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ABSTRACT

Improved Analysis Techniques for
Scatterometer Wind Estimation

Gregory Dallin Schachterle
Department of Electrical and Computer Engineering, BYU

Master of Science

In this thesis, three improved analysis techniques for scatterometer wind estimation are pre-
sented. These techniques build upon previous methods that help validate scatterometer data. This
thesis examines the theory connecting the 1D and 2D kinetic energy spectra and uses QuikSCAT
data to measure the 2D kinetic energy spectrum of ocean winds. The measured 2D kinetic energy
spectrum is compared to the traditional 1D kinetic energy spectrum. The relationship between
the 2D kinetic energy spectra and the 1D kinetic energy spectra confirms findings from previous
studies that ocean winds modeled in 2D are isotropic and nondivergent. The 1D and 2D kinetic
energy spectra also confirm the known conclusion that the zonal and meridional components of
ocean winds are uncorrelated.

Through simulation, the wind response function (WRF) is calculated for three different
QuikSCAT processing algorithms. The WRF quantifies the contribution that the wind at each
point of the surface makes to a given wind estimate. The spatial resolution of the different process-
ing algorithms is estimated by their WRFs. The WRFs imply that the spatial resolution of ultrahigh
resolution (UHR) processing is finer than the spatial resolution of conventional drop-in-the-bucket
(DIB) processing; the spatial resolution of UHR processing is ∼5-10 km while the spatial resolu-
tion of DIB slice processing is ∼12-15 km and the spatial resolution of coarse resolution DIB egg
processing is ∼30 km.

Simulation is used to analyze the effectiveness of various wind retrieval and ambiguity
selection algorithms. To assist in the simulation, synthetic wind fields are created through extrapo-
lating the 2D Fourier transform of a numerical weather prediction wind field. These synthetic wind
fields are sufficiently realistic to evaluate ambiguity selection algorithms. The simulation employs
the synthetic wind fields to compare wind estimation with and without direction interval retrieval
(DIR) applied. Both UHR and DIB wind estimation processes are performed in the simulation and
UHR winds are shown to resolve finer resolution wind features than DIB winds at the cost of being
slightly noisier. DIR added to standard QuikSCAT UHR wind estimation drops the wind direction
root-mean-squared error by ∼10◦ to ∼24.74◦ in the swath sweet spot.

Keywords: scatterometer, QuikSCAT, ultrahigh resolution, direction interval retrieval, simulation,
kinetic energy spectrum, synthetic wind field, wind response function
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CHAPTER 1. INTRODUCTION

While knowledge of ocean wind speed and direction (wind vectors) is useful in many me-

teorological studies and commercial ventures, it is difficult to consistently measure these wind

vectors over a wide area. In situ measurements taken by buoys or ships are often insufficient for

such applications because they are sparse in time and space and tend to be clustered in near-coastal

areas. An alternative to in situ measurements is to remotely measure winds with spaceborne scat-

terometers. Scatterometers are microwave radar instruments that measure and calculate the nor-

malized radar cross-section (σ0) of a surface. When flown in space, scatterometers provide global

coverage and are able to measure σ0 for a given location on the earth from several azimuth and

incidence angles. Over the open ocean, these σ0 measurements are highly influenced by ocean

waves that are primarily caused by the wind. This dependence allows near-surface wind vectors to

be inferred from scatterometer data.

When retrieving wind vector estimates from σ0 measurements, the observation swath of

the scatterometer is gridded into wind vector cells (WVCs). For a given WVC, the wind vector

is estimated using multiple σ0 measurements whose footprints fall within the cell. Ocean wind

vectors are related to the measured σ0 values by an empirically derived geophysical model function

(GMF), a relationship that maps wind vectors to σ0 values. Even with multiple σ0 measurements

for a given WVC, inverting the GMF produces multiple wind vector estimates (ambiguities) for

each WVC. The GMF ranks the ambiguities in order of likelihood, but this information is often

insufficient to determine which ambiguity is closest to the true wind vector at each WVC. Instead,

ambiguity selection algorithms take into account the wind vectors of the surrounding WVCs and

select a final ambiguity for each WVC during ground processing.

The implementation details of scatterometer wind estimation vary depending upon the scat-

terometer and desired characteristics of the data product. Different methods of wind retrieval and

ambiguity selection algorithms often have varying trade-offs between computational complexity,
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wind vector resolution, sensitivity to noise, accuracy of the estimated wind vectors, and other

attributes. In order to understand these trade-offs completely, proper analytical tools are needed.

1.1 Thesis Statement

This thesis develops and presents improved analysis methods for scatterometer wind esti-

mation. The first method evaluates the kinetic energy spectrum of ocean winds in 2D. The sec-

ond method estimates the spatial wind response function of scatterometer-measured wind vectors

through simulation. This method is demonstrated by finding the wind response function of three

different wind retrieval processes for the QuikSCAT scatterometer. The third method quantifies

the accuracy of different wind estimation algorithms through simulation. This method includes an

enhanced process to create more realistic synthetic wind fields.

1.2 Summary of Results

The development of the improved analysis techniques provides the following contributions.

Historically, measurements of the kinetic energy spectra of ocean winds are performed

in 1D. This thesis presents a method to estimate ocean wind spectra in 2D that accounts for 2D

spectral leakage and the increased high- to low-frequency bin ratio in 2D analysis. The resulting 2D

analysis from this method provides additional validation of assumptions made by other researchers

that large-scale atmospheric motions may be modeled as 2D, isotropic, and nondivergent, with

uncorrelated orthogonal wind components. This method is developed and demonstrated on data

from QuikSCAT.

The contribution that each point on the surface of the earth makes to a σ0 measurement is

known as the σ0 spatial response function. This thesis expands the notion of the spatial response

function to a wind response function, or the contribution that the wind at each point on the surface

of the earth makes to the scatterometer-measured wind at a particular WVC. This thesis presents a

method to estimate the wind response function and estimates the wind response function for three

different QuikSCAT wind retrieval processes. In general, the smaller the WVC is for the wind

retrieval process, the finer the spatial resolution is for the wind retrieval process.
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Quantifying the accuracy of wind estimation algorithms is difficult without knowing the

true wind on the surface of the earth. As the true wind can be known in simulation, this thesis

presents a QuikSCAT simulation-based method designed to help quantify the accuracy of wind es-

timation algorithms. The method is demonstrated by comparing the traditional median filter-based

ambiguity selection algorithm with and without direction interval retrieval (DIR) for QuikSCAT

ultrahigh resolution (UHR) winds. This provides verification of DIR’s effectiveness in UHR wind

retrieval and additional verification of the median filter-based algorithm’s effectiveness when se-

lecting ambiguities.

For quantifying the accuracy of ambiguity selection algorithms, wind fields with charac-

teristics similar to a wide variety of real ocean winds are required. Previous processes to create

synthetic wind fields either model a specific location or wind feature and do not generalize well to

the entire ocean, or they have an unrealistic distribution of wind characteristics and features. This

thesis presents an improved process to create synthetic wind fields that generalize to wide areas of

open ocean while maintaining realistic distributions of wind features.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 contains background information related to

scatterometers, scatterometer-measured winds, wind field analysis techniques, scatterometer simu-

lation, and prior synthetic wind fields. Chapter 3 explores the nuances of measuring the 2D kinetic

energy spectrum of ocean winds and presents a method to do so. Chapter 4 explains how the wind

response function can be estimated and derives the wind response function for ocean winds es-

timated by the QuikSCAT scatterometer with three different wind retrieval processes. Chapter 5

gives a detailed description of creating realistic synthetic wind fields suitable for use in testing

ambiguity selection algorithms. Chapter 6 examines a method for testing wind estimation algo-

rithms using simulation which is demonstrated by comparing the QuikSCAT median filter-based

ambiguity selection algorithm with and without DIR. Chapter 7 concludes the thesis, summarizes

the contributions, and provides suggestions for future work.
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CHAPTER 2. BACKGROUND

This chapter provides background information to put the rest of the thesis in context.

Specifically, the chapter provides an overview of scatterometers in general and QuikSCAT in par-

ticular. The chapter discusses the process through which wind fields are derived from scatterometer

estimates, reviews a few common methods used to analyze ocean wind fields, explains a way to

simulate scatterometer measurements for wind estimation, and discusses different ways to make

a synthetic wind field. Additional background information is provided in subsequent chapters as

needed.

2.1 Scatterometers

Spaceborne scatterometers are active microwave radar remote sensing instruments that

transmit radar pulses to the surface of the earth and measure the power of the return echoes. They

collect measurements in locations where in situ measurements are impractical. Advantages of

scatterometers include having a large measurement swath, which provides relatively quick global

coverage, and being able to operate in all-weather conditions day and night.

The relationship between the transmitted power (Pt) and the received power (Pr) for a scat-

terometer can be described by the monostatic radar equation [1]

Pr

Pt
=

∫∫
A

G2λ 2σ0

(4π)3R4 dA, (2.1)

where A is the illuminated area, G is the one-way antenna gain, λ is the operating frequency of the

radar instrument, σ0 is the normalized radar cross section of the illuminated area, and R is the slant

range to the illuminated area. While scatterometers physically measure Pr, they invert the radar

equation to report a measurement for σ0. Scatterometers report this measurement because σ0 is

predominantly dependent upon the geometric and material properties of the earth’s surface within
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A. As the surface of the earth changes based on geophysical phenomena, these features can be

inferred from σ0 measurements. Features that scatterometer σ0 measurements are commonly used

to infer include ocean wind speed and direction (wind vectors); soil moisture content; vegetation

growth; ice melt and growth; and iceberg location, size, and movement [1]–[5].

2.1.1 QuikSCAT

The SeaWinds scatterometer on the QuikSCAT satellite (commonly referred to as simply

QuikSCAT) is a dual-rotating pencil-beam scatterometer. As QuikSCAT orbits the earth, the foot-

prints of the two rotating antenna beams trace a helical pattern on the earth. The inner beam is

horizontally polarized (h-pol) with a nominal incidence angle of 46◦ while the outer beam is ver-

tically polarized (v-pol) with a nominal incidence angle of 54.4◦. The QuikSCAT measurement

swath is 1800 km wide, though the inner beam only reaches the center 1400 km. A depiction of

QuikSCAT’s measurement geometry is given in Fig. 2.1.

Figure 2.1: The measurement geometry of QuikSCAT [6].
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QuikSCAT’s measurement swath tends to be divided into different regions that share simi-

lar characteristics. These regions are illustrated in Fig. 2.2. The edge regions of the swath, where

only the outer beam records measurements, are called the far swath. The center section of the

swath, where measurements are almost directly in front of and behind the path of the satellite, is

termed the nadir region. Between the far swath and the nadir region, the majority of the swath is

called the sweet spot. Within the sweet spot, σ0 is measured at each location by the beams looking

fore and aft of the satellite at a variety of incidence and azimuth angles. Since QuikSCAT is able

to produce σ0 measurements at various azimuth angles, incidence angles, and polarizations within

the sweet spot, σ0 measurements from this region tend to estimate geophysical phenomena more

accurately than measurements from the other regions.

QuikSCAT reports σ0 measurements at two different resolutions: “eggs” (25 km× 35 km)

and “slices” (6 km × 25 km). Eggs are calculated using the return of an entire radar pulse and

are so named due to QuikSCAT’s ellipsoidal footprint. Slices are calculated using range gating,

a filtering process that calculates σ0 only using Pr within a short time window. This process

effectively separates the footprint into equidistant slices, hence the name. The finer resolution of

slice measurements comes at the cost of higher noise.

In some applications, QuikSCAT σ0 measurements are separated into four groups referred

to as “flavors.” The flavors are h-pol aft of the satellite, h-pol fore of the satellite, v-pol aft of the

satellite, and v-pol fore of the satellite. QuikSCAT measurements of a given flavor tend to have

similar characteristics because they are taken at similar incidence and azimuth angles as nearby

measurements from the same flavor.

Each σ0 measurement has an associated measurement spatial response function (SRF). The

SRF quantifies the contribution that each point on the surface makes to a given σ0 measurement.

For QuikSCAT, the antenna gain pattern, the observation geometry, and the onboard signal pro-

cessing combine together to determine the SRF [8]. While the SRF theoretically continues forever,

we limit the size of the SRF for each σ0 measurement by zeroing out any surface contribution that

is less than 20 dB below the peak contribution.
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Figure 2.2: The beam orientations of QuikSCAT for measurements at particular swath locations:
(a) nadir, (b) sweet spot, and (c) far swath. The dashed line represents the nadir track of the
satellite. The bold dots on the nadir track represent different locations of QuikSCAT when various
measurements are being taken. The lines extending from the bold dots represent the azimuth angle
of the measurements taken for a particular location. The shaded regions show the general region
associated with the particular measurement location. The inner circles show the extent of the inner
beam’s reach while the outer circles show the extent of the outer beam’s reach. Note that azimuth
angle diversity is greatest in the sweet spot. Modified from [7].

2.2 Scatterometer-Measured Winds

2.2.1 Geophysical Model Function

A major function of scatterometers is to measure ocean wind vectors. Physically, measure-

ments of σ0 over the ocean are greatly influenced by windblown waves. The relationship between

σ0 and ocean wind vectors is described by an empirically derived geophysical model function

(GMF). Most generally, the GMF may be written as

σ
0 = g(|U |,χ, . . . ;θ , f ,pol) (2.2)
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where |U | is the wind speed, χ is the angle between the wind direction and the azimuth angle of

the radar pulse, . . . represents the small effects of non-wind variables, θ is the incident angle of

the radar pulse measured in the vertical plane, f is the frequency of the radar pulse, and pol is the

polarization of the radar pulse. The GMF is inverted to estimate the wind vector from σ0.

2.2.2 Wind Retrieval

The GMF maps many wind vectors to the same σ0 value. This means that when only one

σ0 measurement is known, a wind vector cannot be uniquely determined. Instead, multiple values

of σ0 must be known from a variety of azimuth and/or incidence angles. (Since the incidence

angle of a QuikSCAT measurement implies the polarization of the measurement, the variety of

polarization is not enumerated separately in this thesis.) Two measurements from the same azimuth

and incidence angle are effectively a single measurement with an improved signal-to-noise ratio

(SNR). The need for multiple σ0 measurements is shown in Fig. 2.3. In Fig. 2.3 (a), each solid

curve represents the different wind vectors that map to the same value of σ0. With multiple σ0

measurements, the true wind vector may be identified as the intersection of all the curves. The

dotted line represents a likelihood objective function, a quantitative measure of how close the

curves are to intersecting. The objective function is equal to 0 when all four curves cross and

has local minima at wind directions where the curves almost cross. These minima represent near-

solution wind vectors.

The wind retrieval process is complicated by noise. Noise in σ0 measurements is typically

quantified by the normalized standard deviation of the σ0 measurement (Kp). Kp is modeled as [1]

Kp =

√
Kp,A +

Kp,B

Sn
+

Kp,C

S2
n

(2.3)

where Kp,A, Kp,B, and Kp,C are predetermined functions of the scatterometer measurement geome-

try and onboard signal processing, and Sn is the SNR of the σ0 measurement. Fig. 2.3 (b) overlays

the curves of Fig. 2.3 (a) with shaded bands representing the set of wind vector curves correspond-

ing to measurements in the range from σ0(1−Kp) to σ0(1+Kp). When a noisy realization of

the σ0 measurements is plotted in Fig. 2.3 (c), the unique solution disappears and only the near-

solution wind vectors remain. These near-solution wind vectors are referred to as ambiguities.
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Figure 2.3: A visual representation of wind retrieval. In (a), the solid lines represent the various
wind vectors corresponding to four noise-free σ0 measurements and the dotted line is the output
of an objective function quantifying how close the curves are to intersecting. All of the curves
intersect at the true wind vector of 10 m/s and 35◦. In (b), each curve from (a) is overlaid with
a shaded band that represents one standard deviation due to noise on either side of the noiseless
measurement values. In (c), one noisy realization of the four σ0 measurements from (a) is shown
with a corresponding objective function and example ranges of wind directions for direction inter-
val retrieval for each ambiguity (see Section 2.2.4). The near-solution wind vectors (ambiguities)
for the noisy measurements in (c), ordered from most likely to least likely, are: (1) 10.1 m/s, 176◦;
(2) 11.1 m/s, 220◦; and (3) 11.5 m/s, 35◦.

While the ambiguities can be ranked in order of likelihood, the most likely wind vector is not

always the ambiguity closest to the true unique solution, as is the case in Fig. 2.3 (c). Instead,

the wind retrieval process returns up to four plausible ambiguities for each set of collocated σ0

measurements and an ambiguity selection algorithm is needed to select a single wind vector from

the ambiguities [1] (see Section 2.2.3).

This thesis considers two methods to supply the σ0 measurements to the objective function

in the wind retrieval process: drop-in-the-bucket (DIB) and UHR. In both processes, σ0 measure-

ments are grouped together because part of the SRFs of the measurements occupy similar areas on

the surface of the earth. For estimating wind vectors, the area associated with a set of collocated

σ0 measurements is called a wind vector cell (WVC). WVCs are usually square and they typically

fill up the entire scatterometer measurement swath without any gaps or overlaps to form a WVC

grid.

In the DIB method, σ0 measurements (egg or slice) whose SRF center falls within a WVC

are used when estimating the wind vector for that WVC. Each σ0 measurement is only used in one

WVC and, within each WVC, every σ0 is weighted equally with either all other σ0 measurements
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or all other σ0 measurements of the same flavor. The DIB method is typified by the QuikSCAT

Level 2B (L2B) Ocean Wind Vectors produced by NASA’s Jet Propulsion Laboratory (JPL) [9].

The DIB method tends to produce wind fields with low noise and low resolution (e.g., the finest

resolution WVCs in the JPL L2B product are 12.5 km × 12.5 km resolution).

The UHR method employs reconstruction techniques to enhance the spatial resolution of

σ0 measurements prior to wind retrieval [10]. Every slice σ0 whose SRF includes the WVC

center is used to find the wind vector corresponding to that WVC. This leads to every slice σ0

measurement being used to find the wind vector for multiple WVCs. The reconstruction takes place

using the AVE algorithm, where a weighted average is taken of slice σ0 measurements from the

same flavor. The weight for each measurement comes from the SRF value at the WVC center [10].

The UHR method is typified by the UHR QuikSCAT wind fields produced by Brigham Young

University (BYU) [11]. As its name implies, UHR wind fields are produced at a finer resolution

than the L2B wind fields: QuikSCAT UHR WVCs are 2.5 km × 2.5 km or finer. The cost of this

finer resolution is increased computation time and more noise in each wind vector estimate.

2.2.3 Ambiguity Selection Algorithms

Ambiguity selection algorithms select a single wind vector for each WVC from the given

ambiguities of that WVC. They tend to assume that wind flow is generally smooth and select an

ambiguity based on the wind vectors in surrounding WVCs. Some ambiguity selection algorithms

rely on outside information such as numerical weather prediction (NWP) wind fields. As their

name suggests, NWP wind fields are wind fields that are predicted from numerical models that use

prior atmospheric conditions (as measured by satellites, ships, buoys, weather stations, and other

sources) as inputs.

The most commonly used ambiguity selection algorithm is a pointwise algorithm based on

a median filter (for convenience, we call this algorithm the median filter algorithm). In the median

filter algorithm, a fixed dimension data window passes over the wind field one WVC at a time.

At each step, the median wind direction is found for all the wind vectors within the data window.

The median wind direction is compared to the wind directions of the ambiguities of the WVC at

the center of the data window and the ambiguity associated with the closest wind direction to the

median wind direction is stored until the data window passes through the entire wind field. At
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that point, each WVC is updated to the new ambiguity found by the median filter. The process

repeats for several iterations until convergence is reached (meaning that every ambiguity selection

in the selected wind field remains the same between successive iterations) or a max number of

iterations have gone by. The first iteration of the median filter algorithm requires an initial guess

for the wind field, commonly called a nudging field. Some sources for the nudging field include

NWP wind fields or the set of most likely ambiguities given by the GMF. Tuning parameters of

the median filter include the size of the window, weights associated with the ambiguity likelihood

or position within the data window, and whether the median wind vector replaces the median wind

direction [12].

2.2.4 Direction Interval Retrieval and Threshold Nudging

Wind estimation in the sweet spot is more accurate than wind estimation in the nadir region

and far swath due to the sweet spot σ0 measurements having better diversity in their incidence and

azimuth angles. To improve the wind estimates in the far swath and nadir region, two additional

processing algorithms are applied to QuikSCAT winds in JPL processing. They are direction

interval retrieval (DIR) and threshold nudging (TN), and are referred to as DIRTH when both are

applied together [13].

Oftentimes, the most spatially consistent wind vector for ambiguity selection is not the

wind estimate at a local minimum in the objective function, but a nearby wind estimate whose

objective function value is similar to the local minimum value. To accommodate these nearby

solutions, DIR returns a range of wind directions for each ambiguity, see Fig. 2.3 (c). The range of

wind directions for each ambiguity contains a local minimum and the surrounding wind directions

whose objective function values are similar to the associated local minimum value, i.e., that falls

below a threshold. As the wind speed tends to vary little around each local minimum, only the

wind speed at the respective local minimum is reported for each ambiguity direction range.

Objective function values lower than a certain threshold value (which is determined for

each minimum) are considered to be similar to the minimum value. This means that narrow

minima, minima where the objective function quickly approaches the minimum value, report a

smaller range of wind directions than broad minima, minina where the objective function slowly

approaches the minimum value. To illustrate, the minima corresponding to the second and third
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most likely ambiguities are broader than the minimum corresponding to the most likely ambiguity

in Fig. 2.3 (c). When a broad minimum happens, a direction within the range of reported directions

may be more spatially consistent for ambiguity selection than the direction at the local minimum

exactly. With access to a range of wind directions for each ambiguity, ambiguity selection algo-

rithms are able to select more accurate wind vectors for WVCs whose ambiguities are associated

with broad local minima. This especially improves wind estimates in the nadir region as broad

minima are exceptionally prevalent there.

Winds retrieved with DIR require modified ambiguity selection algorithms that handle the

range of wind direction values. The most commonly used ambiguity selection algorithm for winds

retrieved with DIR is a modified median filter algorithm. The modified median filter algorithm

operates similarly to the median filter algorithm, where a fixed dimension data window passes

over the wind field one WVC at a time and the median wind direction is found for all the wind

vectors within the data window. The median wind direction is compared to the wind direction

ranges of the ambiguities of the WVC at the center of the data window. In this comparison, each

ambiguity’s wind direction range is represented by a single wind vector. The wind directions

within the wind direction range of the ambiguity whose representative wind vector is closest to

the median wind direction are then compared to the median wind direction. The wind direction

within the wind direction range that is closest to the median wind direction is then stored until

the data window passes through the entire wind field. At that point, each WVC is updated to

the new ambiguity found by the modified median filter, and each newly selected wind direction

becomes the representative wind direction for its associated ambiguity. The process repeats for

several iterations until convergence is reached, a max number of iterations have gone by, or the

same WVCs keep switching for five iterations in a row (it is common in large wind fields for

a few wind vectors to flip back and forth between two different ambiguities each iteration). At

the start of the modified median filter algorithm, the nudging of the initial guess only takes into

account the representative wind vectors for each ambiguity and the representative wind vectors are

initialized to be the wind vectors associated with each local minimum. For further details on the

implementation of DIR with UHR processing, see [7].

Threshold nudging is a technique designed to improve wind estimation in the far swath.

Most DIB processing algorithms that nudge QuikSCAT winds with an outside wind field only use
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the first or second most likely ambiguity. These ambiguities are closest to the true direction 90%

of the time and are often sufficient to determine the streamline of the wind for the sweet spot

and nadir region [13], [14]. However, these ambiguities are often insufficient to determine the

streamline of the wind in the far swath causing greater areas of incorrectly selected wind vectors.

Threshold nudging allows all ambiguities to be selected during the nudging process in the far

swath; using more ambiguities in the sweet spot and nadir region would defeat the purpose of

taking scatterometer measurements because the scatterometer wind field would be very similar to

the nudging wind field [13].

2.3 Wind Field Analysis

2.3.1 Kinetic Energy Spectra

The kinetic energy spectra of ocean winds is useful in characterizing the spatial variability

of winds. For this reason, the kinetic energy spectra is commonly modeled, measured, and even

used to validate new processing algorithms (e.g., [15]–[17]). On average, the kinetic energy spectra

follows a power law in relation to the wavenumber (k), often called a k−α slope. Depending on

the model, measuring instrument, and scale of k values being considered, α is predicted to fall

between −3 and −5/3 [15], [16].

For ease of interpretation and to follow historical precedents, the 1D ocean wind kinetic

energy spectrum (E1D) is often measured and presented instead of the 2D ocean wind kinetic

energy spectrum (E2D). Freilich and Chelton show that for an isotropic, turbulent, incompressible

2D fluid, E1D can yield information on the shape of E2D [15]. Under these assumptions, they show

that if

E1D = β1Dkα1D (2.4)

and

E2D = β2Dkα2D (2.5)
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then α2D = α1D− 1 [15]1. In E2D, k can be represented as k =
√

k2
x + k2

y, where kx and ky are

the orthogonal components of k in the x- and y-directions when E2D is presented on a standard

Cartesian plane. As suggested in Eq. 2.5, E2D is expected to be circularly symmetric on average.

A common way to calculate the kinetic energy spectrum of a signal is to square the mag-

nitude of the Fourier transform of the signal (i.e., the periodogram). Since the kinetic energy

spectrum and the magnitude of the Fourier transform are linked, knowing the average kinetic en-

ergy spectrum of ocean winds yields information about the average magnitude component of the

Fourier transform of ocean winds (i.e., the average magnitude component of the Fourier transform

of ocean winds is circularly symmetric and follows a power law).

Spectral analysis on a finite length of ocean wind vectors is often subject to spectral leakage

and mismatched boundaries on the edges of the signal. To mitigate the effects of these undesirable

features, the wind vector data often undergo some sort of preprocessing before the periodogram

is taken. Prewhitening, linear transformation and windowing the data are all common forms of

preprocessing that produce similar E1D estimates [18].

2.3.2 Divergence and Vorticity

For an arbitrary 2D vector field F in a standard (x,y) Cartesian plane, the divergence of F

is found by

div(F) =
∂Fx

∂x
+

∂Fy

∂y
, (2.6)

where Fx and Fy are the x- and y-directional components of F. Likewise, the vorticity of F is found

by

vor(F) =
∂Fy

∂x
− ∂Fx

∂y
. (2.7)

For a wind field, the divergence can be interpreted as how much a given point acts as a source (or

sink, if the divergence is negative) of wind flow. Likewise, vorticity can be interpreted as how much

each point locally rotates while traveling along with the flow. Both quantities can be estimated for

wind fields through a first order difference equation of neighboring WVCs.

1Freilich and Chelton define both a 2D kinetic energy spectrum and an isotropic 2D kinetic energy spectrum and
show that the α value associated with the 2D isotropic kinetic energy spectrum is equal to α1D [15].
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On synoptic scales (>500 km), wind fields are expected to have, on average, zero diver-

gence and non-zero vorticity. But at the mesoscale (50–500 km), wind fields commonly con-

tain areas of both non-zero divergence and non-zero vorticity. The divergence and vorticity of

mesoscale wind fields is commonly described through 1D spectral analysis. For the vorticity spec-

trum, several models predict that a k−1 power law exists [19]–[21]. Fewer models exist to predict

the divergence spectrum and they do not always agree one with another: one model based on 3D

isotropic turbulence predicts a k+1/3 power law [21] while another model based on boundary layer

dynamics predicts that divergence and vorticity are proportional [16]. Studies that measure the

1D spectrum of both the divergence and vorticity tend to indicate that divergence and vorticity

are proportional as predicted by the model based on boundary layer dynamics [16], [17], but the

divergence and vorticity spectra shape for a particular wind field does not always cleanly follow

the predicted power laws and changes based on WVC size [17].

The different WVC resolutions likely change the spectral behavior because the first order

difference equations used to estimate the divergence and vorticity derivatives are taken at distances

that change along with the WVC resolutions. Additionally, derivatives act as high pass filters and

are sensitive to noise. As high resolution wind fields are noisier than low resolution wind fields the

high resolution wind fields have greater divergence and vorticity measurements.

2.4 Scatterometer Simulation

Simulation is a common tool when developing and evaluating scatterometer wind esti-

mation algorithms [22]–[26]. While simulations do not perfectly represent reality, they provide

control over all parts of scatterometer wind estimation; many aspects of wind estimation can only

be studied through simulation.

The simulation used in this thesis begins by pulling geometry information from a real

QuikSCAT orbit. Among other parameters extracted from a QuikSCAT L1B file, this information

includes the orbit position, antenna rotation angle, center location, azimuth angle, incidence angle,

KpA, KpB, KpC, and SNR of each σ0 measurement. This information is used when calculating the

SRF, Kp value, and σ0 value of each egg and slice measurement.

The simulation requires a true wind field as a second input. This wind field represents the

actual wind on the surface of the earth and needs to provide a wind vector at each SRF pixel for
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all egg and slice measurements pulled from the QuikSCAT L1B file. For each egg and slice mea-

surement, the wind vector at each pixel within the measurement’s SRF is fed into the GMF to find

the corresponding σ0 value for that pixel. By taking a weighted average of the σ0 values, where

the weights come from the SRF of the egg or slice, the simulated egg or slice σ0 measurement is

computed. With the supplied KpA, KpB, KpC, and SNR, Kp for the egg and slice measurements is

evaluated. Monte Carlo noise is added to a given noise-free σ0 measurement (si) by

si,noisy = si(1+ viKp,i) (2.8)

where si,noisy is the noisy measurement, vi is a realization of a zero-mean, unit-variance Gaussian

random variable, and Kp,i is the Kp value for the σ0 measurement.

With the simulated noisy σ0 measurements and the measurement geometry data pulled

from the QuikSCAT L1B file, all the quantities needed to run the normal wind retrieval process are

available. After going through the wind retrieval process, the final step of the simulation is to put

the retrieved winds through an ambiguity selection algorithm. The resulting wind is compared to

the true wind to evaluate the estimated wind error.

Various aspects of scatterometer-measured winds can be studied using the simulation by

varying the input wind field and QuikSCAT L1B file, or by adjusting aspects of the wind retrieval

process and ambiguity selection algorithm. The advantage of simulation is that insight can be

gained from the resulting wind fields as the true wind field is known. This means that changes to

scatterometer wind estimation can be quantitatively compared and winds that are rare can be put

through the process. Simulation is thus an essential tool in the scatterometer design process.

2.5 Synthetic Wind Fields

When using simulation to validate scatterometer wind vector measurements and algo-

rithms, researchers commonly tailor the initial wind field to their specific study. For testing many

scatterometer algorithms, it is common to employ “compass simulation,” simulations that set each

wind vector in the synthetic wind field to a constant speed and direction [23], [24]. Compass simu-

lation is typically performed with enough synthetic wind fields to represent all compass directions

and sometimes varying speeds [23]–[26]. This approach works well enough to evaluate the perfor-
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mance of scatterometer wind retrieval algorithms because it trivializes the complexity of ambiguity

selection algorithms, allowing the effects of the wind retrieval algorithms to be more apparent. For

the same reason, compass simulations are not effective in evaluating the performance of ambiguity

selection algorithms. These algorithms require a more realistic wind field with variety in the wind

speed and direction.

One source for more realistic synthetic wind fields is wind field models based on physical

equations of motion. These winds are typically made for specific regions or wind features (e.g.,

ocean winds near Hawaii [27] or hurricane-based winds [28]). These models can be good repre-

sentations of measured winds in the local regions or features that they are designed for, but they do

not generalize to other areas or features very well.

Rather than solving equations of motion, other synthetic wind field creation processes are

based on replicating wind field characteristics. This replication is done by artificially creating a

wind field with a generated kinetic energy spectrum that follows the known power law of ocean

winds. The magnitude component of the associated 2D Fourier transform is computed and the in-

verse Fourier transform of the magnitude component with a random phase component is taken [22].

These wind fields are not very realistic in the density and spatial resolution of their wind features,

but they are relatively easy to create. The synthetic wind field creation process described in this

thesis improves this method to create more realistic wind fields.
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CHAPTER 3. MEASURING THE KINETIC ENERGY WAVENUMBER SPECTRUM
OF OCEAN WINDS

The kinetic energy wavenumber spectrum of ocean winds is a common way of character-

izing the sea state in meteorological studies. Freilich and Chelton published kinetic energy spectra

for scatterometer-measured ocean winds, and many subsequent researchers that measure ocean

wind kinetic energy spectra from scatterometers follow a similar method [15]. When Freilich and

Chelton published their original work, they used wind vectors measured by the Seasat-A Satellite

Scatterometer (SASS). The wind vector measurements provided by SASS were coarse in resolu-

tion and only 1D spectra were estimated. Wind measurements from other sources such as instru-

ments onboard airplanes have also commonly been used to perform 1D spectral analysis [29], [30].

Freilich and Chelton showed that properties of 2D spectra can be inferred from 1D spectra if large-

scale atmospheric motions are assumed to be two-dimensional, nondivergent, and isotropic [15].

For these reasons, most subsequent studies on ocean wind spectra have only measured wind spec-

tra in 1D (e.g., [16], [17]). For certain applications, such as creating synthetic wind fields, it may

be useful to measure ocean wind spectra in 2D rather than 1D. The purpose of the work presented

in this chapter is to develop a method that allows wind spectra to be estimated in 2D and to analyze

wind spectra in 1D and 2D for winds measured by QuikSCAT to validate the assumptions made

by Freilich and Chelton.

This chapter is organized as follows: Section 3.1 gives additional background on Freilich

and Chelton’s work along with subsequent studies about the ocean wind kinetic energy spectra.

Section 3.2 describes the QuikSCAT wind measurements used in this study. Section 3.3 presents

the method to measure the ocean wind kinetic energy spectra in 1D and 2D. Section 3.4 shows

and analyzes the ocean wind kinetic energy spectra in 1D and 2D. Section 3.5 provides a brief

conclusion.

18



3.1 Ocean Kinetic Energy Spectra in 1D and 2D

To compare ocean kinetic energy spectra between 1D and 2D, Freilich and Chelton express

the 2D kinetic energy spectrum of ocean winds as E2D(kx,ky) with kx and ky representing the

wavenumber (k) in the x- and y-directions, respectively. Their assumption that the wind field is

caused by isotropic turbulence implies that E2D(kx,ky) is rotationally invariant. They arrived at this

result by expressing E2D(kx,ky) in terms of the polar coordinates

k =
√

k2
x + k2

y

θ = tan−1(ky/kx),
(3.1)

integrating over θ , and finding that

Ê2D(k) = πkE2D(kx,ky) (3.2)

where Ê2D(k) is the 2D isotropic kinetic energy spectrum [15].

Many turbulence models predict that the 2D isotropic kinetic energy spectrum follows a

power law Ê2D = βkα where α is the slope of the power law and β is often ignored in ocean wind

spectral analysis [15], [16] . Freilich and Chelton show that if Ê2D = βkα , then E1D(k) ∝ kα where

E1D(k) is the 1D kinetic energy spectrum of the wind field [15]. In other words, they demonstrated

that 1D kinetic energy spectra provides information about 2D kinetic energy spectra for ocean

winds.

Average α values from several studies of scatterometer-measured winds are given in Ta-

ble 3.1. Some of these studies measured the kinetic energy spectra for the meridional and zonal

wind components separately and found only small differences in the α values between the two.

Each study also compared how α changed based on location and/or temporal season, but only the

general α value is given in Table 3.1. Note that the α values fall between −5/3 and −3, the range

over which most models predict that α should be.
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Table 3.1: Average α values for different scatterometers and data products. Blodgett did not
publish an exact α for winds measured by the Advanced Scatterometer (ASCAT) but showed

that it was very similar to −5/3 [17]. Other studies that have computed the kinetic
energy spectra for various scatterometers and types of ground processing without

publishing an exact α value include [16], [18], [31], [32].

Study Scatterometer Wind Vector Cell Size Average α

Freilich and Chelton [15] SASS 100 km by 100 km -2
Patoux and Brown [16] QuikSCAT 25 km by 25 km -2.2
Patoux and Brown [16] QuikSCAT DIRTH 25 km by 25 km -2.4

Blodgett [17] ASCAT L2B 12.5 km by 12.5 km -1.7
Blodgett [17] ASCAT UHR 1.25 km by 1.25 km -1.7

3.2 QuikSCAT Wind Estimates

This study uses L2B wind fields measured by the QuikSCAT scatterometer in the arbitrar-

ily chosen year 2005. The QuikSCAT measurement swath is nominally 1800 km wide (in the cross

track direction) which allows for a large 2D area of study. This L2B data product performs wind

estimation with DIRTH to improve the accuracy of the estimated winds [13]. As wind vector esti-

mates close to the edge of the measurement swath are generally worse estimates of the actual wind

vector (even with DIRTH), we discard several near-edge wind vectors in the measurement regions.

The measurement regions are 131 WVCs × 131 WVCs (1637.5 km × 1637.5 km). Every WVC

has to have a valid wind vector measurement for the region to be included in the study. The 2D

analysis uses the entire measurement region as a single block while the 1D analysis uses individual

along track rows and columns of WVCs (1 WVC × 131 WVCs or 131 WVCs × 1 WVC).

As mentioned in Section 3.1, most studies of ocean wind spectra compare how α changes

based on location and/or temporal season. In this study, we make a global estimate of the kinetic

energy spectra using estimates from the world ocean, similar to Patoux and Brown’s general α

value, and we make estimates of the kinetic energy spectra using four regions of the Pacific Ocean

that match the four regions that Freilich and Chelton used [15], [16]. A description of these regions

is given in Table 3.2. No differentiation between seasons is made in this study.
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Table 3.2: Description of the four geographic regions in which the kinetic energy spectra are
estimated. Latitudes are in degrees north, longitudes are in degrees east. These regions are

chosen to match the regions used by Freilich and Chelton and their study contains a
similar table [15].

Region Latitude (north) Longitude (east)
I -45◦to -25◦ 160◦to 280◦

II -25◦to -5◦ 160◦to 280◦

III 5◦to 25◦ 140◦to 250◦

IV 25◦to 45◦ 150◦to 230◦

3.3 Measuring Ocean Wind Kinetic Energy Spectra

Given the relationship between the 2D kinetic energy spectrum, the 2D isotropic kinetic

energy spectrum, and the 1D kinetic energy spectrum in Section 3.1, we express the 1D kinetic

energy spectrum and 2D kinetic energy spectrum without arguments as

E1D = β1Dkα1D (3.3)

and

E2D = β2Dkα2D (3.4)

for notational convenience1. Comparing E2D, rather than Ê2D, with E1D avoids polar integration

with discrete measurements on a square grid. The theory presented in Section 3.1 expects that

α2D = α1D−1.

E1D is typically found separately for both the zonal (u) and meridional (v) components of

the wind field and then summed together if a total wind kinetic energy spectra is desired. However,

we derive the same result by combining u and v into a complex wind vector w (w = u+ jv) before

calculating the kinetic energy spectra. The autocorrelation of w (Rw) can be expressed in terms of

1Eqs. 2.4 and 2.5 are repeated here for convenience.
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the autocorrelation of u (Ru) and v (Rv) as follows:

Rw[m] = E{w[n+m]w∗[n]}

= E{(u[n+m]+ jv[n+m])(u[n]+ jv[n])∗}

= E{u[n+m]u∗[n]− ju[n+m]v∗[n]+ jv[n+m]u∗[n]+ v[n+m]v∗[n]}

= E{u[n+m]u∗[n]}− jE{u[n+m]v∗[n]}+

jE{v[n+m]u∗[n]}+E{v[n+m]v∗[n]}

= Ru[m]− jRuv[m]+ jRvu[m]+Rv[m].

(3.5)

On average, u and v are assumed to be uncorrelated so the cross-correlations are equal to 0 (i.e.,

Ruv[m] = Rvu[m] = 0). This yields

Rw[m] = Ru[m]+Rv[m]. (3.6)

Taking the Fourier transform of Rw reveals that the kinetic energy spectrum of w (Ew) is the sum

of the kinetic energy spectra of u (Eu) and v (Ev). This sum is used in other studies to find a total

E1D [15], [16]. Since all the studies referenced in Table 3.1 measure the α value associated with

Eu (αu) to be approximately equal to the α value associated with Ev (αv), Ew can be expressed as

Ew = Eu +Ev

= βukαu +βvkαv

≈ (βu +βv)kαw

(3.7)

where αw≈αu≈αv. In this study, we validate the above analysis and provide additional validation

of the assumption that u and v are uncorrelated by estimating E1D and E2D with Eu, Ev, Eu +Ev,

and Ew.

3.3.1 Mitigating the Effect of Spectral Leakage

To mitigate the effects of spectral leakage when calculating the kinetic energy spectra,

we subtract the mean from the wind field and window the data with a Tukey window with a 0.2
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cosine fraction similar to [15], [16]. Other techniques to prevent spectral leakage include linearly

transforming the data (choosing constants a and b in z′i = azi +b such that the endpoints of z′i map

to zero) and high pass filtering the data with a first order difference equation (z′i = zi+1− zi) which

is then corrected for afterwards [18].

Conventional applications of a 2D window on discrete data involve applying a 1D window

to each row of the data followed by applying the 1D window to each column of data. Creating

a 2D window in such a manner results in a square-like 2D window rather than a circular 2D

window. A circular 2D window is made by sampling a circularly-rotated 1D continuous window

function. Examples of some 2D windows are given in Fig. 3.1. The square-like windows push

spectral leakage primarily in orthogonal directions while the circular windows result in spectral

leakage spaced more evenly around the exact frequency as seen in Fig. 3.2. When applied to wind

fields, the square-like windows exhibit more signs of spectral leakage on average than the circular

windows as shown in Fig. 3.3. Thus, in this study we subtract the mean and use a circular 2D

Tukey window with a 0.2 cosine fraction when calculating the kinetic energy spectra of a 2D wind

field.

3.3.2 Weighted Least Squares Fit to Ocean Wind Kinetic Energy Spectra

To estimate α1D and α2D, we make an approximate least squares fit to the kinetic energy

spectra of the measured data. This is done by transforming Eqs. 3.3 and 3.4 into linear equations

by taking the log10 of both sides which yields

log10 E1D = α1D log10 k+ log10 β1D (3.8)

and

log10 E2D = α2D log10 k+ log10 β2D. (3.9)
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Figure 3.1: Examples of various 2D windows. (a) shows a rect window; (b) shows a square Tukey
window with a 0.2 cosine fraction; (c) shows a circular Tukey window with a 0.2 cosine fraction;
and (d) shows a square Hamming window. Each window is 131 pixels× 131 pixels. To emphasize
the window shape, each window has been zero padded so that each panel is 151 pixels× 151 pixels.
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Figure 3.2: Examples of the spectral leakage permitted by (a) a 2D rect window, (b) a 2D square
Tukey window with a 0.2 cosine fraction, (c) a 2D circular Tukey window with a 0.2 cosine frac-
tion, and (d) a 2D square Hamming window. The leakage examples have been normalized so that
the peak value is 1 (0 dB). The color scale is cut off at 60 dB below the peak value to make the
shape of the spectral leakage clear. The square-like windows push spectral leakage in orthogonal
directions while the circular Tukey window pushes spectral leakage more evenly in all directions.
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Figure 3.3: Average 2D kinetic energy spectra of QuikSCAT winds with (a) a 2D rect window, (b)
a 2D square Tukey window with a 0.2 cosine fraction, (c) a 2D circular Tukey window with a 0.2
cosine fraction, and (d) a 2D square Hamming window. The average 2D kinetic energy spectra
have been normalized so that the peak value is 1 (0 dB). The average 2D kinetic energy spectra
are overlaid by red contour lines to emphasis the shape of the average kinetic energy spectra. The
square-like windows reveal more noticeable spectral leakage in orthogonal directions away from
the center of the spectra than the circular window.

26



For the 1D case with N measurements of E1D and k, we define

b1D =


log10 E1

1D

log10 E2
1D

...

log10 EN
1D

 (3.10)

A1D =


1 log10 k1

1 log10 k2

...
...

1 log10 kN

 (3.11)

x1D =

log10 β1D

α1D

 , (3.12)

where E i
1D and ki are the ith measurement of E1D and k with i = 1,2, ...,N. With Eqs. 3.10, 3.11,

and 3.12, Eq. 3.8 can be written in the familiar matrix form

A1Dx1D = b1D. (3.13)

Following a similar process, Eq. 3.9 can be rewritten as

A2Dx2D = b2D. (3.14)

By performing least squares with Eqs. 3.13 and 3.14 to estimate x1D and x2D, the α1D and α2D

values in x1D and x2D minimize the error for Eqs. 3.8 and 3.9. These α values only estimate the

α1D and α2D values that would minimize the error for Eqs. 3.3 and 3.4. However, we expect that

the estimated α1D and α2D are close enough to the desired α1D and α2D to make a fair comparison

between the 1D and 2D spectra.

In practice, E1D and E2D appear to approach a spectrum floor at higher k values, a floor

that disrupts the power law for their measurements. While the spectrum floor appears similar

to a noise floor, it is unlikely that noise causes the spectrum floor because the spectrum floor
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begins at different k values depending on the resolution of the measured wind field [17]. Blodgett

demonstrates an alternative source of the spectrum floor could be the effects of aliasing due to

undersampling the wind field as seen in Fig. 3.4 [17]. Regardless of the source of the spectrum

floor the least squares fit is weighted to limit effect of the spectrum floor on the estimated α1D and

α2D values. For the 1D case, we create the diagonal weighting matrix

W1D =


1
k1

1
k2

. . .
1

kN

 . (3.15)

There is an extra detail to consider with the 2D case. When plotting E2D, such as in Fig. 3.3,

frequency bins with equal k values can be viewed as rings around the center DC bin. For a discrete

representation of the kinetic energy spectra on a square grid, this detail means that there are more

frequency bins for high values of k than for low values of k. By a geometric argument, the number

of frequency bins available for a given k value is roughly proportional to k, which this study

accounts for in the weighting matrix by dividing the 1/k weights by k. This helps the α2D estimates

to be influenced by all values of k more equally and yields the diagonal weighting matrix

W2D =



1
(k1)2

1
(k2)2

. . .
1

(kN)2

 . (3.16)

By application of weighted least squares,

x1D = (AH
1DW1DA1D)

−1AH
1DW1Db1D (3.17)

and

x2D = (AH
2DW2DA2D)

−1AH
2DW2Db2D (3.18)

from which α1D and α2D can be extracted as the second elements of x1D and x2D, respectively.
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Figure 3.4: The effect of aliasing on the spectrum of an arbitrarily undersampled, decreasing signal.
Figure from [17].

Table 3.3: Various α values found for different regions, wind components, and dimensions in this
study. In general, αu < αw < αv, though they are all similar. The trends in the α values in this

study match the trends in the α values reported by Freilich and Chelton [15]. Note that
the values given from Freilich and Chelton are from their unnormalized power law

calculations [15]. The data support that α2D ≈ α1D−1.

α1D α2D
Region Eu Ev Eu +Ev Ew Eu Ev Eu +Ev Ew

Region 1 -2.39 -2.29 -2.33 -2.33 -3.34 -3.25 -3.30 -3.30
Region 2 -2.25 -1.88 -2.02 -2.02 -3.17 -2.77 -2.92 -2.92
Region 3 -2.23 -1.88 -2.01 -2.01 -3.18 -2.82 -2.96 -2.96
Region 4 -2.38 -2.23 -2.29 -2.29 -3.32 -3.18 -3.25 -3.25
Global -2.44 -2.23 -2.32 -2.32 -3.40 -3.19 -3.29 -3.29

From Freilich and Chelton [15]
Region 1 -2.35 -2.17 -2.26
Region 2 -1.99 -1.77 -1.86
Region 3 -2.01 -1.95 -1.97
Region 4 -2.31 -2.11 -2.21

3.4 Wind Spectra Results and Analysis

In this study, wind fields measured by QuikSCAT that fit the criteria given in Section 3.2

undergo the windowing and weighted least squares approximation explained in Section 3.3. α1D

and α2D are estimated for each geographic region of interest and for each Eu, Ev, Eu +Ev, and

Ew representation of the wind field spectrum. A summary of the estimated α values is given in

Table 3.3, along with values from Freilich and Chelton’s analysis where applicable.

The estimated α values from regions 1 and 4 are similar while the estimated α values from

regions 2 and 3 are similar, as seen in Fig. 3.5. This indicates that winds equidistance from the
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Figure 3.5: Weighted least squares fit to E1D for regions 1, 2, 3, and 4 from QuikSCAT L2B data.
(a) shows Ew; (b) shows Eu; (c) shows Ev; and (d) shows Eu +Ev. Note that regions 1 and 4
are similar while regions 2 and 3 are similar, indicating that winds equidistance from the equator
appear to have similar characteristics.
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equator share similar characteristics. Additionally, Fig. 3.6 shows that αu < αw < αv in all regions,

though the separation is relatively small. The α1D values from this study are slightly greater in

magnitude than those found by Freilich and Chelton, but the Freilich and Chelton α values follow

the same general trends that we observe in our estimates. As the global α1D is similar to the

α value found by Patoux and Brown in their spectral analysis of DIRTH QuikSCAT winds (see

Table 3.1), the difference between our estimates and Freilich and Chelton’s estimates may be a

difference between winds estimated by QuikSCAT with winds estimated by SASS. These cross-

study comparisons help validate the method for estimating α1D. To extend this verification to

the method for estimating α2D, we present plots of the weighted least squares fits to the data in

Figs. 3.7 and 3.8. The fits match the data well in both 1D and 2D according to the weights that are

assigned to the measured data. From these results we assume that the method for estimating α2D

is valid.

The estimated α values from Eu +Ev are equal to the estimated α values from Ew to the

given precision of three significant figures. This finding supports the assumption that u and v are

uncorrelated and provides a measured example of the theoretical result in Section 3.3 that the total

kinetic energy spectra of a wind field can be found by either combining the u and v wind field

components into a complex vector w prior to estimating the kinetic energy spectra or by summing

the kinetic energy spectra associated with the u and v wind field components. Such a result can

simplify the complexity of analyzing the u and v wind field components simultaneously.

When comparing α1D and α2D across all regions and globally, we find that α2D ≈ α1D−1.

From this result, we support the assumptions that Freilich and Chelton made in their original paper

that allow properties of 2D wind spectra to be inferred from 1D wind spectra (i.e., large-scale

atmospheric motions are 2D, nondivergent, and isotropic).

3.5 Conclusion

This study makes the following contributions: (1) a method to estimate ocean wind spectra

in 2D that accounts for 2D spectral leakage and the increased high to low frequency bin ratio in

2D analysis, (2) additional validation of the assumptions made by many other researchers that

large-scale atmospheric motions are 2D, nondivergent, and isotropic indicating that properties of

2D wind spectra can be inferred from 1D wind spectra, (3) a demonstration that 1D and 2D ocean
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Figure 3.6: Weighted least squares fit to E1D for u, v, and w from QuikSCAT L2B data. (a) shows
region 1; (b) shows region 2; (c) shows region 3; and (d) shows region 4. Note that αu < αw < αv
in all regions, though the relationship is most obvious in regions 2 and 3.
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Figure 3.7: Weighted least squares fit to E1D from the world ocean QuikSCAT L2B data. (a) shows
region 1; (b) shows region 2; (c) shows region 3; and (d) shows region 4. Note that the measured
data fits well except for high values of k where the data appears to be subject to a noise floor or
aliasing.
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Figure 3.8: Weighted least squares fit to E2D from the world ocean QuikSCAT L2B data. (a) shows
region 1; (b) shows region 2; (c) shows region 3; and (d) shows region 4. Note that the measured
data fits well except for high values of k where the data appears to subject to a noise floor or
aliasing.
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wind kinetic energy spectra can be computed from complex wind vectors formed from the u and

v wind components and give further verification to the assumption that u and v are uncorrelated.

These contributions may be useful for a variety of studies relating to ocean winds that need to

examine the u and v components together or that must be done in 2D rather than 1D, such as the

creation of a synthetic wind field.
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CHAPTER 4. DEVELOPING THE WIND RESPONSE FUNCTION THROUGH SIM-
ULATION

The σ0 measurement SRF is a useful tool in scatterometer algorithm design that describes

the spatial resolution of the σ0 measurements for a given processing technique [33]. Enhanced

resolution scatterometer data products rely on the SRF of egg and slice measurements to estimate

σ0 at a finer resolution than is accomplished through conventional DIB processing [10], [34], [35].

This chapter extends the idea of the σ0 SRF to a wind response function (WRF). Conceptually,

the WRF can be thought of as a wind-specific version of the SRF; while the SRF quantifies the

contribution of each point on the surface to a σ0 measurement, the WRF quantifies the contribution

of the wind at each point on the surface to a scatterometer-determined wind vector. In other words,

the WRF is similar to a wind impulse response function for a given processing algorithm.

There are several approaches and algorithms for scatterometer wind retrieval. Herein, the

WRF for QuikSCAT DIB egg processing, QuikSCAT DIB slice processing, and QuikSCAT UHR

processing are estimated through the use of simulation. While the WRF differs slightly for each

WVC, we find generalized WRFs for each processing method. By computing the generalized

WRFs, the effective spatial resolution of each of these three processing techniques is found.

The SRF is a scalar function; however, winds are a vector with a speed and a direction. This

characteristic makes the WRF a vector function. For convenience, we define the WRF for the speed

and direction components of a wind vector separately. The WRF could also be defined in terms of

orthogonal wind components such as its zonal (u) and meridional (v) components. The derivation

for the u and v components’ defined WRF is similar to the speed and direction components’ defined

WRF and is not explicitly given in this chapter, though sample WRFs for u and v components are

presented.

This chapter is organized as follows. Section 4.1 explains how the QuikSCAT WRF is

calculated for DIB egg, DIB slice, and UHR processing. Section 4.2 shows the calculated WRF
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for several WVCs, finds generalized QuikSCAT WRFs for each processing method, and analyzes

the resulting WRFs. Section 4.3 provides a brief conclusion.

4.1 Wind Response Function Calculation

The WRF represents the wind estimation process that transforms a “delta function-like”

wind field to a scatterometer-measured wind vector; the WRF is found by passing a delta function

wind approximation in different locations through the wind estimation process. By measuring

how the output wind vector changes due to the position of the delta function approximation, the

WRF helps understand the effective spatial resolution of wind estimation. This approach is similar

to determining the impulse response of a linear time-invariant (LTI) system. In an LTI system,

the impulse response completely characterizes the system. As wind estimation is nonlinear and

spatially variant, it is not completely characterized by the WRF. However, the WRF defined below

still provides useful information about the wind estimation process, especially the effective spatial

resolution of wind estimation.

The quantity, position, orientation, and other characteristics of the σ0 measurements used

in calculating the wind vector for a WVC varies based on swath location. These variations cause

the WRF to differ slightly with each WVC. For this reason, we estimate the WRF for several WVCs

at various swath location. To define the WVCs, information about egg and slice measurements is

pulled from a particular QuikSCAT L1B file. For DIB egg processing, a WVC is identified as a

25 km × 25 km region within the swath. The wind vector estimate for the DIB egg WVC uses

the information associated with each egg measurement whose center lands within the WVC. For

DIB slice processing, the WVC is 12.5 km × 12.5 km and the WVC wind vector estimate uses

the information associated with each slice measurement whose center lands within the WVC. For

UHR processing, where WVCs are defined somewhat differently, a WVC is a single UHR image

pixel. UHR image pixels are 2.225 km × 2.225 km in this simulation. The information associated

with each slice measurement whose SRF covers a given pixel is used for the wind vector estimate

of the corresponding WVC [10]. Theoretically, each egg and slice SRF extends forever, but we

truncate the SRFs by zeroing out any weight that is under a threshold of 20 dB below the peak

value. For convenience, the geometry data from the QuikSCAT L1B file used in calculating the

WRFs for all three processing techniques are interpolated to 2.225 km × 2.225 km resolution.
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An overview of the method to find the WRF for a WVC is provided as follows. Several

delta wind fields are created where each delta wind field contains the delta function wind approxi-

mation at a different location in the wind field. Using the measurement geometry and Monte Carlo

techniques, each delta wind field is converted to noisy σ0 measurements that are fed through the

wind retrieval process and an ideal ambiguity selection algorithm to estimate the resulting wind

vector. Biases and noise in the output wind vectors are reduced through averaging and subtracting

out the output wind vector that occurs when no delta function passes through the wind estimation

process. The WRF is then the map of the output wind vectors as a function of the location of

the delta function in the delta wind field. For convenience, quantized WRFs for each processing

algorithm are found at 2.225 km× 2.225 km resolution. The rest of this section details this method

further.

4.1.1 Delta Wind Fields

First, a set of delta wind fields is created to approximate the response function. In a true

“delta function,” the delta function would have an infinite speed wind vector at one point and zero

speed wind vectors for the rest of the wind field. In practice, the delta wind fields are discrete with

one wind vector per UHR pixel and the delta wind vector has a high but finite speed while the other

pixels have non-zero speeds. The reason for the latter is due to the nature of wind retrieval and

the GMF. The GMF is only defined for positive wind speeds up to 50 m/s, and wind retrieval at

very low and very high wind speeds is often unreliable. Taking this into account, each delta wind

field has a delta wind vector with a speed of 40 m/s and the remaining background wind field has

a speed of 7 m/s. Note that as long as there is a significant difference in the wind speed, other

values besides 7 m/s and 40 m/s produce the same general WRF. A corresponding wind field with

no delta wind vector (but the same background wind field) is also created. This no-delta wind field

is subtracted from the WRF estimate to help reduce bias introduced by the non-ideal delta function

winds. The direction of each wind vector, which is referred to as the common direction, is the

same for all wind vectors in a delta wind field.

To illustrate the concept of a delta wind field, an example WVC for DIB egg processing is

overlaid with an arbitrarily chosen delta wind field and is shown in Fig. 4.1. This particular delta

wind field is chosen because the delta wind vector is clearly visible from other markings on the
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figure. While Fig. 4.1 does not explicitly show the full SRFs of the egg measurements, the delta

wind field is the smallest rectangular wind field that covers the entire truncated SRF of the egg

measurements.

Figure 4.1: Example WVC for DIB egg processing with 3 dB egg contours overlaying a delta
wind field. The square outlines the area of the WVC, the asterisks show the center of each egg
measurement used in wind retrieval for this WVC, and the ovals show the eggs’ 3 dB footprints.
The egg measurement SRFs extend to the edge of the delta wind field, though the weights are
significantly smaller outside the eggs’ 3 dB footprints. The delta function wind vector is shown in
red to differentiate it from the background wind vectors.

4.1.2 Wind Estimation

The next step in approximating the response function is to convert the delta wind fields into

σ0 measurements. We use the QMOD3 GMF for QuikSCAT to perform this conversion. Since the
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operating frequency of QuikSCAT is known, and the incidence angle indicates the polarization of

the incident radiation, the QMOD3 GMF may be defined without loss of generality as1

σ
0 = g(|U |,χ,θ) (4.1)

where |U | is the wind speed, χ is the angle between the wind direction and azimuth angle of the

incident radiation, and θ is the incidence angle. Using the azimuth and incidence angles for each

egg and slice measurement, the true σ0 values for each delta wind field are calculated for each egg

and slice measurement associated with the WVC.

The egg and slice measurements taken by a scatterometer can be thought of as a weighted

spatial average of the true σ0 values on the earth’s surface. The relation between a transmitted

radar pulse (Pt) and received radar pulse (Pr) is given by the radar equation2 [1]

Pr =
Ptλ

2

(4π)3

∫∫ G2(x,y)σ0(x,y)
R4(x,y)

dxdy (4.2)

where λ is the operating frequency of the scatterometer, G(x,y) is the antenna gain, and R(x,y)

is the slant range to the illuminated area. An egg or slice measurement of σ0 (si) is then found

by [14]

si =
Pr

X
(4.3)

where X is the so-called “X-factor” [8]

X =
Ptλ

2

(4π)3

∫∫ G2(x,y)
R4(x,y)

dxdy (4.4)

for the egg or slice measurement. By defining the SRF as

SRF(x,y) =
Ptλ

2

(4π)3X
G2(x,y)
R4(x,y)

(4.5)

si can be modeled as

si =
∫∫

SRF(x,y)σ0(x,y)dxdy (4.6)

1See Eq. 2.2 for a more general GMF.
2This is another way of expressing the radar equation in Eq. 2.1
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Thus, the egg and slice measurements are a weighted spatial average of the true σ0 values where

the weights come from the SRF.

To make realistic measurements, Monte Carlo noise is added to si according to3

si,noisy = si(1+Kp,ivi) (4.7)

where si,noisy is the noisy realization of the measurement, vi is a realization of a zero-mean unit-

variance random variable, and Kp,i is the normalized standard deviation of si,noisy. Kp is modeled

as4 [1]

Kp =

√
KpA +

KpB

Sn
+

KpC

(Sn)2 (4.8)

where KpA, KpB, and KpC are instrument signal processing parameters that change depending on

swath location, and Sn is the SNR of the σ0 measurement. The values for KpA, KpB, KpC, and the

SNR for each σ0 measurement are provided by the information pulled from the QuikSCAT L1B

file.

The azimuth angle, incidence angle, si,noisy, KpA, KpB, and KpC for all the egg and slice

measurements of a given WVC are extracted from a typical QuikSCAT L1B file and are used

as inputs to the wind retrieval process. Of the resulting wind ambiguities, the ambiguity whose

direction is closest to the common direction of the original delta wind field is chosen as the correct

ambiguity. Due to the added noise in si,noisy, this wind vector is only one realization of the possible

resulting wind vectors for the WVC with a particular delta wind field. To find the expected wind

vector for the WVC and delta wind field, we use 1000 trials with each being a different Monte

Carlo noise realization; each trial follows the same procedure but with a different realization of vi

in Eq. 4.7. The average of the 1000 resulting wind vectors is the estimated expected wind vector

for the WVC and delta wind field. This process is repeated for every delta wind field associated

with the WVC.

Placing the expected wind vector in the pixel location where the delta wind vector is in the

corresponding delta wind field yields a WRF estimate for a given WVC. For the WVC in Fig. 4.1,

the associated WRF estimate is shown in Fig. 4.2.

3Eq. 2.8 is repeated for convenience.
4Eq. 2.3 is repeated for convenience.
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Figure 4.2: Example WRF estimate for DIB egg processing, common direction 30◦. (a) shows
the direction component of the WRF estimate and (b) shows the speed component of the WRF
estimate. The squares outline the area of the WVC. In (a) the colors show the direction (degrees)
of the expected wind vector at each image pixel; in (b) the colors show the speed (m/s) of the
expected wind vector at each image pixel.

4.1.3 Bias Removal

Since the delta function wind fields only approximate the delta wind vector, the WRF

estimate is significantly biased. To reduce this bias, we find the expected wind vector for the wind

field case that does not have a delta wind vector, i.e., a background-only wind field. The speed

and direction components of this no-delta wind vector are subtracted from the speed and direction

components of the delta wind vectors. We choose to perform the subtraction of the no-delta output

wind vector in the speed and direction components rather than orthogonal components because

the bias removal is more sensitive to variation in the Monte Carlo simulation with orthogonal

components. For convenience, the speed component (but not the direction component) of the

WRF is normalized so that the peak value is equal to 1. The WRF estimate in Fig 4.2 with the bias

removed is shown in Fig. 4.3.
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Figure 4.3: Example WRF for DIB egg processing with bias removed, common direction 30◦.
The no-delta wind vector has been subtracted from the WRF estimate. (a) shows the direction
component of the WRF and (b) shows the speed component of the WRF. In (a), the colors show
the shift in direction (degrees) of the expected wind vector at each pixel from the no-delta wind
vector; in (b) the speed component of the WRF has been normalized so that the peak value is 1.
The squares outline the area of the WVC.

With the bias removed, the WRF estimate is the WRF for a WVC at the common direction

of the delta wind fields; wind retrieval is biased based on χ [26]. To find the WRF for a WVC

independent of direction, we perform “compass simulation.” In compass simulation, the above

process is repeated with delta wind fields whose common directions represent all the different

compass directions and the WRFs for all common directions are averaged together. To reduce

computational complexity, we approximate true compass simulation by only using twelve common

directions, each one spaced 30◦ apart from its neighboring common directions.

The inherent bias in wind retrieval with respect to direction may shift the direction of the

retrieved wind vectors either to the right or to the left. For example, in Fig. 4.3, the top half

of the WVC provides a shift opposite in direction to the bottom half of the WVC. This means

that averaging the direction tends to reduce the direction portion of the WRF to near zero; we

assume that any non-zero values are a result of the Monte Carlo simulation, not a general bias
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that is independent of wind direction in wind retrieval. To avoid having a zero-valued direction

component, we average the absolute value of the wind direction response. By doing so, information

is lost in regards to the bias associated with wind vector direction, but information is retained in

regards to the locations of the winds that most strongly affect the retrieved wind direction. The

normalized WRF independent of direction for the WVC in Fig. 4.1 is shown in Fig. 4.4. As the

WRF depends somewhat upon the quantity and locations of the egg and slice measurements, WRFs

for various WVCs are shown in Section 4.2.

Figure 4.4: Example WRF for DIB egg processing, independent of direction. (a) shows the ab-
solute direction component of the WRF, and (b) shows the speed component of the WRF. The
squares outline the area of the WVC. In both (a) and (b), the WRF has been normalized to a peak
value of 1.

4.2 Wind Response Functions

To illustrate that the bias with respect to direction is inherent in DIB and UHR processing,

WRFs for a WVC at three different common directions for DIB egg, DIB slice, and UHR process-

ing are shown in Figs. 4.5 and 4.6. Fig. 4.5 displays the direction components and Fig. 4.6 displays
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the speed components of the WRFs. Fig. 4.6 is normalized and has contour lines at 3 dB and 6 dB

below the peak value. In these figures, each column (from left to right) is a different common

direction: 30◦, 150◦, and 270◦, and each row (from top to bottom) is a different processing tech-

nique: DIB egg, DIB slice, and UHR. The WVC in Figs. 4.5 and 4.6 is the same WVC portrayed

in Figs. 4.1 through 4.4.

Examining the direction components in Fig. 4.5, the pixels that most affect the expected

wind vector are the same for all common directions, but the bias that they produce is different

depending on the common direction. Interestingly, when egg and slice measurements with oppos-

ing biases overlap, the positive and negative direction shifts cancel each other so that there is a

near zero value in these areas. This cancellation indicates that the bias in wind estimation due to

wind direction is less affected by wind vectors near the center of the WVC, where egg and slice

measurements from a variety of azimuth and incidence angles tend to overlap, and is more affected

by wind vectors near the edge of the WVC where egg and slice measurements do not overlap as

much.

For the speed components in Fig. 4.6, the pixels that most affect the expected wind vector

also vary with the common direction and there appear to be fewer pixels with a large magnitude

in the speed component than in the direction component. Close inspection reveals that the speed

component pixels with a large magnitude are a subset of the direction component pixels with a large

magnitude, specifically the subset whose direction shift is greatest in magnitude. This finding is

most clearly seen in the bimodal DIB egg processing WRFs, but is also evident in the DIB slice and

UHR processing WRFs. The speed components also begin to suggest that DIB egg processing has

a WRF with a Gaussian-like shape. These WRFs indicate that DIB egg processing has the coarsest

spatial resolution while UHR processing has the finest spatial resolution of the three processing

techniques.

To display that the WRF may be defined in terms of orthogonal components rather than

speed and direction, the WRFs in Figs. 4.5 and 4.6 are shown in terms of their u and v components

in Figs. 4.7 and 4.8. Figs. 4.7 and 4.8 are organized in the same manner as Figs. 4.5 and 4.6

and, similar to the direction component, the u and v components are signed values that are not

normalized. Comparing Figs. 4.5 and 4.6 with Figs. 4.7 and 4.8, the pixels that most affect each

component are generally the same; the spatial resolution of the u and v components tends to be
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slightly coarser than the spatial resolution of the speed component and slightly finer than the spatial

resolution of the direction component. The 270◦ common direction case is of note since 270◦ is

parallel to u component unit vector direction. Ignoring the sign of the WRFs, this leads to the

WRF shapes of the u and speed components to be very similar and the WRF shapes of the v and

direction components to be very similar. In cases where the common direction is parallel to the v

component, the WRF shapes of the v and speed components are very similar and the WRF shapes

of the u and direction components are very similar. These findings and further inspection reveal

that the information conveyed between the speed and direction component WRFs and the u and v

component WRFs is consistent. We analyze the WRF in speed and direction components because

they are easier to interpret than the u and v components.

Several examples of direction-independent WRF are shown in Figs. 4.9 and 4.10. These

figures are organized similarly to Figs. 4.5 and 4.6 in that each row is a different processing tech-

nique, but the columns of Figs. 4.9 and 4.10 represent different WVC locations. The WVC in

the first column of these figures is the WVC examined in Figs. 4.5 through 4.8. Each location is

within the sweet spot of the scatterometer swath but at different cross track indices. As the az-

imuth angles of the egg and slice measurements are a function of cross track index, the different

cross track indices lead to the fore- and aft-looking measurements overlapping at different angles

in the WVCs. This is clearly seen in the DIB slice and UHR processing WRFs. Fig. 4.9 displays

the direction components of the WRFs (where the absolute value of the direction components are

averaged together) and Fig. 4.10 displays the speed components of the WRFs.

Examining the direction components in Fig. 4.9, there appears to be a dip in the magnitude

of the WRFs, more or less around the center of the WVCs. This drop in magnitude is attributed

to the smaller bias in wind estimation due to wind direction when more σ0 measurements overlap

as discussed previously. As the drop in magnitude tends to occur near the center of the WVC,

the peak value of the direction component of the WRFs tends to be several kilometers away from

the center of the WVC. The speed components in Fig. 4.10 confirm the observations made with

Fig. 4.6 that the WRF shape of DIB egg processing is Gaussian-like and that DIB egg processing

has the coarsest spatial resolution while UHR processing has the finest spatial resolution of the

three processing techniques.
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4.2.1 Generalized WRF

While the WRFs in Figs. 4.9 and 4.10 show that the WRF varies depending upon swath

location, the differences are small enough to imply that a single, generalized WRF could be used

everywhere in the QuikSCAT swath. We find a generalized QuikSCAT WRF for three swath

regions: the nadir region, the sweet spot, and the far swath. In each region, the WRFs of ten

different WVCs are averaged to find the generalized WRF. This provides a reasonable estimate

of the generalized WRF while keeping computational complexity low. The absolute value of the

direction components of the generalized WRFs for the three regions are shown in Fig. 4.11 and the

speed components are shown in Fig. 4.12.

Examining the generalized WRFs for DIB egg processing, the 3 dB contour is roughly

circular and a couple of pixels larger than the WVC area, i.e., ∼30 km. For each swath area,

the speed component resolution is slightly finer than the direction component resolution, and the

resolution of the far swath WRF is slightly coarser than the resolution of the sweet spot and nadir

region WRFs, i.e., ∼35-40 km. Interestingly, the WRFs for DIB slice and UHR processing do not

share the same indication. For both DIB slice and UHR processing, the nadir region WRFs have

coarser resolutions than the sweet spot and far swath WRFs. This seems to indicate that for DIB

slice and UHR processing, azimuth angle diversity in the slice σ0 measurements helps to improve

spatial resolution more than incidence angle diversity.

The speed components in the sweet spot and far swath seem to indicate that the spatial

resolution of the DIB slice processing is roughly the same size as a DIB slice processing WVC,

i.e., ∼12.5 km. The spatial resolution indicated by the direction components is a bit coarser, but

only by a couple of pixels, i.e., ∼20-25 km. The spatial resolution of the nadir region appears to

be slightly elongated in the cross track direction by a few pixels, probably due to a lack of azimuth

angle diversity, but still around the same size as a DIB slice processing WVC. The spatial resolution

of the DIB egg and DIB slice processing WRFs suggests that in both cases DIB processing tends

to have a spatial resolution on the order of the size of the WVC used for the DIB processing, i.e.,

∼25 km or ∼12.5 km.

The WRFs indicate that the spatial resolution of UHR processing is significantly finer than

the spatial resolution of DIB processing, i.e.,∼5-10 km. The 3 dB contours of the UHR processing

speed components are elliptical with a major axes significantly longer than the minor axes. Similar
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to DIB processing, the 3 dB contours of the direction components for UHR processing are larger

than the 3 dB contours of the speed components for UHR processing by a few pixels and the shape

of the 3 dB contours is no longer well defined by a single ellipse. The 3 dB contours in the direction

components appear more like two ellipses crossed over the center pixels. The acute angle between

the ellipses varies based on swath location. While the spatial resolution of UHR processing is not

as small as a UHR processing WVC, it is finer than the spatial resolution of DIB processing. This

demonstrates that UHR processing improves the spatial resolution of wind estimation.

To help understand the shapes of the WRFs, cross sections of the speed component of the

generalized WRFs from the sweet spot are shown in Figs. 4.13 and 4.14. The top row in Fig. 4.13

represents DIB egg processing while the bottom row represents DIB slice processing; the left

column represents horizontal cross sections through the WRFs and the right column represents

vertical cross sections through the WRFs. UHR processing is better represented with diagonal

cross sections in Fig. 4.14; the left side being a cross section from the lower left to the upper right

of the WRF and the right side being a cross section from the upper left to the lower right of the

WRF. Each cross section passes through the peak pixel. The UHR cross sections pass through the

centers of the main diagonal elements of the UHR processing WRFs forming an acute angle of 73◦.

Each cross section is compared to a Gaussian to help give a reference for the shape of the cross

section. Better models than a Gaussian may exist for some of the WRF shapes, but a Gaussian is

sufficient to give an idea of the WRF shapes.

The speed component of the DIB egg processing sweet spot generalized WRF is very well

approximated by a Gaussian and is close to being circularly symmetric. The other DIB egg pro-

cessing generalized WRFs appear to be well approximated by circularly symmetric Gaussians as

well. The DIB slice processing and UHR processing WRFs have more shape variety than the DIB

egg processing WRFs. The speed component of the DIB sweet spot generalized WRF in Fig. 4.13

is somewhat circularly symmetric and seems to be reasonably approximated by a Gaussian, though

the sharp peak at the center of the WRF is not modeled so well by the Gaussian. The speed com-

ponent of the UHR sweet spot WRF in Fig. 4.14 seems that it could be modeled by the addition

of two elliptical Gaussians that cross at pixels near the peak of the WRF. Similar to the speed

component of the DIB slice processing WRF, the peak at the center of the speed component of

the UHR processing WRF may not be modeled as well by the two Gaussians as the rest of the
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Table 4.1: Effective spatial resolutions of the different processing algorithms in various swath
locations. The 3 dB effective spatial resolution is approximated as an ellipse with the diameter

of the major and minor axes given in the table.

Location Axis DIB Egg DIB Slice UHR

Far Swath
Major 41 km 18 km 11 km
Minor 35 km 9 km 5 km

Sweet Spot
Major 31 km 15 km 10 km
Minor 30 km 12 km 5 km

Nadir Region
Major 31 km 24 km 25 km
Minor 30 km 12 km 8 km

WRF. The remaining DIB slice and UHR processing generalized WRFs appear that they could be

modeled somewhat by a single elliptial Gaussian, such as the near nadir generalized WRFs, or by

the addition of two elliptical Gaussians that cross at the peak value, such as the far swath general-

ized WRFs. The acute angle between the intersecting elliptical Gaussians varies based on swath

location.

The effective spatial resolutions of DIB egg, DIB slice, and UHR processing are summa-

rized in Table 4.1. The effective spatial resolution is approximated as an ellipse for each processing

type and location. The values reported are based on the 3 dB contour of the speed component of

the generalized WRFs. Beyond the 3 dB contour, the WRFs may not be well approximated by a

single ellipse, but this is similar to the SRF found for various processing algorithms [33]. Table 4.1

clearly shows that the effective spatial resolution of UHR processing is finer than the effective

spatial resolution of DIB processing.

4.3 Conclusion

In this chapter, the following contributions are made: (1) a WRF is defined and a method

to calculate the WRF for various wind estimation processing techniques is presented; (2) estimates

of the effective spatial resolution for three QuikSCAT processing techniques are found based on

the generalized WRF calculated for each; (3) QuikSCAT UHR processing is shown to have a

finer effective spatial resolution than DIB processing; (4) evidence is provided that the bias in

wind retrieval due to wind direction is mitigated through overlapping σ0 measurements from a

variety of azimuth and incidence angles. These contributions can be used to validate new wind
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estimation processing techniques and can be extended to compare processing techniques across

different scatterometers.
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Figure 4.5: The direction components of the WRFs for a mid-swath WVC location using different
processing algorithms and different common directions. The rows (from top to bottom) are DIB
egg, DIB slice, and UHR processing. The columns (from left to right) are 30◦, 150◦, and 270◦

common directions. The black squares indicate the edges of the DIB egg and DIB slice processing
WVCs, and the black asterisks indicate the location of the UHR processing WVC pixel. The
center locations of the WVCs are the same for all processing techniques. The colors in each panel
represent the shift in direction (degrees) of the expected wind vector at each pixel.
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Figure 4.6: The speed components of the WRFs for a mid-swath WVC location using different
processing algorithms and different common directions. The (rows from top to bottom) are DIB
egg, DIB slice, and UHR processing. The columns (from left to right) are 30◦, 150◦, and 270◦

common directions. The black squares indicate the edges of the DIB egg and DIB slice processing
WVCs, and the black asterisks indicate the location of the UHR processing WVC pixel. The center
locations of the WVCs are the same for all processing techniques. Red contour lines are placed at
3 dB and 6 dB below the peak value; the values in each panel have been normalized to a peak of 1.
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Figure 4.7: The u components of the WRFs for a mid-swath WVC location using different process-
ing algorithms and different common directions. The rows (from top to bottom) are DIB egg, DIB
slice, and UHR processing. The columns (from left to right) are 30◦, 150◦, and 270◦ common di-
rections. The black squares indicate the edges of the DIB egg and DIB slice processing WVCs, and
the black asterisks indicate the location of the UHR processing WVC pixel. The center locations
of the WVCs are the same for all processing techniques.
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Figure 4.8: The v components of the WRFs for a mid-swath WVC location using different process-
ing algorithms and different common directions. The rows (from top to bottom) are DIB egg, DIB
slice, and UHR processing. The columns (from left to right) are 30◦, 150◦, and 270◦ common di-
rections. The black squares indicate the edges of the DIB egg and DIB slice processing WVCs, and
the black asterisks indicate the location of the UHR processing WVC pixel. The center locations
of the WVCs are the same for all processing techniques.
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Figure 4.9: The absolute value direction components of the WRFs independent of direction for
three WVCs using different processing algorithms. The rows (from top to bottom) are DIB egg,
DIB slice, and UHR processing. The columns are three different WVCs that are (from left to
right) from the sweet spot close to the far swath, from the middle of the sweet spot, and from the
sweet spot close to the nadir region. The black squares indicate the edges of the DIB egg and
DIB slice processing WVCs, and the black asterisks indicate the locations of the UHR processing
WVC pixels. The center locations of the WVCs are the same for all processing techniques. Red
contour lines are placed at 3 dB and 6 dB below the peak value; the values in each panel have been
normalized.
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Figure 4.10: The speed components of the WRFs independent of direction for three WVCs using
different processing algorithms. The rows (from top to bottom) are DIB egg, DIB slice, and UHR
processing. The columns are three different WVCs that are (from left to right) from the sweet spot
close to the far swath, from the middle of the sweet spot, and from the sweet spot close to the nadir
region. The black squares indicate the edges of the DIB egg and DIB slice processing WVCs, and
the black asterisks indicate the locations of the UHR processing WVC pixels. The center locations
of the WVCs are the same for all processing techniques. Red contour lines are placed at 3 dB,
6 dB, 9 dB, and 12 dB below the peak value; the values in each panel have been normalized.
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Figure 4.11: The direction components of the generalized WRFs for different processing algo-
rithms. The rows (from top to bottom) are DIB egg, DIB slice, and UHR processing. The columns
are generalized WRFS for WVCs that are (from left to right) from the far swath, from the sweet
spot, and from the nadir region. The black squares indicate the edges of the DIB egg and DIB slice
processing WVCs, and the black asterisks indicate the locations of the UHR processing WVC
pixels. The center locations of the WVCs are the same for all processing techniques. Red con-
tour lines are placed at 3 dB and 6 dB below the peak value; the values in each panel have been
normalized.
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Figure 4.12: The speed components of the generalized WRFs for different processing algorithms.
The rows (from top to bottom) are DIB egg, DIB slice, and UHR processing. The columns are
generalized WRFs for WVCs that are (from left to right) from the far swath, from the sweet spot,
and from the nadir region. The black squares indicate the edges of the DIB egg and DIB slice
processing WVCs, and the black asterisks indicate the locations of the UHR processing WVC
pixels. The center locations of the WVCs are the same for all processing techniques. Red contour
lines are placed at 3 dB, 6 dB, 9 dB, and 12 dB below the peak value; the values in each panel have
been normalized.
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Figure 4.13: Cross sections of the speed component of the sweet spot generalized WRFs for DIB
processing. The top row is DIB egg processing while the bottom row is DIB slice processing. The
left column is a horizontal cross section while the right column is a vertical cross section. The
x-axes are in km and the generalized WRFs have been normalized.
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Figure 4.14: Cross sections of the speed component of the sweet spot generalized WRF for UHR
processing. (a) is a diagonal cross section from the lower left to the upper right while (b) is a
diagonal cross section from the upper left to the lower right. The acute angle between the inter-
secting sections is approximately 73◦. The x-axes are in km and the generalized WRFs have been
normalized.
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CHAPTER 5. A NEW METHOD TO CREATE REALISTIC SYNTHETIC WIND
FIELDS FOR SCATTEROMETER SIMULATION

Determining the accuracy of scatterometer-measured winds is an important part of analyz-

ing wind retrieval and ambiguity selection algorithms. Scatterometer-measured winds sometimes

coincide in time and space with winds measured by in situ instruments. These collocated measure-

ments are often used to validate wind estimation algorithms, especially in near-coastal locations

where in situ measurements are more common [7], [24]. However, for the vast majority of the

ocean there are no other data to validate scatterometer measurements. In these areas, different

forms of analysis are employed to verify that the measured winds are plausible, even if their exact

accuracy is unknown.

An alternative method of measuring the accuracy of scatterometer wind retrieval and ambi-

guity selection algorithms can be achieved through simulation. While simulation may not perfectly

model actual scatterometer measurements, the true wind field is known in simulation. This means

a quantitative accuracy measurement can be taken in simulation as the measured wind field is

compared with the true wind field.

In this and the subsequent chapter, we present an improved simulation tool as a method to

analyze wind retrieval and ambiguity selection algorithms. This chapter develops the first part of

the simulation tool, an improved process to make fine resolution synthetic wind fields sufficiently

realistic to test UHR ambiguity selection algorithms. While the quality of simulation results for

all wind estimation algorithms is better when a realistic wind field is used as the true wind field,

ambiguity selection algorithms especially require a true wind field with a certain level of realism

for their results to translate well to actual scatterometer measurements. Synthetic wind fields made

from previous methods are insufficient for testing ambiguity selection algorithms because they

either focus on specific wind features that do not generalize to the entire ocean well or they have

an unrealistic spatial distribution of wind features. For convenience with the rest of the simulation,
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in this chapter we make synthetic wind fields with WVCs that are 2.225 km × 2.225 km. The

process can be adapted to any given WVC size.

This chapter is organized as follows. Section 5.1 develops the synthetic wind field creation

process. Section 5.2 analyzes the process itself to explain certain characteristics and attributes

that the created synthetic wind fields will possess. Section 5.3 validates the synthetic wind fields

through divergence and vorticity measurements and Section 5.4 provides a brief conclusion.

5.1 Synthetic Wind Creation Process Overview

We provide a brief overview of the method to create a realistic synthetic wind field. The

method begins by performing bandlimited interpolation on a low resolution NWP wind field. The

wind field passes through a prewhitening filter restricted to the low frequency components, yielding

a bandlimited white wind field. The extrapolated high frequency components of the bandlimited

white wind field are assigned a uniform magnitude and random phase, thus extrapolating the fre-

quency content to the desired resolution. The white wind field then passes through a postwhitening

filter to remove the white noise characteristics. At this point the kinetic energy spectrum of the av-

erage wind field does not follow the expected power law and the wind field still contains unrealistic

wind features. To produce the proper power law and remove these undesirable artifacts and wind

features, the full wind field passes through a final filter. The resulting wind field is the realistic high

resolution wind field. The key steps in the process are discussed in greater detail in Sections 5.1.1

through 5.1.5.

5.1.1 Initial Wind Field

The synthetic wind field creation process begins with a low resolution NWP wind field.

This wind field sets the general wind characteristics of the final synthetic wind field and should

be realistic. A secondary purpose for the low resolution field is that many ambiguity selection

algorithms begin with an initial guess of the wind field ambiguities. For L2B wind fields, this

initial guess comes from selecting the ambiguities that are closest to the wind vectors predicted by

a low resolution NWP wind field. The low resolution wind field may double as the NWP wind

field for testing those ambiguity selection algorithms.
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One source for these low resolution wind fields is the set of NWP wind fields developed

by the European Centre for Medium-Range Weather Forecasts (ECMWF). These wind fields are

produced on a global scale with one wind vector given at each integer latitude and longitude cross-

ing. The simplest way to project the spherical ECMWF NWP wind fields to a 2D wind field with

evenly spaced WVCs is to perform an equirectangular projection. This projection greatly distorts

the WVCs near the poles, but is negligible at the equator. As many areas of open ocean sufficiently

large enough to make a useful synthetic wind field are near the equator, this method makes the

simplifying assumption that any distortion caused by the equirectangular projection is negligible

and the resulting 2D wind field has a nominal distance of 111.25 km between the centers of each

adjacent WVC. While such a simplifying assumption is limiting in many other instances, the re-

sulting wind fields contain the same large-scale wind features and characteristics that are predicted

for winds on that scale. They are sufficiently realistic as low resolution wind fields. A generic

NWP wind field is shown in Fig. 5.1.

Figure 5.1: A sample ECMWF NWP wind field. (a) shows the wind speed (m/s) and (b) shows
the wind direction (degree). This is the initial wind field used when representing all steps of the
synthetic wind field creation process. The wind field is nominally 2781.25 km × 2781.25 km.

63



5.1.2 Prewhitening Filter

The low resolution wind field undergoes bandlimited interpolation to the high resolution

sampling period and passes through a prewhitening filter that only affects the low frequency ele-

ments of the frequency spectrum. As mentioned in Chapter 2, the average magnitude component

of ocean winds’ 2D discrete Fourier transform (DFT) follows a known power law and can be ex-

trapolated. Whitening the wind field before extrapolating the magnitude component of the 2D DFT

creates a smoother transition between the original and extrapolated portions and reduces unrealistic

artifacts in the wind field caused by that juncture.

Additionally, the phase component of wind fields is difficult to extrapolate since the phase

is hard to model. By whitening the wind field, the phase at each frequency component ideally

becomes uncorrelated from the phase at other frequency components. The phase of a white wind

field is then much easier to extend by simply randomizing the phase at each new frequency bin.

The prewhitening filter is implemented by generalizing the first order difference equation

z′i = zi+1− zi to 2D. The 2D first order difference equation is performed by convolving the weight-

ing image shown in Fig. 5.2 with the bandlimited wind field. For computational speed, the weight-

ing image is zero padded to the size of the bandlimited wind field and the convolution between the

weighting image and the bandlimited wind field is implemented as multiplication in the frequency

domain. The prewhitening filter does not add any high frequency content beyond the cutoff fre-

quency of the low resolution wind field making a white bandlimited wind field. The white bandlim-

ited wind field associated with the NWP wind field in Fig. 5.1 is shown in Fig. 5.3. By performing

the bandlimited interpolation and prewhitening in this order, the prewhitening and postwhitening

are both implemented at high resolution which simplifies the creation of the postwhitening filter.

5.1.3 2D DFT Extrapolation

As previously mentioned, the interpolation of new wind vectors in a wind field occurs

through extrapolating the magnitude of the 2D DFT and randomizing the associated phase. In

general, a 2D kinetic energy spectrum can be calculated by squaring the magnitude of the 2D

DFT. A white kinetic energy spectrum, which is a constant value for all frequency bins, ideally

corresponds to a uniform magnitude for all frequency bins in the DFT. For the white wind field,
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Figure 5.2: The weighting image convolved with the NWP wind field to prewhiten the wind field.

Figure 5.3: The white bandlimited wind field of the sample ECMWF NWP wind field from
Fig. 5.1. (a) shows the wind speed (m/s) and (b) shows the wind direction (degree). The wind
speed scale is arbitrary at this point. The wind field is nominally 2781.25 km × 2781.25 km.

the magnitude assigned to all extrapolated high frequency bins is the mean magnitude of the low

frequency bins of the white bandlimited wind field. The phase component of the extrapolated

frequency bins is assigned a realization of a uniformly distributed independent random variable

from −π to π . Taking the inverse 2D DFT of the extrapolated spectrum yields the white wind

field. The white wind field corresponding to the low resolution wind field in Fig. 5.1 is given in

Fig. 5.4.
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Figure 5.4: The white wind field of the sample ECMWF NWP wind field from Fig. 5.1. (a) shows
the wind speed (m/s) and (b) shows the wind direction (degree). Due to the nature of the filters
that the wind field passes through, the wind speed is not scaled to the proper range of values at this
point. The wind field is nominally 2781.25 km × 2781.25 km.

Since each extrapolated frequency bin corresponds to higher resolution detail added to the

original wind field, the amount of extrapolation that the wind field undergoes corresponds to the

ratio between the low resolution sampling period and the high resolution sampling period. For

example, interpolating a 111.25 km resolution wind field to a UHR 2.225 km resolution wind field

corresponds to extrapolating the M×N low resolution 2D DFT to a 50M× 50N high resolution

2D DFT.

5.1.4 Postwhitening Filter

The postwhitening filter is the inverse of the prewhitening filter with a few modifications.

The first modification is that the DC component of the postwhitening filter is set to zero to avoid a

singularity because the DC component of the prewhitening filter is also zero. The DC component

is handled separately during the final filter. The second modification is to constrain the filter to

be circularly symmetric. The weighting image in Fig. 5.2 used to create the prewhitening filter

is used for its simplicity and ease of implementation but it does not make a circularly symmetric

prewhitening filter. The associated postwhitening filter is also not circularly symmetric without
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modification. Modifying the postwhitening filter to be circularly symmetric helps the final wind

field to be rotationally invariant, a characteristic of realistic wind fields.

The importance of a rotationally invariant wind field is seen by comparing the low resolu-

tion wind field in Fig. 5.1 with the white bandlimited wind field in Fig. 5.3. In Fig. 5.1, the wind

field does not contain any features that are dependent upon the axis of presentation or measure-

ment. In Fig. 5.3, the wind field has gone through a non-circularly symmetric prewhitening filter

and frequency bin extrapolation in two orthogonal directions. The dominating features of the wind

field in Fig. 5.3 are orthogonal features in line with the axes of presentation and measurement. The

rotationally variant wind field in Fig. 5.3 is much less realistic than the rotationally invariant wind

field in Fig. 5.1.

To make the postwhitening filter circularly symmetric, the filter is taken into the spatial

domain. Most of the postwhitening filter is a circularly symmetric bump that goes to zero away

from the center. The circularly symmetric values go to zero and then nonsymmetric negative

values ring the outside of the filter. By zeroing out the any value that is less than zero, the filter is

constrained to be circularly symmetric. In the frequency domain the DC component is set to zero

again.

5.1.5 Final Filter

After the white wind field passes through the postwhitening filter, the wind field again

exhibits rolloff with the wavenumber k. Unfortunately, the postwhite wind field contains a few

undesirable artifacts and features, though the general wind features of the original wind field are

still visible. As an example, compare the characteristics and flow of the wind field in Fig. 5.5 to

the original low resolution wind field in Fig. 5.1. The observed 2D kinetic energy spectrum of

the postwhite wind field confirms that the postwhitening filter does not quite recreate the desired

power law of wind fields as the spectrum of Fig. 5.5 is shown in Fig. 5.6. These undesirable

characteristics are predictable and can be mitigated by further filtering the wind field.

The exact shape and implementation of the final correction filter is admittedly ad hoc and

the great variability exhibited by measured wind fields indicates that many different filters could

be used to create a vast variety of realistic wind fields from a single initial wind field. Therefore,

the filter presented here has been tuned using both model predictions and measured wind fields to
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Figure 5.5: The postwhite wind field of the sample ECMWF NWP wind field from Fig. 5.1. (a)
shows the wind speed (m/s) and (b) shows the wind direction (degree). Due to the nature of the
filters that the wind field passes through, the wind speed is not yet scaled to the proper range of
values. The wind field is nominally 2781.25 km × 2781.25 km.

create synthetic wind fields that best match various parameters of measured wind fields on average,

independent of location, orientation, and final resolution of the wind field.

The final filter is made by dividing the target frequency spectrum magnitude by the average

frequency spectrum magnitude of the wind fields produced by the postwhitening filter (the phase

associated with each frequency bin is unaffected by this filter). The target frequency spectrum

magnitude for these winds is arbitrarily chosen to correspond to a power law with α2D = −8/3.

The DC frequency bin (where k = 0) is set so the power in the DC bin is proportional to power

in the nearby frequency bins relative to power in the DC bin of the original NWP wind field. The

final part of the filter is to scale the wind field so that the average wind speed of the synthetic wind

field matches the average wind speed of the low resolution field.

Note that the edges of the high resolution wind field are considered to be less accurate due to

the periodic assumption of the 2D DFT in performing the convolution. For this reason, the outside

WVCs of the wind field are discarded. The 2D kinetic energy spectrum of a wind field having gone

through the final filter with the outer WVCs removed is shown in Fig. 5.7 with the corresponding

wind field in Fig. 5.8. To allow a straightforward comparison between the low resolution wind

field and the synthetic high resolution wind field, high resolution WVCs are discarded in blocks

corresponding to an integer number of low resolution WVCs.
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Figure 5.6: The kinetic energy spectrum of the postwhite wind field of the sample ECMWF NWP
wind field from Fig. 5.1 with a least squares fit compared to the expected least squares fit. To reduce
the effects of spectral leakage the wind field has gone through a circular Tukey window with a 0.2
cosine taper. Note that the measured α2D is -3.40 while the average expected α2D is -2.67.

5.2 Analysis of Process

The aim of the synthetic wind fields creation process is to create high resolution wind fields

that are realistic enough to be used in simulation for testing ambiguity selection algorithms. While

the validation of the synthetic wind fields is presented in Section 5.3, additional insight on the wind

fields that can be gleaned from examining the wind field creation process is presented here.

5.2.1 Process Repeatability

The synthetic wind field creation process is applicable to any ECMWF NWP wind field.

Due to the randomization of the extended phase component, the process is not deterministic and

running the process multiple times on the same initial low resolution wind field yields small scale

feature differences between the final wind fields. These differences do not affect the general wind

field characteristics or cause the wind field to appear any more or less realistic. For applications

where a variety of general wind field characteristics are desired, such as testing ambiguity selection

algorithms, many different NWP wind fields should be used when making the synthetic wind fields.
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Figure 5.7: The kinetic energy spectrum of the final wind field of the sample ECMWF NWP wind
field from Fig. 5.1 with a least squares fit compared to the expected least squares fit. To reduce
the effects of spectral leakage the wind field has gone through a circular Tukey window with a 0.2
cosine taper. Note that the measured α2D of -2.56 is close to the average expected α2D of -2.67.

5.2.2 Comparison to the NWP Wind Field

While the general characteristics of the synthetic wind field are based on the low resolution

wind field, there are a few notable differences as well. To make a fair comparison between the NWP

low resolution wind field and the high resolution synthetic wind field, a low resolution synthetic

wind field is found by averaging the wind vectors of all the high resolution WVCs that correspond

to each low resolution WVC. As some edge high resolution WVCs are discarded during the wind

field creation process, only the middle WVCs of the NWP wind field are compared to the low

resolution synthetic wind field. An example of a NWP wind field and its associated low resolution

synthetic wind field is given in Fig. 5.9.

The wind characteristics between the two wind fields in Fig. 5.9 are generally the same but

with differences most prevalent around the high frequency weather features (i.e., the wind fronts

and cyclone). This example was specifically chosen with the high frequency features to highlight

these differences, wind fields with fewer high frequency features have fewer visible differences.

Low frequency features dominate the average kinetic energy spectrum over the ocean be-

cause high frequency features are less common; the power law that wind fields follow on average
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Figure 5.8: The final wind field of the sample ECMWF NWP wind field from Fig. 5.1. (a) shows
the wind speed (m/s) and (b) shows the wind direction (degree). The wind field is nominally
2558.75 km × 2558.75 km.

is evidence of this. As the synthetic wind field creation process is based on average wind field

characteristics, the synthetic wind fields recreate the more common low resolution features better

than the less common high resolution features. In general, the smoother the NWP wind field is,

the better the synthetic wind field represents the NWP wind field. This trend implies that the wind

fields created by this process are a subset of all possible realistic synthetic wind fields.

Another point of interest is found by comparing the eyes of the cyclones in Fig. 5.9. The

eye of the cyclone of the synthetic wind field is shifted to the left and up of the NWP cyclone,

a shift of over a hundred kilometers. This shift implies that the synthetic wind field is a high

resolution representation of a different, but similar, low resolution wind field than the NWP wind

field. For the purpose of testing ambiguity selection algorithms through simulation, this result is

acceptable.

5.3 Validation of Wind Fields

Traditional methods of validating wind fields have difficulty being extended to these syn-

thetic wind fields. One such method is to compare a scatterometer-measured wind field to in situ

measurements or other scatterometer measurements. Since these synthetic wind fields are not in-

tended to correspond to a real location, there are no in situ or other scatterometer measurements
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Figure 5.9: Comparison between an original NWP wind field and the low resolution synthetic wind
field. (a) shows the original NWP wind field and (b) shows the low resolution synthetic wind field.
Note that the low resolution synthetic wind field generally matches the wind characteristics of the
original NWP wind field, but it doesn’t recreate the high resolution wind fronts and cyclones quite
so well. The wind fields are nominally 2558.75 km × 2558.75 km.

to compare them with. Another method of validating wind fields is to measure the average kinetic

energy spectra and check it against models and previous measurements. As the wind field creation

process forces the wind field’s average energy spectra to match the power law predicted by models

and confirmed by measurements, this check is guaranteed to pass. While this check indicates that

the wind fields may be realistic, kinetic energy spectra are not unique as many wind fields with

the same energy spectrum may have varying levels of realism based on other characteristics of the

wind field. Instead, other methods must be used to evaluate the synthetic wind fields.

5.3.1 Divergence and Vorticity

As a preliminary check, an experienced eye is able to inspect the synthetic wind fields for

extreme wind speeds, misplaced wind vectors against the flow of the wind field, and many other

wind features that seem out of place. The synthetic wind fields created by the process explained

in this chapter pass the visual inspection sufficiently to appear to be realistic as evidenced by the

wind fields shown in Figs. 5.8, 5.10 and 5.11. This visual check is subjective and hard to make
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repeatable, but many aspects of this check can be accomplished objectively and repeatably by

comparing the divergence and vorticity of the wind field.

Figure 5.10: An example synthetic wind field. (a) shows the wind speed (m/s) and (b) shows the
wind direction (degree). The wind field is nominally 2558.75 km × 2558.75 km. The α2D of this
wind field is -2.67.

Figure 5.11: Another example synthetic wind field. (a) shows the wind speed (m/s) and (b) shows
the wind direction (degree). The wind field is nominally 2558.75 km × 2558.75 km. The α2D of
this wind field is -2.60, close to the average α2D of -2.67.
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The average spectral shape of the divergence and vorticity of these realistic synthetic wind

fields should be proportional and similar in shape to the spectral shape of the divergence and

vorticity of measured UHR wind fields. It is also expected that the divergence and vorticity of

synthetic wind fields are lower than the divergence and vorticity of the measured UHR wind fields

as the measured UHR wind fields are made from noisy measurements.

The average logarithmic divergence and vorticity spectrum of synthetic wind fields along

with the average logarithmic divergence and vorticity spectra of QuikSCAT UHR wind fields are

shown in Figs. 5.12 and 5.13. The first observation for the synthetic wind fields is that they have a

few remaining artifacts near their center that the final filter did not completely take out of the wind

fields. Even with these artifacts, the divergence and vorticity spectra are relatively proportional to

each other as desired. Also, the divergence and vorticity spectra are relatively circularly symmetric,

a desirable quality for an isotropic wind field. When examining the divergence and vorticity spectra

for the measured UHR wind fields, they are not circularly symmetric. This can be explained by

the orientation that these wind fields were measured on the globe. The UHR wind fields were

taken from ascending and descending QuikSCAT passes, so that top to bottom is the east-west axis

while left to right is the north-south axis. The greater vorticity and divergence in the north-south

axis is indicative of the changes between the westerlies and the trade winds along the north-south

axis1. Ignoring the non-isotropic portion of the UHR winds and the artifacts left in the synthetic

winds, the general shape of the divergence and vorticity spectra matches between the measured

and synthetic winds.

Another way to characterize the divergence and vorticity of a wind field is through the root

mean square (RMS) divergence and vorticity. For the synthetic and measured UHR wind fields, a

histogram of the RMS divergence and vorticity measurements is presented in Figs. 5.14 and 5.15.

In terms of histogram shape, the synthetic wind fields somewhat match the shape of the measured

UHR wind fields. The UHR wind fields have a higher mean and a few more outliers than the

synthetic wind fields, but this is not a surprise considering the noise in the measurements that are

part of the UHR wind fields.

1As mentioned previously the final filter selected for this paper was chosen to create wind fields that are realistic
independent of location and orientation on the globe. While not shown here, optimizing the final filter with measured
UHR wind field data introduces the same non-isotropic elements into the wind field specific to the measurement
geometry of the UHR wind fields.
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Figure 5.12: The average logarithmic divergence and vorticity spectrum of the synthetic wind
fields. (a) shows the divergence spectrum and (b) shows the vorticity spectrum. Color axis values
are arbitrary.

Aside from a few artifacts in the average divergence and vorticity spectra of the synthetic

wind fields, they match sufficiently with the measured UHR wind fields. Coupling these results

with the expected E2D and visual inspection, they are suitably realistic for simulation and testing

ambiguity selection algorithms.

5.4 Conclusion

This chapter presents a new synthetic wind field creation process. An explanation of the

theory and process is given along with an analysis of the ending wind fields. The wind fields made

by this process are found to be visually acceptable, conforming to the expected kinetic energy

spectrum, and sufficient in the general divergence and vorticity characteristics found in similar

resolution wind fields. These wind fields contribute to the utility of synthetic wind fields as they

are sufficiently realistic for simulation-based testing of UHR ambiguity selection algorithms.
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Figure 5.13: The average logarithmic divergence and vorticity spectrum of measured UHR wind
fields. (a) shows the divergence spectrum and (b) shows the vorticity spectrum. Color axis values
are arbitrary

Figure 5.14: Histograms of the RMS divergence and vorticity for the synthetic wind fields. (a)
shows the divergence histogram and (b) shows the vorticity histogram. The mean divergence is
1.34ms−1WVC−1 and the mean vorticity is 1.41ms−1WVC−1.
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Figure 5.15: Histograms of the RMS divergence and vorticity for measured UHR wind fields. (a)
shows the divergence histogram and (b) shows the vorticity histogram. The mean divergence is
0.672ms−1WVC−1 and the mean vorticity is 0.673ms−1WVC−1.
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CHAPTER 6. ANALYSIS OF WIND RETRIEVAL AND AMBIGUITY SELECTION
ALGORITHMS THROUGH SIMULATION

As previously noted at the beginning of Chapter 5, simulation is a useful method to help

evaluate the accuracy of wind retrieval and ambiguity selection algorithms. This chapter contin-

ues to develop the improved simulation tool for analyzing wind retrieval and ambiguity selection

algorithms and demonstrates the tool for various algorithms.

Along with a visual inspection, three post-simulation performance metrics are presented

to analyze the different algorithms. The first two metrics are the wind speed and direction root-

mean-square errors (RMSEs) of the estimated wind vector when compared to the true wind vector.

The last metric is the percentage of correctly selected ambiguities (sometimes called the “ambi-

guity removal skill” [14]). These metrics help to analyze wind retrieval and ambiguity selection

algorithms both together and separately where possible.

This chapter is organized as follows. Section 6.1 explains the simulation process. Sec-

tion 6.2 introduces the algorithms that are passed through the simulation as a demonstration of

the analysis that is performed with this tool. Section 6.3 examines and analyzes the results of the

various QuikSCAT algorithms and Section 6.4 gives a brief conclusion.

6.1 Simulation Process

The simulation process for testing wind retrieval and ambiguity selection algorithms is sim-

ilar to the simulation process described in Section 4.1.2 for developing the WRF. Only the high-

lights of the simulation process and differences between this simulation and the WRF simulation

are given here.

The starting point for the simulation is a synthetic wind field created by the process de-

scribed in Chapter 5 and the measurement geometry pulled from a QuikSCAT L1B file. The

synthetic wind field provides a wind vector at each SRF pixel for all the slice measurements pulled
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from the QuikSCAT L1B file (the simulation performs DIB slice and UHR processing, no egg

measurements are required). Similar to the simulation in Chapter 4, the simulation uses pixels

(UHR WVCs) that are 2.225 km × 2.225 km. Through the QuikSCAT QMOD4 GMF, each wind

vector is transformed to a set of σ0 values based on the measurement geometry. The simulated

slice measurements are computed by taking the weighted average of the σ0 measurements where

the weights come from the corresponding slice SRF. Noise is added to each simulated slice mea-

surement.

The wind field is then separately processed using both DIB slice processing and UHR

processing. The various wind retrieval algorithms are performed for each WVC with the simu-

lated slice measurements. For convenience, we perform DIB slice processing with WVCs that are

11.125 km × 11.125 km in size so that each DIB WVC is 5 UHR WVCs × 5 UHR WVCs. After

wind retrieval, each simulated scatterometer-measured wind field undergoes ambiguity selection.

Simulation of very large wind fields is time-intensive. To reduce the computation time, we

only simulate a relatively small section of a full QuikSCAT swath stored in an L1B file. For the

swath section used in this study, approximately 87% of WVCs in the section are from the sweet

spot, 7% of the WVCs are from the far swath, and 6% of the WVCs are from the nadir region. Note

that in a typical QuikSCAT cross track slice, approximately 67% of WVCs are from the sweet spot,

22% of WVCs are from the far swath, and 11% of WVCs are from the nadir region. While the

distribution of WVCs in the simulation may not accurately depict the distribution of WVCs in a

full swath, the section is sufficient to demonstrate the tool’s ability to compare algorithms and to

see trends within each swath region.

When pulling data from the QuikSCAT L1B file, the measurement geometry is interpolated

to 2.225 km × 2.225 km resolution to assist in the simulation. This interpolation is done on a

latitudinal-longitudinal grid rather than a swath-based grid. For the swath section used in this

study, this puts the far swath in the top left corner and the nadir region in the bottom right corner

as depicted in Fig. 6.1.

6.2 Algorithm Description

We demonstrate how the simulation tool is used by analyzing two different pairs of wind

retrieval and ambiguity selection algorithms. The final products of each algorithm pair are a DIB
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Figure 6.1: The swath area used in this study separated into the far swath, sweet spot, and nadir
region.

wind field at 11.125 km × 11.125 km resolution and a UHR wind field at 2.225 km × 2.225 km

resolution (for convenience in this chapter, these resolutions are referred to as DIB resolution and

UHR resolution respectively).

The first algorithm pair is referred to as basic wind estimation. Basic wind estimation

performs wind retrieval without DIRTH as described in Section 2.2.2 and performs ambiguity

selection with the median filer algorithm as described in Section 2.2.3 for both DIB slice processing

and UHR processing. To nudge the DIB wind field, a 111.25 km× 111.25 km “artificial NWP”

wind field is created by taking a moving average of the synthetic wind field and downsampling the

result. The artificial NWP wind field is linearly interpolated to the spatial resolution of the DIB

wind field, and the DIB wind field is nudged by the linearly interpolated wind field. Similar to

QuikSCAT L2B processing, only the first or second most likely ambiguities are selected during

the nudging process [14]. The median filter algorithm is run on the DIB wind field with a fixed

window size of 7 WVCs × 7 WVCs. The median filtered DIB wind field is then used to nudge the

UHR wind field. As is common in UHR processing, the ambiguity for each WVC that is closest

in direction to the nearest DIB wind vector is selected as the initial guess; any ambiguity may be

selected when nudging the UHR wind field, i.e., not TN. The median filter algorithm is run on the
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nudged UHR wind field, with a fixed window size of 7 WVCs × 7 WVCs, to produce the final

wind field for basic wind estimation.

The second algorithm pair we refer to as DIR wind estimation. DIR wind estimation per-

forms wind retrieval with DIR (but not TN) and performs the modified median filter algorithm

for ambiguity selection as described in Section 2.2.4. Similar to basic wind estimation, the DIB

wind field is used to nudge the UHR wind field in DIR wind estimation. The process of nudging

each wind field is identical for both basic and DIR wind estimation and both implementations of

the modified median filter algorithm use a fixed window size of 7 WVCs × 7 WVCs. While DIR

is used for both QuikSCAT L2B and UHR data products [14], [36], it has not been previously

validated for QuikSCAT UHR data products.

6.3 Algorithm Analysis

To demonstrate the analysis tool, we run 14 different UHR resolution synthetic wind fields

through the simulation. These synthetic wind fields come from the synthetic wind field creation

process described in Chapter 5. To assist in calculating the performance metrics for the DIB

algorithms, a DIB resolution version of the synthetic wind fields is found by passing the synthetic

wind fields through a moving average filter and downsampling the result. An example synthetic

wind field at UHR resolution is shown in Fig. 6.2. This wind field is shown as it contains features

with both high and low frequency spatial variability. The example synthetic wind field at DIB

resolution is shown in Fig. 6.3.

Figs. 6.4 and 6.5 show the output UHR resolution wind fields for basic wind estimation and

DIR wind estimation respectively. Both wind fields recreate the general wind flow of the original

synthetic wind field well. There is very little noticeable variation in the selected wind speed be-

tween the two algorithms, most of the differences arise in the wind direction. The wind direction

returned by the basic wind estimation algorithms has more high frequency spatial variation than

the wind direction returned by the DIR wind estimation algorithms, but this variability appears to

be more connected to noise than the high frequency variation in the initial synthetic wind field. In

some areas, such as the nadir region in the lower right corner of the wind field, this noise in the

basic wind estimation wind field has contributed to resolving some small wind features that are not

in the original wind field. The DIR wind estimation wind field does not contain these features.
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Figure 6.2: One of the synthetic wind fields that is passed through the simulation. (a) shows the
wind speed (m/s), and (b) shows the wind direction (degrees). This wind field contains areas of
both high and low frequency spatial variability. The wind field is 629.675 km × 1499.65 km.

In general, DIR wind estimation appears to return a smoother direction component than

basic wind estimation. This result is not surprising as the kinetic energy spectrum of QuikSCAT

L2B wind fields with DIRTH follows a steeper power law than the spectrum without DIRTH [16].

While it is possible that DIR may smooth over high resolution features that are present in the

original wind field, there is no evidence in Figs. 6.4 and 6.5 that basic wind estimation is capable

of resolving any features from the original wind field that DIR wind estimation cannot.

The visual inspection of the UHR resolution wind fields indicates that current QuikSCAT

wind retrieval and ambiguity selection algorithms have a limit in their ability to resolve extremely

high frequency wind features. This result mirrors the presence of the apparent spectrum floor at

high frequency values in the kinetic energy spectrum of scatterometer-measured winds discussed
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Figure 6.3: The example synthetic wind field shown in Fig. 6.2 at DIB resolution. (a) shows the
wind speed (m/s), and (b) shows the wind direction (degrees).

in Chapter 3 and the spatial resolution of UHR processed winds being larger than a single WVC,

as found in Chapter 4.

The output DIB resolution wind fields for basic wind estimation and DIR wind estimation

are shown in Figs. 6.6 and 6.5 respectively. These wind fields yield similar conclusions in re-

gards to basic wind estimation and DIR wind estimation as the UHR resolution wind fields. When

comparing Figs. 6.4 and 6.5 with Figs. 6.6 and 6.7, two observations are apparent. The first ob-

servation is that UHR processing resolves wind features at a finer resolution than DIB processing

does. This is evidence of the result found in Chapter 4 that the spatial resolution of UHR process-

ing is finer than the spatial resolution of DIB processing. The second observation is that the cost

of this finer resolution comes at the cost of higher noise. These observations are consistent with

known properties of resolution enhancement algorithms for scatterometers [10].
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Figure 6.4: The basic wind estimation output at UHR resolution for the example synthetic wind
field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

The performance metrics are found for all estimated wind vectors in the 14 synthetic wind

fields whose retrieved wind speed is above 3 m/s (the threshold speed where the initial QuikSCAT

mission requirements began [9]). The wind speed and direction RMSEs are calculated for both

algorithm pairs by comparing the wind vectors estimated by the basic and DIR wind estimation

algorithms with the true wind vectors from the original wind fields. The wind speed RMSE value

for both the basic and DIR wind estimation algorithms is roughly equal to∼2 m/s for the UHR res-

olution winds and∼1.6 m/s for the DIB resolution winds. This matches the similarities seen in the

visual inspection of the wind fields. For the wind direction RMSE, the DIR wind estimation value

outperforms the basic wind estimation value by ∼10◦ for the UHR resolution winds and ∼12◦ for

the DIB resolution winds. To find the ambiguity removal skill, we determine the ambiguity for
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Figure 6.5: The DIR wind estimation output at UHR resolution for the example synthetic wind
field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees). The
wind field is 629.675 km × 1499.65 km.

each WVC whose direction is closest to the direction of the corresponding wind vector from the

original wind field. The wind fields corresponding to the ideal ambiguity selections for basic wind

estimation at UHR resolution, DIR wind estimation at UHR resolution, basic wind estimation at

DIB resolution, and DIR wind estimation at DIB resolution are shown in Figs. 6.8, 6.9, 6.10, and

6.11, respectively. While these wind fields help to determine the ambiguity removal skill for a

given ambiguity selection algorithm, they also show the theoretical best case wind fields for the

ambiguities returned from the wind retrieval algorithms. For this reason, the wind speed direction

RMSEs metrics are found for these ideal wind fields.

The performance metrics for basic and DIR wind estimation at DIB and UHR resolutions

along with the ideal ambiguity selections at DIB and UHR resolutions are summarized in Table 6.1.
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Figure 6.6: The basic wind estimation output at DIB resolution for the example synthetic wind
field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

The performance metrics are given for the entire wind field as well as for each section of the

QuikSCAT swath. As the majority of the wind field contains WVCs from the sweet spot (see

Fig. 6.1), the performance metrics of the entire wind field are closest in value to the performance

metrics of the sweet spot. While only 14 wind fields are used to find these performance metrics,

the calculated values are sufficient to exhibit the general trends between the various algorithms and

processing types.

Congruent with the visual inspection of the wind fields, the performance metrics in Ta-

ble 6.1 indicate that UHR processing is noisier than DIB processing. However, UHR processing

handles the additional noise well as the wind speed RMSE only increases by ∼0.5 m/s and the

wind direction RMSE only increases by ∼1◦ for basic wind estimation and ∼3-4◦ for DIR wind
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Table 6.1: The average performance metrics of basic and DIR wind estimation at DIB and UHR
resolutions and the ideal ambiguity selections at DIB and UHR resolutions. The performance

metrics are given for the full wind field selection and broken down by swath location.
Due to the full wind field selection being only a section of the QuikSCAT swath on

a latitudinal-longitudinal grid, the full wind field underrepresents the WVCs
from the far swath and nadir region.

Location Metric Basic Ideal Basic DIR Ideal DIR
UHR Resolution

Full
Field

Wind Speed RMSE 1.98 m/s 2.02 m/s 1.99 m/s 2.02 m/s
Wind Direction RMSE 35.70◦ 26.51◦ 25.74◦ 14.44◦

Ambiguity Removal Skill 87.81% 100% 85.76% 100%

Far
Swath

Wind Speed RMSE 2.76 m/s 2.77 m/s 2.77 m/s 2.77 m/s
Wind Direction RMSE 27.50◦ 22.63◦ 22.94◦ 12.88◦

Ambiguity Removal Skill 91.58% 100% 88.34% 100%

Sweet
Spot

Wind Speed RMSE 1.92 m/s 1.96 m/s 1.93 m/s 1.96 m/s
Wind Direction RMSE 34.82◦ 25.31◦ 24.74◦ 13.71◦

Ambiguity Removal Skill 87.85% 100% 86.22% 100%

Nadir
Region

Wind Speed RMSE 1.88 m/s 1.88 m/s 1.87 m/s 1.89 m/s
Wind Direction RMSE 52.86◦ 43.16◦ 39.87◦ 23.87◦

Ambiguity Removal Skill 83.03% 100% 75.82% 100%
DIB Resolution

Full
Field

Wind Speed RMSE 1.57 m/s 1.58 m/s 1.57 m/s 1.60 m/s
Wind Direction RMSE 34.44◦ 26.05◦ 22.82◦ 10.54◦

Ambiguity Removal Skill 89.43% 100% 84.66% 100%

Far
Swath

Wind Speed RMSE 2.24 m/s 2.24 m/s 2.25 m/s 2.25 m/s
Wind Direction RMSE 31.75◦ 27.76◦ 22.99◦ 14.96◦

Ambiguity Removal Skill 93.34% 100% 85.42% 100%

Sweet
Spot

Wind Speed RMSE 1.52 m/s 1.54 m/s 1.52 m/s 1.56 m/s
Wind Direction RMSE 33.62◦ 24.74◦ 22.16◦ 9.55◦

Ambiguity Removal Skill 89.39% 100% 85.06% 100%

Nadir
Region

Wind Speed RMSE 1.61 m/s 1.58 m/s 1.60 m/s 1.62 m/s
Wind Direction RMSE 49.09◦ 42.78◦ 32.64◦ 19.00◦

Ambiguity Removal Skill 86.05% 100% 76.46% 100%
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Figure 6.7: The DIR wind estimation output at DIB resolution for the example synthetic wind field
in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

estimation. These findings suggest that the improved resolution offered by UHR processing only

increases the effect of noise a relatively small amount.

No matter what algorithm pair is used, the wind direction RMSE is worst in the nadir region

and best in either the far swath or sweet spot. In a similar manner, the wind speed RMSE is worst

in the far swath and best in the nadir region or sweet spot. While the sweet spot does not always

have the lowest wind speed RMSE value or wind direction RMSE value, its values are always on

the lower end of the range for both. This result supports the observation that wind estimation tends

to be the best in the sweet spot.

The performance metrics in Table 6.1 indicate that optimizing ambiguity selection for the

lowest wind direction RMSE does not optimize ambiguity selection for the lowest wind speed

RMSE. However, all ambiguities for a given WVC tend to have similar wind speeds and the wind
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Figure 6.8: The ideal basic wind estimation output at UHR resolution for the example synthetic
wind field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

speed RMSE value is still around or under the initial QuikSCAT mission requirements’ wind speed

RMSE value of 2 m/s for winds between 3 m/s and 20 m/s. Optimizing for wind direction to get

closer to the initial QuikSCAT mission requirements’ wind direction RMSE value of 20◦ makes

more sense than slightly lowering the wind speed RMSE. Note that the initial QuikSCAT mission

requirements were designed for 25 km × 25 km WVCs [9]; achieving those requirements with

11.125 km × 11.125 km WVCs or 2.225 km × 2.225 km WVCs is not a trivial task.

While basic and DIR wind estimation are comparable for wind speed RMSE, DIR wind

estimation outperforms basic wind estimation for wind direction RMSE in all swath locations and

for both UHR and DIB processing. In general, DIR wind estimation is even better than basic

wind retrieval with the ideal ambiguities selected. This suggests that scatterometer-measured wind
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Figure 6.9: The ideal DIR wind estimation output at UHR resolution for the example synthetic
wind field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

estimates cannot be improved by better ambiguity selection algorithms for basic wind retrieval:

a new ambiguity selection algorithm compatible with DIR wind retrieval or a new wind retrieval

algorithm is needed to improve scatterometer-measured wind estimates. Basic wind estimation has

a slightly higher ambiguity skill than DIR wind estimation which indicates that the median filter

algorithm is a better fit for basic wind retrieval than the modified median filter algorithm is for DIR

wind retrieval.

6.4 Conclusion

This chapter demonstrates the simulation analysis tool that compares the effectiveness of

wind retrieval and ambiguity selection algorithms at DIB and UHR resolution. The simulation
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Figure 6.10: The ideal basic wind estimation output at DIB resolution for the example synthetic
wind field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

analysis tool synthesizes σ0 measurements from a synthetic wind field and QuikSCAT L1B file,

applies a wind retrieval and an ambiguity selection algorithm, and calculates several performance

metrics on the resulting wind fields. The simulation analysis tool also allows for a visual inspection

of the resulting wind fields. By changing which wind retrieval and ambiguity selection algorithms

are applied by the simulation tool, the performance of various wind retrieval and ambiguity selec-

tion algorithms can be compared.

To demonstrate the effectiveness of the simulation analysis tool in comparing wind estima-

tion algorithms, the simulation analysis tool is applied with basic wind estimation and DIR wind

estimation. Both the visual inspection and performance metrics indicate that DIR wind estimation

is more effective than basic wind estimation at estimating the wind field and that winds produced

by UHR processing are noisier than winds produced by DIB processing. The performance metrics
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Figure 6.11: The ideal DIR wind estimation output at DIB resolution for the example synthetic
wind field in Fig. 6.2. (a) shows the wind speed (m/s), and (b) shows the wind direction (degrees).

suggest that the increase in the effect of noise in UHR processing is slight in comparison to DIB

processing since the wind direction RMSE for UHR processing is at most only ∼ 3-4◦ above the

wind direction RMSE for DIB processing and the wind speed RMSE only increases by ∼ 0.5 m/s.

Additional verification is provided that wind estimation is better in the sweet spot than in the far

swath or nadir region. The performance metrics indicate that either improving the DIR ambiguity

selection or creating a new wind retrieval algorithm is required for the UHR resolution winds to

achieve the initial QuikSCAT mission requirements defined for low resolution wind fields.
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CHAPTER 7. CONCLUSION

7.1 Summary and Conclusions

This thesis explores several improved analysis techniques for scatterometer wind estima-

tion. Chapter 1 introduces scatterometer wind estimation and provides motivation for improved

analysis techniques. Chapter 2 contains necessary background information about scatterometers,

wind estimation, wind field analysis, scatterometer simulation, and synthetic wind fields to put the

rest of the thesis in context.

Chapter 3 presents a method of examining the kinetic energy spectrum in 2D. Similar to

1D analysis of the kinetic energy spectrum, the method describes the average 2D kinetic energy

spectrum in terms of a power law. The power law of the 2D analysis method is compared to the

power law found by 1D analysis methods to validate the method. The 2D analysis technique is

shown to be sufficient for estimating the 2D kinetic energy spectrum.

Chapter 4 introduces the concept of the WRF as an expansion of the σ0 measurement SRF.

The calculation of the WRF is detailed. This analysis method helps to define the spatial resolution

of different wind retrieval algorithms. Generalized WRFs for three different types of QuikSCAT

data processing methods are calculated.

The last analysis technique is developed and demonstrated in Chapters 5 and 6. Chapter 5

explores a process to create a synthetic wind field sufficiently realistic to be used in evaluating

ambiguity selection algorithms. The wind fields created by the process are verified through diver-

gence and vorticity measurements. These wind fields are used as input wind fields to the simulation

tool demonstrated in Chapter 6. This technique shows how wind retrieval and ambiguity selection

algorithms can be evaluated through simulation. The simulation allows for both visual inspec-

tion of the wind fields and calculation of various quantitative performance metrics. The technique

is demonstrated for QuikSCAT UHR wind estimation with and without DIR. The demonstration

validates QuikSCAT UHR wind estimation with DIR.
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The three improved analysis techniques developed in this thesis provide a new way to study

ocean winds through the 2D kinetic energy spectrum and provide methods to evaluate scatterome-

ter processing algorithms through the WRF and the simulation tool. These techniques are sufficient

to better scatterometer wind estimation by tuning existing algorithms and creating new algorithms.

Additionally, this thesis demonstrates the importance of simulation in scatterometer anal-

ysis. Though simulation, WRFs are calculated for three different QuikSCAT processing types.

These WRFs demonstrate that the spatial resolution of UHR processing is finer than the spatial

resolution of DIB egg and slice processing. This finer resolution is evident in the simulation of sev-

eral wind retrieval and ambiguity selection algorithms. The simulation of the wind retrieval and

ambiguity selection algorithms demonstrates that DIR improves wind estimation and that UHR

processing is only slightly more affected by noise than DIB processing is.

7.2 Contributions

This thesis makes the following contributions to analyzing scatterometer-measured winds.

• An analysis of different window types for mitigating spectral leakage when measuring the

2D kinetic energy spectrum of ocean winds.

Spectral leakage occurs when a signal measured by a DFT is not periodic in the sample

interval. Windowing is commonly used to mitigate the effects of spectral leakage when measuring

the kinetic energy spectrum of ocean winds in 1D. For measuring the kinetic energy spectrum of

ocean wind in 2D, windows that are circularly symmetric are shown to be better at mitigating the

effects of spectral leakage than square-shaped windows.

• A method to measure the kinetic energy spectra of ocean winds in 2D.

For ease of interpretation and to follow historical precedents, the kinetic energy spectra of

ocean winds is normally measured in 1D. This thesis expands a method to measure the kinetic

energy spectra of ocean winds in 1D to 2D. This expansion mitigates spectral leakage effects in 2D

and accounts for the increased high to low frequency bin ratio that exists in 2D spectral analysis.

The method is validated using QuikSCAT wind estimates.
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• Additional validation of the assumptions that atmospheric motions are 2D, nondivergent,

and isotropic.

The assumptions that large-scale atmospheric motions are 2D, nondivergent, and isotropic

are used in many studies and models of ocean winds and have been verified in previous studies

[15], [16]. This thesis provides additional evidence of these assumptions by directly comparing

the kinetic energy spectrum in 1D and 2D. When modeling the 1D kinetic energy spectrum as

E1D = β1Dkα1D and the 2D kinetic energy spectrum as E2D = β2Dkα2D , these assumptions imply

that α2D = α1D− 1. This relationship is shown by the values calculated for α1D and α2D for

QuikSCAT winds in a variety of different measurement locations.

• Additional validation that orthogonal components of ocean wind are uncorrelated.

This thesis adds to previous verification that the orthogonal components of ocean winds

are uncorrelated (e.g., [15], [16]) in the following manner. First, the kinetic energy spectrum for

the sum of two uncorrelated orthogonal wind components is mathematically shown to be equal to

the sum of the kinetic energy spectra of the uncorrelated wind orthogonal components. Then, the

numerical analysis of the aforementioned kinetic energy spectra in 1D and 2D indicates that these

quantities are equal. These results suggest that the orthogonal wind components are uncorrelated.

• The definition and development of the WRF.

The SRF is a tool used in enhancing the spatial resolution for scatterometer estimation.

The SRF helps to quantify the contribution each point on the surface makes to a σ0 measurement.

This thesis develops the WRF which can be thought of as a wind-specific SRF. The WRF helps

to quantify the contribution that the wind at each point on the surface makes to a scatterometer-

measured wind. The WRF helps understand the spatial resolution of different wind processing

algorithms.

• A measure of the spatial resolution for three different types of QuikSCAT data processing is

provided by the WRF.

QuikSCAT winds were initially produced using DIB egg processing and then DIB slice

processing. Scatterometer winds are also produced through UHR processing techniques. Through
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their generalized WRFs, the spatial resolution of each of the processing techniques is estimated.

The spatial resolution of UHR processing is found to be finer than the spatial resolution of DIB

slice processing which is finer than the spatial resolution of DIB egg processing.

• A process to create synthetic wind fields sufficiently realistic to be used in evaluating ambi-

guity selection algorithms.

A variety of different methods to create synthetic wind fields have been developed. One

of these methods creates synthetic wind fields whose kinetic energy spectra follow the expected

power law for ocean winds. This thesis builds upon this method by extrapolating the kinetic energy

spectrum of an existing low resolution wind field to help set the general characteristics of the wind

field. The resulting wind fields appear more realistic in the spatial distribution of wind features and

are sufficiently realistic to use in ambiguity selection algorithms.

• A simulation-based method to evaluate wind retrieval and ambiguity selection algorithms

for UHR winds.

Simulation is an important part of scatterometer algorithm design as it allows the true wind

field to be compared directly to the measured wind field. This thesis expands scatterometer sim-

ulation methods to QuikSCAT UHR wind fields and uses more spatially realistic wind fields than

were previously developed. The simulation allows for both a visual comparison between the true

and measured wind fields and an evaluation of quantitative performance metrics for the measured

wind fields.

• Validation of QuikSCAT UHR winds with DIR through simulation.

DIR was originally developed for QuikSCAT DIB processing and was later applied to

QuikSCAT UHR winds. Validation of UHR winds with DIR has been given for another pencil-

beam scatterometer, RapidScat, by comparing buoy wind measurements with scatterometer mea-

surements [7], but the measurement geometry of QuikSCAT is sufficiently different from Rapid-

Scat to warrant additional validation for QuikSCAT UHR winds with DIR. This thesis provides the

first validation of QuikSCAT UHR winds with DIR through simulation. QuikSCAT UHR winds

with DIR are shown to reduce the wind direction RMSE by ∼10◦ compared to QuikSCAT UHR

winds without DIR.
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7.3 Future Work

The work provided in this thesis can be expanded and developed further. The following

topics are suggestions for future work based upon the contributions made in this thesis.

• Develop improved ambiguity selection algorithms compatible with DIR winds.

The original mission requirements for QuikSCAT are defined for coarse resolution winds.

QuikSCAT UHR winds with DIR allow fine resolution winds to nearly achieve the original mis-

sion requirements for QuikSCAT. DIR wind retrieval is capable of achieving the original mission

requirements, but an improved ambiguity selection algorithm is required to reduce the wind direc-

tion RMSE of UHR winds below the mission requirement of 20◦. Finding an improved algorithm

would result in higher accuracy winds with fine resolution. The ambiguity selection algorithm

could be applied to other pencil-beam scatterometers as well.

• Use the provided WRFs to improve land contamination ratios and near-coastal measurements

in wind estimation.

As σ0 is much higher for objects on land than for water, wind estimation can fail when

WVCs are too close to land. Land contamination ratios help to quantify how much the land affects

egg and slice measurements used in wind estimation and helps define how close to land the wind

can be estimated accurately. Currently, land contamination ratios are based on the SRF of indi-

vidual egg and slice measurements. By finding the WRF of WVCs close to land, a better idea of

the effect that the land has on the wind measurements can be ascertained. The effect of dropping

certain measurements that contain high levels of land contamination on the measured wind vectors

could also be found. These studies could lead to new algorithms that improve the accuracy of

near-coastal wind measurements.

• Calculate the WRF for more scatterometers and processing algorithms.

Scatterometers are either pencil-beam scatterometers, like QuikSCAT, or fan-beam scat-

terometers, like the Advanced Scatterometer (ASCAT). Fan-beam scatterometers have several

long, fixed antennas with measurement swaths on the sides of the satellite track. While the WRFs
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found for QuikSCAT would translate well to characterizing other pencil-beam scatterometers, fan-

beam scatterometers would have a much different WRF. The WRF would help characterize some

of the differences between pencil-beam and fan-beam scatterometers and help to provide a com-

parison between the spatial resolutions of their wind estimates.
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