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ABSTRACT

A DETAILED LOOK AT THE OMEGA-K ALGORITHM FOR

PROCESSING SYNTHETIC APERTURE RADAR DATA

Matthew A. Tolman

Department of Electrical and Computer Engineering

Master of Science

In this thesis, the Omega-k algorithm used for processing stripmap synthetic

aperture radar (SAR) data is explored in detail. While the original Omega-k algo-

rithm does not achieve the same SNR as a matched filter, a modification is presented

which enables the algorithm to nearly achieve that SNR. It is shown that the focused

point spread function obtained when the Omega-k algorithm is used differs in im-

portant ways from the output of a modified version of the matched filter. Spread

out sidelobes and a stretched mainlobe are observed when the data is processed by

the Omega-k algorithm. These differences may increase the potential interference

between some nearby scatterers; however, the amplitude of the resulting sidelobes is

lower than that observed for the matched filter, and the potential interference between

other nearby scatterers is reduced.

The details of a discrete implementation of the algorithm are also presented.

Two methods for mixing the frequency domain signal to baseband are compared, and

one is shown to potentially reduce the required accuracy of the interpolation kernel.





Finally, the errors associated with the key approximation used by the algorithm are

explored through simulation, and it is shown that the approximation is sufficiently

accurate for a particularly demanding configuration.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) systems are imaging radar systems which are

capable of producing both two- and three-dimensional images of an area [1] [2] [3].

While SAR was developed and used by the military decades earlier, the launch of the

SEASAT satellite in 1978 was an important step towards its use by the wider remote

sensing community [1]. During the 1990’s, increased interest resulted in a number of

satellites being equipped with SAR sensors [1].

Here at BYU, emphasis has been placed on producing light-weight, low-cost

SAR systems to be flown on small aircraft. Pursuit of this goal has progressed through

a number of system designs which include: the YSAR [4], the YINSAR [5], the mi-

croSAR [6], the microASAR, and the nuSAR. Along with the design and implemen-

tation of the hardware for these systems, significant work has gone into developing

and testing various processing algorithms for possible implementation.

1.1 Thesis Context

Many processing algorithms exist to process SAR data. The standard algo-

rithms are the range-Doppler algorithm (RDA) [1], the chirp scaling algorithm (CSA)

[1], and the Omega-k algorithm [7]. Comparisons of these algorithms have been per-

formed in the past [8] [9] [10] [11]; however, they have focused on evaluating the

resulting frequency domain phase not the resulting time-domain signal. In [10], the

point spread function is considered but only for an approximate version of the Omega-

k algorithm. In [11], the Omega-k algorithm is considered optimal and is used as the

reference to which other algorithms are compared.
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The purpose of this thesis is to extend the analysis performed by others to

analyze the point spread function output by the Omega-k algorithm, and to explore

some additional aspects of the Omega-k algorithm. The topics covered include: iden-

tifying the portion of the processed image which represents properly focused data,

exploring the effect of the Stolt mapping (a key aspect of the algorithm) on the fo-

cused point spread function, comparing the peak SNR achieved by the algorithm to

that of an ideal matched filter, developing a discrete implementation of the algorithm,

and understanding the effect of the POSP approximation errors.

This thesis contributes to the work already done in primarily two ways. First,

the effect of the frequency domain mapping employed by the Omega-k algorithm on

the resulting point-spread function is explored both analytically and through sim-

ulation. Second, the magnitude and the effect of the POSP approximation errors

are explored. This analysis addresses the effect of the associated frequency domain

phase errors on the resulting point spread function. In all of this work, the analytical

development provides insight into how the results of the simulation may be extended

to other SAR systems.

1.2 Thesis Outline

The rest of the thesis is organized into five chapters.

In Chapter 2, the basic principles of radar and the geometry associated with

stripmap SAR systems are used to develop the equation for the SAR signal. The

frequency domain expression for the SAR signal obtained using the POSP approxi-

mation is also discussed.

In Chapter 3, the effect of choosing a particular amount of time to collect

the radar echos is discussed, and the equations for identifying pixels which represent

properly processed data are developed.

In Chapter 4, the Omega-k algorithm is presented and is compared to the

output of an ideal matched filter for a single target. The required modification to

achieve an SNR nearly equivalent to the matched filter is discussed, and the effect of

the frequency domain mapping is explored through simulation.

2



In Chapter 5, the issues associated with a discrete implementation of the

algorithm are presented, and two methods for ensuring that the frequency domain

signal is properly mixed to baseband are compared.

In Chapter 6, the POSP approximation is analyzed and the effects of the

frequency domain phase errors are explored through simulation.
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Chapter 2

The SAR Signal

Synthetic aperture radars are commonly used to produce two or three di-

mensional images of the earth’s surface. The mathematical relationship between the

received data and the desired image is often developed through the use of Doppler

frequencies; however, the relationship is not directly due to a change in frequency.

Rather, it arises from the geometry of the imaging process as noted in [13]. Develop-

ing the mathematical equations from the geometric perspective provides insight into

the problem and sets the stage for analyzing the Omega-k algorithm from a signal

processing point of view.

This chapter develops the SAR signal from the basic principles of radar and

the SAR imaging geometry, and presents the most common frequency domain rep-

resentation for the signal. Then, the frequency domain representation of the SAR

signal is presented and discussed.

2.1 Basic Radar Processing

Understanding the basic principles of radar provides the necessary foundation

for understanding synthetic aperture radar. At the most general level, a radar uses

electromagnetic waves to detect targets and to determine the distance, or range, at

which they are located. This is done by transmitting a known signal, often a chirp,

and then listening for echos scattered by the targets. The angle to the target is

inferred from the antenna pattern and the antenna pointing direction. Some radars

transmit from one location and receive at another; however, the following development

focuses on systems which receive the signal in the same location from which the

signal is transmitted. In addition to range measurement, radars can also measure
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echo power to obtain information about the target size and orientation and can infer

velocities from Doppler frequencies. The radar signal and quadrature demodulation

are addressed followed by a discussion on matched filtering.

2.1.1 Radar Signal

Prior to addressing the details of processing, the radar signal characteristics

are explored in this section. Typically, the echos that are received are converted into

complex-valued signals immediately after they are received, and it is important to

understand both the echo and its complex counterpart.

Radars typically transmit a signal of the form [14]

y1(t) = w(t)cos(2πf0t + θ(t)), (2.1)

where w(t) is a window function, f0 is the carrier frequency, and θ(t) is a phase

function which defines the transmit modulation. Assuming a target is present, the

transmitted signal travels out to the target, and some of the energy is scattered back

towards the radar in the form of an echo. This echo travels back to the radar and is

received after a time delay

τ =
2r

c
, (2.2)

where r is the range to the target. The received echo has a much smaller amplitude

due to free-space propagation loss and the target’s scattering properties. In addition,

the target introduces a phase term. The received signal is

y2(t) = Atargetw(t− τ) cos[2πf0(t− τ) + θ(t− τ) + φtarget], (2.3)

where Atarget includes all of the scaling terms, and φtarget is the phase term introduced

by the target. The signal in Equation (2.3) is turned into a complex valued signal by

an operation known as quadrature demodulation. This technique is the same as I/Q

demodulation used in digital communications with one additional step (see Appendix
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B). The resulting signal is

v(t) = Atargetw(t− τ)ejθ(t−τ)e−j2πf0τejφtarget . (2.4)

The first two terms in (Equation (2.4)) are the delayed chirp, the second is a phase

term determined by the echo delay and the radar carrier frequency, and the last is

the phase term introduced by the target.

The goal of radar processing is to detect targets and to determine the range or

distance at which they appear. In most radar applications, thermal noise introduced

by the antenna and the receiver obscures the faint echos returned by the targets. This

is generally modeled as additive white Gaussian noise, and the received signal is

v(t) = Atargetw(t− τ)ejθ(t−τ)e−j2πf0τejφtarget + η(t), (2.5)

where η(t) is the white noise process. To maximize the probability of detection, it is

desirable to maximize the peak signal to noise ratio (SNR). The filter which performs

this function is referred to as the matched filter and is discussed in the next section.

2.1.2 Matched Filter

The matched filter is optimal in the sense that it maximizes the SNR for a

given signal of interest. While maximizing the SNR makes it easier to detect targets,

it is also important to determine the range at which they appear, and the filter must

place the peak of the resulting signal in the position which corresponds the range at

which the target is located. Finally, the filter must localize the energy around that

point so that targets which are close together can be distinguished.

Understanding the development of the matched filter is necessary for the anal-

ysis of the Omega-k algorithm in Chapter 4. The following development comes from

[14], with minor changes to the variable names. The signal to noise ratio at time ν is

expressed as

SNR =

∣∣∣ 1
2π

∫∞
−∞ V (Ω)H(Ω)ejΩνdΩ

∣∣∣
2

N0

4π

∫∞
−∞ |H(Ω)|2dΩ

, (2.6)
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Table 2.1: Time domain operations and their frequency domain equivalents.
These properties are found in most introductory texts on signal processing,

a good reference is [15].

Time Domain Operation Time Domain Frequency Domain

Time Reversal x2(t) = x1(−t) X2(jw) = X∗
1 (−jw)

Complex Conjugation x2(t) = x∗1(t) X2(jw) = X2(−jw)
Time Delay x2(t) = x1(t− τ) X2(jw) = e−jwτX2(jw)
Convolution x3(t) = x1(t) ∗ x2(t) X3(jw) = X1(jw)X2(jw)

where H(Ω) is the frequency response of the applied filter, and V (Ω) is the Fourier

transform of the received signal v(t). The numerator in Equation (2.6) is the instan-

taneous power of the desired signal at the point ν, and the denominator is the output

noise power when white noise with a power spectral density N0/2 Watts/Hertz is

assumed. Applying the Schwarz inequality to the integral in the numerator yields

[14]

SNR ≤
1
2π

∫∞
−∞ |V (Ω)ejΩν |2dΩ

∫∞
−∞ |H(Ω)|2dΩ

N0

4π

∫∞
−∞ |H(Ω)|2dΩ

, (2.7)

where equality is achieved if and only if [14]

H(Ω) = α[V (Ω)ejΩν ]∗, (2.8)

where α is an arbitrary constant, and ν is the time where the SNR is maximized.

The magnitude of α does not affect the SNR ratio because it appears in both the

numerator and the denominator in Equation (2.7). Equation (2.8) is the frequency

response of the filter which maximizes the peak SNR.

The second requirement established for the filter is to place the point where

the SNR is maximized at the time corresponding to the range of the target. As noted

in the previous section, the signal delay, τ , is directly related to the range at which the

target appears and should, therefore, be the location where the SNR is maximized.
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The equation for this filter is

H(Ω) = α[V (Ω)ejΩτ ]∗. (2.9)

Next, the time domain representation for the filter is determined from the properties

listed in Table 2.1. The phase ramp in Equation (2.9) corresponds to a time ad-

vancement by τ , and the complex conjugation corresponds to both time reversal and

complex conjugation in the time domain. Applying those changes to the quadrature

demodulated radar signal in Equation (2.4) yields

h(t) = αw∗(−t)e−jθ(−t)ej2πf0τe−jφtarget (2.10)

as the impulse response of the filter. The only problem with this expression is that

it depends on both the range to the target and the phase term introduced by the

target; neither of which are known a priori. However, since α can be any arbitrary

constant, choosing it to include the complex conjugate of these terms,

α = αnewe−j2πf0τejφtarget , (2.11)

yields a target independent filter

h(t) = αneww(−t)e−jθ(−t), (2.12)

where αnew is an arbitrary constant and the filter is merely the time-reversed, complex-

conjugate of the complex valued radar chirp, undelayed in time. As noted previously,

the radar actually transmits a real signal. However, applying quadrature demodula-

tion to the transmitted chirp in Equation (2.1) yields

h(t) = w(t)ejθ(t) (2.13)

as the corresponding complex signal. It is very significant that the time origin of

Equation (2.13) and the time origin of Equation (2.12) are matched. The window

9



function w(t) could be centered at t = 0, begin at t = 0, or end at t = 0. Whatever

the choice, the same window function must be used to generate the filter so that the

target is properly placed along the time axis.

The last thing the filter must do is strongly localize the energy of the pulse

around the time corresponding to the range of the target. The means for satisfying

this requirement are not clearly evident until the output of the filter is considered in

the frequency domain. Let c(t) denote the complex radar chirp

c(t) = w(t)eθ(t), (2.14)

and let C(Ω) denote the Fourier transform of that chirp. If we assume that the

received echo was amplified such that the magnitude of the echo is equal to the

magnitude of c(t), the Fourier transform of the echo is

V (Ω) = C(Ω)e−jΩτe−j2πf0τejφtarget , (2.15)

and the Fourier transform of the filter is

H(Ω) = αnewC∗(Ω). (2.16)

Performing the filtering in the frequency domain yields

H(Ω)V (Ω) = αnewC∗(Ω)C(Ω)e−jΩτe−j2πf0τejφtarget

= αnew|C(Ω)|2e−jΩτe−j2πf0τejφtarget . (2.17)

The only aspect of the matched filter which can be modified is the scale term αnew.

Unfortunately, multiplying by a scalar only alters the amplitude and phase of the

complex signal in the time domain. It does not affect in any way the localization of

energy.

Of the terms in Equation (2.17), the first exponential is merely a time delay,

and the other exponential terms merely change the phase of the signal. The only term

10
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Figure 2.1: The plot of a sinc function. Much of the energy of a sinc function is located
around the peak of the function. The width of the main lobe is often characterized by
the 3dB width which is inversely proportional to the bandwidth β of the signal.

which affects the shape of the signal envelope in the time domain is |C(Ω)|2 – the task

becomes properly choosing that term. A simple choice is rect(Ω/β) which corresponds

to a sinc function of width 1/β in the time domain. This is shown in Figure 2.1. A

common metric for the localization of energy is the 3dB width of the time domain

signal indicated in the same figure. The 3dB width is commonly accepted as the

resolution of the system, i.e. the minimum distance targets must be separated to be

individually resolved. For the sinc function, this distance is approximately equal to

1/β, where β is the bandwidth1.

In practice, a rect is not achieved in the frequency domain; however, linear

FM chirps with high time-bandwidth products come very close. Other choices for

|C(Ω)|2 can be devised; the important criteria is that the energy of the corresponding

time domain signal is strongly localized around the origin.

There are a couple aspects of matched filtering which deserve further comment.

First, under the assumptions used to develop Equation (2.12), the peak amplitude

of the signal output by the matched filter is the energy of the echo. This is seen by

1The bandwidth is the entire width of the signal’s support in the frequency domain.
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calculating the inverse Fourier transform of Equation (2.12) at t = τ :

ṽ(τ) =

∫ ∞

−∞
H(Ω)V (Ω)ejΩτdΩ

=

∫ ∞

−∞
αnew|C(Ω)|2e−jΩτe−j2πf0τejφtargetejΩτdΩ

=

∫ ∞

−∞
αnew|C(Ω)|2e−j2πf0τejφtargetdΩ

= αnewe−j2πf0τejφtarget

∫ ∞

−∞
|C(Ω)|2dΩ

= αnewe−j2πf0τejφtarget

∫ ∞

−∞
|c(t)|2dt (2.18)

= αnewe−j2πf0τejφtargetEc, (2.19)

where Ec is the energy of the received chirp, and the second to last step requires

Parseval’s theorem. The magnitude of Equation (2.19) is the energy of the received

echo scaled by the magnitude of αnew. As previously noted, the magnitude of αnew

does not affect the resulting SNR. The matched filter achieves the optimal SNR by

reducing all of the frequency domain phase modulation to linear phase ramps and

squaring the magnitude of the frequency domain signal. This observation is revisited

in Chapter 4 when the Omega-k algorithm is analyzed.

The second observation is that the phase of Equation (2.18) is entirely de-

termined by the distance to the target and the complex phase term introduced by

the target. In interferometric systems, two spatially separated antennas are used to

receive echos from the target. When the range between one antenna and the target

differs from the range between the other antenna and the target, that phase term

differs by an amount proportional to the difference between the two ranges, and the

angle to the target can determined rather precisely. The one caveat is that Equation

(2.18) is usually sampled, and in general, the target samples for the two signals do not

exactly correspond. However, when |C(Ω)|2 is symmetric, |C(Ω)|2e−jΩτ is conjugate-

symmetric and the corresponding time domain signal is real. Thus, the phase of the

entire time domain signal is determined by the distance to the target and the complex
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phase term introduced by the target. Even when the samples are slightly misaligned,

the appropriate phase term is obtained.

Summarizing, the matched filter maximizes the SNR of the processed target

echo at the location corresponding to its range, and the transmitted chirp determines

how localized the energy is around that point. The result of the filtering process is

ṽ(t) = αnewh(t− τ)e−j2πf0τejφtarget , (2.20)

where h(t− τ) is the inverse Fourier transform of |C(w)|2e−jΩτ , and the radar system

detects targets by identifying peaks in the received signal; the range is determined

from the time delay associated with the peak. Before proceeding, Equation (2.20) is

changed from an equation in time to an equation in range by a change of variables

according to Equation (2.2). After that change of variables, the signal in Equation

(2.20) becomes

V (ρ) = h

(
2

c
(ρ−R)

)
e−j2πf0

2
c
Rejφtarget , (2.21)

where ρ is the independent position in range. To complete the transition to spatial

quantities, the radar carrier frequency is converted to cycles per meter according to

fρ0 = 2f0/c to yield

V (ρ) = h

(
2

c
(ρ−R)

)
e−j2πfρ0Rejφtarget , (2.22)

and substituting a new function hρ(r) = h(2r/c) into Equation (2.22) yields the final

result

V (ρ) = hρ(ρ−R)e−j2πfρ0Rejφtarget . (2.23)

As noted previously, the first exponential term in Equation (2.23) is important for

interferometric systems. It is also important for SAR systems, as addressed in the

next section.
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Figure 2.2: An illustration of the three dimensional geometry for stripmap SAR
sensors. The slant range of closest approach is denoted r. Adapted from [16].

2.2 Time Domain SAR Signal

Unlike surveillance radar systems such as those used in air traffic control,

SAR systems are not operated from a single location. Instead, they are moved along

a deterministic trajectory to intentionally vary the distance between the radar and

the stationary targets. As noted in the previous section, the first exponential term in

Equation (2.23) is a phase term which depends on the range to the target. By moving

the SAR system along the predefined trajectory, that phase changes in a deterministic

way and provides the means for achieving a high azimuth resolution.

The most common way to vary the location of the SAR sensor is along a linear

trajectory as illustrated in Figure 2.2, where the aircraft represents the SAR platform.

The ẑ direction along the linear trajectory is commonly referred to as the azimuth

direction. In that figure, the target is located at (x0, y0, z0), and r is the minimum

distance between the target and the linear trajectory. This minimum distance, r,

is important for SAR processing and is termed the slant range of closest approach
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(SRCA). When the platform is at location z along the trajectory, the range to the

target is

R =
√

r2 + (z − z0)2. (2.24)

Incorporating this expression for the range into Equation (2.23), the received signal

for a target located at (r, z0) is

V (ρ, z) = hρ

(
ρ−

√
r2 + (z − z0)2

)
e−j2πfρ0

√
r2+(z−z0)2ejφtarget . (2.25)

By transmitting the signal and receiving echos from many points along the linear tra-

jectory, Equation (2.25) is effectively sampled in the azimuth direction. The collected

data forms a 2-dimensional signal where range and azimuth are the two dimensions.

An important observation is that the target response depends only on the target’s

azimuth location and its SRCA. Targets located in 3-dimensional space are projected

onto 2 dimensions, SRCA and azimuth. A coordinate system consistent with that

projection is a cylindrical coordinate system with the z axis aligned along that linear

trajectory, r corresponding to the SRCA, and θ as the angle in the xy-plane. In this

coordinate system, it is possible to address the antenna pattern.

As with traditional radar systems, the antenna pattern limits the spatial vol-

ume from which echos are received. A common configuration for SAR imaging is to

point the antenna in a fixed direction with respect to the linear trajectory. This con-

figuration is referred to as stripmap SAR. The angle at which the antenna is pointed

determines the mode in which the SAR system is operated. When the antenna is

pointed in a direction perpendicular to the linear trajectory, the SAR system is oper-

ating in the broadside mode. Otherwise, the SAR system is operating in squint mode.

While the figures used in the following discussion portray a SAR system operating in

broadside mode, the discussion is applicable for both.

As the platform progresses in the azimuth direction, targets enter and leave the

antenna beam as shown in Figure 2.3 where only the SRCA and the azimuth position

are represented. In general, the antenna beamwidth for a given target depends on

the angle θ to the target, however, significant insight is obtained by assuming that
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Figure 2.3: An illustration of the two dimensional geometry for stripmap SAR. On the
left, a simplified radar antenna pattern is shown for three positions along the trajectory
which correspond to the points where the target is illuminated by the leading edge of
the antenna pattern, by the center of the antenna pattern, and by the trailing edge of
the antenna pattern. The target is shown as a red X, and the antenna beamwidth is
denoted by bw. The distance traveled by the radar is shown on the right.

the antenna pattern does not vary with θ. Under this assumption, the effect of the

2-way, antenna pattern can be represented by a window function

A

(
z − z0

r

)
. (2.26)

Incorporating the antenna window function along with the other amplitude

scaling terms into Equation (2.25), the full SAR signal is

V (ρ, z) =
k

[(z − z0)2 + r2]2
A

(
z − z0

r

)
hρ

(
ρ−

√
r2 + (z − z0)2

)

e−j2πfρ0

√
r2+(z−z0)2ejφtarget , (2.27)

where k is a constant which includes the transmit power, the target’s radar cross-

section, the radar wavelength, and a factor of 1/(4π)3. The denominator of the first
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term in Equation (2.27) is the range spreading loss. There are additional sources of

attenuation such as atmospheric attenuation, but they are assumed to be negligible.

The last point to be noted is the length of the trajectory over which echos

from a particular target are received. This development requires the introduction of

a new angle

φ = tan−1

(
z0 − z

r

)
, (2.28)

which is referred to as the look angle in this thesis. For a target with a SRCA of r,

echos are received over a segment in azimuth of length

δz = r[tan(φmax)− tan(φmin)], (2.29)

where φmax and φmin are maximum and minimum look angles from which significant

energy is received through the antenna. This expression reduces to

δz = 2r tan

(
θb

2

)
(2.30)

for broadside mode SAR, where θb is the antenna beamwidth. For an antenna with

a beamwidth exceeding 54 degrees, pointed broadside, the length in the azimuth

direction can exceed the target’s SRCA which can be multiple kilometers. This effect

is analyzed further in Section 3.2.

2.3 Frequency Domain Representation

From the time domain expression for the received signal in Equation (2.27),

we can compute the Fourier transform of the signal. While a closed form solution

to the Fourier transform of Equation (2.27) is not known, an approximate version

is typically developed using the principle of stationary phase (POSP) approximation

which is discussed in Chapter 6. In this section, the Fourier transform in range is

presented followed by the result of the azimuth Fourier transform. Then, the resulting

frequency domain SAR signal is analyzed.
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The range Fourier transform depends only on the chosen radar chirp. The only

term in Equation (2.27) which depends on ρ is hρ. Assuming that an ideal matched

filter was applied, the Fourier transform of hρ is entirely real, and the range Fourier

transform of Equation (2.27) is

V (fρ, z) =
k

[(z − z0)2 + r2]2
A

(
z − z0

r

)
Hρ(fρ)e

−j2πfρ

√
r2+(z−z0)2

e−j2πfρ0

√
r2+(z−z0)2ejφtarget , (2.31)

where Hρ(fρ) is the Fourier transform of hρ(ρ) and the first exponential is the delay

term. Combining the first two exponential terms yields

V (fρ, z) =
k

[(z − z0)2 + r2]2
A

(
z − z0

r

)
Hρ(fρ)

e−j2π(fρ+fρ0)
√

r2+(z−z0)2ejφtarget . (2.32)

Evaluating the azimuth Fourier transform of Equation (2.32) is complicated

by the square-root term in the exponential and the antenna weighting function. The

standard approach for obtaining a closed-form solution involves invoking the principle

of stationary phase approximation. The full derivation of this step, including all of

the necessary simplifications, is provided in Appendix A. From Equation (A.18), the

result is

V (fρ, fz) = k
((fρ + fρ0)

2 − f 2
z )

5
4

r
7
4 (fρ + fρ0)3

A

(
fz√

(fρ + fρ0)2 − f 2
z

)
Hρ(fρ)

e−j π
4 ejφtargete−j2πr

√
(fρ+fρ0)2−f2

z−j2πfzz0 . (2.33)

The frequency domain support of the SAR signal is entirely determined by the

Hρ(fρ) and the weighting function of the antenna. Hρ(fρ) is only a function of range

frequency, and limits the support of the function in that dimension. The antenna

weighting function limits the azimuth frequencies, however the limitation depends

on the range frequency. This relationship is best understood after the relationship

between the look angle φ and azimuth frequency is developed.
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The antenna weighting function operates on the ratio

z0 − z

r
= tan(φ), (2.34)

where φ is the look angle. Because the same weighting function is used in both the

time and the frequency domains, there is a direct relationship between the look angle

φ and the azimuth frequency. Equating the argument to the weighting function in

Equation (2.33) to tan(φ), we have

fz√
(fρ + fρ0)2 − f 2

z

= tan(φ). (2.35)

The left side of Equation (2.35) approaches infinity as

fz → (fρ + fρ0), (2.36)

so that (fρ + fρ0) represents the maximum azimuth frequency that is possible with

an isotropic antenna. For more realistic antenna patterns, further insight is obtained

by solving for fz to yield

fz = ±(fρ + fρ0)
tan(φ)√

1 + tan2(φ)

= ±(fρ + fρ0) sin(φ)

= (fρ + fρ0) sin(φ), (2.37)

where the sign ambiguity is resolved by noting that in Equation (2.35) the sign of fz

must be the same as the sign of tan(φ) which has the same sign as sin(φ) between

-90 and 90 degrees.

With a relationship between the look angle and the azimuth frequency, the

frequency domain support of the SAR signal is presented. Using the angle at which the

antenna pattern drops to 3dB of its peak value, the corresponding azimuth frequency

is given by Equation (2.37). Using that as the edge of the limit in the azimuth

frequency direction, the frequency domain support for a SAR system operating in
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Figure 2.4: A plot of the frequency domain support of the SAR signal for an L-band
SAR with a 250 MHz range chirp and a 60 degree azimuth beamwidth. The frequency
axes are spatial frequencies.

broadside mode is shown in Figure 2.4. It is interesting to note that the frequency

domain support of the signal is not symmetric through the origin. In Chapter 4,

it is shown that this asymmetry is aggravated when the signal is processed using

the Omega-k algorithm. The implications of this asymmetry are addressed in that

chapter.
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Chapter 3

SAR Data Collection

In the previous chapter, the equation for the SAR signal is developed. In this

chapter, the conditions under which data can be properly processed are addressed.

One important design parameter is the length of so-called “fast-time” that the receiver

records the echos from each pulse. This length of time is referred to as the range gate

and affects the amount of data that must be recorded and the size of the usable image

that is produced. In the azimuth or ”slow-time” direction, it is often necessary to

segment the data prior to processing. The size of the segments also affects the usable

portion of the processed image. In this chapter, these two ideas are addressed.

3.1 Range Gate

The two important aspects of the range gate are the time of the first sample

and the time of the last sample. To reduce the data storage requirements, data is not

collected until a target return is expected. For airborne platforms, the first target

return is expected for a range equal to the height that the aircraft flies above the

imaged area. As this is a known distance, a receive delay is built into the system so

that the first sample is taken just before this first echo is expected to arrive. This

delay is referenced to the time that the beginning of the chirp is transmitted and is

calculated according to

Td = 2
rca,min

c
, (3.1)

where rca,min is the minimum distance at which targets are expected to appear.

The second aspect concerns the length of the range gate. The range gate

directly determines extent of the final image in the range direction; however, the

signal from Equation (2.27) is only collected for a fraction of the SRCA positions
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represented in the processed image. For each pulse that is transmitted, the range to

the last target for which the entire echo is collected is

Rlast =
c

2
(Td + Trg − Tp), (3.2)

where Td is the receive delay, Trg is the range gate, and Tp is the chirp length. In

Figure 3.1(a), the associated distances are labeled on the bar above the antenna

pattern. On the edge of the antenna pattern, a target which appears at that range

has a SRCA which is calculated according to

rca,max =
c

2
(Td + Trg − Tp) cos

(
θb

2

)
, (3.3)

where θb is the antenna beamwidth. The entire echo for all targets with a SRCA

between rca,min and rca,max is collected whenever the target is located in the antenna

beamwidth–rca,min and rca,max define the limits of the usable portion of the image

which is bounded by the red, vertical, dashed lines in Figure 3.1. Any targets outside

of that area cannot be properly processed because the full signal is not recorded. It is

important to note that the distance between the red lines is reduced as the beamwidth

increases, or the antenna is pointed forward. The important quantity is the maximum

angle at which targets are illuminated by significant energy.

When the antenna beamwidth is relatively narrow, the effect just discussed is

not very significant. However, for wide-beamwidth SAR systems, the effect introduces

an additional trade-off to be considered in the design process. According to Equation

(3.3), the maximum range can be extended by increasing the range gate or decreasing

the pulse length. The trade-off with increasing the range gate is that more data must

be stored. While the pulse length does not directly affect the range resolution, there

is a minimum length for a given chirp bandwidth for which the pulse length does

not significantly affect the resolution. The chirp length also directly affects the final

SNR. As these are all important considerations, quantifying the effect of the design

parameters on the size of the usable swath width is necessary for making appropriate

design choices.
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(a) Broadside (b) Squinted

Figure 3.1: An illustration of the limits on the valid SRCAs imposed by the antenna
pattern, the receive delay (Td), the range gate (Trg), and the pulse length (Tp). A full
resolution image can be made only over the ranges between the red dashed lines.

The effect of choosing a particular range gate and a particular pulse length

is analyzed for a few cases relevant to the work being done in our research group.

In Figure 3.2, plots are provided which illustrate the direct relationship between the

antenna beamwidth and the maximum slant range swath width for four pulse lengths

and two range gates. The slant range swath width is the difference between the

maximum SRCA and the minimum SRCA. It is calculated according to

Wsl =
c

2
(Td + Trg − Tp) cos(φmax)− c

2
Td

=
c

2
Trg cos(φmax)− c

2
Tp cos(φmax)− c

2
Td(1− cos(φmax)). (3.4)

For our work at BYU, a beamwidth of 60 degrees is desirable and we are currently

using a 1µs pulse. If we limit the range gate to 4096 samples (top plot in Figure 3.2),

the slant range swath width is about 750m, a little over half the distance represented
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Figure 3.2: Plots of the combined effect of the antenna beamwidth, the time delay,
the range gate, and the pulse length on the usable swath width. The range gate for the
bottom plot is twice that of the top plot.

by the range samples. When the range gate is doubled, the slant range swath width

increases to 1750m which is about 70 percent of the distance represented by the

range samples. This is a significant increase both in the usable swath width and in

the fraction of the resulting image which is usable.

The effect of the pulse length is also significant. It is clear from the plots that

choosing a pulse length which is a significant fraction of the range gate has a limiting

effect on the slant range swath width. While cutting the pulse length in half does not

double the slant range swath width, using the minimum pulse length which does not

significantly degrade the resulting range resolution or achieved SNR can significantly

increase the slant range swath width.
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Figure 3.3: Plots of the synthetic aperture length corresponding to the radar parame-
ters in Figure 3.2 for 8192 range samples. The top plot shows the maximum beamwidth
for a given slant range swath width, and the bottom plot shows the synthetic aperture
length for a given swath width assuming the maximum beamwidth is used.

3.2 Segment Processing

The previous section addressed the collection of data in the range direction.

In the azimuth direction, data can be collected as long as there is space to store it.

However, processing large amounts of data requires large amounts of memory and

it becomes necessary segment the data in the azimuth direction during processing.

This section addresses both the minimum segment size and the process for identifying

the properly compressed pixels in larger processed segments. These ideas are first

developed for the simplified antenna pattern from Chapter 2, and then for realistic

antenna patterns.
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Figure 3.4: An illustration of the collected data for a SAR system operating in broad-
side mode.

3.2.1 Simple Antenna Pattern

In Section 2.2, it is noted that the response from a target for a broadside SAR

system covers an azimuth distance

δz = 2r tan

(
θb

2

)
, (3.5)

where r is the SRCA, and θb is the antenna beamwidth seen by all targets. In

calculating the maximum azimuth distance, one could use slant range corresponding

to the last sample of the range gate; however, all of the echos for targets located at this

SRCA cannot be recorded because the range gate is too short. Instead, rca,max from

Equation (3.3) is used, and the resulting azimuth distance represents the minimum

segment size which contains the entire signal for the target located in the center of

the azimuth segment at rca,max. For every additional meter added to the segment

size, the segment contains the entire signal for an additional meter worth of azimuth

positions in the center of the segment. For this reason, the maximum azimuth length

represents a sort of initial cost for processing the SAR signal.
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Once the data in a segment is processed, it is desireable to retain only the por-

tion which represents targets for which the entire signal is contained in the segment–

these targets have been properly focused. When the data is processed using the

Omega-k algorithm discussed in Chapter 4, they end up in the position correspond-

ing to their SRCA in range and their zero-Doppler position in azimuth. Assuming

the SAR system is operating in broadside mode, it is easy to identify the properly

processed pixels. When the first pulse of the segment is sent out, the target located in

an azimuth position one half of Equation (3.5) ahead of the platform is just entering

the antenna beam. When the last pulse of the segment is sent out, the target located

in an azimuth position one half of Equation (3.5) before the platform is just leaving

the antenna beam. Therefore, the signal for all targets with a SRCA between rca,min

and rca,max which appear between those two azimuth positions is entirely contained

within the segment. This area is shown in Figure 3.4.

Ultimately, a continuous swath of properly processed data is desired. The

easiest approach to achieving this result is to extract the pixels contained in the red

box in Figure 3.4 and delay the next segment by the width of the red box. The

drawback is that many near range pixels are properly processed more than once. For

SAR systems with long range gates, it may be advantageous to segment the data in

range for processing; however, doing so does increase the complexity of data handling

and storage.

Extending the analysis to squint-mode SAR introduces an additional consid-

eration. In the following, it is assumed that the range of angles over which the targets

are viewed is constant for all targets. With the antenna squinted backwards, the radar

pulses traverse the zero-Doppler swath at an angle as shown in Figure 3.5. Rather

than appearing a distance from the edge of the zero-Doppler swath, the properly

processed pixels are located a distance from the center of the antenna beam for the

first and last pulses in the segment. Some of the pixels which are properly processed

correspond to positions outside the zero-Doppler swath. These are outlined in a solid

blue line in Figure 3.5. Because the Omega-k algorithm uses phase shifts in the fre-

quency domain to place the targets, targets in these positions appear wrapped around
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Figure 3.5: An illustration of the collected data for a SAR system operating in squint
mode.

to the other side of the image and are enclosed by the dotted blue line in Figure 3.5.

Once the positions of the pixels is determined, circular indexing properly identifies

the desired azimuth samples.

For SAR systems operating in a significantly squinted configuration, it doesn’t

make sense to only retain the coincident pixels. The red box shown in Figure 3.1(b)

eventually becomes empty. However, block processing is still possible if the same

number of azimuth samples are taken at each SRCA. The only complication is as-

sociated with storing the data. A particularly simple approach is to store the data

in its proper location with respect to the other data. While placing the data in the

large array is somewhat difficult, retrieving the data for a given azimuth swath is very

simple and can be fast when 2-d array is properly oriented.
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3.2.2 Realistic Antenna Patterns

Realistic antenna patterns do not conform to the omni-directional assumption

from Chapter 2. Extending the previous development to realistic antenna patterns is

complicated by the fact that it is not generally possible to determine the precise angles

θ in the xy-plane (see Figure 2.2) at which targets at a particular SRCA will appear.

To overcome this challenge, the antenna pattern is rotated into a new coordinate

system, and conservative limits are developed.

The first step in analyzing a more realistic antenna pattern is to transform it

into a coordinate system consistent with the SAR imaging scenario. From Section 2.2,

the desirable angles are θ in Figure 2.2 and φ in Equation (2.28). Once the antenna

pattern is rotated into this coordinate system, the conservative limits are obtained

by identifying the range of angles in θ at which significant energy could be received,

and then searching over those angles for the maximum and minimum values of φ from

which significant energy could be received1.

With the maximum and minimum angles in φ identified, the valid positions

for a SRCA r start at the position

zfirst = zseg,start + r tan(φmax), (3.6)

where zseg,start is the position of the SAR sensor at the beginning of the segment, and

end at the position

zlast = zseg,end + r tan(φmin), (3.7)

where zseg,end is the position of the SAR sensor at the end of the segment. Again,

it is noted that when the valid positions fall outside the zero-Doppler swath for the

segment, circular indexing identifies the processed targets.

1The amplitude of the antenna pattern at the maximum and minimum angle used in this calcu-
lation is important. The effect of a few choices on the focused point spread function is addressed in
Chapter 6.
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3.3 Conclusion

The usable portion of the processed image is an important consideration for

the design of a SAR system. In range, the usable portion of the image is affected by

the pulse length, the range gate, the receive delay, and the antenna beamwidth. In

this chapter, the equations which relate those parameters to the usable swath width

are developed and the plots showing how that width changes for various system

configurations is presented. In the azimuth direction, there is a minimum segment

size to process the data for a single azimuth position. The actual segment size is

typically chosen to be much larger than the minimum size, and the equations for

identifying the limits of the usable portion of the processed image in azimuth are

presented.
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Chapter 4

The Omega-k Algorithm

The Omega-k algorithm was originally proposed by Cafforio, Prati, and Rocca

in [7], and has been presented in a number of papers and books in various forms (see

[11] for a good list). In the original derivation, the mathematical equations were

developed to describe the phenomenology and then reinterpreted into a new model

referred to as the radiating reflector model. The processing steps were then justified

by appealing to the characteristics of this new model. In [1], the development is more

along the lines of signal processing, and the platform velocity is included to make

time the independent variable in the azimuth direction. The development presented

here is along the same lines as that in [1]. The main difference is the use of position

as the independent variables in each dimension.

The challenge SAR processing poses is a non-separable, range-dependent point

spread function. A range-dependent correlation filter could be used; however, the

point spread function has a large region of support in the spatial domain and imple-

menting such a filter requires an enormous amount of computation. The Omega-k

algorithm presents an alternative approach to focusing the data which provides a

result very similar to that of the matched filter.

In the following, the Omega-k algorithm is presented and analyzed. The first

topic of the analysis is the SNR of the output. It is shown that with one modification,

the Omega-k achieves nearly the same SNR as the matched filter. The second topic

of the analysis, which is the main contribution of this chapter, is the effect of the

Stolt mapping on the resulting point spread function. The influence of system design

parameters is developed analytically, and then the effect of the Stolt mapping is

explored through simulation.
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4.1 Continuous Time Omega-k Algorithm

While the form varies between implementations, the Omega-k algorithm re-

quires a change of variables in the frequency domain referred to as Stolt mapping,

which is named after the man who originally proposed the method for use in imaging

the geological structure of the earth [17]. This mapping reduces the phase variation

in the frequency domain to phase ramps which center the signal around the azimuth

position and SRCA of the target, a result very similar to that of the matched filter.

From the last term in Equation (2.33), the relevant portion1 of the frequency

domain phase is

θ2dfft = −2πr
√

(fρ + fρ0)2 − f 2
z − 2πfzz0 (4.1)

and consists of two terms. The last term in Equation (4.1) is precisely the linear

ramp desired to center the signal on the azimuth position of the target. While the

first term is a function of the target’s SRCA, it is not a linear phase term and cannot

be altered using phase multiplies because the SRCA r for the target is unknown. This

term is changed into a linear phase ramp by a change of variables according to

√
(fρ + fρ0)2 − f 2

z = f̃ρ + fρ0, (4.2)

which is the Stolt mapping. It is important to note that the mapping is 1-dimensional.

The signal is mapped from frequencies fρ to f̃ρ, and the mapping depends on the

value of fz. Performing the change of variables according to Equation (4.2) reduces

the frequency domain phase to

θ2dfft = −2πr(f̃ρ + fρ0)− 2πfzz0

= − 2πf̃ρr︸ ︷︷ ︸
SRCA Delay

− 2πfzz0︸ ︷︷ ︸
Azimuth Delay

− 2πfρ0r,︸ ︷︷ ︸
Carrier Phase

(4.3)

1There are additional phase terms in Equation (2.33), but they constant or associated with the
antenna pattern. While the antenna pattern does cause phase variation in the frequency domain, it
is not compensated by the Omega-k algorithm.
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Figure 4.1: Plots of the frequency domain support of the SAR signal before (blue)
and after (red) the Stolt mapping. The region of support is consistent with that of an
L-band SAR system with a 60 degree beamwidth and a 500MHz range chirp. The effect
of the Omega-k algorithm is to take energy from one place in the frequency domain and
place it in a position where the phase is appropriate to focus the target (e.g. moving
point A to point B).

where the first term is a shift in the range direction, the second is a shift in the

azimuth direction, and the last is a constant phase term associated with the slant

range of closest approach. This last term is desirable for interferometric SAR where

two antennas are spatially separated and the difference in that phase term provides

the information from which the 3-dimensional position of the detected scatterers is

determined.

The Omega-k algorithm is an interesting approach to the problem of focusing

the raw SAR data. The matched filter cannot be applied because the signal is range

dependent. Instead, the Omega-k algorithm moves the frequency domain signal to a

new position in the frequency domain where the phase is appropriate. This illustrated

in Figure 4.1. The important relationship is that, even though the phase modulation

in the frequency domain depends on the target’s SRCA, the frequency domain map-
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ping necessary to focus the data is the same regardless of the target’s SRCA. The

Omega-k algorithm exploits this relationship to focus the SAR data.

4.2 Algorithm Analysis

As noted in the previous section, the Omega-k algorithm reduces the phase

variation in the frequency domain to phase ramps. In this section, it is shown that

with a simple modification, the Omega-k algorithm achieves a SNR that, aside from

any POSP approximation errors, is the same as that achieved by a matched filter.

The matched filter achieves this result by frequency domain multiplication, and the

Omega-k algorithm does so by moving the frequency domain signal from one location

in the frequency domain to another. This difference in approach has an effect on the

focused impulse response which is explored in the following.

4.2.1 Peak SNR

The primary criteria used to define the matched filter in Section 2.1.2 is maxi-

mizing the peak SNR. This SNR is achieved when the frequency-domain phase mod-

ulation is reduced to phase ramps and the magnitude of the frequency domain signal

is squared. The additive white noise is attenuated when the magnitude is squared

(see Section 2.1.2). Performing these operations on the frequency domain SAR signal

in Equation (2.33) yields

V (fρ, fz) =

∣∣∣∣∣
((fρ + fρ0)

2 − f 2
z )

5
4

r
7
4 (fρ + fρ0)3

A

(
fz√

(fρ + fρ0)2 − f 2
z

)∣∣∣∣∣

2

Hρ(fρ)

ke−j π
4 ejφtargete−j2πfρr−j2πfρ0r−j2πfzz0 , (4.4)

where Hρ(fρ) is the output of the range matched filter, and the bottom row of terms

are the phase ramps and the constant terms unimportant to maximizing the SNR.

Evaluating the inverse Fourier transform at the position of the target yields the
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integral

v(r, z0) =
k

r
7
4

e−j π
4 ejφtargete−j2πfρ0r

∫ ∞

−∞

∫ ∞

−∞
Hρ(fρ)

∣∣∣∣∣
((fρ + fρ0)

2 − f 2
z )

5
4

(fρ + fρ0)3
A

(
fz√

(fρ + fρ0)2 − f 2
z

)∣∣∣∣∣

2

dfρdfz, (4.5)

where the linear phase ramps are canceled by the exponentials of the inverse Fourier

transform.

Next, the output of the Omega-k algorithm at the location of the target is

determined. Taking the full frequency domain representation of the signal from Equa-

tion (2.33), and performing the Stolt mapping according to Equation (4.2) yields

V (f̃ρ, fz) = k
(f̃ρ + fρ0)

5
2

r
7
4 ((f̃ρ + fρ0)2 + f 2

z )
3
2

Hρ

(√
(f̃ρ + fρ0)2 + f 2

z − fρ0

)

A

(
fz

f̃ρ + fρ0

)
e−j2πf̃ρr−j2πfρ0r−j2πfzz0e−j π

4 ejφtarget . (4.6)

The inverse Fourier transform evaluated at (r, z0) is

v(r, z0) =
k

r
7
4

e−j π
4 ejφtargete−2πfρ0r

∫ ∞

−∞

∫ ∞

−∞
Hρ

(√
(f̃ρ + fρ0)2 − f 2

z − fρ0

)

A

(
fz

f̃ρ + fρ0

)
(f̃ρ + fρ0)

5
2

((f̃ρ + fρ0)2 + f 2
z )

3
2

|f̃ρ + fρ0|√
(f̃ρ + fρ0)2 + f 2

z

df̃ρdfz, (4.7)

where the last term is the Jacobian term for the change of variables, and the linear

phase ramps are canceled by the exponentials of the inverse Fourier transform. To

compare this with the output of the ideal matched filter, the change of variables (i.e.

Stolt mapping) is reversed to yield the integral

v(r, z0) =
k

r
7
4

e−j π
4 ejφtargete−2πfρ0r

∫ ∞

−∞

∫ ∞

−∞
Hρ (fρ)

A

(
fz√

(fρ + fρ0)2 − f 2
z

)
((fρ + fρ0)

2 − f 2
z )

5
4

(fρ + fρ0)3
dfρdfz. (4.8)
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The only difference between this equation and that in Equation (4.5) is the value

of the last two terms. Assuming that the antenna window function is known, this

integral can be multiplied by

A∗
(

fz√
(fρ + fρ0)2 − f 2

z

)
((fρ + fρ0)

2 − f 2
z )

5
4

(fρ + fρ0)3
(4.9)

to make it the same as Equation (4.5). The second term is real and positive for the

important values of fρ and fz. The actual modification to the algorithm requires

changing Equation (4.7), and the same result is obtained when this equation is mul-

tiplied by

A∗
(

fz

f̃ρ + fρ0

)
(f̃ρ + fρ0)

5
2

((f̃ρ + fρ0)2 + f 2
z )

3
2

. (4.10)

The one modification necessary for the Omega-k algorithm to achieve the same SNR

ratio as the matched filter is multiplying the Stolt interpolated signal by Equation

(4.10).

While in theory this modification causes the Omega-k algorithm to achieve the

same SNR as the matched filter, Equation (4.7) is only an approximate expression.

The errors in the POSP approximation of the azimuth Fourier transform reduce

the actual peak SNR obtained with this modification. However, when the POSP

approximation is accurate, the achieved SNR is valid for targets appearing at all

SRCA. This is because the SRCA r only appears as a constant scale term in Equation

(4.7).

4.2.2 Stolt Mapping

While the Omega-k algorithm can be modified to achieve a SNR similar to that

of the ideal matched filter, the method used to achieve that result is not the same

as the matched filter. The matched filter uses frequency domain multiplication, and

the Omega-k algorithm moves energy around in the frequency domain. The purpose

of this section is to explore the differences between the two resulting point spread

functions for SAR systems operating in broadside mode. The effect of system design
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parameters on the significance of Stolt mapping is explored, and then the results of

two simulations are presented.

4.2.2.1 Effect of Design Parameters and Simulation Setup

As discussed earlier in the chapter, the Stolt mapping shifts energy from the

original range frequency fρ to the new range frequency f̃ρ which is calculated according

to

f̃ρ =
√

(fρ0 + fρ)2 − f 2
z − fρ0, (4.11)

where fρ0 is the carrier frequency and fz is the azimuth frequency. The effect of

different design choices on the magnitude of the Stolt mapping is explored in two

steps: first, the values of fz and fρ which result in the largest shift are identified; then,

the effect of the azimuth bandwidth and the radar carrier frequency is developed.

When fz = 0, f̃ρ is equal to fρ. For other values of fz, f̃ρ is less than fρ.

While the difference between them is greatest for the maximum value of fz, that

maximum value of fz varies for different values of fρ. From Equation (2.37), fz,max =

(fρ + fρ0) sin(φmax) where φmax is the maximum angle at which the target is seen by

the antenna2. Using this value for fz in Equation (4.11) yields

f̃ρ =
√

(fρ + fρ0)2 − (fρ + fρ0)2 sin2(φmax)− fρ0

= (fρ + fρ0)
√

1− sin2(φmax)− fρ0

= (fρ + fρ0) cos(φmax)− fρ0, (4.12)

and the difference between fρ and f̃ρ is

fρ − f̃ρ = fρ + fρ0 − (fρ + fρ0) cos(φmax)

= (fρ + fρ0)(1− cos(φmax)). (4.13)

2This maximum angle could chosen to be the 3dB angle, but the exact choice is not critical for
the discussion.
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For a fixed maximum angle, the magnitude of the Stolt shift is greatest for the largest

value of fρ. Therefore, the Stolt mapping which corresponds to the largest frequency

domain shift is

f̃ρ,max =
√

(fρ,max + fρ0)2 − f 2
z,max − fρ0, (4.14)

where fρ,max is the maximum range frequency, and fz,max is the corresponding maxi-

mum azimuth frequency.

In radar, the significance of a frequency domain shift, e.g. a Doppler shift, on

a one dimensional signal depends on bandwidth of the signal–large bandwidth signals

are affected less than small bandwidth signals. The Stolt mapping is also a frequency

domain shift, and the ratio of the magnitude of the Stolt shift to the range bandwidth

fρ,max − f̃ρ,max

2fρ,max

=
1

2

(
1− f̃ρ,max

fρ,max

)
(4.15)

is used to evaluate the significance of the Stolt shift. Substituting Equation (4.14)

into Equation (4.15), the ratio becomes

1

2

(
1− f̃ρ,max

fρ,max

)
=

1

2

(
1− 1

fρ,max

(√
(fρ,max + fρ0)2 − f 2

z,max − fρ0

))

=
1

2
−

√(
1

2
+

fρ0

2fρ,max

)2

−
(

fz,max

2fρ,max

)2

+
fρ0

2fρ,max

, (4.16)

where an increase in the value of Equation (4.16) is associated with a more significant

shift. One important observation is that the actual values of azimuth bandwidth and

radar carrier frequency are not important. Instead, it is their value relative to the

range bandwidth.

The maximum azimuth frequency fz,max appears in Equation (4.16) only under

the radical term, and increasing the ratio of the maximum azimuth frequency to the

range bandwidth increases the value of Equation (4.16). The radar carrier frequency,

on the other hand, appears in two terms which have opposite effects. The net effect

of increasing the radar carrier frequency to range bandwidth ratio is a decrease in the

relative magnitude of the Stolt shift as shown in Figure 4.2.
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(b) High azimuth to range bandwidth ratios

Figure 4.2: Plots of the ratio of the largest frequency domain shift to the range
bandwidth for various system configurations. The fractional azimuth bandwidth is
defined as fz,max/fρ,max, and the fractional Stolt shift is given by Equation (4.16). The
frequency domain shift becomes more significant as the radar carrier decreases and the
azimuth bandwidth increases (see text).

In summary, the significance of the Stolt mapping is related to two ratios: the

ratio of the carrier frequency to the range bandwidth, and the ratio of the azimuth

bandwidth to the range bandwidth. For the purposes of comparing two systems, the

ratio of the azimuth bandwidth to the range bandwidth is effectively the ratio of the

azimuth resolution to the range resolution. This ratio is greater than one for systems

with an azimuth resolution which is higher than the range resolution. While the total

effect of the Stolt mapping depends on many aspects of the SAR signal (the time-

bandwidth product of the range chirp, the actual antenna pattern, etc.), comparing

these ratios provides a reasonable starting point for analyzing the significance of the

frequency domain shift. In the next section, the results for two simulated SAR signals

are presented.

4.2.2.2 Simulation Results

The effect of the Stolt mapping is explored through two simulated SAR signals.

The first SAR signal is that of a SAR system with a 500MHz carrier, a 200MHz
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(b) Case two

Figure 4.3: An illustration of the frequency domain support of the two simulated SAR
signals before and after the Stolt mapping. Case one represents a SAR system with a
range bandwidth which is a significant fraction of the radar carrier frequency. Case two
represents a SAR system with an extremely large azimuth bandwidth and is chosen to
emphasize the effect of the Stolt mapping.

range bandwidth, and a 45 degree beamwidth. The carrier to range bandwidth ratio

is 2.5 which is rather small, and the azimuth resolution is roughly twice the range

resolution. This represent a typical SAR configuration with a relatively low radar

carrier frequency. The second SAR signal is that of a SAR system with a 2GHz

carrier, a 200MHz range chirp, and a 45 degree beamwidth. The carrier to range

bandwidth ratio is ten, and the azimuth resolution is about ten times greater than the

range resolution. This second case is more typical of a system designed for multi-look

processing. While the entire signal would not normally be processed together to form

a single high-resolution image (typically, subaperture processing would performed),

it serves to illustrate the effects of the Stolt mapping for an extreme case. Figure 4.3

illustrates the frequency domain shift experienced for each case.

For both cases, the simulated data is processed by the Omega-k algorithm,

and the residual frequency domain phase of the signal is removed to avoid including

the effect of the POSP approximation errors3. The resulting point spread function is

3These errors are discussed in Chapter 6.

40



Modified Matched Filter

Azimuth (meters)

R
an

ge
 (

m
et

er
s)

−6 −4 −2 0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Modified Matched Filter, Case one

Omega−k Algorithm

Azimuth (meters)

R
an

ge
 (

m
et

er
s)

−6 −4 −2 0 2 4 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Omega-k, Case one

Modified Matched Filter

Azimuth (meters)

R
an

ge
 (

m
et

er
s)

−1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) Modified Matched Filter, Case two
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(d) Omega-k, Case two

Figure 4.4: Contour plots of the focused SAR signal for the two simulated, ideal point
targets with contours from -5dB to -55dB at 5dB intervals. The plots on the left side
show the result of the modified matched filter, and the plots on the right side show
the result of using the Omega-k algorithm. In moving energy around in the frequency
domain, the Omega-k algorithm causes the range sidelobes to spread out and changes
the shape of the main-lobe from an oval to an hour-glass. The effect is quite significant
for case two.

compared to the output of a modified version of the matched filter which is obtained

by canceling out the frequency domain phase of the raw SAR signal; the magnitude

is not squared.
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Figure 4.5: Close up contour plots of the main lobe for case two in Figure 4.4 with
contours from -3dB to -15dB at 3dB intervals. While the main lobe is quite distorted
by the Stolt mapping, the 3db contour (the innermost contour) is really just squared
off, and the range resolution is increased by about a factor of two. This improvement
comes at the cost of increased interference between scatterers separated in azimuth or
separated diagonally.

The effect of the Stolt mapping on magnitude of the resulting time domain

signal is shown in Figure 4.4. The most obvious effect of the Stolt mapping is the

fanned out range sidelobes, which are also attenuated. For case one, the -55dB con-

tour around the first sidelobe is about three times wider than that observed with the

modified matched filter, and the amplitude of the first sidelobe is about 4dB lower.

These differences have a fairly significant effect on the interference between nearby

scatterers. When the scatterers are separated in range, the decrease in sidelobe ampli-

tude reduces their interference. However, the interference between targets separated

diagonally in the image increases.

The magnitude of the main lobe is also spread out. The effect on case one

is very slight, but a surprising result is observed for case two. Typically, the 3dB

contour of the point spread function defines the system resolution. For case two,

the 3dB contour is compressed in range into more of a rectangular shape as shown

in Figure 4.5. While the 3dB width in azimuth is largely unaffected by the Stolt
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(a) Range cut, Case one
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(b) Azimuth cut, Case one
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(c) Range cut, Case two
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(d) Azimuth cut, Case two

Figure 4.6: Range and azimuth cuts of the focused SAR signal for the two cases
in Figure 4.4. In the range direction, the Stolt mapping performed by the Omega-k
algorithm decreases the 3dB width and introduces a phase ramp across the main lobe.
For case one, the phase variation amounts to a change of about half a radian over the
3dB width. In the azimuth direction, the curves are indistinguishable at this scale.

mapping, the 3dB width in range is reduced by about factor of two. The increased

azimuth bandwidth results in an improved range resolution. The improvement does

not come without cost. While the 3dB contour is improved in some directions, the

main lobe is stretched and more interference is expected for targets which are closely

spaced diagonally or closely spaced in azimuth.
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Another concern is the effect of the Stolt mapping on the phase of the point

spread function. It is noted in [18] that the stability of the phase across the main

lobe of the point spread function is important for interferometric SAR systems. While

the Stolt mapping reduces the frequency domain phase to constant terms and time

delays, the magnitude of the frequency domain signal affects the time-domain phase

modulation. For real-valued, two-dimensional frequency domain signals, symmetry

through the origin guarantees a real signal. While the collected SAR signal does not

exhibit this symmetry, the Stolt mapping further reduces it. For the broadside case

considered, the lack of symmetry is isolated to the range direction and results in the

phase modulation seen in Figure 4.6. For case one, the phase varies by about half

a radian over the 3dB width. For case two, the phase varies by about one radian.

Additional research is needed to evaluate the true significance of this phase variation.

4.3 Conclusion

In this chapter, the Omega-k algorithm, with one modification, is shown to

achieve the same SNR as the matched filter when the POSP approximation is ac-

curate. It is also shown the frequency domain shift (Stolt mapping) used by the

Omega-k algorithm to focus the data alters the resulting point spread function. The

differences decrease the potential interference between targets separated in range and

increase the potential interference between targets separated in azimuth or diagonally.

In addition to the effects observed on the magnitude of the point spread function, the

Stolt mapping introduces a noticeable phase modulation across the main lobe which

may affect the accuracy of interferometric SAR systems. These effects are explored

for two cases, and the means for extending the results to other cases is covered.

Extending the work in this chapter mainly concerns two topics. The first topic

is the use of frequency domain window functions to alter the magnitude of sidelobes.

For signals with a frequency domain support which is separable in the two dimensions,

standard window functions can be applied with predictable results. Unfortunately,

the SAR signal is not separable in the two dimensions. Investigations into the effect

of various windowing approaches is needed.
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The second topic concerns squint-mode SAR systems. The effect of the Stolt

mapping on the magnitude of the point spread function is addressed in [1] for squint-

mode SAR systems under the assumption that the azimuth bandwidth is much smaller

than the mean azimuth frequency. Extending this analysis to also consider the result-

ing phase may prove important for the squint-mode, interferometric SAR systems.

Also, the assumption in [1] that the azimuth bandwidth is much smaller than the

mean azimuth frequency breaks down as the azimuth resolution of the squint-mode

SAR system is increased, and further investigations into the effect of the Stolt map-

ping are needed.
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Chapter 5

Discrete Time Omega-k Algorithm

While the continuous Omega-k algorithm is useful for analyzing the signal

characteristics, it is actually implemented in digital signal processors (DSPs). In

many cases, such an implementation is straight-forward. The Omega-k algorithm,

however, consists of non-conventional processing techniques in the continuous-time

Fourier transform (CTFT) domain, and careful consideration of the relationship be-

tween continuous-time signals and their discrete-time counterparts is necessary for

proper implementation.

In this chapter, the relationship between continuous-time SAR signals and

their discrete-time counterparts is explored. The effect of the differences is addressed

for the SAR signal along with a discussion about proper sampling. Then, the discrete-

time implementation of the Stolt mapping is considered, and two methods for mixing

the frequency domain signal to baseband are compared.

5.1 Discrete-time SAR Signal

To develop the discrete time version of the SAR signal, it is necessary to

ensure that sampling does not cause aliasing and to identify any additional phase

terms present in the DFT which are not already in Equation (4.1). The topic of

aliasing is first addressed for the range direction and then for the azimuth direction.

Then, the additional phase terms in the discrete SAR signal are discussed.
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5.1.1 Avoiding Aliasing

Aliasing is always a concern with discrete-time processing of continuous-time

signals. The necessary steps for avoiding aliasing are considered for both the azimuth

and the range direction.

In the range direction, the transmitted signal is typically generated in digital

hardware and then passed through a D/A converter. On reception, the analog anti-

aliasing filter must sufficiently attenuate any frequencies which alias in the subsequent

sampling operation. Strictly speaking, the analog filter used in the D/A converter and

the analog anti-aliasing filter must have a finite impulse response to avoid violating

the time-finite assumption. Under those conditions, the DFT of the sampled range

signal can be viewed as a sampled version of the CTFT of that signal.

In the azimuth direction, the continuous-time signal is sampled by transmitting

pulses from specific locations as noted in Section 2.2. A traditional anti-aliasing filter

cannot be applied because the azimuth continuous-time signal is never present in the

radar system. Fortunately, the antenna pattern serves as a window in both the time

and the frequency domains, producing a signal which is approximately finite-length1

and approximately band-limited. Equation (2.37), provides the relationship between

the maximum angle at which energy from a target is collected and the maximum

azimuth frequency of the resulting SAR signal.

One approach for sampling the azimuth signal is to choose a threshold such

as the 3dB point and to set the sampling rate to avoid aliasing that frequency. The

problem with this approach is that the antenna pattern does not roll off very quickly,

and there may be significant energy in the sidelobes. Fortunately, as noted in Section

2.3, there is a maximum frequency anticipated in the azimuth direction which is

fz,max = (fρ,max + fρ0), (5.1)

1Strictly speaking, the azimuth signal is not finite-length. The effect of the azimuth segmentation
window is addressed in Section 6.3.
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where fρ,max is the maximum spatial frequency associated with the transmitted chirp,

and fρ0 is the radar carrier frequency (again, in cycles per slant-range meter). Sam-

pling at twice this frequency and applying a decimating low-pass filter mitigate the

negative effects of aliasing in the azimuth direction. This second approach can be

optimized by choosing a lower sampling frequency which only allows aliasing in stop-

band of the low-pass filter. This technique is frequently used to relax the transition

band requirements on analog anti-aliasing filters [19]. Using either approach, the

azimuth signal is sampled without causing significant aliasing.

5.1.2 Matching the Time Origins

Having established that the SAR signal can be digitally sampled without sig-

nificant aliasing, the last consideration concerns matching the spatial origins. When

a continuous time signal is sampled, and a DFT is used to compute the Fourier trans-

form, the first sample needs to correspond to the time origin of the continous-time

signal. Otherwise, an additional phase term is introduced.

In the range direction of the SAR signal, the receive delay discussed in Chapter

3 introduces the additional phase term

ej2πfρrmin , (5.2)

where rmin is the range associated with the first sample. In azimuth, the signal is

processed in segments, and the additional phase term is

ej2πfzzseg , (5.3)

where zseg is the azimuth position corresponding to the beginning of the segment.

Incorporating the additional phase terms into the Equation (4.1), the phase of the

DFT is a sampled version of:

θ2df (fτ , fη) = −2πr
√

(fρ + fρ0)2 − f 2
z − 2πfz(z0 − zseg) + 2πfρrmin. (5.4)
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In azimuth, the additional phase term places the target in its appropriate

location with respect to the start of the segment. For discrete signals, the delays are

referenced to the first sample, and the delay of (z0 − zsig) is appropriate for a target

located at position z0. Therefore, nothing needs to be done to the additional phase

term in the azimuth dimension.

In range, the additional phase term presents a problem. Left unmodified, the

Stolt mapping changes the additional phase term 2πfρrmin into an phase term

2π

(√
(fρ + fρ0)2 − f 2

z − fρ0

)
rmin, (5.5)

which alters the resulting point spread function. This additional phase modulation

is a function of known parameters and can be removed following the Stolt mapping.

Alternatively, the additional phase term 2πfρrmin can be removed prior to applying

the Stolt mapping. Either way, the final phase function is

−2πrf̃ρ − 2πfz(z0 − zseg)− 2πrfρ0. (5.6)

The range delay is also referenced to the first sample, and introducing a phase term

2πf̃ρrmin shifts the targets located at rmin to the first range bin. The final expression

for the 2-D phase is

−2πf̃ρ(r − rmin)− 2πfz(z0 − zseg)− 2πrfρ0. (5.7)

5.2 Discrete Stolt Mapping

The final consideration for the discrete Omega-k algorithm is the implemen-

tation of the Stolt mapping. For the continuous Omega-k algorithm, the process was

merely to perform a change of variables. However, the DFT only provides samples

of the frequency domain signal. The discrete Stolt mapping must take the samples

of Equation (2.33) provided by the DFT, and produce the DFT samples of Equation

(5.7).
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There are two basic methods for performing the mapping (see [1] and [2]). One

approach is to map the DFT samples of fρ to the new domain and then interpolate

from those samples to the DFT samples of f̃ρ. This approach is complicated by the

fact that the Stolt mapping does not produce uniformly spaced samples in the new

domain [2]. The second approach is to determine the values of fρ which map to the

values of f̃ρ associated with the desired DFT samples. The necessary equation is

obtained by solving Equation (4.11) for fρ to yield

fρ =

√
(f̃ρ0 + fρ)2 + f 2

z − fρ0. (5.8)

There is a sign ambiguity involved in the development of this equation which is

resolved by noting that the important values of (f̃ρ + fρ0) and (fρ + fρ0) are non-

negative. Because the DFT samples are uniformly spaced in fρ, ensuring proper

sampling is easier, and standard interpolation kernels can be used; however, it must

be verified that the frequency domain signal is sufficiently sampled.

5.2.1 Satisfying the Frequency Domain Sampling Requirements

The first step in determining the appropriate approach for interpolating the

frequency domain signal is to identify the frequency content of that signal. This

is done by noting an important relationship for the Fourier transform. Then, two

methods for mixing the signal to baseband are compared.

The frequency-domain representation of the signal is obtained with the Fourier

transform; however, the difficulty of evaluating that transform is avoided by the

observation that applying a Fourier transform twice yields the original signal reversed

in time. This is shown by letting X(fρ) be the Fourier transform of x(ρ). Then, the
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Fourier transform of X(fρ) is

∫ ∞

−∞
X(fρ)e

−jfρρdfρ =

[[∫ ∞

−∞
X(fρ)e

−jfρρdfρ

]∗]∗
(5.9)

=

[∫ ∞

−∞
X∗(fρ)e

jfρρdfρ

]∗
(5.10)

= [x∗(−ρ)]∗ (5.11)

= x(−ρ). (5.12)

Applying this result to the 2-d frequency domain representation of the SAR

signal yields V (−ρ, fz) as the desired Fourier transform. In Chapter 3, it is noted

that data is only collected over a set of ranges from rmin to some final range which

is now referred to as rmax. The azimuth Fourier transform does not affect the region

of support in range; therefore, the signal in the 2-dimensional frequency domain is

band-limited in the range frequency direction between −rmax and −rmin (units are in

meters because it is the frequency content of the frequency domain signal).

The second concern is the sample spacing in the frequency domain. Whenever

a DFT is evaluated, the sample spacing in the frequency domain is 1/(NR) where N

is the number of spatial samples and R is the space-domain sample spacing. Noting

that the number of samples N is ((rmax− rmin)/R+1), the frequency domain sample

spacing is 1/(rmax − rmin + R). To avoid aliasing the frequency domain signal, the

sample spacing must be less than half the period of the largest frequency which is

1/(2rmax), and the Nyquist sampling criteria is satisfied when

1

rmax − rmin + R
<

1

2rmax

, (5.13)

or, after some simplifications,

rmax + rmin < R. (5.14)

In practice, rmax and rmin are both positive, and their sum is larger than the sample

spacing. While the signal is aliased, the complex bandwidth is rmax − rmin, and the
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sampling frequency is rmax− rmin +R; the sampling rate is just large enough to avoid

destructive aliasing. Thus, the interpolation can be carried out if the signal is mixed

up to baseband or an appropriate non-baseband interpolator is used.

Of the two approaches, mixing the signal up to baseband is chosen. This is

done by multiplying the frequency domain signal by

exp(j2πfρrmid), (5.15)

where rmid = (rmax +rmin)/2. This is the approach taken in [2] for Soumekh’s spatial-

frequency interpolation method, which is very similar to the Omega-k algorithm.

As mentioned earlier, the sample delay introduces a term exp(j2πfρrmin). Instead

of removing that term as discussed in the previous section, just adding the term

exp(j2πfρ(rmax − rmin)/2) properly mixes the frequency domain signal to baseband.

The actual effect of this modification is to circularly shift the center of the collected

data to the first sample as shown in Figure 5.1(b).

5.2.2 Reference Function Multiply

In [1], the frequency domain signal is mixed to baseband through the use of

a reference function multiply. The reference function is developed for the situation

where both independent variables are time (i.e. fast time in range, and slow time in

azimuth). Converting the function to independent variables in position, the phase of

the reference function is

2πrref

√
(fρ + fρ0)2 − f 2

z , (5.16)

where rref is a reference range. Adding this phase term to Equation (4.1) results in

a total phase term

θ2dfft = −2π(r − rref )
√

(fρ + fρ0)2 − f 2
z − 2πfz(z0 − zseg). (5.17)

Aside from appearing as a constant scaling term in Equation (2.33), the slant

range of closest approach (SRCA), r, only factors into the first term of Equation (5.4).
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(b) Shifted signal

Figure 5.1: The range compressed SAR signal before and after the corresponding
frequency domain signal is mixed to baseband. In (a), the top band is the range
compressed SAR signal for a target with a SRCA of 250m, and the lower band is the
range-compressed SAR signal for a target with a SRCA of 750m. After the frequency
domain signal is mixed to baseband, the range-compressed SAR signal is circularly
shifted in the range direction. The important observation is that significant energy
from a particular target does not cross the center line which is shown in red near range
sample 900 in (b).
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Figure 5.2: The range-compressed signal after the reference function multiply is ap-
plied. The RCM of the target in the lower half of the image is backwards because that
target appears nearer than the reference range used in the reference function multiply.
While some of the energy of that target crosses the red center line, the SAR signal is
often filtered in the azimuth direction to eliminate that energy (see text).
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In modifying this phase term, the reference function multiply causes the targets to

appear as though they are located at a different SRCA. For targets located at rref ,

all of the frequency domain phase modulation is removed, and the target is focused

in the first range bin at its zero-Doppler position z0. For targets closer than the

reference range, the SRCA becomes negative in the phase term, and the range cell

migration (RCM) is changed to occur in the opposite direction, as seen for the target

in the bottom half of Figure 5.2. Finally, for targets farther away than the reference

range, the RCM is reduced.

Unfortunately, the reference function multiply does not alter the signal in a

way which guarantees a baseband signal in the frequency domain. For the frequency

domain signal to be baseband, the target energy must not cross the red line in Figure

5.2; however, energy from the near-range target does. Fortunately, this is not typically

a problem because the energy which crosses the red line is often filtered out. In Figure

5.1(a), the dark vertical lines in the range compressed signal are associated with the

antenna nulls, and the SAR signal is often filtered to eliminate the energy beyond

the first null on either side. Considering just the mainlobe portion of the signals in

Figure 5.2, there is a significant gap between the two which is actually larger than

the same gap observed in Figure 5.1(b).

The difference in the gaps is determined by considering the RCM of the signals.

When the circular shift is used to mix the frequency domain signal to baseband, the

gap between the two signals is shortened by the RCM of the far-range target. The

maximum SRCA at which the signal is collected is rca,max calculated in Equation

(3.3), and the RCM for a target at this range is

rca,max[1/cos(θmax)− 1], (5.18)

where θmax is the maximum angle at which the energy is collected and retained.

When the RFM is applied to mix the frequency-domain signal to baseband, this gap

is shortened by both the far-range target and the near-range target. The RCM for
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the farthest-range target is

(rca,max − rref )[1/cos(θmax)− 1], (5.19)

and the magnitude of the RCM for the nearest-range target is

(rref − rca,min)[1/cos(θmax)− 1]. (5.20)

Adding the terms together result in a combined RCM of

(rca,max − rca,min)[1/cos(θmax)− 1], (5.21)

which is smaller than Equation (5.18) by rca,min[1/cos(θmax) − 1]. The importance

of this difference grows as the minimum SRCA is increased and as the antenna

beamwidth is increased. While the magnitude of this gap is not important when

the ideal sinc function interpolator is used, a larger gap does reduce the requirements

on the frequency domain interpolator. Additional research into the effect of non-ideal

interpolators on the resulting point spread function is needed.

While the size of the gap is maintained as long as rref falls between rca,min and

rca,max, the placement of the gap is important to prepare the frequency domain signal

for interpolation. Choosing rref to be half way between rca,min and rca,max centers the

gap in the image. This minimizes the aliasing for targets between the maximum and

minimum ranges.

5.2.3 Interpolator

The analysis up to this point establishes the methods for properly digitizing the

SAR signal and for preparing the frequency domain signal for interpolation. The last

concern is the choice of interpolating kernel. When the signal is mixed to baseband

either by the shift or by the RFM, the ideal interpolator is a sinc function interpolator
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of the form
N−1∑
n=0

sin (πrswath(fρ,n − fρ,new))

πrswath(fρ,n − fρ,new)
V (fρ,n, fz), (5.22)

where rswath = rmax − rmin, fρ,n is the range frequency associated with the nth DFT

sample in fρ, and fρ,new is the value of fρ which maps to the desired DFT sample

in f̃ρ. This interpolator is appropriate because the DFT samples are samples of the

continuous frequency domain signal.

5.3 Final Consideration

The final consideration concerns the interpolated frequency domain array. The

Stolt mapping shifts the frequency domain signal towards negative fρ as shown in Fig-

ure 4.1. When the range oversampling is not sufficient to contain the mapped signal,

it is necessary to increase the size of the frequency domain arrays. The minimum

range frequency is calculated according to

f̃ρ,min =
√

(fρ,min + fρ0)2 − f 2
z,min − fρ0, (5.23)

where fρ,min is the smallest range frequency at which significant energy is present,

and fz,min is the calculated according to

fz,min = (fρ,min + fρ0)cos(φmax), (5.24)

and φmax is the maximum angle at which signal energy is received. The sample

spacing in the new frequency domain array should be kept the same as the original

sample spacing in fρ.

5.4 Algorithm Summary

When using the reference function multiply from [1], the final discrete Omega-k

algorithm is

1. Filter and decimate the SAR signal in the azimuth direction.
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2. Perform a two-dimensional FFT on the range-compressed SAR data.

3. Create an additional frequency domain array which is large enough to contain

the new values of f̃ρ (see Equation (5.23)). The frequency domain sample

spacing for the new array is kept the same as the original frequency domain

sample spacing for the range-compressed SAR signal, but is extended in size.

This is sometimes known as spectral extension.

4. Remove the phase term associated with the receive delay by multiplying the

frequency domain signal by exp(−j2πfρrmin).

5. Perform the reference function multiply by multiplying the frequency domain

signal by exp(j2πrref

√
(fρ + fρ0)2 − f 2

z ), where rref is half way between the

values of rca,min and rca,max discussed in Chapter 3.

6. Calculate the values of fρ which are associated with each DFT samples in f̃ρ,

and interpolate the signal to those values using Equation (5.22).

7. Calculate the inverse FFT of the interpolated frequency domain data.

5.5 Conclusion

In this chapter, the details of a discrete implementation of the Omega-k algo-

rithm are explored. The issues associated with aliasing the time-domain SAR signal

is discussed along with the effect of the receive delay. Implementing the Stolt map-

ping on the DFT samples requires interpolation in the frequency domain, and two

methods for mixing the frequency domain signal to baseband are compared. While

the reference function multiply used in [1] does not guarantee that aliasing in the

frequency domain signal is avoided, it does have the potential for reducing the re-

quirements on the frequency domain interpolator. Additional research is needed to

quantify the effect of a non-ideal interpolator.
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Chapter 6

POSP Approximation

The key approximation used in the development of the frequency domain rep-

resentation of the SAR signal is the principle of stationary phase (POSP) approxi-

mation. As with every approximation, it is important to understand the nature of

the approximation error. In the case of SAR, this error is of particular importance

because the Omega-k algorithm uses the resulting expression for the phase to process

the data, and any approximation errors directly affect the ability of the algorithm to

produce properly focused SAR images.

The topic of the POSP approximation is introduced in many books on SAR,

notably [1], [3], and [2]. In those references, the POSP approximation is motivated;

however, the actual errors observed are only lightly covered. In this chapter, a short

tutorial on the POSP approximation is presented. Then, through the use of a simple

example, insight is gained into the approximation error, and the analysis is extended

to more general integrals. The insight gained is then used to analyze the azimuth

Fourier transform of the SAR signal. Finally, the approximation errors are explored

through simulation.

6.1 Principle of Stationary Phase

The principle of stationary phase is one of the methods used to arrive at a

closed form expression for integrals without a known closed-form solution and applies

to integrals of the form ∫ b

a

f(x)ejλg(x)dx, (6.1)

where λ is a constant real number. The most common method for employing the

principle of stationary phase is to find the point xsp such that g′(xsp) is zero (i.e. the

59



stationary phase point). Then, f(x) is approximated by f(xsp) and g(x) is approxi-

mated by a second order Taylor expansion around the stationary phase point(s) [20].

When the integral limits are finite, a closed form solution is obtained by pushing out

the limits to infinity.

We are only concerned with functions g(x) which have a single stationary

phase point. Under that assumption, the actual steps of the POSP approximation

can be carried out prior to knowing the functions f(x) and g(x). The important

approximations are

f(x) ≈ f(xsp) (6.2)

and

g(x) ≈ g(xsp) + 0.5g′′(xsp)(x− xsp)
2. (6.3)

Substituting these approximations in the integral yields

∫ b

a

f(x)ejλg(x)dx ≈
∫ b

a

f(xsp)e
jλ[g(xsp)+ 1

2
g′′(xsp)(x−xsp)2]dx

= f(xsp)e
jλg(xsp)

∫ b

a

ej 1
2
λg′′(xsp)(x−xsp)2dx

≈ f(xsp)e
jλg(xsp)

∫ ∞

−∞
ej 1

2
λg′′(xsp)(x−xsp)2dx. (6.4)

Performing a change of variables according to y = x− xsp yields

∫ b

a

f(x)ejλg(x)dx ≈ f(xsp)e
jλg(xsp)

∫ ∞

−∞
ej 1

2
λg′′(xsp)y2

dy

= f(xsp)e
jλg(xsp)ejsgn(λg′′(xsp))π

4

√
2π

|λg′′(xsp)| , (6.5)

where the last step is performed using1

∫ ∞

−∞
ejλx2

dx = ejsgn(λ)π
4

√
π

|λ| , (6.6)

1The result can be obtained by using the first relation on pg. 395 of [21] separately for the real
and imaginary parts of the integral.

60



and sgn(·) returns the sign of the argument. Applying the POSP approximation to

a particular integral requires identifying f(x) and λg(x) and plugging the necessary

values into Equation (6.5).

In the discussion which follows, the POSP approximation is motivated by

considering the Fourier transform of a linear FM chirp, and the errors are addressed.

This analysis is then extended by considering the approximation errors encountered

with more general integrals.

6.1.1 Linear FM Chirps

A common waveform for radar systems is the linear FM chirp; however, the

Fourier transform of the linear FM chirp

∫ ∞

−∞
rect

( x

T

)
ejλx2

e−j2πfxxdx =

∫ T
2

−T
2

ejλx2

e−j2πfxxdx (6.7)

does not have a known closed-form solution. Given values for λ and T , the integral

could be evaluated numerically, but the result is only applicable to those values.

The POSP approximation provides a means of obtaining an approximate closed-form

solution. In this section, the POSP approximation is applied to Equation (6.7), and

the source and magnitude of the errors are explored.

Applying the POSP approximation to the Fourier transform integral requires

that the necessary functions be identified. From Equation (6.7),

f(x) = rect
( x

T

)
, (6.8)

and

g(x) = λx2 − 2πfxx. (6.9)

The necessary derivatives of g(x) are

g′(x) = 2λx− 2πfx (6.10)
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and

g′′(x) = 2λ. (6.11)

The stationary phase point is found by setting Equation (6.10) equal to zero and

solving for x to yield

xsp =
πfx

λ
. (6.12)

Finally, the second order Taylor expansion of g(x) is determined from Equation (6.9),

Equation (6.10), and Equation (6.11) to be

g(x) = −π2f 2
x

λ
+ λ

(
x− πfx

λ

)2

, (6.13)

which is an exact expression for g(x). The result of the POSP approximation is

obtained by inserting the appropriate terms into Equation (6.5) to yield

∫ ∞

−∞
rect

( x

T

)
ejλx2

e−j2πfxxdx ≈ rect

(
πfx

Tλ

)
e−j

π2f2
x

λ esgn(λ)π
4

√
2π

|λ| , (6.14)

which is the POSP approximation of Equation (6.7). The benefit is that Equation

(6.14) provides an answer that can easily be evaluated for any combination of λ and

T . The validity of the approximation, however, is not immediately clear.

The validity of the POSP approximation is evaluated by considering the na-

ture of the integrand. The imaginary part of a linear FM chirp is shown in Figure

6.1(a). As the distance from the stationary phase point increases, each oscillation

looks more and more like one period of a sinusoid. This is because the change in in-

stantaneous frequency over one oscillation becomes smaller and smaller. As a result,

the contribution of each oscillation to the value of the integral drops off very quickly

as shown in Figure 6.1(b).

The actual integrand for fz = 0 is a windowed linear FM chirp like the one

shown in Figure 6.2(a). While the actual integrand is limited by the rect, the POSP

approximation ignores the limits imposed by the rect, and integrates the linear FM

signal over all time. The resulting error in the approximation is caused by two sources:
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Figure 6.1: Plots of linear FM chirp with λ = 40. From (b), the most significant
contribution to the integral of the linear FM chirp is from the region immediately
around the stationary phase point.

the partial oscillations located just outside the rect and the infinite sum of complete

oscillations outside of the rect. The relative magnitude of the two sources of error

depends on the actual values of λ and T .

As the Fourier transform is evaluated larger values of fx, the stationary phase

point is shifted closer to one edge of the rect as shown in Figure 6.2. This shift changes

the POSP approximation error by altering both the number of complete oscillations

and the portion of the final oscillation which fall within the rect. The effect of the

partial oscillation is considered separately from the complete oscillations because the

contribution of half an oscillation is much more significant than a complete oscillation

(see Figure 6.1(b)). Also, each complete oscillation which goes from being inside

the rect to being outside the rect is a partial oscillation, and the magnitude of its

contribution fluctuates substantially during the transition.

The actual effect of the fluctuations is a combination of the effects from the

partial oscillations on either side of the rect; however, the partial oscillation closest

to the stationary phase point has a larger peak magnitude. Thus, the magnitude
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of the fluctuation in the POSP error is expected to increase as the stationary phase

point is moved closer to the edge. These effects are observed for both the real and

the imaginary parts of the signal, but the oscillations for the real part of the signal

are 90 degrees out of phase from the imaginary part. This difference causes the phase

of the error to fluctuate as well.

Once the stationary phase point is moved just beyond the edge of the rect,

the POSP approximation predicts zero magnitude. While the magnitude does not

immediately drop to zero for the value of fx which places the stationary phase point

at the edge of the rect, a little more can be said. When the actual integral is evaluated

for fx = 0, the most significant oscillations near the stationary phase point appear on

both sides. When the stationary phase point is moved to the edge of the rect, only

half of those oscillations fall inside the rect. There are additional oscillations, but

their magnitude is not as significant as those closest to the stationary phase point.

Therefore, the magnitude of the Fourier transform at the value of fx which places the

stationary phase point on the edge of the rect is approximately the 6dB point.

These effects are shown through simulation. For the simulation, a linear FM

chirp is oversampled by a factor of 10 to sufficiently reduce the effect of aliasing.

Then, the Fourier transform is obtained by taking an FFT. The difference between

the predicted phase and the actual phase is shown in Figure 6.3 along with a scaled

plot of the magnitude. One possible application of the POSP approximation is the

development of a matched filter in the frequency domain. The difference between the

predicted magnitude and the actual magnitude means the frequency domain signal

cannot be squared as necessary for the matched filter. Furthermore, using the POSP

approximation does not fully cancel out the phase of the frequency domain signal.

While the constant value of the residual phase changes the phase of the resulting

time-domain signal, the phase fluctuations affect the peak magnitude, the phase at

the peak, and the shape of the resulting time domain signal.

The magnitude of these errors is determined by the number of oscillations

present in the signal when the stationary phase point is centered in the rect (see

Figure 6.1(b)). An important point is that the net area under one oscillation relative
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Figure 6.2: Plots of the actual integrand for the Fourier transform of a linear FM
chirp at two values of fz. The POSP approximation ignores the limits imposed by the
rect and integrates the function over all time. As the stationary phase point is moved
closer to the edge, the additional oscillations included in the approximation become
more significant and reduce the accuracy of the POSP approximation.

to that of another does not vary with λ. This is shown by considering the integral

of the real part of the linear FM chirp exp(jλ1x
2) which is cos(λ1x

2). Starting the

first oscillation at stationary phase point x = 0 and to proceeding in the positive x

direction, oscillation n ends at

x =

√
n2π

λ1

, (6.15)

where n = 1 corresponds with the first oscillation. The magnitude of the contribution

for the nth oscillation is ∫ q
n2π
λ1

q
(n−1)2π

λ1

cos(λ1x
2)dx. (6.16)

65



−60 −40 −20 0 20 40 60
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Phase Errors (TBP=100)
Error at dc was 0.83491 radians

Frequency (Hertz)

P
ha

se
 E

rr
or

 (
ra

di
an

s)

 

 
Phase Error
POSP Predicted Magnitude, scaled
Signal Magnitude, scaled

Figure 6.3: Plots showing the POSP error for a linear FM chirp with a time-bandwidth
product of 100. The fluctuation in the error caused by the partial oscillations at the
edges of the rect are very evident. The red curve is the scaled magnitude of the Fourier
transform and is included for reference.

This integral can be compared to that of another linear FM chirp by performing

a change of variables according to y = x
√

λ1/λ2. The resulting integral, which is

equivalent to Equation (6.16), is

√
λ2

λ1

∫ q
n2π
λ2

q
(n−1)2π

λ2

cos(λ2y
2)dy, (6.17)

where the integral is the contribution of the nth oscillation of a linear FM chirp with

a chirp rate of λ2. The important observation is that the relative magnitude of the

oscillations remains the same because the scale factor scales each contribution equally.

The same is true for the imaginary part of the chirp and is seen by replacing cos with

sin in the above integrals.

Thus the number of oscillations present in the actual linear FM chirp is a

consistent metric for evaluating the POSP approximation error regardless of the value

of λ. As noted in [1], the time-bandwidth product is exactly four times the number
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of oscillations present in the actual integrand when the stationary phase point is

centered in the rect, and the time-bandwidth product is an equivalent criteria. In

general, the POSP approximation is considered accurate for linear FM chirps with a

time-bandwidth product greater than 100 [1].

In previous discussion, baseband chirps have been assumed. Extending the

analysis to non-baseband chirps is straight-forward. For these chirps, the spectrum is

mixed up to a higher center frequency which is equal to the value of fx which places

the stationary phase point in the center of the rect.

6.1.2 More General Integrals

Applying the POSP approximation to more general functions introduces two

additional sources of error. The first arises when g(x) is not quadratic, and the second

is introduced when f(x) is not constant. With respect to these errors, conditions

under which the POSP approximation is most accurate are identified.

When g(x) is not quadratic, the second order Taylor approximation has the

potential of introducing additional error. This error depends directly on how well g(x)

is approximated by the quadratic function; however, it is most significant around the

stationary phase point. Thus, the approximation is most accurate for cases where the

quadratic approximation is valid until the oscillations for both the actual function

and the quadratic approximation become insignificant.

When f(x) is not constant, the actual contribution of each oscillation changes.

Assuming that the quadratic approximation of g(x) is sufficiently accurate, the linear

term of f(x) does not contribute anything. This is because multiplying the symmetric

quadratic phase function by a linear function results in an anti-symmetric function,

and the integral over any finite symmetric interval is zero. Therefore, when f(x) is

sufficiently linear around the stationary phase point, the constant approximation of

f(x) captures the contribution in that area. It may be possible to contrive cases

where the later oscillations are rendered significant; however, in general, the POSP

approximation is most accurate when f(x) varies slowly in comparison to exp(jg(x))

(see also [20]).
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Figure 6.4: A Kaiser window function used to window the same linear FM chirp used
in Figure 6.3 and the resulting frequency domain phase error. When the linear FM
chirp is windowed by this Kaiser window instead of a rect, the partial oscillations at the
edges of the window are much smaller. This difference significantly reduces the variation
of the frequency domain phase errors associated with the POSP approximation, and
the actual magnitude is almost indistinguishable from the predicted magnitude. The
gradual trend in the phase error is most likely due to the shape of the window function
as the trend is not seen in Figure 6.3.

The last scenario to be considered is the case where f(x) has finite support

in x but is tapered at the edges. The most notable difference between this scenario

and one where f(x) exhibits a discontinuity is the reduction in the magnitude of

the partial oscillations near the edge of the f(x). As an example, a Kaiser window

is applied to the linear FM chirp used for Figure 6.3 and the resulting variation in

the phase error is shown in Figure 6.4. The first difference between this error and

that seen in Figure 6.3 is the magnitude of the oscillations in the phase error. This

difference is attributed to the decreased magnitude of the discontinuity. The second

difference is the introduction of an approximately quadratic phase error attributed to

the non-linear variation of the Kaiser window.

Summarizing these ideas, the POSP approximation is most accurate when

g(x) is approximately quadratic while the resulting oscillations are significant, and

f(x) varies slowly with respect to exp(jg(x)). When f(x) has finite support in x (as
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with most practical cases), smaller discontinuities lead to smaller oscillations in the

frequency domain phase errors.

6.2 Azimuth Fourier Transform

In many aspects of engineering, the design of the system plays a large part

in the details of the mathematical relationships, and identifying the effect of system

parameters provides the foundation for making good design decisions. As discussed

in the previous section, the aspects of the signal relevant to the POSP approximation

are the errors in the quadratic approximation of g(x), the time-bandwidth product,

and the shape of f(x). The effect of the various design parameters on these aspects

of the SAR signal are explored in the context of the azimuth Fourier transform.

The first steps in performing this analysis are determining the equation for the

azimuth Fourier transform and identifying the necessary functions. The SAR signal is

2D, and the azimuth Fourier transform is considered after the range Fourier transform

is performed. Theoretically, the order is not important; however, proceeding in this

order results in an integral to which the POSP approximation can easily be applied.

After the range Fourier transform, the signal in Equation (2.32) is obtained, and the

azimuth Fourier transform of that signal is

V (fρ, fz) = Hρ(fρ)e
jφtarget

∫ ∞

−∞

1

[(z − z0)2 + r2]2
A

(
z − z0

r

)

e−j2π(fρ+fρ0)
√

r2+(z−z0)2e−j2πfzzdz, (6.18)

where Hρ(fρ) is a real valued window function corresponding to the matched-filtered

range chirp. The functions for the POSP approximation of the integral are

f(z) =
1

[(z − z0)2 + r2]2
A

(
z − z0

r

)
(6.19)

and

g(z) = −2π
[
(fρ + fρ0)

√
r2 + (z − z0)2 + fzz)

]
. (6.20)
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The frequency domain expression for this integral is obtained by applying the POSP

approximation in the standard way (i.e. f(x) is approximated by a zeroth order

Taylor approximation and g(x) by a second order Taylor approximation). The details

of the derivation are a little more involved than those for the linear FM chirp and

are carried out in Appendix A. The purpose of this section is to address the factors

which influence the accuracy of the approximation, and to identify the ways in which

design parameters can be chosen to reduce the POSP approximation error.

6.2.1 POSP Approximation Errors

The effect of system design parameters is considered for three aspects of the

SAR signal which affect the POSP approximation error. These three aspects are the

time-bandwidth product of the integrand, the accuracy of a quadratic approximation

of Equation (6.20), and the shape of f(z). Each of these aspects are considered

independently for broadside SAR systems.

The first aspect of the SAR signal concerns the quadratic approximation of

g(z). To clearly illustrate the effect of the design parameters on the approximation

error, the analysis is restricted to the case where fz = 0. For this case, the actual

phase term is

−2π(fρ + fρ0)
√

r2 + (z − z0)2 = −2π(fρ + fρ0)r

√
1 +

(z − z0)2

r2
, (6.21)

and the phase term used in the approximation is

−2π(fρ + fρ0)r

(
1 +

(z − z0)
2

2r2

)
. (6.22)

The term inside the parentheses in Equation (6.22) is always positive and the equation

can be written as

−2π(fρ + fρ0)r

√
1 +

(z − z0)2

r2
+

(z − z0)4

r4
. (6.23)
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Comparing Equation (6.23) to Equation (6.21), the only difference is the final quartic

term which happens to be the tangent of the angle to the target raised to the fourth

power. For SAR systems operating in broadside mode, the beamwidth limits the

magnitude of that angle, and larger beamwidths increase the error in the square-root

term. The other variables, namely (fρ + fρ0) and r, scale that error term, and larger

values of either quantity also increase the maximum error.

Next, the effect of the design parameters on the time-bandwidth product is

explored. Designating zmax as the largest value of (z − z0) which is included in

the antenna beamwidth, the corresponding instantaneous frequency, from the first

derivative of Equation (6.21), is

(fρ + fρ0)zmax
1√

r2 + z2
max

. (6.24)

For baseband chirps (broadside SAR), the bandwidth is approximately twice that

highest frequency, and the length is 2zmax. Multiplying those quantities, the time-

bandwidth product is

4(fρ + fρ0)z
2
max

1√
r2 + z2

max

= 4(fρ + fρ0)r
z2

max/r
2

√
1 + z2

max/r
2
. (6.25)

The value of the last term in Equation (6.25) is entirely determined by the antenna

beamwidth, and increasing the beamwidth increases the time-bandwidth product.

When the beamwidth is held constant, larger values of (fρ + fρ0) and r also increase

the resulting time-bandwidth product. An important observation is that changing

the radar design parameters in a way which increases the time-bandwidth product also

increases the error in the quadratic approximation of g(z).

The final consideration is the shape of f(z). The first term in Equation (6.19)

is due to the linear trajectory traced out by the SAR sensor. That term is fixed

for stripmap SAR systems, and causes a fairly gradual variation in the amplitude.

The second term is the window function due to the antenna pattern. Fortunately,

typical antenna patterns have relatively smooth magnitude responses and do not

71



support discontinuities. While the actual effect is specific to each antenna, choosing

antennas with a smooth variation over the main lobe is expected to decrease the

POSP approximation error.

While the antenna pattern does not introduce discontinuities, the implicit win-

dow introduced when the data is processed does. As discussed in Section 3.2, the data

is typically segmented in the azimuth direction for processing. This introduces an ad-

ditional window into f(z) that has the potential of creating a significant discontinuity.

The discontinuity is most significant for targets located near the edge of the segment

where the segment window cuts into the main lobe of antenna window function.

The three aspects of the SAR signal which affect the POSP approximation er-

ror are the time-bandwidth product, the accuracy of the quadratic approximation of

the phase function, and the shape of f(z). Values of (fρ +fρ0), r, and the beamwidth

can be changed to increase the time-bandwidth product. That change, however in-

creases the error in the quadratic approximation of the time-domain phase function.

Without a closed form expression for the effect of those changes, the actual effect of

these parameters needs to be explored through simulation. Also, while most antenna

patterns are fairly smooth and do not exhibit discontinuities, the implicit window

introduced when the data is segmented in azimuth does introduce discontinuities. As

seen with the linear FM chirp, the discontinuities have the potential of introducing

significant errors into the approximation.

6.2.2 Simulations

The purpose of the simulation is to numerically determine the effect of design

parameters on the POSP approximation errors. This is accomplished by starting with

a base configuration and varying one of the parameters to determine the resulting

effect on the POSP approximation errors. The analysis is restricted to the errors in

the phase of the frequency domain signal.

The simulator generates the SAR signal observed for a SAR system moving

along a perfectly linear trajectory. The relevant parameters of the base configuration

used in the comparison are
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1. Target slant range of closest approach (SRCA) - 500m

2. Range chirp bandwidth - 200 MHz

3. Carrier frequency - 500 MHz

4. Antenna beamwidth - 16◦

We chose to use a standard sinc function antenna pattern

sin(B sin θ)

B sin θ
, (6.26)

where B is chosen to yield the appropriate beamwidth, and the signal is oversampled

in the azimuth direction to avoid introducing significant errors due to aliasing. For the

examples with a 16◦ beamwidth, the signal is oversampled in the azimuth direction

by approximately a factor of 7 which is reduced to a factor of about 2.5 for the

45◦ beamwidth. Consistent with the assumptions of the previous section, an ideal

matched filter is applied to the chirp for each pulse.

The first parameter is the SRCA. The results of the simulation for various

values of SRCA are shown in Figure 6.5. As the SRCA increases, the variation in

the error as well as the error at dc (zero frequency) decreases. This is consistent

with the fact that increasing the SRCA increases the time-bandwidth product of the

azimuth chirp. The result suggests that this increase in time-bandwidth product is

more significant than the increased error in the time-domain phase approximation.

These examples indicate that increasing the minimum SRCA at which targets appear

decreases the worst case error in the POSP approximation, and the near range targets

in the image are affected more than the far range targets.

The second parameter is the radar carrier frequency. For fρ = 0, doubling

the carrier frequency has precisely the same effect on the time-bandwidth product as

doubling the SRCA. The difference is that increasing the carrier frequency increases

the bandwidth of the chirp while increasing the SRCA increases the duration of the

chirp. Since the only real difference is the chirp rate, one could expect that the

improvement in the error should be very similar. This is confirmed in the simulation
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Figure 6.5: Plots of the frequency domain phase error for simulated targets located
at different SRCA. (a) The phase error in azimuth frequency direction. (b) The phase
error in range frequency direction. In each case considered, the error variation is reduced
with increasing SRCA. This suggests that the increase in time-bandwidth product with
increasing SRCA is more significant than the increased error in the approximation of
the hyperbolic time-domain phase function.
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Figure 6.6: Plots of the frequency domain phase error for SAR systems operating at
different carrier frequencies. (a) The phase error in azimuth frequency direction. (b)
The phase error in range frequency direction. In each case considered, the error variation
is reduced with increasing carrier frequency. This is consistent with the improvement
achieved with increasing SRCA. For comparison with Figure 6.5, the green curves are
equivalent.
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results shown in Figure 6.6(a). The slight discrepancy between the errors in this

figure and those in Figure 6.5(a) is presumed to be a caused by the range spreading

term (the first term in Equation (6.19)). That term changes when the range to the

target changes but does not change with increasing carrier frequency.

Comparing Figure 6.6(b) to Figure 6.5(b), the effect of doubling the carrier

frequency does not appear the same as doubling the SRCA. However, in the simula-

tion, the range chirp bandwidth is held constant at 200MHz. The important point is

that the range frequency (for which the chirp bandwidth determines the maximum

and minimum values) enters into the time-bandwidth product as (fρ + fρ0). At lower

carrier frequencies, the variation in time bandwidth product over the chirp bandwidth

is more significant. This effect is avoided when the range chirp bandwidth is scaled

by the same factor as the radar carrier frequency. Considering the simulated cases

in Figure 6.6(b), the difference between the carrier frequency of the green and blue

curves is a factor of two, and just considering the center half of the blue curve results

in absolute phase errors between about -1e-3 and 1.5e-3 radians. These errors are

essentially the same as those observed for the blue curve in Figure 6.5(b).

The third parameter is the antenna beamwidth, and increasing the beamwidth

increases both the time and the bandwidth of the signal. The results of the simu-

lation for a few beamwidths is shown in Figure 6.7. As with the other parameters

which increased the time-bandwidth product, the POSP approximation errors are

reduced as the antenna beamwidth is increased. The high frequency variation also

changes; however, this change is attributed to the variation in the magnitude of the

discontinuity introduced by the finite length simulation (see Figure 6.8).

The final consideration explored is the effect of segmenting the data. For

the simulation, we chose to place the target at 500m and to use a 500MHz carrier

frequency. For each window which is simulated, the length of the segment in the

along-track dimension is held constant. The three window functions are shown in

Figure 6.9(a) where the legend entries designate the location of the right edge of the

window with measurements in dB for positions inside the main lobe of the antenna

window function. The results of the simulation are shown in Figure 6.9(b) where
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Figure 6.7: Plots of the frequency domain phase error for SAR systems with different
antenna beamwidths. (a) The phase error in azimuth frequency direction. (b) The
phase error in range frequency direction. In each case considered, the error variation is
reduced with increasing antenna beamwidth.
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Figure 6.8: Plots of the three normalized antenna patterns used in the simulator. It
is presumed that the small discontinuities at the edges are responsible for the higher
frequency oscillations in the phase errors shown in Figure 6.7.
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Figure 6.9: Plots showing the segment processing windows and the associated fre-
quency domain phase errors. The implicit window introduced by segmenting the data
in the azimuth direction has the potential of introducing relatively large errors into the
POSP approximation.

the constant phase error is approximately the mean error of the oscillations around

fz = 0. As expected, a larger discontinuity increases the magnitude of the phase error

oscillations. These phase errors are much more significant than those seen earlier.

In summary, the azimuth processing window has the potential of introducing

the largest frequency domain phase errors: arriving even to a quarter of a radian.

The frequency domain phase errors seen when the azimuth processing window does

not introduce significant errors is on the order of 1e-3 radians. For these cases,

increasing the antenna beamwidth, the value of (fρ +fρ0), and r all reduce the POSP

approximation error. The reduction in frequency domain phase error is attributed

to the associated increase in the time-bandwidth product of the signal. Of the cases

simulated, the worst case phase error is associated with the 500MHz carrier, the 16◦

beamwidth, and a 250m SRCA.
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6.3 Effects on the Point Spread Function

Having explored the frequency domain phase errors associated with the POSP

approximation, the effect of these phase errors on the phase, the peak amplitude,

and the shape of the resulting time-domain signal is considered. From the previous

analysis, the system parameters which affect the time-bandwidth product have a

predictable effect on the frequency domain phase errors. The primary difference is

the magnitude of the phase errors. For these reasons, the effect of the frequency

domain phase errors is considered for the worst case scenario. The effect of the

implicit azimuth window is a little more complex and is explored for three cases.

While increasing the radar carrier frequency, the target’s SRCA, and the an-

tenna beamwidth all increased the time-bandwidth product of the signal, the resulting

frequency domain phase errors were slightly different. The maximum frequency do-

main phase error is observed for the case with a 500 MHz carrier, a 16◦ beamwidth,

and a target appearing at 250m. The range and azimuth cuts of the point spread

function when the data is focused by the Omega-k algorithm are shown in Figure

6.10. The phase errors reduce the peak magnitude by 0.003 dB, and the 3dB widths

in range and azimuth are changed by less than 1/1,000th of a meter. These are not

substantial changes.

Concerning the phase of response, the Omega-k algorithm does not compensate

for the constant phase term of π/4 predicted by the POSP approximation. Taking

this into account, the un-anticipated phase at the peak is only 1.93e-5 radians. In

the range direction, the phase variation across the main lobe is 0.0189 radians, but

that is only 0.0005 radians more than the ideal case. In the azimuth direction, the

total phase variation across the main lobe is 0.0106 radians. Again, the effect of the

frequency domain phase errors is very slight.

The second source of frequency domain phase errors is the implicit window

introduced when the signal is segmented in the azimuth direction for processing. The

resulting shape of the point spread function for three of the windows is shown in

Figure 6.11, and the range and azimuth cuts are shown in Figure 6.12. The peak

phase of the response is only slightly affected by the window and the maximum error
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(b) Azimuth cut

Figure 6.10: Range and azimuth cuts of the Omega-k focused point spread function for
a SAR system with 500MHz carrier, 200MHz range bandwidth, and a 16◦ beamwidth.
This case represents the worst case frequency domain phase errors seen for a low time-
bandwidth product in Section 6.2.2. For this configuration, the effect of the frequency
domain phase errors is hardly noticeable.

for the three cases is 1.25e-5 radians. The effect of the frequency domain phase errors

is most significant for the 3dB window where the diagonal width of the -35dB contour

is increased by over 50 percent, the peak magnitude is reduced by 0.35 dB, and the

phase variation across the main lobe in the azimuth direction is increased to 0.58

radians.

Even when the frequency domain phase errors are removed, the point spread

function is different for the three azimuth windows. The differences between the

resulting point spread functions is caused by a change in the support of the signal in

the frequency domain. The frequency domain support for two of the window is shown

in Figure 6.13. In addition to the effects already seen, the altered support decreases

the peak magnitude of the resulting point spread function as shown in Figure 6.14.

For the 3dB window, the peak magnitude is attenuated by about 1.4 dB which is

much more than the 0.35dB decrease caused by the frequency domain phase errors.

The effect of the frequency domain phase errors on the final point spread

function is rather minor. When the azimuth processing window does not substantially
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Figure 6.11: Contour plots of the point spread functions with contours between -5dB
and -35dB at 5dB intervals for three of the five cases in Figure 6.9. For the 3dB and
6dB windows, the frequency domain phase errors stretch out the main lobe diagonally
and slightly distort the shape of the range sidelobes. The effect is not noticeable for
the 20dB window.
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(f) Azimuth Cut, 20dB

Figure 6.12: The range and azimuth cuts of the point spread functions for the cases
in Figure 6.11. For the 3dB and the 6dB windows, the frequency domain phase errors
decrease the peak magnitude but increase the magnitude where the azimuth sidelobes
should be. The phase modulation across the main lobe is slightly increased. These
effects are very slight for the 20dB window.
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Figure 6.13: The magnitude of the Fourier transform for two of the processing win-
dows in Figure 6.9. The 3dB processing window significantly alters the frequency
domain support of the SAR signal. The change in frequency domain support alters
both the magnitude and the phase of the resulting point spread function. As a note,
the variation in the amplitude in the range direction is due to the linear FM range chirp
used in the simulation. It is similar to that shown in red in Figure 6.3.
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Figure 6.14: The un-normalized magnitude of the azimuth cuts after the frequency
domain phase errors are removed for four of the window functions in Figure 6.9. The
peak of the point spread function is reduced and the sidelobes disappear as the pro-
cessing window cuts further into the main lobe of the antenna weighting function. This
effect is caused by the altered frequency domain support shown in Figure 6.13.
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increase the resulting frequency domain phase errors, the effect of the phase error in

the POSP approximation on both the magnitude of the point spread function and

the phase across the main lobe is extremely small. Even when the segment window

introduces more substantial frequency domain phase errors, the effects of the phase

errors are only a fraction of the effect caused by the altered frequency domain support

of the signal resulting from the segmentation window.

6.4 Conclusion

The POSP approximation provides a means of obtaining an approximate

closed-form expression for integrals without a known closed-form solution. In the

context of SAR, the POSP approximation is applied to the azimuth Fourier trans-

form, and the resulting expression is used by the Omega-k algorithm to process the

data.

The errors in the frequency domain phase are rather small when the azimuth

processing window does not introduce a significant discontinuity into the signal. For

the cases considered, the POSP approximation provides an expression for the fre-

quency domain phase which is sufficiently accurate to process the SAR signal. This

analysis is limited to broadside SAR systems with sinc-function antenna patterns

but can be extended to consider squint-mode SAR systems and systems with other

antenna patterns.

The azimuth processing window affects both the frequency domain support

of the SAR signal and the accuracy of the POSP approximation. The effect of the

altered frequency domain support of the SAR signal has a more significant effect on

the resulting point spread function than the frequency domain phase errors. However,

their combined effect reduces the peak magnitude of the point spread function by

about 2dB when the segment window intersects the antenna window at the 3dB

point. This suggests that the angles used in Section 3.2 to identify the valid pixels

in a processed SAR image should be larger than those associated with the 3dB point

of the antenna window. Using the angle where the antenna window drops to -20dB

seems to eliminate most of the undesirable effects.
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Chapter 7

Conclusion

This thesis provides a detailed analysis of the Omega-k algorithm. Key aspects

of the algorithm are explored both analytically and through numerical simulation.

The simulations provide insight into the precise results for specific cases, and the

analytical development provides a means for extending the results to new cases.

7.1 Contributions

My contributions to the topic of SAR processing are the following:

• I develop the equations which identify the usable region of a processed SAR im-

age for algorithms which focus target energy to the image location corresponding

to the target’s zero-Doppler position and slant range of closest approach.

• I present a modification to the Omega-k algorithm which enables the algorithm

to achieve a SNR equivalent to that achieved by an ideal matched filter.

• I explore the effects of Stolt mapping on the focused point spread function

and discuss how these effects alter the potential interference between nearby

scatterers.

• I present the necessary steps for implementing the Omega-k algorithm in dis-

crete time, and I compare two methods for preparing the frequency domain

SAR signal for interpolation.

• I investigate the POSP approximation used in the Omega-k algorithm and show

that it is accurate for the worst case phase errors observed for a number of SAR

configurations.
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• I investigate the effect of the azimuth processing window on targets located near

the edge of the processing window.

7.2 Future Work

While this thesis provides a detailed look at key aspects of the Omega-k algo-

rithm, it is not comprehensive, and there are additional areas that could be explored.

The first area concerns the scope of this thesis. The work in this thesis is

primarily concerned with the application of the Omega-k algorithm to broadside SAR

data. Extending the analysis of the POSP approximation errors to squint-mode SAR

systems is an important step towards fully understanding the accuracy of the Omega-

k algorithm. The effect of the Stolt mapping on squint-mode SAR data should also

be addressed.

In terms of implementing the Omega-k algorithm, additional research into the

necessary accuracy of the frequency domain interpolation kernel should be performed.

While sinc function interpolation is the most accurate approach, it requires a signifi-

cant amount of computational effort. Investigations into the effect of using non-ideal

interpolation kernels provide a means of trading accuracy for efficiency.

Another topic of interest is the effect of frequency domain window functions.

These window function are typically used to reduce the sidelobe amplitude of the

point spread function. While window functions could be applied separately in the

azimuth and range directions, the frequency domain support of the focused SAR

signal is not separable in the two dimensions, and the precise effect of frequency

domain window functions is unclear. Additional research is needed to understand

appropriate methods for applying frequency domain window functions to SAR data

processed with the Omega-k algorithm.

Finally, motion compensation is very important for airborne SAR systems.

In [12], a modified version of the Omega-k algorithm is developed to compensate

for the effects of non-ideal motion. Additional research aimed at understanding and

implementing this algorithm is needed to advance the work here at BYU.
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Appendix A

Azimuth Fourier Transform

The principle of stationary phase is a method used to arrive at a closed form

expression for integrals without a known closed form solution [20]. The approximation

is analyzed in detail in Chapter 6; however, all of the steps in the derivation of the

azimuth Fourier transform of the SAR signal are not included. These steps are carried

out here.

Rearranging the terms in Equation (6.5), the closed form expression for the

POSP approximation is

∫ b

a

f(x)ejλg(x)dx = f(xsp)

√
2π

|λg′′(xsp)|e
jλg(xsp)e±j π

4 . (A.1)

After the range Fourier transform is calculated, the SAR signal (from Equation (2.32))

is

V (fρ, z) =
k

[(z − z0)2 + r2]2
A

(
z − z0

r

)
Hρ(fρ)

e−j2π(fρ+fρ0)
√

r2+(z−z0)2ejφtarget , (A.2)

where H(fρ) is the Fourier transform of h(ρ) and fρ0 = 2/λ0. The azimuth Fourier

transform is

V (fρ, fz) = kH(fρ)e
jφtarget

∫ ∞

−∞

A
(− z−z0

r

)

[(z − z0)2 + r2]2

e−j2π(fρ+fρ0)
√

(z−z0)2+r2−j2πfzzdz. (A.3)

89



Letting λ in Equation (A.1) be 1, the necessary functions are

f(z) =
A

(− z−z0

r

)

[(z − z0)2 + r2]2
(A.4)

and

g(z) = −2π(fρ + fρ0)
√

(z − z0)2 + r2 − 2πfzz. (A.5)

The first derivative of g(z) is

g′(z) = −2π(fρ + fρ0)2(z − z0)

2
√

(z − z0)2 + r2
− 2πfz

= −2π(fρ + fρ0)(z − z0)√
(z − z0)2 + r2

− 2πfz, (A.6)

and the second derivative of g(z) is

g′′(z) =
d

dz

(
−2π(fρ + fρ0)(z − z0)√

(z − z0)2 + r2
− 2πfz

)

= − 2π(fρ + fρ0)√
(z − z0)2 + r2

− 2π(fρ + fρ0)(z − z0)(−1
2
)2(z − z0)

((z − z0)2 + r2)
√

(z − z0)2 + r2

= − 2π(fρ + fρ0)√
(z − z0)2 + r2

+
2π(fρ + fρ0)(z − z0)

2

((z − z0)2 + r2)
√

(z − z0)2 + r2

=
−2π(fρ + fρ0)r

2 − 2π(fρ + fρ0)(z − z0)
2 + 2π(fρ + fρ0)(z − z0)

2

((z − z0)2 + r2)
√

(z − z0)2 + r2

= − 2π(fρ + fρ0)r
2

((z − z0)2 + r2)
√

(z − z0)2 + r2)
. (A.7)

At this point, all of the necessary functions have been identified, and the next step is

to evaluate them at the stationary phase point.

The stationary phase point is obtained by setting g′(z) equal to zero to yield

fz = −(fρ + fρ0)(z − z0)√
(z − z0)2 + r2

, (A.8)
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and by solving this equation for (z − z0) to yield

(z − z0) = ± fzr√
(fρ + fρ0)2 − f 2

z

. (A.9)

The sign ambiguity is resolved by noting that all of the terms on the right side of

Equation (A.8) are positive except for (z− z0). Therefore, the sign of fz must be the

opposite of the sign of (z − z0). In Equation (A.9), all of the terms except for fz are

positive, and the sign relationship noted for Equation (A.8) is preserved by choosing

the negative sign. Therefore, the stationary phase point is

zsp = − fzr√
(fρ + fρ0)2 − f 2

z

+ z0. (A.10)

The term
√

r2 + (zsp − z0)2 appears in both g(z) and g′′(z). Evaluating that term at

the stationary phase point yields

√
r2 + (zsp − z0)2 =

√
r2 +

f 2
z r2

(fρ + fρ0)2 − f 2
z

= r

√
1 +

f 2
z

(fρ + fρ0)2 − f 2
z

= r

√
(fρ + fρ0)2 − f 2

z + f 2
z

(fρ + fρ0)2 − f 2
z

=
r(fρ + fρ0)√

(fρ + fρ0)2 − f 2
z

. (A.11)

Substituting Equation (A.10) and Equation (A.11) into Equation (A.5) yields

g(zsp) = − 2πr(fρ + fρ0)
2

√
(fρ + fρ0)2 − f 2

z

+
2πf 2

z r√
(fρ + fρ0)2 − f 2

z

− 2πfzz0

= −2πr(fρ + fρ0)
2 − 2πf 2

z r√
(fρ + fρ0)2 − f 2

z

− 2πfzz0

= −2πr

[
(fρ + fρ0)

2 − f 2
z√

(fρ + fρ0)2 − f 2
z

]
− 2πfzz0

= −2πr
√

(fρ + fρ0)2 − f 2
z − 2πfzz0, (A.12)
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which is the 0th order coefficient for the Taylor series representation. Then, inserting

Equation (A.10) and Equation (A.11) into Equation (A.7) yields the second order

Taylor coefficient

g′′(zsp) = −2πr2(fρ + fρ0)
[(fρ + fρ0)

2 − f 2
z )]

3
2

r3(fρ + fρ0)3

= −2π

r

((fρ + fρ0)
2 − f 2

z )
3
2

(fρ + fρ0)2
. (A.13)

Finally,

f(xsp) = A

(
fz√

(fρ + fρ0)2 − f 2
z

)
((fρ + fρ0)

2 − f 2
z )2

r4(fρ + fρ0)4
. (A.14)

The first two terms on the right side of Equation (A.1) are

f(xsp)

√
2π

|λg′′(xsp)| =
((fρ + fρ0)

2 − f 2
z )2

r4(fρ + fρ0)4

√
r(fρ + fρ0)

((fρ + fρ0)2 − f 2
z )

3
4

A(M)

=
((fρ + fρ0)

2 − f 2
z )

5
4

r
7
2 (fρ + fρ0)3

A(M), (A.15)

where

M =
fz√

(fρ + fρ0)2 − f 2
z

. (A.16)

Incorporating the rest of the terms in Equation (A.1) yields

((fρ + fρ0)
2 − f 2

z )
5
4

r
7
4 (fρ + fρ0)3

A(M)e−j2πr
√

(fρ+fρ0)2−f2
z−j2πfzz0e−j π

4 , (A.17)

and the azimuth Fourier transform of the SAR signal is

V (fρ, fz) = k
((fρ + fρ0)

2 − f 2
z )

5
4

r
7
4 (fρ + fρ0)3

A

(
fz√

(fρ + fρ0)2 − f 2
z

)
Hρ(fρ)

e−j2πr
√

(fρ+fρ0)2−f2
z−j2πfzz0e−j π

4 ejφtarget . (A.18)
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Appendix B

Quadrature Demodulation

In radar, signals are almost always complex (i.e. they have both real and

imaginary parts). The complex signal is obtained through quadrature demodulation.

As this process may be unfamiliar to some readers, an example is provided. This

topic is also addressed in [1].

Consider a signal of the form w(t)cos(2πf0t + θ(t)) where f0 is the carrier

frequency, θ(t) defines the chirp, and w(t) is a weighted window function which limits

the length of the signal. This signal is transmitted from the antenna and an echo is

received after a delay τ . In a real system, the signal is also attenuated, however this

attenuation is not significant in the following analysis. Ignoring that attenuation, the

received signal is w(t− τ)cos[2πf0(t− τ) + θ(t− τ)]. That received signal is turned

into a complex signal by an operation known as quadrature demodulation which is

expressed as

V (t) = w(t− τ)cos[2πf0(t− τ) + θ(t− τ))[cos(2πf0t)− jsin(2πf0t)]. (B.1)

The demodulation process is performed by mixing the received signal separately by

the cosine and the negative sine. Then, the signals are low pass filtered and digi-

tized. To this point, the process is identical to that used in communication systems;

however, in radar, the two signals are then combined by multiplying the digitized,

sine-modulated signal by the imaginary number j and adding the two signals together.
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The justification for this process is made clear by simplifying (B.1) as follows:

V (t) = w(t− τ)cos[2πf0(t− τ) + θ(t− τ)][cos(2πf0t)− jsin(2πf0t)] (B.2)

= w(t− τ)cos[2πf0(t− τ) + θ(t− τ)]e−j2πf0t

= 0.5w(t− τ)
(
ej2πf0(t−τ)+jθ(t−τ) + e−j2πf0(t−τ)−jθ(t−τ)

)
e−j2πf0t

= 0.5w(t− τ)
(
e−j2πf0τ+jθ(t−τ) + e−j4πf0t+j2πf0τ−jθ(t−τ)

)
. (B.3)

The second exponential term under the parentheses in (B.3) is removed by the low-

pass filter applied prior to digitizing the data. Therefore, the final signal is actually

V (t) = 0.5w(t− τ)e−j2πf0τejθ(t−τ). (B.4)

The first exponential term in (B.4) is just a phase term determined by the echo delay

and the radar carrier frequency, and the second exponential term is the actual chirp.
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