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ABSTRACT

The NASA Scatterometer (NSCAT) was launched August 20, 1996 aboard
the National Space Development Agency of Japan's Advanced Earth Observing Space-
craft (ADEOS). NSCAT's primary mission was to measure radar backscatter over
the world's oceans. These measurements are used to generate estimates of ocean wind
speed and direction. Scatterometers must be calibrated before their measurements are
scienti�cally useful. However, the calibration of NSCAT must be done in orbit. A
new methodology for selecting land regions for use in extended target spaceborne scat-
terometer calibration is �rst developed. Next, a summary of the calibration technique
used in this thesis is presented. While the foundation of this technique was previ-
ously developed theoretically, the work in this thesis is its �rst application for calibra-
tion/validation of an on-line spaceborne radar system. The technique is extended to
estimate simultaneously NSCAT's calibration and the host spacecraft's attitude error.
The attitude references reported by the attitude control system on-board ADEOS are
deemed erroneous. Results of this expanded technique, applied under varying assump-
tions, are presented for consideration. A summary and suggestions for future research
conclude this work.
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Chapter 1

INTRODUCTION

The precise calibration of a spaceborne scatterometer radar directly im-

pacts the scienti�c usefulness of the instrument's measurements. In order to success-

fully ful�ll its mission, the measurement error due to system biases must be mini-

mized. Due to the di�culty of end-to-end calibration of spaceborne scatterometers

before launch, thorough post-launch data calibration analyses are employed. Tradi-

tionally, these calibration analyses attempt to identify the relative biases among the

multiple measurement subsystems associated with each of the instrument's beams.

In past calibration e�orts other system biases, such as those resulting from erroneous

spacecraft attitude information, have not been thoroughly considered. In this thesis,

a new method is presented for simultaneous calibration and estimation of spacecraft

attitude errors for a spaceborne scatterometer radar.

1.1 A Brief Description of the Problem

The primary use of spaceborne scatterometers is to produce measurements

that may be used to estimate the wind speed and direction over the oceans. For this

purpose, the NASA scatterometer (NSCAT) was launched August 16, 1996 aboard

the Japanese spacecraft known as the Advanced Earth Observing Satellite (ADEOS).

In order to estimate wind speed and direction to within the accuracies required for

NSCAT's mission, errors in measurement data due to instrumentation errors need to

be reduced to only a few tenths of a decibel [1].

The bias due to instrumentation errors in uncalibrated measurement data

falls into two categories: absolute and relative. The magnitude of absolute bias is

impossible to determine during post-launch calibration e�orts because no calibrated

targets are available. Relative bias, also known as \interbeam" bias, results from

di�erences among the several \beams" used to collect measurements. NSCAT has six

di�erent antenna which form eight beams (six vertical and two horizontal polariza-

tion). Each of the eight beams has a gain pattern which is di�erent from the others,

leading to di�erent relative biases for each beam. An ideally calibrated scatterometer
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accounts for these relative biases such that under equivalent measurement conditions

each beam measures the same backscattered power from a given ground location.

In the midst of the ongoing post-launch calibration, it was discovered that

the attitude information reported by the host spacecraft ADEOS was inaccurate.

Due to this erroneous attitude information, the orientation of each NSCAT antenna

di�ers from that used to calculate the normalized backscatter response. In e�ect, this

induces a new bias in the measurement data which we refer to as \attitude bias".

This attitude bias di�ers for each beam (due to their di�erent deployment angles)

and may vary throughout the spacecraft's orbit. Calibration of NSCAT thus requires

not only the traditional relative bias corrections, but also corrections to account for

biases associated with these attitude errors.

1.2 Basic Approach

The approach to the relative, or interbeam, calibration problem in this

thesis is adapted from the work of Skouson and Long [2, 3]. To attempt the attitude

error estimation/correction problem, the theory is extended to include bias due to

attitude error. Briey, this approach equates the measured backscatter, ��
meas, with

the sum of the true backscatter, ��
tr, the absolute bias, �

�
abs, the interbeam bias, ��

ibb,

and the attitude bias, ��
att:

��
meas = ��

tr + ��
abs + ��

ibb + ��
att: (1.1)

This is complicated by several factors. Each of these quantities can be a non-linear

function of incidence and azimuth angle. Also, they may be temporal functions of

time of day (diurnal variations) and time of year (seasonal variations). Attitude bias,

as mentioned before, can be a function of orbit latitude. To reduce the complexity

of the problem, surface regions are selected which do not display variation with these

parameters. Only measurement data from so-called \calibration regions" is then used

to form the calibration estimates ��
ibb and ��

att.

1.3 Outline of Thesis

In this thesis, an approach to the calibration of and attitude estimation

for a spaceborne scatterometer is presented. The contents both develop the theoret-

ical foundation of this approach and present its results when applied in the NSCAT

calibration campaign.
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Chapter 2 presents background information on spaceborne scatterometers

and their role in monitoring the ocean's surface winds. NSCAT's design is also dis-

cussed, especially as it impacts measurement calibration.

In Chapter 3, the methodology for the selection of the extended area cal-

ibration regions is discussed. Criteria for selecting such regions and our method of

doing so are presented. As an example, the selection process is stepped through in

detail for the Amazon rainforest region.

In Chapter 4, the technique for using measurement data from calibration

regions to calibrate a spaceborne scatterometer is presented. This technique is a

variation of that presented by Skouson and Long [2, 3].

In Chapter 5, the problem of attitude errors is discussed. An extension to

the calibration technique is developed which simultaneously estimates attitude errors

and interbeam biases.

In Chapter 6, the results of applying the technique are discussed. Trends

are identi�ed which appear in the estimates. Results are also presented of the same

technique applied with slightly di�erent assumptions.

Finally, Chapter 7 summarizes the conclusions of this work. A list of

contributions made follows. Recommendations to future calibration e�orts which

must also estimate attitude errors is also included.

3



Chapter 2

BACKGROUND

In this chapter, background information is presented to aid in understand-

ing the primary focus of this thesis. First, the theory of scatterometers, their role in

ocean wind estimation, and the impact calibration has on the quality of such wind

estimates are discussed. Next, the design of the instrument NSCAT is summarized.

Finally, a summary is presented of what is meant by \calibration" in this thesis given

the context of a spaceborne scatterometer.

The material in this section is intended only as a summary of the pertinent

issues. For a more in-depth discussion, the following references are recommended.

The standard reference on scatterometry and the �eld of remote sensing in general is

Ulaby, Moore, and Fung [4]. Two important papers discussing the design of NSCAT

are Naderi, Freilich, and Long [1] and Long, Chi, and Li [5]. Discussion on the

calibration of previous scatterometers may be found in Bracalente et. al. [6], Long

and Skouson [3], and Lecomte and Attema [7]. Less formal, but readily available,

information on wind scatterometry and NASA's past, present, and planned space-

borne scatterometer projects may (currently) be found on the world wide web at

URL http://winds.jpl.nasa.gov .

2.1 Scatterometers

A scatterometer is a radar designed to measure the backscattered power

from relatively large surface areas. Like all radars, its power measurement is described

by the radar equation:

PS =
G2�2LsA

(4�)3R4Gp

��PT (2.1)

where PS is the backscattered signal power, G is the antenna gain (both transmit

and receive), � is the wavelength of the electromagnetic energy transmitted, A is the

surface area of the observed location, Ls is the system loss, R is the range from the

radar to the observed location, Gp is the processor gain, �
� is the normalized radar

backscatter coe�cient (or normalized radar cross section), and PT is the transmit

power. Note that the radar actually measures a returned power, PR, which is the

sum of the returned signal power and the noise power. Thus, PS is given by PR�PN .
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2.1.1 �� and the X-Factor

The normalized radar backscatter coe�cient, ��, is often refered to simply

as the \backscatter". �� has been normalized by A, the area of the observed location.

The product A�� gives �, the radar cross section (RCS) which is the terminology

used in many other radar applications. � is the area of an isotropic target that would

reect, or backscatter, the same return power, PS, as the observed location does. Not

surprisingly, �, and thus ��, are strong functions of the incidence angle of the radar

beam with the observed location. They are also typically functions of azimuth angle,

surface roughness, and the surface's electrical properties.

In scatterometry, the parameters of the radar equation are often collected

under one term, called the \X-factor":

�� = XPS (2.2)

where

X =
(4�)3R4Gp

G2�2ALsPT

: (2.3)

The desired estimate, ��, is directly related to the instrument's measurement, PS. In

theory, all of the parameters composing X may be calculated or otherwise obtained

in a deterministic manner. However, in reality, they are subject to change and are

only known with limited precision. Errors in the values of the parameters composing

X thus lead to erroneous values of �� [3].

2.1.2 Wind Retrieval

Scatterometer measurements over ocean surfaces may be used to form es-

timates of the near-surface wind speed and direction. Scatterometers primarily de-

signed for this purpose (such as NSCAT) are called \wind scatterometers" and the

process of estimating wind vectors is called \wind retrieval". The ability to retrieve

wind vectors over the ocean's surface is of tremendous value to scientists develop-

ing and applying global numerical weather models to better understand and monitor

the global climate and to predict future weather patterns accurately. Spaceborne

wind scatterometers are uniquely capable of providing �� measurements to retrieve

wind vectors around the globe under all weather and cloud conditions. Further, they

provide data with relatively high spatial resolution and frequent re-sampling [1].

The correlation between wind speed and direction with backscatter over

the ocean's surface is not di�cult to understand conceptually. Wind blowing over
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the surface of the ocean forms waves, \roughening" the surface. The wind speed

determines the extent to which the surface is roughened. Further, strong correlation

exists between the direction of the waves and the direction of the wind. The amount of

energy backscattered and observed by the radar is directly inuenced by the roughness

of the ocean surface and the direction of the waves. In general, at incidence angles

away from normal, smooth surfaces backscatter little energy while rough surfaces

backscatter more. Thus the observed backscatter can be used to estimate the wind.

Because the actual physical processes which correlate wind speed and di-

rection to �� measurements are extremely complex, expressions accurately relating

them are not available. To overcome this shortcoming, empirical models have been

developed based on data collected during previous scatterometer missions. These

geophysical model functions yield a �� value given the wind's speed and direction,

the radar's incidence angle, �, and its relative azimuth angle to the surface, � (as

well as other parameters such as wavelength and polarization). However, the inci-

dence and relative azimuth angles are known and scatterometers provide ��, so the

wind retrieval problem is to then estimate the wind speed and direction based on the

geophysical model function.

For a single measurement (��; �; �) over a given surface location all wind

directions are possible at varying wind speeds. However, when several (3 or 4) com-

pletely error-free measurements of the same surface location are obtained at di�erent

azimuth angles, the wind speed and direction may be reduced to a solution set of up to

four possibilities, or \ambiguities". Algorithms have been developed to select which

of the wind vector ambiguities is most probable. Real scatterometer measurements,

of course, are subject to errors. As a result, selecting the correct ambiguity becomes

even more di�cult. As the error in �� measurements becomes large, the quality of

the wind vector estimates becomes poor [1, 5].

2.1.3 The Need for Good Calibration

Measurement errors fall into three categories: communication error, instru-

mentation error (also known as retrieval error), and geophysical modeling error. The

normalized variability of the �� measurement error, K2

P , is given by the sum of the

squares of the respective normalized component variances [2, 3]:

K2

P = K2

Pc
+K2

Pr
+K2

Pm
: (2.4)
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Geophysical modeling error is a property of the surface and is not e�ected by the in-

strument. Communication error is determined by the instrument design and cannot

be reduced after the instrument is deployed. However, the variability due to instru-

mentation or retrieval error, KPr , results from erroneous values for the parameters

which comprise the X-factor. As mentioned earlier, this leads to biased �� values.

The goal of calibrating a spaceborne scatterometer is to minimize the un-

certainty and remove the bias in the X-factor, thus minimizing KPr and reducing the

overall KP [2, 3]. A well-calibrated scatterometer, then, is able to produce consistent,

temporally stable �� measurements from which high-quality wind vector estimates

may be produced. Calibration is essential to successfully ful�lling the mission of a

wind scatterometer to provide useful data for monitoring global ocean winds and their

impact on our global climate.

2.2 NSCAT - A General Description

NSCAT is a Ku-band scatterometer radar operating at 13.955 GHz (�=2.15

cm). It consists of six identical, dual-pol fan beam antennas approximately 10 feet

long (see Fig. 2.1). Only two of the six antennas actually use both horizontal and ver-

tical polarizations, the other four only use vertical (resulting in a total of 8 \beams";

see Fig. 2.2). The antennas are pointed at the Earth creating two parallel, 600 km-

wide tracks below the spacecraft (one on either side) as it orbits the earth (see Fig.

2.3) [1].

To satisfy the scienti�c requirements of the mission, NSCAT must provide

�� measurements at a spatial resolution of 25 km-by-25 km [1]. To meet this re-

quirement in the cross-track direction, each beam's footprint on the Earth's surface

is separated into 24 \cells" based on the Doppler shift imposed by the relative motion

of the Earth and the satellite. These Doppler cells provide 25 km resolution across

the subtrack. In the along-track direction, the desired 25 km resolution is achieved

by using a very narrow beamwidth (0:4�, 7{15 km on the surface). NSCAT cycles

through its 8 beams sequentially every 3.74 seconds as the spacecraft moves through

its orbit. This results in each beam's footprint moving 25 km every cycle [1].

The timing employed by NSCAT is based on the 3.74 s measurement cycle

of the 8 beams. This allocates 468 ms to each beam. A burst of 25 pulses fol-

lowed by 4 noise-only measurement intervals, each of duration 16 ms, comprises each

beam's measurement frame. The 120 W (peak) transmit pulses are each 5.0 ms long
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Figure 2.1: A model of the NSCAT instrument before attachment to the ADEOS
spacecraft.

followed by an 11 ms receiving period (a 31% duty cycle at 62 Hz PRF). The noise-

only measurements are subtracted from the signal+noise measurements to obtain the

signal-only measurements required by the radar equation [1].

NSCAT's mission also requires it to cover 90% of the ice-free ocean every

two days [1]. This is achieved by its 100.92 minute polar orbit (inclination 98:59�,

altitude 796.75 km, ground speed 6.7 km/sec). This orbit yields 14.27 revolutions per

day and repeats, or retraces itself, every 41 days. Generally, a given surface location

is observed twice every day, once during an ascending pass and again approximately

11{13 hours later during a descending pass of the satellite (or vice versa).

2.2.1 NSCAT Backscatter Measurements

As mentioned above, NSCAT transmits 25 pulses during each beam's mea-

surement frame. Each returned pulse is divided in the frequency domain to form 24
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Figure 2.2: A diagram showing NSCAT's 8 beams associated with its 6 antennas.
The deployment angles of the antennas and the swaths that result are also displayed.

Doppler cells. The frequency information corresponding to each Doppler cell is in-

tegrated from all 25 pulses to form the received signal+noise power (PR) for each

cell [1]. A detailed description of the digital signal processing techniques applied on-

board NSCAT to form PR may be found in [5]. After the noise-only power, PN , is

subtracted, the signal-only power, PS, remains. Estimates of the parameters compris-

ing the X-factor are then applied according to Equation 2.3 to obtain the backscatter,

��, for each cell. Thus, during a single measurement frame for any given beam, 24 ��

values (one for each Doppler cell) are produced.

The scienti�c requirements of NSCAT's mission call for wind vector es-

timates whose accuracy is 2 m/s for speed and 20� for direction. To obtain these

accuracies, NSCAT's �� measurement error must be reduced to only a few tenths of

a decibel [3]. These errors result from inaccuracies in the parameters forming the

X-factor. Additionally, the process of forming the PS values, as described above,

contributes inaccuracy to the calculated �� value.

2.3 Calibration of a Spaceborne Scatterometer

An ideally calibrated scatterometer accounts for all errors which add bias

to its calculated �� values. Two categories of such errors are de�ned: errors that

a�ect all beams equally, and errors that a�ect beams di�erently. The resulting biases
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Figure 2.3: The ADEOS spacecraft with NSCAT mounted aboard orbiting the Earth.
The curly vectors on the Earth represent the wind vectors that are formed based on NSCAT
data. The six antenna footprints are also apparent displaying the di�erent azimuth angles
from which each beam observes surface locations.

of these two types of error sources are called, respectively, absolute bias and relative

bias. Before the instrument is prepared for launch, a series of calibration experiments

are conducted to remove as many biases as possible. However, these techniques are

limited and cannot account for biases that may have changed when the instrument

is placed in orbit and turned on. Thus, post-launch calibration is required [3].

During post-launch calibration, it is impossible to remove absolute bias

because no calibrated targets are available. However, relative biases may still be iden-

ti�ed and removed by carefully examining NSCAT's �� measurement data. Relative

biases may be due to di�erences among the antennas such as the antenna patterns,

the RF path loss to each antenna, antenna pointing error, etc. Also, �lters applied

to each beam's measurements may di�er slightly.

As will be discussed in Chapter 5, during the course of NSCAT's post-

launch calibration, an additional source of relative bias was identi�ed: spacecraft

attitude error. Briey, because the spacecraft's attitude determines how the antennas

are pointed, parameters such as the range to the observed location, R, and the area

of the observed location, A, are incorrect and contribute bias to each beam's ��
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value. Because the antennas are oriented di�erently, the parameters for each beam

are a�ected di�erently leading to di�erent biases imposed on each beam, that is,

relative bias.

Because it is impossible to remove absolute bias after a spaceborne scat-

terometer is launched, the goal of post-launch calibration is to account for and min-

imize relative biases. Under equivalent measurement conditions, a scatterometer so

calibrated will (ideally) measure the same normalized radar backscatter coe�cient,

��, from a given surface location with all of its beams.
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Chapter 3

SELECTING CALIBRATION REGIONS

In this chapter, the process followed to �nd land regions suitable for use

in the calibration process is presented. Criteria are listed which have been developed

in previous calibration studies using land regions. Next, a description of the set of

imagery used to identify and evaluate potential calibration regions is provided. The

methodology employed to measure a candidate land regions' characteristics relative

to the criteria follows. The process is demonstrated with the selection of a calibration

region in the Amazon rainforest. Finally, a map of the world is presented and the

calibration regions used in this thesis are identi�ed along with an analysis of their

validity from the viewpoint of scattering theory.

3.1 Criteria

Kennett and Li studied the use of land targets for scatterometer calibration.

They developed several criteria for selecting land regions to be used in scatterometer

calibration [8]. Their criteria suggested an ideal calibration region have:

� Mean �� known at the frequencies, polarizations, and incidence angles of inter-

est;

� Large spatial extent of the area to allow for a large number of measurements

over a relatively short period of time;

� Spatial variations in �� which are small and well understood;

� Interannual variations in �� which are small and well understood;

� Diurnal variations in �� which are small and well understood;

� Azimuth angle variations in �� which are small and well understood; and,

� Target conditions which remain consistent over the extent of the calibration

time period.
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None of these ideal criteria may be completely satis�ed because a priori

knowledge of these properties does not exist for any region of the earth over any

extended period of time. Indeed, research to collect and expand our understanding

of the backscatter properties of the Earth's land regions at medium and low spatial

resolutions is ongoing. E�orts by Kennett and Li [8, 9], Frison and Mougin [10], and

Mougin et. al. [10] have begun this process. However, Kennett and Li's work was

with SASS (a Ku-band scatterometer) which only collected data for about 3 months.

Frison and Mougin's work was with ERS-1 scatterometer which operated at C-band,

though it covers 3 years of data. As yet, there exists no catalog which de�nes regions

acceptable for calibrating spaceborne Ku-band scatterometers based on the above

criteria.

To overcome the lack of known calibration regions for Ku-band measure-

ments, a simple bootstrap technique is employed to determine acceptable candidates.

After a reasonable quantity of uncalibrated measurements is available, regions ap-

pearing to satisfy the above conditions are sought. Imagery produced using the SIRF

algorithm (briey described below) of all the land regions around the globe are created

and studied to select candidates. Based on how well the above criteria are satis�ed,

such candidate study regions are then used in the calibration process.

3.2 SIRF Imagery

The Scatterometer Image Reconstruction with Filtering (SIRF) algorithm,

developed by Long, Hardin, and Whiting [11], estimates two parameters of the

backscatter response of an illuminated land region. These two parameters have been

shown to well-describe and discriminate land regions with di�erent types of vegetation

[12, 13]. The SIRF algorithm models the land surface's backscatter response by

10 log10�
� = A + B (� � 40�): (3.1)

SIRF uses �� measurements of the same geographic location made at di�erent in-

cidence angles to form estimates of A and B. SIRF is a nonlinear Multiplicative

Algebraic Reconstruction Technique (MART). A detailed analysis of SIRF is found

in [14].

Individual A- and B-values are estimated by SIRF for very small geo-

graphical areas (� 20 km2). The A and B estimates are used as pixel values to

form greyscale images of large land regions. In this manner, so-called A-images and

B-images of all the land regions throughout the world may be created.
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3.3 Finding Land Calibration Targets

SIRF A- and B-images are used to locate extended spatial land targets

whose temporal evolution is considered minimal. In order to evaluate the temporal

evolution of such extended land targets, a time-series of SIRF imagery is created for

the entire world. Each image in the time-series is formed from 10 days of NSCAT

�� measurement data. At the time of this work, data for seven such images was

available. This data extends from September 15 through November 23, 1996 a period

of signi�cant seasonal change for much of the world. Assuming NSCAT's instrumen-

tation is reasonably stable with respect to time, temporally stable calibration regions

can be selected using this data.

3.3.1 Mean and Standard Deviation Images

For each land region around the world, a single (temporal) \mean image"

is created from the seven time-series A-images. The pixel values for this image are

the averages of the corresponding pixel values of the time-series images. By visually

analyzing such mean images, large spatially homogeneous areas with similar A-values

may be identi�ed.

Similarly, a (temporal) standard deviation image is calculated for each

land region around the world. Here, the pixels for this image represent the standard

deviation of the corresponding pixels values of the time-series images. By looking at

such standard deviation images, areas with little change over time may be identi�ed.

Finally, calibration regions are chosen by identifying areas with both similar

mean values and small standard deviations. These are found by �rst visually locating

such areas and then using computer visualization tools to speci�cally identify the

calibration region pixel by pixel.

Use of the �rst and second moments as a means of evaluating the properties

of land regions' stability implies the assumption of a uni-modal distribution. Indeed,

in this context, this assumption is made for every pixel location in the time-series of

SIRF images. Though quite a broad assumption, it seems reasonable for land regions

with stable responses. Unstable regions, on the other hand, may display multi-modal

distributions with �rst and second moments outside the range of acceptable moments

found in stable regions.
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3.3.2 Searching for Calibration Regions in South America

To illustrate the process of selecting a calibration region, we examine the

South American continent which contains the Amazon rainforest. The Amazon rain-

forest region has been suggested in all previous calibration e�orts [3, 6, 8, 15] to be

the most useful land calibration region in the world because of its extensive size, ho-

mogeneous backscatter characteristics (spatial and temporal), and apparent lack of

azimuthal modulation.
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−12

−7

−2

Temporal Mean Image (with JD 289)

Figure 3.1: Temporal mean A-image of South America using all available images.

The �rst step is to create the time series of images covering South America.

Next, the mean and standard deviation images are created (see Figures 3.1 and 3.2).

Careful examination of the standard deviation image reveals a diagonal \spotting"

pattern. Further investigation reveals that these \spots" occur as a result of missing

data in the Julian Day (JD) 289-298 image (see Figure 3.3). NSCAT was turned

o� for a majority of this period of time (6 of 10 days) and so the �� measurement

coverage of the region was signi�cantly reduced. The SIRF algorithm sets pixels with

no measurements over them to a oor value (-32 dB), yielding corrupted pixels in the

the time-series standard deviation image. To overcome this problem, new mean and

standard deviation images are produced without the JD 289 image (see Figs. 3.4 and

3.5).

With the mean and standard deviation images available (Figs. 3.4 and 3.5),

the search for calibration regions begins. Two likely areas are readily apparent to the
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Figure 3.2: Standard deviation A-image of South America using all available images.
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Image for Julian Days 289−298

Figure 3.3: SIRF A-image of Julian Days 289-298. Note the \spotting" which passes
diagonally through the continent.

eye in the images. The Amazon rainforest, as previously suggested, appears to be

an excellent calibration region. Its tremendous size, very low standard deviation over

time, and small range of temporal mean values make it very appealing for calibration.

The second area is found in the southern tip of the continent. This region, called
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Figure 3.4: Mean A-image calculated without the JD 289 image.
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Figure 3.5: Standard deviation A-image calculated without the JD 289 image.

Patagonia, also has a very low standard deviation and small range of mean values

over a signi�cant, though smaller, area.

The exact calibration regions are somewhat arbitrarily selected. They are

de�ned by ranges of mean and standard deviation values. Locations whose mean and

standard deviation images have values in both de�ned ranges are selected to be in

the calibration region. The pixels corresponding to these locations form the so-called
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\calibration mask". These ranges are parametrically varied until a mask deemed

\best" is found. This decision is based primarily on visual inspection, though statistics

of the mask's pixel values are used for comparison. Figure 3.6 shows the mask so

selected for the Amazon rainforest. In this case, \best" is subjectively determined to

be a temporal mean in the range -8 to -6 dB and a temporal standard deviation less

than 0.3 dB.

Amazon Rainforest Mask (unedited)

Figure 3.6: Mask of Amazon rainforest produced by selecting pixels with (temporal)
standard deviation < 0.3 dB and (temporal) mean between -8 and -6 dB.

Two further editing operations are performed on the selected mask. First,

areas determined not to be part of the vegetation region (the Amazon rainforest) are

deleted from the mask. Thus, the mountainous and coastal regions which appear

to have properties similar to the Amazon rainforest's are manually deleted. Second,

because natural phenomena tend to display smooth spatial variations, small \holes"

are �lled and small \islands" deleted by applying a 3-by-3 median �lter to the mask.

Figure 3.7 is the �nal form of the Amazon mask after completing these \editing"

operations enlarged to show detail.

The same procedure is repeated for the Patagonian region. Figure 3.8 is

the mask created for this region. It is based on areas with a temporal mean between

-13 and -11 dB and a temporal standard deviation less than 0.3 dB.

This process continues for all regions of the Earth's land surfaces. The

mean and standard deviation A-images of the entire world are presented in Figures

3.9 and 3.10. Each region of the Earth was carefully studied for suitability as a
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calibration region. A total of seven calibration regions were initially formed, though

two were later discarded when unsuitable properties were discovered. A collection

of these calibration masks is found in Figure 3.11. The �ve calibration regions used

in this thesis are refered to as follows: the Amazon rainforest, Patagonia, the Congo

rainforest, the Indonesian rainforest, and Western Greenland.

Amazon Rainforest Mask (edited)

Figure 3.7: Edited and �nal version of Amazon rainforest mask. Areas outside the
Amazon rainforest have been removed and a 3-by-3 median �lter applied.
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Patagonia Desert Mask (edited)

Figure 3.8: Final version of Patagonia mask based on pixels with mean between -13
and -11 dB and standard deviation < .3 dB.
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Figure 3.9: Mean A-image of the entire world.
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Figure 3.10: Standard deviation A-image of the entire world.
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Figure 3.11: Edited and �nal version of all the calibration region masks around
the world. The regions are the Amazon rainforest, Patagonia, the Congo rainforest, the
Indonesian rainforest, and Western Greenland. Also displayed are two masks which are
not used: Northeast Greenland and Southeast Asia.
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3.4 Calibration Regions: Taking Another Look from the Point of View

of Scattering Theory

Having selected calibration regions based solely on measurement data (in

the form of A- and B- values), it is useful and prudent to review why these would

be suitable before proceeding. Scattering theory describes the interaction of electro-

magnetic waves with many kinds of surfaces and materials. Scattering occurs when

electromagnetic energy traveling in one medium encounters an interface with another

medium. In scatterometry, this is typi�ed by the electromagnetic wave traveling down

through the air and encountering the Earth's surface, vegetation, a body of water, or

man-made structures on the surface.

There are two types of scattering, \surface scattering" and \volume scat-

tering". Surface scattering has a strong dependence on incidence angle at midrange

values (20� � 60�). As the incidence angle increases, the backscattered energy de-

creases rapidly, depending on the surface roughness (rougher surfaces exhibit less

incidence angle dependence). However, volume scattering occurs in the volume of the

lower medium. Thus, it is not as strongly dependent upon incidence angle. In fact,

it is nearly constant until the incidence angle reaches large values [4].

The calibration regions selected consist of three basic land forms. The

Amazon, Congo, and Indonesia are all rainforests. Rainforests are characterized by

a heavy vegetation canopy many meters thick. Greenland's surface consists of layers

of snow and ice. Patagonia is a semi-arid desert with some shrubbery. All of these

regions are relatively at with spatially homogeneous features.

At Ku-band, scattering over the rainforests regions and Greenland is dom-

inated by volume scattering. The rainforest's heavy canopy is also expected to show

some rough surface scattering which is similar in nature to volume scattering. The

canopy signi�cantly attenuates the energy so surface scattering from the ground is

minimized. Further, the random orientation of the scatterers in the canopy (leaves,

branches, etc.) tends to minimize any azimuth angle dependence. Examination of

the �� properties of the Amazon rainforest and Greenland may be found in [12, 16].

Figures 3.12 thru 3.14 display typical ��
meas for rainforests, snow and ice layers, and

Patagonia desert.

The calibration regions selected are thus dominated by volume scattering

and rough surface scattering. These classes of scattering tend to reduce the depen-

dence of �� on the local terrain. The e�ect is a relatively uniform �� response over
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the entire geographical region. Volume scattering also lends to temporal stability

compared to surface scattering as its scattering region (the subsurface) is less prone

to short-term changes compared to the \exposed" interface of surface scattering. Fur-

ther, little seasonal change occurs to the calibration regions during the time of the

data being used. These factors combine to form spatially and temporally homoge-

neous regions suitable for calibration analysis.

Figure 3.12: Measured �
�

meas
from the rainforests of southeast Asia.

3.5 Summary

This chapter has presented criteria and methodology for selecting land

surface regions for calibration of a spaceborne scatterometer. This method uses un-

calibrated data to form time-series of images land surface regions using the SIRF

algorithm. The time-series of images is used to form temporal mean and standard de-

viation images under the assumption that the instrument is relatively stable. Finally,

calibration regions are determined based on common mean and standard deviation

parameters on a pixel-by-pixel basis. This process was demonstrated in detail for the

Amazon rainforest region which is widely considered the most useful for scatterometer

calibration. Four other calibration regions were also presented. Only measurement

data collected over the selected calibration regions is used in the calibration process.
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Figure 3.13: Measured �
�

meas
from the snow and ice layers of Greenland.

Figure 3.14: Measured �
�

meas
from the Patagonian desert region.
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The next chapter presents the theory of calibrating spaceborne scatterometers using

land surface measurements.
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Chapter 4

CALIBRATION USING LAND TARGETS

The objective of post-launch calibration is to remove �� measurement er-

rors due to relative biases, also known as \beam-to-beam" or \interbeam" biases.

Absolute bias, which e�ects all beams equally, is di�cult to quantify as no ground

truth data or calibrated targets are available. The completed interbeam calibration is

de�ned by a table (or set of equations) which lists the calibration correction for each

beam at all incidence angles of interest. Calibration corrections thus obtained are

applied to the original �� measurement data yielding scienti�cally useful, calibrated

�� measurement data.

In the past, two sources have been used to calibrate spaceborne scatterome-

ters: 1) ground stations, and 2) homogeneous land targets. Calibration of the Seasat-

A satellite scatterometer (SASS, 1978) used land targets only [6], while the European

Remote Sensing scatterometer (Escat, 1992) used both sources [7]. This thesis only

uses land targets. However, other members of the NSCAT calibration/validation team

use ground stations and a new technique involving �� measurements over the ocean.

Thus, several approaches have been undertaken to produce calibration corrections for

NSCAT.

In this chapter, an algorithm is derived to calibrate NSCAT �� measure-

ment data based on measurements retrieved over designated calibration land regions.

The development applies the least-squares method of Long and Skouson [3]. A dis-

cussion of the process used to designate these calibration land regions appears in the

Chapter 3.

4.1 Model of �� Response

The �rst step in calibrating the instrument is to develop a model of the

instrument's �� versus incidence angle (�) response, which is also simply referred

to as the \�� response". Because NSCAT's 8 beams are independent measurement

systems, each beam must be modeled independently. As described in Chapter 3,

several calibration regions were selected to estimate the �� versus incidence angle

response of the di�erent beams. Briey, such regions were required to be free of
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azimuth angle dependence, have a narrow range of ��
meas values at 40� incidence

angle (i.e., its A-values), exhibit little change with time in �� at 40�, and be spatially

large. This section presents a simple model that is convenient and e�cient for use in

calibration.

The �� versus � response for each beam is a function of the observation

geometry, the antenna gain pattern, and the surface response. The measurements

��
meas are noisy with variance K2

P�
� 2

meas, further complicating the problem. Following

the lead of Skouson and Long [2, 3], the ��
meas samples are approximated by a deter-

ministic function, �̂�
meas(�), using regression analysis. That is, �̂�

meas(�) estimates a

one-to-one relationship between incidence angle (�) and backscatter coe�cient (��):

�̂�
meas(�) � ��(�): (4.1)

Using regression analysis to determine �̂�
meas(�) introduces several design

issues for the regression procedure. First, what functional form (or model) should be

used to construct �̂�
meas(�)? Second, what order of the function is needed? Finally,

what method should be used to determine the coe�cients that weight the functions?

Skouson and Long [2, 3] proposed use of polynomials in �. These functions

are conceptually easy to understand. The number of extrema for a polynomial is

N � 1, where N is its order. Experience from other scatterometers suggests that

�̂�
meas is a \smooth" function of �. Further, most calibration regions are character-

ized by rough surface scattering which predicts a smooth, monotonically decreasing

�� with incidence angle. Thus, a low-order polynomial is su�cient. Skouson and

Long [2, 3] analyzed polynomial functions of order 2 thru 5 and determined that 4th

order polynomial functions provide a suitable representation of the ��
meas samples and

estimate of ��(�). Higher order polynomials add little new information. Thus, for

each beam b, the �� response is estimated by the polynomial function

�̂�
meas(b; �) = c0(b) + c1(b)� + c2(b)�

2 + c3(b)�
3 + c4(b)�

4 (4.2)

with coe�cients ci(b) to be determined for each beam.

Choosing a method to estimate the coe�cients ci(b) for the polynomial

functions is a matter of selecting an optimization rule. That is, based on what

criterion(a) should the estimate �̂�
meas(�) be formed from the samples (measure-

ments) ��
meas? Many alternatives are possible, including least squares, weighted least

squares, and minimum mean squared error. Skouson and Long [2, 3] used both least
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squares and weighted least squares. In this thesis, the development will assume use of

least squares, though the �nal equations will also be presented in terms of weighted

least squares. Weighted least squares is an attractive alternative to ordinary least

squares because measurements obtained with greater uncertainty (variance) are \de-

emphasized". This leads to an estimate of ��(�) that is less dependent upon erroneous

measurements. However, at the time of this work, no theoretical data was available to

suggest the variance of the measurements, thus making use of weighted least squares

impractical.

Each beam's �� response must be estimated from the �nite set of ��
meas(b; �)

measurements obtained by each beam at a �nite number of incidence angles. Fur-

ther, these ��
meas are individually subject to probabilistic bias and uncertainty. The

bias for each beam is assumed to be the sum of two contributing terms: absolute

bias and interbeam bias. Both of these terms are considered a function of incidence

angle. Absolute bias a�ects all beams equally. Interbeam bias results from physical

di�erences among the 8 beams and is necessarily a function of beam (i.e., the beam

number). Thus, each beam's ��
meas(�) measurements are assumed to be the sum of

the true ��(�) response, the absolute bias, and the interbeam bias. In equation form,

this gives

��
meas(b; �) = ��

tr(b; �) + ��
abs(b; �) + ��

ibb(b; �); b = 1; : : : ; 8: (4.3)

Because it is impossible to di�erentiate absolute bias and true ��, the two terms are

combined forming the e�ective ��:

��
meas(b) = ��

eff (b) + ��
ibb(b); b = 1; : : : ; 8: (4.4)

Each of the terms in Equation 4.4 are now represented using 4th order

polynomial functions, as in Equation 4.2, yielding

�̂�
meas(b; �) = Pmeas(0; b) + Pmeas(1; b)� + � � �+ Pmeas(4; b)�

4 (4.5)

�̂�
eff(b; �) = Peff(0; b) + Peff(1; b)� + � � �+ Peff(4; b)�

4

�̂�
ibb(b; �) = Pibb(0; b) + Pibb(1; b)� + � � �+ Pibb(4; b)�

4

where Pmeas, Peff , and Pibb are the polynomial coe�cients associated with ��
meas(b),

��
eff (b), and �

�
ibb(b), respectively. Equation 4.4 now becomes

�̂�
meas(b) = �̂�

eff (b) + �̂�
ibb(b) + �̂�

err; b = 1; : : : ; 8 (4.6)
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where �̂�
err is the error due to equating the polynomial approximations to the func-

tions of Equation 4.4. Combining Equations 4.5 and 4.6 and collecting coe�cients of

like terms obtains the following set of 40 equations:

Pmeas(c; b) = Peff(c; b) + Pibb(c; b) + Perr(c; b); (4.7)

c = 0; : : : ; 4

b = 1; : : : ; 8:

These equations form the model of the �� response of the instrument. In

order to proceed, some reasonable assumptions must be made on the functions in

Equation 4.4 and extend the assumption to the associated coe�cients in Equations

4.5 and 4.7. For any Earth location, the Peff(c; b) are assumed constant for all beams

at a point in time. For areas (such as calibration land regions) that exhibit little

�� change over a given time period, Peff(c; b) are assumed constant over that time

period. The Pibb(c; b) are assumed constant over the entire Earth (though necessarily

di�erent for each beam) for \long" periods of time (longer than the data set). The

Perr are unknown, but assumed to be small based on Skouson's evaluation [2]. With

the �� response modeled, the technique may now be developed for estimating the

interbeam bias, ��
ibb.

4.2 Derivation of Estimation Algorithm

The estimated interbeam bias function, �̂�
ibb, and its associated coe�-

cients, Pibb(c; b), are only properly de�ned with respect to a reference beam. The

reference beam's �̂�
meas is de�ned to be \correct". This thesis uses beam 7, or an-

tenna 3V, as the reference beam in accordance with instructions from the NSCAT

calibration/validation team. Thus, Pibb(c; 7) � 0 for c = 0; : : : ; 4. Subtracting Equa-

tion 4.7 with b = 7 from itself for all other b gives

Pmeas(c; b)� Pmeas(c; 7) = Pibb(c; b) + Perr(c; b)� Perr(c; 7) (4.8)

or

�Pmeas(c; b) = Pibb(c; b) + �Perr(c; b) (4.9)

b = 1; : : : ; 6; 8:

Because the Perr are assumed to be small, �Perr(c; b) � 0 leaves

Pibb(c; b) � �Pmeas(c; b); (4.10)

b = 1; : : : ; 6; 8:
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Thus, to obtain an estimate of the interbeam bias, �̂�
ibb (again, assumed

constant over calibration regions), coe�cients Pmeas(c; b) must be found that estimate

�̂�
meas over the calibration regions for each beam. By then forming �Pmeas(c; b), an

estimate of the interbeam bias function, �̂�
ibb(�), is given according to Equations

4.10 and 4.5. Calibration of NSCAT measurement data is then done by removing

�̂�
ibb(� = �meas) from the original ��

meas(�) measurements. Coe�cients Pmeas(c; b) are

thus sought that minimize the error in approximating ��
meas(�) with �̂�

meas(�). This

leads naturally to the use of least squares estimation.

4.2.1 Least Squares Formulation

The error in approximating ��
meas(�) with �̂�

meas(�) may be minimized in

the least-square sense by realizing that the same Pmeas coe�cients must be used for

all �� measurements from a calibration region (for a given beam). Equation 4.5 may

be transformed into a matrix equation and written as

��
meas(b) = � �Pmeas(b) (4.11)

where

��
meas(b) = [��

1
(b; �1) � � ��

�
N (b; �N)]

T;

� =

2
66666664

1 �1(b) �1(b)
2 �1(b)

3 �1(b)
4

1 �2(b) �2(b)
2 �2(b)

3 �2(b)
4

...
...

...
...

...

1 �N(b) �N(b)
2 �N (b)

3 �N(b)
4

3
77777775

and,

�Pmeas(b) = [Pmeas(0; b) � � �Pmeas(4; b)]
T

b = 1; : : : ; 8

where N is the number of measurements available for beam b.

To obtain the least squares estimate of �Pmeas(b) in Equation 4.11, the

Penrose-Moore pseudo-inverse of �; �y = (�T�)�1�T, is used to obtain

�̂Pmeas(b) = �y��
meas(b): (4.12)
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Using weighted least squares, the pseudo-inverse is given by

�y = (�TR�1�)�1�TR�1;

where

R = E[��
meas(b)

T
� ��

meas(b)] (4.13)

=

2
66666664

K2

P1
0 � � � 0

0 K2

P2
� � � 0

...
. . . . . .

...

0 � � � 0 K2

PN

3
77777775

K2

P , as mentioned earlier, is the normalized variance of the measurement

error. K2

P is a useful weighting function because it is the normalized variance of

��
meas(�). Using the variance of �

�
meas(�), which is given by K2

P�
� 2

meas(�), would lead to

a non-linear system, so K2

P alone is used. Equation 4.12 may be interpreted as using

R = I to weight the measurements.

Equations 4.11 thru 4.12, as written, are valid for a single calibration re-

gion. Each individual region's �̂�
meas and Pmeas must be formed independently using

the measurements of that region. Additionally, measurements for each region are

obtained at two di�erent times during the day (corresponding to the ascending and

descending passes) and because these two di�erent times are approximately 11{13

hours apart, it is prudent to assume that the e�ective �� response, ��
eff(�), and the

associated coe�cients, Peff(c; b), are signi�cantly di�erent for ascending and descend-

ing passes. Thus, Equations 4.11 thru 4.12 should be formed and calculated indepen-

dently for measurement data from both ascending and descending passes over every

calibration region. The resulting Pmeas(c; b) are then used in Equation 4.10 to obtain

the interbeam bias.

4.3 Summary

This chapter has presented the technique of Long and Skouson for esti-

mating the interbeam bias using calibration regions and measurement data [2, 3]. It

is based on a number of reasonable assumptions that lead to a least-squares formu-

lation (with potential for extending to weighted least squares). The next chapter

extends the technique to estimate the interbeam bias and the spacecraft's attitude

error simultaneously.

31



Chapter 5

ESTIMATING ADEOS ATTITUDE USING NSCAT

MEASUREMENTS

During the initial months of NSCAT's mission, the attitude sensors on-

board the ADEOS spacecraft (host of the NSCAT instrument) were determined to

be inaccurate. Erroneous attitude information was being used to calculate ��. The

resulting �� values thus contained biases. In addition to calibrating the instrument's

interbeam biases, the bias due to attitude errors must also be removed. This chapter

extends the technique of the previous chapter to simultaneously estimate the space-

craft's attitude errors and the instrument's interbeam biases. Results of applying this

technique to actual NSCAT data and variations of the technique are presented in the

following chapter.

5.1 Bias Introduced in �� by Attitude Error

To understand why erroneous spacecraft attitude information introduces a

bias in ��, consider the radar equation:

�� =
(4�)3R4GpPr

�2LsG2ACPt

(5.1)

where R is the slant range to the observed ground area, Gp is the processor gain, Pr is

the power received, � is the wavelength of the carrier frequency, Ls is the system loss,

G is the antenna gain (transmit and receive), AC is the area of the ground observed in

the current Doppler cell, and Pt is the power transmitted. When the radar's attitude

is not accurate, the geometry between the radar and the ground is directly a�ected.

Thus, in the radar equation, R and AC , the range to the measured surface and its

area, are incorrect.

Fortunately, it is possible to calculate the value of R and AC for many

di�erent spacecraft attitudes. These values may then be applied in the radar equation

to produce new �� values. �� is thus a function of the spacecraft attitude (roll, pitch,

and yaw). In NSCAT's case, because the reported attitude is considered erroneous,

the calculated �� becomes a function of attitude error. In e�ect, the attitude error

introduces a bias (in dB space) in the measured ��
meas denoted by ��

att. Further,
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because all 6 antenna (or 8 beams) are on the same spacecraft, all su�er from the

same attitude angle errors (designated er, ep, and ey for roll, pitch, and yaw error,

respectively). Note, however, that each antenna is oriented di�erently and thus the

roll, pitch, and yaw error a�ect each antenna's geometry to the ground di�erently.

The ��
att applied to �

� is thus a function of not only attitude error, but also of antenna

(or beam) number: ��
att(er; ep; ey; b).

Vincent Hsiao, of the Jet Propulsion Laboratory, produced a table of

��
att(er; ep; ey; b) correction values to be added to the original calculated �� in order

to compensate for attitude errors in roll, pitch, and yaw for each beam, respectively

[17]. Hsiao's table provides corrections for attitude errors ranging from �1:6� to 1:6�

in increments of 0:2� in each dimension. Thus, if the spacecraft's correct attitude can

be estimated, Hsiao's table can be utilized to remove the attitude error bias ��
att from

the calculated ��.

5.2 Estimating Attitude Error ��
att

The calibration technique of the previous chapter proved remarkably adapt-

able for the purpose of estimating ��
att (and thus the corresponding attitude errors

er; ep; ey). This section presents the derivation of a method for simultaneously esti-

mating the attitude errors and the interbeam bias corrections, ��
ibb.

Equations 4.4-4.7 are expanded to include the attitude error bias as follows:

��
meas(b) = ��

eff + ��
ibb + ��

att (5.2)

��
meas � �̂�

meas(b) = �̂�
eff + �̂�

ibb + �̂�
att + �̂�

err (5.3)

Pmeas(c; b) = Peff(c; b) + Pibb(c; b) + Patt(c; b) + Perr(c; b) (5.4)

c = 1; : : : ; 4

b = 1; : : : ; 8

where ��
meas is the measured ��, ��

eff is the e�ective true ��, ��
ibb is the interbeam

bias, and ��
att is the attitude bias. In Equation 5.4, Pmeas(c; b) are given by Equations

4.11 and 4.12. For a given calibration region, Peff is assumed constant for all beams

over the entire data set. Pibb is assumed constant for all calibration regions over the

duration of the data set (though necessarily di�erent for each beam). Patt is assumed

to be di�erent for each beam and possibly varying with respect to latitude for both

ascending and descending passes. Perr is unknown, but is assumed to be small as in

Chapter 4.
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5.2.1 Modeling and Approximations

As mentioned earlier, the interbeam bias, Pibb, is only properly de�ned

with respect to a reference and beam 7, or antenna 3V, was used as the reference;

thus, Pibb(c; 7) = 0 for all coe�cients. Following the same procedure as in Chapter 4,

Equation 5.4 is subtracted with b = 7 from itself for all other b, yielding

Pmeas(c; b)� Pmeas(c; 7) = Pibb(c; b) + (Patt(c; b)� Patt(c; 7)) +

(Perr(c; b)� Perr(c; 7)) (5.5)

or,

�Pmeas(c; b) = Pibb(c; b) + �Patt(c; b) + �Perr(c; b) (5.6)

b = 1; : : : ; 6; 8:

Perr is assumed to be small with �Perr(c; b) � 0, leaving

�Pmeas(c; b) � Pibb(c; b) + �Patt(c; b); (5.7)

b = 1; : : : ; 6; 8:

5.2.2 Finding �Patt(c; b)

Denote the roll, pitch, and yaw errors by er; ep; and ey (in units of degrees[
�])

and the corresponding biases added to ��
eff by ��

r ; �
�
p; and ��

y. As a convenient sim-

pli�cation, treat each of the attitude biases as dependent only upon its respective

attitude dimension:

��
r = fr(er); (5.8)

��
p = fp(ep);

and,

��
y = fy(ey):

The total attitude bias correction for each beam, ��
att(c; b) is assumed to be linearly

dependent on ��
r ; �

�
p; and �

�
y ; that is,

��
att = ��

r + ��
p + ��

y : (5.9)

This simpli�cation implicitly assumes a small angle approximation for each of the

attitude angle errors. Attitude angle errors are expected to be less than 1� which
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justi�es this approximation. Combining the previous two equations, the total attitude

bias is a function of the attitude errors, given by

��
att = fr(er) + fp(ep) + fy(ey): (5.10)

Now, making a similar polynomial approximation for each of the attitude bias func-

tions yields

Patt(c; b) = Pr(er; c; b) + Pp(ep; c; b) + Py(ey; c; b): (5.11)

Attitude bias correction data was calculated by Vincent Hsaio as a function

of incidence angle (the reported incidence angle; that is, not corrected for attitude

errors). The relationship between attitude bias and incidence angle is nonlinear.

Figures 5.1 , 5.2, and 5.3 are examples of the correction data for Beam 1 Roll, Pitch,

and Yaw for latitudes near the Equator. The data are separated between ascending

and descending passes because the measurement geometry is di�erent. The actual

data points provided by Hsaio are indicated by dots. The lines are 4th-order least-

squares �ts to the data corresponding to attitude errors of �1:6� to 1:6� in increments

of 0:2�.
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Figure 5.1: Attitude bias correction versus reported incidence angle for Beam 1
Roll Error for latitudes near the Equator (separated for ascending and descending passes).
Hsaio's data points are indicated by dots while 4

th-order �ts to these data are shown
with lines. Each line attempts to �t data corresponding to roll errors quantized in 0:2�

increments. In this example, the ascending passes' �ts are good while the descending
passes' �ts are poor.
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Figure 5.2: Attitude bias correction versus reported incidence angle for Beam 1 Pitch
Error (separated for ascending and descending passes). Hsaio's data points are indicated
by dots while 4

th-order �ts to these data are shown with lines. Each line attempts to �t
data corresponding to pitch errors quantized in 0:2� increments.
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Figure 5.3: Attitude bias correction versus reported incidence angle for Beam 1 Yaw
Error (separated for ascending and descending passes). Hsaio's data points are indicated
by dots while 4

th-order �ts to these data are shown with lines. Each line attempts to �t
data corresponding to yaw errors quantized in 0:2

� increments.

The coe�cients of the least-square �ts to the attitude bias versus incidence

angle curves are then grouped by coe�cient number (0-4), beam (1-8), attitude error
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Figure 5.4: Polynomial coe�cients resulting from 4th-order �ts to attitude correction
data of Figure 5.1 plotted versus roll error for Beam 1. Linear �t approximations to these
polynomial coe�cients are also plotted. The polynomials appear to be well-represented by
linear approximations, in general.

type (roll, pitch, or yaw), and ascending or descending pass. These grouped coe�-

cients are plotted versus attitude error. The coe�cient plots for Beam 1 Roll error

near the equator are found in Figure 5.4. A linear approximation is also included.

The polynomial coe�cients are generally linear versus attitude error and pass through

the origin. Thus, the slope of the linear approximations may be used to map attitude

error to the corresponding attitude bias correction polynomial coe�cients. That is,

Pr(er; c; b) = mr(c; b) � er;

Pp(ep; c; b) = mp(c; b) � ep;

and,

Py(ey; c; b) = my(c; b) � ey
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wheremr(c; b),mp(c; b), andmy(c; b) represent the slope of the linear approximation of

the attitude error versus attitude correction coe�cient values. Equation 5.11 becomes:

Patt(c; b) = mr(c; b) � er +mp(c; b) � ep +my(c; b) � ey:

Normalizing to beam 7, �Patt may now be written:

�Patt(c; b) = �mr(c; b) � er +�mp(c; b) � ep +

�my(c; b) � ey; (5.12)

where

�mr(c; b) = mr(c; b)�mr(c; 7)

�mp(c; b) = mp(c; b)�mp(c; 7)

�my(c; b) = my(c; b)�my(c; 7):

Inserting Equation 5.12 into 5.7, �nally yields

�Pmeas(c; b) � Pibb(c; b) + �mr(c; b) � er +�mp(c; b) � ep +

�my(c; b) � ey (5.13)

c = 0; : : : ; 4

b = 1; : : : ; 6; 8:

The unknowns in this system of 35 equations are the interbeam biases,

Pibb(c; b), and the attitude errors (er, ep, and ey). The attitude errors will be constant

for all coe�cients c and beams b. There are, therefore, 38 unknowns and Equation

5.13 is underdetermined. Estimation of the unknowns in underdetermined systems

may be accomplished with the method of least squares.

5.2.3 Least Squares Formulation

The matrix equation equivalent of equation 5.13 is given by

�Pmeas =M �B (5.14)

where

�Pmeas = [�Pmeas(0; 1) � � � �Pmeas(0; 6) �Pmeas(0; 8) � � � (5.15)

� � � �Pmeas(4; 1) � � � �Pmeas(4; 6) �Pmeas(4; 8)]
T,

�B = [Pibb(0; 1) � � � Pibb(0; 6) Pibb(0; 8) � � � (5.16)

� � � Pibb(4; 1) � � � Pibb(4; 6) Pibb(4; 8) er ep ey]
T
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and,

M =

2
6666666666666666666666666666664

I7 07 07 07 07 �mr(0; 1) �mp(0; 1) �my(0; 1)
...

...
...

�mr(0; 6) �mp(0; 6) �my(0; 6)

�mr(0; 8) �mp(0; 8) �my(0; 8)

07 I7 07 07 07
...

...
...

07 07 I7 07 07
...

...
...

07 07 07 I7 07
...

...
...

07 07 07 07 I7 �mr(4; 1) �mp(4; 1) �my(4; 1)
...

...
...

�mr(4; 6) �mp(4; 6) �my(4; 6)

�mr(4; 8) �mp(4; 8) �my(4; 8)

3
7777777777777777777777777777775
:

(5.17)

To obtain the ordinary least squares estimate of �B in Equation 5.14, the

Penrose-Moore pseudoinverse of M; My , is used to obtain

�̂B = My�Pmeas (5.18)

where

My = (MTM)�1MT: (5.19)

The interbeam biases, as previously stated, are assumed to be constant

over all regions. The �mr;p;y(c; b) are speci�c to latitude bands and are di�erent for

ascending and descending passes. Hsaio's data is separated into three bands: �53�

to �35�, �10� to 5�, and �62� to 72� . Equations 5.14 thru 5.18, as written, are valid

for one region and only for the ascending or descending pass. Fortunately, they may

easily be expanded to allow both ascending and descending passes, multiple regions

from the same latitude band, and multiple latitude bands.

In Chapter 4, weighted least squares was proposed as an alternative method

to determine the Pmeas(c; b) coe�cients. That may again be used here (if KP are

available for the measurement ��
meas(�)). However, to extend weighted least squares

to Equation 5.19, some knowledge of the quality of the Pmeas(c; b) coe�cients must

be obtained. Such a measure of Pmeas(c; b) quality would be used to populate the R

weighting matrix. For simplicity in this work, weighted least squares is not used.
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5.2.4 Expanding to Multiple Regions

Expanding Equations 5.14{5.17 to allow multiple regions, latitude bands,

and/or ascending and descending passes is a matter of carefully and systematically

reorganizing and expanding �Pmeas; M; and, �B.

�Pmeas is not di�cult:

�Pmeas = [�Pmeas(Region 1) � � ��Pmeas(Region N)]T: (5.20)

�B is somewhat more involved. While no additional Pibb(c; b) elements are

needed (because the interbeam bias is constant for all regions, ascending and descend-

ing), another set of er; ep; and ey elements must be appended for each new latitude

band, ascending or descending. If Region 1 and Region 2 are from di�erent latitude

bands,

�B = [Pibb(0; 1) � � �Pibb(0; 6) Pibb(0; 8) � � � (5.21)

� � �Pibb(4; 1) � � �Pibb(4; 6) Pibb(4; 8)

er;asc(R1) ep;asc(R1) ey;asc(R1) er;desc(R1) ep;desc(R1) ey;desc(R1)

er;asc(R2) ep;asc(R2) ey;asc(R2) er;desc(R2) ep;desc(R2) ey;desc(R2)]
T:

However, if a Region 3 is to also be included, but it is from the same latitude band

as Region 1 or 2, then no new attitude error elements need be added.

M is complicated to organize. Each new region (ascending and descending)

is represented by a new set of rows, similar in structure to the others. The leading

columns of identity and zeros matrices must be identically repeated in every case.

The next series of columns contain the \slope" elements. If the new region is from

the same latitude band and in the same pass direction (ascending or descending) as

another region, the other region's slope elements must be repeated here. If the new

region is from a di�erent latitude band or is for a di�erent pass direction, zero matrices

must be included below all other regions' slope elements and the new region's slope

elements must be appended in new columns. Zero matrices must be appended to the

other regions' rows in these new columns. By following these rules, as many latitude

bands' attitude errors as desired (ascending and descending) may be estimated.
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5.3 Summary

This chapter has extended the method of Long and Skouson [2, 3] for the

calibration of spaceborne scatterometers to simultaneously estimate spacecraft atti-

tude error. This extension relies on a set of attitude correction data tabulated by

Hsaio [17] for NSCAT. By making a series of reasonable assumptions, a linear re-

lationship was found between the attitude errors (er, ep, and ey) and the attitude

bias correction coe�cients, Patt(c; b). Because the system of equations thus formed

is underdetermined, the method of least-squares is employed to estimate the attitude

error and the calibration coe�cients. With this theoretical development in place, the

next step is to implement the technique on actual NSCAT measurement data.
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Chapter 6

CALIBRATION AND ATTITUDE ERROR ESTIMATION

RESULTS

In this chapter, the technique derived in the previous chapter is applied for

simultaneously estimating interbeam biases (��
ibb or Pibb) and attitude error corrections

(er; ep; and ey). The goal is to �nd calibration corrections that yield consistent

backscatter response (��
eff ) for all beams. As will be seen, the underlying assumptions

of the previous chapter lead to reasonable calibration and attitude error estimates,

though they are not completely satisfactory. The same basic technique is also applied

using slightly di�erent underlying assumptions in an attempt to better understand the

strengths and weaknesses of this technique. The results obtained from such variations

are also presented.

6.1 Data Sets and Calibration Regions

Several sets of raw NSCAT data from di�erent time periods are used as

inputs to the algorithm. All of the data are categorized by the NSCAT Software

Interface Speci�cation [18] data standards as \L15" (Level 1.5) which contains ��
meas,

� (incidence angle), and ground location data. All of these parameters are necessary

for this evaluation. However, the processing that occurred before L15 (i.e., Levels

0.0 and 1.0) di�ers for some of the data sets and is worthy of note. The most

signi�cant pre-processing di�erence was a result of the early \guesses" of the ADEOS

spacecraft's attitude error by its Japanese ight controllers. Table 6.1 provides a

summary description of the data sets.

Table 6.1: NSCAT L1.5 Data Sets used in the Calibration/Attitude Error Estimation
Analysis.

Data Set Name Time Period Pre-processing Attributes

JD 269-278 JD 269-278 none
JD 279-288 JD 279-288 none
S4-S5 JD 269-282 �0:22� Yaw
JD 319-328 JD 319-328 none
S18-S19 JD 001-014 +0:10� Yaw
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\JD 269-278" and \JD 279-288" are original data for the given days (\JD"

abbreviates \Julian Day" which is the number of the day of the year). \S4-S5"

is data reprocessed (includes Japanese attitude correction guess of �0:22� yaw) for

Julian Days 269 thru 282. Because of their overlapping time periods, it is anticipated

that these three data sets will yield correlated results. \JD 319-328" is original data

for the given days. \S18-S19" is data reprocessed with Japanese attitude correction

guess +0:1� yaw for Julian Days 1 thru 14 of 1997. While \S18-S19" and \JD 319-

328" do not overlap (they are about 47 days apart), \JD 319-328" is the last of the

original data which does not include the Japanese attitude bias assumption. Further,

the Japanese suggest that the yaw bias for \JD 319-328" should also be +0:1�.

As discussed in Chapter 3, areas from the Earth with small di�erence in

�� versus � (incidence angle) response over large areas and long periods of time are

suitable for the calibration technique of this paper. The �ve areas identi�ed in that

chapter as best meeting requirements are the Amazon rainforest region, Patagonia,

the ice sheets of Western Greenland, the Congo rainforest region, and the Indonesian

rainforest region. All �ve regions are used in this analysis toward obtaining NSCAT

calibration bias corrections and ADEOS attitude error estimates.

The rainforest regions (Amazon, Congo, and Indonesia) are grouped in a

single latitude band (bounded by the 10th South and 5th North Parallels) which is

refered to as the \Equatorial Band". The other two regions, Western Greenland and

Patagonia, are in two other latitude bands. The \Greenland Band" is bounded by the

62nd and 72nd North Parallels. The \Patagonian" band is bounded by the 35th and

53rd South Parallels. The three latitude bands are used to extract data from Hsaio's

tables [17] to form functions of the Patt bias coe�cients versus attitude error (er, ep,

and ey) as given in Equations 5.12 and 5.12). Thus, the three Equatorial regions use

the same set of attitude correction information, while Greenland and Patagonia each

use another set.

6.2 Results for Primary Technique

The primary technique to estimate the attitude errors is summarized by

Equations 5.14 thru 5.19. The expansions mentioned in Subsection 5.2.4 produce

independent attitude error estimates of multiple latitude bands for ascending and

descending passes. The corresponding interbeam bias estimate, on the other hand, is

constant for all latitude bands and for both ascending and descending passes. Table
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6.2 lists the attitudes estimated with this technique for several data sets. Attitude

errors for Patagonia, Equatorial regions, and Western Greenland are listed.

Table 6.2: Attitude errors estimated assuming a constant interbeam bias for Patagonia,
Equatorial regions, and Western Greenland.

Data Set Axis Patagonia Equatorial Greenland
Asc Desc �a�d Asc Desc �a�d Asc Desc �a�d

S4-S5 R 1.17 -3.36 4.53 1.34 1.11 .24 2.54 2.24 .29
P .04 -.07 .11 -.09 .18 -.27 -.02 .10 -.12
Y 1.38 1.19 .19 1.46 1.26 .20 1.73 1.45 .28

JD 269-278 R .23 -1.70 1.93 .81 1.23 -.42 1.10 1.44 -.34
P -.04 -.15 .11 -.21 .04 -.25 -.16 -.01 -.15
Y .76 .56 .20 .79 .61 .18 1.07 .89 .18

JD 279-288 R -.07 -4.52 4.45 .28 -.47 .75 2.46 1.25 1.21
P .22 .03 .18 .11 .23 -.12 .08 .29 -.21
Y .87 .85 .02 .98 .80 .18 1.27 1.11 .16

S18-S19 R -1.39 -4.72 3.33 -.57 -.25 -.32 2.15 1.15 1.00
P .19 -.03 .22 .11 .09 .02 -.08 .14 -.22
Y -.40 -.53 .13 -.34 -.50 .16 .02 -.24 .26

JD 319-328 R -.98 6.58 5.60 -0.19 -1.26 1.07 2.02 1.11 .91
P .85 .58 .27 .82 .72 .10 .72 .86 -.14
Y -.07 -.20 .13 -.02 -.13 .15 .26 .10 .16

Table 6.3: Di�erence between attitude errors of di�erent data sets listed in Table 6.2.

Data Set Axis Patagonia Equatorial Greenland
Asc Desc Asc Desc Asc Desc

JD 319-328 P .89 .73 1.03 .68 .88 .87
- JD 269-278 Y -.83 -.76 -.81 -.74 -.81 -.79

S18-S19 P .15 .04 .20 -.09 -.06 .04
- S4-S5 Y -1.78 -1.72 -1.80 -1.76 -1.71 -1.69

JD 269-278 P -.08 -.08 -.12 -.14 -.14 -.11
- S4-S5 Y -.62 -.63 -.67 -.65 -.66 -.56

Perhaps the �rst observation to make from Table 6.2 is that most of the

attitude error values for the latitude bands are not consistent from one data set to the

next. While the attitude is likely to be slowly time-varying, it probably should not

be this erratic, especially for data sets from consecutive or overlapping time periods

(i.e.,\S4-S5", \JD 269-278", and \JD 279-288"). However, the di�erence in attitude

error (pitch and yaw) for several of these data sets is listed in Table 6.3. There, the
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di�erence between data sets (especially in yaw error) is consistent for all three latitude

bands, ascending and descending passes. Also included in Table 6.2 is a column �a�d

in each latitude band which is the di�erence in the ascending and descending passes'

attitude errors, that is, er;asc� er;desc. In both of these \di�erence" measures, several

interesting trends appear. These will be discussed.

A second observation from Table 6.2 is that most of the roll error estimates,

er, are extremely large (> 1�). Roll errors of this size are not considered plausible.

Figures 5.1, 5.2, and 5.3 reveal that the magnitude of the correction due to roll error,

��
r , is much smaller (one or two orders of magnitude) than that due to pitch and yaw

error, ��
p and �

�
y. Hypothesizing that roll error is being used, in e�ect, as a \tweaking"

factor in the least squares algorithm, the roll error is set to zero, and the yaw and

pitch errors are recalculated. The results are presented in Table 6.4. Again, while

the attitude error values do not display much consistency, the �a�d values exhibit

the same pleasing trends as in Table 6.2. This suggests that roll error, er, is not a

signi�cant contributor to the overall attitude bias, ��
att.

Table 6.4: Attitude errors predicted assuming 0� Roll error for Patagonia, Equatorial
regions, and Western Greenland. Attitude errors estimated assuming a constant interbeam
bias.

Data Set Axis Patagonia Equatorial Greenland
Asc Desc �a�d Asc Desc �a�d Asc Desc �a�d

S4-S5 R
w/o roll P -.27 -.40 .13 -.38 -.20 -.18 -.30 -.26 -.04

Y .15 .02 .13 .25 .11 .14 .48 .26 .22

JD 269-278 R
w/o roll P -.05 -.16 .11 -.18 -.02 -.16 -.15 -.03 -.12

Y .27 .11 .16 .32 .15 .17 .59 .43 .16

S18-S19 R
w/o roll P -.12 -.18 .06 -.14 -.08 -.06 -.17 -.04 -.13

Y -.89 -.99 .10 -.82 -.95 .13 -.48 -.71 .23

JD 319-328 R
w/o roll P .04 -.04 .08 .06 .10 -.04 .09 .17 -.08

Y -1.18 -1.25 .07 -1.07 -1.17 .10 -.88 -.99 .11

In general, trends in �a�dYaw are the strongest. However, several interest-

ing trends in �a�dPitch are also worthy of note. The trends in the Equatorial latitude

band have the best consistency followed by those in Patagonian latitude band while

those in the Greenland latitude band appear the weakest. This is probably because
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three calibration regions were used in the Equatorial latitude band and only one in

the other two. Perhaps the Patagonian band's proximity to the Equatorial band leads

to some correlation between their attitude errors and thus correspondingly stronger

trends in its data.

The �a�dYaw (with roll) of Table 6.2 for the Equatorial region follow a

trend in time. In the Equatorial band, data from early in the mission (\S4-S5", \JD

269-278", and \JD 279-288") has a Yaw di�erence of approximately :19�. Later in the

mission (\S18-S19" and \JD 319-328") it decreases to about :15�. In the Patagonian

band, a similar trend appears. Early mission �a�dYaw is also about :19� (excluding

\JD 279-288") while later mission data is :13�. In the Greenland band, similar data

appears, though there are some \outliers". These same trends also appears in Table

6.4 where zero roll is assumed. These observations strongly suggest that the ascending

and descending yaw di�ered throughout the mission.

The �a�dPitch exhibits a similar trend in Table 6.4. Early in the mission,

�a�dPitch � :12� over Patagonia and � �:17� over Amazon. Later in the mission,

its magnitude decreases to :07� and �:05�. These trends suggest that the ascending

and descending pitch estimates reported by the spacecraft also di�ered throughout

the mission.

Information was later obtained indicating that the spacecraft estimated its

attitude using di�erent systems for ascending and descending passes. Based on the

results and observations above, it appears that the two systems contain a non-zero

residual bias which has time-dependent properties. An investigation by representa-

tives of the Jet Propulsion Laboratory (JPL), developers of NSCAT, in February,

1997 suggested that the attitude determination system used by ADEOS could be

subject to errors much larger than originally thought [19]. It was found that the

attitude sensor actually used on the spacecraft was not the instrument JPL analysts

thought was being used. An expert in satellite attitude control reported that diurnal

bias di�erences in yaw attitude of > 0:1� and in pitch attitude of � 0:2� 0:3� were

considered realistic. While the analysis presented in this chapter does not predict ab-

solute attitude errors very well, it does con�rm the magnitude of the yaw and pitch

diurnal errors estimated by this expert.

Though this technique produces a consistent interbeam bias for several

calibration regions, it does not produce consistent results across all latitude bands.

The most consistent regions are the members of the Equatorial band. As noted
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previously, this is probably due to the fact that three equatorial regions are used and

only one each for the other two latitude bands. Recall that this technique estimates

one interbeam bias for the entire orbit. A plot of this interbeam bias is found in

Figure 6.1. The bias previously implemented by JPL is indicated by a dotted line,

the modi�cations suggested here with a solid line, and the combined result with a

dash-dot line.
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Figure 6.1: Interbeam bias (normalized to beam 3V) estimated for data set \S18-
S19" with the estimation technique of Equation 5.18. This interbeam bias is to be constant
over the entire orbit.

To investigate the quality of the interbeam bias estimated using this tech-

nique, the attitude bias corrections, ��̂�
att, are subtracted from the ��̂�

meas to obtain

the sum of the predicted interbeam bias , �̂�
ibb, and the residual error term of Equation

5.6, ��̂�
err, (recall that this term was assumed to be negligible). Some representative

results from di�erent latitude bands are found in Figures 6.2 thru 6.4 of the data set

S18-S19. The distinct di�erences in the ascending and descending passes' interbeam

biases (especially on beams 5V and 5H) are much larger than what can be considered

reasonable for implementation in the NSCAT data processing algorithms.
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Figure 6.2: Equatorial regions interbeam bias (+ error) after attitude bias removal
(normalized to beam 3V). Attitude error calculated using Patagonia, Equatorial, and West-
ern Greenland regions.

This technique used the same interbeam bias for both ascending and de-

scending passes, thus the ��̂�
err residual error term must be signi�cantly di�erent

for the ascending and descending passes. Subtracting the predicted interbeam bias

reveals the residual error ��̂�
err. The results are plotted in Figures 6.5 thru 6.7.

The residual error is greater than 0:1� for much of the elevation angles of interest for

both ascending and descending. In particular, for Patagonia and Western Greenland

the residual error is extremely large. This indicates that constraints assumed on the

system may be too restraining for this simple estimation technique. This hypothesis

may be tested by relaxing some of the constraints to see if the technique can produce

better interbeam bias estimates.
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Figure 6.3: Patagonia region interbeam bias (+ error) after attitude bias removal
(normalized to beam 3V). Attitude error calculated using Patagonia, Equatorial, and West-
ern Greenland regions.

Figure 6.4: Western Greenland region interbeam bias (+ error) after attitude bias
removal (normalized to beam 3V). Attitude error calculated using Patagonia, Equatorial,
and Western Greenland regions.
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Figure 6.5: Residual error (normalized to beam 3V) for the Amazon region after
both the estimated interbeam bias and attitude bias corrections are removed (data set \S18-
S19").
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Figure 6.6: Residual error (normalized to beam 3V) for the Patagonian region
after both the estimated interbeam bias and attitude bias corrections are removed (data set
\S18-S19").
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Figure 6.7: Residual error (normalized to beam 3V) for the Western Greenland
region after both the estimated interbeam bias and attitude bias corrections are removed
(data set \S18-S19").

6.3 Variations of the Technique and Corresponding Results

Because the results of the primary estimation technique do not provide

completely satisfactory interbeam bias estimates, the same basic theory is re-applied

using slightly di�erent assumptions to see if so doing would yield improved results.

The �rst variation is to estimate attitude errors using only the Equatorial regions

and then apply these estimates to the other regions. The second variation allows the

ascending and descending passes to have di�erent interbeam biases.

6.3.1 Single Latitude Band Attitude Error Estimation Variation

In this subsection, a di�erent method of estimating the attitude error is

presented. It is a derivative of the primary technique with the main di�erence being

it only uses data from one latitude band.

Rearranging Equation 5.7,

Pibb(c; b) � �Pmeas(c; b)��Patt(c; b); (6.1)

b = 1; : : : ; 6; 8:

51



Because the interbeam bias is assumed constant for ascending and descending passes,

the r.h.s. of Equation 6.1 may be equated for ascending and descending passes.

�Pmeas;asc(c; b)��Patt;asc(c; b) = �Pmeas;desc(c; b)��Patt;desc(c; b)

Rearranging and applying Equation 5.12,

�Pmeas;asc(c; b)��Pmeas;desc(c; b) = �Patt;asc(c; b)��Patt;desc(c; b) (6.2)

or,

�Pmeas;a�d(c; b) = �Patt;a�d(c; b) (6.3)

= �mr;asc(c; b) � er;asc +�mp;asc(c; b) � ep;asc

+�my;asc(c; b) � ey;asc ��mr;desc(c; b) � er;desc

��mp;desc(c; b) � ep;desc ��my;desc(c; b) � ey;desc :

To �nd the least squares estimate of the attitude error form the matrix

equation

�Pmeas;a�d =M0E (6.4)

where

�Pmeas;a�d = [�Pmeas;a�d(0; 1) � � � �Pmeas;a�d(0; 6) �Pmeas;a�d(0; 8) � � � (6.5)

� � � �Pmeas;a�d(4; 1) � � � �Pmeas;a�d(4; 6) �Pmeas;a�d(4; 8)]
T;

E = [er;asc ep;asc ey;asc er;desc ep;desc ey;desc]
T; (6.6)

and
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M0 =

2
666666666666666666666666664

�mr;asc(0; 1) �mp;asc(0; 1) �my;asc(0; 1)
...

...
...

�mr;asc(0; 6) �mp;asc(0; 6) �my;asc(0; 6)

�mr;asc(0; 8) �mp;asc(0; 8) �my;asc(0; 8)
...

...
...

...
...

...

�mr;asc(4; 1) �mp;asc(4; 1) �my;asc(4; 1)
...

...
...

�mr;asc(4; 6) �mp;asc(4; 6) �my;asc(4; 6)

�mr;asc(4; 8) �mp;asc(4; 8) �my;asc(4; 8)

(6.7)

��mr;desc(0; 1) ��mp;desc(0; 1) ��my;desc(0; 1)
...

...
...

��mr;desc(0; 6) ��mp;desc(0; 6) ��my;desc(0; 6)

��mr;desc(0; 8) ��mp;desc(0; 8) ��my;desc(0; 8)
...

...
...

...
...

...

��mr;desc(4; 1) ��mp;desc(4; 1) ��my;desc(4; 1)
...

...
...

��mr;desc(4; 6) ��mp;desc(4; 6) ��my;desc(4; 6)

��mr;desc(4; 8) ��mp;desc(4; 8) ��my;desc(4; 8)

3
777777777777777777777777775
:

Note: M0 has 6 columns and 35 rows. (6.8)

To obtain the least squares estimate of �Patt;a�d = �Pmeas;a�d, use the

pseudo-inverse of M0, M0y, to obtain

b
E =M0y �Pmeas;a�d : (6.9)

While additional regions may be added to Equations 6.4 thru 6.8, they

must (unlike the original method) all be from the same latitude band. However, for

estimating just one latitude band, this technique is simpler to expand to multiple

regions.
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6.3.2 Results of the Single Latitude Band Attitude Error Estimation

Variation

The middle three columns of Table 6.5 list the attitude errors predicted

for the Equatorial latitude band (�10� to 5�) when all three regions in this band

(Amazon, Congo, and Indonesia) are used. Similar attitude error trends appear here

as in the original technique. While the nominal values of this table appear to vary

without pattern, again notice the strong stability in the �a�d values for pitch and yaw.

These di�erences are approximately �0:40� and +0:20� for the earlier time period of

\S4-S5" and \JD 269-278". For the later data sets, the di�erences are exactly �0:22�

and +:22�. This indicates that the bias between ascending and descending passes

is changing relatively rapidly for pitch, but very slowly for yaw. Again, this result

con�rms the suspicions of JPL's attitude expert.

Table 6.5: Attitude errors predicted using calibration regions from the Equatorial latitude
band only.

Data Set Axis Equatorial Equatorial w/o roll
Asc Desc �a�d Asc Desc �a�d

S4-S5 R 1.84 2.96 -1.12
P -.55 -.16 -.39 .05 .17 -.12
Y 1.53 1.33 .20 .62 .46 .16

JD 269-278 R 1.89 3.24 -1.35
P -.55 -.14 -.41 .13 .26 -.13
Y 1.25 1.04 .19 .35 .19 .16

S18-S19 R 1.58 2.27 -.69
P -.15 .07 -.22 .27 .28 -.01
Y .98 .76 .22 .14 -.04 .18

JD 319-328 R 1.83 2.39 -.56
P -.06 .16 -.22 .36 .35 .01
Y 1.34 1.12 .22 .33 .16 .17

The roll error estimates and �a�d values, as in the primary method, take

on several absurdly large values and do not exhibit any consistent trend. Suspecting

that the roll error is being used as a \�tting parameter", the roll error is again set to

zero. The results of this experiment are in the right-hand three columns of Table 6.5.

The same distinct trend in the pitch and yaw �a�d values appears: the bias between

ascending and descending passes changes rapidly for pitch and slowly for yaw.
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Figure 6.8: Equatorial regions' interbeam bias (normalized to beam 3V) after attitude
bias removal. Attitude error calculated using only Equatorial regions.

While these Equatorial band attitude error results seemed encouraging,

when applied to the other latitude bands (Patagonia and Western Greenland), the

results were not as good as the primary technique. Figure 6.8 plots the interbeam

bias (plus residual error) for the Equatorial regions. We note all three regions have

similar curves, for both ascending and descending passes, as the theory predicts.

Figures 6.9 and 6.10 plot the interbeam bias (plus residual error) for Patagonia and

Greenland when the attitude error estimated by the Equatorial regions is applied.

Unfortunately, the ascending and descending interbeam bias curves di�er signi�cantly

from each other and from the Equatorial curves of Figure 6.8. This implies di�erent

interbeam biases for the di�erent latitude bands which does not seem reasonable. In

a �nal e�ort to obtain good interbeam bias and attitude error estimates, di�erent

interbeam biases are next allowed for ascending and descending passes.
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Figure 6.9: Western Greenland interbeam bias (normalized to beam 3V) after attitude
bias removal. Attitude error calculated using only Equatorial regions.

Figure 6.10: Patagonia interbeam bias (normalized to beam 3V) after attitude bias
removal. Attitude error calculated using only Equatorial regions.
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6.3.3 Another Variation: Di�erent Interbeam Biases for Ascending and

Descending Passes

The technique of this subsection estimates di�erent interbeam biases for

the ascending and descending passes. Two possible justi�cations for this assumption

are, 1) the interbeam bias may vary over a 24 hour period due to diurnal variations of

the surface's �� response, and 2) the temperature of the NSCAT instrument may vary

when it is in and out of the Earth's shadow causing di�erent antenna and instrumental

responses.

To develop governing equations for this variation, two modi�cations to

Equations 5.14 thru 5.19 are necessary. The matrix M of Equation 5.17 must be

modi�ed. Because separate interbeam balances are sought for ascending and de-

scending passes, a separate set of identity and zero sub-matrices is necessary for each.

Second, the vector �B must have a second set of Pibb(c; b) elements included in order

to hold values for the ascending and descending passes' interbeam biases.

Table 6.6 lists the attitude errors estimated by this procedure. The attitude

error estimates produced when roll error is restricted to zero are listed in Table 6.7.

Table 6.6: Attitude errors predicted for Patagonia, Equatorial regions, and Western
Greenland. Attitude errors estimated simultaneously with a di�erent interbeam bias for
ascending and descending passes.

Data Set Axis Patagonia Equatorial Greenland
Asc Desc �a�d Asc Desc �a�d Asc Desc �a�d

S4-S5 R 3.4 -10.0 13.4 4.3 -6.9 11.2 4.8 -6.8 11.6
P 0.1 0.1 0.0 -0.1 0.1 -0.2 0.0 0.2 -0.2
Y -4.7 -3.8 -0.9 -4.5 -3.6 -0.9 -4.3 -3.5 -0.8

JD 269-278 R 3.5 -7.0 10.5 5.3 -5.4 10.7 4.4 -6.2 10.6
P .3 .3 0.0 0.0 .3 -.3 .2 .4 -.2
Y -7.9 -4.6 -3.3 -7.6 -4.5 -3.1 -7.5 -4.3 -3.2

S18-S19 R 2.4 -8.1 10.5 5.4 -4.5 9.9 5.2 -6.2 11.4
P 2.2 -.6 2.8 1.9 -.7 2.6 1.8 -.6 2.4
Y -11.6 -8.7 -2.9 -11.2 -8.5 -2.7 -11.0 -8.6 -2.4

JD 319-328 R 4.5 -11.7 16.2 2.4 -8.1 10.5 3.2 -8.6 11.8
P 1.5 1.1 .4 1.4 1.0 .4 1.3 1.2 .1
Y -7.9 -11.0 3.1 -7.6 -10.7 3.1 -7.5 -10.8 3.3

There are two very evident features about the data in these tables. First,

the attitude error values are extremely large, approximately an order of magnitude

larger than those produced by the previous two techniques. The interbeam bias
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Table 6.7: Attitude errors predicted with 0� roll error for Patagonia, Equatorial re-
gions, and Western Greenland. Attitude errors estimated simultaneously with a di�erent
interbeam bias for ascending and descending passes.

Data Set Axis Patagonia Equatorial Greenland
Asc Desc �a�d Asc Desc �a�d Asc Desc �a�d

S4-S5 R
w/o roll P -0.2 0.6 -0.8 -0.2 0.7 -0.9 -0.2 0.6 -0.8

Y -2.0 -5.4 3.4 -1.8 -5.2 3.4 -1.6 -5.2 3.6

JD 269-278 R
w/o roll P -1.4 1.1 -2.5 -1.6 1.2 -2.8 -1.6 1.1 -2.7

Y -5.0 -4.6 -.4 -4.9 -4.4 -.5 -4.7 -4.3 -.4

S18-S19 R
w/o roll P .7 1.0 -.3 .7 1.0 -.3 .6 .9 -.3

Y -7.8 -8.8 1.0 -7.6 -8.6 1.0 -7.4 -8.7 1.3

JD 319-328 R
w/o roll P 1.5 2.1 -.6 1.5 2.1 -.6 1.4 2.0 -.6

Y -5.5 -12.2 6.7 -5.3 -11.9 6.6 -5.2 -12.1 6.9

estimates associated with these attitude error estimates are also an order of magnitude

larger than than that of the other two techniques.

Second, the nominal and di�erential attitude error estimates are, in almost

all cases (except for roll), very similar for all of the latitude bands across a given data

set. This had not been observed for the other techniques, though it seems rather

reasonable. As an interesting twist, the patterns seen in the other techniques do not

appear here. For instance, the roll/no-roll columns do not correspond and there are

few if any correlations between parameters of di�erent data sets.

While the extremely huge attitude errors and interbeam biases estimated

by this technique declare them unusable, it does produce very consistent attitude

errors within each data set. Finally, note that again in this technique, even with its

loosened constraints on ascending and descending interbeam bias errors, signi�cant

non-zero �a�d values are obtained.

6.4 Summary

This chapter has presented the attitude error and interbeam bias estimates

produced by the model of Equations 5.14 thru 5.19. While the absolute attitude errors

do not appear to follow discernible patterns, the di�erence between the ascending and

descending passes' attitude errors, �a�d, does have a distinct trend. This di�erence
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changes markedly in yaw from the early data sets to the later ones. It also demon-

strates a change in pitch. A JPL attitude expert suggested that diurnal variations in

attitude would be signi�cant. The magnitude of �a�d con�rms his assessment.

Following the original technique's results, the results of two variations with

slightly di�erent assumptions were presented. Both variations demonstrate signi�-

cant di�erences in the attitude errors and interbeam biases for the ascending and

descending passes. These di�erences support the conclusions of the original tech-

nique. However, the variation techniques demonstrate little, if any, improvement in

the attitude error estimates. Thus, it appears the attitude errors and interbeam bi-

ases estimated by the original technique are representative of the estimate quality of

which the general method is capable.
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Chapter 7

CONCLUSIONS

This chapter summarizes the e�orts of this thesis. A list of contributions

made to the �eld of spaceborne scatterometry is presented. Suggested topics for

further research in spaceborne scatterometer calibration conclude this chapter.

7.1 General Summary

This thesis has presented an approach for the calibration of and attitude

error estimation for a spaceborne scatterometer using measurements over land. A

methodology for selecting land regions to use as calibration targets has also been

presented. The calibration approach is based on the technique previously developed

by Long and Skouson [3]. This thesis extends their work in two important ways.

First, measurement data from multiple calibration regions and multiple

latitude bands are simultaneously used to form the estimates. This extension forces

the interbeam bias estimates produced by the algorithm to be constant throughout

the instrument's orbit. An alternative approach explored the possibility of di�erent

interbeam biases for the ascending and descending passes.

Second, a simple approach to estimating the scatterometer's host space-

craft's attitude error has been presented. This approach separated the measurement

bias caused by attitude error into contributions from roll, pitch, and yaw error. The

capability of the technique to estimate the absolute attitude errors was very limited.

The attitude angle errors produced were not consistent from data set to data set (i.e.,

in time). However, the di�erence between the ascending and descending errors, �a�d,

for pitch and yaw displayed a distinct trend under every variation of the approach

analyzed. The magnitude of these �a�d values consistently change over the 3-4 month

period of the data set. Further, their magnitudes con�rm the assessment provided to

JPL by an expert in satellite attitude control.

7.2 Contributions

This thesis has made three primary contributions to the �eld of spaceborne

scatterometry. First, a new methodology for selecting calibration regions has been
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developed. Second, the technique of Long and Skouson [3] has been applied to an

on-line, uncalibrated scatterometer. Third, an approach to estimating a spaceborne

scatterometer's attitude using its measurements has been developed and applied.

These contributions have been important in NSCAT's calibration/validation check-

out phase and will be of interest in future calibration e�orts.

The methodology for selecting calibration regions as presented in Chapter

3 is a contribution which may be useful in future spaceborne scatterometer e�orts.

Finding regions to use in a calibration e�ort is an important �rst step in the process.

Using regions which have backscatter responses that are stable in time and constant

over large spatial areas is a desirable approach. This methodology provides a means

of identifying such areas. During the course of this work, areas previously identi�ed

as good calibration regions have been con�rmed as such (i.e., the Amazon and Congo

rainforests [3, 8]). Further, new regions have been identi�ed and successfully used in

this thesis (i.e., Western Greenland and Patagonia). All of the regions selected by

this methodology are also reasonable choices from a scattering point of view. This

methodology also has application in the larger task of cataloging the backscatter

properties of the land regions of the Earth.

The application of the calibration method of Long and Skouson [3] has been

applied for the �rst time to an on-line scatterometer during its calibration/validation

check-out phase. The results obtained using this method were inuential in deter-

mining the calibration corrections applied to NSCAT in both the preliminary and

�nal calibration assessments. Future multiple-antenna scatterometers may �nd this

technique of value for their calibration requirements.

The calibration technique has been extended to estimate the scatterome-

ter's attitude using its measurements over calibration regions. There has never been

an attempt to use scatterometer measurements to estimate the spacecraft's attitude.

While the e�ort in this thesis was not entirely successful, it was able to con�rm the

magnitude of diurnal yaw and pitch variations estimated by a satellite attitude expert

[19]. This suggests that the usefulness of the information content in scatterometer

measurements over land regions is worthy of further investigation.

7.3 Future Work

As suggested in the previous section, the major contributions of this thesis

all lead to possible areas of future research. With the approaching launch of the
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QuickScat scatterometer in November, 1998 and also the SeaWinds scatterometer in

2000, the techniques developed and applied here may be adapted and re�ned for use

in their calibration phases.

The methodology for selecting calibration regions could be extended in

many directions. Probably most useful would be to form a database of the backscatter

mean and standard deviation of the entire world over time windows appropriate for

discovering seasonal and interannual variations. The process of forming masks could

also be automated or applied using pattern recognition techniques with vegetation

databases instead of visual inspection. A combination of these two extensions might

monitor changes in vegetation regions over time.

The method of estimating the spacecraft's attitude using the scatterome-

ter's measurements may be re�ned in several ways. As mentioned during the deriva-

tion, developing a method to use weighted least squares instead of ordinary least

squares would minimize the estimates' dependence on erroneous measurements. The

current method is a linear approach. Removing the assumptions and simpli�cations

which allow this linearity will likely lead to attitude estimates of higher quality. Of

course, the estimation procedure will become non-linear and more complex in the

process. One such simpli�cation is assuming the attitude bias contributed from each

axis (roll, pitch, and yaw) is independent of the other axes. They should be combined

using the appropriate rotation scaling matrices. Another approach may be to calcu-

late the attitude bias by calculating the change in the X-factor for a given attitude

error. A more rigorous approach to estimating the attitude may produce attitude

error estimates which are more consistent than those obtained with the method of

this thesis.
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