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ABSTRACT

Sea Ice Mapping Using Enhanced Resolution Advanced Scatterometer Images

Steven Reeves
Department of Electrical and Computer Engineering

Master of Science

Sea ice is of great interest due to its effect on the global climate, the Earth’s ecosys-
tem, and human activities. Microwave remote sensing has proven to be an effective way to
measure many of the characteristics of sea ice. In particular, several algorithms map the
daily sea ice extent using a variety of instruments. Enhanced resolution images generated
from the Scatterometer Image Reconstruction (SIR) algorithm can be used to generate a
high resolution ice extent map. Previous algorithms using SIR images were developed for
scatterometers which are no longer operational. The Advanced Scatterometer (ASCAT) is a
newer scatterometer which has different characteristics from the earlier scatterometers. The
previous algorithms do not perform as well when applied to ASCAT. This thesis presents
a new algorithm for ASCAT developed to discriminate sea ice from the open ocean and
create daily maps of the ice extent. It is developed from previous algorithms used on earlier
scatterometers. The algorithm uses an iterative Bayes decision rule to classify pixels as sea
ice or ocean. Digital image processing techniques are used to reduce misclassifications. The
ice maps from the new algorithm are compared with the NASA Team sea ice concentration
maps from the Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E). The comparisons include: difference in area, distance between ice edges, number
of missed and false detections. The new ice maps are also compared with the Remund-Long
algorithm for the QuikSCAT satellite using the same metrics. The ice edge is verified with
high resolution Synthetic Aperture Radar (SAR) data. The new ice maps perform similarly
to previous ice mapping algorithms for scatterometers.
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Chapter 1

Introduction

Sea ice is frozen water characterized by a sheet of ice of varying thickness floating on

the surface of the ocean. It is constantly changing due to melting, freezing, ocean currents,

and wind. Even though sea ice occurs in some of the most remote regions of the Earth, it

has a great impact on the climate, the ecosystem, and human activities.

Sea ice plays an important role in the Earth’s climate. Its high albedo causes much of

the sunlight that hits its surface to be reflected back into space. The reflected solar energy

helps keep the polar region cool. When sea ice begins to melt, more sunlight is absorbed.

This causes the area to warm up, which leads to more melting ice. Thus, sea ice impacts

the Earth’s radiation budget and alters the temperature of the polar regions. Areas of open

water within the sea ice can lose heat rapidly causing the ice to grow. The ice formation

produces dense brine which sinks into the ocean. In the reverse process, melting ice creates

an influx of fresh water at the ocean’s surface. Sinking brine and low density freshwater

significantly affect the ocean circulation [1].

Sea ice also affects the Earth’s ecosystem. Many kinds of phytoplankton thrive along

the sea ice edge. During the spring time, the sea ice begins to melt creating a layer of

fresh water on the ocean surface. This layer of fresh water is nutrient-rich enabling the

phytoplankton to thrive. Nutrient rich water is also found within polynyas, which are open

areas of water surrounded by ice. The phytoplankton serve as a food source for many small

fish and krill. In addition, many types of wildlife rely on the sea ice for their habitat including

seals, penguins, and polar bears [1].

Many human activities and interests rely on knowledge of sea ice. Transportation

vessels and drill ships must avoid it. Knowledge about the sea ice can improve our under-

standing of the climate and ecosystem of the Earth. Knowing the location of the sea ice
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allows the total area of sea ice to be computed. The area of the sea ice is one of the first

indicators of climate change [1].

1.1 Research Problem Description

Sea ice extent is the total area covered by sea ice including open water between

ice floes [2]. Many human activities including global climate studies and transportation

operations benefit from knowledge of the daily ice extent. However, the daily ice extent is

difficult to monitor because sea ice is constantly changing, it occurs mostly over the poles, and

it covers a large area. Remote sensing overcomes many of these challenges and is frequently

used to monitor the ice extent.

Remote sensing instruments used to monitor the ice extent include microwave, opti-

cal, and infrared sensors. However, optical and infrared sensors have limited capability at

mapping the daily ice extent. These sensors frequently cannot see the surface of the Earth

over the poles. Optical instruments rely on sunlight to illuminate the ground, and during

certain times of the year, there is little sunlight that reaches the ground due to the orbit of

the Earth. Clouds frequently cover many areas over the poles which also prevents sunlight

from reaching the surface. Cloud cover also limits how well infrared sensors see the surface.

On the other hand, microwave sensors are well-suited for monitoring the daily ice

extent. Satellite-borne microwave instruments can easily cover the polar regions in a single

day. Most microwave frequencies can penetrate cloud cover and do not require the sun to

illuminate the ground. Microwaves are well adapted for sensing sea ice and ocean. These

advantages make microwave remote sensing instruments ideal for monitoring the sea ice

extent.

Microwave sensors consist of active (radars) and passive (radiometers) instruments.

Radiometers typically estimate the sea ice concentration, while scatterometers typically es-

timate the ice extent. The ice extent can be inferred from the ice concentration. A specific

concentration value, typically 15%, is chosen such that anything greater than this concen-

tration is considered sea ice. Some examples of sea ice concentration algorithms that use

radiometers are the NASA Team (NT) [3] and the bootstrap [4] algorithms.
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Space-borne passive microwave instruments have an inherently low resolution, usually

10 km per pixel or more. Although useful for many applications, it is beneficial to have an

ice extent map with a better resolution.

Scatterometers are active microwave instruments originally designed to calculate wind

speed and direction from backscatter measurements over the ocean. Scatterometers “see”

different characteristics of the ice than radiometers, which makes them good at detecting

the ice extent [5]–[10] . Although, scatterometers typically have a native resolution only

somewhat better than a radiometer, the Scatterometer Image Reconstruction (SIR) algo-

rithm enhances the resolution of scatterometer images using data from multiple passes of

the instrument [11], [12].

A number of ice extent algorithms use SIR images to estimate the ice extent [5]–[7].

Of particular interest to this thesis is the Remund Long (RL) algorithm [5] and Anderson’s

algorithm [6]. The RL algorithm was originally developed for the NASA Scatterometer

(NSCAT) and later updated to work with QuikSCAT (QSCAT). Anderson’s algorithm uses

QSCAT to map the ice extent.

A newer scatterometer known as the Advanced Scatterometer (ASCAT) was launched

in October 2006 and is currently operational (as of April 18, 2012). ASCAT SIR images can

be used with RL and Anderson’s algorithm; however, better performance can be achieved

with an algorithm optimized for ASCAT. The QSCAT algorithms use both horizontal and

vertical polarization to help distinguish the sea ice from the ocean. Since ASCAT is single

polarization, the QSCAT algorithms do not perform as well for ASCAT. In addition, QSCAT

is at Ku-band which typically displays a greater contrast between ice and ocean than ASCAT

which is at C-band. More significantly, ASCAT does not cover the entire polar regions in

a single day, leaving gaps in the ice extent map. These challenges can be overcome with a

modified ice extent algorithm for ASCAT.

1.2 Thesis Statement

This thesis presents a new method to map the ice extent using enhanced resolution

ASCAT images. The new method is a modified version of RL [5] and Anderson’s [6] algo-

rithms. The new algorithm incorporates a prior into the decision rule, and the algorithm
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uses a new image type that shows azimuth modulation. The addition of the prior and the

image allow the algorithm to more accurately map the ice extent. In addition, data gaps

from daily ASCAT images are classified using the previous day’s ice map to give a spatially

consistent ice map.

1.3 Research Contributions

This thesis presents three main research contributions:

1. A new algorithm is developed to detect and map sea ice using enhanced resolution

ASCAT images.

2. A new image type that shows azimuth modulation is developed.

3. A novel method is developed and used to compare the sea ice edges predicted using

different ice extent algorithms.

The new algorithm uses an iterative Bayes decision rule to classify pixels as sea ice or ocean.

The decision rule uses both a prior and a conditional PDF to decide whether a pixel is sea ice

or ocean. A prior is generated from the previous day’s ice map and a thresholded image, and

the conditional PDF is estimated empirically. To correct errors in the initial classification,

the last part of the algorithm uses minimal digital image processing to finalize the ice maps.

The ice maps produced by the new algorithm are validated by comparison to ice

maps from other algorithms. Multiple metrics provide an objective way to determine how

well two ice maps agree. One metric is to compare the areas of the two ice maps. Since we

are particularly interested in the ice edge, it is also useful to compare how well the two ice

edges agree. The second metric computes the average distance between two ice edges.

The ice maps generated by the new algorithm are validated with the AMSR-E NT

ice maps and the RL ice maps. The new algorithm performs well when compared to both

datasets. With both datasets, the new ice maps had a less than 15% percentage error in

area. The algorithm’s performance is seasonal, where better performance is seen during the

winter time. The new ice maps also perform well when compared to high resolution SAR

data.
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1.4 Thesis Outline

This thesis is outlined as follows: First, the necessary background is given in Chapter

2, including microwave remote sensing, the SIR algorithm, and ice mapping algorithms.

Following that, Chapter 3 describes the new approach for detecting sea ice using ASCAT,

and Chapter 4 discusses tuning the algorithm for best performance. The new algorithm is

then compared with the RL ice masks, the NT ice maps, and high resolution SAR images in

Chapter 5. Finally, Chapter 6 concludes and provides suggestions for future research.
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Chapter 2

Background

This chapter provides background information necessary for the rest of the thesis.

First, microwave remote sensing using active and passive instruments is described. Next,

Section 2.2 gives an overview of the Scattorometer Image Reconstruction (SIR) algorithm

that enhances scatterometer images. Finally, Section 2.3 presents a few ice mapping algo-

rithms that are relevant to this thesis.

2.1 Microwave Remote Sensing

Microwave remote sensing uses microwaves to extract information about the Earth.

This section presents two types of microwave remote sensing instruments: active and passive.

2.1.1 Active Microwave Instruments

Active microwave instruments transmit a pulse of electromagnetic energy in the mi-

crowave region of the electromagnetic spectrum. The pulse illuminates a scene on the earth

which reflects some of the energy back to the instrument. Assuming that there are many

point scatterers with no one scatterer dominating, the power received at the instrument is

related to the power transmitted through the monostatic radar equation:

Pr =
PtG

2λ2A

(4π)3R4
σ◦, (2.1)

where Pt is the transmitted power, Pr is the received power, G is the antenna gain, λ is

the wavelength of the pulse, A is the area illuminated on the surface of the earth, R is

the slant range to the target, and σ◦ is the normalized radar cross section (NRCS) of the

illuminated area. The NRCS depends on the properties of the illuminated scene, as well as
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properties of the transmitted pulse. The scene affects the NRCS through the permittivity,

surface geometry, and below the surface scattering (volume scattering). The radar affects

the NRCS through the frequency, incidence and azimuth angles, and the polarization of the

transmitted pulse. The goal of many active microwave instruments is to estimate σ◦ using

Eq. (2.1).

The two main types of active microwave instruments of interest to this thesis, are

scatterometers and synthetic aperture radar (SAR). Scatterometers are highly calibrated

instruments that can accurately measure σ◦. They estimate wind speed and direction over

the ocean by measuring σ◦ at a variety of azimuth and incidence angles. In addition to

estimating wind vectors, scatterometers are also used to study land and ice, including the

polar regions. Scatterometers have frequent coverage of the poles, usually several times a

day.

SAR is much like a scatterometer in that it images σ◦. However, using the relative

motion between the target and the instrument, a SAR is able to generate a much higher

resolution image. The trade-off is much more limited coverage when compared to a scat-

terometer. This paper uses SAR images to subjectively verify the location of the sea ice.

Next, two scatterometers are described in detail.

Advanced Scatterometer

The Advanced Scatterometer (ASCAT) instrument is a fan beam scatterometer launched

on the MetOp-A satellite in October 2006 and is currently operational (as of April 18, 2012).

It employs six fan beam antennas with three on each side all operating at 5.255 GHz (C-

band) and vertical polarization. These antennas are in a fixed position. The movement of

the spacecraft creates a swath on either side. The measurement geometry for ASCAT is

shown in Figure 2.1. The swath on either side is 550 km with a nadir gap in the middle.

The incidence angle ranges from 25 to 65 degrees. It takes 29 days for ASCAT to have an

exact-repeat orbit, and 5 days for near-repeat orbit [13].
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Figure 2.1: ASCAT measurement geometry [13].

QuikSCAT

The SeaWinds scatterometer aboard the QuikSCAT (QSCAT) satellite was opera-

tional from July 1999 to November 2009. In this paper, it is referred to as QSCAT to avoid

confusion with the short-lived SeaWinds instrument aboard ADEOS-II. QSCAT uses a dual

pencil beam that is scanned conically as the instrument moves along its orbit path. Both

beams operate at 13.4 GHz (Ku-band) at an approximately constant incidence angle. The

outer beam is at an incidence angle of 55◦ and vertical polarization, and the inner beam is

at an incidence angle of 47◦ and horizontal polarization. The scanning geometry of QSCAT

is shown in Figure 2.2. QSCAT covers 90% of the Earth every day including all of the poles

except a small area directly over the pole that is never covered.

QSCAT’s instantaneous antenna footprint on the ground has a nominal resolution of

approximately 25 km azimuth by 35 km in the range direction. This measurement footprint

is termed an “egg”. The “eggs” are further resolved into “slices” through range and Doppler

processing. Each egg consists of twelve slices which are about 6 km in the range direction

by 25 km in azimuth [15]. This thesis uses the egg resolution only since it matches better

with ASCAT.
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Figure 2.2: QSCAT scanning geometry [14].

2.1.2 Passive Microwave Instruments

Passive microwave instruments (radiometers) measure electromagnetic radiation nat-

urally emitted from objects. All matter with a temperature above absolute zero radiates

electromagnetic energy. Brightness temperature, TB, is the parameter of interest in ra-

diometers. Brightness temperature is related to the physical temperature of an object by

emissivity

TB = eTp, (2.2)

where Tp is the physical temperature of the object and e is the emissivity. The emissivity is

a function of the material, the incidence and azimuth angles, the frequency, the polarization,

and the surface geometry. It ranges from 0 to 1, with a 1 meaning TB = Tp, while an

emissivity of 0 means the material is non-emitting. The brightness temperature observed at

the antenna consists of emissions from the ground, scattered emissions from down-welling

radiation from the atmosphere, upwelling radiation from the atmosphere, and noise from

the receiver system. In practice, the estimated noise from the receiver system is subtracted

from the apparent temperature seen at the antenna. However, emissions from upwelling

and down-welling radiation are difficult to estimate. At lower microwave frequencies, the

atmosphere is effectively transparent, and thus does not contribute much to the estimated

brightness temperature of the scene. At higher frequencies, water vapor absorption bands
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(around 22 GHz and 183 GHz), and oxygen absorption bands (50-70 GHz and 119 GHz), in

the atmosphere contribute to the apparent brightness temperature.

Though emissivity is partly a function of instrument parameters (frequency, polariza-

tion, incidence angle, etc.), the brightness temperature contains much information about the

scene. Radiometers have been used for a wide range of applications including determining

sea surface temperature, wind speed, sea ice concentration, snow depth, and rain rates.

AMSR-E

The Advanced Microwave Scanning Radiometer on the Earth observing system (AMSR-

E) is a total power radiometer aboard the Aqua satellite which was launched in May 2002.

The scanning geometry for AMSR-E is shown in Figure 2.3. It has six frequencies with

both horizontal and vertical polarization. The antenna is conically scanned at an incidence

angle of 55◦ and swath width of 1450 km. AMSR-E frequently covers the polar region of

the earth except for a small gap directly over the poles. AMSR-E is widely used in polar

studies [16]–[19].

Figure 2.3: Scanning geometry for AMSR-E [17].
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2.2 Image Enhancement

Scatterometers and radiometers have an inherently low resolution, usually on the or-

der of tens of kilometers. Though useful for many remote sensing applications on a large

global scale, many applications require a higher resolution. The Scatterometer Image Re-

construction (SIR) algorithm is an iterative block multiplicative algebraic reconstruction

procedure that uses data from multiple passes of an instrument to generate a high resolution

image of the surface backscatter [11], [12]. The sampling is irregular, meaning that it is not

an even grid. The SIR algorithm uses the irregular sampling to extract information from the

side lobes of the antenna pattern in the spatial frequency domain which increases the spatial

resolution. In addition, the image is reproduced on a regular grid. The SIR algorithm trades

temporal resolution for increased spatial resolution.

For fan-beam scatterometers, the SIR algorithm relies on a linear relationship between

σ◦ and incidence angle:

σ◦(θi) = A+ B(θi − θref ), (2.3)

where θi is the incidence angle, σ◦(θi) is the NRCS in dB, θref is a reference angle usually

40◦, and A and B are constants that depend on the scene. A represents the average σ◦ over

the imaging interval at the reference angle. The B coefficient accounts for the dependence

of the scene on incidence angle. The SIR algorithm requires that the true σ◦ value does not

change during the imaging interval, an assumption which is not always true. The ocean is

very dynamic and constantly changing. The σ◦ value over the ocean depends on the near

surface winds which can change many times a day. In addition, σ◦ over certain areas can

change with the azimuth angle [20], [21]. The backscatter can change due to many other

factors as well. However, many areas of the Earth over land and ice are relatively constant in

σ◦ during the imaging interval. SIR images have been used in many land and ice studies [6],

[22]–[24].

Images of the A and B estimates are created from the σ◦ measurements for ASCAT

at vertical polarization only. The images are gridded at 4.45 km per pixel. An example of A

and B images for ASCAT is shown in Figure 2.5. Note the black diamonds on both images
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which are areas that ASCAT does not cover in a single day. ASCAT does not have as much

coverage as QSCAT due to the fan beam design with its narrow swath and nadir gap.

For QSCAT, the B image is not created since QSCAT is at a constant incidence angle.

A images are created for both horizontal and vertical polarizations for QSCAT. QSCAT egg

images are gridded at a 4.45 km pixel resolution, and slice images are gridded at 2.225

km. An example of an A egg image for both vertical and horizontal polarization is shown

in Figure 2.4. The equivalence of the ASCAT and QSCAT egg grids allow for a direct

comparison between the images. This allows the ice maps from the new algorithm to be

directly compared to the QSCAT ice maps.

(a) QSCAT A horizontal image (b) QSCAT A vertical image

Figure 2.4: A egg images for QSCAT on March 21, 2009 over Antarctica.

In addition to A and B images, ancillary images are produced by the SIR algorithm.

These give information regarding the number of measurements per pixel, incidence angle,

collection time, and variance in σ◦. Of particular interest to this thesis is the variance (V)

image. These images are the variance of the difference in the σ◦ of each pixel with the

forward projections of the σ◦ measurements. It is important to note that σ◦ is in dB when
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(a) ASCAT A image (b) ASCAT B image

Figure 2.5: A and B images for ASCAT on March 21, 2009 over Antarctica.

computing this variance. The V images represent changes in the observed σ◦ during the

imaging interval due to variations in time, incidence angle, and azimuth angle. V images for

QSCAT and ASCAT are shown in Figure 2.6.

2.3 Ice Mapping Algorithms

Several ice mapping algorithms have been developed for a variety of instruments.

Algorithms developed for passive instruments include the NASA Team (NT) [3] and the

bootstrap [4] algorithms. These algorithms estimate the sea ice concentration at resolutions

of 12.5 km per pixel or coarser.

Many algorithms also exist for scatterometer data [5]–[10]. Rivas et. al. [8] uses a

wind and sea ice model function to detect sea ice with QSCAT. Park et. al. [9] uses neural

networks to map the ice with NSCAT. Gohin et. al. [10] create images that show azimuth

and incidence angle dependence to detect sea ice with the ERS-1 scatterometer. These

algorithms create ice maps at the native resolutions of the respective instruments (25 km

and worse).
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(a) ASCAT V image (b) QSCAT V horizontal image

(c) QSCAT V vertical image

Figure 2.6: V images for ASCAT and QSCAT on March 21, 2009 over Antarctica. Recall
that QSCAT is at Ku-band, and ASCAT is at C-band. C-band typically has greater variability
over land than Ku-band which explains why the ACAT V image is brighter over the land than
the QSCAT images. On the other hand, over the ocean, the ASCAT V image is less bright
than the QSCAT images. The fan beam design of ASCAT gives less azimuth angle diversity
than QSCAT leading to a smaller variance for ASCAT over the ocean.
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A few algorithms combine data from multiple instruments, including [18], [25]. These

algorithms use both a scatterometer and a radiometer to map the ice extent. They are also

gridded at the native resolutions of the instruments (12.5 km and worse). Currently, the

algorithm presented by Brevik and Eastwood [18] is the only operational algorithm that uses

ASCAT data. Ice maps with better resolution can be achieved with enhanced resolution SIR

images [5]–[7].

This Section is outlined as follows: First, the NT algorithm is described. Following

that, sea ice mapping with SIR images is presented, including a description of the different

SIR images, and RL and Anderson’s algorithms [5], [6].

2.3.1 NASA Team Algorithm

The NASA Team (NT) algorithm is used to estimate sea ice concentration from

passive microwave instruments. The NT algorithm assumes the brightness temperature over

the polar regions (excluding land) is a linear combination of open water and ice:

TB = TBWCW + TBFYCFY + TBMYCMY , (2.4)

where CW is the fraction of the area covered by water, TBW is the brightness temperature

contribution from ocean, CFY is the fraction of the area covered by first year ice, TBFY

is the brightness temperature contribution from first year ice, CMY is the fraction of the

area covered by multiyear ice, and TBMY is the brightness temperature contribution from

multiyear ice. The total ice concentration is the sum of the first year and multiyear ice

fractions: Ci = CFY + CMY .

The ice concentration calculation uses multiple channels and tie points to calculate

the total ice concentration. The tie points are reference points for open water, first-year ice,

and multiyear ice. For a detailed description on calculating the ice concentration see [3].

The NT algorithm produces reasonable estimates of the ice concentration. It has

been modified to work with many radiometers. In addition, the algorithm has seen updates

over the years to reduce errors. The main sources of error for the NT algorithm are weather

effects, the presence of liquid water on ice (from melting snow and melt ponds), and new ice

15



having similar emission characteristics as open water [16]. Despite these shortcomings, the

AMSR-E NT ice concentration maps are used as “truth” data to validate ice maps from the

new algorithm.

2.3.2 Ice Mapping with SIR Images

As discussed in Section 2.2, the SIR algorithm enhances the resolution of scatterome-

ter images. SIR images contain useful information for distinguishing sea ice from the ocean.

A few ice extent algorithms use SIR images to map the ice extent [5]–[7]. This section de-

scribes the microwave characteristics of sea ice and ocean. Then, the properties of sea ice and

ocean for each of the SIR images is described. Lastly, the Remund-Long (RL) algorithm [5]

and Anderson’s algorithm [6] are presented.

Ocean backscatter is dominated by surface scattering due to its high dielectric con-

stant. When there is little wind, the ocean surface is smooth which means most of the

incident radiation is reflected away from the scatterometer (specular scattering). On the

other hand, higher winds roughens the surface of the ocean leading to higher backscatter

values.

Sea ice has a different backscatter signature from the ocean. Surface scattering domi-

nates for first-year and new ice, because the high brine content of first-year ice leads to a high

dielectric constant [26]. First-year ice is typically rougher than the ocean surface leading to

higher backscatter values. However, smooth first-year ice can have low backscatter values

making it difficult to distinguish from the ocean. Multi-year ice is dominated by volume

scattering leading to even higher backscatter values than first-year ice.

Under certain conditions, it is difficult to distinguish sea ice from the ocean using

backscatter values. During the summer time, wet snow and melt ponds on the ice tend to

reduce the backscatter making it difficult to distinguish the sea ice from the ocean. High

winds increase the backscatter over the ocean which also reduces the contrast between sea

ice and ocean.

The A, B, and V SIR images highlight different characteristics of the sea ice and

ocean which allows the images to be used to distinguish sea ice and ocean. The A image

represents the average σ◦over the imaging interval at 40◦ incidence angle. Sea ice has higher
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backscatter values than the ocean under most conditions. However, high winds, smooth ice,

wet snow and melt ponds can reduce the difference in backscatter between sea ice and ocean.

The B image shows the dependence of backscatter on incidence angle. Over incidence

angles of interest (∼30-60 degrees), the backscatter from a rough surface does not change

much with incidence angle. On the other hand, a smooth surface has a wider range of

backscatter as a function of incidence angle. Open water is generally smoother than sea ice,

which makes it more dependent on the incidence angle [27]. For the B image from Figure

2.5(b), the ocean is typically further from zero (in both the positive and negative direction)

than sea ice, because the ocean has greater dependence on incidence angle.

The V image is the variance of the reconstruction error which shows the variability

of backscatter. Variations in backscatter are due to changes over time, azimuth angle, and

incidence angle. The previous paragraph discussed why sea ice is less dependent on incidence

angle. Sea ice is also relatively azimuth angle independent at C-band [28], while the ocean

strongly depends on azimuth angle. Although, sea ice can change significantly in one day,

the ocean surface is generally more dynamic, since it mainly depends on the near surface

winds. Figure 2.6 shows that the ocean has higher values than the ice for a V image.

QSCAT has both vertical and horizontal polarization. The ratio of the horizontal to

the vertical polarization is known as the co-polarization ratio (PR). The log of the ratio is

equivalent to the difference in dB:

PR = Av −Ah, (2.5)

where Av is the A image for vertical polarization (v-pol) and Ah is for horizontal polar-

ization (h-pol). PR gives us information on both the incidence angle dependence and the

polarization dependence. Over ocean, the v-pol values are typically higher than h-pol. Sea

ice, on the other hand, shows no polarization bias. The many layers of sea ice are an inhomo-

geneous mixture of snow, brine pockets, air pockets, and the ice crystals. This randomness

has the effect of depolarizing the incident wave. The PR images also exhibit an incidence

angle dependence. Studies have shown that sea ice has greater isotropy in incidence angle
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than open ocean [5], [10]. Due to these properties sea ice generally has a lower PR than the

ocean.

RL Algorithm

The Remund-Long (RL) algorithm distinguishes the sea ice from the ocean using

QSCAT SIR images. The RL algorithm was initially developed for the NASA Scatterometer

(NSCAT), and was later updated for QSCAT [5], [29]. This thesis only describes the version

for QSCAT.

The RL algorithm can be summarized into three steps:

1. Data fusion

2. Classification

3. Binary processing

The data fusion step consists of appropriately combining the relevant SIR images. For

QSCAT the images used are: PR, Ah, Vh, and Vv. The PR image is derived from Ah

and Av using (2.5). The images are normalized to have zero mean and unit variance. The

feature vector is then weighted to give greater weight to the images with greater separability

between sea ice and ocean. The feature vector with the weights used for the RL algorithm is:

[4PR,Ah, Vv, Vh], with the greater weight given to PR because of its high contrast between

ice and ocean.

The classification step uses an iterative maximum likelihood classifier. First, lin-

ear discrimination is used to produce an initial classification. From this classification, the

mean vector, and covariance matrix for the ice and ocean distributions are computed. The

maximum likelihood classifier is given by

CML = arg max
C

P (x|C), (2.6)

where x is the feature vector, and C is the class (either ocean or sea ice). The RL algorithm

assumes the sea ice and ocean distributions are jointly Gaussian. This simplifies Eq. (2.6)
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to

CML = arg max
C

{
1

(2π)n/2|KC |1/2
e−

1
2
(x−µC)TK−1

c (x−µC)

}
, (2.7)

where n = 4 for QSCAT, KC is the covariance matrix for the ice or ocean distribution, and

µC is the mean vector for the respective classes. Eq. (2.7) can further be simplified to

CML = arg min
C

{
log |KC |+ (x− µC)TK−1

C (x− µC)
}
. (2.8)

This maximum likelihood equation is performed iteratively with the number of iterations

depending on the time of year.

The binary processing step is a series of standard digital image processing techniques

used to reduce spurious misclassifications. This includes erosion, dilation, and region grow-

ing. In addition, a previous day’s ice map can be used to constrain the growth/retreat of

the sea ice. Although the binary processing reduces misclassifications, it also has the side

effect of low pass filtering the ice edge. It also, filters out any polynyas within the sea ice.

Despite these drawbacks, the ice maps produced from the RL algorithm have been success-

fully used in sea ice studies and other applications that need to know the ice extent. It was

used operationally at JPL to retrieve ocean winds for the QSCAT mission.

Anderson’s Algorithm

Anderson’s algorithm [6] is related to the RL algorithm. It uses the same images to

classify pixels as sea ice or ocean. However, instead of a maximum likelihood decision rule,

it uses a Bayes decision rule of the form:

φ(x) =

sea ice, if p(x|ω1)L10 > p(x|ω0)L01

ocean, otherwise,

(2.9)

where x is the feature vector, ω0 is the ocean class, ω1 is the ice class, p(x|ωi) is the conditional

probability density function (PDF) of the feature vector given the respective class, and Lij

are loss terms for incorrect decisions. The loss terms are created from the previous day’s

RL ice maps. The conditional PDF’s are estimated from histograms. These histograms
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are parameterized by a basis set of expected histograms. This algorithm includes several

parameters that can be tuned to give better performance, and it also uses minimal binary

processing compared to the RL algorithm. The disadvantage of using this algorithm is that

it requires a training set and requires the RL ice maps as a starting point.
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Chapter 3

Algorithm

In this chapter the new ice mapping algorithm is described. The new algorithm

incorporates elements from both RL and Anderson’s algorithms including an iterative pixel-

based decision rule similar to both. In addition, digital image processing is used to reduce

spurious misclassifications. The new algorithm differs from RL and Anderson in that it

incorporates a prior and it uses a new type of image that shows azimuth modulation. In

addition, data gaps in the images are classified using the previous day’s ice map.

In summary, the new algorithm can be broken down into a series of steps:

1. Gather all relevant data (images and previous day’s ice map).

2. Normalize images to have zero mean and unit variance.

3. Generate Prior Probability Maps (PPM) from previous day’s ice map and thresholded

d image.

4. Estimate conditional PDF of feature vector for both sea ice and ocean.

5. Classify each pixel using decision rule given by Eq. (3.1).

6. Update PPMs using current ice map.

7. Estimate conditional PDF using current ice map.

8. Digital image processing.

9. Repeat steps 5-8 (this is done 6 times).

10. Constrain ice map to maximum limit.

11. Median filter ice map.

12. Classify areas of no data using previous day’s ice map.

The remainder of this chapter describes each step in the algorithm in detail. This

chapter is outlined as follows: First, Section 3.1 presents the decision rule. Then, Section

3.2 discusses the images (features) used in the decision rule. Next, Section 3.3 discusses
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estimation of the conditional PDF, and then, Section 3.4 describes the generation of the

prior used by the algorithm. Finally, Section 3.5 discusses the iterations of the algorithm.

3.1 Decision Rule

The new algorithm uses a pixel-based Bayes decision rule of the form:

φ(x) =

sea ice, if p(x|ω1)P (ω1) > p(x|ω0)P (ω0),

ocean, otherwise,

(3.1)

where x is the feature vector, ω0 is the ocean class, ω1 is the ice class, p(x|ωi) is the conditional

PDF of the feature vector given the respective class, and P (ωi) is the prior probability for

either sea ice or ocean. The decision rule is similar to Anderson’s algorithm with the loss

terms replaced by the prior probabilities [6]. The algorithm uses a slightly different feature

vector than the Anderson or RL algorithm as described in the next section [5], [6].

3.2 Features

The feature vector x in Eq. (3.1) is composed of the pixel values from four images:

A, B, V, and normalized difference (d) images. The images have different ranges of values,

so in order to combine them in an unbiased way, each image is normalized to have zero mean

and unit variance [30]. Each image has different characteristics that aid in distinguishing

the sea ice from the ocean. The sea ice and ocean characteristics for the A, B, and V images

are discussed in Section 2.3.2.

A new image used in the decision rule is the normalized difference image (d). The

normalized difference is defined as:

d =
|σ◦

F − σ◦
A|

|σ◦
F + σ◦

A|
, (3.2)

where σ◦
F is the backscatter measurement from the fore antenna and σ◦

A is the backscatter

measurement of the aft antenna [10], [31]. ASCAT has six antennas with three on each side.

The two antennas in the front are known as the fore antennas, and the two rear antennas are

known as the aft antennas (see Figure 2.1). As ASCAT moves forward, a given spot on the

22



ground is illuminated by one of the fore antennas. A few seconds to minutes later, the same

spot is illuminated by the corresponding aft antenna. For a single pass of the instrument,

the fore and aft measurements over a given location are at the same incidence angle, but

different azimuth angles. Thus, the normalized difference between the two measurements is a

measure of the azimuth angle dependence of the illuminated area. The normalized difference

is independent of incidence angle since both measurements are at the same incidence angle.

In addition, it is independent of time, assuming that σ◦ does not change in the time between

the fore and aft measurements.

An image is generated from the normalized difference by projecting each d value onto

the high resolution SIR grid. All of the d values that fall in a pixel are averaged. Figure 3.1

shows an example of a d image over Antarctica. Note that this image uses two days’ of data.

Two days are needed to achieve full coverage because the d images only use measurements

from the fore and aft antennas, and not the mid antenna.

The feature vector used in the decision rule uses both one and two day images.

ASCAT has better coverage over two days than a single day, so the two day images have

smaller data gaps. In addition, two day images have more measurements leading to better

estimates from the SIR algorithm. However, the ice edge can move several kilometers in a

single day, which can make the ice edge less detectable in the two day images. Thus, both

one and two day images are employed to optimize detection of ice extent.

3.3 Conditional PDF

Estimating the conditional PDF’s, p(x|ωi) for each individual pixel is difficult. Thus,

it is assumed that the pixel statistics are the same for each pixel. This assumption is also

used in RL and Anderson’s algorithm. However, in reality, the conditional PDF’s for sea ice

and ocean both depend on the location of the pixel. This spatial dependence is accounted

for by the prior probabilities in Eq. (3.1).

A few approaches for estimating the conditional PDF’s are considered here. One

approach is to assume the PDF’s are Gaussian. Only the mean vector and covariance matrix

need to be estimated with this approach which is used by the RL algorithm [5]. Another
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Figure 3.1: ASCAT d image over Antarctica using measurements from March 21-22, 2009.
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approach is to use histograms to estimate the conditional PDF’s which is used by Anderson

[6]. Histograms are more versatile at modeling the underlying PDF; however, they require

more memory than the Gaussian approach. I denote using Gaussian PDF’s as the Gaussian

method and using histograms as the histogram method. Next, the advantages of both

methods is discussed.

3.3.1 Comparing Conditional PDF’s

Ice maps are generated using both the histogram and Gaussian methods. The median

filter used in step 11 is assumed to be square for simplicity. Since both dimensions of the

filter are equal, one value can be considered for the size. Several values (Mf ) are considered

for the size of the median filter used in step 11 of the algorithm. The value of Mf has the

most significant impact on the final output, especially when using Gaussian PDF’s.

Figures 3.2 and 3.3 plot the percentage error in area between the new ice maps and

the AMSR-E NT 15% ice concentration maps. The Gaussian method performs significantly

better as Mf increases in the Antarctic. On the other hand, the histogram method is not as

dependent on the value of Mf , but tends to have greater error with increasing Mf . These

plots are thus not conclusive on which method should be used. The histogram method

performs better for smaller Mf , but the Gaussian method has the best overall results (when

Mf = 30 for the Antarctic and Mf = 20 for the Arctic).

The plots from Figures 3.2 and 3.3 only show the overall error. It is helpful to do

a more in-depth examination of the types of errors present in the ice maps. Two types of

errors can occur: a pixel classified as sea ice that is actually ocean (false alarm), and a pixel

classified as ocean that is actually sea ice (missed detection).

Figures 5.5(a) and 5.5(b) show the total area of false alarms for each month for

different values of Mf . The Gaussian method has much fewer false alarms. Notice that false

alarms in the Antarctic are not significantly affected by Mf . However, the Arctic is affected

by Mf , with a smaller Mf giving better results. This implies that a small median filter is

best for minimizing false alarms.
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(d) Mf = 30

Figure 3.2: Percentage error in area for each month of the year in 2008 over Antarctica for
different median filter sizes and for both the Gaussian and histogram methods.
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Figure 3.3: Percentage error in area for each month of the year in 2008 over the Arctic for
different median filter sizes and for both the Gaussian and histogram methods.
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(b) Mf = 10
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(c) Mf = 20
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Figure 3.4: Total area of false alarms for each month of the year in 2008 over Antarctica for
different median filter sizes and for both the Gaussian and histogram methods.
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Figure 3.5: Total area of false alarms for each month of the year in 2008 over the Arctic for
different median filter sizes and for both the Gaussian and histogram methods.
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Missed detections are pixels classified as ocean that are actually sea ice. Figures

5.4(a) and 5.4(b) show the total area in missed detections for each month for different values

of Mf . For most months, the histogram method has fewer missed detections. Note that the

histogram method is not particularly sensitive to the value of Mf ; however, the Gaussian

method is sensitive with a larger Mf giving fewer missed detections.
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Figure 3.6: Total area of missed detections for each month of the year in 2008 over Antarctica
for different median filter sizes and for both the Gaussian and histogram methods.

Generally speaking, the Gaussian method has fewer false alarms, and the histogram

method has fewer missed detections. These observations suggest that combining both meth-

ods in the new algorithm can achieve the best overall results.
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(a) Mf = 0
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(b) Mf = 10
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(c) Mf = 20
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Figure 3.7: Total area of missed detections for each month of the year in 2008 over the Arctic
for different median filter sizes and for both the Gaussian and histogram methods.

3.4 Prior

The prior probabilities in Eq. (3.1) enable the decision rule to have a spatial depen-

dence and constrain the growth/retreat of the ice from day to day. A prior probability is

assigned to each pixel in the images. The resulting image is denoted a Prior Probability

Map (PPM). The PPM uses an ice map from the previous day and a normalized difference

image. If an ice map from the previous day does not exist, then the next available previous

day is used up to five days before.

Equation 3.1 includes a prior probability for both sea ice and ocean. The sea ice PPM

is generated first, and the ocean PPM is derived from the sea ice PPM.

To generate a sea ice PPM, first, a mask is created using the previous day’s ice map.

This is depicted in Figure 3.8(a). Note that both land and sea ice pixels are white in the

mask. Next, a Gaussian filter is applied to the mask. The algorithm is not particularly

sensitive to the exact values used for the kernel size and standard deviation of the Gaussian
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filter. The standard deviation, σi, and size of the kernel represent the uncertainty of the

current day’s ice mask when compared with the previous day’s mask.

For the next step, the PPM is given a maximum and minimum value. The maximum

and minimum values constrain the PPM to have a finite probability for both sea ice and

ocean. I chose a maximum value of 0.95 and minimum value of 0.05. This minimum value is

used by Anderson for the loss terms [6]. Anderson used a maximum value of one; however,

the maximum value of 0.95 employed in the new algorithm is used because it represents a

probability. A value of 1 would mean that no decision is made. After setting the limits on

the sea ice PPM, the ocean PPM is found from: P (ω0) = 1 − P (ω1), since there are only

two classes. Figure 3.8(b) illustrates an example of a filtered mask with the maximum and

minimum values.

(a) Initial mask where land and sea ice are white.
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(b) After filtering with a Gaussian kernel and set-
ting maximum and minimum values

Figure 3.8: Steps showing the sea ice PPM using the previous day’s ice map from March 21
2009 in Antarctica.

Occasionally, a previous day’s ice map is not available or does not accurately map

the ice extent. Thus, the algorithm must have the ability to recover from a bad or missing

previous day’s ice map. Otherwise, a bad ice map can produce errors that propagate for

several days. To overcome this issue, a thresholded d image is employed because it has high

contrast between ice and ocean.
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The d PPM is created from a thresholded d image. To make the d PPM, first, all

non-land pixels above a threshold are given a value of 1. In addition, all land pixels are given

a value of 1. An example of a thresholded d image is shown in Figure 3.9(a). For next step

in making the d PPM, a median filter is applied to the thresholded image as shown in Figure

3.9(b). This step reduces the speckle seen in Figure 3.9(a). Lastly, region growing is applied

to the image to get rid of disjoint pieces as shown in Figure 3.9(c). The resulting binary

mask is a reasonable initial estimate of the ice extent. A prior is created from this binary

mask in the same way as the previous day’s PPM with the Gaussian filter and maximum

and minimum values. An example of a sea ice PPM using a d image is shown in Figure

3.9(d).

In order to determine the optimal threshold and median filter size (Md) for the d

PPM, several values for the median filter size and threshold are considered. Appendix B

evaluates the effects of different values for Md and the threshold when the d PPM is compared

to the ASMR-E 15% ice concentration maps. A threshold of 0.15 minimizes the percentage

error in area in the Antarctic, and a threshold of 0.125 minimizes the error in the Arctic.

Figure 3.10 shows the percentage error in area using a threshold of 0.15 for the Antarctic, and

0.125 for the Arctic. Several values for Md are plotted in the figures using these threshold

values. In the Arctic, Md = 15 provides the best results, while in the Antarctic, Md = 20

provides the best results.

The initial PPM used by the algorithm is found from a weighted average between

the PPM from the previous day’s ice map, and the PPM from the d image. It is expected

that the previous day’s PPM is usually a more accurate representation of the sea ice for the

current day than the d PPM. However, the d PPM is given greater weight in the average,

because an inaccurate ice map can produce errors which propagate through several days. By

giving the d image PPM more weight, these errors can be reduced with the trade-off of a

potentially less accurate initial PPM.

With each iteration, the PPM is updated with the current ice map. Anderson uses a

similar update procedure for the loss maps [6]. Initially, a mask is created with the current

ice map where ice and land pixels are given a value of one. In addition, the areas that have
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Figure 3.9: Steps to create the sea ice PPM using the thresholded d image on March 21,
2009 over Antarctica.
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Figure 3.10: Percentage error in area for the thresholded d image using a threshold of 0.15 in
Antarctica and 0.125 in the Arctic. The thresholded d images are compared to the AMSR-E
NT 15% ice concentration maps for various filter sizes.
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not been classified due to missing data are also given a value of one where the previous day’s

ice map said there was ice. This avoids discontinuities that exist from missing data (i.e.

the black diamonds). Then, a Gaussian filter is applied to this image, but this time with

a smaller standard deviation than the previous iteration. The standard deviation linearly

decreases to 0 with each iteration. The idea is that with each iteration, the mask converges

to the actual ice extent. For the final step in updating the prior, a weighted average is

performed with the filtered image and the PPM from the previous iteration:

P t(ω1) = αP̂ t(ω1) + (1− α)P t−1(ω1), (3.3)

where P t−1(ω1) is the PPM from the previous iteration, P̂ t(ω1) is the filtered image from the

current ice map, and α ∈ [0, 1] is a “forgetting” factor that adjusts how much the previous

iteration’s PPM is used. Different values of α are considered in the next chapter. Lastly,

the PPM is constrained to the same min/max values as described previously in this section.

3.5 Iterations

The optimal combination of images and iterations is difficult to find. However, the

algorithm is not particularly sensitive to the specific combination. In addition, the ice map

does not change significantly after only a few iterations. Thus, the algorithm is broken down

into two sections that each use a few iterations.

The first section uses Gaussian PDF’s with three iterations. As described in Section

3.3 the Gaussian method has fewer false alarms, but more missed detections. A false alarm

on the ice edge can be difficult to remove. Thus, using Gaussian PDF’s gives a good idea of

the ice edge. However, there may be an increase in the missed detections, especially within

the ice.

Although the choice of three iterations at this stage is somewhat arbitrary, it is again

noted that the ice map has been observed to change only slightly when using more iterations.

The choice of which images to use for each iteration is also somewhat arbitrary. It is noted

that two day images provide better coverage and are less susceptible to noise; however, the ice
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edge is not as well defined for two day images, especially the d images. Thus, a combination

of one and two day images are employed.

For the first iteration, one day A, B and V images are employed. The second iteration

uses two day versions of these images, and the third iteration uses the one day images used

in the first iteration. This particular combination is chosen because the goal of the algorithm

is to produce an ice map that approximately represents the current day’s ice extent. Thus,

the one day images are used for the first and last iteration.

After the first section of the algorithm, a few digital image processing techniques are

employed. Recall the first section of the algorithm uses Gaussian PDF’s which gives a good

representation of the ice edge. However, there are a still a number of missed detections.

These missed detections typically appear as holes within the sea ice. These holes are filled

using morphological reconstruction [32]. The resulting map is then median filtered to reduce

spurious misclassifications.

The second section of the algorithm starts after the hole filling and median filtering.

This section of the algorithm uses histograms to estimate the conditional PDF. As shown in

Section 3.3 the histogram method typically has fewer missed detections than the Gaussian

method. Thus, it is expected that this method can more accurately detect polynyas within

the ice. Only pixels classified as ice from the first section are classified in the second section.

This is because histograms do not perform as well as the Gaussian method when classifying

in the open ocean (more false alarms). This section uses the same number of iterations as

the first. In addition, the same images are used for each iteration.

A few final steps are performed after all of the iterations. Steps 10 and 11 are meant

to reduce spurious errors. Two types of errors are present in the ice map: ocean classified

as sea ice (false alarm) and sea ice classified as ocean (missed detection). To reduce false

alarms, we place a constraint on how much the ice can grow in a single day. A dilated version

of the previous day’s ice map gives a maximum limit that we allow the ice to grow in a single

day. A value of 20 is used for the dilation factor which is a generous value. It is noted that

a bad previous day’s ice map can produce errors. However, due to the large dilation factor,

these errors only propagate for a few days. A median filter reduces speckle noise which helps
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(a) First iteration (b) Second iteration (c) Third iteration

(d) Third iteration after hole
filling

(e) Third iteration after me-
dian filtering

(f) Fourth iteration

(g) Fifth iteration (h) Sixth iteration (i) Sixth iteration after con-
straining to maximum limit.

(j) Sixth iteration after me-
dian filtering

Figure 3.11: What the ice map looks like after each iteration on March 21, 2009 in Antarctica.
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eliminate missed detections and false alarms while preserving the edge. The final step of the

algorithm fills in areas where there is no data with the previous day’s classification, to give

a spatially consistent ice map. Figure 3.11 shows what the ice map estimate looks like at

each iteration for each section of the algorithm.
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Chapter 4

Algorithm Tuning

This chapter considers several values for the tuning parameters introduced in the

previous chapter. The goal is to minimize the percentage error in area with the AMSR-E

NT 15% ice concentration maps. The NT maps are used because they are an acceptable

source frequently used for comparison to verify other ice mapping algorithms [5]–[8]. In

addition, the 15% concentration is typically used as the ice edge in literature [16].

The chapter is outlined as follows: First, Section 4.1 discusses the percentage error in

area with several values for certain parameters. Then, Section 4.2 presents the parameters

that give the best overall results.

4.1 Percentage Error in Area

Ice maps are created from ASCAT for all of 2008 for both the Arctic and the Antarctic

using different values of the tuning parameters. An exhaustive study of possible values for the

parameters is not performed. However as described below, several case studies are performed

using different values for various parameters.

Table 4.1 lists the images and conditional PDF method used for each iteration. Some

parameters are held constant for all of the case studies. It is left to future work to try different

values for these fixed values; however, it is noted that the algorithm is not particularly

sensitive to the exact values used for the chosen parameters. Table 4.2 lists the parameters

held constant for all case studies.

The parameters whose values are varied in this case study are: M1 - the median

filter size after the third iteration, Mf - the value of the final median filter, α - the forgetting

factor for updating the PPMs, and σi - the initial standard deviation for the Gaussian kernel.
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Table 4.1: Images Used For Each Iteration.

Number of Days

Iteration A B V d PDF Method

1 1 1 1 - Gaussian
2 2 2 2 - Gaussian
3 1 1 1 - Gaussian
4 1 1 1 - Histogram
5 2 2 2 - Histogram
6 1 1 1 - Histogram

Table 4.2: Constant Parameters

Parameter Value

iterations 6
prior minimum value 0.05
prior maximum value 0.95
maximum limit dilation factor 20
previous day’s PPM weight 0.4
d PPM weight 0.6
kernel size for PPM Gaussian filter 20 by 20

Table 4.3 lists the various values used for each of these parameters. The range of values used

for each of the parameters provided a compromise between computation time and covering

values that provide reasonable results.

Table 4.3: Varied Parameters

Parameter Values

M1 0, 10, 20
Mf 0, 10, 20, 30
α 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
σi 0, 10, 20, 30, 40
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Figure 4.1: Percentage error in area with M1 = 0 and Mf = 0.
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Figure 4.2: Percentage error in area with M1 = 0 and Mf = 10.

Figures 4.1-4.4 show the percentage error in area for various values of α, σi, and Mf

when M1 = 0. Increasing σi generally gave better results, and α = 0.2 generally minimized

the error. This is because σi = 0 means there is no Gaussian filter. In the Arctic, the

minimum error is 8.57% and occurs when σi = 40, α = 0.2 and Mf = 0. In the Antarctic,

the minimum error is 6.80% and occurs when σi = 10, α = 0.2, and Mf = 10.

Figures 4.5-4.8 show the percentage error in area for various values of α, σi, and Mf

when M1 = 10. The results are similar to the Figures 4.1-4.4 when M1 = 0. In this case,
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Figure 4.3: Percentage error in area with M1 = 0 and Mf = 20.
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Figure 4.4: Percentage error in area with M1 = 0 and Mf = 30.

the minimum error in the Arctic is 7.60% and occurs when σi = 40, α = 0.2, and Mf = 0

and the minimum error in the Antarctic is 6.85% and occurs when σi = 10, α = 0.2, and

Mf = 0. The error in the Arctic is slightly better than when M1 = 0, while the error is

slightly worse for the Antarctic.

Figures 4.9-4.12 show the percentage error in area for various values of α, σi, and

Mf when M1 = 20. The minimum error in the Arctic is 8.24% and occurs when σi = 40,

α = 0.2, and Mf = 10. The minimum error in the Antarctic is 6.93% and occurs when
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Figure 4.5: Percentage error in area with M1 = 10 and Mf = 0.
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Figure 4.6: Percentage error in area with M1 = 10 and Mf = 10.
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Figure 4.7: Percentage error in area with M1 = 10 and Mf = 20.
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Figure 4.8: Percentage error in area with M1 = 10 and Mf = 30.
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Figure 4.9: Percentage error in area with M1 = 20 and Mf = 0.

σi = 10, α = 0.2, and Mf = 0. The error in the Antarctic increased slightly as M1 increased.

On the other hand, the error in the Arctic is minimized when M1 = 1.

4.2 Parameter Values

Based on the results considered, Tables 4.4 and 4.5 list the parameters that give the

lowest percentage error in area with the NT 15% ice concentration maps. For both regions,

α = 0.2 gave the best results. All the other parameters are slightly different for the two
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Figure 4.10: Percentage error in area with M1 = 20 and Mf = 10.
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Figure 4.11: Percentage error in area with M1 = 20 and Mf = 20.
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Figure 4.12: Percentage error in area with M1 = 20 and Mf = 30.
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regions. These differences are due to the differences in geographies in the polar regions as

well as the differences in the characteristics in the sea ice.

Table 4.4: Antarctic Parameters

Parameter Description Value

M1 Intermediate median filter 0
Mf Final median filter 10
σi Standard deviation of Gaussian kernel 10
α Forgetting factor 0.2

Table 4.5: Arctic Parameters

Parameter Description Value

M1 Intermediate median filter 10
Mf Final median filter 0
σi Standard deviation of Gaussian kernel 40
α Forgetting factor 0.2

An example ice map for the Arctic and the Antarctic on March 21, 2009 is shown in

Figure 4.13. These ice maps are made using the parameters listed in Tables 4.1, 4.2, 4.4, and

4.5. The parameters listed in Tables 4.4 and 4.5 consistently produce ice maps that agree

well with the AMSR-E 15% ice maps.
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Figure 4.13: Example ice maps for both the Arctic and the Antarctic on March 21, 2009.
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Chapter 5

Validation

This chapter compares the ice maps generated by the new algorithm to other avail-

able ice maps. First, the algorithm is compared to the QSCAT RL and AMSR-E NT ice

maps. Then, the new ice maps are compared to Environment Satellite (ENVISAT) Advanced

Synthetic Aperture (ASAR) images.

5.1 Comparison with RL Algorithm and NT Ice Concentration Maps

This section compares the new ice maps to the QSCAT RL and AMSR-E NT ice maps.

The QSCAT egg resolution RL ice maps are used because they have the same resolution as

the ASCAT SIR images. On the other hand, the AMSR-E ice maps are at a lower resolution

than the ASCAT ice maps. Thus, the AMSR-E images are resized using nearest-neighbor

interpolation. The latitude/longitude pair of each pixel in the original AMSR-E image is

compared to the latitude/longitude of each pixel in the SIR image to find the closest match.

The value of the pixel from the original AMSR-E image is used.

Figure 5.1 shows the total area of sea ice in the Arctic and Antarctic using the new

ice maps, the RL ice maps, and the NT AMSR-E NT 15% ice maps. The figure shows the

seasonal trends of the total area of sea ice. The three algorithms follow each other closely.

Next, several comparisons between these three ice mapping algorithms are performed.

The first comparison uses the percentage error in area. Figure 5.2 shows the average

monthly percentage error in area between the ice maps for both the Arctic and the Antarctic.

As expected, the largest error occurs during the summertime due to the melting sea ice and

a smaller total area. Overall, the new algorithm has a low percentage error in area with the

RL and NT ice maps.
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Figure 5.1: Total area of sea ice in both hemispheres for 2008 for various ice maps.
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Figure 5.2: The monthly mean percentage error in area between the different algorithms for
2008.

The percentage error in area gives an overall measure of how two ice maps compare.

The new Antarctic ice maps have an average error in area of 6.80% compared with the NT

ice maps, while the new ice maps have an average error of 8.48% compared with the RL

maps. The RL Antarctic ice maps have a large error compared to the NT maps during the

summer because the large polynya in the Ross Sea is filled in during the binary processing

phase. The new algorithm does not filter out the polynyas, so the large error is not present.

During the winter, both the new and RL algorithms perform similarly with an average error

around 5% compared to the NT maps.
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The new Arctic ice maps have an average error of 7.60% compared to the NT maps,

which is slightly worse than the Antarctic. The error in the Arctic does not dip as low during

the winter months as the Antarctic. On the other hand, the error is not as high during the

summer melt.

The percentage error in area gives a good idea of the overall performance of the

algorithm. It is also useful to look at how close the ice edges are to each other. In order to

objectively compare ice edges, it is necessary to first trace the ice edge from each algorithm.

This is performed using the Moore neighborhood contour tracing algorithm [33].

To trace the edge, first, a binary ice map is produced with values of 1 corresponding

to sea ice. Land pixels are also given a value of 1 in the Antarctic. The land is left out for

the Arctic due to its geometry. Each contour in the binary image is traced using the Moore

neighborhood algorithm.

The contours from two ice maps are compared by going around the contour from one

ice map and finding the corresponding nearest neighbor in the other ice map. If one of the

pixels from the contour falls on land, then the pixel is skipped. The latitude and longitude

for the pixel on the contour and its nearest neighbor are then calculated. The great-circle

distance is used to find the distance between the two latitude/longitude points.

The average of all the distances around the contour gives a good measure of how

close the two ice edges are to each other. Figure 5.3 shows the average distance between the

ice edges for each month. Similar to the mean percentage error in area in Figure 5.2 the

distance between the ice edges depends on the season. The average distance between the

new maps and the NT 15% maps is 21.91 km in the Antarctic and 18.90 km in the Arctic.

Because the NT maps are gridded at 12.5 km per pixel, these distances suggest the new ice

maps are within 1 to 2 pixels of the NT ice maps.

As discussed in Chapter 3, two types of errors are present in the ice maps. The first

type is a missed detection, which is a pixel classified as sea ice when the pixel is actually

ocean. The other type of error is a false alarm, which is a pixel classified as sea ice that is

actually ocean. Figure 5.4 shows the percentage of valid pixels that are missed detections.
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Figure 5.3: The monthly mean distance between the ice edges for the three algorithms for
2008.
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Figure 5.4: The percentage of valid pixels that are missed detections. The monthly average
for 2008 is shown. Two of the plots use the NT maps as “truth”, and the other plot uses RL
maps as “truth”

Similarly, Figure 5.5 shows the percentage of valid pixels that are false alarms. Valid pixels

are any pixels that are classified, which excludes land pixels and pixels with no data.

The new ice maps have a higher percentage of missed detections than the RL ice

maps when compared to the NT 15% maps in the Arctic. On the other hand, the new ice

maps have a lower percentage of false alarms in both poles. In both cases, the percentage is
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Figure 5.5: The percentage of valid pixels that are false alarms. The monthly average for
2008 is shown. Two of the plots use the NT maps as “truth”, and the other plot uses RL maps
as “truth”.

less than one percent. This means that on average, less than one percent of the valid pixels

are missed detections and less than one percent are false alarms.

The previous graphs all use the NT 15% ice concentration maps as a reference. It is

also important to look at other ice concentrations. Figure 5.6 shows the average monthly ice

concentration that gives the smallest percentage error in area. Figure 5.7 shows the average

monthly ice concentration for the ice edge only. For both hemispheres, the concentration

tends to be lower during the summer months. This is because the ice edge is more diffuse

during the summer. The Arctic region has a few interesting artifacts. The RL ice maps

concentration for the smallest percentage error goes to zero during the summer months.

This is the only time where there is a large difference between the RL and new algorithm’s

concentration values. Also note that the average concentration of the ice edge is much higher

for the Arctic region. This is an artifact of the difficulty in defining the ice edge for this

region. The ice edge includes many areas close to land that bias the concentration to a

higher value. Future work could resolve this issue by eliminating edge pixels close to land in

the comparison.
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Figure 5.6: The average monthly concentration value that produces the smallest percentage
error in area.
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Figure 5.7: The average monthly concentration value for the ice edge in 2008.

5.2 Comparison with ENVISAT Images

The previous section gives an objective comparison of the new algorithm to the NT

AMSR-E ice maps and the RL ice maps. This section compares the ice maps to high

resolution SAR data. In particular, ENVISAT-ASAR images in the global-monitoring mode

are employed. These images are gridded at 1 km per pixel.

In addition to the new algorithm’s edge, two other ice edges are overlayed on the

ENVISAT images. The first is the SSM/I NT 15% ice edge. SSM/I is used for this section

because AMSR-E is not operational during the period of available ENVISAT images. The
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Figure 5.8: ENVISAT ASAR image in the global monitoring mode from February 21, 2012
over Antarctica. The ice edge for the new algorithm, NT SSMI 15%, and OSI SAF are all
plotted. The ice edge is on the left side of the image. The new algorithm’s ice edge is a little
further out than the other two edges, but does appear to follow the actual edge.

NT SSM/I algorithm is the same algorithm that is used to generate the AMSR-E maps used

in the previous section only with different data. However, the SSM/I maps are gridded at

25 km per pixel which is half the resolution of the AMSR-E maps.

The Ocean and Sea Ice (OSI) Satellite Application Facility (SAF) also produces an

ice edge product [34]. This algorithm uses ASCAT and SSM/I to produce a sea ice map

gridded at 25 km per pixel.

Figures 5.8-5.11 show the ice edge for various ice maps overlayed on the ENVISAT

image. All three algorithms agree well with what appears to be the ice edge in the EN-

VISAT image. Figure 5.9 includes a polynya which all three algorithms detected. The new

algorithm’s edge goes a little further out than the other two algorithms. This image occurs

during the summer melt which the previous section showed that the ice edge tends to follow

the 0% concentration. This helps validate both the new algorithm and the NT algorithm.

In Figure 5.11 the edge for all three algorithms is overestimated.

5.3 Summary

This chapter validated the new algorithm with other ice maps including the NT, RL,

OSI SAF ice maps. The new ice maps generally agree with the other ice maps. In the

Antarctic, the new ice maps had an average percentage error in area of 6.80% with the NT
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Figure 5.9: ENVISAT ASAR image in the global monitoring mode from February 21, 2012
over Antarctica. The ice edge for the new algorithm, NT SSMI 15%, and OSI SAF are all
plotted. Similar to Figure 5.8, the new algorithm’s ice edge is further out than the other two
algorithms. In this figure, the new algorithm’s edge appears to extend a little further than
where the actual ice edge is located. Also note the large polynya on the right that all three
algorithms detected.
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Figure 5.10: ENVISAT ASAR image in the global monitoring mode from February 21, 2012
over the Arctic region. The ice edge for the new algorithm, NT SSMI 15%, and OSI SAF
are all plotted. The new algorithm appears to follow the edge more closely than the other
two algorithms. However, the new algorithm includes a number of small polynyas that do not
actually exist.
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Figure 5.11: ENVISAT ASAR image in the global monitoring mode from February 21, 2012
over the Arctic region. The ice edge for the new algorithm, NT SSMI 15%, and OSI SAF are
all plotted. In the bottom right of this image, all three edges appear to go beyond where the
actual edge is located. This is especially apparent in the new algorithm’s edge.

15% maps and an average error of 8.48% with the RL ice maps. The Arctic had an average

error of 7.60% with the NT 15% maps, and 13.66% with the RL maps. When compared to

the ASAR images, the new algorithm’s ice edge tends to slightly overestimate the ice edge

in the Antarctic and in some cases the Arctic.
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Chapter 6

Conclusion

Sea ice plays an important role in the Earth’s climate and ecosystem as well as many

human activities. Knowledge of the ice extent can aid transportation and climate studies of

the polar region. Many methods exist to detect and map the ice extent. In particular, a few

algorithms have been developed that use enhanced resolution scatterometer images. These

algorithms were optimized for the QSCAT instrument.

A new ice mapping algorithm is developed in Chapter 3. The new algorithm is a

modified version of the QSCAT ice mapping algorithms that is optimized for ASCAT. The

algorithm incorporates a Bayes decision rule to classify pixels as sea ice or ocean. The

decision rule includes a prior probability which is estimated from a previous day’s ice map

and a thresholded image. In addition, the decision rule includes a conditional PDF which is

estimated empirically from the data.

The algorithm uses two different methods to estimate the conditional PDF’s. The

algorithm utilizes the advantages of both methods by switching between the methods de-

pending on the iteration. The first method assumes the PDF is Gaussian and simplifies to

estimating the mean and covariance. This method minimizes false alarms and is used to de-

tect the ice edge. The second method uses normalized histograms. This method minimizes

missed detections and is used to detect polynyas.

The algorithm includes digital image processing techniques which eliminate errors

and smooth the map. These techniques include: median filtering, hole filling, and dilation.

The new algorithm also uses the previous day’s ice map to classify areas of no data.
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6.1 Contributions

This thesis includes several contributions that add to previous work on remote sensing

of sea ice. A new algorithm is developed for mapping sea ice using enhanced resolution

ASCAT images. The ice maps produced by the new algorithm are validated with the widely

accepted NT ice maps and the RL ice maps. The contributions of the new algorithm and its

validation are summarized in the following sections.

6.1.1 Normalized Difference Images

The new algorithm incorporates a new type of image known as the normalized differ-

ence image. The normalized difference uses ASCAT’s fore and aft antennas. It is a measure

of the azimuth angle dependence of a region. This new image provides high contrast between

sea ice and ocean. It is thresholded to assist in the generation of the PPM’s, and it is also

used in the decision rule as one of the features.

6.1.2 Prior Probability Map

A method is developed to generate prior probability maps. These maps assign a prior

probability to each pixel in the image. The maps allow the decision rule to include a spatial

dependence, and the maps constrain the sea ice movement from day to day. To prevent

errors from propagating through several days, a thresholded image is employed.

6.1.3 Conditional PDF Methods

A study is performed to analyze two methods to estimate the conditional PDF used

in the decision rule. It is determined that both the Gaussian and histogram method have

advantages which are useful to the algorithm. Thus, both methods are employed to create

the sea ice map. The resulting sea ice maps are able to detect polynyas without a large

increase in false alarms.

6.1.4 Algorithm Tuning

A number of parameters for the new algorithm are tuned to achieve better perfor-

mance. The algorithm is tuned to the NT 15% concentration ice maps. The NT ice maps
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have been used for a number of years and are frequently used as a benchmark for other ice

mapping algorithms.

6.1.5 Validation of the New Ice Maps

The new ice maps are validated with the NT and RL ice maps. A number of com-

parisons are made with these ice maps that show the new ice maps are consistent with the

other ice maps. These comparisons include: percentage error in area, average distance in

ice edge, percentage of missed detections, percentage of false alarms, concentration value

that gives the lowest percentage error in area, and average concentration of the ice edge. In

addition, the RL QSCAT ice maps are also compared to the NT ice maps. This provides a

more complete validation of the RL algorithm.

6.2 Future Research

The research presented in this thesis provides a number of opportunities for future

work. Several areas of possible future research are discussed in the following sections.

6.2.1 Algorithm Tuning

Not all of the parameters for the new algorithm have been optimized. This includes

the number of iterations, which images to use on each iteration, the weighting of the d PPM

versus the previous day’s PPM, and the size of the Gaussian kernel. In addition, this thesis

only used the AMSR-E NT 15% ice maps to tune the algorithm. Future work could tune

the algorithm with different ice maps.

6.2.2 OSCAT

The Oceansat-2 Scatterometer (OSCAT) is a more recent scatterometer that is a clone

of QSCAT. The new algorithm could be applied to OSCAT (as well as QSCAT). Potentially

the Polarization Ratio (PR) image could be used as the thresholded image for the PPM’s. In

addition, the increased coverage of OSCAT means that only one day images are necessary.
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6.2.3 Multi-Sensor Sea Ice Mapping

Although parts of the algorithm are tied to ASCAT itself (especially the images),

the underlying algorithm is not tied to ASCAT only. The previous section discussed using

the algorithm on OSCAT. The algorithm could be easily extended to use multiple sensors.

This could include combining OSCAT and ASCAT or even a radiometer. Multiple sensors

could potentially be combined by first creating ice maps individually, and then combining

in some sort of fashion (maybe a weighted average). The sensors could also be combined by

incorporating the different sensor’s images for each iteration.

6.2.4 Normalized Difference Image Study

A study involving azimuth angle dependence could utilize the normalized difference

images. A study involving both sea ice and land areas could use these images.

6.2.5 C-Band to Ku-Band Study

Recall that ASCAT is at C-band and QSCAT is at Ku-band. The two sensors have

overlap for more than a year. The new ice maps could be used in a study to compare C-band

properties of sea ice to Ku-band.

6.2.6 Sea Ice Type Classification

The new ice maps could be used as an input to classify sea ice type. Sea ice can

broadly be classified into first year and multiyear ice. In addition, sea ice can be classified

into many other types that help to describe many characteristics of the ice.
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Appendix A

Nomenclature

A The A image produced from the SIR algorithm
AMSR-E Advance Microwave Scanning Radiometer for the Earth Observing System
ASAR Advanced Synthetic Aperture Radar
ASCAT Advanced Scatterometer
B The B image produced from the SIR algorithm
d Normalized difference image
e Emissivity
ENVISAT Environmental Satellite
h-pol Horizontal polarization
NRCS Normalized Radar Cross Section (σ0)
NT NASA Team
PPM Prior Probability Map
QSCAT QuikSCAT
RL Remund Long algorithm
SAR Synthetic Aperture Radar
SIR Scatterometer Image Reconstruction
SSM/I Special Sensor Microwave Imager
TB Brightness Temperature
V The standard deviation image produced from the SIR algorithm
v-pol Vertical polarization
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Appendix B

Prior Probability Maps Using Thresholded Images

The d prior probability map (PPM) uses a binary mask of the sea ice. The binary
mask is generated from a thresholded d image with a median filter. The binary mask needs
to accurately map the ice extent so that the PPM is an accurate prior probability for each
pixel.

This appendix considers several values for the threshold and the size of the median
filter in order to determine the optimum values. The binary masks are compared with the
AMSR-E NT 15% ice concentration maps to determine which threshold and median filter
size most accurately map the ice extent.

Figures B.1, B.2, B.3, B.4, B.5, and B.6 show the percentage error in area between
the binary masks and the NT 15% concentration maps. Each figure plots several threshold
values for a single median filter size. The seasonal trends of the sea ice are apparent in the
figures. During, the summer time, the percentage error is significantly higher. Overall,a
threshold of 0.15 provides the best results in the Antarctic, and a threshold of 0.125 provides
the best results in the Arctic.
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Figure B.1: Percentage error in area between the thresholded d images and the NT 15% ice
maps with a median filter of size 0.
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Figure B.2: Percentage error in area between the thresholded d images and the NT 15% ice
maps with a median filter of size 5.
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Figure B.3: Percentage error in area between the thresholded d images and the NT 15% ice
maps with a median filter of size 10.
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Figure B.4: Percentage error in area between the thresholded d images and the NT 15% ice
maps with a median filter of size 15.
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Figure B.5: Percentage error in area between the thresholded d images and the NT 15% ice
maps with a median filter of size 20.
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Figure B.6: Percentage error in area between the thresholded d images and the NT 15% ice
maps with a median filter of size 25.
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