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ABSTRACT

Multi-year Arctic Sea Ice Classification

Using QuikSCAT

Aaron M. Swan

Department of Electrical and Computer Engineering

Master of Science

Long term trends in Arctic sea ice are of particular interest with regard to global tem-
perature, climate change, and industry. This thesis uses microwave scatterometer data from
QuikSCAT and radiometer data to analyze intra- and interannual trends in first-year and
multi-year Arctic sea ice. It develops a sea ice type classification method. The backscatter of
first-year and multi-year sea ice are clearly identifiable and are observed to vary seasonally.
Using an average of the annual backscatter trends obtained from QuikSCAT, a classification
of multi-year ice is obtained which is dependent on the day of the year (DOY). Validation
of the classification method is done using regional ice charts from the Canadian Ice Service.
Differences in ice classification are found to be less than 6% during the winters of 06-07,
07-08, and the end of 2008. Anomalies in the distribution of sea ice backscatter from year to
year suggest a reduction in multi-year ice cover between 2003 and 2009 and an approximately
equivalent increase in first-year ice cover.
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Chapter 1

Introduction

Satellite remote sensing of the polar ice caps is a primary means of monitoring sea

ice coverage today [1]. Many studies have been devoted to understanding sea ice dynamics

and estimating and validating sea ice concentration and classification methods.

Sea ice is dynamic both intra- and interannually. In 2010, Arctic sea ice extent,

which includes sea ice concentrations above 15 percent, fluctuated between 15.25 and 4.6

million square kilometers [2]. Each winter, Arctic sea ice fills the Arctic basin and commonly

extends through the Bering and Fram straits shown in Figure 1.1. The high albedo (or ratio of

reflected to incident light) and insulating properties of sea ice make it climatically influential.

Its presence insulates warm ocean waters from much colder atmospheric temperatures, while

its surface cools the earth by reflecting sunlight. Sea ice is also climatically influenced, as

its rate of growth and melt depend on atmospheric conditions as well as ocean conditions,

including temperature and the direction and magnitude of ocean currents under the ice

[3]. Changes in the Arctic ice cover influence shipping navigation routes, the exploration

of untapped mineral and oil reserves, and unique ecosystems above and below the ice [4].

The coverage of perennial or multi-year (MY) ice is of particular interest due to its greater

thickness and higher albedo over seasonal or first-year (FY) ice. It contributes more stability

to the ice cover and poses more danger to sea vessels than FY ice.

1.1 Remote Sensing of Sea Ice

In order to characterize changes in sea ice, a wide variety of tools are commonly

used. These include observations from ships, buoys, aircraft, and satellites. Each tool has

advantages and disadvantages. Ships provide direct access to the ice, allowing researchers

to make measurements directly on or with close proximity to the ice. Icebreakers, which
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Figure 1.1: Location map for the north pole region.

can generally travel through FY or thin MY ice, provide valuable information about ice

thickness, composition, and age, but are limited in spatial and temporal coverage. Buoys

can continuously monitor an ice floe for multiple years. They provide a unique perspective

by monitoring changes above and below the ice, but are only sparsely deployed. While there

is a significant shortage of spatial coverage, buoys move with the ice, providing historical

reference points which have been used to reconstruct Arctic sea ice motion and age [5].

Aircraft can provide localized spatial coverage over large areas of ice and can be configured

with several remote sensing devices such as high resolution cameras, synthetic aperture radars

(SAR), radiometers, scatterometers, and altimeters. Although greater spatial coverage is

achieved, it comes at a loss of direct contact with the ice. While still remote, satellite-borne

sensors provide frequent and consistent data samples, with broader, more complete, coverage

than aircraft. Depending on orbital parameters, these sensors are capable of providing

complete daily coverage of the poles. Some drawbacks of satellite-borne sensors include

atmospheric influences and limited resolution. Satellites are also costly to produce and

operate.
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Optical remote sensing of the Arctic can be difficult because the Arctic is often

shrouded by cloud cover and is dark several months out of the year. Satellite based optical

sensors provide high resolution imagery, but are only useful for sea ice monitoring under

clear-sky, lighted conditions. Microwave sensors provide two major advantages over optical

sensors: depending on the observation frequency, the atmosphere is relatively transparent to

microwaves, allowing them to pass through clouds nearly unaffected; and microwave sensors

do not rely on the sun for illumination.

There are two types of microwave sensors: passive and active. Passive microwave

sensors (radiometers) “listen” to radiation that is naturally emitted by all materials above

absolute zero. They measure brightness temperature, which is related to microwave energy.

Brightness temperature is the product of the physical temperature and emissivity of a mate-

rial, under some simplifying assumptions. Active microwave sensors (scatterometers) provide

their own source of illumination by transmitting a pulse of microwave energy. They measure

the backscattered radiation, which is a function of the reflecting material’s permittivity and

physical roughness. This measured radiation (normalized by the area under illumination) is

referred to as the normalized backscatter cross section or σ0. Satellite-borne microwave sen-

sors, passive and active, have been used in various studies to estimate sea ice concentration

and extent [6, 7, 8, 9, 10, 11] as well as to classify sea ice as FY or MY ice [12, 13, 14].

1.2 Research Problem Description

In the past decade, significant changes have occurred in Arctic sea ice. Kwok et al.

[15] report findings of interannual MY sea ice loss through a study of ice thickness. In their

study, a five year period from 2003 to 2008 was investigated during which ice draft profiles

were obtained from a submarine cruise and moorings in the Chukchi and Beaufort seas. Ice

draft refers to the portion of sea ice below the surface of the water. Additional estimates of

the ice draft were made using a laser altimeter aboard the Ice, Cloud, and Land Elevation

Satellite (ICESat) to retrieve elevation data over the Arctic ocean. The study concluded

that in the 4 years following 2005, there was a net loss in MY sea ice volume of 6300 km3,

which corresponds to a 42% decrease.
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These changes, and the potential impact of Arctic sea ice on climate, ecology, and

industry, necessitate the improvement and development of accurate methods and models to

monitor sea ice. In terms of sea ice classification, microwave backscatter has been found to

produce more temporally stable results than microwave brightness temperature [12]. Sea ice

classification algorithms using passive microwave data have been shown to be unreliable in

multiple studies [7, 16, 17].

A 2004 study conducted by Kwok [14] compares three data sources: scatterometer

measurements from QuikSCAT; ice motion charts, derived from passive microwave measure-

ments; and synthetic aperture radar (SAR) imagery and MY ice coverage estimates from

RADARSAT. These were used in an effort to classify and explain variations in MY ice cov-

erage. For this study, a seasonal ice zone (SIZ) and perennial ice zone (PIZ) are defined,

where the SIZ consists of first-year and younger ice and the PIZ consists of second year and

older ice [18]. A persistent contrast in backscatter of 4 to 7 dB is found to exist between the

SIZ and PIZ. The efficacy of using a fixed threshold to classify these ice types depends on

the stability of backscatter over sea ice and on the variability of the sensor. Observations of

backscatter over sea ice indicate that while significant variability exists during fall and into

November, the microwave signatures of the SIZ and PIZ stabilize by December. Assuming

that sea ice backscatter remains stable during the winter, attention is turned to sensor vari-

ability. To verify that there is little variability in the calibration of the sensor, backscatter

measurements are obtained over the dry snow zone in Greenland. The resulting variability is

less than 0.1 dB over a period of 4 years. Given the stability of backscatter during the winter

and the accuracy of the sensor, an optimal classification threshold of -14.5 dB is found by

visually comparing high resolution RADARSAT SAR imagery with thresholded QuikSCAT

backscatter measurements.

This sea ice classification method, as well as the NASA Team sea ice concentration

algorithm, rely on fixed reference values. These values are broadly applied during the winter

season without consideration for seasonal changes. Since the sea ice scattering and emis-

sion characteristics vary intra-seasonally, it is not clear that using fixed reference values is

appropriate.
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1.3 Thesis Statement

The purpose of this thesis is to develop a new method for the classification of seasonal

and perennial sea ice using a Ku-band scatterometer. To this end, multiple approaches are

used to investigate the microwave characteristics of sea ice. Passive and active microwave

data from different sensors are analyzed for different polarizations, frequencies, and incidence

angles.

This thesis is divided into two parts. In the first part, sea ice type and concentration

are considered. Two different methods are developed to automatically derive probability

distributions representative of open water, FY ice, and MY ice on a daily basis. The first

method relies on one-dimensional histograms of arithmetic combinations of microwave data,

while the second employs an automatic clustering algorithm which reduces the multiple

dimensions of available data to a one-dimensional problem. Both methods incorporate active

and passive microwave data.

In the second part, attention is focused on sea ice classification using only active

microwave measurements. Using a simple mask to remove measurements over the ocean,

I study the temporal evolution of sea ice backscatter over several winter seasons. From

clearly visible trends in the distribution of sea ice backscatter, which provide insight into

the backscatter signatures of aging sea ice, I derive a sea ice classification method using

QuikSCAT measurements over a period of seven years. The vertically (and horizontally)

polarized backscatter measured by QuikSCAT over sea ice is bimodally distributed, where the

modes represent FY and MY ice. The minimum between these modes provides a threshold for

the classification of sea ice. To derive this distribution (and minimum), histograms are taken

from the seven year period for a given day of the year and averaged. A curve, dependent on

the day of the year, is then fit to the resulting minimums to produce a classification threshold

for each day of the winter. The application of this classification method independently

confirms that the coverage of MY ice has reduced from year to year relative to FY ice

between 2003 and 2009, as was previously reported in [15]. This thesis demonstrates the

potential of scatterometry for FY and MY sea ice classification.
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1.4 Research Contributions

The research presented in this thesis contributes to the body of published work on the

remote sensing of Arctic sea ice by documenting several observations with respect to intra-

and interannual sea ice backscatter characteristics, and by documenting the development

and validation of a seasonal sea ice classification model. These contributions include (1) an

analysis of temporal (seasonal) changes in Ku-band backscatter of FY and MY sea ice, (2) the

spatial and temporal tracking and analysis of backscatter over MY ice, (3) the observation

of a multi-year trend in the decrease of MY Arctic sea ice coverage, and (4) a new MY

Arctic sea ice classification algorithm. The classification algorithm independently confirms

that the coverage of MY ice has reduced from year to year relative to FY ice between 2003

and 2009. Essential results of this thesis are contained in [19], which has been submitted for

publication.

1.5 Thesis Organization

This thesis is divided into two major topics: an analysis of intra- and interannual sea

ice trends, and the classification and validation of a new MY sea ice classification algorithm.

A brief description of each chapter is given below:

Chapter 2 begins with a discussion of the importance and formation of Arctic sea

ice. The theory and application of microwave sensing of sea ice are then reviewed with a

brief history of satellite radiometers and scatterometers. It continues with an overview of

orbital sampling and discusses some techniques used in the formation of satellite imagery,

and concludes with a review of the NASA Team algorithm.

Chapter 3 is an overview of initial research performed in the investigation of pas-

sive and active microwave measurements over the Arctic. Multiple approaches to sea ice

characterization are tested and reviewed including the evaluation of previously published

methods.

Chapter 4 outlines intra- and interannual trends in sea ice backscatter. Initially,

a method of separating sea ice and ocean is presented, which uses AMSR-E brightness

temperature measurements. The backscatter over sea ice is then discussed with a focus on
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temporally dependent trends in the distribution of backscatter. The chapter concludes with

evidence of a multi-year trend in the decrease of MY ice.

Chapter 5 presents a new algorithm for the classification of MY sea ice. A minimum

is observed to exist between FY and MY ice in the daily distribution of sea ice backscatter

measurements. Taken over the course of winter, these minimums form a smooth temporal

curve to which a polynomial is fit. This fit represents a classification threshold between FY

and MY ice types, dependent on the day of the year. Results are validated using ice charts

compiled by the Canadian Ice Service (CIS).

Chapter 6 concludes this thesis with a summary of the research performed. Contri-

butions to the field of remote sensing are given followed by several paths where by future

work might be pursued.
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Chapter 2

Background

Microwave remote sensing has been employed to monitor the earth for nearly five

decades. The polar ice caps have been monitored by satellite radars and radiometers almost

continuously for more than three decades producing a vast accumulation of scientific research

on the active and passive microwave characteristics of sea ice. This chapter begins with

a discussion of the importance and formation of sea ice. The theory and application of

microwave sensing of sea ice are reviewed next with a brief history of satellite radiometers

and scatterometers. This chapter concludes with a discussion of image formation from orbital

samples and a review of the National Aeronautics and Space Administration (NASA) Team

(NT) sea ice concentration algorithm.

2.1 Sea Ice

Understanding the formation, composition, and dynamics of sea ice is critical to

interpreting microwave measurements. When the ocean surface is sufficiently cooled, ice

formation begins with small needles and platelets called frazil. Unconsolidated frazil is

commonly referred to as grease ice due to its appearance. Under calm water conditions, frazil

consolidates to form an ice cover up to 10 cm thick called nilas. Under stormy conditions, it

is possible for thick layers of frazil to form, or for nilas (or other ice types) to be broken in

pieces and later reconsolidate. Once a layer is formed, the rate of continued ice growth under

it depends on the temperature gradient of the ice. In a process known as geometric selection,

new ice crystals forming in competing orientations are eliminated. Non-competitive growth

occurs only perpendicular to the ice surface. The process of geometric selection results in a

transition layer of 5 to 10 cm in thickness, which precedes the formation of vertically oriented

ice crystals known as columnar ice extending beneath it [3].
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Figure 2.1: Plate (dendrite) and groove structure of columnar sea ice crystals. Brine is
trapped between plates. Adapted from [3].

During the formation of sea ice, brine becomes trapped in the ice by the more rapid

diffusion of heat than salt. In columnar ice, which comprises the remainder of the ice sheet

(in a typical calm water scenario), each grain of ice is composed of ice plates (dendrites) and

grooves where brine is trapped. This structure is illustrated in Figure 2.1. Brine drainage,

which begins after ice forms, increases the porosity of sea ice and alters its microwave char-

acteristic. The drainage is caused by an imbalance in temperature, pressure, and salinity in

the ice, and continues until a stable equilibrium point is found. Ice melt and formation on

the inside of a brine pocket change the salinity of the brine as well as the pressure within the

pocket, which is due to the differing densities of ice and water. Increases in pressure can force

brine up or down out of the brine pocket through cracks in the ice. The deformation of brine

pockets causes them to merge together creating larger pockets and networks of channels in

the ice.

In the change from FY to MY ice that occurs during the summer, fresh water melt on

the surface of the ice drains through the network of brine channels, desalinating the upper

layers of ice and enlarging the channels. As a result, sea ice near the top surface is nearly salt

free and is much more porous, both of which alter its microwave scattering characteristics.
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Differentiating FY and MY is important for accurately determining their respective

spatial coverage. Understanding the signatures of each ice type also makes it possible to

parameterize sea ice concentrations, and determine the fractional contribution of each ice

type. These ice types can be distinguished by thickness, snow cover, salinity, and surface

characteristics. MY ice is typically 1.5 m or thicker with a snow cover of 0.4 m, while FY is

typically less than 1.5 m thick with a snow cover of 0.1 m. In some scenarios, FY ice may

be thicker than MY ice. Typical sea ice salinities of FY and MY ice are 7.7� and 2.5�

respectively, where � means parts per thousand [20]. The surface features of FY ice tend

to be sharp compared to the rounded appearance of MY ice. This is particularly true of

ice ridges, which are a common feature in the shifting environment of Arctic sea ice. Ice

ridges form when two ice floes are forced together. Commonly, one ice floe submerges while

the other rafts on top, breaking into large ice blocks. During the summer season, sharp

FY ice features, like these ridges, deform under melt and freeze cycles creating the rounded

appearance of MY ice. As a result of mechanical deformations and changes in dielectric

constant, MY and FY ice have different microwave scattering and emission characteristics.

These are considered in the following.

2.2 Passive Microwave Sensing of Sea Ice

Microwave radiometry is used extensively in the estimation of sea ice parameters.

Its usefulness arises from the unique radiation properties of snow, ice, salt, and water. This

radiation, or brightness temperature, which is taken as noise in other applications, is carefully

measured using a radiometer. The standard measure of radiation in radiometry is brightness

temperature.

2.2.1 Brightness Temperature

All real materials, or graybodies, radiate energy. The amount of radiation observed

from a graybody is dependent on the angle and frequency of observation. An idealized

material, or blackbody, at temperature T and in thermal equilibrium with its surroundings,

radiates at least as much energy as any other body at temperature T . By definition, black-

bodies also perfectly absorb all radiation incident upon them.
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To quantify the amount of energy radiated by a real material, its radiance or bright-

ness B(θ, φ) is defined as the radiated power per unit solid angle per unit area, where θ is

the incidence angle, and φ is the azimuth angle. Using the Rayleigh-Jeans approximation,

the brightness Bbb of a blackbody in the microwave region is defined as

Bbb =
2kBT

λ2
∆f, (2.1)

where kB is Boltzmann’s constant, T is physical temperature, λ is the wavelength, and ∆f

is a narrow bandwidth. The ratio of a material’s brightness to the corresponding blackbody

brightness is known as the material’s emissivity,

ε(θ, φ) =
B(θ, φ)

Bbb

=
T (θ, φ)

T
, (2.2)

where T (θ, φ) or simply Tb is the blackbody equivalent radiometric brightness temperature

of the material. The emissivity of a material is bounded between 0 and 1 by definition.

In general, measurements of brightness temperature of the earth include natural emissions

from the surface, sub-surface emissions, upwelling radiation from the atmosphere, and down-

welling radiation from the atmosphere that is reflected toward the receiver. In satellite

radiometry, atmospheric contributions, which are dependent on the observation frequency,

must be considered [21].

2.2.2 Satellite Radiometers

Satellite radiometers have been shown to be useful in determining sea ice coverage,

concentration, and type (such as FY and MY ice). The single channel Electrically Scanning

Microwave Radiometer on the NIMBUS 5 satellite (ESMR-5), which operated at 19.3 GHz,

demonstrated some of these applications [22]. Its single channel receiver was useful in dis-

tinguishing ice and ocean, but limited in its ability to determine ice temperature variation

or ice type [6].

In 1984, the Scanning Multichannel Microwave Radiometer (SMMR) aboard the NIM-

BUS 7 satellite was also used to measure sea ice parameters in the NT algorithm [6, 23, 24].

SMMR had the advantage that it provided radiances at five frequencies with horizontally
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(Hpol) and vertically (Vpol) polarized receivers. More recently, the NT algorithm was cali-

brated to use radiances measured by the Special Sensor Microwave Imager (SSM/I) instru-

ment [25]. This data, collected under the Defense Meteorological Satellite Program (DMSP),

provides dual-polarization radiances from three channels (19.35, 37.0, 85.5 GHz) and Vpol

radiances from one additional channel (22.235 GHz).

In 2002, the Advanced Microwave Scanning Radiometer of NASA’s Earth Observing

System (AMSR-E) was launched. It was developed by the National Space Development

Agency of Japan (NASDA). Hardware improvements over existing spaceborne radiometers

include the largest main reflector of its kind and the addition of 6.9 GHz channels. AMSR-E

is currently operational and provides measurements over 6 frequencies ranging from 6.9

to 89.0 GHz. Brightness temperature measurements are taken at Vpol and Hpol at each

frequency with a total of 12 channels [26]. AMSR-E is in a sun synchronous orbit and

provides consistent daily coverage of the poles.

2.3 Active Microwave Sensing of Sea Ice

A microwave scatterometer is a type of radar which measures normalized radar cross

section (σ0) of a surface by actively illuminating the surface with microwave energy. The

backscatter, or portion of the power that is reflected back toward the receiver can be related

to surface roughness, structure, and other physical properties as well as dielectric constant.

Backscatter is generally the result of many individual point scatterers forming a diffuse

reflection, as opposed to a specular reflection from a smooth surface, as might be seen from

a mirror.

2.3.1 Normalized Radar Cross Section

The power transmitted and received by a scatterometer are related by the radar

equation [27],

Pr =
PtG

2λ2A

(4π)3R4
σ0, (2.3)

where Pr is the power received, Pt is the power transmitted, G is the gain of the antenna,

λ is the wavelength of the transmitted signal, A is the area of surface illumination, R is the
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Figure 2.2: Backscatter interactions for MY ice, FY ice, and open water. After [20].

distance from the transmitter to the target (slant range), and σ0 is the radar cross section

normalized over the area of illumination.

As with radiances, the backscatter received by a scatterometer is dependent on the in-

cidence and azimuth angles of observation (θ and φ). It is also dependent on the polarization

and frequency of the transmitted signal. Figure 2.2 illustrates several scenarios encountered

in the active sensing of sea ice. Backscatter over MY ice results from surface and volume

scattering. Due to the low-loss composition of MY ice, volume scattering from gas bubbles

within the ice significantly contribute to the total backscatter. Over FY ice and open water,

which are both high-loss materials, backscatter is mostly due to surface roughness. From

off nadir angles, very little backscatter is observed over calm ocean waters, since microwave

energy is specularly reflected away from the receiver.

2.3.2 Satellite Scatterometers

Spaceborne scatterometer data has been used to investigate sea-wind interactions

since the launch of the Seasat Scatterometer (SASS) by NASA in 1978. SASS, which was

a Ku-band (14 GHz) fan beam scatterometer, lasted only 3 months, but provided a set of

baseline measurements. SASS was followed by ERS-1 (1991) and ERS-2 (1995) developed by

the European Space Agency (ESA). These scatterometers contributed C-band measurements
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Figure 2.3: Scanning Configuration of SeaWinds. After [29].

at 5.6 GHz. In 1996, NASA launched another Ku-band fan-beam scatterometer known as

the NASA Scatterometer (NSCAT), but it failed shortly after in 1997.

In response to the failure of NSCAT, the SeaWinds instrument aboard QuikSCAT was

launched in 1999 [28] as a quick replacement. SeaWinds (hereafter referred to as QuikSCAT

by convention) employs a rotating pencil beam antenna which transmits and receives at

13.4 GHz. The scanning configuration is shown in Figure 2.3. Measurements of normalized

backscatter cross-section are collected in horizontal (HH) and vertical (VV) polarizations at

incidence angles of 46o and 54.1o respectively. QuikSCAT achieved global daily coverage for

10 years producing a consistent and nearly uninterrupted data set over its period of operation.

In 2009, its rotating antenna stalled, limiting further observations. Although QuikSCAT and

the previous scatterometers mentioned were designed to measure wind speed and direction

over the ocean, the radar backscatter measurements collected are sensitive to land, snow,

water saturation, and various types of ice.
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2.4 Orbital Sampling

Image formation from remotely sampled data requires consideration of the spatial

sampling interval, range to the target, incidence angle, shape of the antenna footprint on the

ground, and atmospheric contributions. The spatial sampling of remote sensing satellites

is non-uniform in general. Measurements may be disjoint in the along track direction, and

depending on the scanning geometry, may also vary in shape across the swath. Corrections

to the received power can be made which account for atmospheric attenuation, range to the

target, and incidence angle.

A simplistic approach to image formation is to define a spatial grid on the surface

of the earth and average all of the measurements whose centers fall within a given grid

element (pixel). Averaging in this manner results in a temporal/spatial resolution trade-

off, where longer averages produce a higher spatial resolution of fixed features, but shorter

averages reveal moving features. The effective resolution of this approach is courser than the

nominal grid spacing due to the spatial response of the antenna. Even though the center of

a measurement falls within a grid element, some of the power returned to the receiver is a

function of the area surrounding the grid element. The effective resolution is thus defined

by the antenna footprint.

The QuikSCAT and AMSR-E data used in this paper has been processed using vari-

ations of the Scatterometer Image Reconstruction (SIR) algorithm [30, 31]. Over the poles,

the SIR algorithm uses a polar stereographic grid projection. QuikSCAT SIR images are

provided in log-scale at two resolutions referred to as “egg” and “slice”, where eggs and slices

are standard QuikSCAT data products. Slices result from range/doppler processing on the

received signal, approximately slicing the antenna footprint into several trapezoids. Eggs

are an average of the 8 central slices. Although the egg SIR images used in this paper are of

lower resolution than slices, they are less noisy.

2.5 Review of the NASA Team Algorithm

A long standing and often cited approach to sea ice characterization is the NT sea

ice concentration algorithm [25], which is applied to radiometer data. Its popularity is

likely due to its simple derivation and reasonable results. The NT algorithm derives sea ice
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concentration using measurements from the spaceborne Special Sensor Microwave/Imager

(SSM/I) radiometer. This data is collected under the Defense Meteorological Satellite Pro-

gram (DMSP).

As discussed earlier, the brightness temperatures (Tb) measured by a radiometer are

a composition of radiances from the earth, atmosphere, and space. Contributions from space

and the atmosphere are noted to be very small over polar regions. The NT algorithm makes

the simplifying assumption that brightness temperatures over the Arctic (excluding land)

are a linear combination of fixed reference temperatures representing open water (OW), first

year (FY) ice and multi-year (MY) ice. This means that measured brightness temperatures

are assumed to be a function of the relative concentrations of OW, FY ice, and MY ice.

The fixed reference temperatures are referred to as tie-points. While they depend on several

factors including weather conditions, freezing and melting cycles, water composition, and

physical temperature, they are treated as constant. Some advantages of using tie-points

are (1) that they provide standard reference points for comparing ice concentrations and

(2) their use has been shown to produce reasonable results. Some disadvantages are that,

over the course of the year, tie-points may not always be representative of their respective

materials, and that tie-points do not account for variability in ice conditions.

The NT algorithm calculates total sea ice concentration (C) and FY (CFY ) and MY

(CMY ) sea ice concentrations. In particular, the NT algorithm makes use of the 19.35 (Tb,19),

22.24 (Tb,22), and 37.00 (Tb,37) GHz channels on SSM/I to compute ice concentrations and

filter weather effects.

Assuming that space radiation is negligible, and that atmospheric contributions are

generally negligible over the poles [6], the radiative transfer equation, which is valid for each

frequency and polarization, can be modeled as

Tb = Tb,OW (1− C) + Tb,FYCFY + Tb,MYCMY , (2.4)

17



where C = CFY + CMY . To compute ice concentrations, the polarization ratio (RP ) and

spectral gradient ratio (RG) are defined as [25]:

RP =
Tb,19V − Tb,19H
Tb,19V + Tb,19H

, and (2.5)

RG =
Tb,37V − Tb,19V
Tb,37V + Tb,19V

. (2.6)

Using the approximation that brightness temperature is equal to the product of surface emis-

sivity and physical temperature, RP and RG are only a function of emissivity. Substituting

Equation (2.4) into Equations (2.5) and (2.6) allows for the simultaneous solution for CFY

and CMY . The solution is

CMY =
M0 +M1RP +M2RG +M3RPRG

D
, and (2.7)

CFY =
F0 + F1RP + F2RG + F3RPRG

D
, (2.8)

where

D = D0 +D1RP +D2RG +D3RPRG,

and where

M0 = A4B0 − A0B4, F0 = A0B2 − A2B0, D0 = A4B2 − A2B4,

M1 = A5B0 − A1B4, F1 = A1B2 − A3B0, D1 = A5B2 − A3B4,

M2 = A4B1 − A0B5, F2 = A0B3 − A2B1, D2 = A4B3 − A2B5,

M3 = A5B1 − A1B5, F3 = A1B3 − A3B1, D3 = A5B3 − A3B5,

18



Table 2.1: Northern Hemisphere tie-points for the NT algorithm

Channel Tb (Kelvins)

OW FY MY

Tb,19V 177.1 258.2 223.2

Tb,19H 100.8 242.8 203.9

Tb,37V 201.7 252.8 186.3

where

A0 = −Tb,OW,19V + Tb,OW,19H ,

A1 = Tb,OW,19V + Tb,OW,19H ,

A2 = Tb,MY,19V − Tb,MY,19H + A0,

A3 = −Tb,MY,19V − Tb,MY,19H + A1,

A4 = Tb,FY,19V − Tb,FY,19H + A0,

A5 = −Tb,FY,19V − Tb,FY,19H + A1,

and where

B0 = −Tb,OW,37V + Tb,OW,19V ,

B1 = Tb,OW,37V + Tb,OW,19V ,

B2 = Tb,MY,37V − Tb,MY,19V +B0,

B3 = −Tb,MY,37V − Tb,MY,19V +B1,

B4 = Tb,FY,37V − Tb,FY,19V +B0,

B5 = −Tb,FY,37V − Tb,FY,19V +B1.

The A and B values above provide a means of tuning the algorithm. The Tb values are the

tie-points for OW, FY ice, and MY ice for the specified channels. Northern Hemisphere

tie-points for the NT algorithm were obtained from [25] and are shown in Table 2.1.

Due to dispersion of Tb values by weather events, a weather filter was proposed by

Cavalieri [24] that works as follows: If

Tb,37V − Tb,19V
Tb,37V + Tb,19V

> 0.05,
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and/or
Tb,22V − Tb,19V
Tb,22V + Tb,19V

> 0.045,

then the sea ice concentration is set to zero.

The NT algorithm has been tuned for use with different platforms as they have become

available. With the additional frequency channels available on AMSR-E, improvements to

the NT algorithm were made resulting in the NT2 algorithm, which makes use of AMSR-E’s

89 GHz channel to further filter weather effects. The NT algorithm and its variants are the

operational standard for mapping Arctic sea ice concentration.
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Chapter 3

Method of Sea Ice Investigation

Multiple approaches are used in this thesis to investigate the microwave character-

istics of sea ice. Data is taken from different polarizations, frequencies, incidence angles,

sensors, and algorithms. This chapter begins by describing a common method for the inter-

comparison of this data. Briefly, data for each sensor are collocated using a common polar

stereographic projection, with interpolation applied when applicable. Next, a joint analysis

of passive and active microwave measurements is presented, including a discussion on the

validity of using tie-points to represent FY ice, MY ice, and open water. Two methods are

then described that are used to automatically determine data-clusters representative of FY

ice, MY ice, and open water on a daily basis.

3.1 Data Preparation

To combine data from multiple sensors, their observations are converted to a common

map projection known as a polar stereographic projection. A stereographic projection is a

geometric mapping function that projects a sphere onto a plane. Although some distortion

occurs, a stereographic projection is shape-preserving or orthomorphic. This means that

circles of latitude and lines of longitude are preserved. For ease of data manipulation and

storage in this thesis, projected results are rasterized (converted to pixels) with a nominal

resolution of 4.45 pixels/km. A standard latitude of true scale at N70◦ is used. Intuitively,

this projection compresses data at the pole and stretches it at the outside edge of the pro-

jection (N60◦). This is the standard projection used for BYU Scatterometer Climate Record

Pathfinder (SCP) QuikSCAT egg SIR images (www.scp.byu.edu). AMSR-E image data in

polar stereographic projection is also available from the SCP. These images are at a different

pixel resolution and interpolated to the QuikSCAT pixels using bilinear interpolation. This
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is advantageous over nearest neighbor interpolation, which tends to introduce discontinuities

into the data. For example, discontinuities are observed when nearest neighbor interpolated

data is compared with data at a higher resolution.

After collocation, a binary mask is applied to the data to standardize no-data regions

between data sets and remove land. The brightness and contrast of land regions compared

to ice and water tends to distort near-coast measurements. To reduce the effects of land, the

land mask is dilated using binary dilation with a 5x5 pixel structuring element as described

in [32]. Briefly, the land mask is dilated by projecting the structuring element centered over

each pixel in the mask. The projected/dilated land mask and structuring element are shown

in Figure 3.1. An example of binary dilation is shown in Figure 3.2.

3.2 Joint Analysis of Passive and Active Microwave Data

The motivation for a joint analysis of passive and active microwave data stems from

several studies [33, 34, 35, 36, 37] that suggest that a more accurate characterization of sea

ice may be accomplished using both active and passive microwave sensors rather than just

using one type. The following subsections present analysis methods for analyzing passive

and active data to estimate sea ice parameters.

3.2.1 Ratios of Brightness Temperature

The NT sea ice algorithm, which is reviewed in Chapter 2, defines a polarization ratio

(RP ) and spectral gradient ratio (RG), which serves to separate MY and FY ice. Equations

(2.5) and (2.6) for RP and RG, respectively, are rewritten here to generalize their use:

RP (f1) =
Tb,f1V − Tb,f1H
Tb,f1V + Tb,f1H

, and (3.1)

RG(f1, f2) =
Tb,f2V − Tb,f1V
Tb,f2V + Tb,f1V

, (3.2)

where f1 and f2 represent the frequencies at which the brightness temperatures were mea-

sured. To apply RG to AMSR-E, the 18.7 GHz and 36.5 GHz channels are selected for f1 and
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Figure 3.1: Arctic no-data and land mask in polar stereographic projection. The land mask
is dilated using the shown structuring element to remove measurements with coastal effects.
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Figure 3.2: An example of binary dilation. (a) shows a sample binary mask (white), (b)
shows pixels dilated by the structuring element (gray), and (c) shows the new mask.
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f2 respectively. These are similar to frequencies selected from the Special Sensor Microwave

Imager (SSM/I) for which the NT algorithm has been calibrated.

We are interested in three different categories of Arctic surface cover: open water, FY

ice, and MY ice. These surfaces exhibit a different appearance at different passive channel

frequencies and polarizations. These differences can be exploited to map the extent of open

water, FY ice, and MY ice. Consider the typical histograms of Arctic brightness temperatures

shown in Figure 3.3. The histograms represent the V and H polarizations (Vpol and Hpol)

of the 18.7 GHz channel of AMSR-E for DOY 15 in 2003. The leftmost mode for each

polarization represents open water, followed by MY ice, and then FY ice. Interestingly, the

brightness temperature difference between FY and MY ice is similar for each polarization,

while the brightness temperature difference between open water and MY ice is twice as

great for Hpol as for Vpol. The greater difference between open water and MY ice for Hpol is

primarily due to the brightness temperature of the ocean at each polarization. In a simplified

scenario that assumes a relatively smooth ocean surface, the brightness temperature (TB) of

open water can be modeled by (Equation (11.83) in [38]):

TB(θ, p) = [1− Γsp(θ, p)]T0, (3.3)

where θ is the angle of incidence from the surface zenith, p is the polarization, Γ is the

specular surface reflectivity and T0 is the physical temperature of the water. The specular

surface reflectivity is given by (Equation (4.132) in [21]):

Γsp(θ,Hpol) =

∣∣∣∣∣µr cos(θ)−
√
µrεr − sin2(θ)

µr cos(θ) +
√
µrεr − sin2(θ)

∣∣∣∣∣
2

, and (3.4a)

Γsp(θ, Vpol) =

∣∣∣∣∣εr cos(θ)−
√
µrεr − sin2(θ)

εr cos(θ) +
√
µrεr − sin2(θ)

∣∣∣∣∣
2

, (3.4b)

where µr is the relative magnetic permeability and εr is the relative complex dielectric con-

stant of the surface. Using typical values of µr and εr for sea water, Figure 3.4 illustrates the

greater emissivity calculated for Vpol compared to Hpol over a smooth ocean surface. The

thick red line shows the incidence angle used by AMSR-E. The actual incidence angle at
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Figure 3.3: Typical histograms of AMSR-E V and H 18.7 GHz measurements during the
winter. Each histogram has three modes representing open water, MY ice, and FY ice from
left to right. The approximate distance between modes of open water and MY ice is shown for
each histogram. Data is taken from DOY 15, 2003.

the ocean surface depends on the local surface, which varies with surface waves. However,

in this model Vpol emissions are always greater than Hpol emissions. This observation is a

motivating factor to use RP .

The motivating factor for use of RG can be seen in Figure 3.5. Here, open water has

been removed, giving focus to the histograms of FY and MY ice. The figure illustrates a

greater separation of FY and MY ice using the 36.5 GHz channel than seen for the 18.7 GHz

channel. This is related to the source of microwave emissions from each ice type. Emissions

come from the surface and volume of the ice. The salinity of FY ice makes it lossy, preventing

significant emissions from the ice volume. However, emissions from MY ice, which is much
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Figure 3.4: Calculated emissivity for horizontal (solid line) and vertical (dashed line) polar-
izations for µr = 1 and εr = 54.4− 36.8j. These are typical values for sea water at 20o C with
36� salinity [27]. The solid red line shows the incidence angle used by AMSR-E.

less saline, have significant contributions from the ice surface and volume. As the observation

frequency increases, emission depth decreases, reducing ice volume contributions. This effect

can be seen in both FY and MY ice types, but is more pronounced in MY ice as observed

in Figure 3.5. Generally, higher microwave frequencies are observed to result in greater

separation of FY and MY ice, but have greater atmospheric sensitivity (to water vapor,

rain, and snow for example).

A joint histogram of RP and RG illustrates the benefit of these ratios in Figure 3.6.

RP separates open water and ice, while RG separates FY and MY ice. When calibrating

the NT algorithm, which is done on a per sensor basis, tie-points are carefully selected to
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Figure 3.5: Typical histograms of AMSR-E V 18.7 GHz and V 36.5 GHz measurements over
ice during the winter. Each histogram is bimodal where the left mode represents MY ice and
the right mode represents FY ice. The approximate distance between modes is shown for each
histogram. Data is taken from DOY 15, 2003.

represent the modes illustrated in Figure 3.6. Additional tuning is also employed in an effort

to correlate calculated sea ice concentrations with ground truth [25].

3.2.2 Analysis with QuikSCAT

While the separation of modes representing sea ice type is demonstrated in Figure 3.6,

sea ice may also be effectively separated using RG(18.7, 36.5) and QuikSCAT VV. Figure

3.7 shows a typical SIR image of QuikSCAT VV (a) and an image of RG(18.7, 36.5) (b),

as well as a joint histogram (c) to illustrate the high (negative) correlation between them.

In the joint histogram, the upper-left mode represents FY ice, and the lower-right MY ice.

27



 

 

Min

Max

0 5,000
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
AM

SR
−E

 G
ra

di
en

t R
at

io

0 0.05 0.1 0.15 0.2 0.25
0

5,000

AMSR−E Polarization Ratio

FY Ice

MY Ice

Open
Water

Figure 3.6: A joint histogram shows the relationship between RP and RG with marginal
histograms shown to the left and bottom. The joint histogram has been log-height scaled to
show more detail. Data is taken from DOY 15, 2003.

Interestingly, the joint histogram illustrates that FY ice has less variance in the AMSR-E RG

dimension than in the QuikSCAT VV dimension. The opposite is true for MY ice. These

observations hold during the winter.

3.3 Variability in Sea Ice Signatures

The validity of using fixed sea ice signatures (tie-points) is independent of whether the

NT algorithm or an active/passive microwave approach is employed for sea ice classification.

Tie-points have been traditionally determined as the modes of the distributions at a fixed

time or averaged over a particular time period. However, the modes associated with RP and

RG vary over the season and are not constant. Figure 3.8 shows joint histograms of RP and

RG for two days selected from the 04-05 winter where the modes have been highlighted by
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solid squares in (a) and solid circles in (b). These annotations are replicated as dashed shapes

in each image for comparison. In (b), the modes for FY and MY ice are closer together than

in (a). This example suggests that fixed tie-points may not be the best approach.

In an effort to determine whether fixed or daily-varying sea ice signatures are more

appropriate, two different methods are derived for selecting seasonally-varying tie-points.

Initially, probability distributions for each ice type and open water are sought. Single values

can then be derived from the resulting distributions. The first method is to use histograms

with spatial processing. The second is to use an automated clustering algorithm with spatial

processing.

3.3.1 Histogram Estimation

The histogram estimation method is performed in three steps: (1) form a rough

classification of FY and MY ice to select spatially homogeneous areas, (2) refine the classifi-

cation to commonly recurring measurements, and (3) spatially dilate and erode the refined

classification.

As noted earlier, RP is useful for distinguishing sea ice and open water. Similarly,

QuikSCAT VV is useful for distinguishing FY and MY ice. Histograms of RP (18.7) and

QuikSCAT VV are shown in Figure 3.9. To form rough classifications of sea ice and open

water, the minimum bin between maximums of the RP (18.7) histogram is used as a threshold.

A threshold is similarly selected to classify FY and MY ice. Rough classifications are shown

in Fig. 3.10.

The next step is to reduce each rough classification (FY ice, MY ice, and open water)

to densely clustered measurements. RG(36.5, 18.7) is well-suited to this purpose during the

winter because it is sensitive to transitions among FY ice, MY ice, and open water, but it is

insensitive to wind over the ocean [23] or to the physical temperature variation over the ice.

When RG(36.5, 18.7) is restricted to one of the rough classifications, it is singly distributed.

The mode is assumed to be representative of the classified surface type, rather than a mixture

of ice and water. This histogram is used to refine the rough classification by selecting

measurements that fall immediately around the mode. In particular, the classification is

arbitrarily restricted by selecting measurements from the histogram where the height of the

30



 

 

0

5

10

15

20

25

0 5,000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

AM
SR

−E
 G

ra
di

en
t R

at
io

0 0.05 0.1 0.15
0

5000

10000

AMSR−E Polarization Ratio

(a)

FY Ice

MY Ice

 

 

0

5

10

15

20

25

0 5,000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

AM
SR

−E
 G

ra
di

en
t R

at
io

0 0.05 0.1 0.15
0

5000

10000

AMSR−E Polarization Ratio

(b)

FY Ice

MY Ice
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histogram is more than half of the height of the mode. Figure 3.11 shows selected subsets

for FY ice, MY ice, and open water classifications. Measurements that fall between the left

and right dashed lines form the refined classification.
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Figure 3.11: Restricted distribution of RG(36.5, 18.7) under the rough (a) open water, (b)
FY ice, and (c) MY ice classifications. The dashed lines represent the restriction which is based
on half the height of the mode. Data is taken from DOY 32, 2003.

The final step is to improve spatial consistency by spatially dilating and eroding each

refined classification. Eroding has the effect of removing sparse regions, and dilating has

the effect of spatially connecting concentrated regions. The final classifications are shown

in Figure 3.12. Notice that, as a result of processing, transitional areas have been removed

from the set of final classifications in contrast to the rough classifications in Figure 3.10.
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Figure 3.12: Final classifications for OW, FY ice, and MY ice for DOY 32, 2003.

This ensures that the final area consists purely of a single surface class. Note that this

classification is not intended to apply to all ice-covered areas. Instead, it selects ares of pure

ice classes.

In an attempt to apply this approach over an entire winter, it becomes apparent that

a clear maximum does not always exist for one-dimensional histograms of measurements

from each surface class. In an effort to develop a more robust classification method, a

multi-dimensional cluster approach is used, which can take advantage of the large number

of available data channels.

3.3.2 Multi-dimensional Clustering Algorithm

The OPTICS (Ordering Points To Identify the Clustering Structure) algorithm [39] is

used in an attempt to determine distributions of sea ice type and open water. The OPTICS

algorithm uses a density-based clustering strategy to partition data into meaningful groups.

An important motivation for use of the OPTICS algorithm comes from its ability to detect
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Figure 3.13: Histogram of points on a line demonstrating the difficulty of detecting clusters
with a threshold.

clusters with varying densities without prior knowledge. Figure 3.13 illustrates a histogram

of points along a line. Three clusters are present. Using the illustrated threshold, clusters

A and B are detected, but C is missed. By adjusting the threshold, C can be detected, but

A and B are assigned to the same cluster. This can be overcome by scanning over multiple

thresholds, which is effectively what the OPTICS algorithm does.

Another motivation for the use of the OPTICS algorithm comes from its ability to

map multi-dimensional data to two-dimensions using a distance metric and the order in

which it processes points. Such a plot is known as a reachability plot.

The following list contains several definitions which are useful to the OPTICS algo-

rithm. Many of these are borrowed from the DBSCAN algorithm, from which the OPTICS

algorithm is adapted.

1. An object P is in the ε-neighborhood of Q if the distance from P to Q is less than ε

(Figure 3.14-A).

2. A core object has at least MinPts in its ε-neighborhood (Figure 3.14-B whereMinPnts =

4).
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3. An object P is directly density-reachable from object Q if Q is a core object and

P is in the ε-neighborhood of Q (Figure 3.14-C).

4. An object P is density-reachable from an object Q if there is a chain of objects

P1, . . . , Pn, where P1 = Q and Pn = P such that Pi+1 is directly density reachable from

Pi (Figure 3.14-D).

5. An object P is density-connected to an object Q if there is an object O such that

both P and Q are density-reachable from O (Figure 3.15-A).

6. A cluster is a set of density-connected objects which is maximal with respect to

density-reachability. Noise is the set of objects not contained in any cluster (Figure

3.15-B).

7. The generating-distance ε is the largest distance considered for clusters. Clusters

can be extracted for all εi such that 0 ≤ εi ≤ ε (Figure 3.16).

8. The core-distance is the smallest distance ε′ between a core object Q and an object

P in its ε-neighborhood such that a radius at ε′ around Q contains exactly MinPnts

(Figure 3.16).

9. The reachability-distance of P is the smallest distance such that P is density reach-

able from a core object Q. Additionally the reachability distance of P must be at least

as large as the core-distance of Q (Figure 3.16).

Starting at a user defined point, OPTICS uses a priority queue to process neighbors

in order of reachability distance where priority is given to the smallest distance. Every point

is processed only once during which its core distance and reachability distance are written

to an ordered list of points. Figure 3.17 provides a flowchart of the complete algorithm.

A reachability plot, which is a plot of reachability-distance versus point ordering, is

used to interpret results. Figure 3.18 shows a reachability plot for three random clusters. In

a reachability plot, valleys in the point ordering represent points that belong to a cluster.

Peaks are caused by points that are distant from clusters. It is interesting to note that

Figure 3.18 has a hierarchical structure where two of the valleys are contained in a larger
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point is a core object (MinPnts = 4). (c) Points inside the circle (such as P) are directly
density-reachable from Q. (d) P is density reachable from Q. See text.
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Figure 3.15: OPTICS Definitions: (a) P is density connected to Q (b) Solid points belong to
clusters. Other points are noise. See text.
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Figure 3.16: OPTICS Definitions: Arrows represent reachability distance. Point A is inside
the core-distance radius. Point B sets the core-distance for MinPnts = 4. Point C is outside
the core, but inside the generating distance. Point D is outside the generating distance. It has
UNDEFINED reachability-distance. See text.

valley. This is correctly interpreted as two clusters being closer to each other than to the

third cluster.

As a final step in the algorithm, clusters are automatically detected from the reach-

ability plot. This is done hierarchically using a set of definitions that are not repeated here.

The detection relies on a steepness parameter which is a percentage change in reachability

distance from one point to the next.

The OPTICS algorithm appears to function best when each dimension is scaled sim-

ilarly. To accomplish this, each dimension is normalized before the algorithm is applied

using

M̂i =
Mi −min{M}

max{M} −min{M}
, (3.5)

where M is the set of measurements from a single dimension, the subscript i represents an

index into the set M , and min{} and max{} return the minimum and maximum values of a

set respectively.

Figure 3.19 shows a reachability distance plot generated by the OPTICS algorithm

for a two-dimensional data set consisting of AMSR-E RG and QuikSCAT VV (see also Figure
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3.7(c)). The clustering structure is hierarchical. Open water and sea ice are identified as

higher level clusters, and FY and MY ice are contained within the sea ice cluster. Figure

3.20 shows a mapping of these clusters back onto AMSR-E RG to show that the clusters

represent each surface class.
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Figure 3.19: Reachability distance plot generated by the OPTICS algorithm for a two-
dimensional set consisting of AMSR-E RG and QuikSCAT VV. The red dashed lines terminated
by triangles indicate sets of points within a cluster. This plot only represents 1 out of every 100
points to reduce excessive detection of clusters and increase processing speed. Data is taken
from DOY 15, 2003.

The OPTICS algorithm is a promising method for determining distributions associ-

ated with sea ice type and open water. However, in favor of a simpler method, the following

chapters describe a two step process to classify sea ice, where classification is based on a

model derived from historical averages. This process produces similar results to the OP-

TICS algorithm, but has better year-to-year consistency since the same thresholds are used

for each year.
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Figure 3.20: Clusters determined using the OPTICS algorithm are mapped over AMSR-E
RG. Clusters are shown in color. (a) is an all-inclusive cluster, (b) represents open water, (c)
represents FY ice, and (d) represents MY ice. Data is taken from DOY 15, 2003.
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Chapter 4

Intra- and Interannual Sea Ice Trends

The previous chapter presented an investigation of backscatter signatures over open

water, FY ice, and MY ice. In this chapter, time series of histograms of backscatter over sea

ice are analyzed. The intent is to create a sea ice classification model based on the day of the

year. For this analysis, a method of separating sea ice and open water is first employed, then

backscatter ice statistics are computed. Observed seasonal trends are then presented with

speculation as to their physical cause. This chapter concludes with a summary of findings.

4.1 Isolating High Sea Ice Concentrations

For the purposes of developing a model, we exclude backscatter measurements over

open water and low sea ice concentrations. This initial step effectively excludes the marginal

ice zone (MIZ) where open ocean processes (particularly waves) significantly influence the

properties of sea ice. Although QuikSCAT measurements are sensitive to the ocean-ice

interface, high winds often cause measurements over the ocean to appear like ice. High

winds can make it difficult to isolate high ice concentrations using QuikSCAT. However,

brightness temperatures obtained from the 6 GHz V (or H) channel of AMSR-E (A6,V )

show a high contrast between ocean and ice. AMSR-E SIR images are high resolution and

span largely the same time frame as QuikSCAT. They are also readily available and are

collocated with QuikSCAT measurements. The contrast between open water and FY ice,

with respect to emissivity (and brightness temperature), increases as frequency decreases

[40]. This is possibly due to increased ice volume emissions from increased emission depth

at lower frequencies, which is discussed in Chapter 3. Applying a fixed threshold to A6,V is

a simple and adequate method to remove measurements over the ocean and the MIZ. Using
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Figure 4.1: Typical joint histograms of AMSR-E 6 GHz V brightness temperatures and ice
concentrations from the NASA Team algorithm for selected days of the year (DOY) in 2004.
Histogram bins have been log height scaled. The horizontal line represents a threshold at 220
K.

one of the previously mentioned sea ice concentration algorithms may also be appropriate

for this purpose.

To illustrate the sensitivity of A6,V to sea ice concentration, a comparison is made with

ice concentration maps produced by the NASA Team (NT) sea ice algorithm [25, 24]. The

NT ice concentrations (which are provided in polar stereographic projection) were resam-

pled using bilinear interpolation for comparison. Figure 4.1 shows typical joint histograms

of NT ice concentrations and A6,V measurements from 2004. In each case, a high correlation

between A6,V and the NT ice concentration is evident. Areas with A6,V brightness tem-

peratures above 220 K correspond to winter sea ice concentrations of 40 percent or more.

For illustration, the 220 K threshold is shown in Figures 4.1 and 4.3. We note here that

the observed distributions of QuikSCAT measurements corresponding to pixels above the

threshold are not sensitive to the exact threshold on A6,V .

An advantage of using only A6,V is its lack of sensitivity to ice type, which prevents a

bias toward the selection of FY or MY ice. A typical SIR image of A6,V is shown in Figure

4.2, where ocean and ice measure approximately 160 K and 250 K respectively. There is
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Figure 4.2: AMSR-E 6 GHz V brightness temperatures (K) over the Arctic on DOY 32,
2005 (land has been excluded). The ocean and ice measure approximately 160 K and 250 K
respectively.

no clear distinction between FY and MY ice at this frequency. For reference, MY ice is

typically located north of Greenland’s coast and in the vicinity of the north pole. Figure

4.3 contains a time series of histograms during 2004 of A6,V . The mode along the top of the

figure represents ocean, while the varying mode at the bottom represents ice. Except during

the summer (days 150 to 250), measurements over FY and MY ice are indistinguishable in

A6,V .

A typical derived sea ice mask created using this threshold approach is shown applied

to a QuikSCAT SIR image in Figure 4.4 for DOY 20, 2004. Ocean has been removed by the

mask. Land has been removed using a standard Arctic land mask.
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Figure 4.3: A daily time series of histograms of AMSR-E 6 GHz V brightness temperatures
over the Arctic during 2004. Histograms are normalized and exclude measurements over land.
The dashed line represents a threshold separating modes representative of ocean and ice. The
summer melt period is indicated by a solid line.

4.2 Temporal Trends Observed in QuikSCAT Measurements

During the winter, active microwave measurements from QuikSCAT are characteris-

tically bright over MY ice while lower returns are seen over FY ice. Some of the distinction

between ice types is due to differences in ice salinity, porosity, surface roughness, and ridges

on the order of meters to kilometers in length. Analyses of satellite scatterometer data show

a large dynamic range of Ku-band backscatter, which has a strong sensitivity to FY and MY

ice [41].

Understanding the temporal nature of sea ice backscatter allows and/or improves the

classification of ice as FY or MY. To visualize temporal sea ice characteristics, we use a time

series of histograms of QuikSCAT measurements. Figure 4.5 shows a series of histograms for

the winter of 06-07 where sea ice has been selected using the method described in Section 4.1

and the histograms have been normalized. The distribution from each day during the winter

has approximately one large mode around -20 dB representing FY ice, and one large mode
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Figure 4.4: A typical SIR image of QuikSCAT VV (σ0 in dB). The ocean has been masked
by applying a threshold to collocated AMSR-E brightness temperatures. (DOY 20, 2004).

around -10 dB with some smaller modes above -10 dB representing MY ice. At Ku-band, σ0

for FY ice is approximately -25 to -18 dB and MY ice is approximately -10 to -12 dB [20].

4.2.1 Trends in First-Year Ice

Similar to Figure 4.5, the winter of 04-05 is shown in Figure 4.6(a), where the per-

spective is now rotated and viewed from top down. Figure 4.6(a) provides evidence that

the microwave signature of FY ice is seasonally dependent. The pattern shown in Figure

4.6(b) approximately describes the behavior of FY ice backscatter for every year between

2003 and 2009. FY ice backscatter quickly moves to lower values between September and

mid-November. It decreases slightly (sometimes remaining constant) during December and

January, and then gradually moves to higher values until mid-March. After March, the

backscatter moves to lower values until June. Then it becomes difficult to distinguish ice
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Figure 4.5: Temporal series of histograms of QuikSCAT VV backscatter over sea ice during
the 06-07 winter.

type by backscatter until late September due to melting. After September, new ice forms.

The variability of the FY ice trend is influenced by several factors. Some of these include

new ice formation, brine drainage, ridging and rafting of ice sheets, snow accumulation, ice

growth rate (which affects ice salinity), and atmospheric and ocean temperature fluctuations

(which affect ice growth).

The backscatter signature of FY ice, in Figure 4.6(a), seems to stabilize mid-November.

The high backscatter of FY ice observed prior to mid-November may be partially explained

by frost flowers, which are formed by the deposition of ice directly from the vapor phase.

Frost flowers have been seen in connection with a sharp increase in backscatter for ice that

is 10 to 30 cm thick. The backscatter of this FY ice may be as high as that typically seen for
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MY ice. As the ice thickens, the backscatter decreases by roughly 5 to 7 dB and stabilizes

to commonly observed values for FY ice [3, 42]. The gradual backscatter increases observed

from December to mid-March may be accounted for by brine drainage and roughening of the

surface over time. Brine drainage, which begins immediately after ice forms, leads to lower

brine volume and consequently lower electromagnetic absorption. The effects of drainage, in

combination with increased roughness and snowfall over time, tends to increase scattering

[42]. Factors in the subsequent decrease in backscatter may be related to an increase in snow

density as discussed later.

4.2.2 Trends in Multi-Year Ice

Referring to Figure 4.6(a), the backscatter signature of MY ice during the 04-05 winter

is seasonally dependent. Over the winter, it moves to lower backscatter values with the

exception of a pause during January and February. Reduction in MY backscatter might be

due in part to snow accumulation and/or increasing snow density. Arctic snow accumulation

is greatest in the fall, with little accumulation in December and January, and then gradually

increasing accumulation in spring until May [43].

The pattern of snowfall seems to mimic the pattern of decreasing backscatter sug-

gesting a possible connection. Onstott [20] notes that the calculated effect of 10 cm of dry

snow over MY ice, with Tair = −20oC and Tice = −3.7oC, is a decrease in backscatter by

about 0.3 dB. The average snow density in the Arctic has been observed to gradually increase

during the winter over MY ice [43]. Under dry snow conditions, snow density, grain size,

and stratification are the dominant factors in determining the backscatter coefficient, which

is inversely correlated with snow density [44].

In distinguishing ice type by backscatter, there is an implied assumption that backscat-

ter increases as ice ages. In 2004 and later, the mode representing MY ice in Figure 4.9(a)

splits into as many as three or more distinguishable modes. An example of these modes

is shown in Figure 4.7 for the 07-08 winter. In the following, we show that σ0 generally

increases (to an upper limit) for MY ice after each summer melt.

To study this increase, σ0 measurements are collocated with the position of buoys

deployed in MY ice by the Cold Regions Research and Engineering Laboratory (CRREL).
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Figure 4.6: Seasonal trends in backscatter over FY and MY ice. (a) shows a time series of
histograms of backscatter over Arctic sea ice for the winter of 04-05. (b) shows approximate
ranges of backscatter for FY and MY ice for each year between 2003 and 2009. The range of
backscatter for each ice type appears to be seasonally dependent.
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Figure 4.7: Time series of histograms of QuikSCAT VV measurements over sea ice during
the 07-08 winter. The gray scale emphasizes that multiple modes are present in the typical
range for MY ice.

The buoys allow a parcel of ice to be tracked over time. The implicit assumptions are that

buoys are fixed relative to a surrounding parcel of ice, that similar ice characteristics exist

within a 5 km radius (QuikSCAT egg resolution), and that temporal disparities of less than

one day are acceptable. Tracking the backscatter over an ice parcel provides significant

information about the time-varying characteristics of the ice. Of the more than 40 buoys

deployed in the Arctic between 2003 and 2009, at least 10 remained active long enough to

provide multi-year comparisons.

Typical plots for collocated σ0 VV measurements for various time periods are shown

in Figure 4.8 where corresponding buoy tracks are shown below each plot. Very similar

results were obtained using σ0 HH. CRREL buoy 2005E, which is shown in Figure 4.8(a),

was deployed on MY ice at 83 N, 174 W as part of the Healy-Oden Trans-Arctic Expedition

(HOTRAX). It traveled toward the north coast of Greenland for two years. Collocated

QuikSCAT σ0 VV backscatter measurements show an increase of about 2 dB between the
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winters of 05-06 and 06-07. Buoy 2006C in Figure 4.8(b) was deployed in the Beaufort Sea

by the Woods Hole Oceanographic Institution (WHOI). It initially shows a decrease in σ0

during 2007. However, after the buoy heads out of the Beaufort Gyre, σ0 increases by about

4 dB between the winters of 07-08 and 08-09. Although very little data is available for the

winter of 09-10, there is some indication of an additional increase of about 2 dB.

Buoy 2006F, which was deployed in the Laptev Sea, is shown in Figure 4.8(c). Col-

located measurements show an increase of about 4 dB between the end of 2006 and the end

of 2007. The trailing off backscatter value at the end of 2007 may be a result of mixed FY

and MY ice as the buoy heads out of the Fram Strait. Another possibility may be heavy

snowfall causing the ice floe to flood with seawater. This flooding has been previously noted

to occur in the Fram Strait[3].

The only case studies of collocated σ0 and buoy positions not exhibiting an increase

in σ0 are found in the Beaufort Sea. Buoy 2007J, shown in Figure 4.8(d), shows steady σ0

values for the winter of 07-08, but then decreasing values for the remaining life of the buoy.

The observed decrease might be attributed to mixing of FY and MY ice in the Beaufort Gyre,

with the possible melting of the ice parcel during the last year of buoy activity. Collocated

measurements over three additional buoys (2005B, 2007E, and 2007F) also show decreasing

backscatter as each buoy track heads into the Beaufort Gyre. Buoy 2005B survives long

enough to exit the gyre and show a post-summer increase in 2007 backscatter in comparison

to 2006. Collocated measurements over six additional buoys show post-summer increases in

backscatter over the previous year.

While it is difficult to determine the cause of increased backscatter of MY ice in

all cases, a possible explanation follows. Microwave scattering results from a combination

of surface and volume scatterers. Volume scattering from MY ice is largely a result of

air pockets and channels within the ice. During the formation of MY ice in the summer,

temperature increases in the upper layers of ice cause brine pockets to enlarge. The enlarged

pockets then tend to coalesce and form a vertical network of channels in the ice. When

freshwater melt forms on the surface of the ice, it contributes to this network of channels

as it percolates through the ice sheet. This process reduces the salinity of the upper 50 to

100 cm of ice to less than 1�. These changes are a major contributing factor to the large
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(a) Buoy 2005E (b) Buoy 2006C

(c) Buoy 2006F (d) Buoy 2007J

Figure 4.8: Typical results for collocated σ0 VV measurements and CRREL buoys (above),
and buoy positions (below).

backscatter increase of MY ice over FY ice [3]. Percolation of freshwater melt occurs each

year, which may cause widening of—or additions to—the vertical network of channels within

the ice sheet. Increased porosity of the ice could account for increased volume scattering.

4.2.3 Interannual Trends in Sea Ice Coverage

Interannual trends in sea ice may be observed by analyzing the distribution of σ0 over

a period of several years. Figure 4.9(a) is a plot of daily histograms of normalized backscatter

from 2003 to 2009. Figure 4.9(b) is the total area of ice isolated for each day. It shows that

the total area of ice under consideration is seasonally consistent. These histograms suggest
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a gradual shift in the ice cover from MY to FY ice. The MY ice mode (right) becomes

progressively weaker and dispersed during this period, while the FY ice mode (left) becomes

progressively stronger. Since Figure 4.9(a) shows that the area of sea ice under consideration

does not change significantly from winter to winter, we conclude that MY ice has gradually

been replaced by FY ice over this period. We note that there is some indication of a possible

rebound of this trend in 2009.

To illustrate the shift in sea ice cover from MY to FY ice, Figure 4.10 shows daily

histograms of backscatter during the winters of 02-03 and 08-09. There is a clear increase

in FY ice, highlighted by the solid line, as well as a clear decrease in MY ice, highlighted

by the dashed line. Selected SIR images from QuikSCAT VV are shown in Figure 4.11 to

provide a spatial confirmation of this pattern.

4.3 Conclusion

Interannual trends exist in Ku-band backscatter over FY and MY sea ice. Particularly,

MY ice has been observed to increase in backscatter for each melt season it survives. The

spatial coverage of MY ice is also observed to decrease significantly between 2003 and 2009.

However, in 2009, there is an increase observed in the MY ice cover over the previous year.
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Figure 4.9: (a) Temporal series of histograms of QuikSCAT VV measurements over sea ice,
and (b) the total area of ice above the A6,V 220 K threshold for each day.

55



2002−2003

Normalized Radar Cross Section (σ0)
−20 −15 −10

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

Jun

Jul
 

 

2008−2009

−20 −15 −10
Min

Max

Figure 4.10: A plot of backscatter versus time for two different winters. The winter of 02-03
is shown on the left and 08-09 on the right. The FY ice mode is marked by a solid line, and
the MY ice mode by a dashed line for each winter. Note that MY ice distributions are brighter
during the winter of 02-03 and FY ice distributions are brighter during the winter of 08-09.

Figure 4.11: Selected QuikSCAT VV (σ0 in dB) images showing trend in decreasing MY ice
from 2003-2009. Images from left to right represent DOY 32, in 2003, 2006, and 2009. Land
is shown as black, and ocean is dark blue. Brighter colors correspond to increased backscatter
where FY is approximately below -15 dB and MY is above.
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Chapter 5

Multi-Year Ice Classification and Validation

5.1 Multi-Year Ice Classification

The trends observed in sea ice backscatter for FY and MY ice appear to be seasonally

consistent. Each year, there is a clear separation of FY and MY ice. FY ice has some

variations that may be due to snowfall or other weather events, but variations are reasonably

small with respect to the larger trends in ice type. For MY ice, the number of observed trends

in backscatter depend on the year. The appearance of different signatures from year to year

may be explained by the varying spatial coverage of MY ice of different ages. CRREL Buoy

2006F (Figure 4.8(c)), which was deployed in MY ice, gives evidence that MY ice may return

backscatter signatures as low as -15 dB.

These observations give rise to a method for FY/MY ice classification using an average

of the yearly distributions. Figure 5.1(a) shows histograms of σ0 VV for an annual period

averaged over 7 years (2003 to 2009). The scales of the image are adjusted to show a minimum

bin count that exists over most of the winter, which separates distributions associated with

FY and MY ice. A threshold model, dependent on the day of the year, is selected by fitting

a curve to the minimum of each histogram during the winter. Subjective bounds, which

are shown in 5.1(b) are used to approximately isolate the daily minimum. The histogram

minimum found between these bounds and the fitted curve are also shown in Figure 5.1(b).

A fifth-degree polynomial is fit using a least-squares method. Although seasonal changes in

the data are naturally periodic, a polynomial fit locally approximates periodic data and can

be fit to seasonal changes.

A limitation of this classification method is that MY ice can sometimes look like

FY ice. Comiso suggests that ice floes near the MIZ, that survive the summer melt often

have passive microwave signatures similar to FY or intermediate ice later in the winter. He
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Figure 5.1: (a) An annual time series of daily histograms averaged over 7 years (2003 to
2009). The dashed box represents a subset shown in (b). (b) The classification threshold on
QuikSCAT backscatter distributions. Shown are bounds set to select the minimum (dashed
straight lines), the minimum found for each day of the year (+), and a curve fitted to the
results (solid curve) with 95% confidence intervals (dashed curves).
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suggests that this is due to the intrusion of seawater into the snow-ice interface during the

summer [45]. This intrusion affects active microwave signatures due to the salty ocean water

entering the porous upper layers of the ice. Flooding of MY ice has been observed in the

Fram Strait by Tucker et al.. They found that surface flooding was observed on about 30% of

sampled ice flows [3]. In some instances, FY ice may also look like MY ice if it has undergone

significant rafting and ridging and/or brine exclusion.

5.2 Validation

Ice charts from the Canadian Ice Service (CIS) are used to validate the classification

of FY and MY ice. These charts are based on an analysis and integration of several data

sources, including weather and oceanographic information; in situ observations from land,

ship and aircraft; airborne radar; and satellite imagery. We note that validation using these

charts may not be completely independent due to the use of satellite data. Regional ice

charts provide an analysis of ice conditions for a given region and date, where data up to

three days prior is used to determine ice concentration, stage of development, and ice form,

following World Meteorological Organization terminology. Ice charts have been available on

a weekly (sometimes bi-weekly) basis since 2006. For validation, the most useful regions are

the Western Arctic and Eastern Arctic shown in Figure 5.2. These regions are commonly

covered by FY and MY ice. The regions themselves are divided up by CIS analysts into

approximately homogeneous subregions and assigned a total ice concentration. The three

most prominent ice types within the subregion are recorded with their partial concentration,

stage of development and thickness, and form or floe size. The sum of the partial ice

concentrations is always less than or equal to the total ice concentration for the subregion.

The data for each subregion is contained in an oval chart typically referred to as an egg code.

In order to compare CIS ice charts with FY and MY ice classifications derived from

QuikSCAT backscatter, ice chart stages surviving at least one melt season (Old Ice, Second-

Year Ice, and Multi-Year Ice) are grouped as MY ice and all other ice types are grouped as

FY ice. For the purpose of comparison, the ice stage within a subregion with the highest

partial ice concentration is assumed to represent the whole subregion. In order to reduce
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Figure 5.2: Canadian Ice Service Chart Regions (Modified from [46]).

error that may be introduced by this assumption, only subregions in which the highest partial

ice concentration is 70% or greater are considered. The next highest partial ice concentration

for these subregions is less than 30% by definition and is assumed to make little contribution.

When a range of partial ice concentrations is specified in the CIS ice charts, the average is

used. For example, for the partial ice concentration of 60 to 80%, a value of 70% is assumed.

Each ice chart region is formatted as a shape file in SIGRID-3 format with the latitude

and longitude specified for the vertices of each shape. Figure 5.3 shows the Western Arctic

CIS ice chart region collocated with QuikSCAT VV on DOY 42, 2008. In Figure 5.3(a),

subregions within the ice chart are colored by the percent ice concentration of the ice stage

with the highest concentration. Figure 5.3(b) shows ice stages grouped as FY or MY ice

overlaid on a QuikSCAT SIR image. The CIS ice chart appears to be a natural extension of

the QuikSCAT SIR image.
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Figure 5.3: Collocated CIS Western Arctic ice chart and QuikSCAT SIR image on DOY
42, 2008. Land is black. (a) shows the percent ice concentration for the highest ice stage
concentrations for each ice chart subregion. (b) shows ice stage concentrations above 70%
grouped as FY or MY ice overlaid on a QuikSCAT SIR image (σ0 in dB).
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For the winters (November through April) of 06-07, 07-08, and the end of 2008, the

total average error for the Western Arctic and Eastern Arctic regions is 5.84± 3.52% error.

This classification is biased toward MY ice, where classification of FY ice as MY ice accounts

for 3.83% of the average error. For illustration, the classification error for 2008 is shown in

Figure 5.4 for the Western Arctic (a) and Eastern Arctic (b) regions. We note that there

is a slight performance difference with respect to error between the Western Arctic and

Eastern Arctic regions. With a fixed threshold of -14.5 dB on σ0, as in [14], the total average

error is 7.16 ± 3.75% error. The fixed classification is also biased toward MY ice, where

classification of FY ice as MY accounts for 6.01% of the average error. We conclude that

for the validation regions, a seasonally varying classification threshold performs better than

using a fixed threshold of -14.5 dB and has less bias toward MY ice. Further validation using

CIS ice charts is limited by chart availability.

5.3 Discussion of Results

Results from ice classification using QuikSCAT are shown in Figure 5.5 for DOY 32,

2003 through 2009. These typical results reveal the MY ice loss trend previously noted from

the temporal trends in Figure 4.9. The loss of MY ice can be accounted for by multiple

events. These include surface melt due to air temperature and solar heat, bottom melt due

to warm ocean water, and ice advection. Particularly, ice advection through the Fram Strait

has been noted as a source of MY ice loss in multiple studies ([47, 48] for example). The

evidence presented in this paper indicates that while the total area of highly consolidated ice

has fluctuated to a small degree between 2002 and 2009, there has been a shift from MY ice

to FY ice. This shift is evident using both active and passive microwave sensors. Although

this trend is consistent over the selected years, it appears that in 2009 there may be a small

increase in MY ice.

5.4 Conclusion

Classifying FY and MY sea ice over the winter using a Ku-band scatterometer can

be accurately accomplished using a seasonally dependent threshold to separate ice types.

The results are consistent with CIS ice charts. An average ice classification error of 5.84%
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Figure 5.4: Classification error of QuikSCAT-derived FY/MY ice using CIS ice charts. The
error represents the percentage of ice cover misclassified using QuikSCAT σ0 for the (a) Western
Arctic and (b) Eastern Arctic regions. The total area of ice considered (solid line) and the error
for each day (stem plot) are shown.
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Figure 5.5: Ice classification using QuikSCAT for DOY 32, 2003 through 2009. Note the
trend in decreasing spatial coverage of MY sea ice.
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is observed for Western and Eastern Arctic regions during the winter (November through

April) compared to an average error of 7.16% when using the fixed threshold found in [14].

This seasonal model makes no attempt to classify ice during the summer.
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Chapter 6

Conclusion

Arctic sea ice is an important component of the polar environment. Chapter 1 de-

scribes some of the influential characteristics of sea ice and the impact of its growth or loss.

Many methods are used to measure and characterize sea ice. Satellite microwave sensing

of the Arctic provides good temporal and spatial resolution independent of season or solar

illumination. The past decade of sea ice observation is particularly interesting because of an

observed reduction in sea ice coverage as indicated by a number of studies.

Chapter 2 provides a detailed description of the formation of sea ice for a calm

water scenario. While many other scenarios are possible, this scenario describes several

fundamental components of sea ice growth. Understanding sea ice growth is valuable for the

interpretation of microwave measurements. Chapter 2 also provides a broad overview and

history of satellite microwave sensing using active and passive sensors. The fundamental

principles of radiometry and scatterometry are discussed along with an application to the

NASA Team algorithm.

Chapter 3 describes the methods used to investigate sea ice. Products derived from

collocated QuikSCAT and AMSR-E measurements show promise in the classification of sea

ice. In particular, sea ice classification is attempted using two different approaches to data

clustering.

In Chapter 4, the Arctic is initially classified as sea ice and open water using mea-

surements from the 6 GHz channel of AMSR-E. Temporal series of histograms over sea ice

provide an insightful and useful perspective on seasonal changes. Interannual trends are

shown to exist in Ku-band backscatter over FY and MY sea ice. Particularly, MY sea ice

is observed to increase in backscatter for each melt season it survives. This is verified by

tracking backscatter over Arctic buoys secured to MY ice.
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Through an investigation of the microwave signatures of Arctic sea ice, a new method

for the classification of MY sea ice is developed in Chapter 5. This demonstrates the potential

of scatterometry in sea ice classification. Classifying FY and MY sea ice over the winter

using a Ku-band scatterometer can be accurately accomplished using a seasonally dependent

threshold to separate ice types. The results are consistent with CIS ice charts.

6.1 Contributions

The research presented in this thesis contributes to the body of published work on the

remote sensing of Arctic sea ice. Essential results in Chapters 4 and 5 have been submitted

for publication. The contributions of this thesis are summarized in the following sections.

6.1.1 Automated Data Clustering

Automated data clustering can be accomplished by a number of algorithms with

differing degrees of success and computational load. The OPTICS (Ordering Points To

Identify the Clustering Structure) algorithm [39] claims to be an efficient and effective tool

for this purpose and was selected and implemented as a MATLAB MEX file. The algorithm

was used successfully to search for clustering of sea ice signatures in the multitude of available

active and passive microwave data sets.

6.1.2 New Classification Method

Chapter 4 describes seasonal trends in Ku-band backscatter over FY and MY ice.

Based on an average of these trends, a new MY sea ice classification method is developed

and described in Chapter 5. This classification method provides independent verification of

MY sea ice loss over the past decade.

6.1.3 Documented Sea Ice Change

Loss in MY sea ice coverage is observed spatially and in the proportion of FY to MY

sea ice measurements from season to season using QuikSCAT. The year-to-year evolution of

backscatter over MY sea ice is also observed by collocating σ0 and CRREL buoy positions.

This is a new method for investigating the evolution of MY sea ice signatures.
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6.2 Future Research

While pursuing the research presented in this thesis, I identified several areas for

possible future research. These areas are discussed in the following sections.

6.2.1 Backscatter Derived Sea Ice Age

MY Arctic sea ice is found in this research to reflect backscatter indicative of ice age.

Further study of the relationship between σ0 and ice age may yield a model to estimate ice

age based on backscatter measurements.

6.2.2 Optimal Sea Ice Classification

The sea ice classification method described in Chapter 5 is derived using a minimum

histogram value between modes of FY and MY ice for each day of the winter. This is a

sub-optimal approach because the minimum histogram bin does not necessarily represent

an optimal threshold. In further work, an optimal threshold may be selected by assuming a

probability model from which probabilities of detection and false alarm can be derived. This

may be done in different ways. The model may be allowed to change with a weighting on

the current year or may assume that sea ice signatures are fixed from year to year.

6.2.3 Joint Active and Passive Microwave Sea Ice Classification

Chapter 3 cites several studies indicating the benefit of using both active and passive

microwave sensors for sea ice classification. In the new classification method developed in this

thesis, only active data is used. An investigation of the seasonal trends in passive microwave

data may provide a complimentary model.

The clustering methods described in Chapter 3 may be used with active and passive

data. Further study of automated clustering for sea ice classification using active and passive

sensors may be useful.

6.2.4 Active Sea Ice Classification Using C-Band

Many of the results in this thesis may potentially be extended using the long history

of available scatterometer data. Particularly, C-band data sets are available from the Euro-
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pean Remote-Sensing Satellites (ERS 1 and 2) and the Advanced Scatterometer (ASCAT)

launched by the European Space Agency.

6.2.5 Additional Validation

Additional validation of the sea ice classification method presented in this thesis is

warranted. Validation techniques may include comparisons with Arctic SAR imagery and/or

optical imagery. Although not presented in this thesis, limited efforts were made to validate

against laser altimeter measurements, relying on the relationship between ice age and ice

thickness. Further work in this direction, such as comparisons with submarine ice draft

profiles, may yield useful results.
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