NASA-U between 1993 and 1994. The orientation

of M2 shifts ∼ 40◦. From 1994 to 1996 the orientation appears to slowly move
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Figure 4.8: Scatter plots of the azimuth modulation parameters. Each symbol
represents the end point of a vector representation of the magnitude and orientation
of the azimuth modulation.

backward ∼ 20◦ and the magnitude decreases by ∼ 0.3 dB. This annual change in

azimuth modulation appears to be localized to small areas and is discussed further

in Section 4.3.1.

Further investigations across the ice sheet give similar results. Azimuth

modulation parameters are consistently well clustered, falling in the same general

direction over the nine year period. Two reasons are suggested for the observed long-

term stability. First, since the backscatter is a response from multiple buried layers,

it represents a long-term average of the annual formation of the surface structure

continually buried by additional accumulation. Second, the direction of the average
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wind-flow is relatively steady. Because of its stability over time, the azimuth modu-

lation parameters are useful in monitoring long-term inter-annual changes that occur

in the average wind flow pattern.

Variation in azimuth dependence with incidence angle

Another question arising in the analysis of the azimuth signature of σ◦ is

how this signature varies with incidence angle. Ledroit et al. [22] state that large

scale roughness corresponds with azimuth modulation at low incidence angles and

small-scale roughness corresponds to azimuth modulation at high incidence angles.

Thus, the variation of azimuth modulation with incidence angle is an indication of

the relative roughness of the surface features driving the modulation. The model

proposed by Long and Drinkwater [24] for Antarctica assumes that M1 and M2 vary

linearly with incidence angle, i.e.

Mi = ci + di(θ − 40)

where ci and di are constants.

The dependence of azimuth modulation on incidence angle is investigated

by plotting the residual errors as defined in Eq. (4.2) versus the basis of the di pa-

rameters, b1 = (θ − 40) cos(φ − φ1) and b2(θ − 40) cos(2φ − φ2) (see Fig. 4.9). Any

dependency of M1 and M2 on incidence angle is expected to appear in the plots. The

observed dependence is small, approximately ±0.2 dB, which is significantly smaller

than the composite modeling error and noise. This suggests that in the 25◦ to 45◦

incidence angle range the dependence of azimuth modulation on incidence angle is

relatively insignificant in Greenland. The calculation of the RMS residual errors con-

firms this, showing negligible improvement when the azimuth modulation magnitude

is modeled as a linear function of incidence angle.

4.2.4 Spatial gradient

Inclusion of the spatial gradient in a backscatter model is new. Prior

to inclusion of the spatial gradient into the model, I found the largest modeling
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Figure 4.9: Plots indicating the incidence angle dependence of the azimuth mod-
ulation magnitude at the NASA-U site. The line in each plot shows a linear fit to
the data. (a) ERS and NSCAT residual errors versus (θ − 40) cos(φ − φ1), which is
a basis for incidence angle dependence of the first order azimuth modulation. (b)
ERS and NSCAT residual errors versus (θ − 40) cos(2φ − φ2), which is a basis for
incidence angle dependence of the second order azimuth modulation. In all cases, the
dependence of the azimuth modulation magnitude on incidence angle is small.
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error to be in the the percolation zone, the zone with the largest spatial gradient in

backscatter. As discussed in Section 4.1, the data set for each study location includes

σ◦ measurements that have centroids within a 25 km radius of the study site. The 50

km resolution backscatter may vary significantly within this radius producing what

I term a co-location bias in the measurements. In these regions, the co-location bias

is significantly reduced by incorporating the spatial gradient into the model. I model

the spatial gradient of this data set using

h(r) = s1(r · ĝ)

where s1 is the magnitude of the gradient, ĝ is a unit vector in the direction of

the backscatter gradient, and r is a vector from the center of the study site to the

measurement centroid. Estimating the spatial gradient simultaneously with the other

model parameters reduces parameter estimation error caused by non-uniform spatial

sampling. Also, by including the spatial gradient in the model, the effects of the

co-location bias on the modeling error are reduced, increasing the effectiveness of

using the modeling error to determine the applicability of the observation model in

characterizing the variability of σ◦.

Figure 4.10 shows the dependence of modeling error on r for ERS and

NSCAT data at the NASA-U site for the case where only azimuth and incidence angle

dependence are included in the model. The co-location bias is clearly evident in the

modeling error. The plots indicate that the co-location bias contributes significantly

to the variability of the data set with a bias of ∼ 2.4 dB for ERS and ∼ 1.1 dB for

NSCAT at 25 km from the location center.

The co-location bias has at least two negative effects on σ◦ analysis in

these regions. First, the model parameter estimation may be corrupted based on the

spatial sampling of the data set due to unmodeled co-location bias. For example, an

estimate of B is corrupted if the co-location bias of low incidence angle measurements

is negative and the co-location bias of high incidence angle measurements is positive

due to the measurement locations. Second, when the co-location bias is ignored the

modeling error is biased high due to the spatial spread of the measurement centroids
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and the spatial variability in the backscatter. This limits use of modeling error as a

tool to evaluate incidence and azimuth angle dependent models.

Images of the magnitude of the spatial gradient (s1) with streamlines show-

ing the gradient orientation ( 6 ĝ) are shown in Fig. 4.11. The magnitude of the spa-

tial gradient is largest in the upper percolation zone due to the extreme change in

backscatter over this region. In this region, the backscatter varies from some of the

lowest σ◦ values observed over Greenland (near the dry snow zone boundary) to the

highest Greenland σ◦ measurements which occur in the central percolation zone.

Key differences are observed between the σ◦ spatial gradient at C-band

and Ku-band. First, the maximum s1 values, which are located in the upper per-

colation zone, are smaller at Ku-band than C-band. Second, the orientation of the

gradient shows some frequency differences. An area of note is in the northeast dry

snow zone where at C-band the gradient is nearly east-west while at Ku-band the

gradient is nearer to north-south. One explanation of this phenomenon originates

from the difference in the penetration depth between the two sensors. The east west

gradient observed in ERS is attributed to the transition from the dry snow zone to the

percolation zone where subsurface ice structures contribute to increased backscatter.

However, if this area has not melted significantly over the last few years, the accu-

mulated snow further buries these ice structures and iced firn layers making them

less visible at Ku-band than C-band due to the difference in penetration depths. The

gradient for NSCAT is smaller in this region and dominated by properties other than

the transition between snow zones such as accumulation rate. A second area of dif-

ference in 6 ĝ with frequency is the southwest percolation zone. With ERS a single

peak is observed in s1 based on a single discontinuity observed in 6 ĝ in this region.

However, for NSCAT there appears to be two separate peaks. This is attributed in

part to the higher spatial resolution intrinsic in the NSCAT measurements.

The contribution of the spatial gradient to the overall accuracy of the

model is significant. When the spatial gradient is ignored, the RMS modeling error

is χ̄ = 0.737 dB for ERS and χ̄ = 0.658 dB for NSCAT. Including the the spatial
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Figure 4.11: Images showing the spatial gradient magnitude (s1) in dB/km and
streamlines showing the orientation of the spatial gradient.

gradient reduces the modeling error by 30% to 50% with χ̄ = 0.375 dB for ERS and

χ̄ = 0.458 dB for NSCAT.

4.2.5 Temporal dependence

Because I am using data over six months, some migration in the mean

backscatter is expected during this period. I model this dependence, p(t − t0) from

Eq. (4.1), as a linear function of time over the six month interval

p(t − t0) = T (t − t0).

The images of T for ERS and NSCAT are shown in Fig. 4.12. Two key features are

found in these images. First, there is a linear decrease of approximately 1 dB/year

over regions of the upper percolation zone. This is attributed to accumulation over a

region in the upper percolation zone which experienced melt during the last summer
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Figure 4.12: Images of T (dB/year) for the 6 months centered around January 1,
1997.

[20]. The second key feature is ∼ 1 dB/year estimated increase in σ◦ throughout the

wet snow zone as observed by ERS. This feature aids in delineating the wet snow

zone from the percolation zone, a division weak in the other parameter images.

The improvement in the model accuracy gained by including temporal

dependence is small but non-negligible. Without temporal dependence, the modeling

error is χ̄ = 0.401 dB for ERS and χ̄ = 0.470 dB for NSCAT. When the linear

temporal dependence is included the RMS modeling error reduces to χ̄ = 0.375 dB

for ERS and χ̄ = 0.458 dB for NSCAT.

4.3 Applications

The descriptive model presented in this article is applicable for studying

both long- and short-term changes over the ice sheet. I present examples of each

using ERS data. First, inter-annual changes are shown which indicate regions of
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significant variation over the 9 year ERS period. Then, the model is used for study of

intra-annual changes. Compared with previous methods, using the model provides a

lower variance signal, increasing the ability to detect small-scale short-term variation

as well as increased temporal resolution.

4.3.1 Inter-annual change

Annual changes in individual parameters indicate important geophysical

changes occurring across the ice sheet. Figure 4.13 shows images of the average of the

individual parameters for the 9 year period for ERS. Figures 4.14-4.19 show the yearly

anomalies for the individual parameters. The parameter estimates for the individual

years are from 6 months of data during mid-winter centered around January 1 of the

indicated year.

In the A anomaly images shown in Fig. 4.14, the changes observed near the

dry snow/percolation transition zone indicate the reach of the melt each summer [20,

45]. The annual difference images indicate below-average melt during the summers

of 1993, 1994, and 1996. In 1995 the melt increases in the west and south. During

1997, the southern dry snow zone is a high melt region. In 1998, the northeast, and

in 1999, the south are focus points for increased melt. During 2000, increased melt

is observed in an area in the west dry snow zone. The net result is an increase in

A from the northwest corner of the dry snow zone, down along the west edge to the

southern end, and back up the east side. This is consistent with Wismann [14] and

Pack et al. [46].

The changes observed in the B yearly anomaly images in Fig. 4.15 are

also associated with the annual melt extent/intensity. In 1993, 1994, and 1996, the

B values in the central percolation zone are more negative than average. This is

indicative of a below-average intensity melt where a reduced volume of subsurface ice

structures form. The resulting reduction in volume-like scattering leads to increased

relative contribution from surface scattering from layers causing B to become more

negative. This effect is reversed in 1998 and 1999 indicating above average intensity

melting. A strong melt event contributes to the formation of subsurface ice structures,
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Figure 4.14: Images showing the anomalies in A over 9 years.
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increasing volume scattering which causes B to become more positive. In 2000 and

2001, B becomes more negative along the dry snow zone boundary, indicating melt

is occurring in areas not affected by melt in recent years. Here, surface scattering

increases due to layers of iced firn forming over the previously dry snow.

The M1 and M2 yearly anomaly images (see Figs. 4.16 and 4.17) show

azimuth modulation variation across the ice sheet. Significant annual changes are

observed in small regions of the upper percolation zone as discussed in Section 5.

These are the same regions where large changes in A are attributed to increased

melt. The net result is a decrease in the azimuth modulation along the upper western

percolation zone. Decreases occur in step increments coinciding with increased melt

as observed in the A images. One exception where a below-average melt appears to

contribute to a significant decrease in the azimuth modulation is observed during the

summer of 1993. Both M2 and A decrease along the western transition zone. The

only significant increase in azimuth modulation occurs in M2 during the summer of

1994 in the eastern transition zone. This increase is short-lived, almost completely

vanishing after the next summer.

The s1 yearly anomaly images shown in Fig. 4.18 are key indicators of the

location of the upper percolation zone and the spatial rate of change in the snow

properties progressing outward from the dry snow zone. The gradient is large in the

upper portion of the percolation zone and decreases downslope as the snow becomes

spatially uniform in the number of subsurface ice structures. During 1993, 1994, and

1995, s1 is lower than average near the dry snow zone boundary indicating that the

true boundary between the dry snow zone and percolation zone is further downslope

than average. The opposite is observed in the years 1998 and beyond. During these

years, s1 is larger than average indicating an upslope movement of the percolation

zone/dry snow zone boundary.

The T anomaly images shown in Fig. 4.19 are an indicators of accumula-

tion rather than melt intensity/extent. In the percolation zone, the more negative

values of T correspond to higher rates of accumulation [20]. Each T anomaly image

is indicative of the accumulation during the previous year. The T images indicate
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Figure 4.15: Images showing the anomalies in B1 over 9 years.
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Figure 4.16: Images showing the anomalies in M1 over 9 years.
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Figure 4.17: Images showing the anomalies in M2 over 9 years.
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Figure 4.18: Images showing the anomalies in s1 over 9 years.
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that 1993-1994, 1996-1997, 1999-2000, and 2000-2001 were winters with above aver-

age accumulation and 1994-1995, 1997-1998, and 1998-1999 were winters with lower

than average accumulation. These results are consistent with the accumulation esti-

mates of McConnell et al. [47]. The reductions in T observed along the western dry

snow boundary in the 1997 and 2000 images are attributed to an above-average melt

extent the previous summer that results in the linear decrease in σ◦ associated with

accumulation observed in these new melt areas.

4.3.2 Intra-annual variations

In addition to observing inter-annual changes across the ice sheet, obser-

vations of intra-annual trends are critical to understanding the relationship between

σ◦ and geophysical properties of the surface. My model is applicable for improved

analysis of surface variation on short time scales. Because complete characteriza-

tion of the microwave signature at fine time scales requires more information than

is presently available or practical, the application of this model to short time-scale

analysis requires some basic assumptions about the microwave signature.

The primary assumption of my method is that for the short time-scale

considered, the variability of σ◦ with the observation geometry is relatively constant,

and changes in the surface and subsurface primarily affect the average backscatter,

not the variation with observation geometry. Assuming a constant geometry signature

(CGS) is supported by the previous section. Over most of the ice sheet the parameters

describing the dependence of σ◦ on the observation geometry are relatively constant

over time. The primary location where CGS is questionable is the upper percolation

zone where significant annual changes are observed in the model parameters. These

changes are attributed to summer melt, making the CGS assumption applicable only

during periods between summer melt events.

To develop my methodology for intra-annual analysis using the CGS as-

sumption, I begin with the full model given in Eq. (4.1) where the temporal dependent

term p(t) is subsumed into A(t), i.e.

σ◦ = A(t) + f(θ − θref) + g(φ) + h(r).
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Figure 4.19: Images showing the anomalies in T over 9 years.
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With the CGS assumption, only A(t) in this model varies with time. Thus, A(t)

contains all information about the temporal variation of the surface. To estimate

A(t), I first estimate the geometry-dependent model parameters using least-square

estimation based on data over an extended time period. Using the estimated geometry

signature, I obtain estimates of A(t) at each measurement time ti by differencing the

measurement (σ◦
i ) and the observation geometry dependent portion of the model, i.e.

A(ti) = σ◦
i − f(θi − θref) − g(φi) − h(ri).

The result is an estimate of the variation of the average backscatter over time.

Variations in the average backscatter (A(t)) have been used to estimate

accumulation [18, 20], monitor melt and ablation [6, 14], and study long term climate

change [10, 48]. Using my model with the CGS assumption enables lower variance

estimates of A(t) and increased temporal resolution compared with the methods used

in these studies. Without the CGS assumption, the dependence on observation ge-

ometry must be re-estimated with each estimate of the average backscatter. There

are several drawbacks to continually re-estimating the dependence of σ◦ on the obser-

vation geometry. First, to enable higher temporal resolution, a simpler model must

be used. This results in residuals from unmodeled dependencies increasing the vari-

ance in the observation signal. Second, to increase temporal resolution, a relatively

small number of data samples are used. This may contribute to poor estimates of the

model parameters due to limited sampling in incidence angle and/or other modeled

dependencies. Third, even with the simplified model, multiple days of data are typ-

ically required to obtain estimates of the average backscatter, significantly limiting

the achievable temporal resolution.

Assuming CGS provides significant improvement in each of these areas.

Errors in the signal due to observation geometry sampling are mitigated using my

more complete descriptive model. Using data from an extended time period increases

the number of samples, making the estimation of the dependence on observation

geometry much more robust. The best temporal resolution is equal to the temporal
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sampling of the sensor because each σ◦ measurement is associated with an estimate

A(ti).

To evaluate the performance using CGS, I examine two examples in which

the results using CGS are compared with results assuming variable geometry signature

(VGS). For VGS I use the method from the studies mentioned above. The simplified

model for observation geometry dependence is

σ◦(θ) = A + B(θ − θref),

which includes incidence angle dependence only. A and B are estimated using linear

least-squares regression for three days of ERS data within a 25 km radius of the study

site. Estimates are made at 3 day intervals.

For the CGS method, the full model parameters are estimated using ERS

data from the six month interval including October 1997 through March 1998. The

A(ti) values are averaged over three days so that the two methods are consistent in

time sampling. The averaging also reduces the variance of the signal at the cost of

lowering the temporal resolution.

Both methods are used to estimate the temporal variation in the backscat-

ter at two locations. The estimates are shown in Figs. 4.21 and 4.22. For both cases,

the variance of the CGS estimates of A is much smaller than the variance of the VGS

A estimates. At location 1, which is in the dry snow zone, there is a crest in the CGS

A estimates around the beginning of 1998 which is obscured in the VGS A estimates

due to noise. Location 1 is also in a region where the azimuth dependence of σ◦ is

relatively large. The bottom plot for location 1 shows the signal due only to changes

in azimuth sampling, which has been removed from CGS A estimates in the center

plot by including azimuth dependence in the full model.

Location 2 is in the upper percolation zone. During the summer of 1997 a

short melt event occurred that is observed as an abrupt drop in A followed by a small

increase in the average value of A. This melt signal is difficult to detect from the

VGS A estimates due to the high variance. Note that although the CGS geometry

signature estimates are from the 6 months of data centered around Jan. 1, 1998,
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Figure 4.20: ERS A image with study points indicated.

two years of A estimates are shown. Prior to the melt event during the summer of

1997, there is an increased variance in the CGS A estimates. This is attributed to

fundamental changes in the geometry signature occurring with the melt. The CGS

geometry signature model, which was estimated from data after this melt event, does

not accurately model the geometry dependence prior to the melt. Notwithstanding

this modeling error, the variance of the CGS A estimates is consistently smaller than

that of the VGS A estimates, even prior to the melt.

At location 2, the spatial gradient is large. The bottom plot for location

2 shows an estimate of the variation in the signal due only to the co-location bias

from the spatial sampling of the measurement locations. This signal has been removed

from CGS A estimates by including the spatial gradient in the model of the microwave

signature of the snow.

These examples show some of the advantages of using the CGS assumptions

when applicable. A key improvement is the reduced variance in the signal and the
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Figure 4.21: Comparison of CGS A estimates and VGS A estimates at Location 1
(78.6 N, 35.5 W) which is in an area significantly affected by azimuth modulation.
The bottom plot for shows the estimated bias over time due only to azimuth sampling.

88



-13

-12

-11

-10

-9

-8

A
-V

G
S

-12

-11

-10

-9

A
-C

G
S

-0.6

0.0

 0.6

 1.2

 1997  1997.5  1998  1998.5  1999

co
-l

oc
 b

ia
s

year

Figure 4.22: Comparison of CGS A estimates and VGS A estimates at Location 2
(69.1 N, 35.7 W). A small melt event is observed as a sharp drop in A-CGS which is
obscured by the noise in the VGS A estimates. Location 2 is in an area significantly
affected by co-location bias. The bottom plot for location 2 shows the estimated bias
over time due only to the spatial sampling of the measurements.
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removal of unrealistic spikes in the data. The reduced variance is attributed in part to

the inclusion of the azimuth and spatial gradient dependencies in the model. Higher

temporal resolution may be obtained by averaging the CGS A(ti) estimates over

shorter time intervals at the cost of increased noise.

4.4 Summary

The σ◦ of the Greenland ice sheet may be modeled at a given point in time

over a small region as a function of incidence angle, azimuth angle, measurement

location, and measurement time. The contribution of each modeled dependency to

the overall accuracy of the model is largest for incidence angle, which, in general, is

followed by measurement location, then azimuth dependence, and finally, measure-

ment time. The measurement location dependence is most significant in the upper

percolation facies. Azimuth dependence is most significant in the lower dry snow

zone, tapering off in the upper percolation zone. The azimuth dependence is primar-

ily second order and exhibits little dependence on incidence angle. The orientation

of the azimuth dependence is correlated with wind patterns across the ice sheet.

I have given examples of two applications for the descriptive model devel-

oped herein. First, changes in the model parameters are valuable for tracking inter-

annual changes on the ice sheet. Observed trends include increases and decreases

in the melt intensity and extent, as well as inter-annual variations in accumulation.

Second, the model is applicable for analysis of short-term variation in the average

backscatter. Combined with the constant geometry signature (CGS) assumption the

model enables the estimation of average backscatter with smaller variance and/or

increased temporal resolution compared with methods employed in previous studies.

The model also has other applications. For SAR, a knowledge of the az-

imuth modulation properties of the Greenland ice sheet is critical for accurate studies.

Without proper adjustment for azimuth dependence, effects of a change in azimuth

angle in an inter-comparison of SAR σ◦ may be mis-interpreted as physical change.

Additionally, uncompensated azimuth dependence may result in image corruption for
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wide angle SAR. Comparisons between in-situ and SAR measurements could also be

effected by azimuth biases.
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Chapter 5

Melt Detection

The Greenland ice sheet is an important factor in global sea level change,

the earth’s radiation budget, and other areas of global environmental concern. Mea-

suring the melt occurring each year on the ice sheet is important in understanding the

impact of Greenland in these areas. Approximately 8% of the world’s ice is located

on the Greenland ice sheet with melting from the ice sheet estimated to contribute

7% to the current rise in sea level [3]. In relation to the Earth’s radiation budget,

rising temperatures cause increased melt extent. Even small temperature changes

can affect large areas due to the shallow slope of the ice sheet. Wet snow absorbs

approximately 45% more incoming solar radiation than dry snow [5]. This increase

in absorbed radiation with increasing temperatures represents unstable positive feed-

back in our climate.

Microwave measurements of brightness temperature (Tb) and the normal-

ized radar cross-section (σ◦) are excellent tools for estimating melt duration and

extent. The introduction of even small amounts of liquid water into the snow pack

dramatically impacts the electrical properties of the snow at microwave frequencies.

This results in large changes in the microwave measurements of the surface, enabling

melt detection. Current satellites measuring σ◦ and Tb provide coverage of the com-

plete ice sheet at least twice daily.

Microwave measurements have been successfully used in multiple studies

to detect melt duration and extent over Greenland. A single channel threshold has

been used with Tb by Mote et al. [11], Mote and Anderson [12] and with σ◦ by

Wismann [14] and Ashcraft and Long [49]. Abdalati and Steffen [2, 4, 5, 13] used a
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frequency/polarization combination of Tb to detect melt, and Nghiem et al. [15] used

the diurnal variability in σ◦ to detect melt.

Although various methods have been used to detect Greenland melt, there

have been no large-scale comparison between these methods. My object is to provide

an inter-comparison between existing methods as well as to introduce a new method

for melt detection. This is accomplished by comparing the melt duration and extent

obtained from various melt detection method and sensor combinations. The differ-

ences and similarities are discussed in light of the theoretical differences between the

various methods and the differences in sensitivity to melt between sensors.

This chapter is organized as follows: Section 5.1 provides a short review

of sensors and data sets used for in this chapter for melt detection. This section also

includes a short discussion on the data processing method used to obtain estimates of

Tb and σ◦ on a regularly spaced grid at regular intervals in time. Section 5.2 introduces

a simple model for a melt event and the effects of melt on Tb and σ◦. In Section 5.3, this

model is employed to formulate methods to detect melt using Tb and σ◦. Selected melt

detection methods from other papers are also briefly introduced. Section 5.4 presents

a comparison between various melt detection methods accompanied by a discussion

of the observed and theoretical differences and similarities between the various melt

detection methods. Section 5.5 contains a summary and conclusions.

5.1 Background

The Tb data used in this study is from SSM/I and includes measurements

from 19.35 GHz vertical and horizontal polarized channels (19V and 19H) and the

37.0 GHz vertical polarization (37V) channel from the SSM/I instrument aboard the

F-14 satellite. The σ◦ measurements are from QSCAT and ERS and only vertical

polarization data are used.

In order to compare the measurements from the different sensors, the raw

Tb and σ◦ data are processed to obtain estimates regularly sampled in space and time

using the non-parametric fit described in Eq. 2.5. For the weighting, the truncated
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Figure 5.1: Density (normalized histogram) of sampling times for the various sensors.
For melt detection, Tb and σ◦ are estimated at 18:00 which is close to a peak in the
density of both the QSCAT and SSM/I samples The peak in the ERS samples is a
few hours later in the evening, but is still relatively close to the estimation time.

Gaussian

w(τ, ti) =







e−
1
2
(ti−τ)2/σ2

t if |ti − τ | < ∆tmax,

0 if |ti − τ | ≥ ∆tmax

is used.

Each sensor samples Greenland at different times of day (see Fig. 5.1). To

mitigate the effects of the difference in sampling time on melt detection comparison,

we compare σ◦ and Tb estimates at 18:00 local time each day which is near a peak in

the time sampling distribution for each sensor. Because the peak sample time for ERS

(21:30 local time) is later in the evening past peak melt, it is expected that ERS will

detect less melt than the other sensors. For SSM/I and QSCAT the non-parametric

fit parameters are σt = 6 hours and ∆tmax = 2 days. For ERS the parameters are

σt = 24 hours and ∆tmax = 8 days. The relatively large values for ∆tmax allow for

interpolation over days with missed coverage.

SSM/I and QSCAT provide complete coverage of the ice sheet twice daily.

ERS requires 3 days for complete coverage because its swath is narrower. Although

ERS requires 3 days to completely cover the ice sheet, it covers approximately 80%

of the ice sheet daily making 1 day resolution possible over much of the ice sheet.
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5.2 Theory

The general concept of microwave detection of melt is the same for different

methods; however, the application of the theory varies. The theory related to melt

detection is presented by first providing an overview of the sensitivity of Tb and σ◦ to

melt and then addressing the the application of theory specific to each method.

5.2.1 Melt event model

Microwave measurements are very sensitive to the introduction of liquid

moisture into the snow-pack. The most significant change in the electro-magnetic

properties is a large increase in the imaginary part of the dielectric constant (ε′′). The

introduction of only 0.5% liquid moisture content can increase ε′′ by over an order of

magnitude [25]. This increases absorption and reduces the penetration depth. The

net result of melt is a large decrease in σ◦ and a large increase in Tb (see Fig. 5.2).

The progress of a snow-pack from a frozen state to one where melt is present

is a continuous process in which the dividing point between freezing and melting is not

well defined. The degree of melt is measured as the percent liquid moisture content

(mv) of the snow. In this work, a melt event is defined based on a mv threshold and

a minimum depth (d) of wet snow. The surface is classified as melting when mv in

the top layer of depth d of snow exceeds some threshold. A simple physical model is

employed to relate this definition of melt to a Tb and a σ◦ threshold for melt detection.

In this simple physical model of a melt event, it is assumed that at melt

onset a uniform layer of wet snow with depth d lies over an infinite half space of dry

snow or ice (see Fig. 5.3). A model for the brightness temperature at the radiating

from the air/snow boundary in terms of the brightness temperature at a point on the

wet/dry snow boundary (Tb(d)) is [26, pg. 216]

Tb(0) = Tb(d)e−τ(0,d) +
∫ d

0
[κa(z)Twet(z) + κs(z)Tsc(z)] e−τ(0,z) sec θ(z) dz (5.1)

where
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Figure 5.2: Images of QSCAT σ◦, ERS σ◦ normalized to 40◦ incidence angle, and
SSM/I 19.35 GHz vertical polarization Tb. Top: images of the winter mean using
data from December 1, 1999 to February 28, 2000. These winter mean images are
the estimates of σ◦

dry and T dry
b used in the implementation of α-based melt detection.

Bottom: images of σ◦ and Tb estimates on JD 213, 2000. This is a period of intense
melt.
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Figure 5.3: Simplified physical model of a melting surface. The composite Tb of
the surface includes the emission from the wet snow and the emission from the dry
snow attenuated by the wet snow layer. The composite backscatter is similarly a
contribution from the wet snow and an attenuated contribution from the subsurface
frozen snow.

κa - absorption loss coefficient,

κs - scattering loss coefficient,

κe - extinction coefficient (κa + κs),

Twet - wet snow physical temperature in Kelvin,

Tsc - scattered radiometric temperature,

τ(z1, z2) - optical length (
∫ z2
z1

κe(z) sec(θ(z)) dz), and

θ(z) - transmission angle at depth z.

Assuming the wet snow layer is uniform in all significant respects, Eq. (5.1) can be

rewritten

Tb(0) = Tb(d)e−κwet
a d sec θws +

κwet
a

κwet
e

(1 − e−κwet
e d sec θws)Twet

+
∫ d

0
κs(z)Tsc(z)e−τ(0,z) sec θ(z) dr′ (5.2)

where θws is the transmission angle through the wet snow. In wet snow absorption loss

dominates over scattering, so κwet
a � κwet

s and κwet
e ≈ κwet

a . Assuming the contribution

from multiple scattering (Tsc) is negligible, Eq. (5.2) becomes

Tb(0) = αT dry
b + (1 − α)Twet (5.3)
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where α = e−κad sec θws . Based on this model, Tb asymptotically approaches Twet with

increasing thickness of the wet snow layer.

In this brightness temperature model I ignore reflections at the air/wet

snow boundary and the wet/dry snow boundary. This is valid for SSM/I vertical

polarization because the measured emission is near the Brewster angle making the

effects of surface reflection minimal.

To estimate the effect of melt on σ◦, I model the volume backscatter from

the snow as

σ◦ =
∫ ∞

0
γ(z)e−2τ(0,z) sec θ(z) dz (5.4)

where γ(z) represents the backscatter from an incremental volume. By separating

the integral into the contribution from the wet snow and the contribution from the

dry snow, Eq. (5.4) can be rewritten as

σ◦ = α2σ◦
dry + (1 − α2)σ◦

wet (5.5)

where

σ◦
dry =

∫ ∞

d
γ(z)e−2τ(d,z) sec θ(z) dz,

σ◦
wet =

∫ ∞

d
γwete

−2κwet
e z sec θws dz

=
γwet

2κwet
e

,

and α is defined as in the Tb model. In this equation σ◦
dry represents the dry snow

backscatter without the overlying wet snow layer, and σ◦
wet represents the volume

backscatter from and infinite half-space of wet snow. Note that for backscatter, α is

squared due to the two-way attenuation through the wet snow layer. Just as with

the Tb model, surface reflections at the air/snow and wet snow/dry snow boundaries

are ignored, which is appropriate for vertical polarization. Surface scattering from

subsurface layer interfaces (which may be significant) is included in the bulk scattering

described by σ◦
dry.

To obtain κwet
a , the bulk relative dielectric constant (εr) of the wet snow

layer is estimated using the method presented in Ulaby et al. [38, pg. 2072]. The wet
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Table 5.1: Calculated wet snow electrical properties corresponding to the three sen-
sors. The air/snow power transmissivity (Υ) is shown for vertical polarization only
and is near unity indicating minimal surface scattering.

sensor ERS QSCAT SSM/I
frequency 5.3 GHz 13.4 GHz 19.35 GHz

incidence angle ∼ 40 56 53.1
εr 1.81 + i0.032 1.77 + i0.034 1.44 + i0.029

κa (Np/m) 2.63 7.14 9.74
Υ 0.994 0.999 1.000

snow is assumed to have a liquid moisture content mv=1.0% which matches the value

used by Mote and Anderson [12] and Abdalati and Steffen [2]. A density of ρ = 0.4

g/cm3 is assumed, which is consistent with observations of Greenland snow [30]. The

absorption coefficient is

κa = 2
2πf

c
={√εr}

where f is the frequency, c is the speed of light in a vacuum, and ={·} represents

the imaginary part. The power transmission coefficient (Υ) for vertical polarization

across the air/wet snow boundary is calculated using εr based on Fresnel reflection.

The values of εr, κa, and Υ for each of the sensors are listed in Table 5.1.

5.3 Melt Detection Methods

Results are compared for the various melt detection methods over Green-

land during the year 2000. A primary goal of this comparison is to inter-relate

the spatial and temporal consistency of the individual methods. Additionally, this

comparison serves as a validation for the individual melt detection approaches using

independent estimates of the daily melt extent. This validation is important because

in situ validation of large-scale melt detection is difficult due to the limited amount

of data available. This comparison includes six different approaches: Three are based

on Tb measurements from SSM/I, and the other three use σ◦ measurements from ERS

and QSCAT.
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In general, melt detection for each method is based on thresholding some

melt signal (q(t)) which varies with time. Let m(t) represent the melt detection with

m = 1 indicating melt and m = 0 indicating non-melt, i.e.

m(t) =







1 if q(t) ≥ q0

0 if q(t) < q0.

Each method is composed of two parts: the definition for q(t) and a constant threshold

q0.

5.3.1 α-based methods

The simplified melt event model introduced in Section 5.2.1, along with

Eqs. (5.3) and (5.5), is used as a basis for melt detection using QSCAT, ERS, and

SSM/I measurements. This is termed α-based melt detection because the threshold is

based on the attenuation in the wet snow layer, α. The details on the implementation

of α-based melt detection for the different sensors, including the definition for q and

the value of q0, are discussed below.

QSCAT

QSCAT measurements have been used in few studies detecting melt extent

and duration over Greenland. I initially used a method based on the mean and

standard deviation of σ◦ during the winter where a drop in σ◦ of eight winter standard

deviations below the winter mean indicates a melt [45]. Nghiem et al. [15] also

use QSCAT to detect melt over Greenland. Their method is based on the diurnal

variability and is discussed in more detail later.

In this section a method is presented for melt detection using QSCAT and

the simple melt model from the previous section. This is termed the Q-α method. A

similar method was employed by Wismann [14] for melt detection using ERS mea-

surements.

Recalling that σ◦
wet is relatively small (typically over 10 dB below σ◦

dry), the

contribution from the (1 − α2)σ◦
wet term in Eq. (5.5) is assumed negligible. In this
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case, melt is indicated by

σ◦ < α2σ◦
dry

which in dB is written

σ◦ < σ◦
dry + 2dB(α).

Formulated in terms of q and q0, the definitions are

q(t) = σ◦
dry − σ◦(t) (in dB)

with q0 = 2dB(α).

In this method, the signal q(t) represents the deviation in σ◦ from the

backscatter from a dry snow surface. Because σ◦ is relatively constant during the

non-melt period, σ◦
dry can be estimated as the average over the winter period when

no melt is expected to occur. In general, σ◦
dry is a function of the observation geom-

etry including the incidence angle (θ) and the azimuth angle (φ). Additionally, it is

dependent on the offset (r) of the measurement centroid from the estimation point of

the average σ◦. The method from Chapter 4 is used to estimate these dependencies

where

σ◦(φ, r) = A + M1 cos(φ − φ1) + M2 cos(2φ − φ2) + s(r · ĝ)

with the model parameters A, M1, φ1, M2, φ2, s, and ĝ obtained through linear

least-squares regression. Because of the narrow incidence angle sampling by QSCAT,

incidence angle dependence is ignored.

The model parameters are estimated using 3 months of data from Dec. 1,

1999 to Feb. 28, 2000. Variations from the winter average are estimated as

q(ti) = σ◦(φi, ri) − σ◦
i .

where i indicates the measurement index. The non-parametric estimation discussed

in Section 5.1 is used to estimate q at 18:00 local time each day. For the threshold

for Q-α melt detection I set q0 = 3 dB. This corresponds to a layer of wet snow with

3.8 cm depth and mv = 1.0%.
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ERS

Melt detection using ERS, termed E-α melt detection, is similar to the

Q-α method and the method used by Wismann [14] to estimate melt using ERS. The

differences between these methods are in the details of the data processing and the

threshold selection.

ERS has a broad sampling in incidence angle (θ), so θ dependence is in-

cluded in the σ◦ model such that

σ◦(θ, φ, r) = A + B1(θ − 40) + B2(θ − 40)2 + s(r · ĝ)

+M1 cos(φ − φ1) + M2 cos(2φ − φ2).

The model parameters are estimated using ERS data from December 1, 1999 to

February 28, 2000. Estimation and resampling of q is preformed using the same

procedure as in Q-α, with the only difference being the inclusion of the incidence angle

dependence and different non-parametric fit parameters as discussed in Section 5.1.

Since the frequency of ERS (5.3 GHz) is lower than that of QSCAT (13.4

GHz), the absorption by a layer of wet snow with the same depth is smaller. This

results in a smaller threshold (q0) for ERS than for QSCAT to give an equivalent

melt definition. For ERS, a threshold with an equivalent melt definition to QSCAT

is q0 = 1.0 dB. This small threshold poses the problem of false alarms due to variance

in the q estimates and other processes which effect the backscatter.

To avoid this false alarm problem and improve the consistency between

Q-α and E-α, an empirical method is used to select a threshold to match QSCAT

melt detection based on the maximum a posteriori (MAP) criteria. The MAP criteria

is

m̂(t) =







1 if p(q(t)|m = 1)p(m = 1) > p(q(t)|m = 0)p(m = 0)

0 otherwise
.

where m̂(t) is the E-α melt estimate, p(q|m) is the distribution of the E-α q given

the true surface melt state, and p(m) is the probability of melt or non-melt. The

probabilities are estimated using the results of Q-α melt detection and are shown in
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Figure 5.4: Normalized histogram of the ERS melt signal, q, for melt (p(q|m =
1)p(m = 1)) and non-melt (p(q|m = 0)p(m = 0)). The classification of melt or
non-melt is based on the results of Q-α melt detection. The intersection of the two
densities at 2.8 dB is the minimum error threshold for ERS melt detection based on
the MAP criteria.

Fig. 5.4. The MAP threshold is at the intersection of the two densities at q0 = 2.8

dB, which coincides with a theoretical wet layer depth of 10.8 cm.

The differences between the E-α method and the method of Wismann [14]

are primarily in the data processing with a small difference also in the threshold

value. The E-α method uses the long-term stability in the observation geometry de-

pendencies to enable increased temporal resolution and mitigate the effects of azimuth

dependence and co-location differences. This method results in increased temporal

resolution and reduced variance compared with the processing method used by Wis-

mann based on the results in Chapter 4. For further discussion about the two data

processing methods refer to Chapter 4. The threshold difference is small with q0 = 2.8

dB for E-α compared with q0 = 3.0 dB used by Wismann.

SSM/I

SSM/I Tb measurements have been used in various studies to detect melt

over Greenland. Two methods are used in the melt detection inter-comparison and

are discussed in detail later.

For α-based melt detection with SSM/I, I use the 19V channel. The 19.35

GHz frequency is chosen because it is the closest SSM/I frequency to that of QSCAT
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and ERS. Vertical polarization is chosen to minimize the impact of layer interfaces

as discussed in Section 5.2.

Based on Eq. (5.3), a melt is indicated by

Tb > αT dry
b + (1 − α)Twet

where the value of α is determined by the thickness of the wet snow layer. This

detection can be written in terms of q(t) and q0 as

q(t) =
Tb(t) − T dry

b

Twet − T dry
b

and q0 = 1 − α.

Melt detection requires an estimate of Twet and T dry
b . The wet snow-pack

is assumed to be approximately at melting temperature (Twet ≈ 273 K) which is

expected to be slightly high at melt onset. A precise estimate of T dry
b is difficult to

obtain. This is primarily due to the variability and uncertainty in the snow temper-

ature throughout the year. For the purpose of simplicity, in this application T dry
b is

estimated as the average Tb from December 1 to February 28 during the previous

winter at each location. This is expected to be reasonably close to T dry
b although

biased low.

Due to the uncertainties in the estimation of T dry
b I use an empirical method

to obtain an estimate of q0, which is similar to the method used for ERS. Figure 5.5

shows the histogram of SSM/I q values for melt and non-melt based on the results

from the Q-α melt detection. Based on the MAP criteria q0 = 0.46, the intersection

of the two histograms. This threshold is equivalent to a theoretical wet snow layer

depth of 4.7 cm.

5.3.2 Tb-M

Another method using the SSM/I 19V channel, termed the Tb-M method,

originates from Mote et al. [11]. Based on this method, a rise in Tb to over 31 K

above winter mean Tb indicates melt. Interpreting the winter mean Tb as an estimate

of T dry
b as in the previous method, a melt is indicated by

Tb > T dry
b + 31.
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Figure 5.5: Normalized histogram of the SSM/I melt signal q for melt and non-melt.
The classification as melt or non-melt is based on melt detection results from the Q-α
method. The intersection of the two densities at 0.46 represents the minimum error
threshold for SSM/I melt detection based on the MAP criteria.

The corresponding definitions for q(t) and q0 are

q(t) = Tb(t) − T dry
b

and q0 = 31 K. Just as in the previous method, T dry
b is estimated the mean Tb between

December 1, 1999 and February 28, 2000 at each location.

5.3.3 XPGR

The other Tb method for comparison uses the cross-gradient polarization

ratio (XPGR) from Abdalati and Steffen [2, 4, 5, 13]. This method employs the

differences between the SSM/I 19H and 37V channels to detect melt. For this method,

q(t) = XPGR =
T 19H

b (t) − T 37V
b (t)

T 19H
b (t) + T 37V

b (t)

and q0 = −0.0158 [2]. An equivalent criterion is if the observed ratio Tb(19H)/Tb(37V)

is greater than the constant value (1 + q0)/(1 − q0) the surface flagged as melting.

Based on the Rayleigh-Jeans approximation (Tb = eT ), the temperature cancels and

this criterion becomes a threshold on the ratio of the emissivity at the two frequencies

and polarizations. A significant advantage of this method is that a single threshold

is valid across the ice sheet.
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5.3.4 Q-DV

The final method for comparison is based on the diurnal variation in σ◦

observed by QSCAT [15]. This is termed the Q-DV method. The melt criteria for

Q-DV is that a diurnal change greater than 1.8 dB indicates melt. To determine the

diurnal variation, estimates of σ◦ at 6:00 and 18:00 local time for QSCAT are used.

In terms of q(t) and q0, this method is

q(t) = |σ◦
18:00(t) − σ◦

6:00(t)|

where t is constrained to be discrete at one day sampling and q0 = 1.8 dB. This

method is not used with ERS because of inadequate temporal resolution.

5.4 Method Comparison

These six methods are compared based on the detected melt for each day

during the year 2000. Metrics for this comparison include total melt (M), melt extent

(E), and daily melt extent (ξ). The method differences are illustrated using images

of the melt duration, melt extent, and temporal variation.

The total melt and the melt extent detected by each method are listed in

Table 5.2. The total melt is given by

M = a
365∑

t=1

N∑

i=1

mi(d)

where a is the area of a single pixel, t is the Julian Day, i is the pixel index, N

is the total number of pixels. The three α-based methods and the Tb-M method

result in similar estimates of M, approximately double that of the Q-DV and XPGR

methods. The two QSCAT methods result in the extremes in the total melt detection

with the Q-α method detecting the largest amount and the Q-DV method detecting

the smallest.

The melt extent,

E = a
N∑

i=1

max
t

mi(t),

is consistent between the methods with the exception of XPGR which detects just

over half of the melt area of the others and E-α which detects about 80% of the areal
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Table 5.2: Total melt (km2 days x106) and melt extent (km2x104) detected by the
different methods for 2000. The bottom row lists the percent of the ice sheet the melt
extent covers.

Q-α E-α Tb-α Tb-M XPGR Q-DV
total melt (M) 30.3 27.5 29.3 27.3 14.6 12.2
melt extent (E) 95.9 78.7 102.5 99.2 52.9 97.2

percent 58 48 62 60 32 59

melt extent of the others. To determine the percentage of the ice-sheet experiencing

melt, the melt extent is divided by the total area within the ice-sheet mask. Four

of the six methods estimate that about 60% of the ice sheet experiences melt. This

is consistent with the estimated dry snow extent from Benson [30]. The dry snow

boundary approximated by Benson is the intersection between and plane sloping down

1.15 km to the north and the elevation of the ice sheet where the intersection at 70◦

N is at 3000 m. With the ice-sheet mask used herein, this corresponds to 60% of the

ice-sheet experiencing melt in a typical year.

Additional insights into the differences between the individual methods are

gained by comparing the variation in daily estimates of the daily melt extent

ξ(t) =
N∑

i=1

mi(t).

The variations in ξ(t) for the different methods are shown in Fig. 5.6. The Tb-α

and Tb-M methods give consistent estimates of ξ(t). The XPGR method is biased

low during periods of melt onset and peak melt. XPGR indicates very little melt

around JD 213 when the other methods detect the maximum melt extent. During

the refreeze period (after JD 235), XPGR exceeds the estimated melt extent of the

other methods.

For the σ◦ methods, E-α and Q-α result in similar ξ(t) estimates with the

E-α method having a small negative bias at melt onset and peak melt times, and

a small positive bias during the refreeze period. Q-DV is consistently biased low,
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Figure 5.6: Melt extent each day as observed by the different methods. The top plot
shows comparison between Tb methods, the middle plot shows comparisons between
σ◦ methods, and the bottom plot shows the comparison between a single Tb and single
σ◦ method.
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estimating approximately 50% of the melt area of other methods. The peaks in the

Q-DV ξ(t) estimates occur just prior to the peaks in the other methods.

Direct comparison between the ξ(t) estimates from the Tb-α and Q-α meth-

ods shows very close agreement. The small difference between the two is a larger

estimate of the melt extent from Tb-α during melt onset and a larger extent estimate

by Q-α during periods of refreeze. This is attributed to a difference in the sensitivity

to melt due to the frequency difference which is discussed in Section 5.4.1.

Figure 5.7 includes images illustrating the annual melt extent, the annual

melt duration, and the temporal/spatial variation of the detected melt for summer

2000. The melt duration for each method is illustrated by comparing the melt dura-

tion estimated by each individual method with the average melt duration estimated

by the α-based methods. The melt duration detected by the Q-α method is near av-

erage over the complete melt extent. E-α estimates of the duration are above average

in regions with a long average melt duration. Tb-α melt duration estimates are below

average in the same regions. The difference between the Tb-M melt duration esti-

mates and the α-based average varies by region. A general trend is observed of above

average estimates in areas with low winter Tb values and below average estimates in

regions with high winter Tb values (see Fig. 5.2 for a winter Tb image).

In general, XPGR and Q-DV detect shorter melt than the α-based meth-

ods. For Q-DV this is only true for lower elevations: at higher elevations the melt

duration is very close to the estimates of the α-based methods. With XPGR excep-

tions exist on the east of the ice sheet around 64◦ N and 77◦ N where XPGR detects

longer melt than the α-based methods.

The middle row of images in Fig. 5.7 shows a comparison between the

melt extent obtained from the individual methods and the melt extent obtained by

combining the methods. Just as indicated in Table 5.2, the Q-α, Tb-α, Tb-M, and Q-

DV methods agree closely on the extent of the melt. Differences are primarily on the

border of the dry snow zone and are attributed to small differences in the definition

of melt intrinsic to each method. For E-α and XPGR the areas of missed detection
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Figure 5.7: Top row: (left) Average melt duration in days obtained from the α-based
methods. (right) Images of the difference between each method and the α-based
average. Middle row: Annual melt extent from the individual methods compared
with the annual melt extent combining all methods. Bottom row: Hovmöller diagrams
showing the variation in the melt extent over time along a transect across the southern
portion of the ice-sheet as indicated in the figure. In the bottom two rows white
represents the area that is designated as melting by any method. Black is imposed
over the white to indicate the melt area detected by the method specified in the
column header. Gray is non-melt area. The line over the Q-α Hovmöller diagram
indicates the location for the Q versus t plots in Fig. 5.9. See Fig 5.8 for enlarged
images.
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are in the upper regions of the percolation zone indicating that these methods are

less sensitive to small amounts of melt.

The bottom row in Fig. 5.7 is a set of Hovmöller diagrams which illustrates

the changes in the melt extent over time along a transect across the southern portion of

the ice-sheet. These images aid in understanding the spatial and temporal consistency

in the melt detection methods.

The α-based methods all appear to be spatial and temporally consistent

with expected trends in the summer melt process. Melt, as a function of time, be-

gins at the edges and progresses toward the interior of the ice sheet. Increases and

decreases in the melt extent occur gradually over time. Near the peak melt period,

where the upper extent of the melt is near the crest of the ice-sheet, the changes in

the melt extent occur more rapidly. This increased rate of change in melt area is

attributed to the small slope of the ice-sheet near the crest resulting in large changes

in the areal extent of the melt due to small changes in temperature. It appears that

a warm front moved across the ice-sheet near JD 255 which caused a short melt

event. This is detected by the Q-α and Tb-α methods, but not by the E-α method.

The missed detection by E-α is attributed to the lower temporal resolution of the

ERS data and to the ERS local time sampling. The temporal resolution of ERS,

along with the differences in melt detection by the α-based methods, are discussed in

Section 5.4.1.

The Hovmöller diagram for the Tb-M method is similar on the west of the

ice sheet to those for the α-based methods. The melt detected by Tb-M and Tb-α is

almost identical with Tb-M detecting the upper extent of the melt about 10 to 20 km

further upslope. On the east however, there is a notable difference: the Tb-M method

detects less melt than the α-based methods, and melt is only detected during intense

melt periods.

Substantial differences are also observed in the Hovmöller diagrams be-

tween XPGR and the other melt detection methods. These differences are largest

during periods of intense melt based on the results of the α-based and Tb-M methods.
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An example is observed near JD 213, a time when other methods are detecting max-

imum melt. The XPGR Hovmöller diagram indicates no melt at this time; however,

previous to, and after this period, XPGR detects a sizable amount of melt. XPGR

also results in short periods of detection of melt at higher elevations while not detect-

ing melt at lower elevations. An example of this is shown in the XPGR Hovmöller

diagram near JD 235.

Although the maximum melt extent estimates from Q-DV closely match

that of other methods, the daily variation in the melt extent detected by Q-DV is

very different from that of any other method. Melt detection appears sporadic in both

time and space. Melt detection by Q-DV is not accepted as accurate based primarily

on the lack of spatial and temporal correlation, making this method inconsistent with

the results of the other methods and inconsistent with what is expected for the natural

melt progress.

To further illustrate the similarities and differences between the melt de-

tection methods, Fig. 5.9 displays q(t) and q0 for each method at one location. Melt

onset is indicated in each plot by an abrupt large increase in q(t). During the melt

period, the q(t) signal of the α-based methods and Tb-M are similar. The E-α signal

lacks some of the higher frequency components of the other methods due to coarser

temporal resolution in the ERS data. The variation in the Tb-α and Tb-M q(t) during

non-melt is attributed to temperature variation and accumulation. The XPGR and

Q-DV melt signals are substantially different from the other methods. With XPGR,

local maximums in q(t) occur at times similar to those observed for the α-based and

Tb-M methods; however, the relative amplitude of the peaks are different contributing

to discrepancies in the melt detection by XPGR and the other methods. During the

melt period, the Q-DV melt signal is much more variable than the other methods.

During non-melt, q(t) remains relatively constant for both XPGR and Q-DV.

To evaluate the agreement between the methods on the location and time

of melt, the correlation coefficient is used which is defined as

R =
Sxy

√

SxxSyy

.
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Figure 5.9: Plots of the melt signal (q(t)) for the different melt detection methods at
64.9 N, 47.3 W. The location is indicated in the Q-α Hovmöller diagram in Fig. 5.7.
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Table 5.3: Correlation coefficient (R) between the melt signal (mp(d)) of the various
methods.

Q-α E-α Tb-α Tb-M XPGR Q-DV
Q-α 1.00 0.81 0.87 0.78 0.42 0.57
E-α 0.81 1.00 0.73 0.67 0.49 0.44
Tb-α 0.87 0.73 1.00 0.85 0.38 0.55
Tb-M 0.78 0.67 0.85 1.00 0.35 0.54

XPGR 0.42 0.49 0.38 0.35 1.00 0.19
Q-DV 0.57 0.44 0.55 0.54 0.19 1.00

where

Sxy =
N∑

i=1

(xi − x̄)(yi − ȳ).

The average of xi is x̄ and the average of yi is ȳ. In this case, the xi or yi is the

melt signal for all pixels (mi(t)∀ i, t) based on the different methods. The correlation

coefficients are listed in Table 5.3.

The correlation between the α-based methods is high, between 0.73 and

0.87, indicating that these methods are consistent in time and location of detected

melt. The Tb-M method is also strongly correlated to the α-based methods. XPGR

and Q-DV have lower correlations with the other methods, with correlation to the

α-based methods ranging from 0.38 to 0.57. The latter two methods also exhibit little

correlation with each other having a joint correlation coefficient of only 0.19.

5.4.1 Discussion

The differences in the melt detected by the individual methods are at-

tributed to differences in sensitivity to melt due to frequency and/or differences in

the definition of melt implicit with each method.

The α-based methods define a melt event based on a uniform wet snow layer

with a specified mv and minimum depth. This property contributes to the spatial

and temporal consistency of these methods. It also helps to ensure consistency in

the different facies and regions of the ice-sheet. Given a value of α associated with
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Figure 5.10: Wet snow percent liquid moisture content (mv) versus depth (d) cor-
responding to the melt threshold used in the Q-α, E-α, and Tb-α melt detection
methods. The lines are calculated based on a snow density of ρ = 0.4 g/cm3.

a threshold, a line can be drawn indicating the relationship between mv and d for

melt detection. These lines are shown in Fig. 5.10 for the three α-based methods.

The thresholds for Q-α and Tb-α are similar with the small difference representative

of the uncertainty in the T dry
b estimates. The E-α minimum wet snow depth for melt

detection is about double that of Q-α and Tb-α for any given value of mv. Because

the 5.3 GHz ERS measurements are less sensitive to snow moisture content, a larger

threshold is necessary to reduce the possibility of false alarms due to noise. Thus,

E-α requires a more intense melt before detection occurs. This contributes to E-α

generally detecting less melt than the Q-α and Tb-α methods.

Another factor affecting E-α melt detection is the local time of day of the

ERS samples. The peak ERS sampling is around 11:30 and 21:30 local time (see

Fig. 5.1) which is before and after the expected period of peak diurnal melt. This is

also expected to reduce the melt detected using E-α.

The discussion thus far has focused primarily on differences in detecting

melt at onset, which is the focus of of the α-based melt detection. During refreeze

the vertical melt profile can be quite different than that of the simple physical model

presented. After an intense melt event, subsurface liquid moisture remains after the

refreezing of the surface. Due to the large penetration depth at low frequencies, melt

is still detected after surface refreeze. The lingering melt detection after intense melt
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is observed in the results from E-α in the melt extent plot in Fig. 5.6 and the the E-α

Hovmöller diagram in Fig. 5.7. This is also observed in comparing the Q-α results to

those of Tb-α in the same figures.

Tb-M is the non-α method with results most similar to the α-based meth-

ods. Melt detection using Tb-M is based on the winter Tb statistics and melt Tb

statistics at selected locations with the threshold based on the difference between

the winter mean Tb and the mean Tb during a melt period as well as the standard

deviation of Tb during the melt period [11]. Over much of the ice-sheet this method

performs very well. However, at locations which have a high winter mean Tb values,

this method significantly under-detects the melt. This under-detection can be ex-

plained using the simple melt model: In southwest Greenland the mean winter Tb is

≈ 195 K. This results in melt detection for Tb-M when Tb > 226 K. The corresponding

Tb-α physical model parameters are α = 0.60, and d = 3.8 cm based on mv = 1.0%.

In the southeast, the winter mean Tb is ≈ 230 K resulting in Tb-M melt detection when

Tb > 261 K. The corresponding Tb-α physical model parameters here are α = 0.28

and d = 9.6 cm based on mv = 1.0%. Note the difference in the theoretical depth of

the wet snow layer associated with the melt detection threshold at the two locations.

This theoretical difference wet snow depth is further accentuated by the low bias in

the T dry
b estimate, making the true difference even greater. Hence, Tb-M results in

different melt definitions at different locations with an end result of higher sensitivity

to melt in the southwest of the ice-sheet than in the southeast. Effects of this regional

difference are observed in the limited detection of melt on the east of the ice-sheet in

Tb-M melt duration image and the Hovmöller diagram in Fig. 5.7. The cold region

bias (more melt detected at a cold locations than a warm location), which was also

observed by Abdalati and Steffen [5], is attributed to this effect.

The Q-DV method is based on the rapid fluctuation of σ◦ during a melt

event. Because of freezing at night and melting during the day it is assumed that

there is a large fluctuation in σ◦ over the course of a day. The main caveat of this

method is that it is based on a sufficient, but not a necessary condition. A diurnal

change of over 1.8 dB over snow is indicative of melt; however, the converse is not
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true. The surface can theoretically be melting and have negligible diurnal variation.

This is observed in the Q-DV Hovmöller diagram in Fig. 5.7 where long periods of

melt based on results of other methods are interspersed with intermittent gaps of

undetected melt in the Q-DV results.

The XPGR method is based on 19 GHz signal being more responsive to

melt onset in the firn than 37 GHz and a melt producing a larger increase in the

H-pol emissivity than V-pol [2]. However, it appears that significant melt can occur

without meeting the XPGR melt detection requirement. An example is observed

around JD 213 when the other methods detect maximum melt extent, and XPGR

detects minimal melt. One attribute of XPGR is that due to the difference in the

penetration depths of the two channels it detects melt after the surface has refrozen

if the subsurface remains contains liquid moisture [2].

5.5 Summary and Conclusions

Melt detection using σ◦ and Tb is related to snow wetness and the depth

of the wet snow layer at melt onset using a simple physical model. The technique for

melt detection using σ◦ reduces to using a set threshold below the winter mean. I

use a threshold of 3 dB for QSCAT and 2.8 dB for ERS. Model based melt detection

using Tb is only slightly more complex. A melt is indicated by a rise in Tb above some

threshold which is a function of the difference between the winter mean Tb and the

maximum Tb for wet snow (273 K). The selected threshold is 46% of this difference

added to the winter mean Tb. The threshold for QSCAT corresponds to a theoretical

wet snow layer with mv = 1.0% and depth d = 3.8 cm. An empircal method based

on MAP detection and the QSCAT melt detection was used to select the ERS and

SSM/I thresholds. The theoretical wet snow depths corresponding to the empirically

obtained thresholds are d = 10.8 cm for ERS and d = 4.7 cm for SSM/I 19V.

Melt detection based on this simple physical model, which is termed α-

based detection, eliminates unnatural phenomenon observed in the results for other

melt detection methods. Improvements include similar melt duration estimates for
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similar elevations on the east and west sides of the ice sheet, elimination of mid-

summer melt detection gaps between periods of intense melt, and the detection of

melt at lower elevations before, during, and after detection of melt at higher elevations.

Some differences are observed in α-based melt detection for the three sen-

sors. The E-α method is the most dissimilar detecting a total melt extent of 48%

of the ice sheet compared with 58% for Q-α and 62% for Tb-α. This difference is

attributed to lower temporal resolution, reduced sensitivity to melt due to the lower

frequency, and different local time of day sampling for ERS compared with QSCAT

and SSM/I. The E-α method also detects above average melt during the refreeze pe-

riod. This is attributed to the relatively large penetration depth at C-band making

the measurements sensitive to the presence of subsurface melt remaining after surface

refreeze. This phenomenon of extended melt detection is observed to a smaller de-

gree in QSCAT melt detection when compared with SSM/I which is also attributed

to difference in penetration depth due to the frequency difference between the two

instruments.

The results for non-α methods are widely variable. Estimates of the melt

extent are near 60% of the ice-sheet for Tb-M and Q-DV, which is similar to the Q-α

and Tb-α results. XPGR, however, indicates that only 32% of the ice-sheet experiences

melt during the summer of 2004. The non-α methods are also generally less correlated

with other methods with the lowest correlation R = 0.19 between XPGR and Q-DV.

The α-based melt detection is based on a model for melt onset. However,

during refreeze the vertical melt profile is potentially quite different from the profile

at melt onset. This is especially true in regions with extended melt duration. Al-

though the α-based method performs moderately well at determining refreeze, the

relationship between the end of the detected melt and the surface profile are not

as well understood as at melt onset. This phenomenon is one reason for the differ-

ences between the α-based methods during the refreeze period. Ways to improve the

characterization of the surface during the refreeze process are discussed in the next

chapter.
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In situ measurements of the vertical wetness profile of the surface would

aid in further validating the α-based melt detection. Simultaneous measurements

from scatterometer and radiometer instruments aboard the same platform will further

enhance the ability to inter-relate Tb and σ◦ melt detection. This is the setup with

SeaWinds and AMSR on ADEOS II.
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Chapter 6

Melt Classification

As discussed in the previous chapter, various methods have been devel-

oped for using microwave measurements to detect melt on the Greenland ice sheet.

The methods generally focus on detecting the presence of liquid water in the snow.

However, a snow-surface containing liquid water can be in two states: melt or freeze.

When the amount of liquid water in the snow-pack is increasing over time, the net

heat flow is into to snow and the snow is in the melt state. If the liquid water is

decreasing, the net heat flow is out of the wet snow so the snow is classified as freez-

ing. In this generalization, changes in the liquid water content due to percolation are

ignored for simplification. The distinction between the melt and freeze stages of the

melt cycle is important because ablation occurs when heat is flowing into the snow

causing liquid water to form. Minimal ablation is expected during periods when heat

is flowing out from the surface and liquid water is transforming back to its frozen

state.

Increased accuracy in ablation estimation requires differentiation between

the melt and freeze stages of the melt cycle. This differentiation is possible based on

fundamental differences due frequency and polarization in the sensitivity of Tb to snow

melt. These differences are observed using SSM/I channel ratios. The relationship

between the channel ratios and the melt cycle stages are established through empirical

observations and supported by basic microwave emission modeling. The results in this

paper lay a framework for the discrimination between the melt and freeze stages of

the melt cycle.
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This chapter is organized as follows. First, a background discussion on the

data set and the data processing method is presented. Then, diurnal signatures of

Tb are analyzed and compared with automatic weather station temperature measure-

ments. Next, diurnal variations in SSM/I channel ratios are related to the stages of

melt, which is supported by in situ data from other investigators. Finally, theory

supporting this method for melt classification is presented.

6.1 Data

The focus of this chapter is on the differentiation between the different

stages of the melt cycle. Because the surface experiences multiple stages of the melt

cycle during one day intervals, the daily average Tb values used in other studies

are inadequate in their temporal sampling. In order to achieve increased temporal

resolution, I use a non-parametric estimator in conjunction with Tb measurements

from multiple instruments.

During the summer of 2002 three SSM/I instruments operated simulta-

neously aboard the F-13, F-14, and F-15 satellites. Their orbits result in different

time-of-day observations for each instrument. Combining measurements from the

three instruments provides increased temporal coverage. This coverage varies with

latitude. Image histograms showing the distribution of the local time of day of the

Tb samples for Greenland latitudes are shown in Fig. 6.1 (a). At high latitudes, each

sensor covers a continuous 11 hour span of time with a combined span of approx-

imately 14 hours of continuous coverage. At lower latitudes, there is a temporal

division between ascending and descending measurements. The combined coverage

is approximately from 0600 to 1200 in the morning and 1600 to 2200 in the evening.

Because of relative orbital geometries between the three SSM/I sensors, an eight hour

portion (2200-0600) of each day is not observed at any latitude. Note that SSM/I

measurements occur primarily during mid-day when the largest amount of melt is

expected to occur.

Tb measurements are processed to estimate Tb at regularly spaced incre-

ments in space and time. The spatial sampling is 8.9 km, and the temporal sampling
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Figure 6.1: Image histograms of the pass times of the F-13, F-14, and F-15 satellites
versus latitude. Each horizontal scan represents a histogram at the matching latitude
on the Greenland image on the right. At high latitudes temporal coverage is one
continuous span due to the wide swath orbit inclination angle of the satellites. At
lower latitudes the measurements are divided into ascending and descending passes.
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is 3 hours where Tb is interpolated to obtain estimates at times of day when there are

no measurements. For a given location, Tb measurements within a 25 km radius are

included in the processing. Estimates of Tb every three hours are obtained using a

simple non-parametric fit to the data where the estimate of Tb at time τ is

Tb(t) =

∑

i Tbiw(τ, ti)
∑

i w(τ, ti)

where

w(τ, ti) = e
− 1

2

(ti−τ)2

σ2
t

is a temporal weighting factor and σt = 3 hours, which is the same as the sampling

interval. The sampling frequency of these estimates makes it possible to observe the

stages of the daily melt cycle and aids in associating the frequency and polarization

sensitivities of Tb with the vertical melt profile.

A study site centered at 78.0 N, 34.0 W is selected for three primary rea-

sons. First, it is the location of the Tunu-N automatic weather station (AWS), so

air temperature measurements are available. Second, moderate melt is observed in

this area during the summer of 2002. Third, no major gaps in the temporal coverage

exists for Tb or AWS temperature over the time interval.

6.2 Tb Daily Melt Cycle Observations

The sensitivity of radiometers to snow melt stems from the dramatic ef-

fect the presence of liquid water has on the microwave properties of the snow. The

Rayleigh-Jeans approximation is

Tb = eT

where e is the microwave emissivity and T is the physical temperature of the snow

in Kelvin [2]. The emissivity remains relatively constant over time for frozen snow,

making Tb approximately a linear function of T . When melt begins, the introduction

of liquid water into the snow-pack causes a large increase in e and a corresponding

increase in Tb. This is illustrated in the summer Tb image of Fig. 6.2 where the

periphery of the Greenland ice sheet exhibits high Tb values. In this image the melt

is particularly strong in northeast Greenland.
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Figure 6.2: Greenland SSM/I 19V Tb images from (a) mid-winter (JD 15, 2002) and
(b) the peak melt period (JD 195, 2002). The difference is shown in (c). The large
differences are primarily caused by the presence of liquid water in the snow from melt.
Smaller differences are due to surface temperature change. The Tunu-N site (78 N,
34 W) is indicated by a “+” mark.

Using the high temporal resolution Tb estimates it is possible to observe

changes in Tb related to the stages of the daily melt cycle. This is illustrated using Tb

estimates centered at the Tunu-N site. An abrupt increase in Tb connected with a melt

event is observed in Fig. 6.3 during the afternoon of JD 189. By early in the morning

on JD 190, Tb has dropped significantly due to overnight freezing. By mid-day on JD

190, the Tb measurements are once again at high values. This pattern of daily melt

and nightly freeze is observed each day in the Tb variation. The diurnal variation is

due to both temperature cycling and changes in emissivity with the emissivity change

dominating during periods of melt/refreeze. The high average of the Tb measurements

between JD 190-195 indicates relatively intense melt. Tb gradually decreases during

the period between JD 196 and 200 indicating a gentle refreeze. The increased spread

in the raw data during this period is attributed to spatial inhomogeneities in the

refreeze process.
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Figure 6.3: Raw 19V Tb measurements from 78.0 N, 34.0 W during the summer of
2002. The line is a non-parametric fit to the raw data with estimates of Tb at 3 hour
intervals. The bottom plot displays AWS near-surface air temperature measurements
at the same location. The horizontal axis is local Greenland time.
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Automatic weather station (AWS) near-surface air temperature measure-

ments obtained from the Greenland Climate Network are used to assist in validating

melt as the primary contributing factor driving the rapid large fluctuations of the

microwave measurements. The AWS Temperature data (Tair) concurs with the mi-

crowave data set in manifesting periods of melt. The days when Tair reaches above

freezing (JD 190-196) is when the Tb measurements indicate significant melt. After

JD 196, Tair remains below freezing and the microwave measurements gently migrate

to their frozen state.

Figure 6.4 illustrates the strong relationship between the microwave mea-

surements and Tair. The effects of melt are observed in the 19V and 19H Tb measure-

ments at Tair values as low as -10◦ C which is attributed to liquid water beginning to

form on firn crystals. Above -2◦ C the effects of the melt on Tb saturate at around

260◦ K for 19V and 245◦ K for 19H. Slight differences in the sensitivity of the 19V

and 19H channels aid in determining the melt profile. A key difference is illustrated

using the 19H/19V polarization ratio (see Fig. 6.4). For Tair < −10◦ K the polariza-

tion ratio is ≈ 0.82. As the temperature increases, the polarization ratio increases to

≈ 0.94 at Tair = 0. Further analysis of the 19 GHz polarization ratio is provided in

the next section.

Some care is required in interpreting Fig. 6.4 due to discrepancies expected

between Tair and the actual surface temperature. Surface temperature change is

primarily driven by radiation and conduction whereas convection plays a major role

in local air temperature change. This discrepancy is considered to be a contributing

factor to the hysteresis effect observed in Tb as a function of Tair associated with a

melt event. Also, the satellite pass times are during the day when the surface is

generally melting, so night-time trends are not included.

6.3 Channel Ratios

An illustration of a simplified vertical melt cycle for this area is shown

schematically in Fig. 6.5. During the melting phase, liquid water forms on the snow

grains near the surface, with the depth of the melt increasing over time. During
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Figure 6.5: An illustration of the progression of a simplified vertical melt profile over
time.

freeze, heat flows both up from the surface and down into the snow-pack. In the

case of deep melt, the surface may freeze while liquid water remains in the subsurface

snow. Multiple such situations with a frozen crust above wet snow were observed by

Mätzler [50].

Both surface and subsurface melt contribute to a large effective emissivity

resulting in high Tb measurements. However, different polarizations and frequencies

respond slightly different to the stages of a melt event. Figure 6.6 shows various SSM/I

channel ratios. The first and second plot from the top focus on frequency difference

while the third and forth illustrate polarization dependence. The ratio method has

the advantage of eliminating the change in surface temperature and focusing on only

differences in emissivity for the two channels.

Variations in the frequency dependence of emissivity aid in detecting peri-

ods during which subsurface melt is present under a refrozen surface. The 19V/37V

and 19H/37H plots in Fig. 6.6 are significantly higher during the period between JD

195 and 200 which is a refreezing period. During mid-day when surface melt is most

likely, the frequency ratios decrease, migrating closer to one. This is attributed to the

small emission depth of wet snow for both frequencies, so both channels are “seeing”

only the wet surface layer. However, in dry or refrozen snow the emission depth at
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Table 6.1: Definitions for the different snow types.

snow type definition
deep dry snow water equivalent of dry snow is between 25 and 63 cm

wet snow snow surface layer is wet
thin crust a frozen crust, 1 to 3 cm thick, over wet snow
thick crust a frozen crust, 4 to 30 thick, over wet snow

37 GHz is significantly less than at 19 GHz. Thus, at 37 GHz the refrozen surface

is a greater contributer to the signal than at 19 GHz so that the 37 GHz emissivity

drops becoming more like that of refrozen snow while the 19 GHz emissivity reduces

more slowly due to the effects of the subsurface moisture.

In the polarization ratio plots of Fig. 6.6 maximums occur when surface

melt is expected to be present. As discussed in Section 6.2 and observed in Fig. 6.4,

h-pol Tb are consistently less than v-pol. During melt the two emissivities become

closer to equal corresponding to an increase in the polarization ratio. The 19H/19V

ratio is largest during the period JD 190 to 195 and peaks at mid-afternoon when

surface melting is expected. Minimums occur between late night and early morning

during this period when the surface is expected to be freezing due to below freezing

air temperatures and radiative cooling. The ratio also decreases during the refreeze

period from JD 196 to 200.

6.3.1 Comparison with in situ data

The signatures of different vertical melt profiles observed in the SSM/I

channel ratios are compared with in situ measurements from Mätzler [50]. Mätzler

records Tb values for various frequencies and terrains of which a selected number

are similar to Greenland surface profiles. The 21 and 35 GHz frequencies used by

Mätzler are the closest to those analyzed herein for SSM/I. The snow scenes observed

by Mätzler similar to those expected in Greenland are described in Table 6.1.
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Figure 6.7 shows the polarization and frequency ratios for each of the rel-

evant snow conditions observed by Mätzler (see Table 6.1). The plot is designed so

that progression to the right on the horizontal axis corresponds to the progression of

an idealized melt event beginning with a layer of dry snow. The snow melts and then

the surface begins to refreeze with the frozen crust thickening over time. Consistent

with the SSM/I observations, the frequency ratios display a small drop associated

with surface melt progressing toward a large increase affiliated with a thick frozen

crust over wet snow. Also similar to SSM/I observations, the polarization ratio in-

creases during a melt event, with a maximum observed during the period when the

melt is expected to have maximum depth (a thin frozen crust is present indicating

the transition from melt to freeze). The polarization ratio decreases as the frozen

crust thickens.

6.4 Theory

In order to better understand the physical mechanisms driving the sensi-

tivity of SSM/I channel ratios to the different melt stages, we employ simple electro-

magnetic models based on the bulk properties of the snow pack. We first consider

the frequency ratio followed by the polarization ratio.

6.4.1 Frequency ratio

The variation in the frequency ratio during the melting and freezing stages

of the melt cycle is illustrated using a simple multi-layer model. The brightness

temperature at the surface is the sum of the contributions from the individual layers,

i.e.

Tb =
N∑

i=1

Tbi (6.1)

where Tb1 is the contribution from the top layer, Tb2 is the contribution from the

second layer, and TbN is the contribution from the bottom layer. Assuming each layer

is homogeneous in the physical properties of the snow and has a uniform temperature

profile, the contribution from layer i in terms of the brightness temperature of an
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infinite half space with the same properties (T∞
bi ) is

Tbi = e−τiT∞
bi (1 − e−κeidi sec θi)

i∏

j=1

Υj (6.2)

where di is the depth of the ith layer, θi is the propagation angle in the layer, Υj is the

power transmission at the upper boundary of the jth layer, and τi =
∑i

j=1 κejdj sec θj

is the optical depth of the snow above the ith layer.

This model is used to simulate the relationship between Tb(19V ) and

Tb(37V ) during a melt/freeze cycle. During melt, the vertical profile of the snow

is modeled as two layers, wet snow over dry firn, with the depth of the wet snow in-

creasing over time. Dry firn is used rather than new dry snow to simplify the model.

Potential discrepancies between the model results and observed data trends due to

this simplification are discussed later. During freeze, the surface is modeled as three

layers: wet snow between two layers of dry firn. The bottom of the wet snow layer is

assumed to freeze at one half the rate of the top of the wet snow layer (see Fig. 6.5).

The implementation of this multi-layer Tb model requires the estimates of

T∞
b , κe, and θ for each layer as well as Υ at each layer boundary. T∞

b is estimated

based on observations in the southwest percolation zone during the year 2000. For

convenience, I denote T∞
b for the dry firn as T dry

b and T∞
b of the wet snow as T wet

b .

The extinction coefficient (κe) of dry snow is estimated using the empirical

formula from Hallikainen et al. [51] assuming the snow grain radius to be 0.5 mm. The

extinction coefficient of wet snow is estimated using the relationship κe = κs+κa where

κs is the scattering coefficient and κa is the absorption coefficient. The absorption

coefficient is a function of the complex relative dielectric constant (εr), i.e.

κa = 2
2πf

c
={√εr}

where f is the frequency, c is the speed of light in a vacuum and ={·} denotes the

imaginary part. The complex relative dielectric constant is estimated using a modified

Debye-like model from Ulaby et al. [38, pg. 2072] where the snow is assumed to have

a density ρ = 0.4 g/cm3. The scattering coefficient for wet snow is assumed to be

similar to that of dry snow, which is negligible compared to κa of wet snow.
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Table 6.2: Snow dielectric properties used for the simple multi-layer emission model.
The associated frequency (f) is in GHz. All estimates are for vertical polarization.

f εr κe κa κs Υair T∞
b

dry firn 19 1.41 1.58 0.00 1.58 1.00 180
dry firn 37 1.38 10.20 0.00 10.20 1.00 160

wet snow 19 1.44 + i0.029 11.32 9.74 1.58 1.00 273
wet snow 37 1.41 + i0.023 25.18 14.98 10.20 1.00 273

The propagation angle (θ) is calculated using Snell’s law with the estimates

of εr. The power transmission (Υ) at the boundaries is calculated from the estimates

of εr using Fresnel reflection. The estimated properties of the dry firn and wet snow

are listed in Table 6.2.

Variations of in Tb(19V ) and Tb(37V ) during a melt cycle based on this

multi-layer Tb model are illustrated in Fig. 6.8. During the melt phase Tb values follow

a convex path originating at (T dry
b (19V ),T dry

b (37V )) and ending at (T wet
b (19V ),Twet

b (37V )).

For shallow melt events, the Tb values follow the same path without reaching the

end point. Four different paths are shown for the freeze phase based on different

melt depths. Contrary to the melt phase, the path followed by the Tb values dur-

ing the freeze phase of the melt cycle is significantly affected by the depth of the

melt. In all cases, Tb during the freeze phase follows a concave path ending at

(T dry
b (19V ),T dry

b (37V )). The start point lies on the path followed during the melt

phase with the location dependent on melt depth. The curvature of the path during

the freeze phase increases with the depth of the melt. The results in Fig. 6.8 confirm

the frequency ratio (γ = Tb(19V )/Tb(37V )) as a tool for discriminating between the

melt and freeze portions of the melt cycle. Additionally, the maximum value of γ

during freeze is an indicator of the melt depth.

Figure 6.9 shows SSM/I Tb measurements during 2000. These Tb esti-

mates are at 6 hour intervals and originate from the SSM/I instrument aboard the

F-14 satellite. The points are connected to illustrate the temporal evolution of the

137



 160

 180

 200

 220

 240

 260

 280

 180  200  220  240  260  280

T
b(

37
V

)

Tb(19V)

fre
ez

e d
melt

=10
 cm

freeze dmelt=100 cm

fre
eze

 d melt
=20 cm

freeze d melt=
40 cm

γ =1.0

γ =1.2

γ =1.4

γ =1.6

γ =0.8

2

3

4
5

6
8

10 15

1 cm

1 cm

2

3

4

5

6

3
4

5
6

8

10

1 cm

2

1

2

3

4
5

6
7

8
9

10
11 15

20

melt

Figure 6.8: Simulated melt cycle for Tb(19V ) and Tb(37V ) with different melt depths
represented. Numbers within the plot indicate incremental melt depths and depths
of surface freeze. Lines of constant frequency ratio (γ = Tb(19V )/Tb(37V )) are also
shown.
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Figure 6.9: Scatterplot of Tb(19V ) versus Tb(37V ) during the year 2000 at 65.6 N,
47.6 W. The points are connected to indicate the temporal evolution. The cluster of
points near the left side of the plot shows the effects of winter accumulation. Lines
of constant frequency ratio (γ) are also shown in the plot.

measurements. The patterns in the Fig. 6.9 are similar to the simulations shown in

Fig. 6.8. During many of the observed melt cycles, it appears that the surface does

not achieve a frozen state before the melting repeats. The melt cycles in the plot show

a distinct difference in the melt and refreeze paths, just as predicted by the model.

The lines of constant frequency ratio (γ) indicate the applicability of this parameter

in differentiating between melt and freeze.

The trend in Tb associated with winter accumulation is also indicated in

Fig. 6.9. This migration during the winter is a result of the combination of changes

in the surface due to accumulation and temperature variations. The idea of temper-

ature variation alone causing this migration is ruled out based on the premise that

temperature changes is expected to result in a straight line migration. Accumulation

causes the surface emission to approach the behavior of dry snow which has higher Tb
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values than the snow in the percolation and wet snow zones. Because of the smaller

emission depth, the 37 GHz Tb increases at a faster rate than the 19 GHz Tb.

As mentioned previously, the model ignores the dry snow accumulation

on the surface, assuming the snow profile to be comprised of firn prior to the melt

event. This effectively ignores the Tb migration observed in Fig. 6.9 associated with

accumulation. This simplification is expected only to effect the start point of the

initial melt. After the first melt/freeze cycle, the surface snow is effectively firn.

6.4.2 Polarization ratio

The sensitivity of the polarization ratio to the melt or the freeze stage may

be explained based on Fresnel reflection. Assuming that snow layers are isotropic,

there is no difference between h-pol and v-pol in propagating through the volume of

each snow layer. The polarization is only significant at the layer boundaries. Based on

Fresnel reflection, the transmission of v-pol emissions through the boundary is always

greater than the transmission of h-pol emissions through the boundary. During melt,

the emission depth is small and the observed Tb is primarily from the top snow layer.

For a single layer, the ratio of h-pol Tb to v-pol is primarily a function of the reflection

at the air/snow interface. During freeze and for dry snow, the emission depth is much

greater and many snow layers contribute to the observed Tb. For frozen snow, the ratio

of h-pol to v-pol is less due to additional attenuation of h-pol emissions at subsurface

layer interfaces. This effect is illustrated in the SSM/I Tb scatterplot in Fig. 6.10.

In this case the largest ratio difference is between the end points as opposed to the

frequency ratio where the largest difference is in the transition region. The hysteresis

effect is smaller than for the frequency ratio, but may still be exploited to infer the

melt depth.

6.5 Conclusions

The Tb polarization ratio and frequency ratio can be used separately or

combined to differentiate between the melt and the freeze stages of the melt cycle.

The 19 to 37 GHz frequency ratio increases when the surface is frozen and liquid water
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is present in the subsurface. The horizontal to vertical polarization ratio increases

when liquid water is present in the surface snow. The use of this technique in future

studies will enable increased accuracy in ablation estimation and estimation of the

overall mass-balance of the Greenland ice-sheet.
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Chapter 7

Summary and Conclusions

This chapter summarizes the results found in this dissertation by first dis-

cussing the key observations for each study and then summarizing additional signifi-

cant contributions including new models and methodologies. It ends with suggestions

for future research for the continuation and advancement of these studies.

7.1 Key Observations

My studies of the Greenland ice sheet have resulted in several key observa-

tions of the microwave properties of the ice sheet and the relation of these properties

to physical processes. Key observations are from four areas of research: Azimuth

modulation of σ◦, microwave signature of snow, melt detection over snow, and melt

classification.

7.1.1 Azimuth modulation of σ◦

Various aspects of azimuth modulation of σ◦ over Greenland are analyzed

in this dissertation. This analysis is original with this work since previous studies of

azimuth modulation over Greenland are almost non-existent. Information regarding

the azimuth modulation properties over Greenland is valuable for inter-comparison

of SAR images, for in situ studies of azimuth modulation, and for general study of

Greenland using σ◦.

To investigate σ◦ azimuth modulation two models are employed: a phys-

ical model relating σ◦ azimuth variation to meso-scale surface roughness is used in

Chapter 3 and a simple empirical model useful in characterizing the magnitude and
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variability of the azimuth modulation is used in Chapter 4. The mean RMS error for

ERS for the physical model is 0.46 dB compared with 0.56 dB for similar models as-

suming azimuthally isotropic surface roughness. The accuracy of the empirical model

increases from a mean RMS error of 0.591 dB to 0.375 dB for ERS when azimuth

modulation is included.

Both models indicate that the azimuth modulation is largest in the lower

region of the dry snow zone and the upper edge of the percolation zone. This is the

region where the largest meso-scale slope estimates are obtained from the scattering

model inversion. Over most of Greenland, the azimuth modulation is dominated by

a second order harmonic, although there is also a non-negligible contribution from

the first order harmonic. The magnitude of the azimuth modulation is found to be

relatively independent of incidence angle in the 25◦ to 45◦ incidence angle range.

The orientation and magnitude are stable over time. Over a select few areas near the

percolation zone/dry snow zone boundary, abrupt changes in the azimuth modulation

are observed, which is attributed to changes occurring during summer melt events.

Azimuth modulation of σ◦ is generally larger at C-band than at Ku-band.

The orientation of the azimuth modulation is such that the minimum σ◦

is aligned with the flow direction of the katabatic winds. This relationship between

katabatic wind flow and azimuth modulation orientation is similar to what has been

observed over Antarctica. This similarity is interesting because the katabatic winds

are weaker over Greenland and storm winds, which are non-katabatic, have a greater

impact.

7.1.2 Microwave signature

Chapter 4 presents a model for characterizing the σ◦ microwave signature

over Greenland. This model includes incidence angle dependence, azimuth depen-

dence, the spatial gradient, and the temporal rate of change. The inclusion of the

spatial gradient in the microwave signature model, which is original with this work,

significantly reduces the RMS modeling error from 0.737 dB to 0.375 dB for ERS and

from 0.658 dB to 0.458 dB for NSCAT.
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Various attributes of the microwave signature in the different snow zones

are discussed in Chapter 4 with only a few repeated here. Estimation of the pa-

rameters of this model using ERS and NSCAT data indicates that the σ◦ signatures

at the two frequencies exhibit similar trends throughout the different snow zones.

A general difference with frequency is that the extremes are typically greater at C-

band. The minimum backscatter, which occurs in the dry snow zone, is smaller at

C-band and the maximum backscatter, which occurs in the percolation zone, is larger.

The incidence angle dependence is greater and the azimuth variation is larger at C-

band. Extrema in the model estimates indicating the dry snow zone/percolation zone

boundary generally occur further down slope at Ku-band.

One application of this characterization model is the observation of inter-

annual changes on the ice-sheet through monitoring changes in the model parameters.

Over the 9-year span of ERS data significant changes only occur in specific areas

primarily concentrated near the dry snow line. The observed changes are attributed

to variations in the annual Greenland ice-sheet melt extent, the formation of iced-firn

on the snow surface, the formation of subsurface ice structures, and variations in the

annual accumulation rate. Using only the microwave signature model parameters,

rough relative estimates of the annual melt and accumulation rates may be obtained.

In studies of short term change, using this model and assuming the σ◦

dependencies are constant over time reduces the signal variance and increases the

possible temporal resolution compared with previous methods. Because these model

parameters are relatively stable between summer melt events, they can be used to

normalize individual measurements. This method can be used to reduce noise due to

observation geometry sampling and co-location bias in the estimation of short term

variations in the average backscatter. Improvements over previous methods include

increased temporal resolution and reduced variance in the observed signal. When

applied, this method enables higher sensitivity to short melt events and to small

magnitude seasonal cycles such as those observed in the dry snow zone.
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7.1.3 Melt detection

Chapter 5 presents a comparison between 6 different melt detection meth-

ods. This comparison finds significant discrepancies between existing methods which

are primarily attributed to differences in the intrinsic definitions. In an effort to

obtain consistent detection of melt from scatterometers and radiometers, a simple

physical model of a melt process is used. This model is consistent with a uniform

definition of melt across the ice sheet. Melt detection based on this model is termed

α-based.

QSCAT α-based melt detection with QSCAT appears the most robust.

QSCAT (Ku-band) is more sensitive to small-melt at onset and less sensitive to sub-

surface melt during refreeze than ERS (C-band) due to the higher frequency. QSCAT

also has superior temporal coverage with more frequent sampling and sampling closer

to mid-afternoon, the local time-of-day when peak melt is expected. Melt detection

with QSCAT is more robust than with SSM/I because the estimation of the phys-

ical model parameters for σ◦ are more precise than for Tb because σ◦ is relatively

independent of the physical temperature of the surface.

The results of α-based melt detection with SSM/I, QSCAT, and ERS are

consistent with correlation coefficients ranging from 0.73 to 0.87. QSCAT and SSM/I

α-based melt detection estimate that 58% and 62% of the ice sheet, respectively,

melted in 2000 which is consistent with the 60% estimate obtained using the dry snow

zone boundary given by Benson [30]. Due to reduced temporal sampling and reduced

sensitivity due to frequency, ERS detects only 48% of the ice sheet as experiencing

melt. ERS also detects periods of prolonged refreeze due to increased sensitivity to

subsurface moisture at lower frequencies.

The non-α-based methods vary widely in their results. XPGR indicates

that only 32% of the ice sheet experiences melt and has a correlation coefficient

of 0.42 with QSCAT α-based melt detection. XPGR also appears to be strongly

sensitive to melt during refreeze. Tb-M matches α-based detection except for bias

toward detecting more melt in regions with low winter Tb values and small amounts

of melt in regions with high winter Tb values. Q-DV melt detection estimates that
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59% of the ice sheet experiences melt during 2000 and has a correlation coefficient of

0.57 with QSCAT α-based melt detection. Although the annual melt extent estimate

is consistent with QSCAT and SSM/I α-based detection, the daily estimates of the

Q-DV melt extent appears sporadic, changing dramatically from day to day during

the summer melt period.

7.1.4 Melt classification

Chapter 6 discussed the classification of melt as either surface or subsur-

face. Due to lack of available in situ data on the vertical profile of the moisture

content in the snow, high temporal resolution estimates of the Tb diurnal variation

are used to associate data trends with the different stages of the daily melt cycle.

Results indicate that the Tb polarization ratio (horizontal over vertical) is a sensitive

indicator of surface melt and that the Tb frequency ratio (37 GHz over 19 GHz) is a

sensitive indicator of subsurface melt. These trends are confirmed by in situ Tb and

snow moisture profile measurements. These observations serve as a foundation for

the classification of detected melt as either surface or subsurface.

7.2 Contributions

This dissertation contains several specific contributions in new models and

methods that have made the above observations possible. These contributions are

necessary steps for refining microwave remote sensing over Greenland.

7.2.1 Scattering model for azimuth modulation

A new simple scattering model for snow is presented in Chapter 3, which

provides a solid link between azimuth modulation and the surface slope distribution.

Previous to this work, azimuth modulation had been attributed to sastrugi formed by

katabatic winds, but no models were presented to confirm this. Existing σ◦ azimuth

modulation models are developed for ocean scattering and are derived from Bragg

scattering which occurs on scales significantly smaller than sastrugi.
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7.2.2 Spatial and temporal dependence model

The observation model presented in Chapter 4 for characterization of the

microwave signature contains two new terms for modeling σ◦. The spatial dependence

term is entirely new and reduces the mean RMS modeling by mitigating the effects of

co-location bias. The modeling error reduction is 50% for ERS and 30% for NSCAT.

Modeling of the spatial dependence is especially important in high temporal resolu-

tion studies where the spatial sampling of σ◦ is sparse. The idea for modeling the

temporal dependence of σ◦ was first presented by Wismann et al. [20] and is adapted

here to be included into the microwave signature characterization model. Although

the reduction in the mean RMS error is much smaller for the inclusion of temporal

dependence in the model than spatial dependence, the temporal dependence param-

eter provides important information related to annual accumulation. The use of this

observation model for azimuth modulation is also new over Greenland, being used

previously by Long and Drinkwater [24] to characterize azimuth modulation only in

Antarctica.

7.2.3 Improved methods for tracking temporal change

Based on the observation model in Chapter 4, a new methodology is in-

troduced for tracking short term changes over the ice-sheet. Because the parameters

modeling the observation geometry dependence of σ◦ are relatively stable over time,

they may be assumed to be constant during the interval of short term (less than a

year) temporal change studies. By not re-estimating these parameters at every time

increment, the variance of the signal indicating temporal change is greatly reduced.

A more complex model may be used providing increased accuracy and the possible

temporal resolution is increased. This method is applied for σ◦ melt detection in

Chapter 5. The full observation model also enables enhanced tracking of long term

change through monitoring the various aspects of the microwave signature.
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7.2.4 Physical melt detection model

In Chapter 5 a simple physical model for use in melt detection with Tb and

σ◦ is presented. Previous melt detection methods such as XPGR [2, 4, 5] and the

method used by Mote et al. [11] (Tb-M) have theoretical support, but lack an explicit

model. An alternate method presented by Mote and Anderson [12] is based on an

explicit physical model; however, it is complex and difficult to reproduce. The model

presented herein reduces to a simple data based algorithm so that future investigators

are not required to implement the details of the model. This model is applicable to

σ◦ melt detection as well as Tb.

7.2.5 New method for melt detection using Tb

The simple physical melt model from Chapter 5 is used to define a new

method for melt detection using Tb. This method eliminates unnatural phenomenon

observed in other Tb melt detection methods such as intermittent gaps in the detected

melt during large melt events and melt detected at high elevations while not being

detected at low elevations. This new method for Tb melt detection is also consistent

with results from σ◦ based melt detection which was not the case for previous methods.

This simple physical model results in a melt detection algorithm for σ◦

similar to that used by Wismann [14] for ERS. Small differences exist in the melt

threshold and other implementation details. The use of this melt detection method

with QSCAT is original with this work.

7.2.6 Melt classification framework

In Chapter 6, a framework is introduced for classification of melt as either

surface or subsurface using SSM/I Tb measurements. This method is based on the po-

larization and frequency differences which can be explained based on the fundamental

electro-magnetic properties of snow. This is a simple methodology that is reasonably

well understood to address the issue of quantifying the amount of ablation during

periods of detected melt. Although the use of data fusion of SSM/I channels for melt
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detection is not a new idea, the specific simple methods presented in this dissertation

have not previously been introduced for the purpose of melt classification.

7.3 Publications

Multiple papers are derived from work in this dissertation. The material in

Chapter 3 is currently in review for publication in the Journal of Glaciology and the

material in Chapter 4 is currently in review for publication in the IEEE Transactions

on Geoscience and Remote Sensing. Material contained in Chapter 5 is in final prepa-

ration for submission to the International Journal of Remote Sensing and Chapter 6

contains material in preparation for submission to IEEE Transactions on Geoscience

and Remote Sensing Letters. Additionally, work related to this dissertation has been

published in 9 conference papers [32, 45, 52, 53, 54, 55, 56, 57, 58].

7.4 Future Work

The ideas, methods, and results in this dissertation stand as a framework

upon which to build future studies using microwave remote sensing to track changes

over Greenland. Suggestions for future studies are divided into two areas: further

refinements in the methods presented, and the use of this work in new studies. Areas

for further refinement of methods in this dissertation include

• the use of a different small-scale model such as small-slope approximation in

the azimuth modulation model,

• validation of the azimuth modulation model using in situ measurements,

• improved methods for estimation of the physical model parameters in melt

detection, and

• the development of a melt classification algorithm applicable to large-scale stud-

ies of the ice sheet.

Suggestions for new studies based on methods from this dissertation include
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• the use of the model for characterization of the σ◦ microwave signature and the

physical model-based melt detection methods for the creation of a new updated

facies map of Greenland,

• the development of an automated algorithm for facies classification,

• the use of the full σ◦ signature model in future studies of long and short term

changes over Greenland,

• the implementation of an adaptive model for the microwave filter based on the

use of a Kalman filter with the full σ◦ signature model,

• use of the α-based melt detection methods for the investigation of long-term

trends in changing melt extent and duration using SSMR, SSM/I, and QSCAT,

and

• application of a melt classification algorithm for determining the percent of

detected melt representing surface melt and the percent representing subsurface

melt.

As microwave remote sensing of Greenland becomes more refined, it can be used to

increase the accuracy of Greenland mass-balance studies resulting in more accurate

estimation of the effects of a changing climate on our environment.
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Appendix A

Co-location Bias

In Chapter 3 the scattering model parameters are estimated using ERS

measurements from within a 30 km radius of the study site. Because the surface

is non-uniform, these measurements may exhibit spatially correlated variations or

bias according to the measurement location. The bias is particularly large in the

transition region from the dry snow zone to the percolation zone. This co-location

bias adversely effects the scattering model estimation and analysis in at least two

ways. First, when estimating the scattering model parameters, the co-location bias

may be misinterpreted as azimuth or incidence angle dependence based in part on

the incidence angle, azimuth angle, and location sampling. Second, the co-location

bias may be misinterpreted as an inadequacy of the model in matching the measured

incidence angle and azimuth angle dependence of the σ◦ measurements. Although the

co-location bias cannot be completely eliminated from the data, it may be estimated

in order to negate the adverse effects on the scattering model estimates and analysis.

The co-location bias is observed in the modeling error. Figure A.1 (a) shows

how the modeling error varies with the displacement of the measurement centroid from

the center of the study site. To characterize the dependence of the modeling error on

location offset I use a simple model

ν = s0 + s1(~r · ĝ)

where ν is the modeling error, ~r is the vector from the study site to the measurement

center, and s0, s1, and ĝ are model parameters which are obtained using least-squares

estimation. Fig. A.1 (b) shows the estimation errors versus ~r · ĝ along with the linear
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fit. The plot indicates that at this location, the co-location bias contributes up to ±2

dB to the residual error.

In order to diminish the effects of the co-location bias on the physical

surface model estimates, this bias is estimated and removed prior to estimating the

surface roughness using a simple linear model which is fit to the σ◦ measurements.

The model is

σ◦(θ, φ) = A + Bθ + C1 cos(φ) + S1 sin(φ)C2 cos(2φ) + S2 sin(2φ) + s1(~r · ĝ) (A.1)

where A, B, C1, C2, S1, and S2 are the model parameters. After estimating the

parameters using linear least-squares regression, the co-location bias is removed from

the σ◦ measurements by subtracting s1(~r · g). Azimuth dependence is included in

Eq. (A.1) to minimize the possibility of biasing the co-location bias correction based

on azimuth sampling. At the NASA-U location, co-location parameter estimates

are s1 = 0.092 and 6 ĝ = 263◦. Without correcting for the co-location bias, the RMS

modeling error is 1.29 dB. Correcting for the co-location bias leads to a RMS modeling

error of only 0.40 dB, a significant improvement.
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Figure A.1: Co-location bias of A-model estimates at the NASA-U site. (a) Residual
error versus displacement between the measurement centroid and the center of the
study site. The error magnitude is indicated by the gray-scale. The ĝ vector indicates
the direction of the backscatter gradient. (b) Magnitude of the error versus ~ri · ĝ or
the distance in the ĝ direction of the measurement centroid from the center of the
study area. The line shows the co-location bias model fit to the estimation errors.
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Appendix B

Slope Covariance Matrix Decomposition

The A-model in Chapter 4 assumes a Gaussian distribution of surface

slopes for which the probability distribution function is

P (~s) =
1

2π|R|1/2
e−(1/2)~sT R−1~s

where the covariance matrix is

R = E
{

~s~sT
}

=






rx rxy

ryx ry




 .

E {·} is the expected value operator. The surface slope covariance R has a physical

interpretation in terms of a preferential direction in the surface roughness which can

be found using the singular value decomposition R = UT RU . The diagonal elements

of Σ are the singular values of R, ξ2
1 and ξ2

1 , and represent the maximum and minimum

variance of the surface slope over the range of φ (azimuth angle). The singular values

of R are given by

ξ2 =
1

2

(

rx + ry ±
√

(rx − ry)2 + 4r2
xy

)

.

The directions of the maximum and minimum surface slope variance are obtained by

interpreting U as a rotational matrix

U =






cos φ sin φ

− sin φ cos φ




 .

Setting the off-diagonal terms of UT RU to zero results in the rotation angle

φ =
1

2
arctan

2rxy

rx − ry

(B.1)
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which has two solutions corresponding to the directions of maximum and minimum

surface slope variance.
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