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ABSTRACT

Concepts for Rapid-refresh, Global Ocean Surface Wind Measurement Evaluated Using
Full-system Parametric Extrema Modeling

Patrick Walton
Department of Electrical and Computer Engineering, BY U
Master of Science

Satellite wind vector data is integral to atmospheric models and forecasts. Cur-
rently, the limited refresh rate of global wind vector measurement systems makes it difficult
to observe diurnal variation of mesoscale processes. Using advancements in the underlying
subsystem technologies, new satellite wind scatterometers may be possible that increase tem-
poral resolution, among other performance metrics. I propose a method for parametrically
modeling the extreme performance range of a complex system. I use this method to develop
a model of the space of possible satellite wind scatterometer designs. I validate the model
using point designs of heritage scatterometers. Finally, I present two example concepts for
constellations of cooperative satellite wind scatterometers capable of measuring global ocean
surface vector winds every hour for the same total cost as a single heritage scatterometer.

Keywords: scatterometer, satellite constellations, CubeSat, ocean vector winds, remote sens-
ing, parametric modeling, remote sensing
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Chapter 1

Introduction

Satellite scatterometers produce microwave Earth-observation data well-suited for
measurement of numerous geophysical properties [1]. Scatterometers are capable of measur-
ing wind speed and direction (wind vectors) near the ocean surface, ice coverage, vegetation
coverage, soil moisture, and average wind vectors over sand and snow [2]-[6].

Improvements in near-surface ocean vector wind measurements enable scientists to
better observe and model weather and climate processes. These improved models enable
more reliable forecasting, which provides value to various sectors dependent on accurate
weather and climate information, including industry, agriculture, water management, trans-
portation, and tourism [7].

Satellite scatterometer observations of near-surface ocean vector winds have many
advantages over in-situ measurement systems, such as instrumented ships and buoys, thanks
to their ability to produce global mappings. However, the current constellation of scatterom-
eters is limited to spatial resolutions of tens of kilometers, revisit time of tens of hours, wind
speed accuracies of multiple meters per second, and wind direction accuracies of tens of
degrees. In Chapter 2, I discuss the fundamentals of scatterometry and improvements that
led to the primary scatterometer architectures used in today’s constellations.

Current scatterometer temporal resolutions are particularly limiting. In oceanogra-
phy and atmospheric science planetary boundary layer processes occurring on timescales
shorter than several days cannot be observed and modeled due to signal aliasing [8]. This

blindness on short timescales limits the accuracy of models used for weather forecasting.



The lack of frequent data for initial conditions in numerical weather predictions also limits
weather forecast accuracy. Numerical weather models that couple the ocean and atmo-
sphere are more sensitive to satellite scatterometer measurements than any other type of
satellite measurement, but unfortunately, scatterometer data is among the least plentiful [9].
This suggests that increasing scatterometer data is one of the greatest areas for potential
improvement of weather forecast accuracy.

Limited-accuracy weather forecasts are responsible for loss of property, loss of human
life, and sustained poverty. In the United States, hurricane warnings, the most certain
cyclone advisory issued by the National Weather Service, are only issued 36 hours before
landfall [10]. Early forecasts are uncertain, so a given region may fall in the cone of possible
landfall many times each hurricane season. Only the affluent can afford to prepare and
evacuate before the advisory is either upgraded to a hurricane warning or deemed a false
alarm. Those of poor socioeconomic status, without the means to take off time to secure
property and evacuate, are hit the hardest [11]. As a result, shortfalls in hurricane warnings,
and other extreme weather advisories, result in millions more people entering poverty [12]
and extreme weather continues to take thousands of lives per year [13]. Due to climate
change, extreme weather is becoming increasingly intense and erratic [14], leading to a

rapidly increasing annual cost of extreme weather [15].

1.1 Thesis Statement

Scatterometers can be miniaturized for use in a constellation capable of affordably measur-
ing ocean vector winds with global, hourly refresh. Hourly ocean vector wind measurement
enables advanced observation, modeling, and forecasting of the weather which can save
property and lives. This thesis develops a new parametric extrema modeling technique for
scatterometer system design to explore potential new architectures that can exploit technol-
ogy advancements to inexpensively meet the need for hourly ocean wind measurements. In
this thesis I present a taxonomy of scatterometer architectures, derive the model, compare
the model results with previous scatterometer missions, and present two architectures for

low-cost scatterometer systems capable of measuring global, hourly ocean vector winds.



1.2 Summary of Results

The primary result of this work is the full-system parametric extrema model of satellite wind
scatterometers given in Chapter 5. A check of the validity of this model was performed using
the actual design and performance parameters of existing scatterometers, as described in
Chapter 6. As a secondary result, Chapter 7 provides designs for satellite wind scatterometers
that are enabled by advances in scatterometer subsystem technologies. Finally, this work
resulted in the taxonomy for modes of cooperation between scatterometer frontends and
between scatterometers, described in Chapter 4, and a novel methodology for parametrically

modeling complex systems, given in Chapter 3.



Chapter 2

Background

Scatterometry is an important application of radar remote sensing, most prominently
applied in satellite wind vector measurement. Experimentation and development between
1970 and 2000 has established two primary design architectures for satellite scatterometry:
fan beam and scanning-pencil beam [1]. More recently, a hybrid design, the rotating fan

beam scatterometer, has been developed [16].

2.1 Ocean Surface Vector Wind Scatterometry

Scatterometers are active microwave radars used to measure surface properties by measuring
the fraction of the surface-scattered signal returned to the radar receiver, known as the radar
cross-section, o. The normalized radar cross-section, og, is the key characteristic of the

response of a surface to radar reflections. It is defined as
oo=0/A., (2.1)

where A, is the area of the resolution cell [1].

The normalized radar cross-section obtained when observing the ocean surface can
be used to determine the near-surface wind speed and direction over the ocean. Friction
caused by air flow over the ocean surface produces turbulence. This turbulence results in

capillary waves, or Bragg waves, across a wide spectrum of wavelengths. As these waves



; Satellite Scatterometer

Figure 2.1: Wind vector measurement geometry. Incidence angle, €, is measured from the
surface normal to the look direction. azimuth angle, v, is measured from the surface pro-
jection of the look direction to the wind direction. ® is the wind direction measured from
North, and U is the wind speed. Orbital altitude, h, is measured from the nadir point to
the spacecraft, and look elevation angle, ¢, is measured from the altitude line to the look
direction.

dissipate energy through viscosity, they come into equilibrium with the wind. As a result,
the process by which they scatter electromagnetic signals, called Bragg scattering, can be
used to find the wind over the surface. This scattering increases with higher wind speeds
and varies sinusoidally with the angle between the look direction and the wind direction (see
Fig. 2.1) [1], [3].

The relationship between oy and wind vector is described by the geophysical model
function (GMF), expressed as o9 = f(|U], x,0,\,pol,...), where |U| is the wind speed, 0
is the observation incidence angle (Fig. 2.1), A is the radar wavelength, pol is the radar
polarization, and “...” represents neglected variables. The azimuth angle between the look
direction and the wind direction is y = — ®, where 7 is the azimuth angle (Fig. 2.1) and ® is
the wind direction, both measured clockwise from North. Typically, the GMF is empirically
developed, and tabulated for use in the wind retrieval process [17], [18].

Wind cannot be determined from a single o9 measurement due to the sinusoidal
variance of og with y (see Fig. 2.2). Multiple, information-diverse measurements, called
flavors, are required. Typically, information diversity is achieved by taking measurements

from multiple viewpoints with varying azimuth angle, y, but can also be achieved using
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Figure 2.2: Possible wind vector solutions for a single, noise-free oy measurement, obtained
at the following azimuth angles and polarizations using the NSCAT-1 GMF. Blue/Solid: 0°,
v-pol. Blue/Dashed: 25° v-pol. Yellow/Solid: 25°, h-pol. Yellow/Dashed: 90°, v-pol. Black
arrows mark the four solutions for the pair of 45° and 90° op measurements. The black
dot at left indicates the true wind speed and direction, found using all four measurements.

Reproduced from Naderi et al. [2].
&
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Figure 2.3: Illustration of the defining characteristics to the conventional architectures for
satellite wind scatterometry including the antennas, scanning pattern, footprint, and ground
swath of each. a) Fan-beam scatterometers (e.g., NSCAT) scan like angled push-brooms on
the ground requiring long, rectangular antennas. b) Scanning pencil-beam scatterometers
(e.g., SeaWinds) cover concentric helices on the ground using rotating, dish antennas. c)
Rotating fan-beam scatterometers (e.g., RFSCAT) scan like a lawnmower on the ground,
covering concentric helices with long, rotating, rectangular antennas.

varying incidence angles, polarizations, and/or frequencies. With two, collocated, near-
simultaneous, azimuth-diverse measurements, the GMF has four solutions, indicated by the
black arrows in Fig. 2.2. In practice, additional steps may be required to select a single

direction due to noise and the near-symmetry of the GMF with respect to direction.



2.2 Current Scatterometer Architectures

The first satellite scatterometer, RADSCAT on Skylab, successfully detected variance in
the physical structure of the ocean surface by measuring the scattered signal [19]. But
RADSCAT was unable to resolve individual wind vector measurements with its single dish
antenna, because it obtained only one flavor. RADSCAT’s successor, the SASS instrument
on the SeaSat satellite, measured wind vectors with a fan-beam architecture, which uses
long-thin antennas to scan the surface in a push-broom-like pattern. RADSCAT only had
two antennas for each side, so it only acquired two flavors for each wind vector cell. This
required complicated post-processing to reduce ambiguity in wind retrieval [20)].

Follow-on fan-beam scatterometers, including Europe’s ESCAT scatterometer on the
ERS-1 and ERS-2 satellites [21] and NASA’s NSCAT scatterometer on the ADEOS-1 satellite
2], demonstrated unambiguous wind vector measurement using three fan-beam antennas
per swath (Fig. 2.3a). They used on-board digital processing to subdivide the swath, and
collocation of oy measurements to form wind vector cells on the ground [2], [22].

Two additional architectures have since been demonstrated. In 1999, NASA launched
the SeaWinds instrument on the QuikSCAT satellite to demonstrate the scanning pencil
beam architecture, which measures wind vectors by circularly scanning two offset pencil
beams [23] (Fig. 2.3b). In 2018, China and France launched the RFSCAT instrument on the
CFOSAT satellite to demonstrate the rotating fan beam concept (Fig. 2.3c), which scans
long, thin antennas circularly to produce a lawnmower-like pattern on the ground [16].

Subsequent scatterometers, flown by Europe (ASCAT), India (OSCAT), and China
(HY-2a), have been patterned after and improved on these established approaches. For
example, the ASCAT instruments, aboard Europe’s MetOp satellites, improve on the ESCAT
instruments with continuous operation, a doubled swath, greater sensitivity, and finer wind
vector resolution [24]. A summary of current, past, and planned scatterometers is given in
3].

The defining characteristics of each architecture include the antenna beam shape and
corresponding ground swath pattern. These characteristics are illustrated for each architec-

ture in Fig. 2.3. Each approach has tradeoffs, especially in the antenna, wind retrieval, and



swath. Fan-beam antennas are difficult to stow, deploy, and calibrate, but they are more
reliable after deployment since they have no moving parts. Scanning pencil-beam dish an-
tennas are compact and stable, but they require rotary bearings, which are liable to fatigue
and require momentum compensation. Scanning pencil beam scatterometers typically have
greater signal-to-noise ratio than fan beam scatterometers, but have shorter dwell time due
to scanning. Rotating fan beams generally combine the benefits and challenges of both.

While fan-beams illuminate the surface at a large range of incidence angles, scan-
ning pencil beams observe at a couple of incidence angles only. A complete GMF must be
developed for each incidence angle, so scanning pencil beams require less effort in model
development. Scanning pencil-beam and rotating fan beam scatterometers provide valuable
measurements in the nadir region, where fan-beam scatterometers have a gap with incidence
angle less than the minimum allowable 18°. The rotating fan beam may provide greater wind
direction accuracy, since it acquires more near-simultaneous, azimuth-diverse measurements
[16].

Scatterometers typically measure the backscatter, the signal scattered back in the
direction of the transmitter. Reflectometers measure the signal scattered in a direction
away from the transmitter. Reflectometers require a transmitter and a separate receiver
at a different location. The most common type of reflectometer is the global navigation
satellite system (GNSS) reflectometer, or GNSS-R, which measures GNSS signals that have
been scattered by the ocean surface. GNSS-reflectometers exploit the power and ubiquity
of GNSS signals. As a result, they require much less power than scatterometers. However,

reflectometers have historically been limited to narrow swath widths. Current reflectometers

include NASA’s CYGNSS train [25] and Spire Global’s CubeSat constellation [26].

2.3 An Overview of Traditional System Design
Methodologies

In recent decades, technologies used by satellite wind scatterometers have advanced much

more rapidly than the scatterometers themselves, due in part to the complexity of satellite



Requirements Subsystgln Production
Design Design

Figure 2.4: Tlustration of the flow of a typical system design process [27]. Design flows in
sequence from stages on the left to stages on the right. Iteration typically occurs if a next-
generation product is approved after production of the first, as illustrated by the yellow,
negative-feedback arrow.

scatterometer systems. These advances can enable improved scatterometer designs that
diverge from traditional classes of designs.

Typically, a system designer creates system requirements, generates system concepts,
models them, selects the most promising concept, designs and models the subsystems, refines
the system, and produces it [27]. This process flow is illustrated in Fig. 2.4.

Ideally the designer takes information gained at each step and goes back to prior
steps to iterate, making design decisions with better foresight. Divergent concepts require
this frequent iteration, because they often involve unforeseen factors. In practice, schedule
and budget constraints often prevent this, because simulations are time-intensive to develop
and run. As a result, iteration primarily takes place only if development of a next-generation
system is approved after the first is completed. This is the “innovator’s dilemma” [28]. The
risks of developing divergent designs incentivize designers to largely repeat designs that
worked in the past, potentially missing many optima in the design space that enable better
scatterometer architecture designs.

Satellite scatterometry has a rich history of innovation that has enabled it to pro-
vide extensive value to Earth science, situational awareness at sea, and weather forecasting.
However, better temporal and spatial resolution and better accuracy are required for many
applications and prevented by the cost of scatterometers. Many recent improvements in
small satellite rideshare, miniaturized electronics, deployable mechanisms, and materials
have yet to be incorporated into scatterometry. Incorporating these advances using modern
approaches to rapid, iterative technology development may yield powerful improvements to
scatterometer performance, unlocking new capabilities in the fields dependent on scatterom-

eter data. This is the goal of my thesis.



Chapter 3

Full-system Parametric Extrema

Modeling

For complex hardware systems, engineers often innovate too slowly. To innovate
faster, they need to iterate faster, but traditional build and test cycles are slow. To over-
come this, they simulate, but they still have to manually transfer results from one lengthy,
partial simulation to another. My parametric, full-system extrema modeling method, helps
engineers quickly and easily make rough, early passes through the entire design cycle. This
makes it possible to rapidly evaluate many more concepts, potentially finding much more
promising ones early enough to implement them.

Parametric, full-system extrema modeling consists of design parameters, performance
metrics, and relationships for calculating design performance (see Fig. 3.1). The relation-
ships are exclusively closed-form, which allows the designer to automatically recalculate
system-wide performance. This rapid approach enables engineers to iteratively explore the
design space before selecting a single concept for refinement, as illustrated in Fig. 3.2. Para-
metric, full-system extrema modeling underlies the model of satellite scatterometry described

in Chapter 5, which in turn, is used to evaluate the scatterometer concepts of Chapter 7.

10
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Figure 3.1: Conceptual illustration of the design and performance spaces that constitute the
parametric methodology used in this work. Each space is spanned by a basis, a set of design
parameters or performance metrics that independently defines the space. A design is located
in the design space with a set of design values. These values can be “transformed” into a
design performance, located in the performance space with a set of performance values.

Requirements Production
Design

Figure 3.2: Conceptual fit of full-system parametric extrema modeling in the typical design
flow described in Chapter 2. Compare to Fig 2.4. Full-system parametric extrema modeling
enables the designer to iterate on the entire system early in the development process.

3.1 Organization of the Full-system Parametric

Model

The performance space is spanned by a performance “basis”, or set of performance metrics
which fully characterize system performance. The choice of basis is up to the designer,
since design bases are not unique. The performance metrics can be minimized by tracing

requirements to the highest point in the hierarchy of need which can feasibly be modeled.

11



For example, “power generated” and “power consumed” are sometimes used as satellite
performance metrics, but in Chapter 5, these are replaced with “net power supply”, which
expresses the higher need that the power budget close with margin.

The transformation is a set of equations that express the performance metrics as
functions of the design metrics. This makes it feasible to broadly evaluate the design space
and identify promising classes of designs as candidates for more detailed analysis. In this
initial evaluation, closed form relations are preferable to simulations, even if approximate.
For example, in scatterometry, normalized radar cross-section, og, is a nonlinear function of
several variables as described in Chapter 2. In the model of Chapter 5, the nonlinear o
function is expressed as a polynomial fit of 6.

The design space is spanned by a design basis, or set of design parameters over which
the designer has direct control. For example, in Chapter 5, the look angle of the satellite
is used as a design parameter instead of the incidence angle of the signal on the ground,
because look angle is more directly in the control of the designer.

The number of design parameters can be minimized by expressing interdependent
parameters as functions of independent parameters. For example, pulse length, radar duty
cycle, and pulse repetition interval are often used as radar design parameters, but they are
not independent. In Chapter 5, pulse repetition interval is expressed as a function of design
parameters pulse length and radar duty cycle. This reduces the total number of design
parameters and ensures they are not dependent upon each other.

The transformation equations can express performance metrics purely as functions
of design parameters, but this can be unwieldy. It helps to group some design parameters
into intermediate parameters. This provides extra intuition into the system and simplifies
the performance functions. For example, in Chapter 5, the performance metric “net power
supply” is expressed as a function of the max powers and duty cycles of the different ele-
ments of the satellite system, similar to the power budgeting common in spacecraft systems

engineering.
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3.2 Implementation of the Extrema Model

The parametric, full-system extrema modeling approach is quick and approximate. It begins
with a minimum and maximum (the extrema) for each design parameter and calculates
a minimum and maximum for each intermediate parameter and performance parameter.
For clarity, Chapter 5 only makes minimum and maximum parameters explicit where the
minimum and maximum functions differ from the general case.

In implementation, maximum values are used for parameters that increase a function
and minimum values for parameters that decrease a function. For example, if the function
is

_asinb

f= . +dcose , (3.1)

then minimum values (denoted with the “-” superscript) are paired with maximum values

(denoted with the “+” superscript) as follows

-
f_:7a Slf +d cose™
at SinbJr (3:2)
f+ = +dtcose™ .
c

If a given parameter both increases and decreases a function, like extrema should be

paired. For example, in Chapter 5, the angular diameter of Earth from the perspective of

. REg
= 2sin~! 3.3

the satellite is given as

where R is the radius of the Earth and A is the orbital altitude. The extrema implemen-

tation of p is

p = 2sin~ ! 7}%7]5 ,
Rp+ht

+
pt = 2sin~ ! <ﬁ> ,
Ry +h~

(3.4)

where the range of Ry, to RE results from the oblateness of the Earth and A~ and h™ are

equal for a circular orbit and different for an elliptical orbit.
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Similarly, if a particular min/max pairing never occurs, like extrema should be paired.

For example, in Chapter 5, slant range is given as

Rs =sina (3.5)

e

sing
where ao = f(¢) is the look Earth angle and ¢ is the look angle of the radar. « is dependent
on ¢, so a~ never corresponds with ¢ and vice versa, so the extrema implementation of

slant range is

R, =sina™ .RE_ ,
sin ¢
gt VE
RS = Sin« W .

3.3 Summary

The full-system extrema modeling approach leads to bounds on the possible outcomes. By
comparing bounds of performance for various concepts, it provides a fast method for eval-
uating new concepts and later downselecting to the most promising concepts that merit
further analysis. To evaluate concepts using this method, I created a design dashboard in
a spreadsheet that enables me to modify any parameter and immediately see the impact to
the rest of the system.

The parametric, full-system, extrema modeling approach can be used to iterate
through more concepts than there would normally be time to explore, increasing the pos-
sibility of finding new solutions. In Chapter 5, a full-system parametric extrema model is
given for the satellite wind scatterometer system, and designs identified using this model are

given in Chapter 7.
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Chapter 4

Scatterometer Directionality and

Cooperation

As described in Chapter 2, scatterometers have historically been launched as individ-
ual non-cooperative missions. Over time cooperative uses of their data have emerged. In
recent, years, small satellites have matured and taken an important role in satellite innova-
tion. The low cost of small satellites enables new measurement architectures with multiple
free-flying satellites that cooperate one with another [25], [29], [30].

The parametric model of Chapter 5 is intended to model the full scatterometer system
and account for the entire space of solutions to scatterometer wind measurement, including
solutions using cooperative scatterometer systems. Modeling this solution space parametri-
cally requires an extended taxonomy of modes of scatterometer operation and cooperation.
This chapter expands existing terminology of relevant scatterometer subsystems to develop

that taxonomy.

4.1 Extant Terminology

The taxonomies of Section 4.2-4.3 build on the extant terminologies of multiple radar anten-

nas, communication modes, and satellites. This section reviews these extant terminologies.
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Radar Antennas

Radars transmit a signal and receive the return of the signal from a physical surface. Coop-
erative radar antenna terminology describes how one or more antennas divide up the tasks
of signal transmission and reception. The basic antenna configurations of radar systems are
monostatic and bistatic (see Section 1.5 of [31]). The IEEE gives the following definitions

for radar configuration terms [32]:

« “monostatic radar: a radar system that transmits and receives through either a

common antenna or through collocated antennas.”

o “bi-static radar: a radar using antennas for transmission and reception at sufficiently

different locations that the angles or ranges to the target are significantly different.”

« “multistatic radar: a radar system having two or more transmitting or receiving
antennas with all antennas separated by large distances when compared to the antenna

sizes.”

While IEEE classifies collocated antennas as monostatic radars, the term “pseudo-
monostatic” is commonly used as well. Note also that bistatic radars are a subset of multi-

static radars.

Communication Modes

Communications systems transfer information between terminals of a link. Communication
modes terminology describes how the terminals of a communication link participate as either
senders, receivers, or both. The Alliance for Telecommunications Industry Solutions gives

the following definitions for several modes of operation of a communications link [33]:

o “simplex operation: operation in which transmission occurs in one and only one

preassigned direction.”

o “half-duplex operation: operation in which communication between two terminals

occurs in either direction, but in only one direction at a time.”
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Table 4.1: An excerpt of the morphological taxonomy of distributed satellite systems given
by Selva et al. [29]. For each factor a binary low or high rating is given to the type of
distributed satellite system.

Functional interdependence
Operational independence

Spatial Separation

Group Type

Counstellation

Chain

Train

Cluster

Faction

T || = | = | = | Homogeneity
Size

I o o I o B O
T I o o I o B O
msii =il =l el N ol B o
ol B B ol == R =l

Network

o “full-duplex operation: operating method in which transmission is possible simul-

taneously, in both directions of a telecommunication channel.”

Distributed Satellites

Selva et al. [29] give a taxonomy of distributed satellite systems including constellations,
clusters, and swarms, among others. They classify these groups of satellites in terms of five
morphological factors: homogeneity, size, spatial separation, functional interdependence, and
operational independence (see Table [29] for definitions). An excerpt of their taxonomy is

given in Table 4.1 with the following additions and modifications:

o Table 3 in Selva et al. [29] cites the Iridium satellite constellation as an example of

a constellation, but the Iridium constellation is a communications network with high
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functional interdependence. Table 4.1 applies the term “network” for a constellation

with high functional interdependence.

o A term for moderate groups of homogeneous, independent satellites with low spatial
separation, such as CYGNSS [25], is missing from Table 3 of Selva et al. [29]. The
table includes “trains”; citing NASA’s A-train, but trains have low homogeneity. A

term for train with high homogeneity is needed for a group like CYGNSS. Table 4.1

suggests the term ns’7 for this type of configuration.

o Selva et al. [29] use the term fractionated for a small, distributed satellite system of
different satellites that are close together, functignally interdependent, and operated
primarily by the same organization. Table 4.1 substitutes the term “faction” to match

the part of speech of the other terms.

4.2 Directionality

Historical scatterometers were not designed with multi-satellite cooperation in mind. As a
result, they only measured backscatter, the signal returned back in the direction of the scat-
terometer transmitter. Signal scattered in other directions can also be used to measure the
scattering properties of the surface. This section gives a taxonomy of potential scatterometer
measurement architectures classed by the direction from which they measure signal scattered
off the surface. An illustration of this taxonomy is given in Fig. 4.1.

Historical scatterometers can be more specifically termed “back-scatterometers” be-
cause they measure the backscatter of the transmitted signal. Back-scatterometers are by
definition monostatic (or pseudo-monostatic) radars.

Cooperative scatterometers that measure the signal scattered in directions other
than the backward direction are sometimes referred to as “bistatic scatterometers”, but for
the purpose of this directional taxonomy they can be termed cross-scatterometers. Cross-
scatterometers can be further divided into side-scatterometers or forward-scatterometers.

Cross-scatterometers are multistatic radars.
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Figure 4.1: Graphical taxonomy of directional configurations of scatterometer measurement.
A directionality motif is included for each scatterometer configuration. A legend for the
motifs is given at right.

Cooperative scatterometer systems that measure both backscatter and cross-scatter
can be termed mixed-scatterometers. Mixed-scatterometers are systems of satellite radars
that include monostatic and multistatic radars, as well as radars that operate both monos-
tatically and multistatically. Mixed-scatterometer systems can consist of satellites that each

act as back-scatterometers, cross-scatterometers, or both.

4.3 Cooperation

Scatterometer cooperation occurs between multiple scatterometer satellites and between mul-

tiple scatterometer front-ends (defined as the transmit/receive electronics and the antenna)
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contained on the same satellite. Fig. 4.2 illustrates the taxonomy of multiple front-end
and multiple satellite cooperation used in the model of Chapter 5. The majority of cases
in Fig. 4.2 (a-d,e,g,i) depict back-scatterometers. Cases f and h of Fig. 4.2 depict cross-
scatterometers and Fig. 4.2j depicts a mixed-scatterometer. In the figure, dt indicates a
minimal time-delay between periods of near-simultaneous sampling. At indicates a longer
time-delay between subsequent passes of the same or different satellites.

The cooperative modes of multiple satellites and front-ends described in the following
sections are applied to the model of Chapter 5 multiplicatively. For example, NSCAT had
six antennas, which used two different types of cooperation. Three antennas cooperated to
obtain multiple flavors (M s = 3) in each of two groups that cooperated to expand the swath
(My.=2). The total front-end quantity is modeled as the product of the two multiples,
MMy, =6.

Independent Scatterometer Satellites and Front-ends

Scatterometer satellites and front-ends receiving the return of their own signal can be said to
obtain their scatter measurements independently (Figs. 4.2a-d). Recall that scatterometers
require multiple scatter measurements of varying flavors (information diversity via varying
geometry, frequency, incidence angle, polarization, etc.) to fully solve for wind vector, as
described in Chapter 2. Independent scatterometers that obtain insufficient flavors can co-
operate to obtain supplementary measurements with varying flavors (Fig. 4.2c-d). Multiple
supplementary front-ends (M) can view the same spot on the ground one after another to
obtain multiple flavors (Fig. 4.2¢). For example, NSCAT and ASCAT both have supplemen-
tary front-end multiples of My, =3 as each side of the swath has 3 different antennas that
subsequently view the same spot on the ground from different azimuth angles.

Multiple supplementary satellites (Mss) can cooperate in a cluster, viewing the same
location on the ground subsequently with different azimuth angles (Fig. 4.2). For example,
each of NSCAT’s antennas take turns collecting samples. Supplementary satellites could
theoretically focus and obtain a continuous stream of measurements for their dedicated

flavor.
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If independent scatterometers already obtain enough flavors, they can cooperate in
complementary ways (Figs. 4.2a-b). Multiple complementary front-ends (M) can cooperate
to broaden the swath (Fig. 4.2a). For example, NSCAT and ASCAT have a complementary
front-end multiple of My, =2 as they have groups of antennas observing each side of the
subsatellite track.

Multiple complementary satellites (Ms.) can cooperate to increase the temporal res-
olution (Fig. 4.2b). If the satellites are arrayed as a chain in a single orbit, they increase the
temporal resolution as the chain passes. The CYGNSS system has a complementary satellite
multiple of M. =8 as its eight small satellite GNSS-reflectometers fly in a chain to measure
the temporal variability of tropical cyclones [25].

Satellites arrayed as a constellation in a variety of orbital planes increase the mean
revisit rate. For example, the three ASCATSs currently operating (2021) form a constellation
with a revisit period of about 16 hours. Constellations are modeled in Chapter 5 by the

number of orbital planes they occupy (Nop). They are not included in Fig. 4.2.

Interdependent Scatterometers

Scatterometer satellites and front-ends receiving a signal that they did not transmit can be
said to obtain their scatter measurements interdependently (Fig. 4.2e-j). Interdependent
scatterometer satellites (cases f, h, and j of Fig. 4.2) operate in clusters. The language of
communication links can be applied to interdependent scatterometer systems, where the
various satellites and/or front-ends are the nodes.

When one satellite/front-end only transmits and the other only receives (Figs. 4.2e-
f), they form a simplex scatterometer system (Ms;, My,). Simplex scatterometer satellites
(Fig. 4.2f) are cross-scatterometers. GNSS-reflectometer systems are examples of simplex
scatterometer satellites where a GNSS satellite is the transmitter satellite and the reflec-
tometer is the receiver.

Satellites/front-ends that can each transmit and receive in turn, but not simultane-
ously (Figs. 4.2g-h) form half-duplex scatterometers (Mg, Myp,). Half-duplex scatterometer

satellites (Fig. 4.2h) are also cross-scatterometers.
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Full-duplex scatterometer satellites/front-ends (M, Myy) transmit and receive si-
multaneously (Figs. 4.2i-j). Polarimetric scatterometers are examples of full-duplex front-
ends with multiple dual-polarization antennas [1], allowing them to obtain multiple flavors
simultaneously. Other full-duplex front-ends or satellites could use different frequencies or
look geometries, respectively. Full-duplex scatterometer satellites are mixed-scatterometers.
They have the potential to operate synergistically, continuously obtaining at least three fla-
vors (at least two backscatter and a cross-scatter measurement) with two cooperative small

satellites.

4.4 Conclusion

Definition of these modes of multi-satellite and multi-front-end cooperation facilitates pa-
rameterization of the scatterometer design space. The methodology developed for parametric
modeling is given in Chapter 3. The parametric model of the scatterometer design space is
derived in Chapter 5. The contribution to scatterometer performance of multiple satellites

and front-ends applied in these varied modes of operation is described in Section 5.11.
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Figure 4.2: Tlustration of possible modes of cooperation of multiple scatterometer satellites
and front-ends. Separate antennas are used to symbolize separate front-ends, even though
multiple front-ends could share a single antenna. a) Complementary front-ends use different
geometries to expand the swath. b) Complementary satellites increase the revisit rate,
viewing the same area on the ground in sequence. c-d) Supplementary satellites and front-
ends measure the same area on the ground at different times with different flavors. e-f)
Simplex satellites and front-ends form unique transmit/receive nodes of a scattering link.
g-h) Half-duplex satellites and front-ends take turns transmitting the signal and receiving it.
j-k) Full-duplex satellites and front-ends transmit and receive the scatter of their own and
their cooperator’s transmissions.
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Chapter 5

Full-system Parametric Extrema
Model for Satellite Wind

Scatterometry

A fast parametric model of the scatterometer system can speed up the search for
designs capable of hourly, global measurement of wind vectors over the surface of the ocean.
Previous authors have modeled key aspects of scatterometer performance using closed-form
equations suitable for the fast parametric system modeling described in Chapter 3, but a
full-system model has not previously been available. This chapter builds on that work and
presents a full-system parametric model for satellite scatterometers measuring wind vectors
over the surface of the ocean. Previous versions of the model were presented in [34]—[36].

The model comprises two main aspects of the scatterometer: the instrument and the
satellite bus. Instrument performance metrics include wind vector accuracy and speed dy-
namic range (Section 5.1), spatial resolution (Section 5.2), and revisit period (Section 5.3).
Satellite bus metrics include net average power supply (Section 5.4), remaining battery power
after umbra (Section 5.5), extreme temperatures (Section 5.7), net data transfer (Section 5.8),
net data storage (Section 5.9), and cost (Section 5.10). This chapter presents derivations of
performance metrics first, given as bold capitals (e.g., Y) followed by derivations of the inter-
mediate parameters that contribute to the performance metric, given in functional notation

(e.g., y(+)). The parametric model is summarized in Section 5.11. The model is validated
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by comparison to the actual performance of NSCAT, QuikSCAT, ASCAT, and RFSCAT in
Chapter 6.

5.1 Accuracy and Dynamic Range

Wind measurement accuracy and dynamic range are difficult to approximate in closed form
because they are functions of multiple measurements with varying look geometry. To handle
this, I substitute wind measurement accuracy and dynamic range with proxy performance
metrics, including the normalized standard deviation of the oy measurements, the incidence
angle range of the measurements, radar wavelength, radar polarization, and number of “fla-

vors”.

Radar Signal

Normalized standard deviation is widely used to quantify the accuracy of oyp measurements.
The bias in o9 measurements is also important, but I assume that it is minimized by good de-
sign practice. The normalized standard deviation of a oy measurement is given in Eq. 13.118
of Ulaby and Long [1]. Including the multi-pulse coherence approximation given as Eq. 2.15

of Richards et al. [31], the normalized standard deviation, K, becomes

1+Cr
1 1 2 2
K, ~ — 14+ —4+—5 5.1

where M, is the multiple of independent, complementary satellites whose measurements
are combined, Sy(:) is the measurement signal-to-noise ratio for a single pulse, C7 is the
coherence of integration, a Boolean parameter equal to one if integration is coherent and
zero if it is not, and ng(+) is the number of looks by a single radar in a single dwell. Satellite
cooperative modes are defined in detail in Chapter 4 and their impacts to scatterometer
system performance are summarized in Section 5.11.

The number of looks in a single radar dwell period is

) (5.2)

Ty
nd:?
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where Ty is the dwell time in which multiple pulses are integrated into a single scatter
measurement and 75 (-) is the pulse repetition interval. The cutoff between one dwell and
the next is chosen to minimize the loss caused by non-overlapping pulses (see Section 5.1).

The pulse repetition interval can be expressed as

_ Mfstchthhan
nrfDr

T, , (5.3)

where 7 is the pulse length, n; is the burst count or number of pulses transmitted together
and then received together, D, is the radar duty cycle, Mys and My, are the multiples of
independent supplementary and complementary front-ends, My, and Mgy, are the multiples
of half-duplex front-ends. My,M .My, front-ends share n,; simultaneous radar signals, so
they operate in turns unless the n,; signals are generated simultaneously. Satellite and
front-end multiples are defined in detail in Chapter 4 and their impacts to scatterometer
system performance are summarized in Section 5.11. The pulse repetition interval, pulse
length, and burst count, among other timing elements, are illustrated in Fig. 5.1.

Two modes of pulse operation are illustrated in Fig. 5.1: single pulse and burst.
In single pulse transmission and reception, the radar waits to transmit another pulse until
after the previous pulse is received. In burst transmission and reception, multiple pulses
are batched together in the time before the first pulse returns. The radar waits to transmit
another burst until the previous burst is received. Burst operation requires the pulses to be
distinguishable in post processing. This could be done using different frequencies (indicated
using different colors in Fig. 5.1). For single pulse transmission, n; should be set to 1 and
T, should be set equal to 7.

Assuming constant range and antenna gain across the measurement cell, the signal-
to-noise ratio is given in Eq. 2.30 of Richards et al. [31]. Substituting Eq. 2.1 (0 = 0gA.)

into this equation. The SNR equation becomes

PthGTAQO'OAC -
(47)3 RAKTHF B, L

Sy = By, (5.4)

where P; is the transmit power, G¢(-) and G,(-) are the transmit and receive gains, oo(-)

is the wind-dependent normalized radar cross-section, A.(-) is the measurement cell area,
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Figure 5.1: Timing illustration of pulse transmission and reception. Tall boxes represent
the transmitted pulses while short boxes represent the received echos off the surface. (a)
Single pulse transmission and reception. (b) Burst transmission and reception. Different
colors indicate different frequencies used to differentiate the pulses in the burst in receive
processing.

7 is the pulse length, B:(-) and B, are the transmit and receive bandwidths, Rs(-) is the
slant range, k is Boltzmann’s constant, Tp = 290 K is the standard temperature, F'(-) is the
receiver noise figure, L(-) is the signal loss, and A is the radar signal wavelength, which is
also a proxy performance metric.

Wavelength, A, directly impacts dynamic range and accuracy since higher wavelengths
are more deeply attenuated by rain. Full vector wind geophysical model functions exist for
L-band (24 cm), C-band (5 cm), and Ku-band (2.1 cm). The wavelength is a function of

frequency as

A=c/f, (5.5)

where f is the frequency and c is the speed of light in vacuum.

For ICW pulse compression, the transmit bandwidth is

B =1 (5.6)

T
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where 7 is the pulse width. For LFM-ICW pulse compression, the transmit bandwidth is
the chirp bandwidth,

By=f"—f", (5.7)

where f is the transmit frequency.

Backscatter

The extrema of the Ku-band normalized radar cross-section, og, are approximated from
the NSCAT geophysical model function [37] using a 7th-order polynomial fit with vertical
polarization. I approximate the minimum case of oy as occurring when the angle between
the wind and look directions is xy = 90° and the wind speed is U =3 m/s. | approximate
the maximum case of o( as occurring when y = 180° and U =30 m/s. A plot of og versus
incidence angle, azimuth angle, and wind speed is given in Fig. 5.4, which demonstrates
the applicability of these extreme approximations. The coefficient of determination, R2,
and root-mean-squared error (RMSE) for the minimum and maximum fits are also given in
Table 5.1.

Plots of GMF values for g as a function of incidence angle, the curve fit, and the
error function are given in Fig. 5.2 for the minimum case and Fig. 5.3 for the maximum case.
Using MATLAB’s “poly7” curve fit, the GMF normalized radar cross-section as a function

of incidence angle is approximately
~ 7 6 5 4 3 2
o0(dB) ~ p70" +pe0” + p50° + pal” + p3b” + p26” + p16 + po (5.8)
where 6 is the incidence angle and the coefficients, p,,, for the minimum and maximum cases

of og are given in Table 5.1.

Look Geometry

Incidence angle, 6, can be used as a proxy metric for wind vector dynamic range, because

the g dynamic range increases with incidence angle as the projection of the ocean surface
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Figure 5.2: Tth-order polynomial curve fit of the minimum Ku-band backscatter, og, as a
function of incidence angle, 6, for azimuth angle xy = 90° and wind speed U =3 m/s. For
simplicity, only vertical polarization is considered here. The data relating backscatter and
incidence angle are taken from the NSCAT geophysical model function [37].

waves along the line-of-sight grows [1]. This relationship is illustrated in Fig. 5.5. Typically,
measurements must have an incidence angle greater than 18° and less than 65° to be usable
in wind retrieval (see Chapter 16 of Ulaby and Long [1]).

The measurement incidence angle is derived by assuming a spherical Earth, by as-
suming the orbit is circular, and by defining the look-Earth-angle triangle given in Fig. 5.6.

Using the Law of Sines,
sin(mr —0)  sing (5.9)
Rp+h  Rp '’ '

where h is the mean satellite orbital altitude, ¢ is the elevation look angle, and Rp is the

radius of the Earth. Substituting the supplementary angle identity, sin(m — ) = siné, into
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Figure 5.3: Tth-order polynomial curve fit of the mazimum Ku-band backscatter, g, as a
function of incidence angle, #, for azimuth angle x = 180° and wind speed U = 30 m/s. For
simplicity, only vertical polarization is considered here. The data relating backscatter and
incidence angle are taken from the NSCAT geophysical model function [37].

Eq. 5.9 yields the incidence angle function,

h
(¢, h) =sin~! <sing0R;J%Z ) . (5.10)

As illustrated in the front view of Fig. 5.7, the incidence angles occurring at the near

and far edges of the swath are

ee_dge =0 [(pe_dge’ h} )

(5.11)
ee+dge = e[gpjdgw h’} ’
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Figure 5.4: Backscatter versus incidence angle, wind speed, and azimuth angle, taken from
the NSCAT geophysical model function [37]. The minimum backscatter generally occurs at
azimuth angle x = 90° and wind speed U = 3 m/s. For simplicity, only vertical polarization
is considered here. The maximum backscatter generally occurs at azimuth angle y = 180°
and wind speed U = 30 m/s.

where ¢_, e and gpjdg . are the look angles at the near and far edges of the beam,

_ PQ31—!PH1&X(931,932)
Soedge =¥ 2 )
n P931+!Pmax(931,932)

Soedge = + 2 )

(5.12)

where P is the scanning precession, a Boolean parameter equal to 1 if the satellite precesses
as it scans and 0 if it does not. The ! operator expresses negation. 31 and 632 are the first
and second beamwidths, which are aligned with the x and y directions when the antenna is

pointed in the cross-track direction, as illustrated in Fig. 5.7.
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Table 5.1: Coefficients, p;, coefficient of determination, R?, and root-mean-squared-error,
RMSE, for a 7th-order polynomial curve of Ku-band normalized radar cross-section (in
dB) as a function of incidence angle (in radians), taken from the NSCAT GMF. The
minimum o( occurs when y = 90° and U = 3 m/s. The maximum o occurs
when y = 180° and U = 30 m/s.

Minimum ¢y Model Maximum oy Model
Do -175 5.107
D1 970.5 37.86
D2 -2075 -424.3
D3 2073 1645
D4 -866.2 -3314
D5 37.68 3463
D6 -2.068 -1780
D7 4.657 355.1
R? 0.9993 0.9819
RMSE 0.3926 1.317

The look Earth angle, a(p,h), can also be derived using the geometry of Fig. 5.6.
The angles of the triangle add up to 7, so a+ ¢+ (7 —6) = 7, and the look Earth angle as

a generic function of ¢ and h is

a(p,h) =0(p,h) —¢ | (5.13)

where (p,h) is the incidence angle function and ¢ is the elevation look angle defined in

Fig. 5.6, which is the center of the antenna beam unless otherwise specified.

Antenna Characteristics

According to Ulaby et al. [38], the one-way normalized gain pattern of a uniformly illuminated

F,, = (2“71(”))2 , (5.14)

aperture is

v
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Figure 5.5: Illustration of normalized radar cross-section versus wind speed for y = 180°
and f =13.9GHz at various incidence angles, taken from Ulaby and Long, Chapter 16 [1].
This demonstrates the relationship between incidence angle and og. The dynamic range
(minimum to maximum) of og is seen here to vary with incidence angle.

where Ji () is the first-order Bessel function of the first kind, v = wLsinf/\, L is the antenna
length, 6 is the angle from the center of the beam, and X is the wavelength.

The two-way, normalized gain pattern is the product of the transmit and receive
antenna gain patterns. Assuming the transmit and receive antenna patterns are identical,

the two-way, normalized gain pattern becomes the square of Eq. 5.14,

Fop= (2‘]1(”))4 . (5.15)

14

The half-power beamwidth of the two-way, normalized gain pattern can be found by

<2 Jl(”>>4 - ; 7 (5.16)

solving Fj,4 = 0.5 for 0
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Figure 5.6: Illustration of the look Earth angle triangle, which is defined by the elevation look
angle, ¢ (the angle between satellite nadir and the radar signal direction), the Earth angle
between nadir and the measurement cell, o, and the angle m — 6, where 6 is the incidence
angle. The triangle has as its sides the radius of the Earth, R, the radar signal slant range,
Rs, and the distance from the center of the Earth to the satellite, Rg + h, where h is the
satellite altitude.

Solving for v using Wolfram Alpha, substituting v = wLsinf/A, solving for 6, dou-

bling, and using the small angle approximation, the two-way, half-power beamwidth becomes

0.37A) _ 0.74A
L

03$:2Sin_1< )~ , (5.17)

where the small angle approximation is used, A is the wavelength, and L is the antenna
length.

In Equation 9.4 of Richards et al. [31], the one-way, uniformly illuminated beamwidth
is multiplied by a beamwidth factor, a to account for weighting. Likewise, I multiply the
two-way, uniformly illuminated beamwidth with the square of the beamwidth factor. With

directionality added, the two-way beamwidths become

B 0.74a1 A B 0.74a0\
— Ll , U32 — L2

031 (5.18)

where a; and ag are the beamwidth factors (corresponding to 7, as described in Chapter 9
of Richards et al. [31]) for the first and second beamwidths. L; and Lg are the antenna

lengths corresponding to the first and second beamwidths.
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Figure 5.7: Illustration of antenna, beamwidth, and footprint geometry. Isometric (top
left), right (top right), and front (bottom left) views are shown of a scanning scatterometer
observing the ground. The radar beam is shown in light blue and the footprint is shown
in dark blue. The antenna is approximated as a rectangular aperture with first and second
beamwidths defined as the beamwidths in the radial and azimuthal directions when the
scatterometer is pointed in the cross-track direction, as illustrated here. The first and second
antenna lengths are defined as the antenna lengths corresponding to the first and second
beamwidths. The radial and azimuthal directions are marked by r and 7. «; and «. are the
radial and azimuthal footprint Earth angles. The radar antenna is shown in blue mounted
on a satellite shown in black.

The antenna gain is given in Eq. 9.5 of Richards et al. [31] as

a_ NeNadmAg

- (5.19)

where 7, is the antenna loss efficiency, 7, is the aperture efficiency, and Ag4(-) is the antenna
aperture area, which is defined as

Ay = LiLyF, (5.20)

where F, is the antenna shape factor, L1 and Lo are the first and second antenna lengths

that are defined as the antenna lengths corresponding to beamwidths, assumed to be aligned
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with the cross-track and along-track directions when the antenna is pointed in the cross-
track direction, as illustrated in Fig. 5.7. The antenna shape factor is the ratio of the actual
antenna area with lengths, L; and L, to the area of a rectangular antenna with the same
lengths. For example, for rectangular antennas, the antenna factor is F, = 1, and for elliptical

antennas, the antenna shape factor can be shown to be F, = /4.

Measurement Cell Geometry

The derivation of resolution cells from scatterometer measurements follow either a polar
orientation or track orientation, as illustrated in Figs. 5.8-5.9. Using resolution cell widths
with polar orientation, a rectangular cell approximation gives the minimum and maximum
resolution cell areas as

A =~ F g min (rmmmrryrw) ,

(5.21)
Ag’ = Fg max (Trxrw,rryrw) ,

where Fyg is the spatial downsampling factor, r., and r.,, are the radial resolutions at the
cross-track (x) and along-track (y) and 7., and ry, are the azimuthal footprint widths in
the x and y directions. Typically Fg =1, but when multiple coherent pixels are combined,
Fg can be larger than 1.
Alternatively using resolution cell widths with track orientation, a rectangular cell
approximation gives the minimum and maximum resolution cell areas as
Al ~ Fg min (rmrym,rmyryy) ,

(5.22)
AZF ~~ Fg max (Txxr yw»rmyryy) )

where Fj is the spatial downsampling factor, 7, and r, are the cross track resolutions at

the x and y axes and ry, and r,, are the along-track resolutions in the x and y directions.
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Figure 5.8: Tllustration of resolution cells with track orientation (x, y) and polar orientation
(r, ) for various antenna and footprint orientations. The blue ellipse is the footprint. The
brown lines on the right are iso-Doppler lines. The yellow lines on the left are iso-range lines.
On the right half, the illustration shows the case of track resolution, where the radar beam
is divided into resolution cells of along-track length defined by the Doppler resolution and
cross-track length defined by the footprint width. On the left half, the illustration shows
the case of polar resolution, where the radar beam is divided into resolution cells of radial
length defined by the range resolution and azimuthal length defined by the footprint width.

Without resolution processing, the measurement cell side lengths are just the dimen-

sions of the footprint, r = a, which are defined using polar orientation (see Figs. 5.8-5.9):

Qry  Gpy ar(e?)l) ar(‘932) 1P
- , (5.23)

Az Oy a~(032) afy(@gl) 0 P

where P is the precession Boolean, equal to one if the satellite precesses and zero if it does
not, a,, and a,, are the radial footprint sizes at the cross-track (x) and along-track (y) axes,
a~z and a., are the azimuthal footprint sizes in the x and y directions, and 3; and 032 are
the first and second beamwidth directions, aligned with the x-axis and y-axis when pointed
in the cross-track direction, by definition. Whether the radial and azimuthal footprint sizes

use the first or second beamwidth depends on whether precession occurs, so for clarity, the

37



Figure 5.9: Ilustration of footprints resulting from a precessed scan. Fig. 5.8 is here re-
peated, but the footprints are altered to reflect the impact of precession on the footprint. To
make this impact discernible, the first beamwidth in this figure is shorter than the second
beamwidth.

radial and azimuthal footprint sizes are expressed as generic functions of 63 and given below.
The impact of precession on the footprint is illustrated in Fig. 5.9.

The footprint size is the projection of the beamwidth of the antenna on the ground.
The radial and azimuthal footprint sizes are illustrated in Fig. 5.7 and their generic functions

are

ar(e?)) = ar,edge(93>h)RE ) (5.24)
a'y(e?)) = a'y(‘93)RE ) (5.25)

where a,.(03,h) and «.(f3,h) are the Earth angles subtended by the radial and azimuthal
footprint sizes, expressed as generic functions of #3 and h.

The radial and azimuthal footprint Earth angles, ;. and o, are derived similarly to
the look Earth angle. They are subtended by the footprint width in the radial and azimuthal
directions, which are illustrated in the isometric view of Fig. 5.7.

The radial footprint geometry is illustrated in the front view (bottom-left corner) of

Fig. 5.7. The radial footprint Earth angle is the difference between the Earth angle of the
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far end of the beam, «;1, and the Earth angle of the near end, a,g. Accounting for multiple
beams and substituting the edge elevation look angles of Eq. 5.12 with the look Earth angle
function of Eq. 5.13 yields functions for the radial footprint Earth angle, corresponding to

the near and far edges of the swath,

0 0
O‘r7edge<93) :O‘<§0+ 237h> _05<S0_237h> ) (526)

where a(p,h) is the look Earth angle function and ¢ is the look angle of the center of the
beam.

The azimuthal footprint geometry is illustrated in the right-hand view of Fig. 5.7.
Due to symmetry, the azimuthal footprint Earth angle is twice the Earth angle found when
half the beamwidth, #3/2, is used in place of the look direction in Eq. 5.13. Slant range, R,
is also substituted for altitude. Thus, the function for the azimuthal footprint Earth angle

is approximately

a,(03) =~ 2a (923,]%8> , (5.27)

where (g, h) is the look Earth angle function and Rj is the slant range.

The footprint can be subdivided to further refine the measurement cell resolution,
using either range, range-Doppler, or Doppler processing. Measurement cells using these
processing methods are illustrated in Figs. 5.8-5.9. If range or LFM range-Doppler processing
is used, as by QuikSCAT [39] and ASCAT [24], side lengths have polar orientation, as shown
in the left half of Figs. 5.8-5.9. If Doppler processing is used, as by NSCAT [2], side lengths
have track orientation, as shown in the right half of Figs. 5.8-5.9.

Accounting for potential precession, the radial and azimuthal resolutions using range

or LFM range-Doppler processing and beamwidth are

Tre  Try Trrd Trrd 1P

= : (5.28)

Tyz Ty av(ei’wl) ay(032)| [0 P
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where P is the precession Boolean, equal to one if the satellite precesses and zero if it does
not, ry,; and ry,, are the radial measurement cell widths at the cross-track (x) and along-track
(y) axes, 7p.q is the measurement cell length derived through range or LFM range/Doppler
processing, 7, and r,, are the azimuthal measurement cell widths in the x and y directions,
a(03) is the azimuthal footprint width function given in Eq. 5.25, and 631 and 633 are the
first and second beamwidth directions, aligned with the x-axis and y-axis when pointed in
the cross-track direction, by definition.

Range processing divides the slant range as derived in Eq. 1.19 (ICW form) of
Richards et al. [31] and Eq. 13.36 (LEFM-ICW form) of Ulaby and Long [1] as

(5.29)

where c¢ is the speed of light and By is the transmit bandwidth. Remember that an ICW
signal has transmit bandwidth By(7) = % For satellite scatterometry, Eq. 5.29 is projected
on a locally flat surface as illustrated in Fig. 5.10, giving the resolution cell a radial side

length of
ccost

5.30

Trrd =

where ¢ is the speed of light, 6(-) is the incidence angle (illustrated in Fig. 2.1), and B is
the transmit bandwidth.
Accounting for potential precession, the cross-track and along-track resolutions using

Doppler-only processing and beamwidth are

S 0
Tex Tzy ar(031) a,y/max [ayy/a,«(le), sinl/)} ay(032) ay(031)] (LS 0O
Tyz Tyy TDy 0 "Dy Dy 0o P
0 P
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Figure 5.10: Ilustration of the incidence angle and the range resolution projected on the
ground. The radar beam is shown in yellow with black hash marks marking range resolution
cells. The projected resolution cell is shown to depend on the incidence angle of the radar
beam. The incidence angle is the angle between the local vertical and the radar beam.

where S(-) is the scanning Boolean parameter, P is the precession Boolean parameter and
the ! operator expresses negation, 7., and 7, are the cross track resolutions at the x and y
axes, ry; and ry, are the along-track resolutions in the x and y directions, rp, and rp, are
the Doppler resolutions at the x and y axes, a,(63) and a(f3) are the radial and azimuthal
footprint width functions given in Eq. 5.24 and Eq. 5.25, and 037 and 635 are the first and
second beamwidth directions, aligned with the x-axis and y-axis when pointed in the cross-
track direction, by definition.

The scanning Boolean is expressed as a function of the scan rate as
S = : (5.32)

where w is the scanning rate.
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Doppler processing generally divides the footprint in the along-track direction. As-
suming a locally flat Earth, Doppler shift is given as a function of the position of the resolution

cell in Eq. 13.26 of Ulaby and Long [1] as

205y
b /{E2+y2+h2 ’

where vg(+) is the satellite speed, (x,y) are the coordinates of the resolution cell in the along-

fp= (5.33)

track and cross-track coordinate system, and h is the altitude of the satellite. The satellite

speed is given in Equation B-3 by Elachi et al. [40] as

vs = \/9sR%/(Rp+h) , (5.34)

where g5 is standard Earth gravity (~9.81 m/s).

For the closed-form model, spatial resolutions are derived at the x and y axes only,
rpe and rp,. These cases are shown over iso-Doppler lines in Figs. 5.8-5.9. The spatial
resolutions using Doppler processing corresponds to the Doppler resolution, fp, which is

derived in Chapter 17 of Richards et al. [31] as

0.89

AfD:|fD(?J+A?J)_fD(y)’NTd 7 (5.35)

where T} is the dwell time.
The minimum Doppler shift occurs along the x-axis. For y << x, Eq. 5.33 can be

approximated as

205y
~ — . 5.36
Ip A zZ + h? ( )

For the case of minimum Doppler resolution, which occurs when the radar is looking
to the side, the slant range is Rs(-) = V22 + h?. By substituting this into Eq. 5.36, this can

be further simplified to
205y

ARg '

fp(y) ~ (5.37)
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where the slant range is derived as a function of design parameters using the look geometry

in Fig. 5.6. Slant range can be solved from the law of sines as

Rs =sina (5.38)

sing ’

where the slant range at the center of the beam is used for simplicity.
Because the Doppler shift is zero on the x-axis, where y = 0, Eq. 5.35 here becomes

Afp = |fp(Ay)|. Substituting this and Eq. 5.35 into Eq. 5.37 and solving for spatial res-

olution yields the minimum spatial resolution using Doppler processing in the cross-track

direction:

(5.39)

On the y-axis, when the antenna is pointing forward, x = 0, and Eq. 5.33 simplifies

to

fp= sy (5.40)

WENNER

Substituting Eq. 5.40 into Eq. 5.35 yields

089 | 205(y + Ay) 205y (5.41)
T A (y+Ay)2+h2 0 Ay +h
The term % is substituted with the first two terms of its Taylor series
Yyray

expansion at Ay =0 (see Appendix B). This Taylor series appreximation is best suited
when A, <<y~ h. This is appropriate for satellites. Dopri :w used if the Doppler
resolution, Ay, is not much less than the surface range, y. Further, the surface range, y, is
about equal to the altitude for larger look angles, where the maximum Doppler resolution

occurs. The substitution yields an approximation for the maximum spatial resolution using

Doppler processing:

0.89A _( Y n h2Ay >+ Yy B h2 Ay (5.42)
20Ty \/m (y2+h2)% [y2 + h2 (y2+h2)% )
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The maximum Doppler-derived resolution occurs in the forward looking case, so
Rs(+) = /y?+ h2. Substituting this into Eq. 5.42 and solving yields the maximum spatial

resolution using Doppler processing in the along-track direction:

0.89AR}
rpy = Ay~ 72vsTdh§ : (5.43)
Losses
The total system loss, L(-), is
L=1ILiLLoLgyLsLrLe (5.44)

where L; < 3dB and L, < 3dB are the scatterometer transmit and receive losses (Section 2.7
of Richards et al. [31]), L, < 0.5dB, is the atmospheric loss (inverse of transmission %
given in Figure 1-19 of Elachi et al. [40]), Ly, < 0.5dB is the signal processing loss due to
quantization error (Chapter 13 of Richards et al. [31]), Ls(+) is the smear loss, L,(-) is the
pulse loss caused by the pulse transmission overlapping with pulse return, L. is the echo
loss caused by a receive bandwidth smaller than the combined transmit bandwidth and echo
Doppler shift. Eq. 5.44 is adapted from Equation 2.16 of Richards et al. [31] with the addition
of the smear loss.

Smear loss is the result of motion of the footprint between the beginning of the
transmit pulse and the end of receive. Smear loss is dominated by antenna rotation. Satellite
motion is not usually significant. For a scanning scatterometer, the area from which signal is
received is shifted away from the area to which the signal is transmitted, so the useable area
is, at worst, reduced to the overlapping area of the first transmit and final receive beam of
the pulse repetition interval, T;(-), as illustrated in Fig. 5.11. This reduction is expressed as
a smear loss, Ls(-). For simplicity, in this calculation, the antenna gain pattern is assumed to

be uniform and the footprint is assumed to be square. Thus, the smear loss is approximately

2 2a
L.~ = i 5.45
S TE e (5.45)

Ay
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Figure 5.11: Smear loss illustration. The satellite with antenna pointed at the ground is
rotating at rate w. While the beam is scanned, the area from which signal is received (ending
at time t+ T ) is shifted away from the area to which signal is transmitted (starting at time
t), so the useable area is, at worst, reduced to the overlapping area of the first transmit and
final receive beam of the pulse repetition interval, T;-. This reduction is expressed as a smear
loss, L.

where a(+) is the azimuthal footprint width and Sg4(-) is the dwell step. The minimum and
maximum of the cross-track and along-track azimuthal footprint width should be used for
the minimum and maximum smear losses.
The dwell step, Sy(-), is the distance travelled by the footprint over the course of a
single dwell period, Ty. It is
Sa = RgwTy (5.46)

where w is the scan rate, T} is the dwell time, and Ry4(-) is the ground range, which is defined
as the distance between the sub-satellite point and the center of the footprint. The ground
range is

R,=aRp (5.47)

where « is the look Earth angle.

Pulse loss is caused by timing overlap between one pulse and the echo of another
pulse. Pulse loss is illustrated in Fig. 5.12. In the case of Fig. 5.12a, the pulse length, 7
and/or the burst count, ny, should be reduced. In the case of Fig. 5.12b, the pulse (or burst)

repetition interval should be increased. Pulse loss can be expressed as

T
L, = max (1, 7;‘:;) max (1, MM, ;T f) , (5.48)

where My, and Mgy, are the multiples of half-duplex antennas and satellites, n, is the burst

count or number of pulses transmitted together and then received in together, 7 is the pulse
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Figure 5.12: Pulse overlap loss is caused by (a) the pulse or burst of pulses continuing after
the beginning of the echo arrives at the radar or (b) the next pulse being transmitted before
the end of the echo arrives at the radar. In the case of bursts, substitute the one pulse in the
figure with a burst of pulses and substitute the pulse repetition interval, 7>, for the burst
repetition interval, Tj.

length, T¢(-) is the pulse time of flight, and 7’ is the pulse repetition interval. The max
function ensures that non-overlap is not counted as a gain. Satellite and front-end multiples
are defined in detail in Chapter 4 and their impacts to scatterometer system performance
are summarized in Section 5.11.

The loss due to part of the echo being outside the receiver bandwidth, or echo loss,
depends on whether the radar compensates for the Doppler shift dynamically. If it does not

compensate, then the Doppler loss is

(5.49)

By +2
Lp = max (1,—t+ fD’e> ,

B,

where B; and B, are the transmit and receive bandwidths and fp(-) is the two-way echo

Doppler shift.
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If the radar compensates for changing Doppler shifts throughout the scan, but not

across the footprint, then the Doppler loss is

(5.50)

B:+B
By

where By and B, are the transmit and receive bandwidths and Bp(-) is the Doppler band-
width across the the combined footprint.
If the radar compensates for different Doppler bandwidths across the scan and across

different measurement cells within each footprint, then the Doppler loss is

(5.51)

B+ B
Lp =max (1,t+D’c> )

By

where B; and B, are the transmit and receive bandwidths and Bp .(-) is the Doppler band-
width across a single measurement cell.

The two-way echo Doppler shift is

20,

fpe=—"> (5.52)

where v,(+) is the radial velocity in the direction of the measurement cell and X is the radar
wavelength.
The derivation of the radial velocity is illustrated in Fig. 5.13. The radial velocity in

the direction of the measurement cell is
Ve = VgSINQ | (5.53)

where vg(-) is the satellite velocity and ¢ is the look direction, or the direction of the mea-
surement cell measured from nadir.

The Doppler bandwidth across the combined footprint is

Bp=fhe—Ipe (5.54)

where fp . is the echo Doppler shift.
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Figure 5.13: (left) Doppler shift geometry. A scatterometer beam (yellow) illuminates the
Earth’s surface (blue). Arrows indicate the satellite velocity vector, vg, and the range radial
velocity vectors, ve. (right) The right triangle used in finding the radial velocities, v..

The Doppler bandwidth across a single measurement cell is approximately

Bp.= BDLy , (5.55)
y

where Bp(-) is the Doppler bandwidth across the footprint, r,(-) is the along-track resolution,
and ay(-) is the along-track footprint width.
The along-track footprint width is

ay = (Ry — Ry )sine) (5.56)

where Ry is the ground range and 1 is the azimuth look angle measured from the cross track
direction.
The time of flight is the time it takes for a signal to arrive at the surface and return

to the transmitter (see Fig. 5.1 and Fig. 5.12). It is
R
Tp=2—", (5.57)

C

where R4(-) is the slant range and c is the speed of light.
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Figure 5.14: Ilustration of focus factor. Several satellite swaths are shown in blue. The
white centerlines are the subsatellite track or center of the swath. The top swath has focus
factor Fr =1, meaning the satellite uses a consistent scan pattern for all points on its path,
giving all areas equal attention. The middle and bottom swaths have focus factors Frp = 2
and F'r = 3, meaning the satellite takes the time that it would have observed the white areas
and observes the blue areas instead, obtaining two and three times as many flavors of the
blue areas at the expense of linear coverage.

Measurement Flavors

The number of flavors, F', impacts wind retrieval, especially wind direction accuracy, as

described in Section 2.1. It is approximated as

Mpp+1 Myr+1
F ~ M My Mgy My, <Mf f%> (Msf%) FrF, (5.58)

where My,, My, and My are the multiples of independent, supplementary, half-duplex and
full-duplex front-ends, Mss, My, and Mgy are the multiples of independent, supplementary,
half-duplex and full-duplex satellites, F is the focus factor, and F,(-) is the scan factor.
The focus factor is the degree to which one region along the satellite path is prioritized
over others, illustrated in Fig. 5.14. Satellite and front-end multiples are defined in detail
in Chapter 4 and their impacts to scatterometer system performance are summarized in

Section 5.11.
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Figure 5.15: Illustration of overlapping scans resulting from a scan factor greater than one.
A measurement cell area of arbitrary shape is outlined in black. Several subsequent scans
are are shown in translucent blue. For a circularly scanning satellite with its footprint width
larger than its scan step, S, the measurement cell will be revisited by multiple scans in
a row. This applies to most of the swath, but for the edges of the swath (not shown) the
number of re-scan looks may be greater.

The scan factor determines whether scanning adds flavors, as illustrated in Fig. 5.15,

or skips some areas, giving them fewer flavors, as illustrated in Fig. 5.16.

2M oty K w>0
p, = e , (5.59)

1 w=20

where K, () is the spatial scan rate, or inverse of the scan step (the along-track distance
between one scan and the next), a,, My, is the composite footprint width, or the product of
a the radial width of a single footprint in the along-track direction, a,,(-), and the multiple
of independent, complementary front-ends with different incidence angles, M., assuming
that each antenna has the same aperture dimensions, L1 and Lo. The ratio of the composite
footprint to the scan step is doubled to account for incoming and outgoing scans. Satellite
and front-end multiples are defined in detail in Chapter 4 and their impacts to scatterometer

system performance are summarized in Section 5.11.
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Figure 5.16: Ilustration of gaps between scans resulting from a scan factor less than one.
S =1/K, is the scan step, the distance along the sub-satellite path between one scan and
the next.

The spatial scan rate, K, is

W

K, : (5.60)

27rvg

where v, is the satellite velocity projected on the ground. Assuming a spherical Earth and

neglecting Earth rotation, the satellite ground velocity is approximately

2tRg
vg ~ TS ,

(5.61)

where Rp is the Earth’s radius and Ts(-) is the satellite orbital period, which is given in

Equation B-4 by Elachi et al. [40] as

T, = 2n(Rp +h) Jvs | (5.62)

where h is the satellite altitude and vs(h) is the satellite speed.
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5.2 Spatial Resolution

The average spatial resolution, 7, is
F=1/A., (5.63)

A. is the measurement cell area. This approximation neglects post-measurement resolution

enhancement schemes [41].

5.3 Revisit Period

The revisit period, T, is the average time between one measurement and the next at a given
location. Neglecting orbital precession, the revisit period for a single satellite is roughly the
time it takes for the Earth to rotate underneath it, Tr. Additional satellites in various orbits

decrease the revisit period approximately linearly, as

T, ~ (5.64)

where T =23.93 hrs is the rotational period of the Earth or sidereal day (the time it takes
for the Earth to rotate underneath the satellite), IV, is the number of orbital planes in the
constellation, and C' is the fraction of the globe covered by a single satellite in a single day.
If the satellite doesn’t cover the whole globe by itself, C' is less than unity and makes it take
longer than a day for revisits to occur on average. If the satellite covers the globe more than
once in a day, then C' is greater than unity and causes revisits to occur more frequently than
once per day.

Eq. 5.64 is meant to be an approximate average, assuming all orbits have the same
inclination. Actual revisit time for a given region depends on its latitude. A constellation
with a variety of orbits of varying inclination angle may have a shorter average revisit than
estimated here.

The satellite can be modeled as having a simple coverage, Cj, of all of Earth’s surface
between the minimum and maximum latitudes of its swath, 2, reduced by gaps (or increased

by overlaps) between passes, C., and gaps due to downtime and diversions from normal
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operations, C;. The daily coverage fraction is then the product of these:
C~C;C.Cy . (5.65)

The simple daily coverage fraction is the fraction of the globe between the minimum
latitude and the maximum latitude of its swath, €2, as illustrated in Fig. 5.17. Assuming a
spherical Earth, the coverage fraction in this simplified case is the ratio of two symmetrical
spherical zones given by Weisstein [42] (with Rgsin(§2) substituted for ) to the surface area
of the Earth. The “simple” coverage is thus

2(27TRE[sin(Q)RE]>

Cs = fryE) =sin | (5.66)

where Rp is the Earth radius and (2 is the extreme latitude of the swath.

Q is ]—i—oz(gojdge) for a circular orbit with inclination, I of domain (0, 7/2), O‘:dge =
a(gpjdge) is the maximum Earth angle of the swath. Typically, launch inclinations are ex-
pressed over (0, m) to account for both prograde and retrograde orbits. As a result, I has a

domain of (0, 7) and 2 is

7r m
QZE—maX (|2—I|—a(g0:dge),0> : (5.67)

The change in coverage due to gaps or overlap between passes is approximated as
the coverage fraction due to gaps or overlap at the equator, the equatorial coverage, Ce. As
illustrated in Fig. 5.18, the equatorial coverage is the ratio of the swath width projected on

the equator, Wysin I, to the orbit step, S,, i.e.,

Ws/sinl

Ce = So )

(5.68)

where, Wy is the swath width, I is the orbital inclination, and S, is the orbit step. This is
an approximate change in coverage which may overestimate the amount of the globe missed

due to equatorial gaps.
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Figure 5.17: Simplified model of coverage of the Earth by a single satellite based on satellite
inclination and swath width. The outline of the Earth is shown in blue, with the equator
shown as a horizontal centerline in black. The satellite swath is shown in burnt yellow with
the simplified area of the globe covered light yellow. I is the orbital inclination and €2 is the
max latitude covered by the swath.

The swath width, Ws(+), is derived using an Earth angle method as

2[a(g0+)RE+%am} w>0
W, ~ , (5.69)

M. cos(p™) <[a(<p+)RE + %am} - [a(gp‘)RE — %amD w=0

where a(¢p) is the look Earth angle function, given in Eq. 5.13, ¢ is the look angle of the
center of the beam, v is the azimuth look angle of the fixed beams, measured from the x-axis
(cross-track), Rg is the radius of the Earth, a,, is the radial footprint width in the cross-scan
direction, M, is the number of independent, complementary front-ends.

The orbit step, S,, is the distance between the sub-satellite track at one equatorial

crossing and the next. It is given in degree-form in Section B-1-4 of Elachi et al. [40] as

N
S0 = 360" (5.70)

where 360° is the angular extent of an orbit and % is the ratio of satellite orbital revolutions

to Earth revolutions, which can be expressed in terms of the satellite orbital period, T}, and
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Figure 5.18: Equatorial coverage geometry. S, is the orbit step, the equatorial distance
between the sub-satellite path on one orbit and the sub-satellite path on the next orbit.

Earth’s rotation period, T, as follows

N Nomty fs 1/Ty Tg
L L2rty fg 1/Tp Ty’

(5.71)

where tg is unit time, f5 is the frequency of orbit of the satellite and fg is the frequency of
rotation of the Earth.

Substituting Eq. 5.71 into Eq. 5.70 and converting to distance-form by multiplying
by the ratio of meters to degrees in the Earth perimeter, %, yields the final distance-form

of the orbit step:
T

SOZQWRETE N

(5.72)

When the scatterometer takes downtime to charge its batteries or cool off, or when
it skips areas along its path as illustrated in Fig. 5.14, it results in a linear, along path

reduction in coverage fraction, which can be modeled as

(U 1
C; = min (a), 1) o (5.73)

where Fr is the focus factor, C, is the fraction of the Earth covered by ocean, and the

uptime, U, is the fraction of the orbit in which the scatterometer is operating.
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5.4 Orbital Average Power Usage

The power system performance can be expressed as the ratio of power generated to power
used over the course of the orbit. If the average orbital power usage is less than one, the power
generation exceeds power consumption. On the other hand, insufficient power generation
results in orbital average power usage greater than one, meaning the batteries will at times
be drained of power and the system will require time to recharge. The orbital average power
usage is -

up— Lt (5.74)

Py

where P,(+) is the average generated power, Ps(-) is the average power consumed by the

scatterometer, and By(-) is the average power consumed by the satellite bus.

Power Generation

The average power generated by solar panels, Py, is
Py=Ps+Psy,+Pg—P, , (5.75)

where Pg is the solar power generated during normal operations, ﬁ’d is the solar power
generated during dedicated solar charging, Pg is the solar power generated from light re-
flected off the Earth, and P, is the dedicated solar power generation wasted due to battery
oversaturation.

The orbital average solar power generated during normal operations is

Pg =15AsGs(1— D) , (5.76)

where ng is the efficiency of the solar cells, Ag(-) is the average sun-facing satellite solar
panel area, Gg is solar irradiance in Earth orbit, and D, is the downtime for dedicated
solar charging, which is the fraction of the orbit during which the satellite suspends normal

operation and orients its largest solar-generating surface toward the sun.
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The orbital average solar power generated during dedicated solar charging is
Psq=PsaDch , (5.77)

where Pg 4 is the instantaneous power generated during solar charging and Dy, is the charging
downtime.

The instantaneous solar power dedicated during solar charging is
Psa=nsAsaGs (5.78)

where 7g is the efficiency of the solar cells, Ag 4 is the dedicated solar charging area, and G g
is solar irradiance in Earth orbit.
The orbital average solar power generated from light reflected off the Earth is given

by Keesee [43] as

Py =ngaAgsin®(p) (0.664+0.521p+0.203p%) (1 - Dy ) Gs (5.79)

where ng is the efficiency of the solar cells, Ag(-) is the average Earth-facing satellite solar
panel area, a is the albedo of the Earth, p is the angular diameter of the Earth from the
perspective of the satellite, D, is the charging downtime, and Gg is the solar irradiance in
Earth orbit.

The orbital average power wasted due to saturation of the batteries is

Bs1.Vy
T

P, = , (5.80)

where Bg(+) is the battery saturation, Vj, is the average battery voltage, Ty is the satellite
orbital speed, and I. is the battery current capacity, or the product of the current which the
battery can deliver and the duration for which it can deliver that current.

The battery saturation is

F.DyPs 4T
Bs—maX<O,CChS’dS—1> ,

5.81
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where Dy, is the charging downtime, Pg 4(-) is the instantaneous dedicated charging power,
Ty is the satellite orbital period, I.. is the battery current capacity, V} is the average battery
voltage, and F, is the dedicated charging consecutivity, which is the largest fraction of the
dedicated solar charging duty cycle that occurs consecutively, ranging from 0 to 1. For
example, for a charging downtime of D.;, = 20% and a dedicated charging consecutivity of
F. = 0.5, the longest period over which the batteries must store solar-generated power is
Dy F. = 10% of the orbit.

The average, sun-facing, solar panel area is

n
Ag= Zlﬁx,my,mz,z'cs,i/li , (5.82)
=
where n is the number of panels defined, A; is the area of the it" panel, Cs,; is the fraction
of the " panel covered in solar cells, and 1, ;(-), 7,.:(), and 7, ;(+) are the solar illumination
efficiencies of the i*" panel due to rotation about the x, y, and z axes, averaged across the
orbit.
For closed-form approximation of orbital average illumination, I define a solar illu-
mination efficiency. The geometry of illumination efficiency is illustrated in Fig. 5.19. The
illumination efficiency is defined generally as

Ap

n=—= sin) (5.83)

where A, is the area of the projection of the surface normal to the illumination vector, A is
the surface area of the panel, and v is the angle between the solar illumination vector and
the normal of the face.

Finding the average solar illumination efficiencies across the course of an orbit involves
integrating a nonlinear function, (see Appendix C). Instead, as illustrated in Fig. 5.20, I
approximate the average solar illumination efficiency for each face about each rotation axis
by taking the average of the solar illumination efficiency for four points in a circular orbit,

given by the orbit Earth angle o, (see Fig. 5.20). The orbital average solar illumination
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Illumination

f
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Figure 5.19: Illustration of illumination angle, . Side view of a satellite with solar panels
with incoming solar radiation shown in yellow. ) is the angle between the normal to the
plane of the solar panels and the solar rays. n is the panel normal vector. A is the surface
area of the solar panel and A, is the area of the solar panels projected in the direction of
illumination.

efficiency approximation is

Tai = 1 [(1 _9F )77%1'(7'() +nu,i(ﬂ-/2) + nu,i(ﬂ/2) +77u,i(0)
ui =y U 5 5
4 Muil0) +Z“’i(_7r/ 2 | (1—op,)Til™ +Z“”'(_7T/ 2)] (5.84)
1

= 5@+ (1= B [rual/2) + i =/2)] + (1= Foa(m)|

where Fy,(h) is the fraction of time a spacecraft in a circular Earth orbit spends in umbra
and 7,,i(a,) is the solar illumination efficiency of the ith face averaged over rotation about
the ! axis when the satellite’s orbital position is at an Earth angle of o, away from the
sun.

If the satellite is not rotating, the solar illumination efficiencies as a function of orbital

position are

Mu,i(0o) = max (0, cos [wu,i(ao)]) , (5.85)

where 1, ; is the wrapped rotation angle with respect to the Sun and «, is the Earth angle

between the satellite and the sun direction.
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Figure 5.20: Top: Hlustration of several different orbital positions with different Earth angles
between the satellite and the illumination vector. The Earth angle value, a,, for each orbital
position is marked on the satellite. The umbra is indicated in gray. Bottom: A solar
illumination efficiency curve, 1, ;(c) for a single panel across the orbit, along with the average
solar illumination efficiency. The curve is averaged as in Eq. 5.84, due to the non-linearity
of the solar illumination efficiency as a function of satellite rotation (see Appendix C). The
umbra is represented by the vertical gray sections, demonstrating the impact of the umbra
on the average illumination efficiency, 1, ;. The orbit is treated as nominally circular.
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Table 5.2: Sun-facing surface offset angles for a rectangular prism. The offset for the "
face about the u! axis is the angle between the illumination direction to the normal
of the face. The Sun-facing surface offset angle is used with the wrapping function
of Eq. 5.87 to limit the illumination range for each face to the range of angles
at which the face is illuminated by the Sun. The nominal offset of each
face about each axis is given for several positions in a circular orbit,
as illustrated in Fig. 5.21. a, is the Earth angle between the sun
direction and the satellite direction. Long dashes are used
when rotating a face about that axis does not present
the face to the sun.

a=—5 a=0 a=75 a=m
i wx |wy | wz | wx | wy | uz u:x wy | wz || wx uy u:z
1| — O I i 0 — 5 -5 — |78l | 7
2|m-tpl| | w5 — |5 -8 | |0 |5 — |3
3|/ B8-%5 1| —1]0 0| B8-5|— | 55 0 | — 0 58 | —
A I R B e AN
s| 8 | o 5| — |5 8| |~|3| — |3
6| 8+5 | — | O 0 | 8+5 | — | -5—=8B] 0 | — 0 | -5—-8| —

For a rotating satellite, the solar illumination efficiencies as a function of orbital

position are

wii(ao)
_Lmamwfpmzmmﬁmwmm
i (o) = - = e : (5.86)
u 1% wu
Y, &

where 1), is the total rotation range of the satellite about the u‘* axis and [V, i(ao),z/z;i i(ao)]
is the range of illumination angles for the i*" face about the u'* axis at the a, point in a
circular orbit. a, points in the orbit are illustrated in Fig. 5.20.

To make Eq. 5.86 work, the rotation range of the satellite about the u!” axis, [¢p~, 4],
must be shifted by the offset angle of the i" face about that axis, €u,i- Having shifted

the rotation range, the illumination angles are limited to the possible illumination range
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Figure 5.21: Tllustration of the surface offset geometry for a variety of illumination scenarios.
The offset for the i face about the v’ axis is the angle between the illumination direction
to the normal of the face. A local vertical, local horizontal coordinate system is used,
with velocity as the third axis under the assumption that the orbit is circular. Two solar
illumination cases are illustrated: m, when the satellite is between the Earth and the sun, and
/2 when the satellite is to the side of the Earth with respect to the sun. The illumination
offsets in each case depend on both the orbit position and the beta angle of the orbit. The
Earth is assumed to nominally align with the x-axis, which is the down direction.

—7/2,7/2]. is gives us the illumination angles ot the *"* face,
2,7/2]. Th he ill les of the i’ f
_ + . T T _
[yi(@), ¥y ;(a)] = | min 5 max | — 5,@% +eyi(a)) ], (5.87)

min (g,max <— g,@/}; + eu,i(oz)))] , (5.88)
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where [¢);,%:F] is the range of rotation angles of the satellite about the u'® axis and €, ;(av)
is the offset angle of the i face about the u!’* axis, given in Table 5.2. Note that generally,
this range of rotation angles, 1, ;, should be limited to [—m,7], unless rotation is continuous,
in which case [—27, 27] should be used to overcome the keyhole presented by this wrapping.

The fraction of time spent in umbra, Fy, is given by Sumanth [44] as

- 0 18] < B (5.59)
u= [ /R 2Rph . '
Feos™! ((RE+h)co§5)> 61 =68

where [3(I) is the orbit beta angle, 5*(-) is the maximum beta angle at which the satellite
spends time in the umbra, h is the satellite orbital altitude, and Rg is the Earth radius. The
orbit is assumed to be circular.

The minimum and maximum orbit beta angles are

(5.90)

where € = 0.137 is the obliquity of Earth’s rotation and the absolute value of 3 is used, giving
£ =0 as the minimum case.

The orbit umbra beta angle is given by Sumanth [44] as

R
% .1 E

where Rp is the Earth radius and h is the orbit altitude.

The average Earth-facing charging area is

TE = Z Cx,icy,i(z,i(l - Fu)cs,iAi ) (5.92)
=1

where C;.i(+), ¢y.i(+), and (,;(+) are the Earth illumination efficiencies of the i panel due to
rotation about the x, y, and z axes, Cs; is the solar cell coverag