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ABSTRACT

Investigations of the Dry Snow Zone of the Greenland Ice Sheet Using QuikSCAT

Kevin R. Moon
Department of Electrical and Computer Engineering

Master of Science

The Greenland ice sheet is an area of great interest to the scientific community due
to its role as an important bellwether for the global climate. Satellite-borne scatterometers
are particularly well-suited to studying temporal changes in the Greenland ice sheet because
of their high spatial coverage, frequent sampling, and sensitivity to the presence of liquid
water. The dry snow zone is the largest component of the Greenland ice sheet and is identified
as the region that experiences negligible annual melt. Due to the lack of melt in the dry
snow zone, backscatter was previously assumed to be relatively constant over time in this
region. However, this thesis shows that a small seasonal variation in backscatter is present in
QuikSCAT data in the dry snow zone. Understanding the cause of this seasonal variability
is important to verify the accuracy of QuikSCAT measurements, to better understand the
ice sheet conditions, and to improve future scatterometer calibration efforts that may use
ice sheets as calibration targets.

This thesis provides a study of the temporal behavior of backscatter in the dry snow
zone of the Greenland ice sheet focusing on seasonal variation. Spatial averaging of backscat-
ter and the Karhunen-Loève transform are used to identify and study the dominant patterns
in annual backscatter behavior. Several QuikSCAT instrumental parameters are tested as
possible causes of seasonal variation in backscatter in the dry snow zone to verify the ac-
curacy of QuikSCAT products. None of the tested parameters are found to be related to
seasonal variation. Further evidence is given that suggests that the cause of the seasonal
variation is geophysical and several geophysical factors are tested. Temperature is found to
be highly related to dry snow backscatter and therefore may be driving the seasonal variation
in backscatter in the dry snow zone.

Keywords: Greenland ice sheet, scatterometer calibration, QuikSCAT, seasonal variation,
dry snow zone
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Chapter 1

Introduction

Satellite-borne scatterometers are microwave radars designed to estimate the wind

velocity over the earth’s oceans. The wind estimates are useful for studying the earth’s

climate and for forecasting and monitoring weather patterns including hurricanes. Because of

their global coverage, high resolution, and frequent sampling, satellite-borne scatterometers

are ideal for estimating wind vectors [1].

In addition to their primary purpose of wind observation, spaceborne scatterometers

have been used for tracking icebergs, mapping the sea ice extent [2], measuring deforestation

in the Amazon [3], and monitoring important indicators of the global climate such as the

Greenland and Antarctic ice sheets [4]. Scatterometers are well-suited to these studies for

several reasons. First, satellite-borne scatterometers provide consistent and frequent obser-

vations of these regions. This is especially true in the polar regions where some satellites

achieve multiple passes per day. Second, unlike optical wavelengths, microwaves penetrate

clouds and do not require solar illumination. Thus measurements can be obtained night and

day and in nearly all weather conditions. This results in consistent temporal and spatial

coverage.

1.1 The Greenland Ice Sheet

Spaceborne scatterometers are particularly useful in studies of the Greenland ice

sheet. The Greenland ice sheet is an area of great interest to the scientific community, which

stems from its role as an important bellwether for the global climate. Greenland is almost

entirely covered by a large ice sheet that contains 8% of the earth’s ice and 11% of the global

glacier surface area [5]. Because of its size, the Greenland ice sheet affects the global sea

level as well as the earth’s radiation budget.
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The global sea level is affected by the mass balance of ice sheets such as those in

Greenland and Antarctica. It is estimated that the Greenland ice sheet contains enough

water to raise sea levels by 7 meters [5]. Because of this, many studies have focused on melt

detection, accumulation, and changes in the mass balance of the Greenland ice sheet.

The earth’s radiation budget is defined as the balance between the radiation absorbed

and emitted by the earth’s surface. Changes in melt extent and duration on Greenland can

affect the radiation budget. Dry snow has a high albedo. Thus dry snow reflects most of the

incident solar radiation. However, the presence of liquid water in snow reduces the albedo

which results in an increase in solar radiation absorption [6].

Because of the ice sheet’s influence on sea level and the radiation budget, knowledge

of temporal changes in the ice sheet is crucial to understanding changes in the global climate.

Due to the harsh climate and large size of the Greenland ice sheet, in situ (on-site) mea-

surements are difficult to obtain with sufficient spatial coverage. In contrast, scatterometer

measurements are available for the entire ice sheet with the earliest measurements collected

in 1978. Additionally, recent scatterometers have observed the ice sheet multiple times per

day. Scatterometer measurements are also useful for Greenland studies because of their

sensitivity to snow grain size, the presence of liquid water, and subsurface features. This

sensitivity allows scatterometers to be used in tracking snow accumulation, measuring melt

extent and duration, and mapping the ice facies of the Greenland ice sheet.

1.2 Research Problem

The Greenland ice sheet is divided into zones or facies which are distinguished by

their melting characteristics. The largest of these facies is the dry snow zone which is defined

as the region where negligible melt occurs throughout the entire year. Understanding the

properties of the dry snow zone is important because of its role in the earth’s climate.

Since the presence of liquid water is the primary parameter affecting radar backscatter

in snow and ice [4], backscatter was previously assumed to be relatively constant in dry

snow since the dry snow zone experiences little to no melt. However, in [4] an anomaly

in Seasat-A scatterometer (SASS) data in the dry snow region is briefly mentioned. My

studies indicate that a similar unanticipated anomaly is present in QuikSCAT data. This
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anomaly is a seasonal variation in backscatter in the dry snow zone. The seasonal variation

is characterized by a slight decrease in backscatter during the summer months. Although the

decrease in backscatter is small (typically less than 1 dB), this seasonal variation is present

throughout the entire dry snow zone. This suggests that the backscatter in the dry snow

zone may not be as constant as was previously assumed.

Studies of the seasonal variation in backscatter are necessary for several reasons.

First, it is important to know whether the cause of the seasonal variation is instrumental or

geophysical. If the cause is instrumental, the accuracy of all scatterometer products could

be compromised. Correction of the seasonal variation would then be necessary to ensure

accuracy in the studies that depend on scatterometer observations.

Second, if the cause is geophysical, understanding the cause could lead to better

understanding and measurement of ice sheet conditions. For example, if temperature is the

cause of seasonal variation, then the variation in backscatter may be useful for estimating

temperatures at the ice sheet surface.

Finally, predicting the seasonal variation could lead to improved scatterometer cal-

ibrations. Studies using scatterometer data require accurate calibration of the scatterome-

ter [7]. Although scatterometers are calibrated prior to launch, system degradation requires

scatterometers to be calibrated after launch as well [8]. Accurate post-launch calibration

can be achieved by using radar backscatter data from natural land targets with isotropic

and temporally constant backscatter. Currently, post-launch scatterometer calibration is

performed using data collected from regions such as the Amazon rain-forest, the Greenland

and Antarctic ice sheets, and the Sahara Desert, with calibration most often performed using

data from the Amazon [9, 10, 11]. However, in [8], the authors find that the backscatter in

parts of the Greenland ice sheet varies less than in other regions. This suggests that the

Greenland ice sheet, specifically the dry snow zone, may be better suited for scatterometer

calibration than other regions of the earth.

Predicting the seasonal variation in the dry snow zone could lead to further improve-

ment in scatterometer calibration. Studying the seasonal variation may lead to a model that

can be used to estimate future seasonal variation and correct the radar calibration. The

improved calibration will result in greater accuracy in all scatterometer applications.
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1.3 Thesis Statement

This thesis provides a study of the temporal behavior of backscatter in the dry snow

zone of the Greenland ice sheet focusing on seasonal variation. The dominant patterns

in backscatter in the dry snow zone are identified. Seasonal variation is found to be the

dominating temporal pattern. Possible instrumental causes of seasonal variation are explored

and ruled out. Evidence is then given that suggests that the cause of seasonal variation is

geophysical with temperature as the leading candidate.

1.4 Research Contributions

This thesis presents three primary research contributions:

1. Observations of temporal behavior of backscatter in dry snow are provided. The

Karhunen-Loève (KL) expansion or transform is used to identify and study the domi-

nant patterns in annual backscatter behavior including seasonal variation.

2. Possible instrumental causes of seasonal variation are investigated and ruled out. These

possible causes include incident angle variation, orbital drift, and local time of day

variation.

3. Strong evidence of a geophysical cause of seasonal variation is given. Evidence is

presented that suggests that temperature is the cause of seasonal variation.

1.5 Organization

This thesis is organized as follows. Background information is given in Chapter 2.

This includes a discussion of the normalized radar cross section of scatterometers, the elec-

tromagnetic properties of ice and snow, the ice facies and their electromagnetic properties,

an accumulation map of Greenland, the scatterometers used in this thesis, image reconstruc-

tion of scatterometer data, and in situ data used in this thesis. Chapter 3 provides some

general observations of backscatter in the Greenland ice sheet focused on the dry snow zone.

Chapter 4 explores the possible instrumental causes of seasonal variation while possible geo-

physical causes are explored in Chapter 5. Chapter 6 then concludes with suggestions for

future work.
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Chapter 2

Background

This chapter provides background information for the remainder of the thesis. First,

the normalized radar cross section (NRCS) in the context of scatterometers is described.

The electromagnetic properties of ice and snow are then given followed by a description of

the ice facies and their electromagnetic properties. A brief description of the scatterometer

data used in the thesis is given followed by an explanation of the Scatterometer Image

Reconstruction (SIR) algorithm. This chapter then concludes with a description of the in

situ data record used in this thesis.

2.1 Scatterometers and the NRCS

Scatterometers use active microwave remote sensing to obtain information about the

earth. Scatterometers transmit electromagnetic energy in the microwave region of the elec-

tromagnetic spectrum. The part of the earth illuminated by the pulse reflects some of the

energy to the receiver. For scatterometers, the receive and transmit antenna are typically

the same. The received power Pr can be determined using the monostatic radar equation [12]

Pr =
PtG

2λ2A

(4π)3R4
σ0 (2.1)

where Pt is the transmit power, G is the gain of the antenna, λ is the wavelength of the

transmitted signal, A is the area of the illuminated region of the earth, R is the range from

the antenna to the illuminated area, and σ0 is the NRCS of the illuminated region.

The NRCS is a function of the radar operating frequency, incidence and azimuth an-

gles, pulse polarization, and the scattering properties of the illuminated area. The incidence

angle θ describes the angle between the propagating direction of the pulse and the surface
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normal. Azimuth angle φ describes the angle between the flight path of the scatterometer

and the projection of the propagation path onto the plane of the scatterometer.

The scattering properties of the illuminated area are generally divided into surface

scattering and volume scattering. Both depend on the electromagnetic properties of the

illuminated area and can contribute to σ0.

2.2 Electromagnetic Properties of Ice and Snow

Surface scattering occurs when the incident pulse reflects off the boundary between

two distinct mediums. This scattering depends on the roughness and the reflection coefficient

at the surface.

Volume scattering occurs when the pulse penetrates the surface, reflects off buried

objects, and transmits back through the surface. In snow or ice, the buried objects that

cause the scattering can include large ice structures as well as the snow grains. In dry snow,

parameters such as snow density and grain size can affect σ0. Volume scattering is the

primary contributor to σ0 in ice and snow.

In snow and ice, the presence of liquid water causes a large decrease in σ0 and is the

primary parameter that affects σ0 [4]. As liquid water content increases in ice and snow, the

conductivity increases which causes the reflection coefficient to increase. Thus melting causes

surface scattering away from the radar to dominate over volume scattering. Additionally, an

increase of liquid water in snow increases the extinction coefficient. More of the transmitted

signal becomes attenuated which results in further decrease in volume scatter. Therefore,

when melting occurs, backscatter decreases dramatically.

Figure 2.1 demonstrates this phenomenon. In dry snow, much of the signal penetrates

the upper layer while some of the signal is reflected away by surface scattering. Some of the

energy in the transmitted pulse reflects off the subsurface ice structure and back out of the

snow to the receiver causing a high return. Volume scattering from individual snow grains

is not represented in this figure although it is also present. In contrast, less of the signal

transmits through the snow surface when the snow is wet. Surface scattering dominates and

most of the signal is reflected away. The backscatter in this case depends on the surface

roughness.
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Figure 2.1: Diagram demonstrating scattering in dry (left) and wet snow (right). The small
circles represent subsurface ice structures.

2.2.1 Melt Detection

Because of the sensitivity of σ0 to liquid water, many studies have used scatterometers

to detect melting on ice sheets [13, 4, 14, 15, 16, 17]. Melt characteristics can then be used

to infer information about the ice sheet.

Multiple melt detection algorithms over Greenland have been developed for scat-

terometers and radiometers [13]. One of the algorithms designed for QuikSCAT is termed

the Q-α method [13]. The Q-α method classifies a pixel as melting when σ0 drops 3 dB

below the winter mean. The 3 dB threshold corresponds to a 1% liquid moisture content of

the snow and a 3.8 cm layer of wet snow.

One advantage of the Q-α method is that it is simple to implement. Another ad-

vantage is the melt extent identified by this method is consistent with other melt detection

algorithms [13]. Because of these two advantages, I use the Q-α method with QuikSCAT

data for melt detection in this thesis.

2.3 Ice Facies

The Greenland ice sheet is divided into zones or facies which are distinguished by

their melting and refreezing characteristics. They were first identified using field data [18]

as the ablation zone, the wet (soaked) snow zone, the percolation zone, and the dry snow

zone. Fig. 2.2 shows an attempt to map the facies from [18].
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Figure 2.2: Benson [18] map of the Greenland ice facies from field data.

The sensitivity of σ0 to liquid water can be exploited by satellite-borne scatterometers

to map melting trends and properties of the Greenland ice sheet. The melt history and other

key features have been used to map the location of the facies on Greenland and the Canadian

Arctic ice caps [4, 15, 19, 16, 20, 21].

In the following, a description of each of the ice facies and their radar characteristics

is given. For visualization, an illustration of a profile of the ice facies is given in Fig. 2.3.

2.3.1 Ablation Zone

The ablation zone is defined as the region of the ice sheet where the annual snow ac-

cumulation melts away leaving only bare ice. It is located at the outer edge of the Greenland

ice sheet [23].

The ablation zone typically has lower backscatter during the winter than the wet snow

zone. This is due to the comparatively smooth surface of the exposed ice in the ablation
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Figure 2.3: Illustration of the Greenland ice facies profile [22].

zone. However, in the summer, σ0 is typically higher in the ablation zone than in the wet

snow zone since wet snow has lower backscatter than bare ice [20]. For classification, the

combination of low altitude with low winter backscatter generally denotes the ablation zone.

The σ0 behavior in the ablation zone can cause inaccuracies in melt detection algo-

rithms such as the Q-α method. If accumulation is low, the bare ice may be exposed early in

the melt season. Thus σ0 may return close to or even above the previous winter’s backscatter

levels even though the bare ice may be melting. σ0 may even increase during melt if the

exposed bare ice has a higher backscatter than the snow covered ice [15]. Because of this,

the Q-alpha method and other similar melt detection algorithms are not as accurate in the

ablation zone.

2.3.2 Wet Snow Zone

The wet snow zone is defined as the region where the accumulation between melt

seasons is completely soaked in the summer [23]. Because of the soaked snow, the wet snow

region experiences the lowest backscatter during the melt season. However, backscatter

increases and returns to winter levels during refreeze as ice structures form and liquid water

disappears.

Subsurface ice structures such as ice lenses and layers are the source of the highest

backscatter in snow [4]. While these structures may be present in wet snow, the upper layer
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of wet snow typically freezes into a hard ice layer in winter. This layer has more surface

scattering which results in a reduced backscatter from subsurface structures. This results in

a lower winter backscatter in the wet snow zone than the percolation zone [15]. However,

the presence of subsurface ice structures such as ice lenses and layers still contribute to a

higher winter backscatter in the wet snow zone than in the ablation zone [20].

2.3.3 Percolation Zone

Snow in the percolation zone experiences less melt than snow in the wet snow zone. In

the percolation zone, surface melt water percolates down through the snow. When refreezing

occurs, the percolated water forms ice glands, lenses, and layers [23].

The backscatter in the percolation zone varies throughout the year. During the melt

season, σ0 quickly drops due to the presence of liquid water. However upon refreeze, σ0

increases to the highest level of all the facies [4]. Based on field tests, the high winter

backscatter in the percolation zone is attributed to the ice lenses and layers formed during

the refreeze period [24].

2.3.4 Dry Snow Zone

The dry snow zone is the largest facie and is defined as the region of the ice sheet that

experiences negligible melt throughout the year [23]. Because of this, the dry snow zone is

limited to higher altitudes and latitudes.

Compared to the other facies, the backscatter response of dry snow is relatively

constant throughout the year. However, σ0 does vary spatially. For example, differences in

accumulation rates cause spatial variance in σ0 on the Greenland ice sheet. In regions of low

accumulation, σ0 is relatively high while regions with high accumulation are characterized

by lower σ0. Low accumulation exposes the surface snow grains for longer periods which

results in larger grains. Additionally, wind scouring of the previous summer surface may

contribute to higher backscatter in areas of low accumulation [4]. These spatial differences

led Long and Drinkwater [4] to separate the dry snow zone into two regions.

10



Seasonal variations in σ0 that appear to be independent of accumulation have also

been discovered in the dry snow zone. These seasonal variations are described in Chapter 3

and discussed in the succeeding chapters.

2.3.5 Long and Drinkwater Map of the Ice Facies

A map of the Greenland ice sheet facies developed by Long and Drinkwater [4] is

shown in Fig. 2.4. This map was developed using three months of data obtained in 1978

from the Seasat-A scatterometer (SASS).

The primary difference between Figs. 2.2 and 2.4 is the extent of the dry snow zone.

The dry snow zone is much larger in Fig. 2.4 than in Fig. 2.2. There are several possible

explanations for this. First, the Benson map was derived from comparatively sparse field

data. Thus it is likely that the Benson map is not entirely accurate. Second, the Long

and Drinkwater map is derived from only a few months of data that cover part of the

melt and refreeze seasons. Thus the dry snow extent mapped in Fig. 2.4 may be inaccurate.

Finally, it is likely that the extent of the facies varies from year to year depending on weather

patterns. This variability makes it difficult to obtain truth data for validating facies mapping

algorithms.

2.3.6 Accumulation Map

Since accumulation affects backscatter, knowledge of accumulation rates is important

to the work of this thesis. The average and standard deviation of the accumulation rate

on the Greenland ice sheet for the period 1958-2007 from [25] are given in Fig. 2.5. These

accumulation rates are derived using output from the Fifth Generation Mesoscale Model

modified for polar climates (Polar MM5) calibrated with firn core and meteorological station

data [25]. Figure 2.5 shows that accumulation is generally higher in the southern regions

of the Greenland ice sheet than the northern region. This is consistent with [4] where the

southern region of the dry snow zone (high accumulation) is characterized by low σ0 while

the northern region of the dry snow zone (low accumulation) is characterized by high σ0.

Figure 2.5 also shows that the standard deviation of accumulation rate is lowest in the

interior of the ice sheet which is where the dry snow zone is located.
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Figure 2.4: Long and Drinkwater [4] map of the Greenland ice facies using SASS data.

2.4 Scatterometer Data Sets

Data from multiple scatterometers are used in this thesis. A brief description of these

scatterometers is given in the following.

2.4.1 QuikSCAT

The data and images studied in this thesis are primarily from QuikSCAT. QuikSCAT

is a 13.4 GHz scanning pencil beam scatterometer with both an inner and outer beam. The

inner beam is horizontally polarized with a fixed incidence angle of 46◦ while the outer beam

is vertically polarized with an incidence angle of 54◦. Each beam has a wide range of azimuth

angles. The scanning geometry of QuikSCAT is given in Fig. 2.6.
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Figure 2.5: Information about accumulation on the Greenland ice sheet. W.e. stands for wet
equivalent. Left: Average accumulation rate for the period 1958-2007 [25]. Right: Standard
deviation of accumulation rate for the period 1958-2007 [25].

Figure 2.6: QuikSCAT scanning geometry [26].
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QuikSCAT operated from July 1999 to November 2009, providing over ten years of

data. Due to QuikSCAT’s orbital pattern, QuikSCAT completes several passes per day in

the Arctic and Antarctic regions making it ideal for studying these regions.

QuikSCAT has two different resolutions termed “eggs” and “slices”. The egg reso-

lution is the size of the antenna footprint on the ground which is approximately 25 km by

35 km. Through range and Doppler processing, each egg is divided into 12 slices which have

an approximate resolution of 25 km by 6 km [27]. In this thesis, only the vertically polarized

egg resolution σ0 measurement of QuikSCAT is used. This facilitates easier comparison and

application of the results of this thesis to other scatterometers that have similar resolution

and polarization such as the Advanced Scatterometer (ASCAT).

2.4.2 Other Scatterometers

Although QuikSCAT [28] is the principle scatterometer used in this thesis, data and

results from other scatterometers are considered in Chapter 4. These scatterometers include

SASS [29], the European remote sensing satellite (ERS-2) [30], and ASCAT [31]. SASS

operated in the Ku-band while ERS-2 and ASCAT operated in the C-band.

2.5 Image Reconstruction

Scatterometers have a relatively low spatial resolution that is not adequate for many

applications. However, since scatterometers may pass an area multiple times per day, they

can achieve dense spatial sampling at the expense of temporal resolution. The Scatterometer

Image Reconstruction (SIR) algorithm is an iterative reconstruction method that uses this

dense spatial sampling from multiple passes to achieve finer spatial resolution [32], [33].

When multiple measurements of incidence angle are available, the SIR algorithm

assumes the following relationship between σ0 and θ:

σ0(θ) = A+ B(θ − θref ) (2.2)

where θref is a reference incidence angle (typically 40◦) and A and B are constants that

depend on the properties of the area in the pixel. The constant A gives the average σ0
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Figure 2.7: QuikSCAT A image in dB over Greenland on January 5, 2000. Ocean pixels are
set to black.

during the imaging time at θref while B gives the incidence angle dependence. Images of

multiple regions of the earth are created using the values of A and B.

For scatterometers such as QuikSCAT where the observation angle is fixed, only A
images are created for the available polarizations. Thus only A images are used in this

thesis. For QuikSCAT, egg images have a 4.45 km pixel resolution while slice images have

a 2.225 km resolution. An example of a QuikSCAT A image is given in Fig. 2.7. In this

image, some of the facies appear to be distinguishable such as the dry snow zone (the darker

region in the center) and the percolation and wet snow zones (the brighter regions).

Several factors affect the accuracy of the SIR algorithm. First, the SIR algorithm

assumes that σ0 is constant during the imaging time. This assumption is not valid for all

regions. For example, near-surface ocean winds can change rapidly during the day. The

winds affect the geometry of the ocean surface which affects σ0. Because of this variation
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during the imaging time, SIR images are not particularly useful over the ocean. Additionally,

σ0 can depend on the azimuth angle in certain regions [34], [35]. Since the SIR algorithm

uses data from multiple passes, measurements are taken with multiple azimuth angles which

can distort the measured σ0 in these regions. However, σ0 is relatively constant during

the imaging time in many land and ice areas of the Earth. The high spatial and temporal

resolution of SIR images have made them useful for studying these regions.

2.6 Automatic Weather Stations

To compare backscatter results with physical parameters such as temperature and

wind speed, in situ data are obtained from Automatic Weather Stations (AWS) sponsored

by the Greenland Climate Network (GC-Net) [36].

The AWS are distributed throughout the ice sheet and obtain hourly measurements

of air temperature, wind speed, air pressure, and other parameters. Each station is equipped

with multiple instruments for measuring air temperature. Fig. 2.8 shows a topographical

map of Greenland with the location of many of the AWS.

Table 2.1 gives the number, name, and location of each AWS with data that overlap

the duration of the QuikSCAT mission. Future tables that reference the AWS use only the

station number.

2.7 Summary

Backscatter from scatterometers can be used to create radar images of remote loca-

tions such as the Greenland ice sheet. Using the electromagnetic properties of ice and snow,

information about the ice facies can be inferred from analysis of these images. In situ data

from AWS can be used to better understand conditions at the surface of the ice sheet that

may affect backscatter.
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Figure 2.8: Topographical map of Greenland showing the location of the AWS on the Green-
land ice sheet [36]. The blue line around the edge denotes the ice extent. Table 2.1 gives the
name and number of all stations with data overlapping the QuikSCAT mission.
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Table 2.1: The number, name, and location of each AWS. Adapted from [36]. Fig. 2.8 shows
the location of some of these stations on a map of Greenland.

Station Station Name Latitude Longitude Altitude (m)
1 Swiss Camp 69◦33′35”N 49◦19′51”W 1176
2 Crawford Point1 69◦52′42”N 46◦59′48”W 2022
3 NASA-U 73◦50′29”N 49◦30′25”W 2334
4 GITS 77◦08′16”N 61◦02′24”W 1869
5 Humboldt 78◦31′36”N 56◦49′50”W 1995
6 Summit 72◦34′46”N 38◦30′19”W 3199
7 Tunu-N 78◦00′59”N 33◦59′00”W 2052
8 DYE-2 66◦28′50”N 33◦16′59”W 2099
9 JAR 1 69◦29′42”N 49◦42′14”W 932
10 Saddle 65◦59′59”N 44◦30′06”W 2467
11 South Dome 63◦08′56”N 44◦49′02”W 2901
12 NASA-E 75◦00′02”N 29◦59′50”W 2614
13 Crawford Point2 69◦54′48”N 46◦51′17”W 1990
14 NGRIP 75◦05′58”N 42◦19′59”W 2941
15 NASA-SE 66◦28′30”N 42◦29′55”W 2373
16 KAR 69◦41′58”N 33◦00′21”W 2579
17 JAR 2 69◦24′53”N 50◦05′34”W 507
19 JAR3 69◦23′40”N 50◦18′36”W 283
21 Peterman Gl. 80◦41′01”N 60◦17′32”W 37
23 NEEM 77◦30′08”N 50◦52′28”W 2454
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Chapter 3

General Observations

This chapter gives some general observations of the Greenland ice sheet based on

QuikSCAT data. First SIR images of Greenland are shown and discussed followed by a

description of the method used to map the dry snow zone. Then the temporal behavior of

σ0 in the dry snow zone is analyzed using the KL expansion. All scatterometer data in this

chapter comes from QuikSCAT.

3.1 SIR Images of the Greenland Ice Sheet

As mentioned in Sec. 2.2, the presence of liquid water is the primary parameter that

affects σ0 in snow. Thus the backscatter of the Greenland ice sheet changes as the melt

and refreeze seasons begin and end. This section provides a general idea of the temporal

behavior of backscatter throughout the ice sheet by displaying and discussing a time series

of SIR images of Greenland focusing on the melt and refreeze seasons in a typical year.

Figure 3.1 displays such a time series of Greenland in the year 2000. In this year, σ0

remains relatively constant at each pixel location until approximately JD 163. By this day,

a decrease in σ0 in the southern region of the ice sheet is visible. This decrease likely corre-

sponds to melt. Some time later, melting has begun in the northeastern and northwestern

edges of the ice sheet and has moved further inland in the south. This is visible in the image

corresponding to JD 180 as lower backscatter in these regions. After this, severe melting

occurs in the south over the next month or so as identified by the very low backscatter visible

in JD 198 and JD 215. Some refreezing occurs soon after this as evidenced by the increased

backscatter in JD 232. Refreezing is nearly completed, but is then interrupted by another

melt event in the southwestern region. However, this melt event is much shorter than the
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Figure 3.1: Time series of QuikSCAT SIR images of the Greenland ice sheet in 2000 empha-
sizing the changes in σ0 during the melt and refreeze seasons.

previous events and the refreeze season is completed soon after (see the image corresponding

to JD 284).

The analysis of Fig. 3.1 demonstrates how melting trends and other key features of

the ice sheet can be identified using SIR images. Changes in σ0 during the year can be used

to classify and study the ice facies of the Greenland ice sheet. In succeeding sections, the

Q-alpha method, which is based on changes in σ0, is used to map melting and thus identify

the dry snow zone.

3.2 Mapping the Dry Snow Zone

Because the dry snow zone is defined as the region where negligible melt occurs

throughout the year, it can be mapped by using a melt detection algorithm. What does not
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Figure 3.2: Maps of the dry snow zone on the Greenland ice sheet using QuikSCAT SIR
images and the Q-α melt detection method. Dry snow and the ocean are white. Ice that is not
dry snow is gray and bare land is black.

melt is, by definition, the dry snow zone. Therefore, in this thesis, pixels are classified as

dry snow if no melt is detected for the entire year.

The melt detection algorithm used for dry snow classification in this thesis is the Q-α

method [13]. The first step in this method is to calculate the winter backscatter mean at

each pixel. This is done by averaging σ0 over the first 60 days of the current year and the

last 30 days of the previous year for each pixel. A pixel is classified as melting on a given day

if σ0 drops below the melt threshold on that day. The melt threshold for each pixel is then

3 dB below the winter mean. Further details about the Q-α method are given in Sec. 2.2.1.

A pixel is classified as dry snow if it is not classified as melting throughout the entire year.

21



50 100 150 200 250 300 350
−15

−14.5

−14

−13.5

−13

−12.5

−12

−11.5

−11

JD

σ0  (
dB

)

Figure 3.3: Backscatter over time at 47.4214◦ W and 73.1722◦ N in 2004 from QuikSCAT
SIR images. Altitude at this point is 494 m.

3.2.1 Intra-annual Consistency

Figure 3.2 shows a map of the dry snow zone using QuikSCAT and the Q-α method

for the years 2000-2008. The maps show that this method of dry snow classification has

intra-annual spatial consistency. Most of the pixels classified as dry snow are next to each

other in regions with higher latitude and altitude. The exceptions are typically located near

the edge of the ice sheet (for examples see the northeast corners of the ice sheet in the years

2004 and 2006). The altitude at these regions is close to sea level (see Fig. 2.8) which suggests

that these pixels should instead be classified as part of the ablation zone. These regions are

not likely to be dry snow since they are generally separated from the main region of dry snow.

Furthermore, plotting σ0 over time at a point within one of these spuriously classified regions

shows that σ0 is somewhat erratic during the melt season (see Fig. 3.3). This behavior is

more consistent with the ablation zone than the dry snow zone (see Sec. 2.3.1). Thus it is

likely that these regions have been misclassified.

To mitigate ablation zone misclassification, altitude thresholding is used. The dry

snow zone is typically located in higher altitudes while the ablation zone is in the lowest

altitudes. Selecting a threshold in altitude should help differentiate between the two zones.

The altitude threshold is chosen with the aid of a histogram of the altitude of pixels

classified as dry snow. The histogram is computed from a year where some pixels are
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Figure 3.4: Histogram of altitude for pixels classified as dry snow in 2004 using the Q-α melt
detection method (see text). The vertical line is the selected altitude threshold.

misclassified, and where the remaining dry snow pixels are consistent with other years. For

these reasons, I chose the year 2004.

Figure 3.4 gives a histogram of the altitude of all pixels initially classified as dry snow

in this year. Note that in the altitude range of 1380–1580 m, no pixel is classified as dry

snow. I therefore chose the middle of this range (1480 m) as the threshold. As demonstrated

in Fig. 3.5, the threshold succeeds at limiting the dry snow classification to the interior of

the ice sheet.

3.2.2 Interannual Consistency

The maps in Figs. 3.2 and 3.5 demonstrate that there is significant interannual varia-

tion in the dry snow extent. In particular, the dry snow zone in the year 2002 is considerably

smaller than in other years. This is due to an unusual melt event associated with a weather

event. The high pressure ridge in this event brought unusually warm air onto the ice sheet

raising the upper limit of the melt extent [15]. Excluding this year, a general dry snow region

is visible although the edges may fluctuate from year to year. The interannual consistency

of the dry snow classification demonstrates that the classification method is useful for classi-

fying dry snow. Additionally, the interannual variability demonstrates that the classification

method is sensitive to changes in the ice sheet.
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Figure 3.5: Maps of the dry snow zone on the Greenland ice sheet using the Q-α melt
detection method and an altitude threshold of 1480 m. Dry snow and the ocean are white. Ice
that is not dry snow is gray and bare land is black.

Table 3.1: Number of 4.45× 4.45 km pixels classified as dry snow each year using the
method in Fig. 3.5. The total number of pixels of the ice sheet is 84547.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008
# of Pixels 37438 46405 21401 42447 31580 33300 38080 39407 42184

Table 3.1 gives the number of pixels classified as dry snow each year after altitude

thresholding. Note that in some years, the dry snow zone occupies slightly more than half

of the entire ice sheet.
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3.3 Analysis of Temporal Behavior of Dry Snow Zone Backscatter

Understanding the temporal behavior of dry snow aids in understanding climate as

well as the transitions of dry snow to percolation zone and vice versa. This behavior can be

analyzed by using the KL transform.

The KL transform represents a signal as a linear combination of an orthogonal basis

derived from properties of the signal. The basis vectors generated by the KL transform are

the eigenvectors of the correlation matrix of the signal. Since the KL expansion generates the

basis that minimizes the mean-squared-error [37], the basis vectors represent the dominant

patterns in the backscatter behavior.

3.3.1 Preliminary Work

In this application, some preliminary work must be performed before using the KL

transform on the available data in the dry snow zone. A data matrix with zero mean in

both dimensions is formed in the following. Let the random vector x represent the σ0 of an

entire year in the dry snow zone of the Greenland ice sheet. Then x has length m equal to

the number of days of available data in the given year, and xi is the observation of x at the

ith pixel in the dry snow zone. The data matrix X is then formed as

X =
(
x1 x2 . . . xN

)T

(3.1)

where (·)T is the transpose operator, and N is the number of pixels classified as dry snow

within the given year. The matrix X is an N ×m matrix where the value at the ith row and

kth column is the backscatter for the ith pixel on the kth day of the year. In this application,

the ordering of the pixels does not matter.

Within the dry snow zone, annual σ0 varies spatially according to factors such as

multi-year snow accumulation and past melt events [4]. For example, the average annual

backscatter for QuikSCAT of a pixel in the northeastern parts of the dry snow zone can

achieve −5 dB compared to −14 dB in some of the central regions. In this study, we are

primarily concerned with the temporal behavior of σ0 in the dry snow zone and not the

relative difference in average σ0 from pixel to pixel. Therefore, I eliminate this difference by
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calculating the mean of each row in X to create an N × 1 vector x̄. This is equivalent to

forming a vector of the temporal mean of each pixel. The vector x̄ is then subtracted from

each column of X. This can be represented as

Y = X −
(
x̄ x̄ . . . x̄

)
. (3.2)

The mean of each row of the resulting matrix Y is zero.

The KL expansion of a vector requires that each element of the random vector be

zero mean [37]. This means that to use the data in the transform, each column of Y must be

zero mean. Subtracting the transpose of the vector mean ȳ from each row in Y accomplishes

this. ȳ is estimated by calculating the sample vector mean using each row of Y as a sample

vector. This is equivalent to forming a row vector from the mean of each column of Y . This

provides a 1×m row vector which is equal to the transpose of the sample vector mean.

In this case, ȳ is the spatial average of σ0 in the dry snow zone. The spatial average

of σ0 contains more information about the temporal behavior of σ0 in the dry snow zone

than the basis vectors generated by the KL transform. Thus it is important to include the

spatial average in the analysis of σ0.

To finish the preliminary work, the transpose of ȳ is subtracted from each row in Y to

yield a data matrix Z with each column and row having zero mean. This can be represented

as

ZT = Y T −
(
ȳ ȳ . . . ȳ

)
. (3.3)

Since the corresponding random vector z is zero-mean, the KL transform of the random

vector z can be performed using the sample vectors zi corresponding to the rows of Z.
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Figure 3.6: The magnitude of the 30 largest eigenvalues of S in the year 2000 using QuikSCAT
data.

3.3.2 The KL Transform

The first step in the KL expansion is to compute the covariance matrix of z. I use

the sample covariance matrix S where

S =
1

N − 1

N∑
i=1

ziz
T
i . (3.4)

The matrix S is then factored into the form S = UΛUT where Λ contains the eigenvalues of

S and the columns of the matrix U are the eigenvectors of S. The eigenvectors form the set

of basis vectors for the expansion [37].

To efficiently represent the temporal behavior of σ0, a basis with a relatively low

dimension while limiting loss in accuracy is desired. However, the basis formed from the

full KL expansion has a dimension of m which is no better than using the original signal.

Instead, a lower dimensional basis with a fixed dimension n that minimizes the mean squared

error is desired. The basis that fits this criteria is the set of eigenvectors of S that correspond

to the n maximum eigenvalues in magnitude [37].
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Figure 3.7: The eigenvectors (ui) of S where ui corresponds to the ith largest eigenvalue of
S in the year 2000. The y-axis is in dB and each vector is zero-mean. For easier comparison,
the lines are shifted vertically by 0, −0.2, −0.4, and −0.6, respectively, in each plot.

3.3.3 Results

Figure 3.6 shows the largest eigenvalues of S using data from the year 2000 while

Fig. 3.7 shows the eigenvectors corresponding to the 8 largest eigenvalues of S. The magni-

tude of the eigenvalues rolls off quickly which indicates that relatively few eigenvectors can

be used as the basis with limited loss in accuracy.

Choosing n

Since the eigenvalues quickly decrease in magnitude, only the first eight eigenvectors

are shown here. The first eigenvector (labeled u1) demonstrates a general linear trend which

accounts for any difference in backscatter between the beginning and end of the year. The

second eigenvector (u2) is relatively constant throughout the year except during the summer

months which are characterized by an increase in σ0 (or decrease depending on the sign).

The third eigenvector (u3) displays several instances of a “reset” behavior, generally

following a precipitous drop in σ0. This is consistent with the behavior observed in some

regions near the edge of the dry snow zone. The fourth eigenvector (u4) also appears to be

associated with some of the reset events displayed in u3. It may also compensate for some

of the error caused by the other eigenvectors.
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Figure 3.8: The magnitude of the 30 largest eigenvalues of S using QuikSCAT data from
the years 2000 to 2008. Most of the information in the process is contained in the largest few
eigenvalues.

The fifth through eighth eigenvectors (u5 to u8) are mostly distinguished by the

location of spikes in σ0 in time. These spikes likely correspond to warm weather episodes

causing an increase in liquid water towards the edges of the dry snow zone. All years show

this behavior, though the time of the spikes appears to vary from year to year.

Since we are primarily interested in the general trends of σ0, n ≤ 4 can be chosen

in this case. This is consistent with Fig. 3.6 which shows that most of the information is

contained within the first few eigenvectors.

Although the basis set chosen from a given year minimizes the mean squared error

for that year, it is not guaranteed to minimize the error for other years. To compare results

from all years, the KL transform is performed on a data matrix formed from data from 2000

to 2008 to obtain a basis set that minimizes the overall error. To mitigate the effects of the

spikes on the eigenvectors, I drop the days affected by the spikes and interpolate to fill the

gaps. This is performed on each pixel prior to forming the data matrix X.

Figure 3.8 shows that most of the information is contained in the first few eigenvectors

in this case as well. Comparing the eigenvectors in Fig. 3.9 to the eigenvectors generated

using individual years demonstrates that a version of u1 is present in all years. Additionally,

similar versions of u2 and u3 are present in multiple years while a version of u4 is present in a

few years. The remaining eigenvectors appear to mainly compensate for small irregularities
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Figure 3.9: The eigenvectors (ui) of S where ui corresponds to the ith largest eigenvalue of
S from 2000 to 2008. The y-axis is in dB and each vector is zero-mean. For easier comparison,
the lines are shifted vertically by 0, −0.2, −0.4, and −0.6, respectively, in each plot.
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Figure 3.10: Normalized average of the data from 2000 to 2008. This is the estimate of ȳ
where the data matrix Y includes data from 2000 to 2008 . This average vector is denoted as
r in Eq. (3.5).

from year to year. Combining this information with Fig. 3.8, I choose n = 4 for the analysis.

Least-Squares Estimation

To better understand the temporal behavior of σ0 in dry snow, the coefficients of the

average (see Fig. 3.10) and the first four eigenvectors are estimated for each pixel for each
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Figure 3.11: Map of Greenland showing the location of regions discussed in this section.

year. In other words, the coefficients for the following equation are estimated using the least

squares method for each year:

σ0
i = a + b1r + b2u1 + b3u2 + b4u3 + b5u4 + ni (3.5)

where the vector σ0
i contains the values of σ0 for the entire year at the ith pixel, a is the

average backscatter for the year, ni is noise, and r is the normalized average of all the data

from 2000 to 2008 as shown in Fig. 3.10. Figure 3.11 shows the location of regions discussed

in the following while Figs. 3.12–3.17 show images of the estimated coefficients from 2000 to

2008.
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Figure 3.12: Estimated values for a from Eq. (3.5).

Discussion

The long-term location of the dry snow zone can be deduced from Fig. 3.12. Long-

term dry snow excludes regions that are only occasionally classified as dry snow using melt

detection algorithms. An example of such a region is found in the southern part of the

Greenland ice sheet in 2001 (labeled A in Fig. 3.11). This region typically melts each year

and is classified as either wet snow or part of the percolation zone. However, in 2001 it

did not melt. The buried ice lenses and layers from past melt maintain a high average

backscatter in this region (typically greater than −7 dB). Similar small regions can be found

in the northern part of the ice sheet. Since accumulation is lower in the northern part of

the dry snow zone, backscatter is generally higher. Thus the average backscatter for the

occasional dry snow regions is generally greater than −5 dB. An example of this region is

visible in the northeastern part of the ice sheet in 2003 (labeled B).
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Figure 3.13: Estimated values for b1 from Eq. (3.5).

Conversely, long-term dry snow includes regions that only occasionally exhibit melt.

The average backscatter remains low compared to that of the percolation or wet snow zones

in these regions despite the occasional melt event. An example of this is found in the

northeastern part of the ice sheet in 2002 (labeled C).

Figure 3.12 shows that the average backscatter (a) in the dry snow zone stays rela-

tively constant over time. However, since the eigenvector u1 has an increasing pattern, the

values of b2 may indicate changes in the average backscatter that may be difficult to see in

Fig. 3.12.

An example of a region that appears to indicate changes in a is in the central part

of Greenland at 43.3439◦ W and 72.0257◦ N (labeled D). Table 3.2 gives the values of b2 at

this position from 2000 to 2008. The difference between the first and last elements in u1 is

about 0.14. If no other basis vectors are assumed to influence the average backscatter, then
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Figure 3.14: Estimated values for b2 from Eq. (3.5).

the expected increase in a at this point from 2000 to 2008 based on the values in Table 3.2

is 2.9 dB. However, the actual increase in a at this point was only 0.55 dB. This suggests

that the other vectors influence the value of the average backscatter. This is consistent with

Figures 3.9 and 3.10 which show that the vectors r, u2, and u3 all end with a slightly lower

value. Based on the sign and magnitude of the corresponding coefficients, these vectors affect

the average backscatter. Therefore, although the values of b2 may indicate small changes in

average backscatter, the coefficients of other vectors should be considered when looking for

changes in a over time. An example of this is given in Fig. 3.18 on page 37 which shows the

backscatter at 43.3439◦ W and 72.0257◦ N in 2002. At this point, b2 = 0.8. However, the

backscatter ends the year at a slightly lower level despite the positive value of b2.

Information can still be gleaned from regions with high positive values of b2. Towards

the edges of the dry snow zone, a “reset” behavior sometimes occurs in σ0. This reset is

34



Figure 3.15: Estimated values for b3 from Eq. (3.5).

Table 3.2: Values of b2 at 43.3439◦ W and 72.0257◦ N. This point is labeled D in Fig. 3.11.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008
b2 -0.7 3.3 0.8 2.2 2.2 5.7 1.7 3.1 2.7

characterized by a sudden increase in σ0 in late summer or fall. The backscatter then remains

at approximately the same level for the remainder of the year. The reset is typically preceded

by a decrease in σ0 that does not exceed the melt threshold. A clear example of this reset

behavior is given in Fig. 3.19 on page 38. This figure is in 2002 in the southeastern region

of the dry snow zone where the values of b2 are large (labeled E in Fig. 3.11). Note that the

model of Eq. (3.5) reconstructs the reset behavior reasonably well.

The reset behavior seen in Fig. 3.19 is commonly present in the percolation zone.

The reset in the percolation zone is caused by refreezing percolated water into ice lenses
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Figure 3.16: Estimated values for b4 from Eq. (3.5).

and other subsurface structures. These structures result in higher backscatter after refreeze

than before melting. The presence of the reset behavior in pixels classified as dry snow

suggests that these pixels are not truly dry snow. Further implications of the presence of

reset behavior in pixels classified as dry snow are discussed in Chapter 5.

Although all of the vectors in Eq. (3.5) are required to accurately estimate σ0, reset

regions are generally associated with high values of b2. Based on experimentation, typical

values of b2 associated with reset behavior are b2 > 7 although resets can be found where b2

is as low as 4 in some cases.

Figure 3.14 shows that negative values of b2 are typically located around the edges of

the dry snow zone. Examination of Fig. 3.14 shows that negative values of b2 are typically

preceded by a few years of melting or positive values of b2. Melt in previous seasons likely

resulted in subsurface ice structures which result in an increase in σ0. However, as snow
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Figure 3.17: Estimated values for b5 from Eq. (3.5).
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Figure 3.18: Estimated and actual backscatter at 43.3439◦ W and 72.0257◦ N in 2002. This
point is labeled D in Fig. 3.11 and has an overall decrease in σ0 despite a positive value of b1.
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Figure 3.19: Actual σ0 and estimated σ0 at 34.2290◦ W and 69.9493◦ N in 2002. This point
is labeled E in Fig. 3.11. The estimation is performed using the least squares fit of Eq. (3.5).
The estimated values are a = −12.4, b1 = 9.1, b2 = 22.6, b3 = 14.0, b4 = −2.9, and b5 = −1.3.

accumulates without melting in succeeding years, the subsurface structures are buried. This

results in a decrease in backscatter which is indicated by a negative value of b2.

The estimated values of b1 are given in Fig. 3.13. This figure shows that b1 is typically

positive throughout the entire dry snow zone. This suggests that the general form of the vec-

tor r is present in σ0 in the entire dry snow zone. Figure 3.10 shows that r is characterized by

a decrease in backscatter during the summer months followed by a return to approximately

the winter backscatter levels. Since this pattern of backscatter behavior appears to be sea-

sonal, it is termed “seasonal variation”. An example of the seasonal variation in backscatter

at a single location is contained in Fig. 3.18.

Since r is the spatial average of all the data in the dry snow zone from 2000 to 2008,

the seasonal variation is the dominant pattern in backscatter behavior in the dry snow zone.

This is reiterated in Fig. 3.20 which shows the spatial average of the dry snow zone for each

year from 2000 to 2008. This figure shows that the spatial average displays the same general

seasonal variation from year to year. While the depth of the decrease and the winter return

level towards the end of the year may vary somewhat, the same general pattern of a decrease

in σ0 followed by an increase in σ0 is present in each year. Thus seasonal variation is present

in the dry snow zone in each year.

38



Since the seasonal variation is the dominating feature of backscatter in the dry snow

zone, it is important to study the cause of seasonal variation for several reasons. First, it is

important to know whether the cause of seasonal variation is instrumental or geophysical.

Instrumental causes of seasonal variation in σ0 could have important implications on the

accuracy of scatterometer images. Second, if the cause is geophysical, understanding the

cause could lead to better understanding and measurement of ice sheet conditions. Third,

understanding the cause of seasonal variation could lead to a model that can predict the sea-

sonal variation. Predicting the seasonal variation could then lead to improved scatterometer

calibrations. For these reasons, Chapters 4 and 5 are dedicated to determining the cause of

seasonal variation in the dry snow zone.

Several large regions of high b1 values exist in 2000 (F), 2002 (E), and 2003 (G). In

2002, the high values of b1 in the southeastern part of the dry snow zone are associated with

a reset (see Fig. 3.19). However, this is not the case in 2000 and 2003. Figure 3.21 compares

σ0 for pixels with high (G) and low (H) values of b1 in 2003. This figure shows that a high

b1 is simply associated with a larger decrease in σ0. Similar results are found in 2000.

The coefficient b1 is also used in succeeding chapters to quantify the magnitude of

the seasonal variation. This is done by first finding the difference between the maximum

and the minimum of the vector r. This difference is 0.16 dB. The approximate magnitude

of the seasonal variation at a given pixel is the estimated value of b1 at the pixel multiplied

by 0.16.

The coefficients of the remaining vectors (u2, u3, and u4) are more difficult to in-

terpret. Based on observations of σ0 in the dry snow zone, these vectors help to provide

variations in seasonal variation. For example, negative coefficients for u2 combined with a

positive b1 could indicate a deeper and longer decrease in σ0 during the summer months

while positive coefficients could indicate a shorter decrease in σ0. Similarly, the coefficients

for both u3 and u4 are suggestive of spatial variations in the general seasonal variation. A

full discussion of the coefficients of these vectors is beyond the scope of this thesis. However,

the spatial consistency of the coefficients displayed in Figs. 3.15, 3.16, and 3.17 suggests that

the vectors are related to some geophysical cause.
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Figure 3.20: Spatial averages of backscatter in the dry snow zone. Top row from left to right:
Spatial average for 2000, 2001, and 2002. Middle row from left to right: Spatial average for
2003, 2004, 2005. Bottom row from left to right: Spatial average for 2006, 2007, and 2008.
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Figure 3.21: Estimated and actual backscatter at 54.6462◦ W and 77.0466◦ N (left, b1 = 5.7,
labeled G) and 38.2474◦ W and 72.7047◦ N (right, b1 = 1.4, labeled H) in 2003.
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3.4 Summary

QuikSCAT SIR images of the Greenland ice sheet are useful for identifying melting

trends and other key features of the ice sheet. The images are used to identify the dry snow

zone using the Q-α melt detection method and altitude thresholding. This method of dry

snow zone identification displays interannual consistency as well as some variability that

takes into account changes in the ice sheet.

The KL transform is used to identify and study the dominant patterns in annual

backscatter behavior. Some of these patterns are used to detect specific behaviors in σ0

such as the reset behavior seen in Fig. 3.19. Additionally, spatially averaging σ0 shows

that seasonal variation is the dominant pattern (see Figs. 3.10 and 3.20). The implications

of seasonal variation warrant study of the causes of seasonal variation in the succeeding

chapters.
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Chapter 4

Investigation of Possible Instrumental Causes of Seasonal Variation

Possible causes of the observed seasonal variation in the backscatter of dry snow

include instrumental effects. Instrumental causes of seasonal variation could have important

implications on the accuracy of scatterometer images. This chapter identifies and tests

several QuikSCAT instrumental parameters that may be related to the observed seasonal

variation in backscatter.

Possible instrument-based causes of seasonal variation include incidence angle varia-

tion and orbital drift which can cause variation in imaging time and azimuth angle. Since σ0

in snow depends on these parameters, the seasonal variation in σ0 in the dry snow zone could

be caused by seasonal variation in these parameters. Multiple points classified as dry snow

within the Greenland ice sheet are tested. It is found that it is unlikely that instrumental

parameters are causing the seasonal variation. Further evidence is then provided that sug-

gests that the cause is geophysical and not instrumental. This evidence includes the spatial

consistency of seasonal variation, the presence of seasonal variation in Antarctica, and the

observation of similar seasonal backscatter characteristics in other scatterometers.

4.1 Incidence Angle Variation

Due to QuikSCAT’s design, there is little variation in the incidence angle (θ). Nev-

ertheless, the possible effects of seasonal variation in incidence angle are tested.

For each pixel in the SIR algorithm, multiple measurements are used to calculate σ0.

Each measurement may have a slightly different incidence angle. Thus there are multiple

measurements of θ associated with each pixel. The reported pixel value is the average of

these measurements. If the average θ varies with season, and ∂σ0

∂θ
is sufficiently large, the

changing average θ may cause an apparent change in σ0. This is tested in the following.
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Figure 4.1: QuikSCAT (a) σ0 and (b) average incidence angle (θ) in 2006 at 59.2229◦ W and
77.1670◦ N. Average incidence angle measurements are quantized to 0.01◦ in the source L1B
file.

Figure 4.1 shows the average incidence angle at −59.2229◦ longitude and 77.1670◦

latitude in 2006. For this time period, θ ∈ [54.03◦, 54.05◦] which is a very small range.

Backscatter incidence angle dependence over ice can be up to 0.25 dB/deg for QuikSCAT [38].

This means that backscatter variation on the ice sheet due to incidence angle variation can

only account for up to 0.005 dB at this point. At this point, b1 = 4.2 which gives a value of

0.67 dB for the approximate magnitude of the seasonal variation. Comparing these values

shows that incidence angle variation can only account for less than 1% of the seasonal

variation in σ0.

Furthermore, Fig. 4.1 shows that θ does not vary seasonally in the same general

manner as σ0. Thus I conclude that the seasonal variation in σ0 is not caused by incidence

angle variation. Studies of other points in the dry snow region yield similar results.

4.2 Orbital Drift

QuikSCAT was designed to have an orbital pattern with a four day repeat cycle during

which it completes fifty-seven revolutions. This means that the position of the satellite was

intended to be approximately the same every four days, or equivalently every fifty-seven
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Figure 4.2: Longitude of the ascending node for the QuikSCAT satellite every 57 revolutions
for two different passes beginning with revolutions 430 and 431. The discontinuities are caused
by wrapping.

revolutions. This pattern was initially tightly controlled after QuikSCAT’s launch in 1999.

However, this control soon ceased and the orbit began to drift. The satellite drift pattern can

be determined by plotting the longitude of the ascending node every fifty-seven revolutions

over the duration of the mission. Figure 4.2 shows that the longitude of the ascending node

varies little initially. However, the longitude begins to shift approximately at the beginning

of 2000 and eventually achieves a rate of nearly 1◦ per 57 revolutions or equivalently 91◦ per

year.

As the orbit shifts, the local time of day and the azimuth angle of the measurements

used to create backscatter images also shift. Since σ0 over snow can depend on the local

time of day and azimuth angle, orbital drift may cause seasonal variation if the drift pat-

tern matches with the seasonal variation. However, this is not the case. According to the

QuikSCAT data files, the minimum difference in longitude between two separate passes is

about 6.5◦. These passes occur at approximately the same local time but for different days

in the four day cycle. This means that at a drift rate of 91◦ per year, σ0 should have a cycle

of about 26 days instead of a full year if the drift is affecting σ0. Since this is not observed it
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Figure 4.3: QuikSCAT (a) σ0 and (b) the average time for each day in 2007 at 28.7282◦ W
and 77.5432◦ N.

is unlikely that the seasonal variation is caused by orbital drift. However, for confirmation,

variations in the local time of day and in azimuth angle are examined in the following.

4.2.1 Local Time of Day Variation

In this section variations in the local time of day of the SIR images are investigated.

SIR all-pass images are created using data from multiple passes. Since snow conditions vary

throughout each day, especially if melt is involved, the local time of day of the passes can

influence the backscatter results. Thus large variations in the image local time of day can

cause variations in σ0. The average local time of day is used for the same reasons that the

average incidence angle is used in Sec. 4.1.

Figure 4.3 shows an example of backscatter dependence on the local time of day

towards the end of the year. For most of the year, the average local time of day at this point

is periodic with several cycles. One of these periods is approximately 26 days as expected.

However, at JD 325 the temporal variance of the average time increases until about JD 333.

This increase in the temporal variance of the average time corresponds to an increase in the

temporal variance of σ0 for this day range.
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While this shows that variations in the average local time of day may be correlated

with variation in σ0, the seasonal variation in Fig. 4.3(a) does not correspond to any signifi-

cant variation in the average local time of day (see Fig. 4.3(b)). In other words, the average

local time of day does not vary seasonally. Thus I conclude that it is unlikely that the

seasonal variation in σ0 is caused by local time of day variation. Studies at other locations

yield similar results.

4.2.2 Azimuth Angle Variation

Orbital drift can also affect the azimuth angle. Backscatter dependence on azimuth

angle (azimuth modulation) is caused by different formations in the ice or snow. One type of

snow formation that causes azimuth modulation of σ0 in Antarctica is sastrugi [39, 40, 41].

Sastrugi are ridges of snow similar to sand dunes that are formed by wind and lie parallel

to the wind direction. Sastrugi can range in size from a few to over a hundred meters [42].

Due to their shape, sastrugi can affect surface scattering depending on the azimuth angle.

Azimuth modulation of σ0 is not as strong in Greenland as in Antarctica although it

is also likely caused by sastrugi [43]. However, azimuth modulation may still be significant in

the dry snow zone. Therefore, azimuth angle variation could contribute to seasonal variation

in σ0 in the dry snow zone. However, this is unlikely. Figure 4.4 shows a plot of QuikSCAT

azimuth angle measurements over time at the Greenland summit in 2008. The figure shows

that the azimuth angle measurements have a period of approximately 26 days which is

consistent with the orbital drift period. However, this figure also shows that azimuth angle

does not have a seasonal period that is consistent with the seasonal period observed in σ0.

Thus it is unlikely that azimuth angle variation is causing the seasonal variation in σ0.

4.3 Other Parameters

In addition to incident angle, local time of day, and azimuth angle, other parameters of

the satellite were examined including the number of pulses per telemetry frame; spacecraft

position, velocity, and location; frequency shift; and calibration factors. None of these

parameters demonstrate behavior correlated with the seasonal variation in σ0 in the dry

snow zone. Therefore, it is unlikely that the cause of seasonal variation is instrumental.
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Figure 4.4: Scatter plot of the azimuth angle for each QuikSCAT measurement over time in
2008 at the Greenland summit. The azimuth angle has a period of about 26 days due to orbital
drift. The 26 day period is most easily observed at higher and lower angles.

4.4 Evidence Against Instrumental Causes

This section provides further evidence that the cause of seasonal variation in σ0 is

not instrumental and is thus geophysical. The evidence includes the spatial consistency of

seasonal variation, the presence of seasonal variation in Antarctica, and seasonal variation

in σ0 derived from other scatterometers.

4.4.1 Spatial Consistency of Seasonal Variation

If seasonal variation is caused by instrumental effects, the magnitude of seasonal

variation in σ0 in the dry snow zone would be either spatially uniform across the ice sheet or

would be noise-like. However, the spatial distribution of seasonal variation suggests that the

seasonal variation has a geophysical cause. Figure 3.13 gives a measure of the magnitude of

the seasonal variation in the dry snow zone. This figure shows that the magnitude displays

spatial consistency throughout the ice sheet. Additionally, the magnitude varies regionally.

This distribution is consistent with a regionally varying geophysical cause. Therefore, since

the distribution of the magnitude of the sesasonal variation is neither uniform nor noise-like,

it is unlikely that the seasonal variation is caused by instrumental effects.
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Figure 4.5: QuikSCAT σ0 over time in 2008 in Antarctica at (left) 115.9889◦ E and 75.2389◦ S
and (right) 124.1333◦ E and 74.6194◦ S.

4.4.2 Seasonal Variation in Antarctica

If instrumental effects cause the observed seasonal variation in σ0, then the seasonal

variation should be similar in other polar regions. To help determine whether seasonal vari-

ation can be observed elsewhere in the polar regions, several points in a region of Antarctica

that is similar to the Greenland dry snow are investigated. This region experiences no melt,

is high in altitude, and experiences low azimuth modulation.

Figure 4.5 shows σ0 over time for two different points on the Antarctic ice sheet in

2008. A similar seasonal variation in σ0 is visible except that the decrease in σ0 occurs in

the earlier months of the year which corresponds to the Antarctic summer. If the cause of

seasonal variation is instrumental, the decrease in σ0 would likely occur at the same time of

year for both Greenland and Antarctica. Since it does not, this suggests that the cause of

seasonal variation in σ0 is instead geophysical.

4.4.3 Seasonal Variation in Other Scatterometers

To further test whether the seasonal variation in backscatter in the dry snow zone of

Greenland is driven by instrumental effects, data from SIR images of Greenland from other

scatterometers are compared to data from QuikSCAT SIR images. The orbit, geometry,

and other instrumental parameters of ERS-2, SASS, and ASCAT are distinctly different
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Figure 4.6: Backscatter at the Greenland Summit in 2000 using (left) QuikSCAT and (right)
ERS-2 data. QuikSCAT data is smoothed with a 5-day moving average for easier comparison.

from QuikSCAT. If the same seasonal cycling is observed in these other scatterometers, it is

unlikely that the QuikSCAT-observed cycling is due only to instrumental effects. However, if

seasonal variability in σ0 has a geophysical cause, it should be visible by other scatterometers.

For comparison, A images from ERS-2 and ASCAT are used.

Figure 4.6 shows σ0 at the summit in the year 2000 using data from QuikSCAT and

ERS-2. This figure shows trends consistent with seasonal variation in both scatterometers.

However, the trend is not as strong in the ERS data. This is likely due to the different

operating frequency and the lower spatial resolution and temporal resolution of ERS versus

QuikSCAT.

Seasonal variation is also present in ASCAT data. Figure 4.7 demonstrates this by

showing σ0 at the summit in the year 2009 using data from QuikSCAT and ASCAT. This

figure shows that for ASCAT σ0 also decreases slightly during the summer months. Other

points in the dry snow zone verify the presence of seasonal variation in σ0 in the dry snow

zone for both ASCAT and ERS-2.

Similar temporal behavior in σ0 in the dry snow zone can also be found in SASS

data [4]. Since seasonal variation in σ0 in the dry snow zone is found in multiple scat-

terometers at different wavelengths, it is highly unlikely that seasonal variation is driven by

instrumental effects. This suggests that the cause of seasonal variation in σ0 is geophysical.
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Figure 4.7: Backscatter at the Greenland Summit in 2009 using (left) QuikSCAT and (right)
ASCAT data. QuikSCAT data is smoothed with a 5-day moving average for easier comparison.
Note that the QuikSCAT data record ends with JD 327 in 2009.

4.5 Summary

None of the tested instrumental parameters including incidence angle, local time of

day, and azimuth angle are found to have variations consistent with seasonal variations in σ0

in the Greenland dry snow zone. Seasonal variation in σ0 consistent with the seasons of the

southern hemisphere is found in Antarctica. Additionally, seasonal variation in σ0 is present

in multiple scatterometers at different wavelengths. This evidence shows that it is highly

unlikely that seasonal variation is caused by instrumental effects. Therefore, I conclude that

the cause of the seasonal variation in σ0 in the dry snow zone is geophysical.
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Chapter 5

Investigation of Possible Geophysical Causes of Seasonal Variation

The analysis presented in Chapter 4 rules out instrumental parameters as the cause of

seasonal variation in σ0 in the dry snow zone of the Greenland ice sheet. Strong evidence is

also given in Chapter 4 that suggests that the cause is geophysical. This chapter investigates

several geophysical parameters that may cause seasonal variation in backscatter. These

parameters include azimuth modulation, wind speed, and temperature. Temperature is

found to be the most likely cause of seasonal variation.

5.1 Azimuth Modulation

As mentioned in Sec. 4.2.2, azimuth modulation is caused by different formations

in the ice or snow including sastrugi. These formations may change throughout the year

as snow accumulates and wind speeds change. Seasonal changes in these formations could

result in variations in azimuth modulation which may account for the seasonal variation in

backscatter in the dry snow zone.

A second-order and fourth-order Fourier series are typically chosen to model backscat-

ter dependence on azimuth angle over Greenland [44] and Antarctica [45], respectively. For

Greenland,

σ0(φ) = C + M1 cos(φ− φ1) + M2 cos(2φ− φ2) (5.1)

where C is the average backscatter, M1 and M2 are the magnitudes of the first- and second-

order azimuth modulation respectively, and φ1 and φ2 are the respective directions or orien-

tations of the azimuth modulation.
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The parameters C, M1, M2, φ1, and φ2 in Eq. (5.1) are estimated for a 30-day sliding

window using the L1B data from 2008 at the summit of Greenland. To more easily estimate

the parameters with the least squares method, Eq. (5.1) is reduced to an approximately

linear function using the angle difference identity

cos(α− β) = cos α cos β + sin α sin β. (5.2)

To measure the change in azimuth modulation over time, define

M(φ) = M1 cos(φ− φ1) + M2 cos(2φ− φ2). (5.3)

This gives the dependence of σ0 on φ. The average dependence of σ0 on φ in an area is then

M(φ̄) where φ̄ is the average azimuth angle in the area. The value M(φ̄) over time indicates

the change in σ0 over time due to changes in azimuth modulation.

Table 5.1 gives the estimated values of the parameters in Eq. (5.1), φ̄, and M(φ̄) near

the summit in 2008. Many of the estimated values of M1, M2, φ1, and φ2 are not statistically

significant, suggesting that azimuth modulation does not play a significant role in seasonal

variability of σ0.

This is further demonstrated in Fig. 5.1. This figure shows the actual backscatter and

the estimated values of C and C + M(φ̄) over time near the summit. Figure 5.1(b) shows

that seasonal variation is visible in C which does not depend on azimuth angle. Adding

M(φ̄) to C results in only a slight deepening of the decrease in σ0. Therefore it is unlikely

that azimuth modulation is the driving force behind seasonal variation in σ0 in the dry snow

zone.

5.2 AWS Data

Succeeding sections in this chapter use data from the AWSs. The data used include

air temperature and wind measurements. Hourly air temperature and wind measurements

on Greenland come from AWSs located on the ice sheet (see Sec. 2.6, especially Fig. 2.8 and

Table 2.1). To more easily compare these measurements and σ0, both data records must have

the same time scale. Since σ0 is given only daily, the average daily AWS measurement (i.e.
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Table 5.1: Estimated parameters of Eq. (5.1) at the Greenland summit in 2008. C, M1, M2,
and M(φ̄) are in dB while φ1, φ2, and φ̄ (average azimuth angle) are in radians.

JD Range C M1 φ1 M2 φ2 φ̄ M(φ̄)
1-30 -10.2266 0.101 1.229 0.022 -0.520 3.1670 -0.018
15-45 -10.0955 0.048 2.480 0.028 0.551 3.1503 0.062
30-60 -10.2467 0.042 2.860 0.027 -1.047 3.2072 0.050
45-75 -10.2728 0.045 2.541 0.024 -2.661 3.0951 0.018
60-90 -10.2408 0.061 2.416 0.044 -2.150 3.0588 0.031
75-105 -10.2752 0.044 1.974 0.068 -2.115 3.1179 -0.014
90-120 -10.3053 0.058 1.750 0.041 -2.648 3.1612 -0.028
105-135 -10.3334 0.111 1.389 0.028 2.441 3.2049 -0.046
120-150 -10.4299 0.135 1.455 0.036 0.976 3.0392 0.012
135-165 -10.5250 0.100 1.409 0.006 2.404 3.1267 -0.019
150-180 -10.5373 0.075 0.124 0.026 0.703 3.1420 -0.055
165-195 -10.5293 0.029 0.588 0.041 -0.107 3.1944 0.015
180-210 -10.5548 0.012 -1.065 0.014 0.531 3.2027 0.008
195-225 -10.5244 0.070 0.675 0.063 1.852 3.1225 -0.074
210-240 -10.5160 0.113 0.785 0.095 1.478 3.1764 -0.067
225-255 -10.5258 0.050 -0.005 0.035 0.787 3.1081 -0.027
240-270 -10.4788 0.050 -1.378 0.040 0.898 3.1595 0.017
255-285 -10.4001 0.008 -1.461 0.005 -1.761 3.1604 -0.002
270-300 -10.3372 0.049 -2.299 0.053 -2.937 3.1275 -0.019
285-315 -10.2896 0.037 -2.168 0.020 1.861 3.1729 0.017
300-330 -10.1899 0.051 -0.370 0.031 0.306 3.1051 -0.019
315-345 -10.1859 0.014 -0.839 0.033 -1.160 3.1395 0.004
330-360 -10.1938 0.034 2.815 0.103 -2.915 3.1148 -0.067

air temperature, wind speed, and wind direction) is calculated and used for each station.

This eliminates the diurnal temperature cycle and helps to mitigate noise in the AWS record.

Due to the harsh climate on the ice sheet, the AWS data records often have periods

of missing data. Prior to comparing the AWS measurements and σ0, the data records must

be checked for missing data.

Table 5.2 shows the number of days missing temperature data for each station avail-

able from 2000 to 2008. According to this table, all of the stations have either less than 18

or more than 36 days of missing data. This provides a range for a threshold to determine

how much missing data can be tolerated in the analysis. Additionally, choosing a threshold
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Figure 5.1: (a) Actual backscatter and (b) estimated values of C and C + M(φ̄) over time
near the summit (37.75◦ W and 72.53◦ N).

Table 5.2: The number of days missing data in the average daily temperature record and
σ0. Stations and years with x’s have bad or little available data in those years.

AWS 2000 2001 2002 2003 2004 2005 2006 2007 2008
1 0 73 0 0 265 6 168 x x
2 0 0 0 0 14 124 0 48 0
3 5 6 130 153 1 224 72 x 302
4 134 88 60 251 214 193 x x x
5 6 4 0 0 0 0 248 87 244
6 0 0 3 0 3 0 0 0 0
7 5 12 0 16 37 0 0 0 243
8 0 11 0 6 0 0 0 0 0
9 117 146 0 12 0 3 0 0 x
10 0 x 0 x 0 1 0 0 0
11 0 0 0 235 0 0 57 0 182
12 6 7 0 14 0 0 87 151 241
13 0 215 x x x x x x x
14 7 5 4 17 0 1 265 0 0
15 0 0 0 0 0 0 12 344 x
16 0 206 x x x x x x x
17 0 0 0 0 0 4 273 153 295
19 x 0 0 0 218 x x x x
21 x x 154 0 1 5 243 x x
23 x x x x x x 207 166 180
σ0 1 8 2 0 0 0 2 6 5
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Table 5.3: Melt duration in days as determined by the Q-α method at each station and facie
classification. Stations and years with x’s have been thrown out as determined by the

amount of missing days of data in Table 5.2 and the threshold given in the text.
Facie classifications are dry snow (DS), percolation (P), wet snow (W), and

ablation (A) zones. Combinations of the facies classifications
indicate uncertainty or annual variability.

AWS 2000 2001 2002 2003 2004 2005 2006 2007 2008 Facie
1 93 x 87 73 x 86 x x x P/W
2 18 2 30 15 32 x 38 x 8 P/W
3 2 0 x x 3 x x x x DS/P
5 0 1 1 0 0 4 x x x DS/P
6 0 0 0 0 0 0 0 0 0 DS
7 0 0 10 0 x 0 0 0 x DS/P
8 39 11 24 33 51 41 43 74 29 P/W
9 x x 182 20 86 94 79 78 x A
10 13 x 4 x 12 9 15 38 5 P/W
11 2 0 1 x 3 7 x 11 x DS/P
12 0 0 4 0 0 0 x x x DS/P
13 15 x x x x x x x x P/W
14 0 0 0 0 0 0 x 0 0 DS
15 7 0 7 4 4 9 10 x x DS/P
16 0 x x x x x x x x DS
17 96 24 101 2 17 57 x x x A
19 x 358 363 365 x x x x x A
21 x x x 67 43 43 x x x P/W

in this range ensures that only records with less than 5% missing data are used. Note that

a threshold in this range eliminates all data from stations 4 and 23.

The purpose of the AWS data is to determine the cause of seasonal variation in σ0

in the dry snow zone. To help with this, a correlation analysis is performed. To determine

which stations are contained in the dry snow zone, the Q-α method described in Chapter 3 is

used. A pixel is classified as dry snow if no melt occurs throughout the entire year. Table 5.3

gives the melt duration for each station. Only those stations classified as dry snow at least

once from 2000 to 2008 are used in the analysis. This includes stations 3, 5, 6, 7, 11, 12,

14, 15, and 16. The reason for this is that melting introduces non-linear behavior into σ0.

Since the correlation coefficient measures the linear relationship between two variables, the
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correlation coefficient at such points gives little insight into the relationship between the

AWS data and backscatter.

Some of the stations are located near the edge of the dry snow zone and percolation

zone. Melting sometimes occurs at these stations due to their proximity to the dry snow line.

Some examples include stations 5, 7, and 11. These stations are included in the analysis

since the snow at these stations is occasionally classified as dry snow.

5.3 Wind Speed and Direction

Wind plays an important role in the conditions of the ice sheet. Surface structures

such as sastrugi that cause azimuth modulation are formed by wind erosion. Wind direction

can influence the orientation of these structures while wind speed can affect the size. While

azimuth modulation is unlikely to contribute to seasonal variation in σ0, wind may affect

snow in other ways. Strong wind may cause snow crystals to break apart resulting in a

compact snow layers which result in lower backscatter [46]. Wind speed also affects surface

hoar formation [47] which may affect backscatter. Additionally, wind speed can affect snow

temperature by affecting wind pumping. Wind pumping is caused by wind blowing over

the snow surface. Depending on the wind speed and the surface geometry, the air pressure

changes which affects the transfer of air through the snow. This can affect snow temperature

by transferring warm air into the snow [48]. The warmer air can cause a change in snow

conditions resulting in changes in backscatter.

A full analysis of the effects of wind speed and direction on σ0 in dry snow is beyond

the scope of this thesis. However, a basic correlation analysis gives insight into whether wind

is directly related to the seasonal variation in σ0. Wind measurements are taken from AWS

and averaged according to the procedure in Sec. 5.2. Generally the correlation coefficient

between the wind measurements and σ0 is negative and small in magnitude (typically less

than 0.2). Figure 5.2 shows scatter plots of σ0, air temperature, wind speed, and wind

direction at stations 5 and 6 in 2003. The scatter plots give some insight into the relationship

between these parameters and are representative of other locations in the dry snow zone.

Table 5.4 gives the correlation coefficients corresponding to Fig. 5.2.
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(a) Backscatter vs. wind speed and air temperature
at station 5.
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(b) Backscatter vs. wind direction and air temper-
ature at station 5.
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(c) Backscatter vs. wind speed and air temperature
at station 6.
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(d) Backscatter vs. wind direction and air temper-
ature at station 6.

Figure 5.2: Scatter plots and fitted lines in 2003 of σ0, air temperature, and (a) wind speed
at station 5, (b) wind direction at station 5, (c) wind speed at station 6, and (d) wind direction
at station 6. The colors correspond to air temperature in C.

Table 5.4: Correlation coefficients of backscatter with wind speed, wind direction, and air
temperature in 2003 at the stations used in Fig. 5.2.

AWS Wind Speed Wind Direction Air Temperature
5 -0.111 -0.157 -0.617
6 -0.036 -0.060 -0.380
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Figure 5.2(a) shows a scatter plot of σ0, wind speed, and temperature at station

5. The correlation coefficient between wind speed and σ0 at this point is −0.111. This is

consistent with the scatter plot which shows a slight negative relationship between wind

speed and σ0. However, the scatter plot shows that there is a stronger relationship between

temperature and σ0. At this point, the correlation coefficient of temperature and σ0 is−0.617

which is more significant. Temperature and wind speed also appear to be slightly related in

this scatter plot. This suggests that the correlation between wind speed and σ0 may be due

to the correlation between temperature and σ0 and the correlation between temperature and

wind speed.

Figure 5.2(c) shows a scatter plot of σ0, wind speed, and temperature at station 6 in

2003. The correlation coefficient at this point is only −0.036. The scatter plot confirms this

which shows that there is no significant relationship between wind speed and σ0. However,

a relationship between backscatter and temperature is present although it is not as clear

as in Fig. 5.2(a). This is consistent with a lower (in magnitude) correlation coefficient at

this point of −0.380. The low correlation coefficient between wind speed and σ0 and the

higher correlation coefficient between temperature and σ0 suggest that wind speed may not

be directly related to seasonal variation in σ0 in the dry snow zone.

Wind direction may also affect σ0. A scatter plot of σ0, wind direction, and temper-

ature at station 5 in 2003 is given in Fig. 5.2(b). The scatter plot shows a slightly negative

correlation between wind direction and σ0 which is consistent with a correlation coefficient

of −0.157. However, as in Fig. 5.2(a), temperature and σ0 are highly related while tempera-

ture and wind direction appear to be slightly correlated. Thus the correlation between wind

direction and σ0 may be due to the correlation between wind direction and temperature.

Figure 5.2(d) gives an example of a station where the wind direction is not significantly

correlated with σ0. This figure shows a scatter plot of σ0, temperature, and wind direction

at station 6 in 2003. This figure does not show a clear relationship between wind direction

and σ0 which is consistent with a low correlation coefficient of −0.060. The low correlation

suggests that it is unlikely that wind direction is directly related to the seasonal variation in

σ0.
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In conclusion, it is unlikely that the observed seasonal variation in σ0 in the dry snow

zone is directly related to wind speed and direction. The comparatively higher correlation

coefficients (in magnitude) of temperature and σ0 suggest that temperature may be the

dominant cause of seasonal variation in σ0. The relationship between temperature and σ0 is

examined more fully in Sec. 5.4.

5.4 Temperature

An interesting feature of the seasonal variation in dry snow is that it is similar to

backscatter behavior in regions where melting occurs such as in the percolation and wet snow

zones. The primary difference in the backscatter behavior between these regions and the dry

snow zone is the magnitude of the decrease in σ0. The similarities suggest that temperature

may be a factor in seasonal variation in σ0 in the dry snow zone.

Temperatures below freezing may affect snow backscatter in several ways. First,

temperature affects the density of new snow as it accumulates [49], [50] which affects σ0.

Second, at temperatures below freezing, there is a liquid-like layer of water at the surface.

The thickness of this layer depends on temperature [51, 52]. The thickness of this layer may

influence backscatter values. Third, temperature may affect snow grain growth which also

affects backscatter.

This section gives further evidence that temperature may be causing the seasonal

variation. This evidence comes from an analysis of seasonal variation near the dry snow

line, the correlation of air temperature and backscatter in dry snow, and electromagnetic

modeling.

5.4.1 Seasonal Variation Near the Dry Snow Line

The dry snow line is defined as the division between the percolation zone and the dry

snow zone [23] and is in the transition region between the dry snow zone and the percolation

zone. If temperature is the leading cause of seasonal variation in σ0, then the change in σ0

due to melting in the percolation zone should transition smoothly into seasonal variation in

the dry snow zone around the dry snow line.
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The primary difference between the dry snow zone and the percolation zone is that

snow in the percolation zone melts due to the higher temperatures. The presence of liquid

water causes σ0 in the percolation zone to drop rapidly when melting occurs.

Figure 5.3 displays the difference between the dry snow zone and the percolation zone.

This figure gives σ0 from QuikSCAT and air temperature from AWS over time at the summit

and Crawford Point 1 (CP1) in 2003 (see Fig. 2.8 for the location of these stations). The

summit is the highest point on the ice sheet and is within the dry snow zone. Figure 5.3(b)

shows that the air temperature remains below 0◦ C at the summit the entire year. This

is consistent with Fig. 5.3(a) which shows that σ0 does not experience a precipitous drop

commonly associated with melting. However, seasonal variation is still visible in Fig. 5.3(a).

Unlike at the summit, some melting does occur at CP1. Figure 5.3(d) shows that the

air temperature does rise above 0◦ C several times at CP1 during the year. Figure 5.3(c)

shows a corresponding drop in σ0 during those times. Two characteristics of the backscatter

behavior suggest that CP1 belongs to the percolation zone and not the wet snow zone. First,

the total melt duration is not very long compared to typical locations in the wet snow zone.

Second, σ0 is slightly higher after the melt season than before melting began. This reset

behavior is consistent with the formation of subsurface ice structures which are a defining

characteristic of the percolation zone.

A smooth transition between the dry snow zone and the percolation zone is visible in

2003 near the dry snow line at points along the line connecting the summit and CP1. Moving

along this line from CP1 to the summit results in an increase in altitude and latitude which

results in an overall decrease in temperature. Figure 5.4 shows σ0 over time for three points

along this connecting line. The backscatter in 5.4(a) comes from a location in the percolation

zone near the dry snow line. At this point, σ0 drops precipitously for a day or two after which

backscatter increases to a level about 1 dB higher than the days immediately preceding the

melt event. This is similar to the behavior in Fig. 5.3(c) except less melt has occurred in

Fig. 5.4(a).

The second pixel is located in the dry snow zone a short distance from the dry snow

line. Figure 5.4(b) shows σ0 over time at this pixel. At this point, no evidence of melt is
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(d) Air Temperature at CP1

Figure 5.3: Air temperature and QuikSCAT σ0 over time in 2003 at the summit and CP1.
The figures include (a) backscatter at the summit, (b) air temperature at the summit, (c)
backscatter at CP1, and (d) air temperature at CP1.
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dry snow line.
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(b) Backscatter in the dry snow zone near the
dry snow line.
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(c) Backscatter in the dry snow zone between points in (a)
and (b).

Figure 5.4: Backscatter over time near the dry snow line in 2003 along the line between
the summit and CP1. The points are located in the (a) percolation zone (at 45.2059◦ W and
70.5237◦ N) and the dry snow zone (at (b) 44.2724◦ W and 70.8562◦ N and (c) 44.7430◦ W
and 70.6906◦ N). These plots demonstrate a transition in σ0 behavior between the percolation
zone and the dry snow zone.
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Table 5.5: Calculated correlation coefficient of air temperature and σ0 at the closest pixel.
Bolded values correspond to locations within the dry snow zone.

AWS 2000 2001 2002 2003 2004 2005 2006 2007 2008
3 -0.204 -0.567 x x -0.240 x x x x
5 -0.523 -0.372 -0.510 -0.617 -0.519 -0.312 x x x
6 -0.478 -0.485 -0.389 -0.380 -0.444 -0.465 -0.482 -0.381 -0.478
7 -0.474 -0.613 -0.279 -0.598 x -0.647 -0.704 -0.689 x
11 -0.313 -0.456 -0.358 x -0.066 -0.360 x -0.124 x
12 -0.559 -0.513 -0.029 -0.539 -0.582 -0.507 x x x
14 -0.539 -0.456 -0.467 -0.388 -0.511 -0.558 x -0.557 -0.490
15 -0.375 -0.367 -0.231 -0.481 -0.126 -0.428 -0.391 x x
16 -0.333 x x x x x x x x

contained within σ0. However, the backscatter behavior here is a typical example of seasonal

variation in dry snow.

Figure 5.4(c) shows the backscatter over time in the dry snow zone near the dry

snow line and between the points in Figs. 5.4(a) and 5.4(b). Here σ0 decreases and levels

out during the summer months which is typical behavior for seasonal variation in the dry

snow zone. However, at approximately JD 240, σ0 abruptly increases in a manner similar

to a refreeze event in melted snow despite the lack of evidence in σ0 of a melt event. The

behavior of σ0 in Fig. 5.4(c) is similar to the σ0 behavior in both Figs. 5.4(a) and 5.4(b).

This suggests that the pixel in Fig. 5.4(c) is a transitional pixel between the other two pixels.

Since temperature variation is the known cause of variation in σ0 in the percolation zone,

and since this transitional behavior is correlated with a decrease in overall temperature, this

suggests that the variation in σ0 in this transitional region and in the dry snow zone is also

caused by temperature variation.

5.4.2 Correlation of Temperature and Backscatter

Figure 5.3 shows that temperature and σ0 appear to be correlated even at tempera-

tures below freezing. This section provides a detailed correlation analysis of air temperature

and backscatter in the dry snow zone. Prior to calculating the correlation coefficient, the

average daily temperature is calculated as described in Sec. 5.2.
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Figure 5.5: Scatter plot and fitted line in 2003 of backscatter and air temperature at stations
(a) 5 and (b) 6.

Table 5.5 gives the calculated correlation coefficient of air temperature and σ0 at

each of the selected stations while Fig. 5.5 shows scatter plots of σ0 and air temperature

at stations 5 and 6 in 2003. The scatter plots show that temperature and σ0 appear to be

negatively correlated. Additionally the coefficients in Table 5.5 in the dry snow zone are

significant. However, the coefficients are not as high in magnitude as would be expected

if temperature is the primary determinant of seasonal variation. The range of correlation

coefficients in the dry snow zone is from −0.333 to −0.704.

There are several possible explanations for the lower correlation coefficients. First,

noise could be affecting the correlation coefficient. Figure 5.3 shows that noise is high in both

air temperature and σ0. High noise could mask the dependence of σ0 on temperature and

lower the magnitude of the correlation coefficient. Second, other factors such as accumulation

can affect σ0. Third, the parameters that depend on temperature and affect backscatter

depend on snow temperature. While air temperature and snow temperature are related,

they are not equal. Unfortunately, snow temperature measurements from AWS are not very

reliable. Thus air temperature is used as a substitute.

66



Table 5.6: Calculated correlation coefficient of smoothed air temperature and smoothed σ0

at the closest pixel. Smoothing was performed with a 7 day moving average. Bolded
values correspond to locations within the dry snow zone.

AWS 2000 2001 2002 2003 2004 2005 2006 2007 2008
3 -0.231 -0.664 x x -0.325 x x x x
5 -0.656 -0.634 -0.731 -0.867 -0.776 -0.448 x x x
6 -0.723 -0.751 -0.668 -0.721 -0.679 -0.713 -0.771 -0.625 -0.741
7 -0.752 -0.842 -0.330 -0.837 x -0.880 -0.890 -0.898 x
11 -0.383 -0.586 -0.461 x -0.055 -0.483 x -0.123 x
12 -0.832 -0.752 -0.011 -0.728 -0.874 -0.744 x x x
14 -0.731 -0.694 -0.695 -0.632 -0.800 -0.776 x -0.811 -0.686
15 -0.565 -0.420 -0.347 -0.658 -0.122 -0.555 -0.513 x x
16 -0.400 x x x x x x x x

Two methods can be used to mitigate noise: temporal smoothing and spatial averag-

ing. Table 5.6 gives the resulting correlation coefficients after smoothing both air temperature

and σ0 using a 7 day moving average.

Comparing Tables 5.5 and 5.6 shows that smoothing the data does increase the mag-

nitude of the correlation coefficient in the dry snow zone. The range of correlation coefficients

becomes −0.400 to −0.898 with most values greater than 0.6 in magnitude.

There are four values of note in Table 5.6. The first three are associated with station

16 in 2000 and stations 11 and 15 in 2001. These are the only three stations in the dry snow

zone with a correlation coefficient smaller than 0.6 in magnitude. These three stations are

found in the southern part of Greenland where accumulation is higher (see Figs. 2.5 and

2.8 and Table 2.1). Figures 5.6(a)–5.6(c) show σ0 over time at these three points. These

points are similar in that σ0 gradually decreases throughout the year. This is typical of areas

with high accumulation and frequent melt. Since accumulation is dominating over seasonal

variation at these points, the correlation coefficients are lower.

The fourth value (see Fig. 5.6(d)) is associated with station 12 in 2002. This station

only had four days of melt in this year and is typically classified as dry snow. However, the

correlation coefficient at this point in 2002 is virtually zero. The backscatter at this point

displays two resets after the melt events. This non-linear behavior results in low correlation

between backscatter and temperature. The non-linear behavior in σ0 caused by melting is
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(a) Backscatter over time at station 16 in 2000.
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(b) Backscatter over time at station 11 in 2001.
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(c) Backscatter over time at station 15 in 2001.
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(d) Backscatter over time at station 12 in 2002.

Figure 5.6: Backscatter over time at (a) station 16 in 2000, (b) station 11 in 2001, (c) station
15 in 2001, and (d) station 12 in 2002. The correlation coefficients at these stations are lower
than other values in Table 5.6. Bolded values correspond to locations within the dry snow
zone.
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Table 5.7: Calculated correlation coefficient of temperature and the spatial average of σ0 for
each year of the entire dry snow zone (see Fig. 3.20). The bottom row gives the correlation

coefficient for the spatially averaged temperature and the spatial average of σ0. Bolded
values correspond to locations within the dry snow zone.

AWS 2000 2001 2002 2003 2004 2005 2006 2007 2008
3 -0.748 -0.696 x x -0.806 x x x x
5 -0.782 -0.778 -0.702 -0.916 -0.831 -0.793 x x x
6 -0.741 -0.711 -0.683 -0.794 -0.809 -0.773 -0.858 -0.835 -0.799
7 -0.800 -0.779 -0.744 -0.893 x -0.814 -0.892 -0.911 x
11 -0.745 -0.704 -0.658 x -0.773 -0.690 x -0.781 x
12 -0.794 -0.725 -0.719 -0.845 -0.855 -0.803 x x x
14 -0.777 -0.725 -0.698 -0.822 -0.833 -0.778 x -0.863 -0.822
15 -0.711 -0.686 -0.654 -0.756 -0.791 -0.743 -0.830 x x
16 -0.737 x x x x x x x x
Average -0.813 -0.786 -0.737 -0.895 -0.865 -0.838 -0.925 -0.901 -0.810

also the reason for the lower correlation coefficients (in magnitude) outside of the dry snow

zone in Table 5.6.

Spatial averaging can also be used to mitigate noise. Table 5.7 gives the correlation

coefficients of temperature and the spatial average of σ0 of the entire dry snow zone for each

year. The bottom row gives the correlation coefficient of the spatial average of temperature

and the spatial average of backscatter. Within the dry snow zone, the values are comparable

to those in Table 5.6. However, outside of the dry snow zone, the correlation coefficients

are higher in magnitude in Table 5.7 than in Table 5.6. In general, temperature is spatially

correlated; e.g. warm weather in one pixel is accompanied by warm weather in nearby pixels.

For the values of the correlation coefficients in Table 5.7, the spatial average of σ0 is the same

for all stations in a given year and is restricted to the dry snow zone. Therefore, non-linear

σ0 behavior associated with melt is not present in this spatial average. Since temperature is

spatially correlated, the correlation coefficients at stations outside of the dry snow zone are

similar in magnitude to the stations inside the dry snow zone. An example of this is stations

12 and 14.

The bottom row in Table 5.7 shows that the magnitude of the correlation coefficient

of the spatial average of σ0 and the spatial average of temperature is on average higher than

the magnitude of the correlation coefficient of the spatial average of σ0 and the temperature
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Figure 5.7: (a) Temporal variance and (b) the correlation coefficient with temperature of the
spatial average of σ0 as a function of the number of pixels used to calculate the average in
2003. The spatial average is initially centered around the station but limited to the dry snow
zone (see text).

at the individual stations. This suggests that spatial averaging may affect the correlation

coefficient in ways besides noise mitigation. The analysis in Appendix A demonstrates

that spatial averaging can artificially inflate the correlation coefficient. However, simulation

results in Appendix A also suggest that the more two locations are correlated, the less this

occurs. Thus spatial averaging should be limited to small regions that are correlated in

temperature and σ0 to avoid artificial inflation of the correlation coefficient.

A possible range for the number of pixels that should be used in the spatial average

to mitigate noise can be deduced from the results in Fig. 5.7. This figure shows the annual

variance of the spatial average of σ0 and the correlation coefficient of the spatial average

and temperature in 2003 as a function of the number of pixels used to calculate the spatial

average. The spatial average is calculated from a region initially centered around the AWS

but restricted to the dry snow zone. This means that the center of the region eventually

shifts away from the station as the region grows in size until the region is the entire dry snow

zone.
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The temporal variance of the spatial average is found by calculating the variance of

the spatial average over the whole year. Due to seasonal variation, the variance is nonzero.

However, spatially averaging σ0 should mitigate noise and thus decrease the temporal vari-

ance as long as the pixels used in the averaging have correlated backscatter. This may

explain the behavior of the temporal variance in Fig. 5.7(a). The variance of the spatial

average rapidly decreases initially as the number of pixels used in the average increases.

However, the variance achieves a local minimum typically between 361 and 625 pixels and

begins increasing as the number of pixels used increases further. The increase in variance

may be due to a decrease in correlation of the pixels. As less-correlated pixels are included in

the average, the σ0 behavior over time varies more widely resulting in an increased temporal

variance.

For stations 6 and 14, the variance never decreases below the first local minimum while

stations 5, 7, and 12 eventually achieve a lower variance. This behavior may be explained

by the location of the stations. Figure 2.8 and Table 2.1 show that stations 6 and 14 are

located in the interior of the dry snow zone while stations 5, 7, and 12 are located closer

towards the edges. The results in Chapter 3 demonstrate that backscatter is somewhat more

volatile towards the edges of the dry snow zone which results in a higher temporal variance

in these regions. Since stations 6 and 14 are located in the less variant interior of the dry

snow zone, the variance achieves the minimum by using pixels nearby the station. As the

region increases in size, less correlated pixels and more of the edge pixels are included which

results in an increase in the temporal variance.

A similar effect occurs in stations 5, 7, and 12. In these regions, the initial decrease

in variance is likely due to noise mitigation. As less correlated pixels are included in the

average, the temporal variance increases. But as the region grows to include more pixels from

the central part of the dry snow zone, pixels with less temporal variance are included in the

spatial average. As these pixels begin to dominate, the temporal variance again decreases.

The results from this discussion suggest that to mitigate noise effects on the cor-

relation coefficient of σ0 and temperature, the maximum number of pixels used in spatial

averaging of σ0 should be limited to the range of 361 to 625 pixels. Using more pixels than

this may include less correlated pixels which may result in inaccurate results. This is consis-
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tent with Fig. 5.7(b) which gives the correlation coefficient of temperature and the spatial

average of σ0 as a function of the number of pixels used in the spatial average. This figure

shows that most of the gain in the magnitude of the correlation coefficient occurs prior to

the range of 361 to 625 pixels.

Summary

The results in this section demonstrate that air temperature is significantly correlated

with σ0 in the dry snow zone. Techniques such as temporal smoothing and spatial averaging

maintain the general shape of the seasonal variation in σ0 while mitigating noise. This

results in higher correlation coefficient magnitudes. Thus temperature is related to the

seasonal variation in σ0 in the dry snow zone.

5.4.3 Electromagnetic Model

In this section, an electromagnetic model is developed from [49, 50, 53, 54, 55] which

relates temperature at levels below freezing to backscatter by using theoretically and empiri-

cally derived relations between temperature and snow density, snow density and permittivity,

and permittivity and backscatter. The results of the model using AWS data are then com-

pared to QuikSCAT data.

The electromagnetic model is based on several simplifying assumptions which limit

its accuracy. First, the Greenland ice sheet is assumed to be a single infinite layer of snow.

Second, surface scattering is assumed to be negligible and snow crystals are assumed to

remain the same size at all subfreezing temperatures. Third, backscatter is assumed to be

unaffected by snow accumulation and wind speed. Fourth, the liquid-like layer of water is

ignored. Fifth, the snow density is assumed to be constant with respect to depth. Finally,

the temperature dependence of backscatter is restricted to between −20◦ and 0◦ C. These

assumptions simplify the model while limiting the accuracy. Unfortunately, including these

factors in the model requires access to grain size measurements and other in situ data that

is not available to me.
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Relating Temperature to Snow Density and Permittivity

Snow density is defined as the mass of the snow divided by the volume of the snow.

The units are given in g/cm3. Data relating air temperature to snow density is found in [49]

and [50]. From this data, an empirical relationship between temperature and snow density

is derived for temperatures between −20◦ and 0◦ C. Given a temperature t (Celsius), the

density of new snow ρs is roughly given by

ρs =
11

1400
t +

109

700
. (5.4)

Snow density affects permittivity. In [55], snow is modeled as spherically shaped ice

crystals in some background medium. In the case of dry snow, the background is simply air.

The real part of the permittivity of dry snow, ε′ds, is found to be related to the snow density

by

ε′ds = (1 + 0.51ρs)
3. (5.5)

The imaginary part ε′′ds depends on the real part of the permittivity of dry snow and

the permittivity of ice εi [55]. It is given as

ε′′ds = 3viε
′′
i

(ε′ds)
2(2ε′ds + 1)

(ε′i + 2ε′ds)(ε
′
i + 2(ε′ds)

2)
(5.6)

where vi is the volume fraction of ice in the snow given by vi = ρs/0.916 where 0.916 is

the density of pure ice. The parameter ε′i is assumed to have a constant value of 3.15.

The imaginary part of the permittivity of ice ε′′i depends on the operating frequency of the

scatterometer and the conductivity of ice which does vary slightly with temperature [56].
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Relating Permittivity and Snow Density to Received Backscatter

Assuming surface scatter is negligible, the backscatter of the scatterometer in an

infinite layer of dry snow is given as [54]

σ0(θ) = Υ2(θ)
σv cos(θ′)

2κe

(5.7)

where Υ(θ) is the transmissivity of the air-snow surface, θ is the angle of incidence, σv is

the volume backscattering coefficient, θ′ is the transmitted angle, and κe is the extinction

coefficient. Since the results are compared to QuikSCAT, a fixed θ of 54◦ is used while θ′ is

calculated using Snell’s law. The parameters Υ(θ), σv, and κe all depend on the permittivity

of the snow. The transmissivity of the air-snow surface for a vertically polarized wave is

given as [53]

Υ =
Re(η′ cos θ′)
Re(η cos θ)

|T |2 (5.8)

where T is the transmission coefficient given as [53]

T =
2η′ cos θ

η cos θ + η′ cos θ′
, (5.9)

and where η and η′ are the intrinsic electrical impedance of air and snow respectively.

To calculate the extinction coefficient of dry snow, the layer of dry snow is modeled as

“a dielectric medium consisting of ice crystals in an air background” [55]. The ice crystals in

snow are assumed to be spherical in calculating κe. The extinction coefficient is then given

as [55]

κe = κa + κs (5.10)

where κa and κs are the absorption and scattering coefficients respectively. The absorption

coefficient has two components

κa = κai + κab. (5.11)
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The κai component corresponds to the absorption caused by the ice spheres while κab corre-

sponds to the absorption caused by the background. In the case of dry snow, the background

is air. Therefore, κab = 0 and if Rayleigh scattering is assumed then

κa = κai =
6πvi

λ
Im(−K), (5.12)

where λ is the wavelength in air and [55]

K =
εi − 1

εi + 2
. (5.13)

Scattering in snow is caused by the ice particles in the snow. The expression for the

scattering coefficient is given as

κs = κsi = NvQs (5.14)

where Qs is the scattering cross section of each ice particle, and Nv is the number density of

the ice particles given as

Nv =
vi

4
3
πr3

(5.15)

where r is the particle radius [55]. The scattering cross section Qs depends on the parameter

χ = 2πr
λ

and is given as [53]

Qs =
2λ2

3π
χ6 |K|2 =

128π5r6

3λ4
|K|2 . (5.16)

The volume backscattering coefficient σv can be defined in terms of the density ρs

and the mass volume-scattering coefficient σvm as [54]

σv = ρsσvm. (5.17)

Due to lack of data, the parameter σvm is unknown. In this model, it is used as a tuning

parameter when comparing the model results to QuikSCAT data. When comparing actual
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Figure 5.8: Simulated backscatter dependence on temperature. In this plot, σvm = 0.1.

σ0 to simulated backscatter, the value of σvm is chosen to align the simulated data with the

actual data. Since the dependence of simulated σ0 on σvm is multiplicative, the dependence

in dB is additive. Therefore, tuning the simulated σ0 with σvm is equivalent to shifting the

simulated backscatter in dB.

Figure 5.8 shows the simulated backscatter for temperatures between −20◦ and 0◦ C.

This figure shows that according to the model, temperature can cause backscatter to vary by

more than 1 dB in dry snow. While this is slightly higher than the observed seasonal variation

in σ0, this provides evidence that temperature may be causing the seasonal variation in σ0.

Comparison to QuikSCAT Data

Figures 5.9 to 5.11 show the simulation results using AWS data at three locations in

different years. The first location (Fig. 5.9) is at station 6 in 2003. The simulated backscatter

follows the actual backscatter during the summer months quite well especially from JD 164

to 217. After these days, the simulated backscatter tends to overestimate the decrease in

σ0. However, the simulated backscatter still tracks the general trend quite well even though

the correlation coefficient of temperature and σ0 at this point is only −0.389. During the

winter months, the simulated backscatter is constant using this model. This is due to the

assumption in the model that temperature only affects snow at temperatures between −20◦
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Figure 5.9: Simulation results at station 6 in 2003. The correlation coefficient between
temperature and σ0 is −0.380. (a) Simulated and actual backscatter and (b) the error.

and 0◦ C. The actual backscatter is not constant during the winter. This is likely due to

noise and other factors that influence backscatter such as accumulation.

The simulated results are compared to the actual backscatter at station 5 in 2004 in

Fig. 5.10. This figure shows that the simulated backscatter consistently overestimates the

decrease in σ0 during the summer months. This is expected since the simulated backscatter

dependence on temperature in Fig. 5.8 shows a wider range in σ0 than is typically observed.

Overestimation could occur from failing to account for grain growth in the model which can

increase σ0. However, the simulated backscatter does track the general behavior of σ0 fairly

well during this time period.

Figure 5.11 shows the results at station 7 in 2006. At this point, the correlation co-

efficient between temperature and actual σ0 is −0.704. However, the simulated backscatter

does not track the actual backscatter as well as in the previous two examples. For exam-

ple, the simulated backscatter does not begin to decrease at the same time as the actual

backscatter. This could be due to accumulation which is not included in the model and

causes a decrease in backscatter. However, the high correlation of σ0 with low temperature

suggests that temperature may also affect σ0 at temperatures below −20◦ C. Additionally,
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Figure 5.10: Simulation results at station 5 in 2004. The correlation coefficient between
temperature and σ0 is −0.519. (a) Simulated and actual backscatter and (b) the error.
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Figure 5.11: Simulation results at station 7 in 2006. The correlation coefficient between
temperature and σ0 is −0.704. (a) Simulated and actual backscatter and (b) the error.
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the estimated backscatter is generally higher at the end of the year than the actual backscat-

ter. The actual backscatter is lower due to effects not accounted for in the model such as

snow accumulation.

Overall, the simulated backscatter tracks the general movement of the actual backscat-

ter quite well. The simulated backscatter tends to overestimate the decrease in σ0 during

the summer months. This may be due to the exclusion of snow grain growth in the model.

Additionally, the simulated backscatter does not always begin to decrease as early as the

actual backscatter. This may be due to the exclusion of accumulation or a possible backscat-

ter dependence on temperatures below −20◦ C. Including these parameters would increase

the accuracy of the model but the lack of information precludes it. Despite the limitations

of the model, the performance of the model suggests that temperature plays an important

role in backscatter in the dry snow zone and that seasonal variations in temperature may be

causing the seasonal variation in σ0.

5.5 Summary

The temporal behavior of backscatter in the dry snow zone, the high correlation

between temperature and σ0 in dry snow, and electromagnetic modeling of dry snow all

suggest that the seasonal temperature patterns are driving the seasonal variation in σ0.

Wind speed and direction may play a small role in seasonal variation in σ0 although the

relationship with temperature is generally much stronger. Temporal variations in azimuth

modulation do not appear to influence the seasonal variation. Therefore, I conclude that

seasonal temperature patterns are the primary driver of the seasonal variation in σ0 in the

dry snow zone.
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Chapter 6

Conclusion

The Greenland ice sheet is an important factor that influences the global climate.

Because of this influence, knowledge of temporal changes in the ice sheet is crucial to under-

standing changes in the global climate. Scatterometer measurements are useful for studying

these temporal changes in the ice sheet because of their sensitivity to snow grain size, the

presence of liquid water, and subsurface features.

The dry snow zone is the largest facie of the ice sheet and is important for its role in the

earth’s climate. Additionally, since σ0 in dry snow is relatively constant over time, backscat-

ter measurements in the dry snow zone can be used in scatterometer calibration. Studying

the temporal backscatter in the dry snow zone aids in understanding the temporal changes

in the dry snow zone and in scatterometer calibration. Unanticipated seasonal variation in

QuikSCAT backscatter in the dry snow zone is mentioned in Chapter 3. It is important to

understand the cause of the seasonal variation to verify the accuracy of QuikSCAT products,

to better understand the ice sheet conditions, and to improve scatterometer calibrations.

This thesis provides a study of the temporal behavior of backscatter in the dry snow

zone of the Greenland ice sheet focusing on seasonal variation. QuikSCAT SIR images of

the Greenland ice sheet are used to identify the dry snow zone using the Q-α melt detection

method and altitude thresholding. This method of dry snow zone identification displays

interannual consistency as well as some variability that takes into account changes in the ice

sheet. Spatial averaging and the KL transform are used to identify and study the dominant

patterns in annual backscatter behavior. Seasonal variation is well-described by a low-order

basis generated by the KL transform.

Several instrumental parameters including incidence angle, local time of day, azimuth

angle, and others are tested as possible causes of seasonal variation in σ0 in the dry snow
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zone. These parameters are tested to verify the accuracy of QuikSCAT measurements. None

of these parameters are found to be related to seasonal variation. Further evidence suggests

that the cause of the seasonal variation is geophysical. The temporal behavior of backscatter

in the dry snow zone, the high correlation between temperature and σ0 in dry snow, and

electromagnetic modeling of dry snow all lead me to conclude that the seasonal temperature

patterns are driving the seasonal variation in σ0. Wind may also play a minor role in causing

the seasonal variation.

6.1 Contributions

The research contributions of this thesis include the following:

1. Maps of the dry snow zone from 2000 to 2008 are created from QuikSCAT SIR images.

They are derived using the Q-α method and altitude thresholding. This method of

dry snow zone classification displays interannual consistency as well as some variability

that takes into account changes in the ice sheet.

2. Observations of temporal behavior in σ0 in dry snow are provided. The KL transform

and spatial averaging are used to identify and study the dominant patterns in annual

backscatter behavior. The backscatter can be accurately reconstructed by estimating

the coefficients of the resulting basis. The patterns found using the KL transform

include seasonal variation, resets, and general decreases in backscatter. Seasonal vari-

ation is found to be the dominating pattern in σ0 in the dry snow zone. Additionally,

regions of reset behavior can be predicted using the values of the estimated coefficients.

3. Possible instrumental causes of seasonal variation in σ0 in the dry snow zone are in-

vestigated to verify the accuracy of QuikSCAT measurements. All of the tested in-

strumental parameters are ruled out as causes of the seasonal variation. Therefore it

is unlikely that seasonal variation in σ0 affects the accuracy of existing scatterometer

products. The possible causes investigated include incident angle variation, orbital

drift, local time of day variation, and azimuth angle variation.

4. Strong evidence is provided that seasonal variability in σ0 in the dry snow zone is

caused by geophysical effects. This evidence includes similar seasonal variability in
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Antarctica, the spatial consistency and variability of seasonal variation in Greenland,

and the presence of seasonal variation in multiple scatterometers.

5. An analysis of the effects of averaging random variables on the correlation coefficient

with a separate random variable is performed and verified by simulation. It is found,

for example, that averaging σ0 for adjacent pixels and then correlating the average

with air temperature results in a correlation coefficient higher than the average of the

individual correlation coefficients. Based on patterns in the temporal variance of σ0,

it is concluded that the maximum number of pixels included in a spatial average for

noise mitigation may be limited to between 361 and 625 pixels.

6. Several potential geophysical causes of seasonal variation in σ0 are investigated. These

geophysical effects include azimuth modulation, wind, and temperature. Variation in

azimuth modulation is unlikely to contribute to seasonal variation while wind may

play a minor role. Temperature is highly related to backscatter in the dry snow zone.

Evidence of this relation is found in backscatter in the dry snow zone near the dry

snow line, the high correlation of σ0 with temperature, and electromagnetic modeling.

6.2 Future Work

The work in this thesis can be extended in a variety of ways. Examples are given in

the following:

1. A method of automatically identifying the dry snow zone using QuikSCAT SIR images

is presented in this thesis. Future research could include identifying the other facies

of the ice sheet. The KL transform could be applied to the region outside of the

identified dry snow zone to find the dominating temporal patterns in σ0. This may aid

in distinguishing between the percolation, wet snow, and ablation zones. This method

may then be extended to other scatterometers to create a record of the location of the

ice facies over time.

2. Some general observations of the temporal backscatter in the dry snow zone are pro-

vided in Chapter 3. The temporal behavior of σ0 could be investigated further by using

the estimated coefficients of the basis set generated using the KL transform.
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3. Using the estimated coefficients of the basis set generated from the KL expansion,

future temporal variation in σ0 in the dry snow zone may be predicted. This could be

used to improve future scatterometer calibration.

4. Based on observations in Chapter 5, the observed seasonal variation in σ0 does not

appear to be directly related to wind speed and direction. Wind could cause the

seasonal variation less directly by creating wind slabs or breaking apart snow grains.

Future work could investigate this.

5. An empirical analysis of the effects of spatial averaging of σ0 in the dry snow zone on

temporal variance is given. Spatially averaging σ0 for a small region generally results

in decreased temporal variance compared to a single pixel. However, increasing the

size of the region can affect the temporal variance of σ0 depending on the location of

the region within the dry snow zone. Future research could investigate this.

6. The relationship between temperature and backscatter in the dry snow zone could

be explored further. Further work is required to learn how temperature may cause

the seasonal variation in σ0. Electromagnetic modeling plays an important role in

this. Although the estimated backscatter from the electromagnetic model in Chapter 5

tracks the general trends of σ0 well, its accuracy could be improved by incorporating

accumulation, snow grain growth, multiple layers of snow, a liquid-like layer of water

at the surface, depth dependent snow density, and other backscatter dependencies on

temperature. Including some of these factors in the model requires access to grain size

measurements and other in situ data.
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Appendix A

Spatial Averaging and the Correlation Coefficient

In this appendix, the effects of averaging N random variables on the correlation
coefficient with another random variable is analyzed. This question arises in the context
of spatially averaging and then correlating σ0 and temperature. The analysis is performed
first for N = 2 and then for arbitrary N . The results are then verified by simulation for the
N = 2 case.

A.1 Analysis for N = 2

Let X1 and X2 be positively correlated random variables. Let Y also be a random
variable correlated with both X1 and X2. The Pearson correlation coefficient of the random
variables Xk and Y is defined as

ρXkY =
Cov(Xk, Y )

σXk
σY

(A.1)

where σXk
and σY are the standard deviations of Xk and Y . If Z = X1+X2

2
, then

σ2
Z = Var

(
X1 + X2

2

)

=
1

4
(σ2

X1
+ σ2

X2
+ 2Cov(X1, X2))

=
1

4
(σ2

X1
+ σ2

X2
+ 2σX1σX2ρX1X2). (A.2)

The covariance of Z and Y is then

Cov(Z, Y ) = E[ZY ]− E[Z]E[Y ]

=
1

2
(E[X1Y ] + E[X2Y ]

− E[X1]E[Y ]− E[X2]E[Y ])

=
1

2
(Cov(X1, Y ) + Cov(X2, Y ))

=
1

2
σY (ρX1Y σX1 + ρX2Y σX2). (A.3)
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The correlation coefficient of Z and Y then becomes

ρZY =
ρX1Y σX1 + ρX2Y σX2√

σ2
X1

+ σ2
X2

+ 2σX1σX2ρX1X2

. (A.4)

If it is assumed that σX1 ≈ σX2 , then the correlation coefficient becomes

ρZY =
ρX1Y + ρX2Y√
2(1 + ρX1X2)

. (A.5)

Since X1 and X2 are positively correlated, 0 < ρX1X2 < 1, which gives bounds on ρZY as

|ρX1Y + ρX2Y |
2

< |ρZY | < |ρX1Y + ρX2Y |√
2

. (A.6)

These results can be applied in the following manner. Assume that X1 and X2 represent
σ0 at two nearby pixels. Since the pixels are adjacent, it is likely that σX1 ≈ σX2 and
0 < ρX1X2 < 1 which means that Eq. (A.6) is valid. Equation (A.6) then shows that if
σ0 is averaged for these two adjacent pixels and then correlated with air temperature, the
resulting correlation coefficient will be greater than the average of the individual correlation
coefficients.

A.2 Analysis for Arbitrary N

This can be extended to N ≥ 2. Define ZN = 1
N

∑N
n=1 Xn where each Xn is a random

variable positively correlated with the others. Then the variance of ZN is

σ2
ZN

=
1

N2

N∑
n=1

N∑
m=1

Cov(Xn, Xm)

=
1

N2

N∑
n=1

N∑
m=1

ρXnXmσXnσXm (A.7)

and the covariance of ZN and Y is

Cov(ZN , Y ) =
1

N

N∑
n=1

Cov(Xn, Y )

=
σY

N

N∑
n=1

σXnρXnY . (A.8)

The correlation coefficient is then

ρZNY =

∑N
n=1 σXnρXnY√∑N

n=1

∑N
m=1 ρXnXmσXnσXm

. (A.9)
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Figure A.1: MATLAB code for the simulation.

If it is assumed that σXn ≈ σXm for all n and m and that ρXnXm ≈ ρX for all n 6= m,
then ρZNY simplifies to

ρZNY =

∑N
n=1 ρXnY√

N + (N − 1)NρX

. (A.10)

Since the Xn’s are positively correlated with each other, then 0 < ρX < 1. This means that

1

N

∣∣∣∣∣
N∑

n=1

ρXnY

∣∣∣∣∣ < |ρZNY | < 1√
N

∣∣∣∣∣
N∑

n=1

ρXnY

∣∣∣∣∣ . (A.11)

As an example, this shows that for adjacent pixels, the magnitude of the correlation coef-
ficient of the spatial average of σ0 with temperature is greater than the magnitude of the
spatial average of the individual correlation coefficients.

A.3 Simulation for N = 2

To verify the analysis, the N = 2 case is simulated. Figure A.1 gives the MATLAB
code to run the simulation. Two zero-mean unit variance normally distributed random
vectors with length 1000000 (Y and X1) are generated. The vector X2 is initially equal
to X1 meaning ρX1X2 = 1. The correlation coefficient ρX1X2 is slowly decreased to zero by
generating a zero-mean low variance normally distributed random vector multiple times and
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Figure A.2: Simulated results for the correlation analysis where N = 2. The value ρ ratio is
defined in Eq. (A.12).

adding it to X2. The value ρ ratio is calculated at each step where

ρ ratio =
|ρZY |

|ρX1Y + ρX2Y | . (A.12)

Then from the previous sections,

1

2
< ρ ratio <

1√
2
. (A.13)

Figure A.2 gives the results for the simulation which agree with Eq. (A.13).

A.4 Conclusion

The results of this appendix demonstrate that spatial averaging can artificially in-
crease the correlation coefficient. According to Fig. A.2, this occurs the most when the pixels
are not highly correlated. This suggests that to mitigate noise effects on the correlation coef-
ficient, a spatial average of a smaller and more correlated region gives more accurate results
than using the spatial average of the entire ice sheet.
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Appendix B

Diurnal Correlation of Temperature and Backscatter

If seasonal variation in temperature is driving the seasonal variation in σ0 in the dry
snow zone, then diurnal variation in temperature may create diurnal variation in σ0. In
this appendix, the diurnal relationship between temperature and σ0 in the dry snow zone is
explored.

B.1 Data

For each day and polarization, there are three QuikSCAT SIR images of Greenland
based on the time of the satellite passes. One image uses all the available passes to calculate
σ0. Data from all-pass images are used throughout this entire thesis. The other images
calculate σ0 from passes categorized as either morning or evening passes. The morning and
evening images can be used to study diurnal variations in σ0 in the dry snow zone.

Unfortunately, the morning images of Greenland include only passes that occur in the
early morning. Additionally, all the evening passes occur late in the day. This means that
there may not be much change in temperature between the morning and evening images.
To improve the temporal resolution in σ0, midday images from the SeaWinds on ADEOS
scatterometer are used (referred to as SeaWinds hereafter). SeaWinds operated from JD 100
to JD 297 in 2003 and is nearly identical in specifications to QuikSCAT. However its orbital
pattern causes it to pass over Greenland in the evening and midday. Combining the midday
SeaWinds images with the evening and morning QuikSCAT images gives a finer temporal
resolution (3 samples/day) in σ0. Temperature records from AWS are then used with this
sequence of images to study diurnal variations in temperature and σ0 in the dry snow zone.

B.2 Results

Table B.1 provides the correlation coefficients of temperature and σ0 at AWS in the
dry snow zone in 2003. The values in the first column use the QuikSCAT all-pass images and
the average daily temperature to calculate the correlation coefficient. This gives a baseline
for comparison. These values are slightly lower than those given in Table 5.5. This is likely
due to the shorter record used in Table B.1.

The values in the second column use the diurnal sequence of σ0 and the temperature
measurement taken at the corresponding pixel times to calculate the correlation coefficient.
An increase in the magnitude of the correlation coefficient in this column compared to
the first column would suggest that diurnal variations in temperature are correlated with
diurnal variations in σ0. However, this is not the case. The magnitude of the correlation
coefficient is generally smaller when the diurnal sequence is used. The decrease in magnitude
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Table B.1: Correlation coefficients of temperature and σ0 at stations in the dry snow zone
in 2003 from JD 100 to JD 297. The all-pass column uses all-pass image data and average

daily temperature while the diurnal column uses the diurnal sequence of σ0 and the
temperature measurement taken at the corresponding pixel times. The delta

column uses the change in σ0 and the change in temperature.

AWS All-pass Diurnal Delta
5 -0.558 -0.394 -0.173
6 -0.383 -0.346 -0.311
7 -0.563 -0.406 -0.141
12 -0.499 -0.370 -0.153
14 -0.291 -0.307 -0.279

may be caused by noise. The SIR algorithm essentially temporally averages σ0. Averaging
the backscatter mitigates the effects of noise. Therefore images created from more passes
generally have less noise. It is possible that using morning, evening, and midday passes buries
some of the backscatter dependence on temperature in the higher noise level of subdaily
versus daily samples, resulting in a decrease in the correlation coefficient.

Additionally, some of the decrease in the magnitude of the correlation coefficient may
be caused by using unaveraged air temperature data. Backscatter in snow depends on the
snow conditions which are affected by snow temperature. Snow temperature is generally
affected more by the average air temperature than the air temperature at a single point
in time. This may account for some of the decrease in the magnitude of the correlation
coefficient.

The values in the third column use the change in σ0 and the change in temperature to
calculate the correlation coefficient. Comparing the change in the two data sets mitigates the
correlation due to the seasonal cycle. Table B.1 shows that the magnitude of the correlation
coefficient between these two parameters is low but statistically significant. This suggests
that diurnal variations in temperature may drive small diurnal variations in σ0. However,
noise appears to limit the analysis.

Figure B.1 shows plots of temperature, backscatter, the change in temperature, and
the change in backscatter for a twenty day period in 2003. These plots give an example of
the relationship between temperature and backscatter. Figures B.1(a) and B.1(c) show that
there is a negative correlation between temperature and σ0. This is observable around JD 147
where lower temperatures are associated with higher backscatter. Similarly, Figs. B.1(b) and
B.1(d) show that there is a negative correlation between the change in temperature and the
change in σ0. This is observable between JD 140 and JD 145 where large (small) changes in
temperature are associated with large (small) changes in σ0. However, these relationships
are not observable everywhere in Fig. B.1. This is likely due to the explanations given
previously.
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Figure B.1: Plots at the summit in 2003 from JD 140 to JD 160 of (a) air temperature, (b)
the change in air temperature, (c) σ0, and (d) the change in σ0.

B.3 Summary

The correlation coefficient between the change in temperature and the change in σ0

suggest that diurnal variations in temperature may drive small diurnal variations in σ0.
However, the correlation is quite low. Additionally, the correlation coefficient of the diurnal
sequence of temperature and σ0 is lower than the correlation coefficient of all-pass images
of σ0 and the average daily temperature. This may be due to the higher noise level in
images used in the diurnal cycle as well as the effects of using unaveraged air temperature
to calculate the correlation coefficient.
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